Tauberian theorems for distributions and applications

Jasson Vindas jvindas@cage.Ugent.be Ghent University

Generalized Solutions of Evolution Equations: Theory, Numerical Approximation, and Applications

Max Planck Institute for Mathematics in the Sciences Leipzig, April 12, 2012

ヘロト ヘアト ヘリト

We discuss several Tauberian aspects of a class of integral transforms. To a given (vector-valued) distribution **f**, we assign a smooth function of two variables $(x, y) \in \mathbb{R}^n \times \mathbb{R}_+$,

$$F_{\phi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+ty), \phi(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \phi\left(\frac{t-x}{y}\right) dt , \quad (1)$$

- To present a precise characterization of the spaces of distributions with values in Banach spaces in terms of norm size estimates for (1).
- To give a general Tauberian theorem for scaling asymptotic properties of distributions.
- To illustrate our results with some applications:
 - Conditions for stabilization in time of solutions to a class of Cauchy problems.
 - Tauberian theorems for Laplace transforms,

We discuss several Tauberian aspects of a class of integral transforms. To a given (vector-valued) distribution **f**, we assign a smooth function of two variables $(x, y) \in \mathbb{R}^n \times \mathbb{R}_+$,

$$F_{\phi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+ty), \phi(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \phi\left(\frac{t-x}{y}\right) \mathrm{d}t , \quad (1)$$

- To present a precise characterization of the spaces of distributions with values in Banach spaces in terms of norm size estimates for (1).
- To give a general Tauberian theorem for scaling asymptotic properties of distributions.
- To illustrate our results with some applications:
 - Conditions for stabilization in time of solutions to a class of Cauchy problems.
 - Tauberian theorems for Laplace transforms,

We discuss several Tauberian aspects of a class of integral transforms. To a given (vector-valued) distribution **f**, we assign a smooth function of two variables $(x, y) \in \mathbb{R}^n \times \mathbb{R}_+$,

$$F_{\phi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+ty), \phi(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \phi\left(\frac{t-x}{y}\right) \mathrm{d}t , \quad (1)$$

- To present a precise characterization of the spaces of distributions with values in Banach spaces in terms of norm size estimates for (1).
- To give a general Tauberian theorem for scaling asymptotic properties of distributions.
- To illustrate our results with some applications:
 - Conditions for stabilization in time of solutions to a class of Cauchy problems.
 - Tauberian theorems for Laplace transforms.

We discuss several Tauberian aspects of a class of integral transforms. To a given (vector-valued) distribution **f**, we assign a smooth function of two variables $(x, y) \in \mathbb{R}^n \times \mathbb{R}_+$,

$$F_{\phi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+ty), \phi(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \phi\left(\frac{t-x}{y}\right) \mathrm{d}t , \quad (1)$$

- To present a precise characterization of the spaces of distributions with values in Banach spaces in terms of norm size estimates for (1).
- To give a general Tauberian theorem for scaling asymptotic properties of distributions.
- To illustrate our results with some applications:
 - Conditions for stabilization in time of solutions to a class of Cauchy problems.
 - Tauberian theorems for Laplace transforms.

2 Tauberian theorem for scaling asymptotics

3 Applications

- Stabilization in time for Cauchy problems
- Tauberians for Laplace transforms

イロト イヨト イヨト

General Notation

- *E* always denotes a fixed Banach space with norm $\|\cdot\|_{E}$.
- X stands for a (Hausdorff) locally convex topological vector space.
- S'(ℝⁿ, X) = L_b(S(ℝⁿ), X), the space of X-valued tempered distributions.
- $\mathbb{H}^{n+1} = \mathbb{R}^n \times \mathbb{R}_+$, the upper half-space.
- The kernel $\phi \in \mathcal{S}(\mathbb{R}^n)$ is fixed and satisfies $\int_{\mathbb{R}^n} \phi(t) dt = 1$

• We use the Fourier transform

$$\hat{\psi}(u) = \int_{\mathbb{R}^n} \psi(t) e^{-iu \cdot t} \mathrm{d}t.$$

ヘロト 人間 ト 人目 ト 人目 トー

General Notation

- *E* always denotes a fixed Banach space with norm $\|\cdot\|_{E}$.
- X stands for a (Hausdorff) locally convex topological vector space.
- S'(ℝⁿ, X) = L_b(S(ℝⁿ), X), the space of X-valued tempered distributions.
- $\mathbb{H}^{n+1} = \mathbb{R}^n \times \mathbb{R}_+$, the upper half-space.
- The kernel $\phi \in \mathcal{S}(\mathbb{R}^n)$ is fixed and satisfies $\int_{\mathbb{R}^n} \phi(t) dt = 1$
- We use the Fourier transform

$$\hat{\psi}(\boldsymbol{u}) = \int_{\mathbb{R}^n} \psi(t) \boldsymbol{e}^{-i\boldsymbol{u}\cdot\boldsymbol{t}} \mathrm{d}t.$$

<ロト < 回 > < 回 > < 回 > < 回 > = 回

Suppose that **f** takes a priori values in the "broad" space *X*, i.e.,

• $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$.

