The pointwise behavior of Riemann's function

Jasson Vindas
jasson.vindas@UGent.be

Ghent University

Mathematics Colloquium
University of Costa Rica, December 15, 2022
Séminaire Cristolien d'Analyse Multifractale Université Paris-Est Créteil, November 24, 2022
Time-frequency representations for function spaces Novi Sad, April 11, 2022

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.
- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not differentiable at the following points:
- irrationals;
- rationals of the forms

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1, \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable
assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same naner, Hardy was able to show that (1) is not
differentiable at the following points:
- irrationals;
- rationals of the forms

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1 \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not
differentiable at the following points:
- irrationals;

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1 \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not differentiable at the following points:
- irrationals:

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1 \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not differentiable at the following points:
- irrationals;
- rationals of the forms

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1 \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not differentiable at the following points:
- irrationals;
- rationals of the forms

History of Riemann's function

According to an account of Weierstrass, Riemann would have suggested

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}} \tag{1}
\end{equation*}
$$

as an example of a nowhere differentiable function.

- Weierstrass could not show that claim, but gave his own example

$$
\begin{equation*}
W(x)=\sum_{n=1}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \quad 0<a<1 \tag{2}
\end{equation*}
$$

which he showed to be nowhere differentiable under extra assumptions: $a, b \in \mathbb{N}, b$ odd, and $a b>1+3 \pi / 2$.

- In 1916 Hardy completed the analysis of (2): $a b>1, a, b \in \mathbb{R}$.
- In the same paper, Hardy was able to show that (1) is not differentiable at the following points:
- irrationals;
- rationals of the forms $\frac{2 r+1}{2 s}$ and rationals $\frac{2 r}{4 s+1}$.

Graphs: Weierstrass vs Riemann functions

Figure 1.1. $y=\sum_{n=1}^{\infty} \frac{1}{n^{2} \pi} \sin \left(n^{2} \pi x\right) ;-0.127<x<2.127 ;|y|<0.845$.

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.,

$$
\sum_{n \in \mathbb{Z}} g(n)=\sum_{n \in \mathbb{Z}} \widehat{g}(n)
$$

where we fix the Fourier transform as

$$
\hat{g}(u)=\int_{-\infty}^{\infty} g(x) e(-i x u) d x \quad\left(e(t)=e^{2 \pi i t}\right)
$$

- Smith's proof is direct; Itatsu (implicitly) used the θ modular group

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.

where we fix the Fourier transform as

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.

where we fix the Fourier transform as

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.,

where we fix the Fourier transform as

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.,

where we fix the Fourier transform as

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.,

$$
\sum_{n \in \mathbb{Z}} g(n)=\sum_{n \in \mathbb{Z}} \widehat{g}(n),
$$

where we fix the Fourier transform as

$$
\widehat{g}(u)=\int_{-\infty}^{\infty} g(x) e(-\mathrm{i} x u) \mathrm{d} x \quad\left(e(t)=e^{2 \pi \mathrm{i} t}\right)
$$

More history

- Hardy's results seemed to confirm the non-differentiability belief.
- It was then a surprise when Gerver showed in 1970-1971 that Riemann's function is in turn differentiable at every rational that is the quotient of two odd integers, and not differentiable elsewhere.
- Gerver proof is elementary, but long and difficult to grasp.
- Smith (1972) and Itatsu (1981) gave simpler treatments of all rational points.
- They both use the Poisson summation formula, i.e.,

$$
\sum_{n \in \mathbb{Z}} g(n)=\sum_{n \in \mathbb{Z}} \widehat{g}(n),
$$

where we fix the Fourier transform as

$$
\widehat{g}(u)=\int_{-\infty}^{\infty} g(x) e(-\mathrm{i} x u) \mathrm{d} x \quad\left(e(t)=e^{2 \pi \mathrm{i} t}\right)
$$

- Smith's proof is direct; Itatsu (implicitly) used the θ modular group.

