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Introduction
The Weyl asymptotic formula relates the spectral asymptotics of a
ΨDO with properties of its symbol.

Let a(x ,D) =
∑

|α|+|β|≤m

cα,βxβDα be a positive (globally) elliptic

Shubin PDO.

Its spectrum consists of a sequence of eigenvalues
λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . , whose counting function

N(λ) =
∑
λj≤λ

1

behaves according the Weyl law:

Weyl asymptotic formula

N(λ) ∼ 1
(2π)d

∫∫
a(x,ξ)<λ

dxdξ, λ→∞.

Goal: Spectral asymptotics for infinite order ΨDOs.
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Symbol classes

Let Mp and Ap be weight sequences such that

Mp satisfies (M.1), (M.2), and (M.3).

Ap satisfies (M.1), (M.2), (M.3)′, and (M.4).

Ap ⊂ Mp.

Let 0 < ρ ≤ 1 such that Ap ⊂ Mρ
p .

Associated function: M(t) = sup
p∈N

ln+
tp

Mp
, t ∈ [0,∞).

Define Γ
Mp,∞
Ap,ρ

(R2d ; h,m) as the space of all a ∈ C∞(R2d ) such that

sup
α∈N2d

sup
w∈R2d

|Dαa(w)| 〈w〉ρ|α|e−M(m|w|)

h|α|A|α|
<∞.
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Symbol classes and infinite order ΨDOs

Symbol Classes Γ∗,∞Ap,ρ
(R2d )

Γ
(Mp),∞
Ap,ρ

(R2d ) = lim−→
m→∞

lim←−
h→0

Γ
Mp,∞
Ap,ρ

(R2d ; h,m)

and
Γ
{Mp},∞
Ap,ρ

(R2d ) = lim−→
h→∞

lim←−
m→0

Γ
Mp,∞
Ap,ρ

(R2d ; h,m)

Γ∗,∞Ap,ρ
(R2d ) common notation for ∗ = (Mp), {Mp}.

Let a ∈ Γ∗,∞Ap,ρ
(R2d ).

Its τ -quantization Opτ (a) : S∗(Rd )→ S∗(Rd ) is continuous.
We write aw = Op1/2(a) for its Weyl quantization.

There is a natural notion of Γ∗,∞Ap,ρ
-hypoellipticity.
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Spectral asymptotics

Consider a real-valued hypoelliptic a ∈ Γ∗,∞Ap,ρ
(R2d ) with

a(w)→∞ as |w | → ∞.
Denote still by aw the closure of the unbounded self-adjoint
operator on L2(Rd ) induced by its Weyl quantization.
As explained in the talk by Prangoski, the spectrum of aw

is given by an unbounded sequence of eigenvalues
(multiplicities taken into account)

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . .

Problem: Spectral asymptotics

Denote the spectral counting function of the operator aw as

N(λ) =
∑
λj≤λ

1 = #{j ∈ N|λj ≤ λ}.

Goal: Asymptotic behavior of N under mild assumptions on a.
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The setup: Tauberian problem

Assume additionally that a satisfies a(w)/ ln |w | → ∞.

Analysis of the associated heat semigroup yields the heat
asymptotics (t → 0+)∫ ∞

0
e−tλdN(λ) =

1
(2π)d

∫
R2d

e−ta(w)dw+O

(∫
R2d

e−ta(w)/4

〈w〉2ρ
dw

)
.

The problem is now of Tauberian character: find conditions on
the symbol a to ‘unaverage’ this and translate it into
asymptotics for N(λ).

We use growth comparison functions f : [0,∞)→ R+ such that
eventually increasing, absolutely continuous

Set σ(λ) = (f−1(λ))2d for large λ.

J. Vindas Weyl asymptotic formulas



The setup: Tauberian problem

Assume additionally that a satisfies a(w)/ ln |w | → ∞.

Analysis of the associated heat semigroup yields the heat
asymptotics (t → 0+)∫ ∞

0
e−tλdN(λ) =

1
(2π)d

∫
R2d

e−ta(w)dw+O

(∫
R2d

e−ta(w)/4

〈w〉2ρ
dw

)
.

The problem is now of Tauberian character: find conditions on
the symbol a to ‘unaverage’ this and translate it into
asymptotics for N(λ).

We use growth comparison functions f : [0,∞)→ R+ such that
eventually increasing, absolutely continuous

Set σ(λ) = (f−1(λ))2d for large λ.

J. Vindas Weyl asymptotic formulas



The setup: Tauberian problem

Assume additionally that a satisfies a(w)/ ln |w | → ∞.

Analysis of the associated heat semigroup yields the heat
asymptotics (t → 0+)∫ ∞

0
e−tλdN(λ) =

1
(2π)d

∫
R2d

e−ta(w)dw+O

(∫
R2d

e−ta(w)/4

〈w〉2ρ
dw

)
.

The problem is now of Tauberian character: find conditions on
the symbol a to ‘unaverage’ this and translate it into
asymptotics for N(λ).

