General Stieltjes moment problems for rapidly decreasing smooth functions

Jasson Vindas

jvindas@cage.Ugent.be

Department of Mathematics Ghent University

ISAAC 9th Congress

Session Generalized Functions Krakow, August 6, 2013

★ 문 ► ★ 문 ►

The problem of moments, as its generalizations, is an important mathematical problem which has attracted much attention for more than a century.

It was first raised and solved by Stieltjes for positive measures.

Problem (Stieltjes, 1894)

Find conditions over $\{a_n\}_{n=0}^{\infty}$ which ensure the existence of solutions to the infinity system of equations

$$a_n = \int_0^\infty x^n d\mu(x), \quad n = 0, 1, 2, \dots,$$

where μ is a positive measure.

We will discuss several generalizations of this problem.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The problem of moments, as its generalizations, is an important mathematical problem which has attracted much attention for more than a century.

It was first raised and solved by Stieltjes for positive measures.

Problem (Stieltjes, 1894)

Find conditions over $\{a_n\}_{n=0}^{\infty}$ which ensure the existence of solutions to the infinity system of equations

$$a_n = \int_0^\infty x^n d\mu(x), \quad n = 0, 1, 2, \dots,$$

where μ is a positive measure.

We will discuss several generalizations of this problem.

The classical Stieltjes moment problem

Stieltjes found a necessary and sufficient condition for the existence of solutions. Define the sequence of matrices

$$\Delta_n = \begin{pmatrix} a_0 & a_1 & \dots & a_n \\ a_1 & a_2 & \dots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & \dots & a_{2n} \end{pmatrix} \text{ and } \Delta_n^{(1)} = \begin{pmatrix} a_1 & a_1 & \dots & a_{n+1} \\ a_2 & a_3 & \dots & a_{n+2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+1} & a_{n+2} & \dots & a_{2n+1} \end{pmatrix}$$

Theorem (Stieltjes, 1894-1895)

The Stieltjes moment problem

$$a_n = \int_0^\infty x^n d\mu(x), \quad n = 0, 1, 2, \dots,$$

has solution if and only if

$$\det(\Delta_n) > 0$$
 and $\det(\Delta_n^{(1)}) > 0$, $n = 0, 1, 2, ...$

ヘロマ 人間マ 人間マ 人口マ

æ

The classical Stieltjes moment problem

Stieltjes found a necessary and sufficient condition for the existence of solutions. Define the sequence of matrices

$$\Delta_{n} = \begin{pmatrix} a_{0} & a_{1} & \dots & a_{n} \\ a_{1} & a_{2} & \dots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n+1} & \dots & a_{2n} \end{pmatrix} \text{ and } \Delta_{n}^{(1)} = \begin{pmatrix} a_{1} & a_{1} & \dots & a_{n+1} \\ a_{2} & a_{3} & \dots & a_{n+2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+1} & a_{n+2} & \dots & a_{2n+1} \end{pmatrix}$$

Theorem (Stieltjes, 1894-1895)

The Stieltjes moment problem

$$a_n = \int_0^\infty x^n d\mu(x), \quad n = 0, 1, 2, \dots,$$

has solution if and only if

$$\det(\Delta_n) > 0$$
 and $\det(\Delta_n^{(1)}) > 0$, $n = 0, 1, 2, ...$

・ロット 御マ キョット キョン

э

The classical Stieltjes moment problem

Stieltjes found a necessary and sufficient condition for the existence of solutions. Define the sequence of matrices

$$\Delta_n = \begin{pmatrix} a_0 & a_1 & \dots & a_n \\ a_1 & a_2 & \dots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & \dots & a_{2n} \end{pmatrix} \text{ and } \Delta_n^{(1)} = \begin{pmatrix} a_1 & a_1 & \dots & a_{n+1} \\ a_2 & a_3 & \dots & a_{n+2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+1} & a_{n+2} & \dots & a_{2n+1} \end{pmatrix}$$

Theorem (Stieltjes, 1894-1895)

