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Nuclear spaces play a major role in functional analysis.

Key feature: the validity of abstract Schwartz kernel theorems

Establishing nuclearity for a function space: central question from
the point of view of applications and understanding its locally
convex structure.

In this talk we discuss:

Nuclearity for global spaces of ultradifferentiable functions
with controlled decay at infinity.

These spaces are of Gelfand-Shilov type.

Our results are counterparts of characterizations of

nuclear Köthe sequence spaces;
nuclear Gelfand-Shilov spaces of smooth functions.

We obtain new kernel theorems in this context.

The talk is based on collaborative works with Andreas Debrouwere
and Lenny Neyt.
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Schwartz kernel theorem

Schwartz’ kernel theorem: S ′(Rd1+d2) ∼= L(S(Rd1),S ′(Rd2))

Natural isomorphism: each continuous L : S(Rd1)→ S ′(Rd2) is
determined by

〈L(ϕ1), ϕ2〉 = 〈f (x , y), ϕ1(x)ϕ2(y)〉 ,

for some distribution kernel f ∈ S ′(Rd1+d2)

Grothendieck discovered nuclearity is the underlying property of a
lcs for the validity of abstract Schwartz kernel theorems.

“With a few exceptions the locally convex spaces encountered in
analysis can be divided into two classes. First there are the normed
spaces, [....]. The second class consists of the so-called nuclear
locally convex spaces ...”

A. Pietsch
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Nuclear spaces

Nuclear maps

Let E and F be Banach spaces. A nuclear map L : E → F is a trace-class
map, that is, one that is representable as

L =
∞∑
j=1

λj(x
′
j ⊗ yj) with (λj) ∈ `1, yj ∈ F , and xj ∈ E ′.

Nuclear space

A lcHs E is nuclear if for every continuous seminorm p there is another
one q ≥ p such that the natural map Êq → Êp is nuclear.

Grothendieck’s criterion

Let E be either a Fréchet space or a (DF)-space. Then, E is nuclear if
and only if every weakly summable sequence in E is absolutely summable.
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Nuclearity of weighted Fréchet spaces
The smooth function case on Rd : spaces of Gelfand-Shilov type

Consider W = (wn)n∈N with wn ∈ C (Rd) and 1 ≤ w1 ≤ w2 ≤ · · · .

K(W ) = {ϕ ∈ C∞(Rd) | max
|α|≤n

‖ϕ(α)wn‖L∞ <∞ ∀n ∈ N}.

Theorem

Assume the mild regularity hypothesis: ∀n ∈ N ∃m ∈ N∃C > 0

sup
|y |≤1

wn(x + y) ≤ Cwm(x), ∀x ∈ Rd .

Then, K(W ) is nuclear if and only if ∀n ∈ N ∃m ∈ N : wn/wm ∈ L1

This follows from: Vogt’s sequence space representation and
characterization of nuclear Köthe sequence spaces.

Gelfand-Shilov showed necessity under stronger conditions.

Kruse has (2020) studied the problem on open Ω ⊂ Rd .
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Nuclearity for Gelfand-Shilov spaces of ultradifferentiable
functions

There has been recent interest in nuclearity and kernel theorems
for Gelfand-Shilov spaces of type S

Pilipović, Prangoski, and myself (2018).

Boiti, Jornet, Oliaro, and Schindl (2020, 2021).

...

However:

Sufficient conditions in those works already contained in
classical work by Mityagin (1960), up to minor modifications.

Considered classes not stable under tensor products.

Mityagin results actually apply for general classes of Gelfand-Shilov
spaces defined by weight matrices.

Our approach:

Stable under tensor products, leading to new kernel theorems.

Conterparts of K(W ) in the ultradifferentiable context.
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Gelfand-Shilov spaces: definition

A weight sequence M = (Mα)α is a (multi-)sequence of positive numbers

such that limα→∞M
1/|α|
α =∞ and M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight
sequences such that Mλ ≤ Mµ when λ ≤ µ.

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

Given λ > 0, we consider the Banach spaces

SM
λ

wλ =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖SMλ

wλ

= sup
α∈Nd

1

Mλ
α

‖ϕ(α)wλ‖L∞(Rd ) <∞
}
,

General Gelfand-Shilov spaces of Beurling and Roumieu type

S(M)
(W ) = lim←−

λ→0+

SM
λ

wλ , S{M}{W } = lim−→
λ→∞

SM
λ

wλ .

