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We discuss several Tauberian aspects of a class of integral
transforms. To a given (vector-valued) distribution f, we assign
a smooth function of two variables (x , y) ∈ Rn × R+,

Fφf(x , y) = 〈f(x + ty), φ(t)〉 =

∫
Rn

f(t)
1
ynφ

(
t − x

y

)
dt , (1)

where the kernel φ ∈ S(Rn) and
∫
Rn φ(t)dt = 1. We call (1) the

φ−transform. Our aims are:
1 To present a precise characterization of the spaces of

distributions with values in Banach spaces in terms of
norm size estimates for (1).

2 To give a general Tauberian theorem for scaling asymptotic
properties of distributions.

3 To illustrate our results with some applications:
Conditions for stabilization in time of solutions to a class of
Cauchy problems.
Tauberian theorems for Laplace transforms.
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General Notation

E always denotes a fixed Banach space with norm ‖ · ‖E .
X stands for a (Hausdorff) locally convex topological vector
space.
S ′(Rn,X ) = Lb(S(Rn),X ), the space of X -valued tempered
distributions.
Hn+1 = Rn × R+, the upper half-space.
The kernel φ ∈ S(Rn) is fixed and satisfies

∫
Rn φ(t)dt = 1

We use the Fourier transform

ψ̂(u) =

∫
Rn
ψ(t)e−iu·tdt .
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Statement of the problem and motivation
Characterization of distributions with values in Banach spaces

Statement of the problem

Suppose that f takes a priori values in the “broad” space X , i.e.,
f ∈ S ′(Rn,X ).

Suppose that the “narrower” space
E is continuously embedded in X .

If we know that f takes values in E , f ∈ S ′(Rn,E), then (for
some k , l ,M):

‖Fφf(x , y)‖E ≤ C
(1 + y)k (1 + |x |)l

yk , (x , y) ∈ Hn+1. (2)

We call (2) a (Tauberian) class estimate.

Converse problem: Does the class estimate (2) allow one to
conclude that f actually takes values in E? The problem has a
Tauberian character.
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Statement of the problem and motivation
Characterization of distributions with values in Banach spaces

Motivation

The stated problem was first raised and studied by Drozhzhinov
and Zav’yalov. It gives a general setting to attack problems
such as:

1 Classical Hardy-Littlewood-Karamata type Tauberian
theorems for various integral transforms (e.g., the Laplace
transform).

2 Stabilization in time for certain Cauchy problems (e.g., for
the heat equation).

3 Norm estimates for solutions to certain PDE (e.g., the
Schrödinger equation)

4 Wavelet characterizations of important Banach spaces of
functions and distributions (e.g., Besov type spaces).

5 Pointwise and (micro-)local analysis.
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Characterization of distributions with values in Banach
spaces: Local class estimates

A local version of the Tauberian class estimate suffices to
characterize the spaces of distributions with values in Banach
spaces:

Theorem
Let f ∈ S ′(Rn,X ). Then, f ∈ S ′(Rn,E) if and only if

1 Fφf(x , y) takes values in E for almost all
(x , y) ∈ Rn × (0,1) and is measurable as an E-valued
function on Rn × (0,1), and,

2 There are k , l ∈ N and C > 0 such that

‖Fφ(x , y)‖E ≤ C
(1 + |x |)l

yk , (x , y) ∈ Rn × (0,1).
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Scaling weak-asymptotics
The Tauberian theorem

Scaling weak-asymptotics

We are interested in asymptotic representiations

f (at) ∼ ρ(a)g(t),

as a→ 0+ or a→∞, in the distributional sense,i.e.,

〈f (at), ψ(t)〉 ∼ ρ(a) 〈g(t), ψ(t)〉 , ∀ψ ∈ S(Rn). (3)

If (3) holds, then, for some α ∈ R,
g is homogeneous of degree α, i.e., g(at) = aαg(t),
ρ(a) = aαL(a), where L is a Karamata slowly varying
function, i.e.,

L(ca) ∼ L(a), ∀c > 0.
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The Tauberian theorem

Weak-asymptotics
Notation

We write f (at) ∼ aαL(a)g(t) in S ′(Rn) if

lim
〈f (at), ψ(t)〉

aαL(a)
= 〈g(t), ψ(t)〉 , ∀ψ ∈ S(Rn).

For small a = ε→ 0+ and large a = λ→∞.

Example:
Let x0 ∈ Rn. We say that f has Łojasiewicz point value
γ ∈ C at x0, and write f (x0) = γ, distributionally, if

lim
ε→0+

f (x0 + εt) = γ in S ′(Rn).

Typical example: sγ,β(t) = |t |γ sin(|t |−β) has value
sγ,β(0) = 0, for all γ ∈ R and β > 0.
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Tauberian theorems for the φ−transform
Scaling weak-asymptotic behavior

Theorem

The distribution f ∈ S ′(Rn) has weak-asymptotic behavior

f (at) ∼ aαL(a)g(t) in S ′(Rn)

as a→ 0+ (resp. a→∞) if and only if

lim
a→0+

1
aαL(a)

Fφf (ax ,ay) = Fx,y , for each |x |2 + y2 = 1, y > 0,

and

lim sup
a→0+

sup
|x|2+y2=1, y>0

yk

aαL(a)
|Fφf (ax ,ay)| <∞, for some k ∈ N,

resp. as a→∞.
In such a case, g is completely determined by Fφg(x , y) = Fx,y .
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Stabilization in time for Cauchy problems
Tauberians for Laplace transforms

A Generalized Cauchy problem

We will consider the Cauchy problem

∂

∂t
U(x , t) = P

(
∂

∂x

)
U(x , t), (x , t) ∈ Hn+1,

lim
t→0+

U(x , t) = f (x) in S ′(Rn).

