New developments in the non-linear theory of generalized functions: optimal embeddings of ultradistributions and hyperfunctions

> Jasson Vindas jasson.vindas@UGent.be

> > Department of Mathematics Ghent University

11th ISAAC Congress, Session IGGF (Växjö, August 15) Sogang University (August 7, 2017) Ghent University (March 9, 2017) Conference in Memory of T. Gramchev (Turin, February 3)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In this talk we present various new developments in the non-linear theory of generalized functions.

We will discuss non-linear theories for ultradistributions and hyperfunctions. This includes:

- Construction of new differential algebras and embeddings.
- Optimality with respect to preservation of multiplication of functions.
- We also study Hörmander's sheaves of infrahyperfunctions (quasianalytic distributions).
- Connection to the Cousin problem for quasianalytic functions.

The talk is based on collaborative works with Andreas Debrouwere and Hans Vernaeve.

In this talk we present various new developments in the non-linear theory of generalized functions.

We will discuss non-linear theories for ultradistributions and hyperfunctions. This includes:

- Construction of new differential algebras and embeddings.
- Optimality with respect to preservation of multiplication of functions.
- We also study Hörmander's sheaves of infrahyperfunctions (quasianalytic distributions).
- Connection to the Cousin problem for quasianalytic functions.

The talk is based on collaborative works with Andreas Debrouwere and Hans Vernaeve.

A (1) > A (2) > A

- The non-linear theory of generalized functions was initiated by Colombeau, who gave a framework for non-linear operations with distributions.
- Schwartz 'impossibility' result (roughly): There is no differential algebra containing D' as a differential linear subspace and simultaneously C^k as a subalgebra (k < ∞).
- Colombeau showed that the construction of such an algebra is possible if C^k is replaced by C[∞].
- In 1992, T. Gramchev initiated the non-linear theory of ultradistributions. However, there were always unsolved problems concerning optimality of embeddings ...
- The same year, the corresponding question for hyperfunctions was posed by M. Oberguggenberger.

(4 回 ト 4 回 ト 4 回

- The non-linear theory of generalized functions was initiated by Colombeau, who gave a framework for non-linear operations with distributions.
- Schwartz 'impossibility' result (roughly): There is no differential algebra containing D' as a differential linear subspace and simultaneously C^k as a subalgebra (k < ∞).
- Colombeau showed that the construction of such an algebra is possible if C^k is replaced by C[∞].
- In 1992, T. Gramchev initiated the non-linear theory of ultradistributions. However, there were always unsolved problems concerning optimality of embeddings ...
- The same year, the corresponding question for hyperfunctions was posed by M. Oberguggenberger.

- The non-linear theory of generalized functions was initiated by Colombeau, who gave a framework for non-linear operations with distributions.
- Schwartz 'impossibility' result (roughly): There is no differential algebra containing D' as a differential linear subspace and simultaneously C^k as a subalgebra (k < ∞).
- Colombeau showed that the construction of such an algebra is possible if C^k is replaced by C[∞].
- In 1992, T. Gramchev initiated the non-linear theory of ultradistributions. However, there were always unsolved problems concerning optimality of embeddings ...
- The same year, the corresponding question for hyperfunctions was posed by M. Oberguggenberger.

A (10) × (10) × (10)

- The non-linear theory of generalized functions was initiated by Colombeau, who gave a framework for non-linear operations with distributions.
- Schwartz 'impossibility' result (roughly): There is no differential algebra containing D' as a differential linear subspace and simultaneously C^k as a subalgebra (k < ∞).
- Colombeau showed that the construction of such an algebra is possible if C^k is replaced by C[∞].
- In 1992, T. Gramchev initiated the non-linear theory of ultradistributions. However, there were always unsolved problems concerning optimality of embeddings ...
- The same year, the corresponding question for hyperfunctions was posed by M. Oberguggenberger.

A (10) × (10) × (10)

- The non-linear theory of generalized functions was initiated by Colombeau, who gave a framework for non-linear operations with distributions.
- Schwartz 'impossibility' result (roughly): There is no differential algebra containing D' as a differential linear subspace and simultaneously C^k as a subalgebra (k < ∞).
- Colombeau showed that the construction of such an algebra is possible if C^k is replaced by C[∞].
- In 1992, T. Gramchev initiated the non-linear theory of ultradistributions. However, there were always unsolved problems concerning optimality of embeddings ...
- The same year, the corresponding question for hyperfunctions was posed by M. Oberguggenberger.

Some very basic notions from sheaf theory

Let \mathcal{F} be a sheaf (always of vector spaces, always on \mathbb{R}^d). Notation:

- Sections on a open set Ω will be indistinctly denoted as

 F(Ω) = Γ(Ω, *F*).
- $\Gamma_{\mathcal{K}}(\Omega, \mathcal{F})$ is the space of sections on Ω with supports in $\mathcal{K} \subseteq \Omega$.
- We write $\mathcal{F}_c(\Omega) = \Gamma_c(\Omega, \mathcal{F}) = \bigcup_{K \in \Omega} \Gamma_K(\Omega, \mathcal{F}).$
- For S closed, the space of germs is $\mathcal{F}[S] = \Gamma[S, \mathcal{F}]$.
- \mathcal{F} is soft if sections over a closed set can be extended globally.

Lemma (Extension principle)

Let X be second countable and let \mathcal{F} and \mathcal{G} be soft sheaves on X. Let $\rho_c : \mathcal{F}_c(X) \to \mathcal{G}_c(X)$ be a linear mapping such that

 $\operatorname{supp} \rho_c(T) \subseteq \operatorname{supp} T, \quad T \in \mathcal{F}_c(X).$ (a local operator!)

Then, there is a unique sheaf morphism $\rho : \mathcal{F} \to \mathcal{G}$ such that, for every open set U in X, we have $\rho_U(T) = \rho_c(T)$ for all $T \in \mathcal{F}_c(U)$. If, moreover,

 $\operatorname{supp} \rho_c(T) = \operatorname{supp} T, \quad T \in \mathcal{F}_c(X), \quad (support \ preserving)$

then ρ is injective.

