Weyl asymptotic formulas for infinite order ΨDOs and Sobolev type spaces. Part I: symbolic calculus, hypoellipticity, semi-boundedness

Bojan Prangoski joined work with Stevan Pilipović and Jasson Vindas

< ロ > < 同 > < 回 > < 回 >

Preliminaries

Preliminaries

By M_p , $p \in \mathbb{N}$, we denote a sequence of positive numbers such that $M_0 = M_1 = 1$ and satisfies the following conditions:

(M.1) (Logarithmic convexity)

$$M_p^2 \leq M_{p-1}M_{p+1}, p \in \mathbb{Z}_+;$$

(M.2) (Stability under ultradifferential operators)

р

$$M_p \leq c_0 H^p \min_{0 \leq q \leq p} \{M_{p-q} M_q\}, \ p,q \in \mathbb{N}, \ \text{ for some } \ c_0, H > 0;$$

(*M*.3) (Strong non-quasi-analyticity)

$$\sum_{=q+1}^{\infty} \frac{M_{p-1}}{M_p} \leq c_0 q \frac{M_q}{M_{q+1}}, \ q \in \mathbb{Z}_+.$$

(M.4)

$$\frac{M_{\rho}^2}{\rho!^2} \leq \frac{M_{\rho-1}}{(\rho-1)!} \cdot \frac{M_{\rho+1}}{(\rho+1)!}, \ \rho \in \mathbb{Z}_+.$$

The associated function: $M(\lambda) = \sup_{p \in \mathbb{N}} \ln \frac{\lambda^{\nu}}{M_p}, \lambda > 0.$ ex. $M_p = p!^s, s > 1; M(\lambda) \asymp \lambda^{1/s}.$

Preliminaries

Preliminaries

By M_p , $p \in \mathbb{N}$, we denote a sequence of positive numbers such that $M_0 = M_1 = 1$ and satisfies the following conditions:

(M.1) (Logarithmic convexity)

$$M_p^2 \leq M_{p-1}M_{p+1}, p \in \mathbb{Z}_+;$$

(M.2) (Stability under ultradifferential operators)

р

$$M_p \leq c_0 H^p \min_{0 \leq q \leq p} \{M_{p-q} M_q\}, \ p,q \in \mathbb{N}, \ \text{ for some } \ c_0, H > 0;$$

(*M*.3) (Strong non-quasi-analyticity)

$$\sum_{=q+1}^{\infty} \frac{M_{p-1}}{M_p} \leq c_0 q \frac{M_q}{M_{q+1}}, \ q \in \mathbb{Z}_+.$$

(M.4)

$$\frac{M_{\rho}^2}{\rho!^2} \leq \frac{M_{\rho-1}}{(\rho-1)!} \cdot \frac{M_{\rho+1}}{(\rho+1)!}, \ \rho \in \mathbb{Z}_+.$$

The associated function: $M(\lambda) = \sup_{\rho \in \mathbb{N}} \ln \frac{\lambda^{\rho}}{M_{\rho}}, \lambda > 0. \text{ ex. } M_{\rho} = \rho!^{s}, s > 1; M(\lambda) \asymp \lambda^{1/s}.$

Preliminaries

By M_p , $p \in \mathbb{N}$, we denote a sequence of positive numbers such that $M_0 = M_1 = 1$ and satisfies the following conditions:

(M.1) (Logarithmic convexity)

$$M_p^2 \leq M_{p-1}M_{p+1}, p \in \mathbb{Z}_+;$$

(M.2) (Stability under ultradifferential operators)

р

$$M_p \leq c_0 H^p \min_{0 \leq q \leq p} \{M_{p-q} M_q\}, \ p,q \in \mathbb{N}, \ \text{ for some } \ c_0, H > 0;$$

(*M*.3) (Strong non-quasi-analyticity)

$$\sum_{=q+1}^{\infty} \frac{M_{p-1}}{M_p} \leq c_0 q \frac{M_q}{M_{q+1}}, \ q \in \mathbb{Z}_+.$$

(M.4)

$$\frac{M_{\rho}^2}{\rho!^2} \leq \frac{M_{\rho-1}}{(\rho-1)!} \cdot \frac{M_{\rho+1}}{(\rho+1)!}, \ \rho \in \mathbb{Z}_+.$$

The associated function: $M(\lambda) = \sup_{p \in \mathbb{N}} \ln \frac{\lambda^p}{M_p}, \lambda > 0.$ ex. $M_p = p!^s, s > 1; M(\lambda) \asymp \lambda^{1/s}.$

A class of pseudo-differential operators The heat parametrix Preliminaries

Test spaces. Ultradistributions

 $\mathcal{S}^{M_p,m}(\mathbb{R}^d)$, m > 0, is the (*B*)-space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ which satisfy

 $\sigma_{m}(\varphi) = \sup_{\alpha \in \mathbb{N}^{d}} \frac{m^{|\alpha|} \|e^{M(m|\cdot|)} D^{\alpha}\varphi\|_{L^{\infty}(\mathbb{R}^{d})}}{M_{\alpha}} < \infty,$ $S^{(M_{p})} = \lim_{m \to \infty} S^{M_{p},m}(\mathbb{R}^{d}) \text{ and } S^{\{M_{p}\}} = \lim_{m \to 0} S^{M_{p},m}(\mathbb{R}^{d})$

The spaces of tempered ultradistributions of Beurling and Roumieu type are their respective strong duals $S'^{(M_p)}$ and $S'^{\{M_p\}}$.

