
On the Stieltjes moment problem

Jasson Vindas
jvindas@cage.Ugent.be

Department of Mathematics
Ghent University

Logic and Analysis Seminar
March 11, 2015

J. Vindas Stieltjes moment problem



The problem of moments, as its generalizations, is an important
mathematical problem which has attracted much attention for
more than a century.

It was first raised and solved by Stieltjes for positive measures.

Problem (Stieltjes, 1894)

Find conditions over {an}∞n=0 which ensure the existence of
solutions µ to the infinity system of equations

an =

∫ ∞
0

xndµ(x), n = 0,1,2, . . . ,

where µ is a positive measure.

We will discuss several generalizations of this problem.
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The classical Stieltjes moment problem

Stieltjes found a necessary and sufficient condition for the
existence of solutions. Define the sequence of matrices

∆n =


a0 a1 . . . an
a1 a2 . . . an+1
...

...
. . .

...
an an+1 . . . a2n

 and ∆
(1)
n =


a1 a2 . . . an+1
a2 a3 . . . an+2
...

...
. . .

...
an+1 an+2 . . . a2n+1



Theorem (Stieltjes, 1894-1895)

The Stieltjes moment problem

an =

∫ ∞
0

xndµ(x), n = 0,1,2, . . . ,

has solution if and only if

det(∆n) > 0 and det(∆
(1)
n ) > 0, n = 0,1,2, . . . .
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Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

∫ ∞
0

xndF (x), F ↗ .

The Stieltjes transform, <e z /∈ (−∞,0],

S(z) =

∫ ∞
0

dF (x)

x + z
∼
∞∑

n=0

(−1)nan

zn+1 .

Continued fraction approximations.

J. Vindas Stieltjes moment problem



Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

∫ ∞
0

xndF (x), F ↗ .

The Stieltjes transform, <e z /∈ (−∞,0],

S(z) =

∫ ∞
0

dF (x)

x + z
∼
∞∑

n=0

(−1)nan

zn+1 .

Continued fraction approximations.

J. Vindas Stieltjes moment problem



Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

∫ ∞
0

xndF (x), F ↗ .

The Stieltjes transform, <e z /∈ (−∞,0],

S(z) =

∫ ∞
0

dF (x)

x + z
∼
∞∑

n=0

(−1)nan

zn+1 .

Continued fraction approximations.

J. Vindas Stieltjes moment problem



Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

∫ ∞
0

xndF (x), F ↗ .

The Stieltjes transform, <e z /∈ (−∞,0],

S(z) =

∫ ∞
0

dF (x)

x + z
∼
∞∑

n=0

(−1)nan

zn+1 .

Continued fraction approximations.

J. Vindas Stieltjes moment problem



Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

∫ ∞
0

xndF (x), F ↗ .

The Stieltjes transform, <e z /∈ (−∞,0],

S(z) =

∫ ∞
0

dF (x)

x + z
∼
∞∑

n=0

(−1)nan

zn+1 .

Continued fraction approximations.

J. Vindas Stieltjes moment problem



Modern approach goes back to Marcel Riesz (1921).
Carleman (1923-1926): connections with the theory of
quasi-analytic functions.

Other moment problems:
Hamburger (1920):

an =

∫ ∞
−∞

xndF (x), n = 0,1,2, . . . .

Hausdorff (1923):

an =

∫ c

b
xndF (x), n = 0,1,2, . . . .

For results on classical moment problems see the book by
Shohat and Tamarkin (The problem of moments, 1943).
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Moment problems for arbitrary sequences

Theorem (Boas and Pólya, independently, 1939)

Given an arbitrary sequence {an}∞n=0, there is always a function
of bounded variation F such that

an =

∫ ∞
0

xndF (x), n = 0,1,2, . . . .