Some very basic notions from sheaf theory

Let \mathcal{F} be a sheaf (always of vector spaces, always on \mathbb{R}^d). Notation:

- Sections on a open set Ω will be indistinctly denoted as

 F(Ω) = Γ(Ω, *F*).
- $\Gamma_{\mathcal{K}}(\Omega, \mathcal{F})$ is the space of sections on Ω with supports in $\mathcal{K} \subseteq \Omega$.
- We write $\mathcal{F}_{c}(\Omega) = \Gamma_{c}(\Omega, \mathcal{F}) = \bigcup_{K \in \Omega} \Gamma_{K}(\Omega, \mathcal{F}).$
- For S closed, the space of germs is $\mathcal{F}[S] = \Gamma[S, \mathcal{F}]$.
- \mathcal{F} is soft if sections over a closed set can be extended globally.

Lemma (Extension principle)

Let X be second countable and let \mathcal{F} and \mathcal{G} be soft sheaves on X. Let $\rho_c : \mathcal{F}_c(X) \to \mathcal{G}_c(X)$ be a linear mapping such that

 $\operatorname{supp} \rho_c(T) \subseteq \operatorname{supp} T, \quad T \in \mathcal{F}_c(X).$ (a local operator!)

Then, there is a unique sheaf morphism $\rho : \mathcal{F} \to \mathcal{G}$ such that, for every open set U in X, we have $\rho_U(T) = \rho_c(T)$ for all $T \in \mathcal{F}_c(U)$. If, moreover,

 $\operatorname{supp} \rho_c(T) = \operatorname{supp} T, \quad T \in \mathcal{F}_c(X), \quad (\text{support preserving})$

then ρ is injective.

Most linear spaces of generalize functions (distributions, hyperfunctions, ...) arise as sheaves having the following properties:

Let \mathcal{F} be a sheaf of vector spaces (generalized functions) on \mathbb{R}^d and let \mathcal{R} be a subsheaf (regular elements). Assume:

- Every $\mathcal{R}(\Omega) \subseteq C^{\infty}(\Omega)$ is a topological algebra with continuous action of partial derivatives.
- **2** The sections of \mathcal{F} with support in a given compact set $K \Subset \Omega$ are given as follows:

$$\Gamma_K(\Omega,\mathcal{F})=\mathcal{R}'[K],$$

with $\mathcal{R}[K]$ the space of germs on K.

- J F is an R-module and F has a "natural" action of linear PDOs with coefficients in R.
- Sometimes \mathcal{R} and \mathcal{F} come with additional intrinsic differential structures (actions of infinite order differential operators).

Most linear spaces of generalize functions (distributions, hyperfunctions, ...) arise as sheaves having the following properties:

Let \mathcal{F} be a sheaf of vector spaces (generalized functions) on \mathbb{R}^d and let \mathcal{R} be a subsheaf (regular elements). Assume:

- Every $\mathcal{R}(\Omega) \subseteq C^{\infty}(\Omega)$ is a topological algebra with continuous action of partial derivatives.
- **2** The sections of \mathcal{F} with support in a given compact set $K \Subset \Omega$ are given as follows:

 $\Gamma_{K}(\Omega,\mathcal{F})=\mathcal{R}'[K],$

with $\mathcal{R}[K]$ the space of germs on K.

- J F is an R-module and F has a "natural" action of linear PDOs with coefficients in R.
- Sometimes \mathcal{R} and \mathcal{F} come with additional intrinsic differential structures (actions of infinite order differential operators).

Most linear spaces of generalize functions (distributions, hyperfunctions, ...) arise as sheaves having the following properties:

Let \mathcal{F} be a sheaf of vector spaces (generalized functions) on \mathbb{R}^d and let \mathcal{R} be a subsheaf (regular elements). Assume:

- Every R(Ω) ⊆ C[∞](Ω) is a topological algebra with continuous action of partial derivatives.
- **2** The sections of \mathcal{F} with support in a given compact set $K \Subset \Omega$ are given as follows:

 $\Gamma_{\mathcal{K}}(\Omega, \mathcal{F}) = \mathcal{R}'[\mathcal{K}],$

with $\mathcal{R}[K]$ the space of germs on K.

- 3 F is an R-module and F has a "natural" action of linear PDOs with coefficients in R.
- Sometimes \mathcal{R} and \mathcal{F} come with additional intrinsic differential structures (actions of infinite order differential operators).

Most linear spaces of generalize functions (distributions, hyperfunctions, ...) arise as sheaves having the following properties:

Let \mathcal{F} be a sheaf of vector spaces (generalized functions) on \mathbb{R}^d and let \mathcal{R} be a subsheaf (regular elements). Assume:

- Every $\mathcal{R}(\Omega) \subseteq C^{\infty}(\Omega)$ is a topological algebra with continuous action of partial derivatives.
- **2** The sections of \mathcal{F} with support in a given compact set $K \Subset \Omega$ are given as follows:

$$\Gamma_{\mathcal{K}}(\Omega,\mathcal{F}) = \mathcal{R}'[\mathcal{K}],$$

with $\mathcal{R}[K]$ the space of germs on K.

- 3 \mathcal{F} is an \mathcal{R} -module and \mathcal{F} has a "natural" action of linear PDOs with coefficients in \mathcal{R} .
- Sometimes \mathcal{R} and \mathcal{F} come with additional intrinsic differential structures (actions of infinite order differential operators).

The central problem: Formulation

Suppose that \mathcal{F} and \mathcal{R} are a above. The central problem of the non-linear theory of generalized functions is:

Problem (Differential algebra embedding)

Find a sheaf of differential algebras *G* and a linear sheaf embedding $\iota: \mathcal{F} \to \mathcal{G}$ such that

- commutes with all partial derivatives.
- 2 ι preserves the multiplication on \mathcal{R} , namely, for all open set

 $\iota_{\Omega}(f \cdot g) = \iota_{\Omega}(f) \cdot \iota_{\Omega}(g), \quad \forall f, g \in \mathcal{R}(\Omega).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The central problem: Formulation

Suppose that \mathcal{F} and \mathcal{R} are a above. The central problem of the non-linear theory of generalized functions is:

Problem (Differential algebra embedding)

Find a sheaf of differential algebras \mathcal{G} and a linear sheaf embedding $\iota: \mathcal{F} \to \mathcal{G}$ such that

- commutes with all partial derivatives.
- 2 ι preserves the multiplication on \mathcal{R} , namely, for all open set

 $\iota_{\Omega}(f \cdot g) = \iota_{\Omega}(f) \cdot \iota_{\Omega}(g), \quad \forall f, g \in \mathcal{R}(\Omega).$

I refer to property 2 above and the next one as optimality:

Problem (Preservation of natural structures)

If \mathcal{R} and \mathcal{F} have an additional "differential structure", find \mathcal{G} with the same structure in a embedding preserving fashion.