The common notation for symbols the (M_p) and $\{M_p\}$ will be *.

A class of pseudo-differential operators The heat parametrix Preliminaries

Test spaces. Ultradistributions

 $\mathcal{S}^{M_p,m}(\mathbb{R}^d), m > 0$, is the (*B*)-space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ which satisfy

$$\sigma_{m}(\varphi) = \sup_{\alpha \in \mathbb{N}^{d}} \frac{m^{|\alpha|} \|e^{M(m|\cdot|)} D^{\alpha}\varphi\|_{L^{\infty}(\mathbb{R}^{d})}}{M_{\alpha}} < \infty,$$

$$\mathcal{S}^{(M_{p})} = \lim_{m \to \infty} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}) \text{ and } \mathcal{S}^{\{M_{p}\}} = \lim_{m \to 0} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}).$$

The spaces of tempered ultradistributions of Beurling and Roumieu type are their respective strong duals $\mathcal{S}'^{(M_p)}$ and $\mathcal{S}'^{\{M_p\}}$.

The common notation for symbols the (M_p) and $\{M_p\}$ will be *.

イロン 不得 とくほう イヨン 二日

A class of pseudo-differential operators The heat parametrix Preliminaries

Test spaces. Ultradistributions

 $\mathcal{S}^{M_p,m}(\mathbb{R}^d), m > 0$, is the (*B*)-space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ which satisfy

$$\sigma_{m}(\varphi) = \sup_{\alpha \in \mathbb{N}^{d}} \frac{m^{|\alpha|} \|e^{M(m|\cdot|)} D^{\alpha} \varphi\|_{L^{\infty}(\mathbb{R}^{d})}}{M_{\alpha}} < \infty,$$

$$\mathcal{S}^{(M_{p})} = \varprojlim_{m \to \infty} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}) \text{ and } \mathcal{S}^{\{M_{p}\}} = \varinjlim_{m \to 0} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}).$$

The spaces of tempered ultradistributions of Beurling and Roumieu type are their respective strong duals $S'^{(M_p)}$ and $S'^{\{M_p\}}$.

The common notation for symbols the (M_p) and $\{M_p\}$ will be *.

A class of pseudo-differential operators The heat parametrix Preliminaries

Test spaces. Ultradistributions

 $\mathcal{S}^{M_p,m}(\mathbb{R}^d), m > 0$, is the (*B*)-space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ which satisfy

$$\sigma_{m}(\varphi) = \sup_{\alpha \in \mathbb{N}^{d}} \frac{m^{|\alpha|} \|e^{M(m|\cdot|)} D^{\alpha} \varphi\|_{L^{\infty}(\mathbb{R}^{d})}}{M_{\alpha}} < \infty,$$

$$\mathcal{S}^{(M_{p})} = \varprojlim_{m \to \infty} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}) \text{ and } \mathcal{S}^{\{M_{p}\}} = \varinjlim_{m \to 0} \mathcal{S}^{M_{p},m}(\mathbb{R}^{d}).$$

The spaces of tempered ultradistributions of Beurling and Roumieu type are their respective strong duals $S'^{(M_p)}$ and $S'^{\{M_p\}}$.

The common notation for symbols the (M_p) and $\{M_p\}$ will be *.

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Symbol classes

$A_{p}, p \in \mathbb{N}$, is a sequence of positive numbers; it satisfies

- (*M*.1), (*M*.2), (*M*.3), (*M*.4);
- $A_{\rho} \subset M_{\rho}$, i.e. there exists c, L > 0 such that $A_{\rho} \leq cL^{\rho}M_{\rho}$;
- ρ₀ = inf{ρ ∈ ℝ₊ | A_ρ ⊂ M^ρ_ρ}; clearly 0 < ρ₀ ≤ 1; ρ is fixed and satisfies
 ρ₀ ≤ ρ ≤ 1, if the infimum is reached, or, otherwise ρ₀ < ρ ≤ 1.

 $\Gamma^{M_p,\infty}_{A_p,\rho}(\mathbb{R}^{2d};h,m)$ is the (*B*)-space of all $a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d})$ satisfying (we write $w = (x,\xi) \in \mathbb{R}^{2d}$)

 $\sup_{\alpha\in\mathbb{N}^{2d}}\sup_{w\in\mathbb{R}^{2d}}\frac{|D^{\alpha}a(w)|\langle w\rangle^{\rho|\alpha|}e^{-M(m|w|)}}{h^{|\alpha|}A_{\alpha}}<\infty.$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Symbol classes

 A_p , $p \in \mathbb{N}$, is a sequence of positive numbers; it satisfies

- (*M*.1), (*M*.2), (*M*.3), (*M*.4);
- A_p ⊂ M_p, i.e. there exists c, L > 0 such that A_p ≤ cL^pM_p;

• $\rho_0 = \inf\{\rho \in \mathbb{R}_+ | A_\rho \subset M_\rho^o\}$; clearly $0 < \rho_0 \le 1$; ρ is fixed and satisfies $\rho_0 \le \rho \le 1$, if the infimum is reached, or, otherwise $\rho_0 < \rho \le 1$.