Suppose that the "narrower" space

• *E* is continuously embedded in *X*.

If we know that **f** takes values in E, $\mathbf{f} \in S'(\mathbb{R}^n, E)$, then (for some k, l, M):

$$\|F_{\phi}f(x,y)\|_{E} \leq C \frac{(1+y)^{k} (1+|x|)^{l}}{y^{k}}, \quad (x,y) \in \mathbb{H}^{n+1}.$$
 (2)

We call (2) a (Tauberian) class estimate.

Suppose that **f** takes a priori values in the "broad" space *X*, i.e.,

• $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$.

Suppose that the "narrower" space

• *E* is continuously embedded in *X*.

If we know that **f** takes values in E, $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, E)$, then (for some k, l, M):

$$\|F_{\phi}\mathbf{f}(x,y)\|_{E} \leq C \frac{(1+y)^{k}(1+|x|)^{l}}{y^{k}}, \quad (x,y) \in \mathbb{H}^{n+1}.$$
 (2)

We call (2) a (Tauberian) class estimate.

Suppose that **f** takes a priori values in the "broad" space *X*, i.e.,

• $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$.

Suppose that the "narrower" space

• *E* is continuously embedded in *X*.

If we know that **f** takes values in E, $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, E)$, then (for some k, l, M):

$$\|F_{\phi}\mathbf{f}(x,y)\|_{E} \leq C \frac{(1+y)^{k}(1+|x|)^{l}}{y^{k}}, \quad (x,y) \in \mathbb{H}^{n+1}.$$
 (2)

We call (2) a (Tauberian) class estimate.

Suppose that **f** takes a priori values in the "broad" space *X*, i.e.,

• $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$.

Suppose that the "narrower" space

• *E* is continuously embedded in *X*.

If we know that **f** takes values in E, $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, E)$, then (for some k, l, M):

$$\|F_{\phi}\mathbf{f}(x,y)\|_{E} \leq C \frac{(1+y)^{k}(1+|x|)^{l}}{y^{k}}, \quad (x,y) \in \mathbb{H}^{n+1}.$$
 (2)

We call (2) a (Tauberian) class estimate.

Statement of the problem and motivation Characterization of distributions with values in Banach spaces

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

The stated problem was first raised and studied by Drozhzhinov and Zav'yalov. It gives a general setting to attack problems such as:

- Classical Hardy-Littlewood-Karamata type Tauberian theorems for various integral transforms (e.g., the Laplace transform).
- Stabilization in time for certain Cauchy problems (e.g., for the heat equation).
- Norm estimates for solutions to certain PDE (e.g., the Schrödinger equation)
- Wavelet characterizations of important Banach spaces of functions and distributions (e.g., Besov type spaces).
- Solution Pointwise and (micro-)local analysis.

ヘロト ヘヨト ヘヨト

Motivation

The stated problem was first raised and studied by Drozhzhinov and Zav'yalov. It gives a general setting to attack problems such as:

- Classical Hardy-Littlewood-Karamata type Tauberian theorems for various integral transforms (e.g., the Laplace transform).
- Stabilization in time for certain Cauchy problems (e.g., for the heat equation).
- Norm estimates for solutions to certain PDE (e.g., the Schrödinger equation)
- Wavelet characterizations of important Banach spaces of functions and distributions (e.g., Besov type spaces).
- Operation of the second sec

Motivation

The stated problem was first raised and studied by Drozhzhinov and Zav'yalov. It gives a general setting to attack problems such as:

- Classical Hardy-Littlewood-Karamata type Tauberian theorems for various integral transforms (e.g., the Laplace transform).
- Stabilization in time for certain Cauchy problems (e.g., for the heat equation).
- Norm estimates for solutions to certain PDE (e.g., the Schrödinger equation)
- Wavelet characterizations of important Banach spaces of functions and distributions (e.g., Besov type spaces).
- Pointwise and (micro-)local analysis.

