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In this talk we discuss approximation properties of MRA and
wavelets in the so-called Gelfand-Shilov spaces.

I will talk about:

1 Some classes of ‘highly regular’ MRA and wavelets.
2 Their connection with Gevrey and Gelfand-Shilov spaces.
3 Approximation properties of these highly regular MRA and

wavelets.
4 Some mapping properties of the wavelet transform.

The talk is based on collaborative works with Dušan Rakić,
Stevan Pilipović, and Nenad Teofanov.
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Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,
and, in turn, to describe a large number of function and
distribution spaces.
This effectiveness: related to regularity properties of
scaling function and wavelet.
By regularity we mean: smoothness and decay.
There is however a trade-off between smoothness and
decay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneously
these two properties:

1 ψ(x)� e−c|x | for some c > 0.
2 ψ ∈ C∞(R), with all derivatives being bounded.
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What we cannot get!

Let us fix ψ ∈ L1(R) with the second property from the last
statement, that is,

ψ(n) ∈ L∞(R), n = 0,1,2, . . . . (1)

We consider the decay (for a positive weight function ω ):

ψ(x)� e−ω(|x |), (2)

Under certain standard regularity assumptions ω, one shows:

If there is an orthonormal wavelet ψ satisfying (1) and (2) then∫ ∞
1

ω(x)
x2 <∞. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges
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What we can try to do!

Due to the constrains we have discussed so far, we might try to
find smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where
∫ ∞

1

ω(x)
x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found an
orthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)
1 ψ is an MRA wavelet.
2
∫∞
−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functions
whose all moments vanish.
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Better decay: the Dziubański-Hernández wavelets

We now try ψ(x)� e−c|x |1/t
. To match the integral constrain:∫ ∞

1
|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:
It is of Lemarié-Meyer type: ψ̂ has compact support.
Since ψ is band-limited, ψ ∈ S(R) iff ψ̂ ∈ C∞(R).
The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/t
iff ĝ belongs

to the Gevrey class Gt(R).

Theorem (Dziubański-Hernández)
Given t > 1 and c > 0, there is a band-limited orthonormal
wavelet with

ψ(x)� e−c|x |1/t
.
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Gevrey classes

The Gevrey functions generalize real analytic functions.
A function f is real analytic in I iff for each compact
subinterval there are A and C such that

sup
x∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if sup
x∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.
If t < 1, Gt(R) consists of entire functions.
If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supported
functions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).
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The Denjoy-Carleman theorem
Define the class E{Mn}[a,b] of smooth functions such that

sup
x∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivial
compactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff
∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubański-Hernández
construction to find a band-limited orthogonal wavelet with decay
ψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)
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construction to find a band-limited orthogonal wavelet with decay
ψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces



The Denjoy-Carleman theorem
Define the class E{Mn}[a,b] of smooth functions such that

sup
x∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivial
compactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff
∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubański-Hernández
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Gelfand-Shilov spaces

The Dziubański-Hernández wavelets belong to F(Gt
c(R)), where

F stands for the Fourier transform.

Elements of F(Gt
c(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

Definition
Let t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functions
such that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.
Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.
The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t
.
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Some properties of Gelfand-Shilov spaces

The the family Ss
t (R) is increasing with respect to s and t .

F : Ss
t (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Ss
t (R) iff

|f (x)| � e−c|x|1/t
and |̂f (ξ)| � e−c|ξ|1/s

.

The space Ss
t (R) is non trivial iff:
either s + t > 1, or s + t = 1 and s, t > 0.

S0
t (R) = F(Gt

c(R)) and thus Ss
0(R) = Gs

c(R).
If t > 0, S1

t (R) consists of functions f that can be extended
analytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/t
for |y | < h

If s, t > 0 and s < 1, then f ∈ Ss
t (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |
1

s−1 ).
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Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubański-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,
then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

Definition
Let ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is
(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

Definition
Let ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if it
possesses a scaling function φ ∈ Sρ1

ρ2 (R).

Remark
It should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a
(ρ1, ρ2)-regular MRA?
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Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonal
projections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

lim
m→∞

Emf = f in Ss
t (R),

for each f ∈ Ss−σ
t (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...
2 Are there special classes of MRA that avoid the loss of

regularity?
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Convergence of wavelet expansions

Write (Ss
t )0(R) = {f ∈ Ss

t (R) :
∫∞
−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1
ρ2 )0(R).

Theorem
Let ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.
Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σ
t−σ )0(R), then

f =
∑
n,m

〈f , ψn,m〉 ψn,m converges in the space (Ss
t )0(R).

Again we have lost regularity and the same questions as
before make sense ...
Our arguments here rely on mapping properties of wavelet
transforms.
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transforms.
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The wavelet transform: distribution case

We consider the wavelet transform

Wψf (b,a) =
1
a

∫ ∞
−∞

f (x)ψ
(

x − b
a

)
dx .

Denote H = {(b,a) : a > 0}. The wavelet synthesis operator is

MψF (x) =
∫∫

H
F (b,a)ψ

(
x − b

a

)
dbda

a2 .

The space of highly localized functions on H is

S(H) = {F ∈ C∞(H) : F (b,a)� (1+|b|)−n(a+1/a)−n, ∀n > 0}.

For a wavelet ψ ∈ S0(R), one gets continuity of

Wψ : S0(R)→ S(H) and Mψ : S(H)→ S0(R),

which yields a wavelet transform theory for distributions.
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The wavelet transform in Gelfand-Shilov spaces

Let s, t , τ1, τ2. Define Ss
t ,τ1,τ2

(H) as the space of smooth
functions satisfying estimates

∂m
a ∂

n
bF (b,a)�m Bn(n!)s exp

(
−c
(

a1/τ1 + a−1/τ2 + |b|1/t
))

We have made a thorough analysis of wavelet transforms on
Gelfand-Shilov spaces. In their simplest forms, our results yield:

Theorem
Let ψ ∈ (Sρ1

ρ2 )0(R) where ρ1 ≥ 0 and ρ2 > 1. Set
σ = ρ1 + ρ2 − 1. If s > σ and t > σ + 1, the wavelet mappings

Wψ : (Ss−σ
t−σ )0(R)→ Ss

t ,t−ρ2,s−ρ1
(H)

and
Mψ : Ss

t ,t−ρ2,s−ρ1
(H)→ (Ss

t )0(R)

are continuous.
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Some references

For more details about the subject of this talk, see my joint
articles with D. Rakić, S. Pilipović, and N. Teofanov:

1 The wavelet transforms in Gelfand-Shilov spaces, Collect. Math.
67 (2016), 443–460.

2 Multiresolution expansions and wavelets in Gelfand-Shilov
spaces, preprint arXiv:1906.09946.

For details on the construction of wavelets of subexponential
decay, see e.g.:

J. Dziubański, E. Hernández, Band-limited wavelets with
subexponential decay, Canad. Math. Bull. 41 (1998), 398–403.

S. Moritoh, K. Tomoeda, A further decay estimate for the
Dziubański-Hernández wavelets, Canad. Math. Bull. 53 (2010),
133–139.
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