 $\Gamma^{M_p,\infty}_{A_p,\rho}(\mathbb{R}^{2d};h,m)$ is the (B)-space of all $a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d})$ satisfying (we write $w = (x,\xi) \in \mathbb{R}^{2d}$)

 $\sup_{\alpha\in\mathbb{N}^{2d}}\sup_{w\in\mathbb{R}^{2d}}\frac{|D^{\alpha}a(w)|\langle w\rangle^{\rho|\alpha|}e^{-M(m|w|)}}{h^{|\alpha|}A_{\alpha}}<\infty$

Symbol classes

 $A_{p}, p \in \mathbb{N}$, is a sequence of positive numbers; it satisfies

- (*M*.1), (*M*.2), (*M*.3), (*M*.4);
- A_p ⊂ M_p, i.e. there exists c, L > 0 such that A_p ≤ cL^pM_p;
- $\rho_0 = \inf\{\rho \in \mathbb{R}_+ | A_\rho \subset M_\rho^\rho\}$; clearly $0 < \rho_0 \le 1$; ρ is fixed and satisfies $\rho_0 \le \rho \le 1$, if the infimum is reached, or, otherwise $\rho_0 < \rho \le 1$.

 $\Gamma_{A_{p},\rho}^{M_{p},\infty}(\mathbb{R}^{2d};h,m)$ is the (*B*)-space of all $a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d})$ satisfying (we write $w = (x,\xi) \in \mathbb{R}^{2d}$)

 $\sup_{\alpha\in\mathbb{N}^{2d}}\sup_{w\in\mathbb{R}^{2d}}\frac{|D^{\alpha}a(w)|\,\langle w\rangle^{\rho|\alpha|}e^{-M(m|w|)}}{h^{|\alpha|}A_{\alpha}}<\infty.$

Symbol classes

 A_p , $p \in \mathbb{N}$, is a sequence of positive numbers; it satisfies

- (*M*.1), (*M*.2), (*M*.3), (*M*.4);
- A_p ⊂ M_p, i.e. there exists c, L > 0 such that A_p ≤ cL^pM_p;
- $\rho_0 = \inf\{\rho \in \mathbb{R}_+ | A_\rho \subset M_\rho^{\rho}\}$; clearly $0 < \rho_0 \le 1$; ρ is fixed and satisfies $\rho_0 \le \rho \le 1$, if the infimum is reached, or, otherwise $\rho_0 < \rho \le 1$.

 $\Gamma^{M_p,\infty}_{A_p,\rho}(\mathbb{R}^{2d};h,m)$ is the (*B*)-space of all $a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d})$ satisfying (we write $w = (x,\xi) \in \mathbb{R}^{2d}$)

 $\sup_{\alpha\in\mathbb{N}^{2d}}\sup_{w\in\mathbb{R}^{2d}}\frac{|D^{\alpha}a(w)|\langle w\rangle^{\rho|\alpha|}e^{-M(m|w|)}}{h^{|\alpha|}A_{\alpha}}<\infty.$

Symbol classes

 A_p , $p \in \mathbb{N}$, is a sequence of positive numbers; it satisfies

- (*M*.1), (*M*.2), (*M*.3), (*M*.4);
- A_p ⊂ M_p, i.e. there exists c, L > 0 such that A_p ≤ cL^pM_p;
- ρ₀ = inf{ρ ∈ ℝ₊ | A_ρ ⊂ M^ρ_ρ}; clearly 0 < ρ₀ ≤ 1; ρ is fixed and satisfies
 ρ₀ ≤ ρ ≤ 1, if the infimum is reached, or, otherwise ρ₀ < ρ ≤ 1.

 $\Gamma^{M_p,\infty}_{A_p,\rho}(\mathbb{R}^{2d};h,m)$ is the (*B*)-space of all $a \in \mathcal{C}^{\infty}(\mathbb{R}^{2d})$ satisfying (we write $w = (x,\xi) \in \mathbb{R}^{2d}$)

$$\sup_{\alpha\in\mathbb{N}^{2d}}\sup_{w\in\mathbb{R}^{2d}}\frac{|D^{\alpha}a(w)|\,\langle w\rangle^{\rho|\alpha|}e^{-M(m|w|)}}{h^{|\alpha|}A_{\alpha}}<\infty.$$

