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Introduction
Factorization theorems in modules over function algebras is an
important subject with a long tradition in mathematical analysis.

A moduleM over a non-unital algebra A is said to have the strong
factorization property if

M = A ·M = {a ·m |a ∈ A,m ∈M}.

It is said to have the weak factorization property if

M = span(A ·M).

We will present some new results about strong factorization:
1 A strong factorization theorem of Dixmier-Malliavin type for

ultradifferentiable vectors of representations of (Rd ,+).
2 We have established the strong factorization property for many

families of convolution modules of ultradifferentiable functions.
We will give some examples.

The talk is based on collaborative work with Andreas Debrouwere
and Bojan Prangoski.
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Factorization in classical function algebras

Factorization theorems on T go back to Salem and Zygmund.

Rudin showed (1957-1958): L1(Rd ) = L1(Rd ) ∗ L1(Rd ).

Cohen (1959) extended this result to the function algebra of a
locally compact abelian group G,

L1(G) = L1(G) ∗ L1(G).

Hewitt (1964) used Cohen technique to prove a general
factorization theorem for Banach modules.

Cohen-Hewitt type factorization theorems also hold for various
Fréchet modules.

Essential hypothesis: existence of bounded approximative units
on the algebra under consideration.

Many locally convex algebras do not have bounded
approximative units. Examples: many basic algebras of smooth
functions occurring in analysis.
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Factorization in algebras of smooth functions

Ehrenpreis’ problem (1960):

Does D(Rd ) factorize as D(Rd ) = D(Rd ) ∗ D(Rd )?

In 1978, Rubel, Squires, and Taylor, showed that D(Rd ) has the
weak factorization property, namely,

D(Rd ) = span(D(Rd ) ∗ D(Rd ))

If d ≥ 3, they also showed that D(Rd ) does not have the strong
factorization property.

Dixmier and Malliavin (1979): negative answer for d = 2.

Yulmukhametov (1999): in contrast D(R) = D(R) ∗ D(R) holds.

Several authors have independently shown (Miyazaki;
Petzeltová and P. Vrbová; Dixmier and Malliavin; Voigt; ...)

S(Rd ) = S(Rd ) ∗ S(Rd ).
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Factorization on Lie groups

Let G be a real connected Lie group.

Dixmier and Malliavin showed (1979) that

D(G) = span(D(G) ∗ D(G))

and, when additionally G is nilpotent,

S(G) = S(G) ∗ S(G).

(hereafter: convolution = left convolution)

Let E be a locally convex Hausdorff (sequentially complete)
space and denote as GL(E) its group of isomorphisms.

A group homomorphism π : G→ GL(E) such that

G × E → E , (g,e) 7→ π(g)e

is separately continuous is a representation of G on E .

We call e ∈ E a smooth vector if its orbit mapping

G→ E g 7→ π(g)e, belongs to C∞(G; E).

E∞ is the subspace of smooth vectors.
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Dixmier-Malliavin factorization theorems

A representation of G on a sequentially complete lcHs E induces
an action of the convolution algebra D(G) on the smooth vectors,

(f ,e) 7→ Π(f )e, D(G)× E∞ → E∞, where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

If E is Banach and the representation is bounded, the action
extends to S(G) and we can regard E∞ as a module over S(G).

Theorem
If E is a Fréchet space, E∞ has the weak factorization property w.r.t.
D(G), that is, E∞ = span(Π(D(G))E∞) .

Theorem
If E is a Hilbert space, the representation is unitary, and G is
nilpotent, then E∞ has the strong factorization property w.r.t. S(G).
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Analytic factorization of Lie group representations

e ∈ E is an analytic vector if g 7→ π(g)e is an analytic mapping.

Eω: subspace of analytic vectors.

A representation is called an F -representation if
E is a Fréchet space;
there is a basis of continuous seminorms (pn)n∈N such that
for each n the action G × (E ,pn)→ (E ,pn) is continuous.

For F -representations, we get an action of the algebra of
exponentially rapidly decreasing analytic functions A(G) on Eω.

Theorem (Gimperlein, Krötz, and Lienau (2012))

For F-representations, Eω has the weak factorization property w.r.t.
A(G), that is, Eω = span(Π(A(G))Eω) .