We use growth comparison functions f : [0,∞)→ R+ such that
eventually increasing, absolutely continuous

Set σ(λ) = (f−1(λ))2d for large λ.

J. Vindas Weyl asymptotic formulas



The setup: Tauberian problem

Assume additionally that a satisfies a(w)/ ln |w | → ∞.

Analysis of the associated heat semigroup yields the heat
asymptotics (t → 0+)∫ ∞

0
e−tλdN(λ) =

1
(2π)d

∫
R2d

e−ta(w)dw+O

(∫
R2d

e−ta(w)/4

〈w〉2ρ
dw

)
.

The problem is now of Tauberian character: find conditions on
the symbol a to ‘unaverage’ this and translate it into
asymptotics for N(λ).

We use growth comparison functions f : [0,∞)→ R+ such that
eventually increasing, absolutely continuous

Set σ(λ) = (f−1(λ))2d for large λ.

J. Vindas Weyl asymptotic formulas



The setup: Tauberian problem

Assume additionally that a satisfies a(w)/ ln |w | → ∞.

Analysis of the associated heat semigroup yields the heat
asymptotics (t → 0+)∫ ∞

0
e−tλdN(λ) =

1
(2π)d

∫
R2d

e−ta(w)dw+O

(∫
R2d

e−ta(w)/4

〈w〉2ρ
dw

)
.

The problem is now of Tauberian character: find conditions on
the symbol a to ‘unaverage’ this and translate it into
asymptotics for N(λ).

We use growth comparison functions f : [0,∞)→ R+ such that
eventually increasing, absolutely continuous

Set σ(λ) = (f−1(λ))2d for large λ.

J. Vindas Weyl asymptotic formulas



Weyl formula: infinite order case

For operators that are of infinite order, we have:

Theorem

Let a ∈ Γ∗,∞Ap,ρ
(R2d ) hypoelliptic, let f satisfy

lim
y→∞

yf ′(y)

f (y)
=∞,

and let Φ be a positive continuous function on the sphere S2d−1.
Suppose that for each ε ∈ (0,1) there are positive constants
cε,Cε,Bε > 0 such that

cεf ((1− ε)rΦ(ϑ)) ≤ a(rϑ) ≤ Cεf ((1 + ε)rΦ(ϑ)),

for all r ≥ Bε and ϑ ∈ S2d−1. Then,

lim
λ→∞

N(λ)

σ(λ)
=

π

(2π)d+1d

∫
S2d−1

dϑ
(Φ(ϑ))2d .
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Concerning the eigenvalues:

λj = f
(
γj

1
2d (1 + o(1))

)
, j →∞,

with

γ =
√

2π

(
2d∫

S2d−1
dϑ

(Φ(ϑ))2d

) 1
2d

,

and, for each h′ < γ < h,

lim
j→∞

λj

f (h′j
1

2d )
=∞ and lim

j→∞

λj

f (hj
1

2d )
= 0.
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Weyl formula: finite order case

Theorem

Let a ∈ Γ∞ρ (R2d ) be hypoelliptic (in the Γ∞ρ -sense). Suppose that

lim
y→∞

yf ′(y)

f (y)
= β ∈ (0,∞) exists.

If
lim

r→∞

a(rϑ)

f (r)
= Φ(ϑ) > 0

exists uniformly on ϑ ∈ S2d−1, then

lim
λ→∞

N(λ)

σ(λ)
=

π

(2π)d+1d

∫
S2d−1

dϑ
(Φ(ϑ))2d/β

and

λj ∼
(

π

(2π)d+1d

∫
S2d−1

dϑ
(Φ(ϑ))2d/β

)− β
2d

f (j
1

2d ), j →∞. (1)
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Weyl formula

Corollary
Let a satisfy the assumptions of any of the previous two
theorems. Then, in both cases

N(λ) ∼ 1
(2π)d

∫
a(w)<λ

dw , λ→∞.
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The assumption yf ′(y)/f (y)→ β ∈ (0,∞]

The condition
lim

y→∞

yf ′(y)

f (y)
→ β ∈ (0,∞]

is related to the (multiplicative) variation of f .

If β <∞, then f is regularly varying (in the sense of Karamata)
of index β, that is,

lim
y→∞

f (λy)

f (y)
= λβ , for each λ > 0.

Examples: f (y) = yβ , f (y) = yβ(ln y)α, f (y) = yβ(ln y)α(ln ln y)γ , . . . .

If β =∞, then f is rapidly varying (in the sense of de Haan),

lim
y→∞

f (λy)

f (y)
=∞, for each λ > 1.

Examples: f (y) = eys
, s > 0, f (y) = eM(y), with M associated function

of a sequence Mp →∞.
J. Vindas Weyl asymptotic formulas
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Example
Consider the symbol

a(w) = e〈w〉
1/s

+ b(w),

where s > 1 and b satisfies: ∀h′ > 0, ∃C′ > 0 such that

|Dαb(w)| ≤ C′h′|α|(α!)νe〈w〉
1/s
〈w〉−ρ(|α|+1), ∀w ∈ R2d , ∀α ∈ N2d ,

with ν < s and s ≥ 1/(1− ρ).