<ロ> <同> <同> <同> < 同> < □> < □

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Symbol classes

As l.c.s., we define

$$\Gamma_{A_{\rho},\rho}^{(M_{\rho}),\infty}(\mathbb{R}^{2d}) = \lim_{\substack{m\to\infty\\m\to\infty}} \varprojlim_{h\to0} \Gamma_{A_{\rho},\rho}^{M_{\rho},\infty}(\mathbb{R}^{2d};h,m)$$

$$\Gamma_{A_{\rho},\rho}^{\{M_{\rho}\},\infty}(\mathbb{R}^{2d}) = \lim_{\substack{h\to\infty\\h\to\infty}} \varprojlim_{m\to0} \Gamma_{A_{\rho},\rho}^{M_{\rho},\infty}(\mathbb{R}^{2d};h,m).$$

イロト イポト イヨト イヨト 二日

A class of pseudo-differential operators

The τ -quantisation ($\tau \in \mathbb{R}$) of the symbol $a \in \Gamma^{*,\infty}_{\mathcal{A}_{p},\rho}(\mathbb{R}^{2d})$ is the Ψ DO Op_{τ}(a) : $S^*(\mathbb{R}^d) \to S'^*(\mathbb{R}^d)$ defined by

$$\langle \operatorname{Op}_{\tau}(a)u, v \rangle = \langle \mathcal{F}_{\xi \to x-y}^{-1}(a)((1-\tau)x+\tau y,\xi), v \otimes u \rangle, u, v \in \mathcal{S}^*(\mathbb{R}^d).$$

Proposition

For each $\tau \in \mathbb{R}$, the bilinear mapping $(a, \varphi) \mapsto \operatorname{Op}_{\tau}(a)\varphi$, $\Gamma_{A_{p,\rho}}^{*,\infty}(\mathbb{R}^{2d}) \times S^{*}(\mathbb{R}^{d}) \to S^{*}(\mathbb{R}^{d})$, is hypocontinuous and it extends to the hypocontinuous bilinear mapping $(a, T) \mapsto \operatorname{Op}_{\tau}(a)T$, $\Gamma_{A_{p,\rho}}^{*,\infty}(\mathbb{R}^{2d}) \times S'^{*}(\mathbb{R}^{d}) \to S'^{*}(\mathbb{R}^{d})$. The mappings $a \mapsto \operatorname{Op}_{\tau}(a)$, $\Gamma_{A_{p,\rho}}^{*,\infty}(\mathbb{R}^{2d}) \to \mathcal{L}_{b}(S^{*}(\mathbb{R}^{d}), S^{*}(\mathbb{R}^{d})), \Gamma_{A_{p,\rho}}^{*,\infty}(\mathbb{R}^{2d}) \to \mathcal{L}_{b}(S'^{*}(\mathbb{R}^{d}), S'^{*}(\mathbb{R}^{d}))$ are continuous.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A class of pseudo-differential operators

The τ -quantisation ($\tau \in \mathbb{R}$) of the symbol $a \in \Gamma^{*,\infty}_{A_{\rho},\rho}(\mathbb{R}^{2d})$ is the Ψ DO Op_{τ}(a) : $S^*(\mathbb{R}^d) \to S'^*(\mathbb{R}^d)$ defined by

$$\langle \operatorname{Op}_{\tau}(a)u,v\rangle = \langle \mathcal{F}_{\xi \to x-y}^{-1}(a)((1-\tau)x+\tau y,\xi), v \otimes u\rangle, u,v \in \mathcal{S}^{*}(\mathbb{R}^{d}).$$

Proposition

For each $\tau \in \mathbb{R}$, the bilinear mapping $(a, \varphi) \mapsto \operatorname{Op}_{\tau}(a)\varphi$, $\Gamma^{*,\infty}_{A_{p,\rho}}(\mathbb{R}^{2d}) \times S^*(\mathbb{R}^d) \to S^*(\mathbb{R}^d)$, is hypocontinuous and it extends to the hypocontinuous bilinear mapping $(a, T) \mapsto \operatorname{Op}_{\tau}(a)T$, $\Gamma^{*,\infty}_{A_{p,\rho}}(\mathbb{R}^{2d}) \times S'^*(\mathbb{R}^d) \to S'^*(\mathbb{R}^d)$. The mappings $a \mapsto \operatorname{Op}_{\tau}(a)$, $\Gamma^{*,\infty}_{A_{p,\rho}}(\mathbb{R}^{2d}) \to \mathcal{L}_b(S^*(\mathbb{R}^d), S^*(\mathbb{R}^d)), \Gamma^{*,\infty}_{A_{p,\rho}}(\mathbb{R}^{2d}) \to \mathcal{L}_b(S'^*(\mathbb{R}^d), S'^*(\mathbb{R}^d))$ are continuous.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

A class of pseudo-differential operators

• symbolic calculus;

- notion of hypoellipticity and construction of parametrices; global regularity;
- realisation in L²(R^d) of hypoelliptic operators;
- the heat parametrix;

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

A class of pseudo-differential operators

- symbolic calculus;
- notion of hypoellipticity and construction of parametrices; global regularity;
- realisation in L²(R^d) of hypoelliptic operators;
- the heat parametrix;

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

A class of pseudo-differential operators

- symbolic calculus;
- notion of hypoellipticity and construction of parametrices; global regularity;
- realisation in L²(R^d) of hypoelliptic operators;
- the heat parametrix;