Characterization of distributions with values in Banach spaces: Local class estimates

A local version of the Tauberian class estimate suffices to characterize the spaces of distributions with values in Banach spaces:

Theorem

Let $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$. Then, $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, E)$ if and only if

- F_φf(x, y) takes values in E for almost all (x, y) ∈ ℝⁿ × (0, 1) and is measurable as an E-valued function on ℝⁿ × (0, 1), and,
- 3 There are $k, l \in \mathbb{N}$ and C > 0 such that

$$\|F_{\phi}(x,y)\|_{E} \leq C rac{(1+|x|)^{l}}{y^{k}}, \ \ (x,y) \in \mathbb{R}^{n} imes (0,1).$$

Characterization of distributions with values in Banach spaces: Local class estimates

A local version of the Tauberian class estimate suffices to characterize the spaces of distributions with values in Banach spaces:

Theorem

Let $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, X)$. Then, $\mathbf{f} \in \mathcal{S}'(\mathbb{R}^n, E)$ if and only if

- F_φf(x, y) takes values in E for almost all (x, y) ∈ ℝⁿ × (0, 1) and is measurable as an E-valued function on ℝⁿ × (0, 1), and,
- 2 There are $k, l \in \mathbb{N}$ and C > 0 such that

$$\left\| \mathcal{F}_{\phi}(x,y)
ight\|_{\mathcal{E}} \leq C rac{(1+|x|)'}{y^k}, \hspace{1em} (x,y) \in \mathbb{R}^n imes (0,1).$$

Scaling weak-asymptotics The Tauberian theorem

Scaling weak-asymptotics

We are interested in asymptotic representiations

 $f(at) \sim \rho(a)g(t),$

as $a \rightarrow 0^+$ or $a \rightarrow \infty$, in the distributional sense, i.e.,

 $\langle f(at),\psi(t)
angle\sim
ho(a)\,\langle g(t),\psi(t)
angle\,,\;\;\forall\psi\in\mathcal{S}(\mathbb{R}^n).$

If (3) holds, then, for some $\alpha \in \mathbb{R}$,

- *g* is homogeneous of degree α , i.e., $g(at) = a^{\alpha}g(t)$,
- ρ(a) = a^αL(a), where L is a Karamata slowly varying function, i.e.,

 $L(ca) \sim L(a), \quad \forall c > 0.$

ヘロト 人間 とくほ とくほ とう

Scaling weak-asymptotics The Tauberian theorem

Scaling weak-asymptotics

We are interested in asymptotic representiations

 $f(at) \sim \rho(a)g(t),$

as $a \rightarrow 0^+$ or $a \rightarrow \infty$, in the distributional sense,i.e.,

$$\langle f(at), \psi(t) \rangle \sim \rho(a) \langle g(t), \psi(t) \rangle, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$
 (3)

If (3) holds, then, for some $\alpha \in \mathbb{R}$,

- *g* is homogeneous of degree α , i.e., $g(at) = a^{\alpha}g(t)$,
- ρ(a) = a^αL(a), where L is a Karamata slowly varying function, i.e.,

 $L(ca) \sim L(a), \quad \forall c > 0.$

イロト イポト イヨト イヨト

Scaling weak-asymptotics The Tauberian theorem

Scaling weak-asymptotics

We are interested in asymptotic representiations

 $f(at) \sim \rho(a)g(t),$

as $a \rightarrow 0^+$ or $a \rightarrow \infty$, in the distributional sense,i.e.,

$$\langle f(at), \psi(t) \rangle \sim \rho(a) \langle g(t), \psi(t) \rangle, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$
 (3)

- If (3) holds, then, for some $\alpha \in \mathbb{R}$,
 - g is homogeneous of degree α , i.e., $g(at) = a^{\alpha}g(t)$,
 - ρ(a) = a^αL(a), where L is a Karamata slowly varying function, i.e.,

 $L(ca) \sim L(a), \quad \forall c > 0.$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

Scaling weak-asymptotics The Tauberian theorem

Scaling weak-asymptotics

We are interested in asymptotic representiations

 $f(at) \sim \rho(a)g(t),$

as $a \rightarrow 0^+$ or $a \rightarrow \infty$, in the distributional sense,i.e.,

$$\langle f(at), \psi(t) \rangle \sim \rho(a) \langle g(t), \psi(t) \rangle, \ \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$
 (3)

If (3) holds, then, for some $\alpha \in \mathbb{R}$,

- g is homogeneous of degree α , i.e., $g(at) = a^{\alpha}g(t)$,
- ρ(a) = a^αL(a), where L is a Karamata slowly varying function, i.e.,

$$L(ca) \sim L(a), \quad \forall c > 0.$$

イロト 人間ト イヨト イヨト

Scaling weak-asymptotics The Tauberian theorem

Weak-asymptotics

We write
$$f(at) \sim a^{\alpha}L(a)g(t)$$
 in $\mathcal{S}'(\mathbb{R}^n)$ if

$$\lim \frac{\langle f(at), \psi(t) \rangle}{a^{\alpha}L(a)} = \langle g(t), \psi(t) \rangle, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$

• For small $a = \varepsilon \rightarrow 0^+$ and large $a = \lambda \rightarrow \infty$.

