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In this talk we discuss approximation properties of MRA and
wavelets in the so-called Gelfand-Shilov spaces.
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In this talk we discuss approximation properties of MRA and
wavelets in the so-called Gelfand-Shilov spaces.

| will talk about:

@ Some classes of ‘highly regular MRA and wavelets.
© Their connection with Gevrey and Gelfand-Shilov spaces.

© Approximation properties of these highly regular MRA and
wavelets.

© Some mapping properties of the wavelet transform.

The talk is based on collaborative works with Dusan Rakic,
Stevan Pilipovi¢, and Nenad Teofanov.
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Regularity of wavelets: smoothness vs decay

@ MRA and wavelets are effective to approximate functions,

@ and, in turn, to describe a large number of function and
distribution spaces.
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Regularity of wavelets: smoothness vs decay

@ MRA and wavelets are effective to approximate functions,

@ and, in turn, to describe a large number of function and
distribution spaces.

@ This effectiveness: related to regularity properties of
scaling function and wavelet.

@ By regularity we mean: smoothness and decay.
@ There is however a trade-off between smoothness and
decay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ) sharing simultaneously
these two properties:

Q (x) < el for some ¢ > 0.
@ ¢ € C>*(R), with all derivatives being bounded.
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What we cannot get!

Let us fix 1» € L'(R) with the second property from the last
statement, that is,

PN e [®(R), n=0,1,2,.... (1)
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What we cannot get!

Let us fix 1» € L'(R) with the second property from the last
statement, that is,

M e [®R), n=0,1,2,.... (1)
We consider the decay (for a positive weight function w ):

¥(x) < e, )
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What we cannot get!

Let us fix 1» € L'(R) with the second property from the last
statement, that is,

M e [®R), n=0,1,2,.... (1)
We consider the decay (for a positive weight function w ):
D(x) < e, (2)
Under certain standard regularity assumptions w, one shows:

If there is an orthonormal wavelet ¢ satisfying (1) and (2) then

/100w()()<oo. (3)
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What we cannot get!

Let us fix 1» € L'(R) with the second property from the last
statement, that is,

M e [®R), n=0,1,2,.... (1)
We consider the decay (for a positive weight function w ):
D(x) < e, (2)
Under certain standard regularity assumptions w, one shows:

If there is an orthonormal wavelet ¢ satisfying (1) and (2) then

/100w()()<oo. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges J
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What we can try to do!

Due to the constrains we have discussed so far, we might try to
find smooth ¢ (with bounded derivatives) with decay

Y(x) < e @™ where / @ < o0
1 X
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w(x) = nlog x, so that ¥(x) < |x|~".
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Due to the constrains we have discussed so far, we might try to
find smooth ¢ (with bounded derivatives) with decay

Y(x) < e @™ where / @ < o0
1 X

w(x) = nlog x, so that ¥(x) < |x|~".

This works! Actually, Meyer did better in 1985 and found an
orthonormal wavelet ¢ € S(R). For future reference:

Properties of orthonormal wavelets

@ ¢ is an MRA wavelet.
Q /7 x"p(x)dx =0,n=0,1,...
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What we can try to do!

Due to the constrains we have discussed so far, we might try to
find smooth ¢ (with bounded derivatives) with decay

Y(x) < e @™ where / @ < o0
1 X

w(x) = nlog x, so that ¥(x) < |x|~".

This works! Actually, Meyer did better in 1985 and found an
orthonormal wavelet ¢ € S(R). For future reference:

Properties of orthonormal wavelets

@ ¢ is an MRA wavelet.
Q /7 x"p(x)dx =0,n=0,1,...

We write Sp(R) for the subspace of S(R) consisting of functions
whose all moments vanish.
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Better decay: the Dziubanski-Hernandez wavelets

We now try (x) < ecxI"",
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Better decay: the Dziubanski-Hernandez wavelets

We now try (x) < e~¢XI""". To match the integral constrain:

/ X710 <00, Qe t>1.
1
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Better decay: the Dziubanski-Hernandez wavelets

We now try (x) < e~¢XI""". To match the integral constrain:

/ X7V <00, ie, t>1.
1

To make progress, note Meyer’s wavelets ¢ € S(R) satisfy:
@ ltis of Lemarié-Meyer type: 1) has compact support.
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We now try (x) < e~¢XI""". To match the integral constrain:

/ X7V <00, ie, t>1.
1

To make progress, note Meyer’s wavelets ¢ € S(R) satisfy:
@ ltis of Lemarié-Meyer type: zZ has compact support.
@ Since v is band-limited, ¢ € S(R) iff ¢y € C>*(R).
@ The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x) < eI iff g belongs
to the Gevrey class G!(R).
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Better decay: the Dziubanski-Hernandez wavelets

We now try (x) < e~¢XI""". To match the integral constrain:
/ X7V <00, ie, t>1.
1

To make progress, note Meyer’s wavelets ¢ € S(R) satisfy:
@ ltis of Lemarié-Meyer type: zZ has compact support.
@ Since v is band-limited, ¢ € S(R) iff ¢y € C>*(R).
@ The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x) < eI iff g belongs
to the Gevrey class G!(R).

Theorem (Dziubanski-Hernandez)

Givent > 1 and ¢ > 0, there is a band-limited orthonormal
wavelet with

1/t
—C|X
P(x) < e oI
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Gevrey classes

@ The Gevrey functions generalize real analytic functions.
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Gevrey classes

@ The Gevrey functions generalize real analytic functions.
@ A function f is real analytic in / iff for each compact
subinterval there are A and C such that

sup |f"(x)| < CA™nl,  neN.
x€[a,b]
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Gevrey classes

@ The Gevrey functions generalize real analytic functions.
@ A function f is real analytic in / iff for each compact
subinterval there are A and C such that

sup |f"(x)| < CA™nl,  neN.
x€[a,b]

Definition

feGl(lif sup |f"(x)| < CA"(n!)! on each [a, b] C I.
Xx€[a,b]

@ Gevrey classes naturally arise in the analysis of PDE.
e If t <1, G!(R) consists of entire functions.
@ If t > 1, an example of f € G/(R) is (o = 1/(t — 1))

f(x) = e D" =(1=97"if |x] <1 and otherwise f(x) = 0.
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Gevrey classes

@ The Gevrey functions generalize real analytic functions.
@ A function f is real analytic in / iff for each compact
subinterval there are A and C such that

sup |f"(x)| < CA™nl,  neN.
x€[a,b]

Definition

feGl(lif sup |f"(x)| < CA"(n!)! on each [a, b] C I.
Xx€[a,b]

@ Gevrey classes naturally arise in the analysis of PDE.
e If t <1, G!(R) consists of entire functions.
@ If t > 1, an example of f € G/(R) is (o = 1/(t — 1))
f(x) = e N *=(1=)""if |x| <1 and otherwise f(x) = 0.
Conclusion: G!(R) contains non-trivial compactly supported
functions if t > 1, we write GL(R) = G!(R) N C(R).
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The Denjoy-Carleman theorem

Define the class £1M}[a, b] of smooth functions such that

sup | (x)| < CA"M,,  (for some C, A).
x€[a,b]
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The Denjoy-Carleman theorem

Define the class £1M}[a, b] of smooth functions such that

sup | (x)| < CA"M,,  (for some C, A).
x€[a,b]

One may assume my, = M, /M, increases (Cartan-Gorny theorem).
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The Denjoy-Carleman theorem

Define the class £1M}[a, b] of smooth functions such that

sup | (x)| < CA"M,,  (for some C, A).
x€[a,b]

One may assume my, = M, /M, increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {M,}nen such that £tM}[a, b] contains non-trivial
compactly supported functions in (a, b) (= non-quasianalyticity).
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The Denjoy-Carleman theorem

Define the class £1M}[a, b] of smooth functions such that

sup | (x)| < CA"M,,  (for some C, A).
x€[a,b]

One may assume my, = M, /M, increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {M,}nen such that £tM}[a, b] contains non-trivial
compactly supported functions in (a, b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose m, = M,,1/M, is increasing. Then, £M}[a, b] is

non-quasianalytic iff » " 1/m, < oo.
n=0
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The Denjoy-Carleman theorem

Define the class £1M}[a, b] of smooth functions such that

sup | (x)| < CA"M,,  (for some C, A).
x€[a,b]

One may assume my, = M, /M, increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {M,}nen such that £tM}[a, b] contains non-trivial
compactly supported functions in (a, b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose m, = M,,1/M, is increasing. Then, £M}[a, b] is

non-quasianalytic iff » " 1/m, < oo.
n=0

Under ‘standard assumptions’, one adapts the Dziubanski-Hernandez
construction to find a band-limited orthogonal wavelet with decay
Y(x) < e MIXD where M(x) = sup,cy log_ (x"/My)
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Gelfand-Shilov spaces

@ The Dziubanski-Hernandez wavelets belong to F(GL(R)), where
F stands for the Fourier transform.
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@ The Dziubanski-Hernandez wavelets belong to F(GL(R)), where
F stands for the Fourier transform.