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

A class of pseudo-differential operators

- symbolic calculus;
- notion of hypoellipticity and construction of parametrices; global regularity;
- realisation in $L^2(\mathbb{R}^d)$ of hypoelliptic operators;
- the heat parametrix;

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

A class of pseudo-differential operators

- symbolic calculus;
- notion of hypoellipticity and construction of parametrices; global regularity;
- realisation in $L^2(\mathbb{R}^d)$ of hypoelliptic operators;
- the heat parametrix;

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Hypoellipticity and global regularity

Definition

Let $a \in \Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d})$. We say that a is $\Gamma^{*,\infty}_{A_p,\rho}$ -hypoelliptic (or, in short, simply hypoelliptic) if

i) there exists B > 0 such that there are c, m > 0 (resp. for every m > 0 there is c > 0) such that

 $|a(x,\xi)| \geq c e^{-M(m|x|) - M(m|\xi|)}, \quad (x,\xi) \in Q_B^c = \mathbb{R}^{2d} \setminus \{(x,\xi) | \langle x \rangle < B, \ \langle \xi \rangle < B \},$

ii) there exists B > 0 such that for every h > 0 there is C > 0 (resp. there are h, C > 0) such that

$$|D^{\alpha}a(w)| \leq Ch^{|\alpha|}A_{\alpha}|a(w)|\langle w \rangle^{-\rho|\alpha|}, \ \alpha \in \mathbb{N}^{2d}, \ w \in Q_{B}^{c}.$$

- hypoelliptic operators have parametrices;
- hypoelliptic operators are globally regular; i.e. $O_{P_{\tau}}(a)u \in S^*(\mathbb{R}^d)$ implies $u \in S^*(\mathbb{R}^d)$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Hypoellipticity and global regularity

Definition

Let $a \in \Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d})$. We say that a is $\Gamma^{*,\infty}_{A_p,\rho}$ -hypoelliptic (or, in short, simply hypoelliptic) if

i) there exists B > 0 such that there are c, m > 0 (resp. for every m > 0 there is c > 0) such that

 $|a(x,\xi)| \geq c e^{-M(m|x|) - M(m|\xi|)}, \quad (x,\xi) \in Q_B^c = \mathbb{R}^{2d} \setminus \{(x,\xi) | \langle x \rangle < B, \ \langle \xi \rangle < B \},$

ii) there exists B > 0 such that for every h > 0 there is C > 0 (resp. there are h, C > 0) such that

$$|D^{\alpha}a(w)| \leq Ch^{|\alpha|}A_{\alpha}|a(w)|\langle w \rangle^{-\rho|\alpha|}, \ \alpha \in \mathbb{N}^{2d}, \ w \in Q_{B}^{c}.$$

- hypoelliptic operators have parametrices;
- hypoelliptic operators are globally regular; i.e. $O_{P_{\tau}}(a)u \in S^*(\mathbb{R}^d)$ implies $u \in S^*(\mathbb{R}^d)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hypoellipticity and global regularity

Definition

Let $a \in \Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d})$. We say that a is $\Gamma^{*,\infty}_{A_p,\rho}$ -hypoelliptic (or, in short, simply hypoelliptic) if

i) there exists B > 0 such that there are c, m > 0 (resp. for every m > 0 there is c > 0) such that

 $|a(x,\xi)| \geq c e^{-M(m|x|) - M(m|\xi|)}, \quad (x,\xi) \in Q_B^c = \mathbb{R}^{2d} \setminus \{(x,\xi)| \langle x \rangle < B, \ \langle \xi \rangle < B\},$

ii) there exists B > 0 such that for every h > 0 there is C > 0 (resp. there are h, C > 0) such that

$$|D^{\alpha}a(w)| \leq Ch^{|\alpha|}A_{\alpha}|a(w)|\langle w\rangle^{-\rho|\alpha|}, \ \alpha \in \mathbb{N}^{2d}, \ w \in Q_{B}^{c}.$$

- hypoelliptic operators have parametrices;
- hypoelliptic operators are globally regular; i.e. $\operatorname{Op}_{\tau}(a)u \in \mathcal{S}^*(\mathbb{R}^d)$ implies $u \in \mathcal{S}^*(\mathbb{R}^d)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma_{A_{n,0}}^{*,\infty}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to {g ∈ L²(ℝ^d) | a^wg ∈ L²(ℝ^d)} is closed: the maximal realisation of A;
- \overline{A} is the closure of A: the minimal realisation of A;
- A^* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\} \text{ and } A^*g = (a^w)^*g, \forall g \in D(A^*)\}$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma_{A_{n,0}}^{*,\infty}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- \overline{A} is the closure of A: the minimal realisation of A;
- A^* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\}$ and $A^*g = (a^w)^*g, \forall g \in D(A^*)$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma^{*,\infty}_{A_{n,d}}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- A is the closure of A: the minimal realisation of A;
- A* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\}$ and $A^*g = (a^w)^*g, \forall g \in D(A^*)$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma^{*,\infty}_{A_{n,d}}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- \overline{A} is the closure of A: the minimal realisation of A;
- A* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\}$ and $A^*g = (a^w)^*g, \forall g \in D(A^*)$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma_{A_{n,0}}^{*,\infty}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- A is the closure of A: the minimal realisation of A;
- A^* coincides with the maximal realisation of $(a^w)^* = \overline{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\} \text{ and } A^*g = (a^w)^*g, \forall g \in D(A^*)\}$