Example:

• Let $x_0 \in \mathbb{R}^n$. We say that *f* has Łojasiewicz point value $\gamma \in \mathbb{C}$ at x_0 , and write $f(x_0) = \gamma$, distributionally, if

$$\lim_{\varepsilon\to 0^+} f(x_0+\varepsilon t) = \gamma \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

Scaling weak-asymptotics The Tauberian theorem

Weak-asymptotics

• We write $f(at) \sim a^{\alpha}L(a)g(t)$ in $S'(\mathbb{R}^n)$ if $\lim \frac{\langle f(at), \psi(t) \rangle}{a^{\alpha}L(a)} = \langle g(t), \psi(t) \rangle, \quad \forall \psi \in S(\mathbb{R}^n).$

• For small
$$a = \varepsilon \rightarrow 0^+$$
 and large $a = \lambda \rightarrow \infty$.

Example:

• Let $x_0 \in \mathbb{R}^n$. We say that *f* has Łojasiewicz point value $\gamma \in \mathbb{C}$ at x_0 , and write $f(x_0) = \gamma$, distributionally, if

$$\lim_{\varepsilon\to 0^+} f(x_0+\varepsilon t) = \gamma \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

Scaling weak-asymptotics The Tauberian theorem

Weak-asymptotics

• We write $f(at) \sim a^{\alpha}L(a)g(t)$ in $\mathcal{S}'(\mathbb{R}^n)$ if

$$\lim \frac{\langle f(at), \psi(t) \rangle}{a^{\alpha} L(a)} = \langle g(t), \psi(t) \rangle, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$

• For small
$$a = \varepsilon \rightarrow 0^+$$
 and large $a = \lambda \rightarrow \infty$.

Example:

• Let $x_0 \in \mathbb{R}^n$. We say that *f* has <u>Lojasiewicz point value</u> $\gamma \in \mathbb{C}$ at x_0 , and write $f(x_0) = \gamma$, distributionally, if

$$\lim_{\varepsilon\to 0^+} f(x_0+\varepsilon t) = \gamma \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

Scaling weak-asymptotics The Tauberian theorem

Weak-asymptotics

• We write $f(at) \sim a^{\alpha}L(a)g(t)$ in $\mathcal{S}'(\mathbb{R}^n)$ if

$$\lim \frac{\langle f(at), \psi(t) \rangle}{a^{\alpha} L(a)} = \langle g(t), \psi(t) \rangle, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$

• For small
$$a = \varepsilon \rightarrow 0^+$$
 and large $a = \lambda \rightarrow \infty$.

Example:

• Let $x_0 \in \mathbb{R}^n$. We say that *f* has <u>Lojasiewicz point value</u> $\gamma \in \mathbb{C}$ at x_0 , and write $f(x_0) = \gamma$, distributionally, if

$$\lim_{\varepsilon\to 0^+} f(x_0+\varepsilon t) = \gamma \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

Tauberian theorems for the ϕ -transform

Scaling weak-asymptotic behavior

Theorem

The distribution $f \in S'(\mathbb{R}^n)$ has weak-asymptotic behavior

 $f(at) \sim a^{\alpha} L(a) g(t)$ in $\mathcal{S}'(\mathbb{R}^n)$

as a \rightarrow 0^+ (resp. a $\rightarrow \infty)$ if and only if

 $\lim_{a\to 0^+} \frac{1}{a^{\alpha}L(a)} F_{\phi}f(ax, ay) = F_{x,y}, \text{ for each } |x|^2 + y^2 = 1, y > 0,$

and

$$\limsup_{a\to 0^+} \sup_{|x|^2+y^2=1, y>0} \frac{y^k}{a^{\alpha}L(a)} \left|F_{\phi}f\left(ax,ay\right)\right| < \infty, \ \text{ for some } k \in \mathbb{N},$$

resp. as a $ightarrow \infty$. In such a case, g is completely determined by ${\sf F}_{\phi}g(x,y)={\sf F}_{x,y}$

Tauberian theorems for the ϕ -transform

Scaling weak-asymptotic behavior

Theorem

The distribution $f \in S'(\mathbb{R}^n)$ has weak-asymptotic behavior

$$f(at) \sim a^{lpha} L(a) g(t)$$
 in $\mathcal{S}'(\mathbb{R}^n)$

as a \rightarrow 0^+ (resp. a $\rightarrow \infty)$ if and only if

$$\lim_{a\to 0^+} \frac{1}{a^{\alpha} L(a)} F_{\phi} f(ax, ay) = F_{x,y} , \quad \text{for each } |x|^2 + y^2 = 1, \ y > 0,$$

and

$$\limsup_{a\to 0^+} \sup_{|x|^2+y^2=1, y>0} \frac{y^k}{a^{\alpha}L(a)} \left|F_{\phi}f\left(ax,ay\right)\right| < \infty, \text{ for some } k \in \mathbb{N},$$

resp. as a $ightarrow \infty$. In such a case, g is completely determined by $\mathsf{F}_{\phi} g(x,y) = \mathsf{F}_{\mathsf{x},\mathsf{y}}$