A. Durán achieved a major improvement to this result:

Theorem (A. Durán, 1989)
Every Stieltjes moment problem

an =

∫ ∞
0

xnφ(x)dx , n = 0,1,2, . . . ,

admits a solution φ ∈ S(0,∞), namely, φ ∈ S(R) with
suppφ ⊆ [0,∞).
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Stieltjes moment problems for arbitrary sequences

A. Durán’s proof: Laguerre expansions, Hankel transform.
A. L. Durán and Estrada found a simple proof (1994):

an =

∫ ∞
0

xnφ(x)dx , n = 0,1,2, . . . , (1)

iff φ̂(n)(0) = (−i)nan. Then, the Borel-Ritt theorem ...
Chung-Chung-Kim (2003) exploited the method to show
that (1) has solutions φ ∈ Sβ(0,∞), β > 1.
Lastra and Sanz (2009) have considered ultradifferentiable
classes S∗(0,∞), with ∗ = (Mp), {Mp}.
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Abstract moment problem

We want to replace

an =

∫ ∞
0

xnφ(x)dx , n = 0,1,2, . . . ,

by the infinite system of linear equations

an = 〈fn, φ〉, n = 0,1,2, . . . , (2)

where the sought solution φ is an element of a (topological!)
vector space E and fn ∈ E ′.

Problem
Conditions over E and {fn}∞n=0 such that every generalized
moment problem (4) has a solution φ ∈ E.
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Particular cases

The Borel problem:

an = φ(n)(0), n = 0,1,2, . . . .

Here E = C∞(R) and fn = (−1)nδ(n), elements of E ′(R).

The Borel-Ritt problem. Given a sector S : α < arg z < β,
|z| < r . Find an analytic function φ on S such that on any
subsector S1 : α1 < arg z < β1 one has

φ(z) ∼
∞∑

n=0

anzn, z → 0+. (3)

In our setting, one may consider E the space of analytic
functions on S having expansions of the form (3). The fn
are the linear functionals sending ϕ to its n-th coefficient of
the expansion.
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Particular case: General Stieltjes moment problems
for rapidly decreasing smooth functions

Direct generalization of Pólya-Boas-Durán problem,

an =

∫ ∞
0

xnφ(x)dx , n = 0,1,2, . . . ,

where φ ∈ S(0,∞).
Distribution moment problem:

an = 〈fn, φ〉, n = 0,1,2, . . . , (4)

where fn ∈ S ′[0,∞) (= fn ∈ S ′(R) with supp fn ⊆ [0,∞)).
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Particular cases

1 Continuous generalized moment problem

an =

∫ ∞
0

fn(x)φ(x)dx , n = 0,1,2, . . . .

2 Discrete problem: Let (Bk ,n) be an infinite matrix

an =
∞∑

k=1

Bk ,nφ(k), n = 0,1,2, . . . ,

or, more generally, 0 < λn →∞,

an =
∞∑

k=1

Bk ,nφ(λk ), n = 0,1,2, . . . .

3 Let {Fn}∞n=0 be a sequence of functions of local bounded
variation (having at most polynomial growth)

an =

∫ ∞
0

φ(x)dFn(x), n = 0,1,2, . . . .
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Back to the abstract moment problem

We now consider the abstract moment problem

an = 〈fn, φ〉, n = 0,1,2, . . . ,

where E is an FS-space. So, fn ∈ E ′ and φ ∈ E .
Fréchet space: locally convex, metrizable, and complete
TVS.
Every Fréchet space E is the projective limit of a
decreasing sequence of Banach spaces

E = proj lim
←−

Ej → · · · → En+1 → En → ...→ E1,

with En+1 → En continuous and dense.
Fréchet-Schwartz (FS): En+1 → En are compact.
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Silva’s duality theory for FS-spaces

A DFS-space (or Silva space) is the inductive limit of an
increasing sequence of Banach spaces,

X1 → X2 → . . .Xn → Xn+1 → · · · → ind lim
→

Xj = X ,

where each Xn → Xn+1 is compact and injective.
Silva’s Lemma: Y ⊂ X is closed if and only if Y ∩ Xn is
closed in Xn, ∀n.
Silva’s Duality Theorem:

The dual of an FS-space is a DFS-space.
The dual of a DFS-space is an FS-space.
The FS- and DFS-spaces are Montel (hence reflexive).
If E = proj lim

←
En, with Ej+1 → Ej compact and dense, then

E ′ = ind lim
→

E ′n.
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Simplest examples of FS- and DFS-spaces

Let Pn the space of polynomials of degree ≤ n (in one
variable). So, Pn ∼= Cn+1.
Consider the canonical injections

ιn : Pn → Pn+1

and the projections
πn : Pn+1 → Pn.

The space of polynomials P = ind lim
→
Pn is DFS.

The space of formal power series C[[ξ]] = proj lim
←
Pn is FS.