Here is a recipe one may try to follow.

- $\bullet\,$ Suppose additionally that ${\cal F}$ is soft.
- One can try to construct a suitable soft sheaf of differential algebras G and a linear embedding at the level of compact sections:

$$\iota_{c}:\mathcal{F}_{c}(\mathbb{R}^{d})\to\mathcal{G}_{c}(\mathbb{R}^{d}),$$

commuting with partial derivatives (and possibly, preserving additional differential structures of \mathcal{F}).

• If ι_c is support preserving, the extension principle takes care of the existence of

$$\iota: \mathcal{F} \to \mathcal{G},$$

usually with all desired properties, except perhaps preservation of multiplication on \mathcal{R} .

Here is a recipe one may try to follow.

- Suppose additionally that ${\mathcal F}$ is soft.
- One can try to construct a suitable soft sheaf of differential algebras G and a linear embedding at the level of compact sections:

$$\iota_{c}:\mathcal{F}_{c}(\mathbb{R}^{d})\to\mathcal{G}_{c}(\mathbb{R}^{d}),$$

commuting with partial derivatives (and possibly, preserving additional differential structures of \mathcal{F}).

• If ι_c is support preserving, the extension principle takes care of the existence of

$$\iota: \mathcal{F} \to \mathcal{G},$$

usually with all desired properties, except perhaps preservation of multiplication on \mathcal{R} .

 Usually, ι_c is realized via a "regularization procedure". The regularization procedure should be good enough to encode multiplication of the "regular sheat of functions", R_z on constructions

Here is a recipe one may try to follow.

- Suppose additionally that ${\mathcal F}$ is soft.
- One can try to construct a suitable soft sheaf of differential algebras \mathcal{G} and a linear embedding at the level of compact sections:

$$\iota_{c}:\mathcal{F}_{c}(\mathbb{R}^{d})\to\mathcal{G}_{c}(\mathbb{R}^{d}),$$

commuting with partial derivatives (and possibly, preserving additional differential structures of \mathcal{F}).

• If *ι*_c is support preserving, the extension principle takes care of the existence of

$$\iota: \mathcal{F} \to \mathcal{G},$$

usually with all desired properties, except perhaps preservation of multiplication on \mathcal{R} .

 Usually, ι_c is realized via a "regularization procedure". The regularization procedure should be good enough to encode multiplication of the "regular sheat of functions", R₁ or any state of functions.

Here is a recipe one may try to follow.

- Suppose additionally that ${\mathcal F}$ is soft.
- One can try to construct a suitable soft sheaf of differential algebras \mathcal{G} and a linear embedding at the level of compact sections:

$$\iota_{c}:\mathcal{F}_{c}(\mathbb{R}^{d})\to\mathcal{G}_{c}(\mathbb{R}^{d}),$$

commuting with partial derivatives (and possibly, preserving additional differential structures of \mathcal{F}).

• If *ι*_c is support preserving, the extension principle takes care of the existence of

$$\iota:\mathcal{F}\rightarrow\mathcal{G},$$

usually with all desired properties, except perhaps preservation of multiplication on \mathcal{R} .

• Usually, ι_c is realized via a "regularization procedure". The regularization procedure should be good enough to encode multiplication of the "regular sheaf of functions" \mathcal{R}_{\bullet}

500

The distribution case $\mathcal{F} = \mathcal{D}'$ and $\mathcal{R} = \mathcal{C}^{\infty}$ was solved by Colombeau. We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

 $s = \{(a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(1/n^{\alpha}), \forall \alpha > 0\},\$

and its dual

$$s' = \left\{ (a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(n^{\alpha}), \text{ for some } \alpha > \mathbf{0} \right\}.$$

The Colombeau algebra on Ω is then

$$\mathcal{G}(\Omega) = \mathcal{C}^{\infty}(\Omega; s') / \mathcal{C}^{\infty}(\Omega; s).$$

• The embedding $\iota_c : \mathcal{D}'_c(\mathbb{R}^d) = \mathcal{E}'(\mathbb{R}^d) \to \mathcal{G}_c(\mathbb{R}^d)$ is realized as $f \mapsto [(f * \phi_n)_n]$, where $\phi_n(x) = n^d \phi(nx), \phi \in \mathcal{S}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^d} \phi(x) dx = 1, \quad \int_{\mathbb{R}^d} x^{\alpha} \phi(x) dx = 0, \quad \forall \alpha \neq 0.$

Sheaf theory can be avoided: glue with partition sof the unity. E on

The distribution case $\mathcal{F} = \mathcal{D}'$ and $\mathcal{R} = \mathcal{C}^{\infty}$ was solved by Colombeau. We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

$$s = \{(a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(1/n^{\alpha}), \ \forall \alpha > 0\},\$$

and its dual

$$s' = \left\{ (a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(n^{\alpha}), \text{ for some } \alpha > 0
ight\}.$$

The Colombeau algebra on Ω is then

$$\mathcal{G}(\Omega) = \mathcal{C}^{\infty}(\Omega; s') / \mathcal{C}^{\infty}(\Omega; s).$$

• The embedding $\iota_c : \mathcal{D}'_c(\mathbb{R}^d) = \mathcal{E}'(\mathbb{R}^d) \to \mathcal{G}_c(\mathbb{R}^d)$ is realized as $f \mapsto [(f * \phi_n)_n]$, where $\phi_n(x) = n^d \phi(nx), \phi \in \mathcal{S}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^d} \phi(x) dx = 1, \quad \int_{\mathbb{R}^d} x^{\alpha} \phi(x) dx = 0, \quad \forall \alpha \neq 0.$

Sheaf theory can be avoided: glue with partitions of the unity. a society

The distribution case $\mathcal{F} = \mathcal{D}'$ and $\mathcal{R} = \mathcal{C}^{\infty}$ was solved by Colombeau. We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

$$s = \{(a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(1/n^{\alpha}), \ \forall \alpha > 0\},\$$

and its dual

$$s' = \left\{ (a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(n^{\alpha}), \text{ for some } \alpha > 0
ight\}.$$

The Colombeau algebra on Ω is then

$$\mathcal{G}(\Omega) = \mathcal{C}^{\infty}(\Omega; \boldsymbol{s}') / \mathcal{C}^{\infty}(\Omega; \boldsymbol{s}).$$