Tauberian theorems for the ϕ -transform

Scaling weak-asymptotic behavior

Theorem

The distribution $f \in S'(\mathbb{R}^n)$ has weak-asymptotic behavior

$$f(at) \sim a^{lpha} L(a) g(t)$$
 in $\mathcal{S}'(\mathbb{R}^n)$

as a \rightarrow 0^+ (resp. a $\rightarrow \infty)$ if and only if

$$\lim_{a\to 0^+} \frac{1}{a^{\alpha} L(a)} F_{\phi} f(ax, ay) = F_{x,y} , \quad \text{for each } |x|^2 + y^2 = 1, \ y > 0,$$

and

$$\limsup_{a\to 0^+} \sup_{|x|^2+y^2=1, \ y>0} \frac{y^k}{a^{\alpha}L(a)} \left| F_{\phi}f(ax,ay) \right| < \infty, \ \text{ for some } k\in \mathbb{N},$$

resp. as a $\rightarrow \infty$. In such a case, g is completely determined by $F_{\phi}g(x, y) = F_{x,y}$

Tauberian theorems for the ϕ -transform

Scaling weak-asymptotic behavior

Theorem

The distribution $f \in S'(\mathbb{R}^n)$ has weak-asymptotic behavior

$$f(at) \sim a^{lpha} L(a) g(t)$$
 in $\mathcal{S}'(\mathbb{R}^n)$

as a \rightarrow 0^+ (resp. a $\rightarrow \infty)$ if and only if

$$\lim_{a\to 0^+} \frac{1}{a^{\alpha} L(a)} F_{\phi} f(ax, ay) = F_{x,y} , \quad \text{for each } |x|^2 + y^2 = 1, \ y > 0,$$

and

$$\limsup_{a\to 0^+} \sup_{|x|^2+y^2=1, \ y>0} \frac{y^k}{a^{\alpha}L(a)} \left|F_{\phi}f\left(ax,ay\right)\right| < \infty, \ \text{ for some } k\in\mathbb{N},$$

resp. as $a o \infty$. In such a case, g is completely determined by $F_{\phi}g(x,y) = F_{x,y}$.

A Generalized Cauchy problem

We will consider the Cauchy problem

$$\frac{\partial}{\partial t}U(x,t) = P\left(\frac{\partial}{\partial x}\right)U(x,t), \quad (x,t) \in \mathbb{H}^{n+1},$$
$$\lim_{t \to 0^+}U(x,t) = f(x) \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

- $\Gamma \subseteq \mathbb{R}^n$ is a closed convex cone with vertex at the origin. Possible situation: $\Gamma = \mathbb{R}^n$.
- *P* is a homogeneous polynomial of degree *d*. Assume:

$$\Re e P(iu) < 0, \quad u \in \Gamma, \ u \neq 0.$$

• $f \in \mathcal{S}'(\mathbb{R}^n)$. Assume supp $\hat{f} \subseteq \Gamma$.

イロト イポト イヨト イヨト

Asymptotic stabilization in time for solutions

We ask for conditions which ensure the existence of a function $T: (A, \infty) \to \mathbb{R}_+$ such that the following limit exists

$$\lim_{t\to\infty}\frac{U(x,t)}{T(t)}=\ell,$$

uniformly for *x* in compacts of \mathbb{R}^n .

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

イロト イポト イヨト イヨト

Generalized Cauchy problem

If *U* is required to have slow growth over \mathbb{H}^{n+1} , i.e.,

$$\sup_{(x,t)\in\mathbb{H}^{n+1}} |U(x,t)| \left(t+\frac{1}{t}\right)^{-k_1} (1+|x|)^{-k_2} < \infty, \text{ for some } k_1, k_2 \in \mathbb{N},$$

then the Cauchy problem has a unique solution. Moreover,

$$U(x,t) = \frac{1}{(2\pi)^n} \left\langle \hat{f}(u), e^{ix \cdot u} e^{P\left(it^{1/d}u\right)} \right\rangle.$$

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

イロト イポト イヨト イヨト

Generalized Cauchy problem

If *U* is required to have slow growth over \mathbb{H}^{n+1} , i.e.,

$$\sup_{(x,t)\in\mathbb{H}^{n+1}} |U(x,t)| \left(t+\frac{1}{t}\right)^{-k_1} (1+|x|)^{-k_2} < \infty, \text{ for some } k_1, k_2 \in \mathbb{N},$$

then the Cauchy problem has a unique solution. Moreover,

$$U(x,t)=\frac{1}{(2\pi)^n}\left\langle \hat{f}(u),e^{ix\cdot u}e^{P(it^{1/d}u)}\right\rangle.$$