Duality P ′ = C[[ξ]] and (C[[ξ]])′ = P.
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Abstract moment problem in FS-spaces

Theorem
Let E = proj lim

←
Ej be an FS-space, where En+1 → En is

compact and dense. Consider {fn}∞n=0 ⊂ E ′. Every arbitrary
abstract moment problem

〈fn, φ〉 = an, n ∈ N,

has solution φ ∈ E if and only if
1 f0, f1, . . . , fn, . . . , are linearly independent.
2 span{fn : n ∈ N} ∩ E ′j is finite dimensional, ∀j ∈ N.

Proof. Sketch on the blackboard. We use the following lemma:
Lemma. Let X = ind lim→ Xj be a DFS-space, with Xj → Xj+1
compact and injective. A continuous injective mapping
L : P → X has closed range if and only if L(P) ∩ Xj is finite
dimensional ∀j .
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Applications

For the Borel problem:

an = φ(n)(0) = 〈(−1)nδ(n), φ〉, n = 0,1,2, . . . ,

one takes E = C∞(R) = proj lim
←

C j [−j , j]. Since all

elements of the dual of C j [−j , j] are derivatives of order
≤ j + 1 of measures, the last theorem implies that every
Borel problem has solution.
A similar argument shows that every Borel-Ritt problem
has a solution.
For the Stieltjes moment problem, one writes

S(0,∞) = proj lim
←
Sp(0,∞),

where Sp(0,∞) is

{ψ ∈ Cp(0,∞) : ψ(j)(0) = 0 and lim
x→∞

xpψ(j)(x) = 0, j ≤ p}
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Applications

{xn}∞n=0 ∩ S ′p(0,∞), ∀p. The theorem yields that∫ ∞
0

xnφ(x)dx = an, n = 0,1,2, . . . ,

has always a solution φ ∈ S(0,∞).
More generally, it is possible to characterize the
{fn}∞n=0 ⊂ S[0,∞) for which every generalized Stieltjes
moment problem

〈fn, φ〉 = an, n ∈ N,

admits a solution φ ∈ S(0,∞) in terms of the asymptotic
behavior of the linear combinations of {fn}∞n=0.
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The weighted Stieltjes moment problem

Let 0 ≤ F ↗ on [0,∞) and let {αn}n∈Z ⊂ C.

Theorem
Every weighted Stieltjes moment problem

an =

∫ ∞
0

φ(x)xαndF (x), n ∈ Z,

has a solution φ ∈ S(0,∞), provided that:
1 The sets {n ∈ Z : −M ≤ <e αn ≤ M} are finite ∀M > 0.
2 If lim

n→∞
<e αn =∞, then

−∞ < lim sup
x→∞

log
∫ x

0 F (t)dt
log x

.

J. Vindas Stieltjes moment problem



The weighted Stieltjes moment problem

Let 0 ≤ F ↗ on [0,∞) and let {αn}n∈Z ⊂ C.

Theorem
Every weighted Stieltjes moment problem

an =

∫ ∞
0

φ(x)xαndF (x), n ∈ Z,

has a solution φ ∈ S(0,∞), provided that:
1 The sets {n ∈ Z : −M ≤ <e αn ≤ M} are finite ∀M > 0.
2 If lim

n→∞
<e αn =∞, then

−∞ < lim sup
x→∞

log
∫ x

0 F (t)dt
log x

.

J. Vindas Stieltjes moment problem



The weighted Stieltjes moment problem

Let 0 ≤ F ↗ on [0,∞) and let {αn}n∈Z ⊂ C.

Theorem
Every weighted Stieltjes moment problem

an =

∫ ∞
0

φ(x)xαndF (x), n ∈ Z,

has a solution φ ∈ S(0,∞), provided that:
1 The sets {n ∈ Z : −M ≤ <e αn ≤ M} are finite ∀M > 0.
2 If lim

n→∞
<e αn =∞, then

−∞ < lim sup
x→∞

log
∫ x

0 F (t)dt
log x

.

J. Vindas Stieltjes moment problem



Examples

The following generalized moment problems always have a
solution φ ∈ S(0,∞).

Let {αn}∞n=0 be such that <e αn ↗ ∞.

an =
∞∑

k=1

kαnφ(k), n = 0,1,2, . . . .

an =
∑

p prime

pαnφ(p), n = 0,1,2, . . . .
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