The Stieltjes moment problem

$$a_n = \int_0^\infty x^n d\mu(x), \quad n = 0, 1, 2, \dots,$$

has solution if and only if

$$\det(\Delta_n) > 0 \text{ and } \det(\Delta_n^{(1)}) > 0, \quad n = 0, 1, 2, \dots$$

э

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Stieltjes' influential papers led to many important ideas:

• The theory Stieltjes integrals

$$a_n = \int_0^\infty x^n dF(x), \quad F
earrow .$$

• The Stieltjes transform, $\Re e \ z \notin (-\infty, 0]$,

$$S(z) = \int_0^\infty \frac{dF(x)}{x+z} \sim \sum_{n=0}^\infty \frac{(-1)^n a_n}{z^{n+1}}$$

• Continued fraction approximations

・ 同 ト ・ ヨ ト ・ ヨ ト

Stieltjes' influential papers led to many important ideas:

• The theory Stieltjes integrals

$$a_n = \int_0^\infty x^n dF(x), \quad F \nearrow .$$

• The Stieltjes transform, $\Re e \, z \notin (-\infty, 0]$,

$$S(z) = \int_0^\infty \frac{dF(x)}{x+z} \sim \sum_{n=0}^\infty \frac{(-1)^n a_n}{z^{n+1}}$$

• Continued fraction approximations

(日本) (日本) (日本)

Stieltjes' influential papers led to many important ideas:

• The theory Stieltjes integrals

$$a_n = \int_0^\infty x^n dF(x), \quad F \nearrow .$$

• The Stieltjes transform, $\Re e \, z \notin (-\infty, 0]$,

$$S(z) = \int_0^\infty \frac{dF(x)}{x+z} \sim \sum_{n=0}^\infty \frac{(-1)^n a_n}{z^{n+1}}$$

• Continued fraction approximations

(日本) (日本) (日本)

Stieltjes' influential papers led to many important ideas:

• The theory Stieltjes integrals

$$a_n = \int_0^\infty x^n dF(x), \quad F \nearrow .$$

• The Stieltjes transform, $\Re e \, z \notin (-\infty, 0]$,

$$S(z) = \int_0^\infty \frac{dF(x)}{x+z} \sim \sum_{n=0}^\infty \frac{(-1)^n a_n}{z^{n+1}}$$

• Continued fraction approximations

(過) (ヨ) (ヨ)

Stieltjes' influential papers led to many important ideas:

• The theory Stieltjes integrals

$$a_n = \int_0^\infty x^n dF(x), \quad F \nearrow .$$

• The Stieltjes transform, $\Re e \, z \notin (-\infty, 0]$,

$$S(z) = \int_0^\infty \frac{dF(x)}{x+z} \sim \sum_{n=0}^\infty \frac{(-1)^n a_n}{z^{n+1}}$$

Continued fraction approximations

◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣

• Modern approach goes back to Marcel Riesz (1921).

• Carleman (1923-1926): connections with the theory of quasi-analytic functions.

Other moment problems:

• Hamburger (1920):

$$a_n = \int_{-\infty}^{\infty} x^n dF(x), \quad n = 0, 1, 2, \dots$$

• Hausdorff (1923):

$$a_n = \int_b^c x^n dF(x), \quad n = 0, 1, 2, \dots$$

For results on classical moment problems see the book by Shohat and Tamarkin (*The problem of moments, 1943*).

*日を *日を *日を

- Modern approach goes back to Marcel Riesz (1921).
- Carleman (1923-1926): connections with the theory of quasi-analytic functions.

Other moment problems:

• Hamburger (1920):

$$a_n = \int_{-\infty}^{\infty} x^n dF(x), \quad n = 0, 1, 2, \dots$$

• Hausdorff (1923):

$$a_n = \int_b^c x^n dF(x), \quad n = 0, 1, 2, \dots$$

For results on classical moment problems see the book by Shohat and Tamarkin (*The problem of moments, 1943*).

*日を *日を *日を

- Modern approach goes back to Marcel Riesz (1921).
- Carleman (1923-1926): connections with the theory of quasi-analytic functions.