@ Elements of F(GL(R)) are determined by global estimates
X" (x)] < B™™(m)! x eR.
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Gelfand-Shilov spaces

@ The Dziubanski-Hernandez wavelets belong to F(GL(R)), where
F stands for the Fourier transform.

@ Elements of F(GL(R)) are determined by global estimates
X" (x)] < B™™(m)! x eR.

Definition

Let t,s > 0. The space S7(R) consists of all Schwartz functions
such that, for some B,

XM (x)| < B™M(n1)S(mt)t.

@ Introduced by Gelfand-Shilov in connection with PDEs.
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such that, for some B,
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Gelfand-Shilov spaces

@ The Dziubanski-Hernandez wavelets belong to F(GL(R)), where
F stands for the Fourier transform.

@ Elements of F(GL(R)) are determined by global estimates
X" (x)] < B™™(m)! x eR.

Definition

Let t,s > 0. The space S7(R) consists of all Schwartz functions
such that, for some B,

XM (x)| < B™M(n1)S(mt)t.

@ Introduced by Gelfand-Shilov in connection with PDEs.
@ S7(R) C G°(R), so s measures Gevrey regularity.
@ The parameter t measures decay (t > 0): f € S7(R) iff

11 (x)| < B"(ntySe~x".
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Some properties of Gelfand-Shilov spaces

@ The the family S7(R) is increasing with respect to s and t.
@ F:S8f(R) — SL(R) is an isomorphism.
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Some properties of Gelfand-Shilov spaces

@ The the family S7(R) is increasing with respect to s and t.
@ F:S8f(R) — SL(R) is an isomorphism.
@ Fourier transform characterization: f € S7(R) iff

1(x)| < e~ M and  [f(&)] < e~ClEl"”,
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@ The the family S7(R) is increasing with respect to s and t.
@ F:S8f(R) — SL(R) is an isomorphism.
@ Fourier transform characterization: f € S7(R) iff

1(x)| < e~ M and  [f(&)] < e~ClEl"”,

@ The space S7(R) is non trivial iff:
eithers+t > 1, ors+t=1ands,t>0.
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Some properties of Gelfand-Shilov spaces

@ The the family S7(R) is increasing with respect to s and t.
@ F:S8f(R) — SL(R) is an isomorphism.
@ Fourier transform characterization: f € S7(R) iff

1(x)| < e~ M and  [f(&)] < e~ClEl"”,

@ The space S7(R) is non trivial iff:
eithers+t > 1, ors+t=1ands,t>0.

@ SO(R) = F(GL(R)) and thus S(R) = GS(R).

@ Ift > 0, S} (R) consists of functions f that can be extended
analytically to some horizontal strip around R where it satisfies

f(x + iy)| < e~ """ for|y| < h
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Some properties of Gelfand-Shilov spaces

@ The the family S7(R) is increasing with respect to s and t.
@ F:S8f(R) — SL(R) is an isomorphism.
@ Fourier transform characterization: f € S7(R) iff

1(x)| < e~ M and  [f(&)] < e~ClEl"”,

@ The space S7(R) is non trivial iff:
eithers+t > 1, ors+t=1ands,t>0.

@ SO(R) = F(GL(R)) and thus S(R) = GS(R).

@ Ift > 0, S} (R) consists of functions f that can be extended
analytically to some horizontal strip around R where it satisfies

f(x + iy)| < e~ """ for|y| < h

@ Ifs,t>0and s < 1, then f € S7(R) iff f is entire and satisfies

|F(x + iy)| < exp(—c|x|"/t + cly|=T).
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Gelfand-Shilov regular MRA and wavelets

If 4 is a Dziubanski-Hernandez wavelet with ¢ (x) < e~¢XI""2,

then ¢ € SHI(R) for all py > 0.
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Gelfand-Shilov regular MRA and wavelets

If 4 is a Dziubanski-Hernandez wavelet with ¢ (x) < e~¢XI""2,
then ¢ € S} (R) for all p; > 0. They are examples of

Definition

Let p; > 0 and p» > 1. An orthonormal wavelet ¢ is
(p1, p2)-regular if 1» € SH(R).
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then ¢ € S} (R) for all p; > 0. They are examples of

Let p; > 0 and p» > 1. An orthonormal wavelet ¢ is
(p1, p2)-regular if 1» € SH(R).