• The embedding $\iota_c : \mathcal{D}'_c(\mathbb{R}^d) = \mathcal{E}'(\mathbb{R}^d) \to \mathcal{G}_c(\mathbb{R}^d)$ is realized as $f \mapsto [(f * \phi_n)_n]$, where $\phi_n(x) = n^d \phi(nx), \phi \in \mathcal{S}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^d} \phi(x) dx = 1, \quad \int_{\mathbb{R}^d} x^{\alpha} \phi(x) dx = 0, \quad \forall \alpha \neq 0.$

Sheaf theory can be avoided: glue with partitions of the unity. a society

The distribution case $\mathcal{F} = \mathcal{D}'$ and $\mathcal{R} = \mathcal{C}^{\infty}$ was solved by Colombeau. We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

$$s = \{(a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(1/n^{\alpha}), \ \forall \alpha > 0\},\$$

and its dual

$$s' = \left\{ (a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(n^{\alpha}), \text{ for some } \alpha > 0
ight\}.$$

The Colombeau algebra on Ω is then

$$\mathcal{G}(\Omega) = \mathcal{C}^{\infty}(\Omega; s') / \mathcal{C}^{\infty}(\Omega; s).$$

• The embedding $\iota_c : \mathcal{D}'_c(\mathbb{R}^d) = \mathcal{E}'(\mathbb{R}^d) \to \mathcal{G}_c(\mathbb{R}^d)$ is realized as $f \mapsto [(f * \phi_n)_n]$, where $\phi_n(x) = n^d \phi(nx), \phi \in \mathcal{S}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^d} \phi(x) dx = 1, \quad \int_{\mathbb{R}^d} x^\alpha \phi(x) dx = 0, \quad \forall \alpha \neq 0.$

Sheaf theory can be avoided: glue with partition sof the unity. a social sector is the unity.

Embeddings of ultradistributions and hyperfunctions

The distribution case $\mathcal{F} = \mathcal{D}'$ and $\mathcal{R} = \mathcal{C}^{\infty}$ was solved by Colombeau. We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

$$s = \{(a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(1/n^{\alpha}), \ \forall \alpha > 0\},\$$

and its dual

$$s' = \left\{ (a_n)_n \in \mathbb{C}^{\mathbb{N}} : a_n = O(n^{lpha}), \text{ for some } \alpha > \mathbf{0}
ight\}.$$

The Colombeau algebra on Ω is then

$$\mathcal{G}(\Omega) = \mathcal{C}^{\infty}(\Omega; s') / \mathcal{C}^{\infty}(\Omega; s).$$

• The embedding $\iota_c : \mathcal{D}'_c(\mathbb{R}^d) = \mathcal{E}'(\mathbb{R}^d) \to \mathcal{G}_c(\mathbb{R}^d)$ is realized as $f \mapsto [(f * \phi_n)_n]$, where $\phi_n(x) = n^d \phi(nx), \phi \in \mathcal{S}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^d} \phi(x) dx = 1, \quad \int_{\mathbb{R}^d} x^\alpha \phi(x) dx = 0, \quad \forall \alpha \neq 0.$

Sheaf theory can be avoided: glue with partitions of the unity.

Denjoy-Carleman classes of ultradifferentiable functions: Roumieu type

Let $(M_p)_{p \in \mathbb{N}}$ be a weight sequence, that is, a positive increasing sequence of real numbers with $M_0 = 1$.

E^{M_p}(Ω) consists of φ ∈ C[∞](Ω) such that: for each K ∈ Ω
 there is h > 0 such that

$$\sup_{\boldsymbol{x}\in\mathcal{K}}\frac{|\partial^{\alpha}\varphi(\boldsymbol{x})|}{h^{|\alpha|}M_{|\alpha|}}<\infty.$$

- Topology of *E*^{M_p}(Ω): take first inductive limit with respect to *h* and then projective limit with respect to *K*.
- These are highly non-metrizable spaces!
- If $M_{\rho} = \rho!^{\sigma}$, $\sigma > 0$, one recovers the Gevrey classes.
- The case M_p = p! is the space of real analytic functions. It deserves a special notation (and attention!)

$$\mathcal{A}(\Omega) = \mathcal{E}^{\{M_p\}}(\Omega)$$

・ロト ・四ト ・ヨト・

Denjoy-Carleman classes of ultradifferentiable functions: Roumieu type

Let $(M_p)_{p \in \mathbb{N}}$ be a weight sequence, that is, a positive increasing sequence of real numbers with $M_0 = 1$.

E^{M_p}(Ω) consists of φ ∈ C[∞](Ω) such that: for each K ∈ Ω there is h > 0 such that

$$\sup_{\boldsymbol{x}\in\mathcal{K}}\frac{|\partial^{\alpha}\varphi(\boldsymbol{x})|}{h^{|\alpha|}M_{|\alpha|}}<\infty.$$

- Topology of *E*^{M_p}(Ω): take first inductive limit with respect to *h* and then projective limit with respect to *K*.
- These are highly non-metrizable spaces!
- If $M_{\rho} = \rho!^{\sigma}$, $\sigma > 0$, one recovers the Gevrey classes.
- The case M_p = p! is the space of real analytic functions. It deserves a special notation (and attention!)

$$\mathcal{A}(\Omega) = \mathcal{E}^{\{M_p\}}(\Omega)$$

・ロト ・ 四 ト ・ 三 ト ・ 三 ト

We shall impose the following three conditions on M_p :

 $\begin{array}{ll} (M.1) & M_{\rho}^{2} \leq M_{\rho-1}M_{\rho+1}. \mbox{ (logarithmic convexity } \Rightarrow \mathcal{E}^{\{M_{\rho}\}}(\Omega) \mbox{ is an algebra)} \\ (M.2) & M_{\rho} \leq AH^{\rho} \min_{0 \leq q \leq \rho} M_{q}M_{\rho-q} \mbox{ , (stability under ultradifferential operators)} \\ & \mbox{ Ultradifferential operators: } P(D) = \sum_{\alpha \in \mathbb{N}^{d}} c_{\alpha}D^{\alpha}, \mbox{ where} \\ & | \ c_{\alpha} \ | \leq C_{L} \frac{L^{|\alpha|}}{M_{|\alpha|}}, \quad (\forall L > 0.) \end{array}$

(*NE*) $p! \subset M_p$ (which translates in the dense inclusion $\mathcal{A}(\Omega) \subseteq \mathcal{E}^{\{M_p\}}(\Omega)$)

The associated function of M_{ρ} is defined as: $M(t) = \sup_{\rho \in \mathbb{N}} \log_+ \frac{t^{\rho}}{M_{\rho}}$.