Other moment problems:

• Hamburger (1920):

$$a_n = \int_{-\infty}^{\infty} x^n dF(x), \quad n = 0, 1, 2, \dots$$

• Hausdorff (1923):

$$a_n = \int_b^c x^n dF(x), \quad n = 0, 1, 2, \dots$$

For results on classical moment problems see the book by Shohat and Tamarkin (*The problem of moments, 1943*).

Theorem (Boas and Pólya, independently, 1939)

Given an arbitrary sequence $\{a_n\}_{n=0}^{\infty}$, there is always a function of bounded variation *F* such that

$$a_n = \int_0^\infty x^n dF(x), \quad n = 0, 1, 2, \dots$$

A. Durán achieved a major improvement to this result:

Theorem (A. Durán, 1989)

Every Stieltjes moment problem

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$

admits a solution $\phi\in\mathcal{S}(0,\infty)$, namely, $\phi\in\mathcal{S}(\mathbb{R})$ with $\mathsf{supp}\,\phi\subseteq [0,\infty).$

Theorem (Boas and Pólya, independently, 1939)

Given an arbitrary sequence $\{a_n\}_{n=0}^{\infty}$, there is always a function of bounded variation F such that

$$a_n = \int_0^\infty x^n dF(x), \quad n = 0, 1, 2, \dots$$

A. Durán achieved a major improvement to this result:

Theorem (A. Durán, 1989)

Every Stieltjes moment problem

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$

admits a solution $\phi\in\mathcal{S}(0,\infty)$, namely, $\phi\in\mathcal{S}(\mathbb{R})$ with $\mathsf{supp}\,\phi\subseteq [0,\infty).$

Theorem (Boas and Pólya, independently, 1939)

Given an arbitrary sequence $\{a_n\}_{n=0}^{\infty}$, there is always a function of bounded variation F such that

$$a_n = \int_0^\infty x^n dF(x), \quad n = 0, 1, 2, \dots$$

A. Durán achieved a major improvement to this result:

Theorem (A. Durán, 1989)

Every Stieltjes moment problem

$$a_n=\int_0^\infty x^n\phi(x)dx,\quad n=0,1,2,\ldots,$$

admits a solution $\phi \in S(0,\infty)$, namely, $\phi \in S(\mathbb{R})$ with supp $\phi \subseteq [0,\infty)$.

- A. Durán's proof: Laguerre expansions, Hankel transform.
- A. L. Durán and Estrada found a simple proof (1994):

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$
 (1)

iff $\widehat{\phi}^{(n)}(\mathsf{0}) = (-i)^n a_n$. Then, the Borel-Ritt theorem ...

- Chung-Chung-Kim (2003) exploited the method to show that (1) has solutions φ ∈ S^β(0,∞), β > 1.
- Lastra and Sanz (2009) have considered ultradifferentiable classes S^{*}(0,∞), with * = (M_p), {M_p}.

(日本) (日本) (日本)

- A. Durán's proof: Laguerre expansions, Hankel transform.
- A. L. Durán and Estrada found a simple proof (1994):

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$
 (1)

iff $\widehat{\phi}^{(n)}(0) = (-i)^n a_n$. Then, the Borel-Ritt theorem ...

- Chung-Chung-Kim (2003) exploited the method to show that (1) has solutions φ ∈ S^β(0,∞), β > 1.
- Lastra and Sanz (2009) have considered ultradifferentiable classes S^{*}(0,∞), with * = (M_p), {M_p}.

< 回 > < 回 > < 回 > … 回

- A. Durán's proof: Laguerre expansions, Hankel transform.
- A. L. Durán and Estrada found a simple proof (1994):

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$
 (1)

iff $\widehat{\phi}^{(n)}(0) = (-i)^n a_n$. Then, the Borel-Ritt theorem ...

- Chung-Chung-Kim (2003) exploited the method to show that (1) has solutions φ ∈ S^β(0,∞), β > 1.
- Lastra and Sanz (2009) have considered ultradifferentiable classes S^{*}(0,∞), with * = (M_p), {M_p}.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- A. Durán's proof: Laguerre expansions, Hankel transform.
- A. L. Durán and Estrada found a simple proof (1994):

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$
 (1)

iff $\widehat{\phi}^{(n)}(0) = (-i)^n a_n$. Then, the Borel-Ritt theorem ...