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

Relation with the ϕ -transform

Choose a test function $\eta \in \mathcal{S}(\mathbb{R}^n)$ with the property

$$\eta(u) = e^{P(iu)}$$
, for $u \in \Gamma$;

setting $\phi(\xi) = (2\pi)^{-n}\hat{\eta}(\xi)$, we express *U* as a ϕ -transform,

 $U(x,t) = \left\langle f(\xi), \frac{1}{t^{n/d}} \phi\left(\frac{\xi - x}{t^{1/d}}\right) \right\rangle = F_{\phi}f(x,y), \text{ with } y = t^{1/d},$

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

<ロト <部ト <きと <きと = 目

Relation with the ϕ -transform

Choose a test function $\eta \in \mathcal{S}(\mathbb{R}^n)$ with the property

$$\eta(u) = e^{P(iu)}$$
, for $u \in \Gamma$;

setting $\phi(\xi) = (2\pi)^{-n} \hat{\eta}(\xi)$, we express U as a ϕ -transform,

$$U(x,t) = \left\langle f(\xi), \frac{1}{t^{n/d}} \phi\left(\frac{\xi - x}{t^{1/d}}\right) \right\rangle = F_{\phi} f(x,y), \text{ with } y = t^{1/d},$$

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

イロト イポト イヨト イヨト

Stabilization along *d*-curves

We say *U* stabilizes along *d*-curves (at infinity), relative to $\lambda^{\alpha}L(\lambda)$, if the following two conditions hold:

there exist the limits

$$\lim_{\lambda\to\infty}\frac{U(\lambda x,\lambda^d t)}{\lambda^{\alpha}L(\lambda)}=U_0(x,t), \quad (x,t)\in\mathbb{H}^{n+1};$$

2 there are constants $C \in \mathbb{R}_+$ and $k \in \mathbb{N}$ such that

$$\left| rac{U(\lambda x,\lambda^d t)}{\lambda^{lpha} L(\lambda)}
ight| \leq rac{C}{t^k}, \quad |x|^2+t^2=1, \ t>0.$$

イロト イロト イヨト イヨト

Stabilization in time for Cauchy problems

Theorem

The solution U to the Cauchy problem stabilizes along d-curves if and only if f has weak-asymptotic behavior at infinity, relative to $\lambda^{\alpha}L(\lambda)$.

Corollary

If U stabilizes along d-curves, relative to $\lambda^{\alpha}L(\lambda)$, then U stabilizes in time with respect to $T(t) = t^{\alpha/d}L(t^{1/d})$. That is, there is a constant ℓ such that

$$\lim_{t\to\infty}\frac{U(x,t)}{T(t)}=\ell,$$

for each $x \in \mathbb{R}^n$.

イロト イロト イヨト イヨト

Stabilization in time for Cauchy problems

Theorem

The solution U to the Cauchy problem stabilizes along d-curves if and only if f has weak-asymptotic behavior at infinity, relative to $\lambda^{\alpha}L(\lambda)$.

Corollary

If U stabilizes along d-curves, relative to $\lambda^{\alpha}L(\lambda)$, then U stabilizes in time with respect to $T(t) = t^{\alpha/d}L(t^{1/d})$. That is, there is a constant ℓ such that

$$\lim_{t\to\infty}\frac{U(x,t)}{T(t)}=\ell,$$

for each $x \in \mathbb{R}^n$.

Tauberian class estimates Tauberian theorem for scaling asymptotics Applications

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

イロト 人間ト イヨト イヨト

э

Example: The heat equation

We immediately recover a result of Drozhzhinov and Zavialov for the heat equation.

Let *U* be the solution to the Cauchy problem (here actually $\Gamma = \mathbb{R}^n$)

$$\frac{\partial}{\partial t}U = \Delta_{x}U,$$
$$U(x,t) = f(x) \text{ in } \mathcal{S}'(\mathbb{R}^{r})$$

If
$$U$$
 stabilizes along parabolas (i.e., d=2), then it stabilizes in time.

Tauberian class estimates Tauberian theorem for scaling asymptotics Applications

Stabilization in time for Cauchy problems Tauberians for Laplace transforms

イロト イポト イヨト イヨト

Example: The heat equation

We immediately recover a result of Drozhzhinov and Zavialov for the heat equation.

Let *U* be the solution to the Cauchy problem (here actually $\Gamma = \mathbb{R}^n$)

$$\frac{\partial}{\partial t}U=\Delta_{x}U,$$

$$\lim_{t\to 0^+} U(x,t) = f(x) \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$

If U stabilizes along parabolas (i.e., d=2), then it stabilizes in time.