$$(M.3)' \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty \text{ (non-quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \mathcal{D}(\Omega) \cap \mathcal{E}^{\{M_p\}}(\Omega))$$
$$(QA) \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty \text{ (quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \{0\})$$

We shall impose the following three conditions on M_p :

 $\begin{array}{ll} (M.1) & M_{\rho}^{2} \leq M_{\rho-1}M_{\rho+1}. \mbox{ (logarithmic convexity } \Rightarrow \mathcal{E}^{\{M_{\rho}\}}(\Omega) \mbox{ is an algebra)} \\ (M.2) & M_{\rho} \leq AH^{\rho} \min_{0 \leq q \leq \rho} M_{q}M_{\rho-q} \mbox{ , (stability under ultradifferential operators)} \\ & \mbox{ Ultradifferential operators: } P(D) = \sum_{\alpha \in \mathbb{N}^{d}} c_{\alpha}D^{\alpha}, \mbox{ where} \\ & | \ c_{\alpha} \ | \leq C_{L} \frac{L^{|\alpha|}}{M_{|\alpha|}}, \quad (\forall L > 0.) \end{array}$

(*NE*) $p! \subset M_p$ (which translates in the dense inclusion $\mathcal{A}(\Omega) \subseteq \mathcal{E}^{\{M_p\}}(\Omega)$)

The associated function of M_{ρ} is defined as: $M(t) = \sup_{\rho \in \mathbb{N}} \log_+ \frac{t^{\rho}}{M_{\rho}}$.

$$(M.3)' \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty \text{ (non-quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \mathcal{D}(\Omega) \cap \mathcal{E}^{\{M_p\}}(\Omega))$$
$$(QA) \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty \text{ (quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \{0\})$$

We shall impose the following three conditions on M_p :

 $\begin{array}{ll} (M.1) & M_{\rho}^{2} \leq M_{\rho-1}M_{\rho+1}. \mbox{ (logarithmic convexity } \Rightarrow \mathcal{E}^{\{M_{\rho}\}}(\Omega) \mbox{ is an algebra)} \\ (M.2) & M_{\rho} \leq AH^{\rho} \min_{0 \leq q \leq \rho} M_{q}M_{\rho-q} \mbox{ , (stability under ultradifferential operators)} \\ & \mbox{ Ultradifferential operators: } P(D) = \sum_{\alpha \in \mathbb{N}^{d}} c_{\alpha}D^{\alpha}, \mbox{ where} \\ & | \ c_{\alpha} \ | \leq C_{L} \frac{L^{|\alpha|}}{M_{|\alpha|}}, \quad (\forall L > 0.) \end{array}$

(*NE*) $p! \subset M_p$ (which translates in the dense inclusion $\mathcal{A}(\Omega) \subseteq \mathcal{E}^{\{M_p\}}(\Omega)$)

The associated function of M_p is defined as: $M(t) = \sup_{p \in \mathbb{N}} \log_+ \frac{t^p}{M_p}$.

$$(M.3)' \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty \text{ (non-quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \mathcal{D}(\Omega) \cap \mathcal{E}^{\{M_p\}}(\Omega))$$
$$(QA) \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty \text{ (quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \{0\})$$

We shall impose the following three conditions on M_p :

 $\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}. \mbox{ (logarithmic convexity } \Rightarrow \mathcal{E}^{\{M_p\}}(\Omega) \mbox{ is an algebra)} \\ (M.2) & M_p \leq A H^p \min_{0 \leq q \leq p} M_q M_{p-q} \mbox{ , (stability under ultradifferential operators)} \\ & \mbox{ Ultradifferential operators: } P(D) = \sum_{\alpha \in \mathbb{N}^d} c_\alpha D^\alpha, \mbox{ where} \\ & \quad | \ c_\alpha \ | \leq C_L \frac{L^{|\alpha|}}{M_{|\alpha|}}, \quad (\forall L > 0.) \end{array}$

(*NE*) $p! \subset M_p$ (which translates in the dense inclusion $\mathcal{A}(\Omega) \subseteq \mathcal{E}^{\{M_p\}}(\Omega)$)

The associated function of M_p is defined as: $M(t) = \sup_{p \in \mathbb{N}} \log_+ \frac{t^p}{M_p}$.

$$(M.3)' \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty \text{ (non-quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \mathcal{D}(\Omega) \cap \mathcal{E}^{\{M_p\}}(\Omega))$$
$$(QA) \sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty \text{ (quasianalyticity: } \mathcal{D}^{\{M_p\}}(\Omega) = \{0\})$$

Sheaves of linear generalized functions

We are interested in the sheaves of generalized functions corresponding to the sheaf of regular functions $\mathcal{R} = \mathcal{E}^{\{M_p\}}$.

- Non-quasianalytic case: Here it is easy $\mathcal{F} = \mathcal{D}^{\{M_p\}}$, the sheaf of non-quasianalytic ultradistributions.
- Analytic case: *R* = *A* is the sheaf of real analytic functions, and *F* = *B* is the sheaf of Sato hyperfunctions.
 (Γ_K(R^d, B) = A'[K] is the Martineau-Harvey duality theorem).
- General quasianalytic case: F = B^{M_p} is the sheaf of infrahyperfunctions (also called quasianalytic ultradistributions), constructed first by Hörmander in his seminal paper "Between distributions and hyperfunctions".

Hörmander's construction relies on a "hard analysis" approach to quasianalytic functionals, that is, the dual spaces $\mathcal{E}'^{\{M_p\}}(\Omega)$.

(日)

Sheaves of linear generalized functions

We are interested in the sheaves of generalized functions corresponding to the sheaf of regular functions $\mathcal{R} = \mathcal{E}^{\{M_p\}}$.

- Non-quasianalytic case: Here it is easy $\mathcal{F} = \mathcal{D}^{\{M_p\}}$, the sheaf of non-quasianalytic ultradistributions.
- Analytic case: *R* = *A* is the sheaf of real analytic functions, and *F* = *B* is the sheaf of Sato hyperfunctions.
 (Γ_K(*R*^d, *B*) = *A*'[*K*] is the Martineau-Harvey duality theorem).
- General quasianalytic case: F = B^{M_p} is the sheaf of infrahyperfunctions (also called quasianalytic ultradistributions), constructed first by Hörmander in his seminal paper "Between distributions and hyperfunctions".