- Chung-Chung-Kim (2003) exploited the method to show that (1) has solutions φ ∈ S^β(0,∞), β > 1.
- Lastra and Sanz (2009) have considered ultradifferentiable classes S^{*}(0,∞), with * = (M_p), {M_p}.

(個) (日) (日) (日)

General Stieltjes moment problems for rapidly decreasing smooth functions

We want to replace

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$

by the infinite system of linear equations

$$\boldsymbol{a}_{n} = \langle \boldsymbol{f}_{n}, \boldsymbol{\phi} \rangle, \quad \boldsymbol{n} = \boldsymbol{0}, \boldsymbol{1}, \boldsymbol{2}, \dots, \tag{2}$$

where $f_n \in \mathcal{S}'[0,\infty)$ (= { $f \in \mathcal{S}'(\mathbb{R})$: supp $f \subseteq [0,\infty)$ }).

Problem

Conditions over $\{f_n\}_{n=0}^{\infty}$ such that every generalized moment problem (2) has a solution $\phi \in S(0, \infty)$.

イロト 不得 トイヨト 不良 トー

General Stieltjes moment problems for rapidly decreasing smooth functions

We want to replace

$$a_n = \int_0^\infty x^n \phi(x) dx, \quad n = 0, 1, 2, \dots,$$

by the infinite system of linear equations

$$a_n = \langle f_n, \phi \rangle, \quad n = 0, 1, 2, \dots,$$
 (2)

where $f_n \in \mathcal{S}'[0,\infty)$ (= { $f \in \mathcal{S}'(\mathbb{R})$: supp $f \subseteq [0,\infty)$ }).

Problem

Conditions over $\{f_n\}_{n=0}^{\infty}$ such that every generalized moment problem (2) has a solution $\phi \in S(0, \infty)$.

イロト イポト イヨト イヨト

Continuous generalized moment problem

$$a_n = \int_0^\infty f_n(x)\phi(x)dx, \quad n=0,1,2,\ldots.$$

② Discrete problem: let $(B_{k,n})$ be an infinite matrix

$$a_n=\sum_{k=1}^{\infty}B_{k,n}\phi(k),\quad n=0,1,2,\ldots.$$

or, more generally,

$$a_n = \sum_{k=1}^{\infty} B_{k,n} \phi(\lambda_k), \quad n = 0, 1, 2, \dots$$

Subscript{2} Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation (having at most polynomial growth)

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots$$

Continuous generalized moment problem

$$a_n = \int_0^\infty f_n(x)\phi(x)dx, \quad n = 0, 1, 2, \dots$$

2 Discrete problem: let $(B_{k,n})$ be an infinite matrix

$$a_n = \sum_{k=1}^{\infty} B_{k,n} \phi(k), \quad n = 0, 1, 2, \dots$$

or, more generally,

$$a_n = \sum_{k=1}^{\infty} B_{k,n} \phi(\lambda_k), \quad n = 0, 1, 2, \dots$$

Subscript{2} Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation (having at most polynomial growth)

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots$$

Continuous generalized moment problem

$$a_n = \int_0^\infty f_n(x)\phi(x)dx, \quad n = 0, 1, 2, \dots$$

2 Discrete problem: let $(B_{k,n})$ be an infinite matrix

$$a_n=\sum_{k=1}^{\infty}B_{k,n}\phi(k), \quad n=0,1,2,\ldots.$$

or, more generally,

$$a_n = \sum_{k=1}^{\infty} B_{k,n} \phi(\lambda_k), \quad n = 0, 1, 2, \dots$$

Subscript{ Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation (having at most polynomial growth)