Conjecture

They have conjectured that one might even have Eω = Π(A(G))Eω .
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Analytic factorization for (Rd ,+)

The convolution algebra A(Rd ) consists of real analytic functions f
admitting holomorphic extension to Rd + i]− h,h[d for some h > 0
and satisfying

sup
| Im z|≤h

en|Re z||f (z)| <∞, for each n ∈ N.

Theorem (Debrouwere, Prangoski, and V. (2021))

For F-representations of Rd , Eω has the strong factorization property

w.r.t. A(Rd ), that is, Eω = Π(A(Rd ))Eω .

Our results hold for more general representations than
F -representations:

projective generalized proto-Banach representations;

inductive generalized proto-Banach representations.
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Projective and inductive generalized proto-Banach
representations

Definition

A representation (π,E) is said to be a projective generalized
proto-Banach representation if

∀p ∈ csn(E)∃qp ∈ csn(E)∃κp > 0 ∀x ∈ Rd ∀e ∈ E :

p(π(x)e) ≤ eκp|x|qp(e)

B(E) stands for the collection of non-empty absolutely convex closed
bounded subsets of E and for B ∈ B(E) we denote by EB the
subspace of E spanned by B.

Definition

(π,E) is an inductive generalized proto-Banach representation if

∀B ∈ B(E)∃AB ∈ B(E)∃κB > 0 ∀x ∈ Rd ∀e ∈ EB :

‖π(x)e‖EAB
≤ eκB |x|‖e‖EB .

We implicitly assume below that all representations are of one of
these two types.
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Denjoy-Carleman classes

Consider a log-convex sequence M = (Mp)p of positive numbers and
set mp = Mp/Mp−1. We assume:

(M.2) there are C0,H > 0 such that Mp+q ≤ C0Hp+qMpMq ;

(M.2)∗ there are Q,p0 ∈ N such that 2mp ≤ mQp for all p ≥ p0.

Prototypical example: Mp = (p!)σ, with σ > 0.

a vector e ∈ E is ultradifferentiable of class [M] if its orbit
mapping w.r.t. the representation is (bornologically)
ultradifferentiable of class [M].

[M] is the common notation for both the Beurling (M) and {M}
Roumieu cases of ultradifferentiability.

E [M] denotes the space of ultradifferentiable vectors of class [M]
of a representation.

Note that Eω = E{p!}.
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Factorization theorem for ultradifferentiable vectors
For h > 0, we define the Fréchet space

KM,h(Rd ) = {ϕ ∈ C∞(Rd ) | sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|en|x|

M|α|
<∞, ∀n ∈ N}.

We set

K(M)(Rd ) = lim←−
h→∞

KM,h(Rd ) and K{M}(Rd ) = lim−→
h→0+

KM,h(Rd ).

If Mp = p!, then A(Rd ) = K{M}(Rd ).

Theorem (Debrouwere, Prangoski, and V. (2021))

Let (π,E) be either a projective or an inductive generalized
proto-Banach representation of (Rd ,+) on a sequentially complete
lcHs E. Then, E [M] has the strong factorization property w.r.t.
K[M](Rd )

E [M] = Π(K[M](Rd ))E [M] .
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Factorization of modules of ultradifferentiable functions

Our factorization theorem implies the strong factorization
property for many concrete families of modules of
ultradifferentiable functions.

Example:

Let ω : Rd → (0,∞) be a continuous weight function satisfying

sup
x∈Rd

ω(x + · )
ω(x)

∈ L∞loc(Rd ).

Consider E = Lp
ω = {f | ω · f ∈ Lp(R)} if 1 ≤ p <∞.

The ultradifferentiable vectors are (w.r.t. regular representation)

E (M) = D(M)
E = lim←−

h→∞
D{M},hE and E{M} = D{M}E = lim−→

h→0+

D{M},hE ,

D{M},hE = {ϕ ∈ C∞(Rd )| sup
α

h|α|‖ϕ(α)‖E/M|α| <∞}.

We have: D[M]
E = K[M](Rd ) ∗ D[M]

E
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