Hörmander's construction relies on a "hard analysis" approach to quasianalytic functionals, that is, the dual spaces $\mathcal{E}'^{\{M_p\}}(\Omega)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sheaves of linear generalized functions

We are interested in the sheaves of generalized functions corresponding to the sheaf of regular functions $\mathcal{R} = \mathcal{E}^{\{M_p\}}$.

- Non-quasianalytic case: Here it is easy $\mathcal{F} = \mathcal{D}'^{\{M_p\}}$, the sheaf of non-quasianalytic ultradistributions.
- Analytic case: *R* = *A* is the sheaf of real analytic functions, and *F* = *B* is the sheaf of Sato hyperfunctions.
 (Γ_K(*R*^d, *B*) = *A*'[*K*] is the Martineau-Harvey duality theorem).
- General quasianalytic case: F = B^{M_p} is the sheaf of infrahyperfunctions (also called quasianalytic ultradistributions), constructed first by Hörmander in his seminal paper "Between distributions and hyperfunctions".

Hörmander's construction relies on a "hard analysis" approach to quasianalytic functionals, that is, the dual spaces $\mathcal{E}'^{\{M_p\}}(\Omega)$.

Quasianalytic functionals

Assume (QA).

- The space of germs $\mathcal{E}^{\{M_p\}}[K]$ is a (*DFN*)-space.
- $\mathcal{E}^{\{M_p\}}(\Omega) \cong \varprojlim_{K \in \Omega} \mathcal{E}^{\{M_p\}}[K]$. Modern terminology: a (*PLN*)-space.
- Consequently, $\mathcal{E}'^{\{M_p\}}(\Omega) \cong \varinjlim_{K \Subset \Omega} \mathcal{E}'^{\{M_p\}}[K] = \bigcup_{K \Subset \Omega} \mathcal{E}'^{\{M_p\}}[K].$
- We say that $K \subseteq \Omega$ is a $\{M_p\}$ -carrier of $f \in \mathcal{E}'^{\{M_p\}}(\Omega)$ if $f \in \mathcal{E}'^{\{M_p\}}[K]$.
- For f ∈ A'(Ω), there is a smallest {p!}-carrier of f, denoted by supp_{A'} f.

Theorem (Hörmander's support theorem)

In the quasianalytic case: For every quasianalytic functional $f \in \mathcal{E}'^{\{M_p\}}(\Omega)$ there is a smallest compact set among its $\{M_p\}$ -carriers and it coincides with $\operatorname{supp}_{\mathcal{A}'} f$. We simply denote this set by $\operatorname{supp} f$ and call it its support.

Quasianalytic functionals

Assume (QA).

- The space of germs $\mathcal{E}^{\{M_p\}}[K]$ is a (*DFN*)-space.
- $\mathcal{E}^{\{M_p\}}(\Omega) \cong \varprojlim_{K \in \Omega} \mathcal{E}^{\{M_p\}}[K]$. Modern terminology: a (*PLN*)-space.

• Consequently,
$$\mathcal{E}'^{\{M_p\}}(\Omega) \cong \varinjlim_{K \Subset \Omega} \mathcal{E}'^{\{M_p\}}[K] = \bigcup_{K \Subset \Omega} \mathcal{E}'^{\{M_p\}}[K].$$

- We say that $K \Subset \Omega$ is a $\{M_p\}$ -carrier of $f \in \mathcal{E}'^{\{M_p\}}(\Omega)$ if $f \in \mathcal{E}'^{\{M_p\}}[K]$.
- For *f* ∈ *A*'(Ω), there is a smallest {*p*!}-carrier of *f*, denoted by supp_{A'} *f*.

Theorem (Hörmander's support theorem)

In the quasianalytic case: For every quasianalytic functional $f \in \mathcal{E}'^{\{M_p\}}(\Omega)$ there is a smallest compact set among its $\{M_p\}$ -carriers and it coincides with $\operatorname{supp}_{\mathcal{A}'} f$. We simply denote this set by $\operatorname{supp} f$ and call it its support.

Hörmander's support theorem is the key to show:

Theorem (Hörmander)

Assume (QA) holds. There exists an (up to isomorphism) unique flabby sheaf $\mathcal{B}^{\{M_p\}}$ such that

 $\Gamma_{\mathcal{K}}(\mathbb{R}^d, \mathcal{B}^{\{M_p\}}) = \mathcal{E}'^{\{M_p\}}[\mathcal{K}], \qquad \mathcal{K} \Subset \mathbb{R}^d.$

Moreover, for any relatively compact open subset Ω of \mathbb{R}^d ,

 $\mathcal{B}^{\{M_p\}}(\Omega) = \mathcal{E}'^{\{M_p\}}[\overline{\Omega}]/\mathcal{E}'^{\{M_p\}}[\partial\Omega].$

- For M_p = p!, this result goes back to Martineau and we have B^{p!} = B, the sheaf of hyperfunctions.
- Flabby means: the restriction B^{M_p}(ℝ^d) → B^{M_p}(Ω) are surjective.
- Flabbiness is the substitute for "partitions of the unity arguments" in the quasianalytic context.

200

Hörmander's support theorem is the key to show:

Theorem (Hörmander)

Assume (QA) holds. There exists an (up to isomorphism) unique flabby sheaf $\mathcal{B}^{\{M_p\}}$ such that

 $\Gamma_{\mathcal{K}}(\mathbb{R}^{d},\mathcal{B}^{\{M_{p}\}})=\mathcal{E}'^{\{M_{p}\}}[\mathcal{K}], \qquad \mathcal{K} \Subset \mathbb{R}^{d}.$

Moreover, for any relatively compact open subset Ω of \mathbb{R}^d ,

$$\mathcal{B}^{\{M_p\}}(\Omega) = \mathcal{E}'^{\{M_p\}}[\overline{\Omega}]/\mathcal{E}'^{\{M_p\}}[\partial\Omega].$$

- For M_p = p!, this result goes back to Martineau and we have B^{p!} = B, the sheaf of hyperfunctions.
- Flabby means: the restriction B^{M_p}(ℝ^d) → B^{M_p}(Ω) are surjective.
- Flabbiness is the substitute for "partitions of the unity arguments" in the quasianalytic context.