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots$$

Continuous generalized moment problem

$$a_n = \int_0^\infty f_n(x)\phi(x)dx, \quad n = 0, 1, 2, \ldots.$$

2 Discrete problem: let $(B_{k,n})$ be an infinite matrix

$$a_n=\sum_{k=1}^{\infty}B_{k,n}\phi(k), \quad n=0,1,2,\ldots.$$

or, more generally,

$$a_n = \sum_{k=1}^{\infty} B_{k,n} \phi(\lambda_k), \quad n = 0, 1, 2, \dots$$

Solution $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation (having at most polynomial growth)

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots$$

General Stieltjes moment problem for sequences of measures

Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation on $[0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$, provided that:

- F₁, F₂, F₃... are linearly independent
- 1 \notin span{ F_n } (equivalently, $\delta \notin$ span{ dF_n }).
- For every $\alpha > 0$, there is N such that

 $F_n(x) = o(x^{\alpha}), \ n < N, \ but \ F_n(x) = \Omega(x^{\alpha}), \ N \le n.$

・ (川 ・ 二 一 ・ 二 ・ ・ 二 ・ ・ - ・

General Stieltjes moment problem for sequences of measures

Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation on $[0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \int_0^\infty \phi(x) dF_n(x), \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$, provided that:

- F₁, F₂, F₃... are linearly independent
- 1 \notin span{ F_n } (equivalently, $\delta \notin$ span{ dF_n }).
- For every $\alpha > 0$, there is N such that

 $F_n(x) = o(x^{\alpha}), n < N,$ but $F_n(x) = \Omega(x^{\alpha}), N \le n.$

・ (川) (町) (町) (回)

General Stieltjes moment problem for sequences of measures

Let $\{F_n\}_{n=0}^{\infty}$ be a sequence of functions of local bounded variation on $[0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n=\int_0^\infty \phi(x)dF_n(x),\quad n=0,1,2,\ldots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$, provided that:

- F₁, F₂, F₃... are linearly independent
- 1 \notin span{ F_n } (equivalently, $\delta \notin$ span{ dF_n }).
- For every $\alpha > 0$, there is N such that

$$F_n(x) = o(x^{\alpha}), n < N,$$
 but $F_n(x) = \Omega(x^{\alpha}), N \le n.$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Examples

The following generalized moment problems always have a solution $\phi \in \mathcal{S}(\mathbf{0},\infty)$

Let $\{\alpha_n\}_{n=0}^{\infty}$ be such that $\Re e \alpha_n \nearrow \infty$.

$$a_n = \sum_{k=1}^{\infty} k^{\alpha_n} \phi(k), \quad n = 0, 1, 2, \dots$$

$$a_n = \sum_{p \text{ prime}} p^{\alpha_n} \phi(p), \quad n = 0, 1, 2, \dots$$

$$a_n = \int_0^\infty x^{\alpha_n} \sin\left(\frac{1}{x^{\beta}}\right) \phi(x) \mathrm{d}x, \quad n = 0, 1, 2, \dots,$$

where $\beta \geq 0$.

Examples

The following generalized moment problems always have a solution $\phi \in \mathcal{S}(\mathbf{0},\infty)$

Let $\{\alpha_n\}_{n=0}^{\infty}$ be such that $\Re e \alpha_n \nearrow \infty$.

$$a_n = \sum_{k=1}^{\infty} k^{\alpha_n} \phi(k), \quad n = 0, 1, 2, \dots$$

$$a_n = \sum_{p \text{ prime}} p^{\alpha_n} \phi(p), \quad n = 0, 1, 2, \dots$$

$$a_n = \int_0^\infty x^{\alpha_n} \sin\left(\frac{1}{x^{\beta}}\right) \phi(x) \mathrm{d}x, \quad n = 0, 1, 2, \dots,$$

where $\beta \geq 0$.