Pointwise Hölder exponent

- Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann's function at rational points.
- Smith and Itatsu gave finer estimates that (essentially) yield the pointwise Hölder exponent of Riemann's function at rationals.
e This left open the determination of the pointwise Hölder exponents at irrational points
- Duistermaat (1991) exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point.
- Jaffard finally settled the problem in 1996, when he showed that Duistermaat's upper bound was actually the Hölder exponent at every irrational

[^0]
Pointwise Hölder exponent

－Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann＇s function at rational points．
－Smith and Itatsu gave finer estimates that（essentially）yield the pointwise Hölder exponent of Riemann＇s function at rationals．
－This left open the determination of the pointwise Hölder exponents at irrational points．
－Duistermat（1991）exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point．
－Jaffard finally settled the problem in 1996，when he showed that Duistermaat＇s upper bound was actually the Hölder exponent at every irrational．

Our goal

We will sketch a new and simple method to compute the pointwise
Hölder exponent of Riemann＇s function at every point

Pointwise Hölder exponent

－Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann＇s function at rational points．
－Smith and Itatsu gave finer estimates that（essentially）yield the pointwise Hölder exponent of Riemann＇s function at rationals．
－This left open the determination of the pointwise Hölder exponents at irrational points．
－Duistermat（1991）exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point．
－Jaffard finally settled the problem in 1996，when he showed that Duistermaat＇s upper bound was actually the Hölder exponent at every irrational．

Our goal

We will sketch a new and simple method to compute the pointwise
Hölder exponent of Riemann＇s function at every point．

Pointwise Hölder exponent

- Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann's function at rational points.
- Smith and Itatsu gave finer estimates that (essentially) yield the pointwise Hölder exponent of Riemann's function at rationals.
- This left open the determination of the pointwise Hölder exponents at irrational points.
- Duistermaat (1991) exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point.
- Jaffard finally settled the problem in 1996, when he showed that Duistermaat's upper bound was actually the Hölder exponent at every irrational.

[^1]
Pointwise Hölder exponent

- Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann's function at rational points.
- Smith and Itatsu gave finer estimates that (essentially) yield the pointwise Hölder exponent of Riemann's function at rationals.
- This left open the determination of the pointwise Hölder exponents at irrational points.
- Duistermaat (1991) exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point.
- Jaffard finally settled the problem in 1996, when he showed that Duistermaat's upper bound was actually the Hölder exponent at every irrational.

[^2]
Pointwise Hölder exponent

- Both Smith and Itatsu determined asymptotic estimates describing more detail of the behavior of Riemann's function at rational points.
- Smith and Itatsu gave finer estimates that (essentially) yield the pointwise Hölder exponent of Riemann's function at rationals.
- This left open the determination of the pointwise Hölder exponents at irrational points.
- Duistermaat (1991) exhibited upper bounds for Hölder exponents at irrationals in terms of diophantine approximation properties of the point.
- Jaffard finally settled the problem in 1996, when he showed that Duistermaat's upper bound was actually the Hölder exponent at every irrational.

Our goal

We will sketch a new and simple method to compute the pointwise Hölder exponent of Riemann's function at every point.

Some words about the idea of our method

- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+i y} \theta(x+z) d z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+i y} \theta(x+z) d z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{i y}^{h+i y} \theta(x+z) d z
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

- x rational: we apply the Poisson summation formula to $\theta(x+z)$
- xirrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$.
- xirrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3)

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$.
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3)

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$.
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3)

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi i n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$.
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

Some words about the idea of our method

- We work with $\phi(z)=\sum_{n=1}^{\infty} \frac{1}{2 \pi \mathrm{i} n^{2}} e\left(n^{2} z\right)$.
- We compute $\alpha(x)=\sup \left\{\alpha>0 \mid \phi(x+h)=P_{x}(h)+O_{x}\left(|h|^{\alpha}\right)\right\}$.
- Restricting the complex variable z to the upper half-plane, one has

$$
\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1), \quad \text { where } \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

- We obtain the basic identity

$$
\begin{equation*}
\phi(x+h)-\phi(x)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z \tag{3}
\end{equation*}
$$

- x rational: we apply the Poisson summation formula to $\theta(x+z)$.
- x irrational: bounds for $\theta(x+z)$ follow from those at rationals.
- The final key step is to use use Cauchy theorem to transform (3):

$$
\phi(x+h)-\phi(x)+\frac{1}{2} h=-\frac{1}{2} \int_{\Gamma} \theta(x+z) \mathrm{d} z
$$

Graph of Riemann's complex function

Number theoretic preliminaries: Gauss sums

Quadratic Gauss sums and generalized quadratic Gauss sums
Let q, p, m be integers with $(p, q)=1$. These sums are defined as

$$
S(q, p)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \quad \text { and } \quad S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right)
$$

The quadratic Gauss sums were evaluated by Gauss himself:

Elementary manipulations lead to the bounds:
\square

Number theoretic preliminaries: Gauss sums

Quadratic Gauss sums and generalized quadratic Gauss sums

Let q, p, m be integers with $(p, q)=1$. These sums are defined as

$$
S(q, p)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \quad \text { and } \quad S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right)
$$

The quadratic Gauss sums were evaluated by Gauss himself:

Number theoretic preliminaries: Gauss sums

Quadratic Gauss sums and generalized quadratic Gauss sums

Let q, p, m be integers with $(p, q)=1$. These sums are defined as

$$
S(q, p)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \quad \text { and } \quad S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right)
$$

The quadratic Gauss sums were evaluated by Gauss himself:

$$
S(q, p)= \begin{cases}\varepsilon_{q}\left(\frac{p}{q}\right) \sqrt{q} & \text { if } q \text { is odd } \\ 0 & \text { if } q \equiv 2 \bmod 4, \\ (1+\mathrm{i}) \overline{\varepsilon_{p}}\left(\frac{q}{p}\right) \sqrt{q} & \text { if } q \equiv 0 \bmod 4\end{cases}
$$

Elementary manipulations lead to the bounds:
\square

Number theoretic preliminaries: Gauss sums

Quadratic Gauss sums and generalized quadratic Gauss sums

Let q, p, m be integers with $(p, q)=1$. These sums are defined as

$$
S(q, p)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \quad \text { and } \quad S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right)
$$

The quadratic Gauss sums were evaluated by Gauss himself:

$$
S(q, p)= \begin{cases}\varepsilon_{q}\left(\frac{p}{q}\right) \sqrt{q} & \text { if } q \text { is odd } \\ 0 & \text { if } q \equiv 2 \bmod 4, \\ (1+\mathrm{i}) \overline{\varepsilon_{p}}\left(\frac{q}{p}\right) \sqrt{q} & \text { if } q \equiv 0 \bmod 4\end{cases}
$$

$\left(\frac{p}{q}\right)$ is the Jacobi symbol and $(n$ odd $) \varepsilon_{n}= \begin{cases}1 & \text { if } n \equiv 1 \bmod 4, \\ \mathrm{i} & \text { if } n \equiv 3 \bmod 4 .\end{cases}$
Elementary manipulations lead to the bounds
$S(q, p, m)$

Number theoretic preliminaries: Gauss sums

Quadratic Gauss sums and generalized quadratic Gauss sums

Let q, p, m be integers with $(p, q)=1$. These sums are defined as

$$
S(q, p)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \quad \text { and } \quad S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right)
$$

The quadratic Gauss sums were evaluated by Gauss himself:

$$
S(q, p)= \begin{cases}\varepsilon_{q}\left(\frac{p}{q}\right) \sqrt{q} & \text { if } q \text { is odd } \\ 0 & \text { if } q \equiv 2 \bmod 4, \\ (1+\mathrm{i}) \overline{\varepsilon_{p}}\left(\frac{q}{p}\right) \sqrt{q} & \text { if } q \equiv 0 \bmod 4\end{cases}
$$

$\left(\frac{p}{q}\right)$ is the Jacobi symbol and $(n$ odd $) \varepsilon_{n}= \begin{cases}1 & \text { if } n \equiv 1 \bmod 4, \\ \mathrm{i} & \text { if } n \equiv 3 \bmod 4 .\end{cases}$
Elementary manipulations lead to the bounds:

$$
S(q, p, m) \ll \sqrt{q} .
$$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

Poisson's formula applied to that last sum gives $\left(\mathcal{F}\left\{e^{-}\right.\right.$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$, $\theta\left(\frac{p}{q}+z\right)=\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi i q^{2} z\left(\frac{j}{q}+m\right)^{2}\right)$

Poisson's formula applied to that last sum gives ($\mathcal{F}\left\{e^{-}\right.$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

Poisson's formula applied to that last sum gives $(\mathcal{F}\{e$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

$$
\theta\left(\frac{p}{q}+z\right)=\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi i q^{2} z\left(\frac{j}{q}+m\right)^{2}\right)
$$

Poisson's formula applied to that last sum gives $(\mathcal{F}\{e$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

$$
\theta\left(\frac{p}{q}+z\right)=\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi i q^{2} z\left(\frac{j}{q}+m\right)^{2}\right)
$$