イロト 不同 トイヨト イヨト 二日

Multidimensional Laplace transforms

Let Γ be a closed convex acute cone with vertex at the origin. Acute means that the conjugate cone

$$\Gamma^* = \{ \xi \in \mathbb{R}^n : \ \xi \cdot u \ge 0, \forall u \in \Gamma \}$$
 has non-empty interior.

Set

$$\mathcal{S}_{\Gamma}' = \left\{ h \in \mathcal{S}'(\mathbb{R}^n) : \text{ supp } h \subseteq \Gamma \right\}$$
$$\mathcal{C}_{\Gamma} = \text{int } \Gamma^* \text{ and } T^{\mathcal{C}_{\Gamma}} = \mathbb{R}^n + i\mathcal{C}_{\Gamma}.$$

Given $h \in S'_{\Gamma}$, its Laplace transform is defined as

$$\mathcal{L}\left\{ h;z
ight\} =\left\langle h(u),e^{iz\cdot u}
ight
angle ,\ \ z\in\mathcal{T}^{\mathcal{C}_{\Gamma}};$$

it is a holomorphic function on the tube domain $\mathcal{T}^{C_{\Gamma}}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Multidimensional Laplace transforms

Let Γ be a closed convex acute cone with vertex at the origin. Acute means that the conjugate cone

 $\Gamma^* = \{ \xi \in \mathbb{R}^n : \ \xi \cdot u \ge 0, \forall u \in \Gamma \}$ has non-empty interior.

Set

$$\mathcal{S}_{\Gamma}' = \left\{ h \in \mathcal{S}'(\mathbb{R}^n) : \text{ supp } h \subseteq \Gamma \right\}$$
$$\mathcal{C}_{\Gamma} = \text{int } \Gamma^* \text{ and } T^{\mathcal{C}_{\Gamma}} = \mathbb{R}^n + i\mathcal{C}_{\Gamma}.$$

Given $h \in S'_{\Gamma}$, its Laplace transform is defined as

$$\mathcal{L}\left\{ \textit{h};\textit{z}
ight\} =\left\langle \textit{h}(\textit{u}),\textit{e}^{\textit{i}z\cdot\textit{u}}
ight
angle ,\ \textit{z}\in\textit{T}^{\textit{C}_{\Gamma}};$$

it is a holomorphic function on the tube domain $T^{C_{\Gamma}}$.

イロト 不得 とくほ とくほ とう

3

Laplace transforms as ϕ -transforms

We may express the Laplace transform as a ϕ -transform if we fix a direction in C_{Γ} .

- Fix $\omega \in C_{\Gamma}$
- Choose $\eta_{\omega} \in \mathcal{S}(\mathbb{R}^n)$ such that $\eta_{\omega}(u) = e^{-\omega \cdot u}, \forall u \in \Gamma$

Set

$$\phi_\omega = 1/(2\pi)^n \hat{\eta}_\omega$$
 and $\hat{f} = (2\pi)^n h$

Then,

$$\mathcal{L} \{h; x + i\sigma\omega\} = F_{\phi_{\omega}}f(x, \sigma), \quad x \in \mathbb{R}^n, \ \sigma \in \mathbb{R}_+.$$

イロト 不得 とくほ とくほ とう

3

Laplace transforms as ϕ -transforms

We may express the Laplace transform as a ϕ -transform if we fix a direction in C_{Γ} .

- Fix $\omega \in C_{\Gamma}$
- Choose $\eta_\omega \in \mathcal{S}(\mathbb{R}^n)$ such that $\eta_\omega(u) = e^{-\omega \cdot u}, \, \forall u \in \Gamma$

Set

$$\phi_\omega = 1/(2\pi)^n \hat{\eta}_\omega$$
 and $\hat{f} = (2\pi)^n h$

Then,

$$\mathcal{L} \{h; \mathbf{x} + i\sigma\omega\} = F_{\phi_{\omega}}f(\mathbf{x}, \sigma), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \sigma \in \mathbb{R}_{+}.$$

Tauberian theorem for Laplace transforms

Corollary

Let $h \in S'_{\Gamma}$. Then, an estimate (for some $\omega \in C_{\Gamma}, \ k \in \mathbb{N}$)

$$\limsup_{\varepsilon \to 0^+} \sup_{|x|^2 + \sigma^2 = 1} \frac{\sigma^k \varepsilon^{n+\alpha}}{L(1/\varepsilon)} \left| \mathcal{L}\left\{h; \varepsilon\left(x + i\sigma\omega\right)\right\}\right| < \infty, \tag{4}$$

and the existence of an open subcone $C' \subset C_{\Gamma}$ such that

$$\lim_{\varepsilon \to 0^+} \frac{\varepsilon^{\alpha+n}}{L(1/\varepsilon)} \mathcal{L} \{h; i \varepsilon \xi\} = G(i\xi), \quad \text{for each } \xi \in C',$$
(5)

are necessary and sufficient for

 $h(\lambda u) \sim \lambda^{\alpha} L(\lambda) g(u)$ as $\lambda \to \infty$ in $\mathcal{S}'(\mathbb{R}^n)$, for some $g \in \mathcal{S}'_{\Gamma}$.