590

Hörmander's support theorem is the key to show:

Theorem (Hörmander)

Assume (QA) holds. There exists an (up to isomorphism) unique flabby sheaf $\mathcal{B}^{\{M_p\}}$ such that

$$\Gamma_{\mathcal{K}}(\mathbb{R}^d, \mathcal{B}^{\{M_p\}}) = \mathcal{E}'^{\{M_p\}}[\mathcal{K}], \qquad \mathcal{K} \Subset \mathbb{R}^d.$$

Moreover, for any relatively compact open subset Ω of \mathbb{R}^d ,

$$\mathcal{B}^{\{M_p\}}(\Omega) = \mathcal{E}'^{\{M_p\}}[\overline{\Omega}]/\mathcal{E}'^{\{M_p\}}[\partial\Omega].$$

- For M_p = p!, this result goes back to Martineau and we have B^{p!} = B, the sheaf of hyperfunctions.
- Flabby means: the restriction B^{M_p}(ℝ^d) → B^{M_p}(Ω) are surjective.
- Flabbiness is the substitute for "partitions of the unity arguments" in the quasianalytic context.

500

Hörmander's support theorem is the key to show:

Theorem (Hörmander)

Assume (QA) holds. There exists an (up to isomorphism) unique flabby sheaf $\mathcal{B}^{\{M_p\}}$ such that

$$\Gamma_{\mathcal{K}}(\mathbb{R}^d, \mathcal{B}^{\{M_p\}}) = \mathcal{E}'^{\{M_p\}}[\mathcal{K}], \qquad \mathcal{K} \Subset \mathbb{R}^d.$$

Moreover, for any relatively compact open subset Ω of \mathbb{R}^d ,

$$\mathcal{B}^{\{M_p\}}(\Omega) = \mathcal{E}'^{\{M_p\}}[\overline{\Omega}]/\mathcal{E}'^{\{M_p\}}[\partial\Omega].$$

- For M_p = p!, this result goes back to Martineau and we have B^{p!} = B, the sheaf of hyperfunctions.
- Flabby means: the restriction B^{M_p}(ℝ^d) → B^{M_p}(Ω) are surjective.
- Flabbiness is the substitute for "partitions of the unity arguments" in the quasianalytic context.

Let us supplement the previous result:

Theorem

(*i*) Let N_p be non-quasianalytic. We have the support preserving sheaf inclusions

$$\mathcal{D}' o \mathcal{D}'^{\{N_p\}} o \mathcal{B}^{\{M_p\}} o \mathcal{B}$$

(*ii*) For every ultradifferential operator P(D) of class $\{M_p\}$ there is a unique sheaf morphism

$$P(D): \mathcal{B}^{\{M_p\}} \to \mathcal{B}^{\{M_p\}}$$

that coincides on $\Gamma_c(\mathbb{R}^d, \mathcal{B}^{\{M_p\}}) = \mathcal{E}'^{\{M_p\}}(\mathbb{R}^d)$ with the usual action of P(D) on quasianalytic functionals.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-linear theory of ultradistributions and infrahyperfunctions: What was known?

For non-quasianalytic ultradistributions:

- T. Gramchev constructed a differential algebra containing Gevrey ultradistributions (M_ρ = ρ!^σ). Drawbacks:
 - Only works for σ > 2.
 Loss of regularity: It contains D'^{p!^σ} but only preserves multiplication on ε^{p!^σ} ⊊ ε^{p!^σ} with τ = (σ + 1)/3.
- Benmeriem and Bouzar improved the index to $(\sigma + 1)/2$, but losing the action of ultradifferential operators.
- Pilipović and collaborators (Scarpalezos, Delcroix, ...): more general non-quasianalytic ultradistributions, but the loss of regularity phenomenon shows up again.

For hyperfunctions:

• Basically nothing was known preserving multiplication of functions ...

Non-linear theory of ultradistributions and infrahyperfunctions: What was known?

For non-quasianalytic ultradistributions:

- T. Gramchev constructed a differential algebra containing Gevrey ultradistributions (*M_ρ* = *p*!^σ). Drawbacks:
 - Only works for $\sigma > 2$.
 - 2 Loss of regularity: It contains $\mathcal{D}^{r}\{p^{\sigma}\}$ but only preserves multiplication on $\mathcal{E}^{\{p^{\tau}\}} \subsetneq \mathcal{E}^{\{p^{\sigma}\}}$ with $\tau = (\sigma + 1)/3$.
- Benmeriem and Bouzar improved the index to (σ + 1)/2, but losing the action of ultradifferential operators.
- Pilipović and collaborators (Scarpalezos, Delcroix, ...): more general non-quasianalytic ultradistributions, but the loss of regularity phenomenon shows up again.

For hyperfunctions:

• Basically nothing was known preserving multiplication of functions ...

・ロト ・ 同ト ・ ヨト・

Non-linear theory of ultradistributions and infrahyperfunctions: What was known?

For non-quasianalytic ultradistributions:

 T. Gramchev constructed a differential algebra containing Gevrey ultradistributions (*M_ρ* = *p*!^σ). Drawbacks:

• Only works for $\sigma > 2$.

- 2 Loss of regularity: It contains $\mathcal{D}^{r}\{p^{\sigma}\}$ but only preserves multiplication on $\mathcal{E}^{\{p^{\tau}\}} \subsetneq \mathcal{E}^{\{p^{\sigma}\}}$ with $\tau = (\sigma + 1)/3$.
- Benmeriem and Bouzar improved the index to (σ + 1)/2, but losing the action of ultradifferential operators.
- Pilipović and collaborators (Scarpalezos, Delcroix, ...): more general non-quasianalytic ultradistributions, but the loss of regularity phenomenon shows up again.

For hyperfunctions:

 Basically nothing was known preserving multiplication of functions ...

Algebras of generalized functions

We have introduced the following new algebra.

First a sequence space. Consider the (DFS)-space

$$s^{\{M_p\}} = \left\{ (a_n) \in \mathbb{C}^{\mathbb{N}} : |a_n| = O(e^{-M(\lambda n)}), ext{ for some } \lambda > 0
ight\},$$

its strong dual is the (FS)-space

$$s'^{\{M_p\}} = \left\{(a_n) \in \mathbb{C}^{\mathbb{N}} : |a_n| = O(e^{M(\lambda n)}), \ \forall \lambda > 0
ight\},$$

We define the algebra of generalized functions of class $\{M_p\}$ as

 $\mathcal{G}^{\{M_p\}}(\Omega) = \mathcal{E}^{\{M_p\}}(\Omega; \boldsymbol{s}^{\prime\{M_p\}}) / \mathcal{E}^{\{M_p\}}(\Omega; \boldsymbol{s}^{\{M_p\}}).$

That we get an algebra is implied by (M.1) and (M.2).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Algebras of generalized functions

We have introduced the following new algebra.