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

- for $a \in \Gamma_{A_{n,0}}^{*,\infty}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- \overline{A} is the closure of A: the minimal realisation of A;
- A^* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^* g \in L^2(\mathbb{R}^d)\}$ and $A^*g = (a^w)^*g, \forall g \in D(A^*)$

- for $a \in \Gamma_{A_{n,0}}^{*,\infty}(\mathbb{R}^{2d})$, a^w stands for the Weyl quantisation ($\tau = 1/2$);
- A stands for the unbounded operator on L²(ℝ^d) with domain S^{*}(ℝ^d) defined as
 Aφ = a^wφ, φ ∈ S^{*}(ℝ^d);
- the restriction of a^w to $\{g \in L^2(\mathbb{R}^d) | a^w g \in L^2(\mathbb{R}^d)\}$ is closed: the maximal realisation of A;
- \overline{A} is the closure of A: the minimal realisation of A;
- A^* coincides with the maximal realisation of $(a^w)^* = \bar{a}^w$, i.e.

 $D(A^*) = \{g \in L^2(\mathbb{R}^d) | (a^w)^*g \in L^2(\mathbb{R}^d)\} \text{ and } A^*g = (a^w)^*g, \forall g \in D(A^*)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Realisation in $L^2(\mathbb{R}^d)$ of hypoelliptic operators. Semi-boundedness

Proposition

Let a be hypoelliptic and A be the corresponding unbounded operator on $L^2(\mathbb{R}^d)$ defined above. Then the minimal realisation \overline{A} coincides with the maximal realisation. Moreover, \overline{A} coincides with the restriction of a^w on the domain of \overline{A} .

Proposition

Let $a \in \Gamma^{*,\infty}_{A_{\rho,\rho}}(\mathbb{R}^{2d})$ be positive hypoelliptic symbol. Then, there exists C > 0 such that $(a^{w}\varphi,\varphi) \geq -C \|\varphi\|^{2}_{L^{2}(\mathbb{R}^{d})}, \forall \varphi \in S^{*}(\mathbb{R}^{d}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

Realisation in $L^2(\mathbb{R}^d)$ of hypoelliptic operators. Semi-boundedness

Proposition

Let a be hypoelliptic and A be the corresponding unbounded operator on $L^2(\mathbb{R}^d)$ defined above. Then the minimal realisation \overline{A} coincides with the maximal realisation. Moreover, \overline{A} coincides with the restriction of a^w on the domain of \overline{A} .

Proposition

Let $a \in \Gamma^{*,\infty}_{A_{\rho,\rho}}(\mathbb{R}^{2d})$ be positive hypoelliptic symbol. Then, there exists C > 0 such that $(a^w \varphi, \varphi) \ge -C \|\varphi\|^2_{L^2(\mathbb{R}^d)}, \forall \varphi \in \mathcal{S}^*(\mathbb{R}^d).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A class of pseudo-differential operators Hypoelliptic operators. Realisation in $L^2(\mathbb{R}^d)$

The spectrum of operators with positive hypoelliptic Weyl symbols

Proposition

Let $a \in \Gamma^{*,\infty}_{A_{p,p}}(\mathbb{R}^{2d})$ be a hypoelliptic real-valued symbol such that $|a(w)| \to \infty$ as $|w| \to \infty$ and let A be the unbounded operator on $L^2(\mathbb{R}^d)$ defined by a^w . Then the closure \overline{A} of A is a self-adjoint operator having spectrum given by a sequence of real eigenvalues either diverging to $+\infty$ or to $-\infty$ according to the sign of a at infinity. The eigenvalues have finite multiplicities and the eigenfunctions belong to $\mathcal{S}^*(\mathbb{R}^d)$. Moreover, $L^2(\mathbb{R}^d)$ has an orthonormal basis consisting of eigenfunctions of \overline{A} .

Let $a \in \Gamma^{*,\infty}_{A_{\rho,\rho}}(\mathbb{R}^{2d})$ be hypoelliptic and real-valued such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$.

The spectrum of the self-adjoint operator \overline{A} is given by a sequence of real eigenvalues $\{\lambda_j\}_{j\in\mathbb{N}}, \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$, which tends to $+\infty$, where the multiplicities are taken into account, and $\mathcal{L}^2(\mathbb{R}^d)$ has an orthonormal basis $\{\varphi_j\}_{j\in\mathbb{N}}$ consisting of eigenfunctions of \overline{A} which all belong to $\mathcal{S}^*(\mathbb{R}^d)$.