If we choose 1 < ν < l < s and ν/l ≤ 1− 1/s and ν/l ≤ ρ ≤ 1− 1/s,
then one can show that a ∈ Γ

(p!l ),ρ
p!ν (R2d ) is hypoelliptic.

Moreover,

C1e|w|
1/s
≤ a(w) ≤ C2e|w|

1/s
, for large |w |.

Hence, our theorem delivers the spectral asymptotics

N(λ) ∼ (lnλ)2ds

2dd !
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and

λj = exp
(

21/(2s)d !1/(2ds)j1/(2ds) (1 + o(1))
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, j →∞,
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Examples: Power series of Shubin polynomials

Let a(w) =
∑
|γ|≤m cγwγ be real-valued elliptic Shubin

polynomial of degree m ≥ 2 such that a(w) > 0 for |w | � 1.

Denote as a′(w) =
∑
|γ|=m cγwγ its principal part.

We consider an entire function P : R→ R

P(λ) = 1 +
∞∑

n=1

λn

M̂n
,

where M̂n is a sequence of positive numbers for which there
exists C0 ≥ 1 such that

Cn−k
0

M̂n

(nm)!s ≥
M̂k

(km)!s , ∀n, k ∈ N, with n ≥ k ,

where s > 1.
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Power series of Shubin elliptic polynomials
Let s > 1/(1− ρ) and Mp ⊂ p!s in the (Mp) case and Mp ≺ p!s in the {Mp}.

Theorem

1 The series P(a(w)) = 1 +
∞∑

n=1

(a(w))n

M̂n
absolutely converges in

Γ∗,∞Ap,1(R2d ) and the symbol P ◦ a is actually hypoelliptic.

2 The operator P(aw ) =
∞∑

n=1

(aw )n

M̂n
is an hypoelliptic infinite order

pseudo-differential with symbol (that can be explicitly computed) in
Γ∗,∞Ap,1(R2d ).

Assume that b ∈ Γ∗,∞Ap,ρ
(R2d ) satisfies: for every h > 0 there exists C > 0

(resp. there exist h,C > 0) such that

|Dα
w b(w)| ≤ Ch|α|Aα

P(a′(w))

〈w〉ρ(|α|+1)
, ∀w ∈ R2d , ∀α ∈ N2d .

A1 = P(aw ) + bw and A2 = (P ◦ a)w + bw are hypoelliptic.
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Power series of elliptic operators: Spectral asymptotics

Retain the assumptions on P, a, and b. The principal part of a is a′.

Theorem

Let N1 and N2 be the spectral counting functions of

A1 = P(aw ) + bw and A2 = (P ◦ a)w + bw .

Denote as {λ(i)
j }j∈N their sequences of eigenvalues, i = 1, 2. Then,

Ni (λ) ∼ c · (P−1(λ))
2d
m and λ

(i)
j = P

(
(j/c)

m
2d (1 + o(1))

)
where

c =
π

(2π)d+1d

∫
S2d−1

dϑ

(a′(ϑ))
2d
m
.

If in addition M̂n is log-convex,

Ni (λ) ∼ c · (M̂−1(lnλ))
2d
m and λ

(i)
j = e

M̂
(

(j/c)
m
2d (1+o(1))

)

with M̂(y) = supn∈N ln+ yn/M̂n, the associated function of the sequence M̂n.
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Example
Let the symbols a,a′ and the parameters s, ρ be as before. Consider

P(λ) = 1 +
∞∑

n=1

λn

nsnm .

Applying the previous theorem, A1 and A2 are Γ∗,∞Ap,ρ
-hypoelliptic

pseudo-differential operators. Notice that

e−sm exp

(
sm y

1
sm

e

)
≤ exp

(
M̂(y)

)
≤ esm exp

(
sm y

1
sm

e

)
, y � 1,

whence

M̂−1(lnλ) ∼
(

e lnλ
sm

)sm

, λ→∞.

Combining these two facts with the spectral asymptotic formulas,

Ni (λ) ∼ e2dsc
(sm)2ds (lnλ)2ds and λ(i)

j = exp

(
sm
e

(
j
c

) 1
2ds

(1 + o(1))

)
,

with c given as before.
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Shubin-Sobolev type spaces

As an application of the developed spectral analysis:
We introduced a new class of infinite order Shubin-Sobolev
type spaces.
This scale of Shubin-Sobolev spaces leads to regularity
results for solutions to elliptic infinite order
pseudo-differential equations.

For details, see:

S. Pilipović, B. Prangoski, J. Vindas, Weyl asymptotic formulae
and Sobolev spaces for infinite order pseudo-differential
operators, preprint, arXiv:1701.07907.
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