S [M]
[W ] is the common notation for both the Beurling and Roumieu spaces.

J. Vindas Nuclearity of Gelfand-Shilov spaces



Gelfand-Shilov spaces: definition

A weight sequence M = (Mα)α is a (multi-)sequence of positive numbers

such that limα→∞M
1/|α|
α =∞ and M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight
sequences such that Mλ ≤ Mµ when λ ≤ µ.

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

Given λ > 0, we consider the Banach spaces

SM
λ

wλ =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖SMλ

wλ

= sup
α∈Nd

1

Mλ
α

‖ϕ(α)wλ‖L∞(Rd ) <∞
}
,

General Gelfand-Shilov spaces of Beurling and Roumieu type

S(M)
(W ) = lim←−

λ→0+

SM
λ

wλ , S{M}{W } = lim−→
λ→∞

SM
λ

wλ .

S [M]
[W ] is the common notation for both the Beurling and Roumieu spaces.

J. Vindas Nuclearity of Gelfand-Shilov spaces



Gelfand-Shilov spaces: definition

A weight sequence M = (Mα)α is a (multi-)sequence of positive numbers

such that limα→∞M
1/|α|
α =∞ and M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight
sequences such that Mλ ≤ Mµ when λ ≤ µ.

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

Given λ > 0, we consider the Banach spaces

SM
λ

wλ =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖SMλ

wλ

= sup
α∈Nd

1

Mλ
α

‖ϕ(α)wλ‖L∞(Rd ) <∞
}
,

General Gelfand-Shilov spaces of Beurling and Roumieu type

S(M)
(W ) = lim←−

λ→0+

SM
λ

wλ , S{M}{W } = lim−→
λ→∞

SM
λ

wλ .

S [M]
[W ] is the common notation for both the Beurling and Roumieu spaces.

J. Vindas Nuclearity of Gelfand-Shilov spaces



Gelfand-Shilov spaces: definition

A weight sequence M = (Mα)α is a (multi-)sequence of positive numbers

such that limα→∞M
1/|α|
α =∞ and M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight
sequences such that Mλ ≤ Mµ when λ ≤ µ.

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

Given λ > 0, we consider the Banach spaces

SM
λ

wλ =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖SMλ

wλ

= sup
α∈Nd

1

Mλ
α

‖ϕ(α)wλ‖L∞(Rd ) <∞
}
,

General Gelfand-Shilov spaces of Beurling and Roumieu type

S(M)
(W ) = lim←−

λ→0+

SM
λ

wλ , S{M}{W } = lim−→
λ→∞

SM
λ

wλ .

S [M]
[W ] is the common notation for both the Beurling and Roumieu spaces.

J. Vindas Nuclearity of Gelfand-Shilov spaces



Gelfand-Shilov spaces: definition

A weight sequence M = (Mα)α is a (multi-)sequence of positive numbers

such that limα→∞M
1/|α|
α =∞ and M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight
sequences such that Mλ ≤ Mµ when λ ≤ µ.

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

Given λ > 0, we consider the Banach spaces

SM
λ

wλ =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖SMλ

wλ

= sup
α∈Nd

1

Mλ
α

‖ϕ(α)wλ‖L∞(Rd ) <∞
}
,

General Gelfand-Shilov spaces of Beurling and Roumieu type

S(M)
(W ) = lim←−

λ→0+

SM
λ

wλ , S{M}{W } = lim−→
λ→∞

SM
λ

wλ .

S [M]
[W ] is the common notation for both the Beurling and Roumieu spaces.

J. Vindas Nuclearity of Gelfand-Shilov spaces



Examples of weight sequence and function systems

One can generate important examples of weight systems as follows

Via a weight sequence M = (Mα)α∈Nd :

MM = {(λ|α|Mα)α∈Nd : λ ∈ R+}, WM = {expωM(·/λ) : λ ∈ R+}

where ωM(x) = sup
α∈Nd

log
|xα|M0

Mα
, x ∈ Rd .