Poisson's formula applied to that last sum gives $\left(\mathcal{F}\left\{e^{-a x^{2}}, \xi\right\}=\left(\frac{\pi}{a}\right)^{1 / 2} e^{-\frac{\pi^{2} \xi^{2}}{a}}\right)$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

$$
\theta\left(\frac{p}{q}+z\right)=\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi i q^{2} z\left(\frac{j}{q}+m\right)^{2}\right)
$$

Poisson's formula applied to that last sum gives $\left(\mathcal{F}\left\{e^{-a x^{2}}, \xi\right\}=\left(\frac{\pi}{a}\right)^{1 / 2} e^{-\frac{\pi^{2} \xi^{2}}{a}}\right)$

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2} \sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} e\left(\frac{m j}{q}\right) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)
$$

The behavior at the rationals: behavior of θ

Lemma

Suppose $(p, q)=1$ and $y=\operatorname{Im} z>0$. Then

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

Proof. Note that $e\left(p n^{2} / q\right)$ is q-periodic in n, writing $n=j+m q$,

$$
\theta\left(\frac{p}{q}+z\right)=\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} \exp \left(2 \pi i q^{2} z\left(\frac{j}{q}+m\right)^{2}\right)
$$

Poisson's formula applied to that last sum gives $\left(\mathcal{F}\left\{e^{-a x^{2}}, \xi\right\}=\left(\frac{\pi}{a}\right)^{1 / 2} e^{-\frac{\pi^{2} \xi^{2}}{a}}\right)$

$$
\begin{aligned}
\theta\left(\frac{p}{q}+z\right) & =\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2} \sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{m \in \mathbb{Z}} e\left(\frac{m j}{q}\right) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right) \\
& =\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2} \sum_{m \in \mathbb{Z}} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)
\end{aligned}
$$

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right) .
$$

For $y>0$,

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right) .
$$

$$
\phi_{q, p}(z)=\sum_{m=1}^{\infty} \frac{S(q, p, m)}{2 \pi \mathrm{i} m^{2}} e\left(m^{2} z\right)
$$

For $y>0$,

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right) .
$$

$$
\phi_{q, p}(z)=\sum_{m=1}^{\infty} \frac{S(q, p, m)}{2 \pi \mathrm{i} m^{2}} e\left(m^{2} z\right) \ll \sqrt{q}
$$

For $y>0$,

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\frac{\pi}{\mathrm{i}} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right) .
$$

$$
\phi_{q, p}(z)=\sum_{m=1}^{\infty} \frac{S(q, p, m)}{2 \pi \mathrm{i} m^{2}} e\left(m^{2} z\right) \ll \sqrt{q}
$$

For $y>0$,

$$
\phi\left(\frac{p}{q}+h+\mathrm{i} y\right)=\phi\left(\frac{p}{q}+\mathrm{i} y\right)-\frac{1}{2} h+\frac{1}{2} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta\left(\frac{p}{q}+\zeta\right) \mathrm{d} \zeta
$$

and the very last term is

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

$$
\phi_{q, p}(z)=\sum_{m=1}^{\infty} \frac{S(q, p, m)}{2 \pi \mathrm{i} m^{2}} e\left(m^{2} z\right) \ll \sqrt{q}
$$

For $y>0$,

$$
\begin{aligned}
& \phi\left(\frac{p}{q}+h+\mathrm{i} y\right)=\phi\left(\frac{p}{q}+\mathrm{i} y\right)-\frac{1}{2} h+\frac{1}{2} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta\left(\frac{p}{q}+\zeta\right) \mathrm{d} \zeta, \quad \text { and the very last } \\
& \quad=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}}\left(S(q, p)\left[2 \zeta^{1 / 2}\right]_{\mathrm{i} y}^{h+\mathrm{i} y}+2 \int_{\mathrm{i} y}^{h+\mathrm{i} y} \zeta^{-1 / 2}\left(4 q^{2} \zeta^{2}\right)\left(\phi_{q, p}\left(-\frac{1}{4 q^{2} \zeta}\right)\right)^{\prime} \mathrm{d} \zeta\right)
\end{aligned}
$$

The behavior at the rationals: behavior of ϕ

$$
\theta\left(\frac{p}{q}+z\right)=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} z^{-1 / 2}\left(S(q, p)+2 \sum_{m=1}^{\infty} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)\right)
$$

$$
\phi_{q, p}(z)=\sum_{m=1}^{\infty} \frac{S(q, p, m)}{2 \pi \mathrm{i} m^{2}} e\left(m^{2} z\right) \ll \sqrt{q}
$$