Let py > 0and p> > 1. An MRA is called (p1, p2)-regular if it
possesses a scaling function ¢ € S/ (R).
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Gelfand-Shilov regular MRA and wavelets

If 4 is a Dziubanski-Hernandez wavelet with ¢ (x) < e~¢XI""2,

then ¢ € S} (R) for all p; > 0. They are examples of

Let p; > 0 and p» > 1. An orthonormal wavelet ¢ is
(p1, p2)-regular if 1» € SH(R).

Let py > 0and p> > 1. An MRA is called (p1, p2)-regular if it
possesses a scaling function ¢ € S/ (R).

It should be by now clear that po < 1 is not admissible here.
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Gelfand-Shilov regular MRA and wavelets

If 4 is a Dziubanski-Hernandez wavelet with ¢ (x) < e~¢XI""2,
then ¢ € S} (R) for all p; > 0. They are examples of

Let p; > 0 and p» > 1. An orthonormal wavelet ¢ is
(p1, p2)-regular if 1» € SH(R).

Let py > 0and p> > 1. An MRA is called (p1, p2)-regular if it
possesses a scaling function ¢ € S (R).

It should be by now clear that po < 1 is not admissible here.

Open question

Every (p1, p2)-regular is an MRA wavelet. Does it arise from a
(p1, p2)-regular MRA?
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi

and
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi

andseto = p1 + po — 1.
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi

andsetoc =pi+po—1. Lets > o andt > po.
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi
andsetoc =pi+po—1. Lets > o andt > po. Then,

im Enf=f in S3(R),

m—o0

for each f € S;7°(R).
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi
andsetoc =pi+po—1. Lets > o andt > po. Then,

im Enf=f in S3(R),

m—o0

for each f € S;7°(R).

There is a loss of regularity measured by o > 0. We wonder
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi

andsetoc =pi+po—1. Lets > o andt > po. Then,

im Enf=f in S3(R),

m—o0

for each f € S;7°(R).
There is a loss of regularity measured by o > 0. We wonder

@ Is o optimal? We conjecture so ...

4
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Convergence of multiresolution expansions

Let {Vmn}mez be a (p1, p2)-regular MRA with orthogonal
projections

En: [2(R) = Vi

andsetoc =pi+po—1. Lets > o andt > po. Then,

im Enf=f in S3(R),

m—o0

for each f € S;7°(R).
There is a loss of regularity measured by o > 0. We wonder

@ Is o optimal? We conjecture so ...
© Are there special classes of MRA that avoid the loss of
regularity?



Convergence of wavelet expansions

Write (S8)o(R) = {f € SS(R) : [*°_ x"f(x)dx =0, n=0,1,...}.
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Convergence of wavelet expansions

Write (S8)o(R) = {f € SS(R) : [*°_ x"f(x)dx =0, n=0,1,...}.

A (p1, p2)-regular wavelet automatically satisfies ¢ € (S5, )o(R).
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Convergence of wavelet expansions

Write (S8)o(R) = {f € SS(R) : [*°_ x"f(x)dx =0, n=0,1,...}.

A (p1, p2)-regular wavelet automatically satisfies ¢ € (S5, )o(R).

Theorem

Let € (S5))o(R) be a (p1, p2)-regular orthonormal wavelet.
Seto = py + po — 1 and consider s > o andt > o + 1.
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Convergence of wavelet expansions

Write (S8)o(R) = {f € SS(R) : [*°_ x"f(x)dx =0, n=0,1,...}.

A (p1, p2)-regular wavelet automatically satisfies ¢ € (S5, )o(R).

Theorem

Let € (S5))o(R) be a (p1, p2)-regular orthonormal wavelet.
Seto = py + po — 1 and consider s > o andt > o + 1.

Iff € (5777 )o(R), then

f=>> (f.¢nm) nm converges in the space (Sf)o(R).

n,m
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Convergence of wavelet expansions
Write (S8)o(R) = {f € SF(R) : [*_x"f(x)dx =0,n=0,1,...}.

—00

A (p1, p2)-regular wavelet automatically satisfies ¢ € (S5, )o(R).
Theorem

Let € (S5))o(R) be a (p1, p2)-regular orthonormal wavelet.
Seto = py + po — 1 and consider s > o andt > o + 1.