Examples

The following generalized moment problems always have a solution $\phi \in \mathcal{S}(\mathbf{0},\infty)$

Let $\{\alpha_n\}_{n=0}^{\infty}$ be such that $\Re e \alpha_n \nearrow \infty$.

$$a_n = \sum_{k=1}^{\infty} k^{\alpha_n} \phi(k), \quad n = 0, 1, 2, \dots$$

$$a_n = \sum_{p \text{ prime}} p^{\alpha_n} \phi(p), \quad n = 0, 1, 2, \dots$$

$$a_n = \int_0^\infty x^{\alpha_n} \sin\left(\frac{1}{x^{\beta}}\right) \phi(x) \mathrm{d}x, \quad n = 0, 1, 2, \dots,$$

where $\beta \geq 0$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

Let $f \in \mathcal{S}'[0,\infty)$ and $\alpha > -1$. We write

$$f(x) = O(x^{\alpha})$$
 (C, m), $x \to \infty$

if $f^{(-m)}$, the primitive of order *m* of *f*, is locally integrable for large *x*, and

$$f^{(-m)}(x) = O(x^{\alpha+m}), \quad x \to \infty,$$

in the ordinary sense.

イロト 人間ト イヨト イヨト

э

Let $f \in \mathcal{S}'[0,\infty)$ and $\alpha > -1$. We write

$$f(x) = O(x^{\alpha})$$
 (C, m), $x \to \infty$

if $f^{(-m)}$, the primitive of order *m* of *f*, is locally integrable for large *x*, and

$$f^{(-m)}(x) = O(x^{\alpha+m}), \quad x \to \infty,$$

in the ordinary sense.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of distributions with supp $f_n \subseteq [0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \langle f_n, \phi \rangle, \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$ if:

- $f_1, f_2, f_3, \ldots, f_n, \ldots$, are linearly independent.
- span $\{f_n\} \cap$ span $\{\delta^{(j)}\} = \{0\}$.
- There is an increasing sequence of integers {m_j}_{j=0}[∞] such that for every β > 0 there exists α = α_{j,β} ≥ β for which one can find N = N_α ∈ N such that

Μ

 $\sum_{n=0}^{\infty} b_n f_n(x) = O(x^{\alpha}) \quad (C, m_j) \text{ implies } b_N = b_{N+1} = \dots = b_M = 0.$

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of distributions with supp $f_n \subseteq [0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \langle f_n, \phi \rangle, \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$ if:

- $f_1, f_2, f_3, \ldots, f_n, \ldots$, are linearly independent.
- span $\{f_n\} \cap$ span $\{\delta^{(j)}\} = \{\mathbf{0}\}$.
- There is an increasing sequence of integers {m_j}_{j=0}[∞] such that for every β > 0 there exists α = α_{j,β} ≥ β for which one can find N = N_α ∈ N such that

Μ

 $\sum_{n=0}^{\infty} b_n f_n(x) = O(x^{\alpha}) \quad (C, m_j) \text{ implies } b_N = b_{N+1} = \dots = b_M = 0.$

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of distributions with supp $f_n \subseteq [0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \langle f_n, \phi \rangle, \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$ if:

- $f_1, f_2, f_3, \ldots, f_n, \ldots$, are linearly independent.
- span $\{f_n\} \cap$ span $\{\delta^{(j)}\} = \{0\}$.
- There is an increasing sequence of integers {m_j}_{j=0}[∞] such that for every β > 0 there exists α = α_{j,β} ≥ β for which one can find N = N_α ∈ N such that

 $\sum b_n f_n(x) = O(x^{lpha}) \ (\mathrm{C}, m_j) \text{ implies } b_N = b_{N+1} = \cdots = b_M = 0.$

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of distributions with supp $f_n \subseteq [0, \infty)$.

Theorem

Every generalized Stieltjes moment problem

$$a_n = \langle f_n, \phi \rangle, \quad n = 0, 1, 2, \dots,$$

has a solution $\phi \in \mathcal{S}(0,\infty)$ if:

- $f_1, f_2, f_3, \ldots, f_n, \ldots$, are linearly independent.
- span $\{f_n\} \cap$ span $\{\delta^{(j)}\} = \{0\}$.
- There is an increasing sequence of integers {m_j}_{j=0}[∞] such that for every β > 0 there exists α = α_{j,β} ≥ β for which one can find N = N_α ∈ N such that

М

$$\sum_{n=0} b_n f_n(x) = O(x^{\alpha}) \quad (C, m_j) \text{ implies } b_N = b_{N+1} = \cdots = b_M = 0.$$