For $y>0$,

$$
\begin{gathered}
\phi\left(\frac{p}{q}+h+\mathrm{i} y\right)=\phi\left(\frac{p}{q}+\mathrm{i} y\right)-\frac{1}{2} h+\frac{1}{2} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta\left(\frac{p}{q}+\zeta\right) \mathrm{d} \zeta, \quad \text { and the very las } \\
=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}}\left(S(q, p)\left[2 \zeta^{1 / 2}\right]_{\mathrm{i} y}^{h+\mathrm{i} y}+2 \int_{\mathrm{i} y}^{h+\mathrm{i} y} \zeta^{-1 / 2}\left(4 q^{2} \zeta^{2}\right)\left(\phi_{q, p}\left(-\frac{1}{4 q^{2} \zeta}\right)\right)^{\prime} \mathrm{d} \zeta\right) \\
=\frac{2 \mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}}\left(S(q, p)\left[\zeta^{1 / 2}\right]_{\mathrm{i} y}^{h+\mathrm{i} y}+\left[4 q^{2} \zeta^{3 / 2} \phi_{q, p}\left(-\frac{1}{4 q^{2} \zeta}\right)\right]_{\mathrm{i} y}^{h+\mathrm{i} y}\right. \\
\left.-6 q^{2} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \zeta^{1 / 2} \phi_{q, p}\left(-\frac{1}{4 q^{2} \zeta}\right) \mathrm{d} \zeta\right)
\end{gathered}
$$

The behavior at the rationals: behavior of ϕ
We have thus obtained:
Theorem
Let p and q be integers, $q \geq 1,(p, q)=1$. Then
$\phi^{\prime}(p / q+h)=\phi^{\prime}(p / q)+C_{p / q}^{-}\left|h^{1 / 2}+C_{p / q}^{+}\right| h^{1 / 2}-h / 2+O\left(q^{3 / 2} \mid h^{3 / 2}\right)$,
where $C_{p / q}^{ \pm}$are given by

$$
C_{p / q}^{-}=\frac{\mathrm{e}^{3 \pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) \quad \text { and } \quad C_{p / q}^{+}=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) .
$$

Corollary

ϕ is differentiable at p / q iff $q \equiv 2 \bmod 4$; otherwise $\alpha(p / q)=1 / 2$.

Remark

Further integration by parts leads to a full trigonometric chirp expansion at the rationals. In particular, $\alpha(p / q)=3 / 2$ if $q \neq 2 \bmod 4$.

The behavior at the rationals: behavior of ϕ
We have thus obtained:

Theorem

Let p and q be integers, $q \geq 1,(p, q)=1$. Then

$$
\phi(p / q+h)=\phi(p / q)+C_{p / q}^{-}|h|_{-}^{1 / 2}+C_{p / q}^{+}|h|_{+}^{1 / 2}-h / 2+O\left(q^{3 / 2}|h|^{3 / 2}\right),
$$

where $C_{p / q}^{ \pm}$are given by

Corollary
ϕ is differentiable at p / q iff $q \equiv 2 \bmod 4 ;$ otherwise $\alpha(p / q)=1 / 2$.

Remark

Further integration by parts leads to a full trigonometric chirp expansion at the rationals. In particular, $\alpha(p / q)=3 / 2$ if $q \neq 2 \bmod 4$.

The behavior at the rationals: behavior of ϕ
We have thus obtained:

Theorem

Let p and q be integers, $q \geq 1,(p, q)=1$. Then

$$
\phi(p / q+h)=\phi(p / q)+C_{p / q}^{-}|h|_{-}^{1 / 2}+C_{p / q}^{+}|h|_{+}^{1 / 2}-h / 2+O\left(q^{3 / 2}|h|^{3 / 2}\right),
$$

where $C_{p / q}^{ \pm}$are given by

$$
C_{p / q}^{-}=\frac{\mathrm{e}^{3 \pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) \quad \text { and } \quad C_{p / q}^{+}=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) .
$$

Corollary

ϕ is differentiable at p / q iff $q \equiv 2 \bmod 4$; otherwise $\alpha(p / q)=1 / 2$.

Remark

Further integration by parts leads to a full trigonometric chirp expansion at the rationals. In particular, $\alpha(p / q)=3 / 2$ if $q \neq 2 \bmod 4$.