Let $N(\lambda) = \#\{j \in \mathbb{N} | \lambda_j \leq \lambda\}$. What is the asymptotic behaviour of $N(\lambda)$, as $\lambda \to \infty$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $a \in \Gamma^{*,\infty}_{A_{\rho},\rho}(\mathbb{R}^{2d})$ be hypoelliptic and real-valued such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$.

The spectrum of the self-adjoint operator \overline{A} is given by a sequence of real eigenvalues $\{\lambda_j\}_{j\in\mathbb{N}}, \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$, which tends to $+\infty$, where the multiplicities are taken into account, and $L^2(\mathbb{R}^d)$ has an orthonormal basis $\{\varphi_j\}_{j\in\mathbb{N}}$ consisting of eigenfunctions of \overline{A} which all belong to $\mathcal{S}^*(\mathbb{R}^d)$.

Let $N(\lambda) = \#\{j \in \mathbb{N} | \lambda_j \leq \lambda\}$. What is the asymptotic behaviour of $N(\lambda)$, as $\lambda \to \infty$?

Let $a \in \Gamma^{*,\infty}_{A_{\rho},\rho}(\mathbb{R}^{2d})$ be hypoelliptic and real-valued such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$.

The spectrum of the self-adjoint operator \overline{A} is given by a sequence of real eigenvalues $\{\lambda_j\}_{j\in\mathbb{N}}, \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$, which tends to $+\infty$, where the multiplicities are taken into account, and $L^2(\mathbb{R}^d)$ has an orthonormal basis $\{\varphi_j\}_{j\in\mathbb{N}}$ consisting of eigenfunctions of \overline{A} which all belong to $\mathcal{S}^*(\mathbb{R}^d)$.

Let $N(\lambda) = \#\{j \in \mathbb{N} | \lambda_j \leq \lambda\}$. What is the asymptotic behaviour of $N(\lambda)$, as $\lambda \to \infty$?

Let $a \in \Gamma^{*,\infty}_{A_{\rho},\rho}(\mathbb{R}^{2d})$ be hypoelliptic and real-valued such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$.

The spectrum of the self-adjoint operator \overline{A} is given by a sequence of real eigenvalues $\{\lambda_j\}_{j\in\mathbb{N}}, \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$, which tends to $+\infty$, where the multiplicities are taken into account, and $L^2(\mathbb{R}^d)$ has an orthonormal basis $\{\varphi_j\}_{j\in\mathbb{N}}$ consisting of eigenfunctions of \overline{A} which all belong to $\mathcal{S}^*(\mathbb{R}^d)$.

Let $N(\lambda) = \#\{j \in \mathbb{N} | \lambda_j \leq \lambda\}$. What is the asymptotic behaviour of $N(\lambda)$, as $\lambda \to \infty$?

Construction of the heat parametrix

$$T(t)g = \sum_{j=0}^{\infty} e^{-t\lambda_j}(g,\varphi_j)\varphi_j, \ g \in L^2(\mathbb{R}^d), \ t \ge 0.$$

Theorem

We have $T(t) \in \mathcal{L}(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d))$ for each $t \ge 0$. Moreover, the mapping $t \mapsto T(t)$ belongs to $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$ and $(d^k/dt^k)T(t) = (-1)^k (a^w)^k T(t)$, $t \ge 0, k \in \mathbb{Z}_+$.

$$t \mapsto \mathcal{T}(t) \text{ solves } \begin{cases} (\partial_t + a^w) \mathcal{T}(t) = 0, \ t \in [0, \infty), \\ \mathcal{T}(0) = \mathrm{Id}, \end{cases}$$

Construction of the heat parametrix

$$T(t)g = \sum_{j=0}^{\infty} e^{-t\lambda_j}(g,\varphi_j)\varphi_j, \ g \in L^2(\mathbb{R}^d), \ t \ge 0.$$

Theorem

We have $T(t) \in \mathcal{L}(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d))$ for each $t \ge 0$. Moreover, the mapping $t \mapsto T(t)$ belongs to $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$ and $(d^k/dt^k)T(t) = (-1)^k (a^w)^k T(t), t \ge 0, k \in \mathbb{Z}_+$.

$$t \mapsto \mathcal{T}(t) \text{ solves } \begin{cases} (\partial_t + a^w)\mathcal{T}(t) = 0, \ t \in [0, \infty), \\ \mathcal{T}(0) = \mathrm{Id}, \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Construction of the heat parametrix

$$T(t)g = \sum_{j=0}^{\infty} e^{-t\lambda_j}(g,\varphi_j)\varphi_j, \ g \in L^2(\mathbb{R}^d), \ t \ge 0.$$

Theorem

We have $T(t) \in \mathcal{L}(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d))$ for each $t \ge 0$. Moreover, the mapping $t \mapsto T(t)$ belongs to $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$ and $(d^k/dt^k)T(t) = (-1)^k (a^w)^k T(t), t \ge 0, k \in \mathbb{Z}_+$.

$$t \mapsto T(t) \text{ solves } \begin{cases} (\partial_t + a^w)T(t) = 0, \ t \in [0, \infty), \\ T(0) = \mathrm{Id}, \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