Iff € (5777 )o(R), then

f=>> (f.¢nm) nm converges in the space (Sf)o(R).

n,m

@ Again we have lost regularity and the same questions as
before make sense ...

@ Our arguments here rely on mapping properties of wavelet
transforms.
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The wavelet transform: distribution case

We consider the wavelet transform

Wyf(b, a) = ;/oo () <X - b) dx.

—00
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The wavelet transform: distribution case

We consider the wavelet transform

Wyf(b, a) = ;/oo () <X - b) dx.

—00

Denote H = {(b, a) : a > 0}. The wavelet synthesis operator is

- oo (55) 2
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The wavelet transform: distribution case

We consider the wavelet transform

Wyf(b, a) = ;/oo () <X - b) dx.

—00

Denote H = {(b, a) : a > 0}. The wavelet synthesis operator is

- oo (55) 2

The space of highly localized functions on H is

S(H) = {F € C*(H) : F(b,a) < (1+]b])""(a+1/a)"", ¥Yn > 0}.
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The wavelet transform: distribution case

We consider the wavelet transform

Wyf(b, a) = ;/oo () <X - b) dx.

—00

Denote H = {(b, a) : a > 0}. The wavelet synthesis operator is

- oo (55) 2

The space of highly localized functions on H is

S(H) = {F € C*(H) : F(b,a) < (1+]b])""(a+1/a)"", ¥Yn > 0}.
For a wavelet ¢ € Sp(R), one gets continuity of
Wy - So(R) — S(H) and ./Vlw : S(H) — Sp(R),

which yields a wavelet transform theory for distributions.
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The wavelet transform in Gelfand-Shilov spaces

Let s, t, 7y, 7. Define StsT . (H) as the space of smooth

functions satisfying estlmates
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The wavelet transform in Gelfand-Shilov spaces

Let s, t, 7, 7. Define StsT . (H) as the space of smooth

functions satisfying estlmates

05 0pF (b, a) <m B"(n!)* exp (—C (aVT‘ Lg /ey |b|1/f))
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The wavelet transform in Gelfand-Shilov spaces

Let s, t, 74, 72. Define SfT . (H) as the space of smooth

functions satisfying estlmates

OTANF(b, a) <m B(n)S exp (—c (a”” ra /g |b|1/f>)
We have made a thorough analysis of wavelet transforms on
Gelfand-Shilov spaces. In their simplest forms, our results yield:
Theorem

Let € (S5)o(R) where py > 0 and po > 1. Set
o=p1+p2—1.
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The wavelet transform in Gelfand-Shilov spaces

Let s, t, 74, 72. Define S;‘:T1 7T2(H) as the space of smooth

functions satisfying estimates

OTANF(b, a) <m B(n)S exp (—c (a”” ra /g |b|1/f>)
We have made a thorough analysis of wavelet transforms on
Gelfand-Shilov spaces. In their simplest forms, our results yield:
Theorem

Let € (S5)o(R) where py > 0 and po > 1. Set
oc=pi+ps—1.1Ifs>0candt> o+ 1, the wavelet mappings

Wy (S{Z5)o(R) = Sitpy 5y (H)

S—p1

and
My 2 SEt_py 5 py (H) = (SF)o(R)

are continuous.
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Some references

For more details about the subject of this talk, see my joint
articles with D. Raki¢, S. Pilipovi¢, and N. Teofanov:

@ The wavelet transforms in Gelfand-Shilov spaces, Collect. Math.
67 (2016), 443—460.

© Multiresolution expansions and wavelets in Gelfand-Shilov
spaces, preprint arXiv:1906.09946.
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Some references

For more details about the subject of this talk, see my joint
articles with D. Raki¢, S. Pilipovi¢, and N. Teofanov:

@ The wavelet transforms in Gelfand-Shilov spaces, Collect. Math.
67 (2016), 443—460.

© Multiresolution expansions and wavelets in Gelfand-Shilov
spaces, preprint arXiv:1906.09946.

For details on the construction of wavelets of subexponential
decay, see e.g.:

@ J. Dziubanski, E. Hernandez, Band-limited wavelets with
subexponential decay, Canad. Math. Bull. 41 (1998), 398—403.

@ S. Moritoh, K. Tomoeda, A further decay estimate for the

Dziubariski-Hernandez wavelets, Canad. Math. Bull. 53 (2010),
133-139.
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