The behavior at the rationals: behavior of ϕ
We have thus obtained:

Theorem

Let p and q be integers, $q \geq 1,(p, q)=1$. Then

$$
\phi(p / q+h)=\phi(p / q)+C_{p / q}^{-}|h|_{-}^{1 / 2}+C_{p / q}^{+}|h|_{+}^{1 / 2}-h / 2+O\left(q^{3 / 2}|h|^{3 / 2}\right),
$$

where $C_{p / q}^{ \pm}$are given by

$$
C_{p / q}^{-}=\frac{\mathrm{e}^{3 \pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) \quad \text { and } \quad C_{p / q}^{+}=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) .
$$

Corollary

ϕ is differentiable at p / q iff $q \equiv 2 \bmod 4$; otherwise $\alpha(p / q)=1 / 2$.

[^3]
The behavior at the rationals: behavior of ϕ

We have thus obtained:

Theorem

Let p and q be integers, $q \geq 1,(p, q)=1$. Then

$$
\phi(p / q+h)=\phi(p / q)+C_{p / q}^{-}|h|_{-}^{1 / 2}+C_{p / q}^{+}|h|_{+}^{1 / 2}-h / 2+O\left(q^{3 / 2}|h|^{3 / 2}\right),
$$

where $C_{p / q}^{ \pm}$are given by

$$
C_{p / q}^{-}=\frac{\mathrm{e}^{3 \pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) \quad \text { and } \quad C_{p / q}^{+}=\frac{\mathrm{e}^{\pi \mathrm{i} / 4}}{q \sqrt{2}} S(q, p) .
$$

Corollary

ϕ is differentiable at p / q iff $q \equiv 2 \bmod 4$; otherwise $\alpha(p / q)=1 / 2$.

Remark

Further integration by parts leads to a full trigonometric chirp expansion at the rationals. In particular, $\alpha(p / q)=3 / 2$ if $q \not \equiv 2 \bmod 4$.

Table 1. Behavior of $\operatorname{Re}(\phi(p / q+h)-\phi(p / q))$

$q \bmod 4$	$p \bmod 4$	$h<0$	$h>0$
1	any	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{h}+O_{q}(h)$
3	any	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{h}+O_{q}(h)$
2	any	$-\frac{1}{2} h+O\left(q^{3 / 2}\|h\|^{3 / 2}\right)$	$-\frac{1}{2} h+O\left(q^{3 / 2} h^{3 / 2}\right)$
0	1	$-\left(\frac{q}{p}\right) \frac{1}{\sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$-\frac{1}{2} h+O\left(q^{3 / 2} h^{3 / 2}\right)$
0	3	$-\frac{1}{2} h+O\left(q^{3 / 2}\|h\|^{3 / 2}\right)$	$\left(\frac{q}{p}\right) \frac{1}{\sqrt{q}} \sqrt{h}+O_{q}(h)$

Corollary
If p and q are both odd, then $f(x)=\sum_{n=1}^{\infty} n^{-2} \sin \left(\pi n^{2} x\right)$ is differentiable at $x=p / q$; otherwise the Hölder exponent of f at r equals $1 / 2$.

Table 1. Behavior of $\operatorname{Re}(\phi(p / q+h)-\phi(p / q))$

$q \bmod 4$	$p \bmod 4$	$h<0$	$h>0$
1	any	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{h}+O_{q}(h)$
3	any	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$-\left(\frac{p}{q}\right) \frac{1}{2 \sqrt{q}} \sqrt{h}+O_{q}(h)$
2	any	$-\frac{1}{2} h+O\left(q^{3 / 2}\|h\|^{3 / 2}\right)$	$-\frac{1}{2} h+O\left(q^{3 / 2} h^{3 / 2}\right)$
0	1	$-\left(\frac{q}{p}\right) \frac{1}{\sqrt{q}} \sqrt{\|h\|}+O_{q}(\|h\|)$	$-\frac{1}{2} h+O\left(q^{3 / 2} h^{3 / 2}\right)$
0	3	$-\frac{1}{2} h+O\left(q^{3 / 2}\|h\|^{3 / 2}\right)$	$\left(\frac{q}{p}\right) \frac{1}{\sqrt{q}} \sqrt{h}+O_{q}(h)$

Corollary

If p and q are both odd, then $f(x)=\sum_{n=1}^{\infty} n^{-2} \sin \left(\pi n^{2} x\right)$ is differentiable at $x=p / q$; otherwise the Hölder exponent of f at r equals $1 / 2$.