Via a single non-decreasing weight function ω : [0,∞)→ [0,∞)

Wω = {exp(
1

λ
ω(| · |)) : λ ∈ R+} (Beurling-Björck type)

If additionally ω is a BMT weight function, i.e., ω(2t) = O(ω(t)),
log t = o(ω(t)), and ω ◦ exp is convex,

Mω = {(exp(
1

λ
φ∗(λ|α|)))α∈Nd : λ ∈ R+},

with φ∗(y) = supx≥0(xy − ω(ex)) the Young conjugate of ω ◦ exp.

Classical spaces

S [M]
[A] := S [MM ]

[WA]
(Gelfand-Shilov) and S [ω]

[η] := S [Mω ]
[Wη ]

(Beurling-Björck)
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Conditions on weight systems related to nuclearity

Notation

We employ [·] as a common notation for the Beurling and Roumieu
cases. The conditions below should be preceded by the quantifiers:

Beurling case: ∀λ ∈ R+ ∃µ ∈ R+;

Roumieu case: ∀µ ∈ R+ ∃λ ∈ R+.

• We consider the following conditions on M:

[L] ∀L > 0 : L|α|Mµ
α ≤ CMλ

α ;
[M.2]′ ∃H > 0 : Mµ

α+ej ≤ CH |α|Mλ
α .

We also consider the following conditions on W :

[wM] sup|y |≤1 w
λ(x + y) ≤ Cwµ(x)

[M] wλ(x + y) ≤ Cwµ(x)wµ(y)
[N] wλ/wµ ∈ L1(Rd)
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Nuclearity of Gelfand-Shilov spaces
The ultradifferentiable case

We have the following general sufficient conditions

Theorem (Debrouwere, Neyt, and V., 2021)

Let M satisfy [L] and [M.2]′.

Let W satisfy [wM] and [N].

Then, S [M]
[W ] is nuclear.

A converse:

Theorem (Debrouwere, Neyt, and V., 2021)

Let M satisfy [L], let W satisfy [M]. If S [M]
[W ](R

d) is non-trivial and

nuclear, then W satisfies [N].
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The necessity of [M.2]′ for nuclearity

A weigh sequence system M = {Mλ : λ ∈ R+} is called

accelerating if Mλ
α+ej

/Mλ
α ≤ Mµ

α+ej
/Mµ

α when λ ≤ µ.

isotropic if Mλ
α = Mλ

β whenever |α| = |β|.
M is called isotropically decomposable if, after some
permutation of the multi-indices, it can be written as a tensor
product of isotropic weight sequence systems.

Theorem (Debrouwere, Neyt, and V., 2021)

Suppose that:

M satisfies [L] and is isotropically decomposable and
accelerating.

W be a weight function system satisfying [M].

If S [M]
[W ] 6= {0}, the following are equivalent:

1 M satisfies [M.2]′ and W satisfies [N].

2 The space S [M]
[W ] is nuclear.
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Special cases

Suppose the space under consideration is non-trivial.

1 Let M and A be isotropic weight sequences.

Corollary

S [M]
[A] is nuclear if and only if both M and A satisfy (M.2)′

2 Let ω be a BMT weight function and let η : [0,∞)→ [0,∞) be
non-decreasing and satisfy η(2t) = O(η(t)).

Corollary

S [ω][η] is nuclear if and only if η satisfies:

Beurling case: log t = O(η(t)); Roumieu case: log t = o(η(t)).

A better result for S [ω][η] can be obtained, that is the subject of our paper:

Characterization of nuclearity for Beurling-Björck spaces, Proc.
Amer. Math. Soc. 12 (2020), 5171–5180.
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Application - Kernel theorems

Theorem (Debrouwere, Neyt, and V., 2021)

Assume M1, M2 satisfy [L] and [M.2]′ and W1, W2 satisfy [wM]
and [N].Then,

S [M1⊗M2]
[W1⊗W2]

(Rd1+d2) ∼= S [M1]
[W1]

(Rd1)⊗̂S [M2]
[W2]

(Rd2)

∼= Lb(S [M1]
[W1]

(Rd1)′,S [M2]
[W2]

(Rd2)).

Consequently, we have the kernel theorem:

S [M1⊗M2]
[W1⊗W2]

(Rd1+d2)′ ∼= Lb(S [M1]
[W1]

(Rd1),S [M2]
[W2]

(Rd2)′) .
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