Γ ⊆ Rn is a closed convex cone with vertex at the origin.
Possible situation: Γ = Rn.
P is a homogeneous polynomial of degree d . Assume:

<e P(iu) < 0, u ∈ Γ, u 6= 0.

f ∈ S ′(Rn). Assume supp f̂ ⊆ Γ.
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Tauberians for Laplace transforms

Asymptotic stabilization in time for solutions

We ask for conditions which ensure the existence of a function
T : (A,∞)→ R+ such that the following limit exists

lim
t→∞

U(x , t)
T (t)

= `,

uniformly for x in compacts of Rn.
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Generalized Cauchy problem
Solution

If U is required to have slow growth over Hn+1, i.e.,

sup
(x ,t)∈Hn+1

|U(x , t)|
(

t +
1
t

)−k1

(1 + |x |)−k2 <∞, for some k1, k2 ∈ N,

then the Cauchy problem has a unique solution. Moreover,

U(x , t) =
1

(2π)n

〈
f̂ (u),eix ·ueP(it1/d u)

〉
.
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Relation with the φ−transform

Choose a test function η ∈ S(Rn) with the property

η(u) = eP(iu), for u ∈ Γ;

setting φ(ξ) = (2π)−nη̂(ξ), we express U as a φ−transform,

U(x , t) =

〈
f (ξ),

1
tn/d φ

(
ξ − x
t1/d

)〉
= Fφf (x , y), with y = t1/d ,
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Stabilization along d-curves

We say U stabilizes along d-curves (at infinity), relative to
λαL(λ), if the following two conditions hold:

1 there exist the limits

lim
λ→∞

U(λx , λd t)
λαL(λ)

= U0(x , t), (x , t) ∈ Hn+1;

2 there are constants C ∈ R+ and k ∈ N such that∣∣∣∣U(λx , λd t)
λαL(λ)

∣∣∣∣ ≤ C
tk , |x |

2 + t2 = 1, t > 0.
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Stabilization in time for Cauchy problems

Theorem
The solution U to the Cauchy problem stabilizes along d-curves
if and only if f has weak-asymptotic behavior at infinity, relative
to λαL(λ).

Corollary

If U stabilizes along d-curves, relative to λαL(λ), then U
stabilizes in time with respect to T (t) = tα/dL(t1/d ). That is,
there is a constant ` such that

lim
t→∞

U(x , t)
T (t)

= `,

for each x ∈ Rn.
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Example: The heat equation

We immediately recover a result of Drozhzhinov and Zavialov
for the heat equation.
Let U be the solution to the Cauchy problem (here actually
Γ = Rn)

∂

∂t
U = ∆xU,

lim
t→0+

U(x , t) = f (x) in S ′(Rn).

If U stabilizes along parabolas (i.e., d=2), then it stabilizes in
time.
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Multidimensional Laplace transforms

Let Γ be a closed convex acute cone with vertex at the origin.
Acute means that the conjugate cone

Γ∗ = {ξ ∈ Rn : ξ · u ≥ 0,∀u ∈ Γ} has non-empty interior.

Set
S ′Γ =

{
h ∈ S ′(Rn) : supp h ⊆ Γ

}
CΓ = int Γ∗ and T CΓ = Rn + iCΓ.

Given h ∈ S ′Γ, its Laplace transform is defined as

L{h; z} =
〈

h(u),eiz·u
〉
, z ∈ T CΓ ;

it is a holomorphic function on the tube domain T CΓ .
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Laplace transforms as φ−transforms

We may express the Laplace transform as a φ−transform if we
fix a direction in CΓ.

Fix ω ∈ CΓ

Choose ηω ∈ S(Rn) such that ηω(u) = e−ω·u, ∀u ∈ Γ

Set
φω = 1/(2π)nη̂ω and f̂ = (2π)nh

Then,

L{h; x + iσω} = Fφω f (x , σ), x ∈ Rn, σ ∈ R+.
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Tauberian theorem for Laplace transforms

Corollary

Let h ∈ S ′Γ. Then, an estimate (for some ω ∈ CΓ, k ∈ N)

lim sup
ε→0+

sup
|x|2+σ2=1

σkεn+α

L(1/ε)
|L {h; ε (x + iσω)}| <∞, (4)

and the existence of an open subcone C′ ⊂ CΓ such that

lim
ε→0+

εα+n

L(1/ε)
L{h; iεξ} = G(iξ), for each ξ ∈ C′, (5)

are necessary and sufficient for

h(λu) ∼ λαL(λ)g(u) as λ→∞ in S ′(Rn), for some g ∈ S ′Γ.

In such a case G(z) = L{g; z}, z ∈ T CΓ .
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Further results: Wavelets

Versions of the discussed Tauberian theorems are also valid if
one replaces the φ−transform by a wavelet transform

Wψf(x , y) =
〈
f(x + yt), ψ(t)

〉
=

∫
Rn

f(t)
1
ynψ

(
t − x

y

)
dt

where
∫
Rn ψ(t)dt = 0. The wavelet must be non-degenerate:

Definition

ψ ∈ S(Rn) is non-degenerate if ψ̂ does not identically vanish
along any ray through the origin.

The Tauberian theorems then hold up to polynomial corrections.
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