The behavior at irrational ρ : Duistermat upper bound

- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{1}}$
- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}}$
- We define τ_{n} via

- Finally, let n_{k} be the indices for which $q_{n_{k}} \not \equiv 2 \bmod 4$, and set

Duistermaat upper bound

The behavior at irrational ρ : Duistermat upper bound

- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$
- We define τ_{n} via

- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{1}$
- Finally, let n_{k} be the indices for which $q_{n_{k}} \not \equiv 2 \bmod 4$, and set

Duistermaat upper bound

The behavior at irrational ρ : Duistermat upper bound

- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$
- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}}$
- We define τ_{n} via

- Finally, let n_{k} be the indices for which $q_{n_{k}} \not \equiv 2 \bmod 4$, and set $\tau^{\prime}(\rho):=l i m \sup \tau_{n_{k}}$

Duistermaat upper bound

The behavior at irrational ρ : Duistermat upper bound

- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$
- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}}$
- We define τ_{n} via

$$
\left|\rho-r_{n}\right|=\left(\frac{1}{q_{n}}\right)^{\tau_{n}}
$$

- Finally, let n_{k} be the indices for which $q_{n_{k}} \neq 2 \bmod 4$, and set
- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$
- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}+\frac{1}{a_{n}}}$
- We define τ_{n} via

$$
\left|\rho-r_{n}\right|=\left(\frac{1}{q_{n}}\right)^{\tau_{n}}
$$

- Finally, let n_{k} be the indices for which $q_{n_{k}} \not \equiv 2 \bmod 4$, and set

$$
\tau(\rho):=\limsup _{k \rightarrow \infty} \tau_{n_{k}}
$$

The behavior at irrational ρ : Duistermaat upper bound

- Irrational has continued fraction $\rho=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}$
- Its nth convergent is $r_{n}=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}}$
- We define τ_{n} via

$$
\left|\rho-r_{n}\right|=\left(\frac{1}{q_{n}}\right)^{\tau_{n}}
$$

- Finally, let n_{k} be the indices for which $q_{n_{k}} \not \equiv 2 \bmod 4$, and set

$$
\tau(\rho):=\limsup _{k \rightarrow \infty} \tau_{n_{k}}
$$

Duistermaat upper bound

$$
\alpha(\rho) \leq 1 / 2+1 /(2 \tau(\rho)) .
$$

The behavior at the irrationals: Jaffard's theorem

Theorem

Let ρ he irrational. The Hölder exponent $\alpha(\rho)$ of ϕ at ρ is given by

$$
\alpha(\rho)=\frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

The same result also holds for the Hölder exponent at ρ of $\operatorname{Re} \phi$ and $\operatorname{Im} \phi$.

Our proof uses the following bound on the θ function.

Proposition

```
Suppose z =x+iy with y>0. For each }\varepsilon>0\mathrm{ ,
```

$$
\begin{equation*}
\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon} \quad(|z| \ll 1) \tag{4}
\end{equation*}
$$

The behavior at the irrationals: Jaffard's theorem

Theorem

Let ρ be irrational. The Hölder exponent $\alpha(\rho)$ of ϕ at ρ is given by

$$
\alpha(\rho)=\frac{1}{2}+\frac{1}{2 \tau(\rho)} .
$$

The same result also holds for the Hölder exponent at ρ of $\operatorname{Re} \phi$
and $\operatorname{Im} \phi$.
Our proof uses the following bound on the θ function

Proposition

Suppose $z=x+$ iy with $y>0$. For each $\varepsilon>0$,

The behavior at the irrationals: Jaffard's theorem

Theorem

Let ρ be irrational. The Hölder exponent $\alpha(\rho)$ of ϕ at ρ is given by

$$
\alpha(\rho)=\frac{1}{2}+\frac{1}{2 \tau(\rho)} .
$$

The same result also holds for the Hölder exponent at ρ of $\operatorname{Re} \phi$ and $\operatorname{Im} \phi$.

Our proof uses the following bound on the θ function

Proposition

Suppose $z=x+i y$ with $y>0$. For each $\varepsilon>0$

The behavior at the irrationals: Jaffard's theorem

Theorem

Let ρ be irrational. The Hölder exponent $\alpha(\rho)$ of ϕ at ρ is given by

$$
\alpha(\rho)=\frac{1}{2}+\frac{1}{2 \tau(\rho)} .
$$

The same result also holds for the Hölder exponent at ρ of $\operatorname{Re} \phi$ and $\operatorname{Im} \phi$.