There exists a vector-valued mapping $\mathbf{u} : t \mapsto u(t, \cdot), [0, \infty) \to \Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d})$, belonging to $\mathcal{C}^{\infty}([0,\infty); \Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d}))$ such that the operator-valued mapping $t \mapsto (\mathbf{u}(t))^w$ belongs to both $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$ and $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}^{\prime*}(\mathbb{R}^d), \mathcal{S}^{\prime*}(\mathbb{R}^d)))$, and $(\mathbf{u}(t))^w$ satisfies

$$\begin{cases} (\partial_t + a^w)(\mathbf{u}(t))^w = \mathbf{K}(t), \ t \in [0, \infty), \\ (\mathbf{u}(0))^w = \mathrm{Id}, \end{cases}$$
(1)

where $\mathbf{K} \in C^{\infty}([0,\infty); \mathcal{L}_b(S'^*(\mathbb{R}^d), S^*(\mathbb{R}^d)))$. Moreover, u(t, w) satisfies: for every h > 0 there exists C > 0 (resp. there exist h, C > 0) such that

$$|D_t^n D_w^{\alpha} u(t, w)| \leq C n! h^{|\alpha|} A_{\alpha}(a(w))^n \langle w \rangle^{-\rho |\alpha|} e^{-\frac{t}{4}a(w)},$$

for all $\alpha \in \mathbb{N}^{2d}$, $n \in \mathbb{N}$, $(t, w) \in [0, \infty) \times \mathbb{R}^{2d}$.

Moreover, there exist $u_j \in C^{\infty}(\mathbb{R} \times \mathbb{R}^{2d}), j \in \mathbb{N}$, with $u_0(t, w) = e^{-ta(w)}$ satisfying: for every h > 0 there exists C > 0 (resp. there exist h, C > 0) such that

$$|D_t^n D_w^lpha u_j(t,w)| \leq Cn! h^{|lpha|+2j} A_{|lpha|+2j}(a(w))^n \langle w
angle^{-
ho(|lpha|+2j)} e^{-rac{t}{4}a(w)}$$

and

$$\sup_{k \in \mathbb{Z}_{+}} \sup_{\substack{\alpha \in \mathbb{N}^{2d} \\ n \in \mathbb{N}}} \sup_{\substack{w \in \mathcal{Q}_{3Rm_{k}}^{c} \\ t \in [0,\infty)}} \frac{\left| D_{t}^{n} D_{w}^{\alpha} \left(u(t,w) - \sum_{j < k} u_{j}(t,w) \right) \right| \langle w \rangle^{\rho(|\alpha|+2k)} e^{\frac{t}{4}a(w)}}{n! h^{|\alpha|+2k} A_{|\alpha|+2k}(a(w))^{n}} \leq C$$

The trace of the heat parametrix

T(t) and $(\mathbf{u}(t))^w$ are the same, modulo a smooth *-regularising family, more precisely

$$(\mathbf{u}(t))^w \varphi - \mathcal{T}(t) \varphi = \int_0^t \mathcal{T}(t-s) \mathbf{K}(s) \varphi ds, \ \varphi \in \mathcal{S}^*(\mathbb{R}^d)$$

where $t \mapsto \int_0^t T(t-s)\mathbf{K}(s)ds$ belongs to $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}'^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$.

Theorem

Let a be a hypoelliptic real-valued symbol in $\Gamma^{*,\infty}_{A_p,\rho}(\mathbb{R}^{2d})$ such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$. Then

$$\sum_{j=0}^{\infty} e^{-t\lambda_j} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^{2d}} e^{-ta(w)} dw + O\left(\int_{\mathbb{R}^{2d}} \frac{e^{-\frac{t}{4}a(w)}}{\langle w \rangle^{2\rho}} dw\right), \ t \to 0^+$$

The trace of the heat parametrix

T(t) and $(\mathbf{u}(t))^w$ are the same, modulo a smooth *-regularising family, more precisely

$$(\mathbf{u}(t))^w \varphi - T(t) \varphi = \int_0^t T(t-s) \mathbf{K}(s) \varphi ds, \ \varphi \in \mathcal{S}^*(\mathbb{R}^d),$$

where $t \mapsto \int_0^t T(t-s)\mathbf{K}(s)ds$ belongs to $\mathcal{C}^{\infty}([0,\infty); \mathcal{L}_b(\mathcal{S}'^*(\mathbb{R}^d), \mathcal{S}^*(\mathbb{R}^d)))$.

Theorem

Let a be a hypoelliptic real-valued symbol in $\Gamma^{*,\infty}_{A_{p,\rho}}(\mathbb{R}^{2d})$ such that $a(w)/\ln|w| \to \infty$ as $|w| \to \infty$. Then

$$\sum_{j=0}^{\infty} e^{-t\lambda_j} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^{2d}} e^{-ta(w)} dw + O\left(\int_{\mathbb{R}^{2d}} \frac{e^{-\frac{t}{4}a(w)}}{\langle w \rangle^{2\rho}} dw\right), \ t \to 0^+.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

THANK YOU FOR YOUR ATTENTION