In such a case $G(z) = \mathcal{L} \{g; z\}, z \in T^{C_{\Gamma}}$.

・ロット (雪) (小口)

Further results: Wavelets

Versions of the discussed Tauberian theorems are also valid if one replaces the ϕ -transform by a wavelet transform

$$\mathcal{W}_{\psi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+yt), \overline{\psi}(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \overline{\psi}\left(\frac{t-x}{y}\right) \mathrm{d}t$$

where $\int_{\mathbb{R}^n} \psi(t) dt = 0$. The wavelet must be non-degenerate:

Definition

 $\psi \in S(\mathbb{R}^n)$ is non-degenerate if $\hat{\psi}$ does not identically vanish along any ray through the origin.

・ロット (雪) (小口)

Further results: Wavelets

Versions of the discussed Tauberian theorems are also valid if one replaces the ϕ -transform by a wavelet transform

$$\mathcal{W}_{\psi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+yt), \overline{\psi}(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \overline{\psi}\left(\frac{t-x}{y}\right) \mathrm{d}t$$

where $\int_{\mathbb{R}^n} \psi(t) dt = 0$. The wavelet must be non-degenerate:

Definition

 $\psi \in S(\mathbb{R}^n)$ is non-degenerate if $\hat{\psi}$ does not identically vanish along any ray through the origin.

・ロット (雪) (小口)

Further results: Wavelets

Versions of the discussed Tauberian theorems are also valid if one replaces the ϕ -transform by a wavelet transform

$$\mathcal{W}_{\psi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+yt), \overline{\psi}(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \overline{\psi}\left(\frac{t-x}{y}\right) \mathrm{d}t$$

where $\int_{\mathbb{R}^n} \psi(t) dt = 0$. The wavelet must be non-degenerate:

Definition

 $\psi \in \mathcal{S}(\mathbb{R}^n)$ is non-degenerate if $\hat{\psi}$ does not identically vanish along any ray through the origin.

ヘロア ヘヨア ヘヨア ヘ

Further results: Wavelets

Versions of the discussed Tauberian theorems are also valid if one replaces the ϕ -transform by a wavelet transform

$$\mathcal{W}_{\psi}\mathbf{f}(x,y) = \langle \mathbf{f}(x+yt), \overline{\psi}(t) \rangle = \int_{\mathbb{R}^n} \mathbf{f}(t) \frac{1}{y^n} \overline{\psi}\left(\frac{t-x}{y}\right) \mathrm{d}t$$

where $\int_{\mathbb{R}^n} \psi(t) dt = 0$. The wavelet must be non-degenerate:

Definition

 $\psi \in \mathcal{S}(\mathbb{R}^n)$ is non-degenerate if $\hat{\psi}$ does not identically vanish along any ray through the origin.

References

For further results see our preprint:

- Multidimensional Tauberian theorems for wavelets and non-wavelet transforms, preprint (arXiv:1012.5090v2).
- Y. N. Drozhzhinov, B. I. Zav'yalov, Multidimensional Tauberian theorems for Banach-space valued generalized functions, Sb. Math. 194 (2003), 1599–1646.

See also:

- Y. N. Drozhzhinov, B. I. Zav'yalov, Applications of Tauberian theorems in some problems in mathematical physics, Teoret. Mat. Fiz. 157 (2008), 373–390.
- Y. Meyer, Wavelets, vibrations and scalings, AMS, Providence, 1998.
- J. Vindas, S. Pilipović, D. Rakić, Tauberian theorems for the wavelet transform, J. Fourier Anal. Appl. 17 (2011), 65–95.

References

For further results see our preprint:

- Multidimensional Tauberian theorems for wavelets and non-wavelet transforms, preprint (arXiv:1012.5090v2).
- Y. N. Drozhzhinov, B. I. Zav'yalov, Multidimensional Tauberian theorems for Banach-space valued generalized functions, Sb. Math. 194 (2003), 1599–1646.

See also:

- Y. N. Drozhzhinov, B. I. Zav'yalov, Applications of Tauberian theorems in some problems in mathematical physics, Teoret. Mat. Fiz. 157 (2008), 373–390.
- Y. Meyer, Wavelets, vibrations and scalings, AMS, Providence, 1998.
- J. Vindas, S. Pilipović, D. Rakić, Tauberian theorems for the wavelet transform, J. Fourier Anal. Appl. 17 (2011), 65–95.