Our proof uses the following bound on the θ function.

Proposition

Suppose $z=x+$ iy with $y>0$. For each $\varepsilon>0$,

$$
\begin{equation*}
\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon} \quad(|z| \ll 1) \tag{4}
\end{equation*}
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z
$$

By Cauchy's theorem, the limit of this integral equals

Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \tau(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}}-\frac{\varepsilon-\frac{1}{2}}{}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}}{ }^{-\varepsilon}$, we get

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \tau(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \pi(\rho)}-\varepsilon}$, we get

$$
I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} d y
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

$$
I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \mathrm{d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon},
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

$$
\begin{aligned}
& I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \mathrm{d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon}, \\
& I_{2} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|=\left\lvert\, h h^{\frac{1}{2}+\frac{1}{2}(\rho)}\right.,
\end{aligned}
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

$$
\begin{aligned}
& I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \mathrm{d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon}, \\
& I_{2} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|=|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon},
\end{aligned}
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

$$
\begin{aligned}
& I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \mathrm{d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \\
& I_{2} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|=|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \\
& I_{3} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|+|h|^{\frac{1}{2 \tau(\rho)}-\varepsilon} \int_{0}^{|h|} y^{-1 / 2} \mathrm{~d} y
\end{aligned}
$$

Our proof of the lower bound: $\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \pi(\rho)}$

We use the bound

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(\rho+z) \mathrm{d} z .
$$

By Cauchy's theorem, the limit of this integral equals
$\int_{0}^{\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z+\int_{\mathrm{i}|h|}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z-\int_{h}^{h+\mathrm{i}|h|} \theta(\rho+z) \mathrm{d} z=: I_{1}+l_{2}+l_{3}$.
Using the bounds $\theta(\rho+z) \ll|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon}$, we get

$$
\begin{aligned}
& I_{1} \ll \int_{0}^{|h|} y^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \mathrm{d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon}, \\
& I_{2} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|=|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon}, \\
& I_{3} \ll|h|^{-\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} \cdot|h|+|h|^{\frac{1}{2 \tau(\rho)}-\varepsilon} \int_{0}^{|h|} y^{-1 / 2} \mathrm{~d} y \ll|h|^{\frac{1}{2}+\frac{1}{2 \tau(\rho)}-\varepsilon} .
\end{aligned}
$$

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular, based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form.
by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular, based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular, based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular, based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof,

Conclusive remarks: modular forms

- Recently (2019), Pastor has calculated the pointwise Hölder exponent (at every point!) of fractional integrals of modular forms.
- In the case of irrational points, his main result has been obtaining the pointwise Hölder exponent for a modular form that is not a cusp form. (Cusp forms had been already treated by Chamizo et al. in 2017.)
- His result is in terms of diophantine approximations by noncuspidal rationals.
- Pastor analysis is inspired by that of Jaffard; in particular, based on Tauberian theorems for the wavelet transform.

Our ideas can also be adapted to substantially simplify Pastor's proof, at least without having to resort on Tauberians for the wavelet transform.

The talk is based on the following collaborative preprint with Frederik Broucke:

䍰 F. Broucke, J. Vindas, The pointwise behavior of Riemann's function, arXiv:2109.08499

Some other references:

The talk is based on the following collaborative preprint with Frederik Broucke:

睩 F. Broucke, J. Vindas, The pointwise behavior of Riemann's function, arXiv:2109.08499

Some other references:
F. Chamizo, I. Petrykiewicz, S. Ruiz-Cabello, The Hölder exponent of some Fourier series, J. Fourier Anal. Appl. 23 (2017), 758-777.

囯 C. Pastor, On the regularity of fractional integrals of modular forms, Trans. Amer. Math. Soc. 372 (2019), 829-857.

[^0]: Our goal
 We will sketch a new and simple method to compute the pointwise
 Hölder exponent of Riemann's function at every point.

[^1]: Our goal
 We will sketch a new and simple method to compute the pointwise
 Hölder exponent of Riemann's function at every point.

[^2]: Our goal
 We will sketch a new and simple method to compute the pointwise
 Hölder exponent of Riemann's function at

[^3]: Remark
 Further integration by parts leads to a full trigonometric chirp expansion at the rationals. In particular, $\alpha(p / q)=3 / 2$ if $q \neq 2 \bmod 4$.