First a sequence space. Consider the (DFS)-space

$$s^{\{M_p\}} = \left\{ (a_n) \in \mathbb{C}^{\mathbb{N}} : |a_n| = O(e^{-M(\lambda n)}), ext{ for some } \lambda > 0
ight\},$$

its strong dual is the (FS)-space

$$s'^{\{M_p\}} = \left\{ (a_n) \in \mathbb{C}^{\mathbb{N}} : |a_n| = O(e^{M(\lambda n)}), \ \forall \lambda > 0
ight\},$$

We define the algebra of generalized functions of class $\{M_p\}$ as

$$\mathcal{G}^{\{M_p\}}(\Omega) = \mathcal{E}^{\{M_p\}}(\Omega; \boldsymbol{s}'^{\{M_p\}}) / \mathcal{E}^{\{M_p\}}(\Omega; \boldsymbol{s}^{\{M_p\}}).$$

That we get an algebra is implied by (M.1) and (M.2).

- We clearly have the embedding *σ* : *ε*^{M_p} → *G*^{M_p} mapping *f* into the (equivalence class) of a constant sequence *f_n* = *f*.
- Note that $\mathcal{D}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft (partitions of the unity).
- The rest is taking care of the regularization procedure.

We use a mapping $\iota_c : \mathcal{E}'^{\{M_p\}}(\mathbb{R}^d) \to \mathcal{G}_c^{\{M_p\}}(\mathbb{R}^d)$

 $f\to [(f*\phi_n)_n].$

The key point is to improve the properties of ϕ . We choose:

- Another non-quasianalytic sequence N_p satisfying ((M.1), etc) and N_p ≺ M_p. (⇒ E^{N_p} ⊊ E^{M_p})
- ϕ such that $\hat{\phi} \equiv 1$ near the origin and $\hat{\phi} \in \mathcal{D}^{\{N_p\}}(\mathbb{R}^d)$.

- We clearly have the embedding *σ* : *ε*^{M_p} → *G*^{M_p} mapping *f* into the (equivalence class) of a constant sequence *f_n* = *f*.
- Note that $\mathcal{D}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft (partitions of the unity).
- The rest is taking care of the regularization procedure.

We use a mapping $\iota_c : \mathcal{E}'^{\{M_p\}}(\mathbb{R}^d) \to \mathcal{G}_c^{\{M_p\}}(\mathbb{R}^d)$

 $f \to [(f * \phi_n)_n].$

The key point is to improve the properties of ϕ . We choose:

- Another non-quasianalytic sequence N_p satisfying ((M.1), etc) and N_p ≺ M_p. (⇒ E^{N_p} ⊊ E^{M_p})
- ϕ such that $\hat{\phi} \equiv 1$ near the origin and $\hat{\phi} \in \mathcal{D}^{\{N_p\}}(\mathbb{R}^d)$.

(日)

- We clearly have the embedding *σ* : *ε*^{M_p} → *G*^{M_p} mapping *f* into the (equivalence class) of a constant sequence *f_n* = *f*.
- Note that $\mathcal{D}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft (partitions of the unity).
- The rest is taking care of the regularization procedure.

We use a mapping $\iota_c : \mathcal{E}'^{\{M_p\}}(\mathbb{R}^d) \to \mathcal{G}_c^{\{M_p\}}(\mathbb{R}^d)$

$$f\to [(f*\phi_n)_n].$$

The key point is to improve the properties of ϕ . We choose:

- Another non-quasianalytic sequence N_p satisfying ((M.1), etc) and N_p ≺ M_p. (⇒ E^{N_p} ⊊ C^{M_p})
- ϕ such that $\hat{\phi} \equiv 1$ near the origin and $\hat{\phi} \in \mathcal{D}^{\{N_p\}}(\mathbb{R}^d)$.

- We clearly have the embedding *σ* : *ε*^{M_p} → *G*^{M_p} mapping *f* into the (equivalence class) of a constant sequence *f_n* = *f*.
- Note that $\mathcal{D}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft (partitions of the unity).
- The rest is taking care of the regularization procedure.

We use a mapping $\iota_c : \mathcal{E}'^{\{M_p\}}(\mathbb{R}^d) \to \mathcal{G}_c^{\{M_p\}}(\mathbb{R}^d)$

$$f \to [(f * \phi_n)_n].$$

The key point is to improve the properties of ϕ . We choose:

- Another non-quasianalytic sequence N_p satisfying ((M.1), etc) and N_p ≺ M_p. (⇒ E^{N_p} ⊊ C^{M_p})
- ϕ such that $\hat{\phi} \equiv 1$ near the origin and $\hat{\phi} \in \mathcal{D}^{\{N_p\}}(\mathbb{R}^d)$.

(日)

Theorem

Suppose M_p satisfies (M.1), (M.2), and (M.3)'. There is a sheaf monomorphism $\iota : \mathcal{D}'^{\{M_p\}} \to \mathcal{G}^{\{M_p\}}$ having the following properties on any open subset Ω of \mathbb{R}^d

(i)
$$\iota_{|\mathcal{E}'^{\{M_p\}}(\Omega)} = \iota_c$$

(ii) ι commutes with $\{M_{\rho}\}$ -ultradifferential operators P(D),

$$P(D)\iota(f) = \iota(P(D)f), \quad f \in \mathcal{D}'^{\{M_p\}}(\Omega).$$

(iii) $\iota_{|\mathcal{E}^{\{M_{p}\}}(\Omega)}$ coincides with the constant embedding σ . In particular,

$$\iota(\mathit{fg}) = \iota(\mathit{f})\iota(\mathit{g}), \qquad \mathit{f}, \mathit{g} \in \mathcal{E}^{\{\mathit{M_p}\}}(\Omega).$$

- Quasianalytic case: G^{M_p} is a presheaf but not obvious at all whether it is a sheaf (no partitions of the unity available).
- We realized that showing *G*^{MP} is a sheaf reduces to solve the Cousin problem for *E*^{Mp}(Ω; *s*^{Mp}).
- We needed the following assumption: Set $m_p = M_p/M_{p-1}$ $(M.2)^*$ $2m_p \le Cm_{pQ}$, for some $Q \in \mathbb{N}$, C > 0.
- (*M*.2)* is intrinsically related to the topology of s^{{M_p}}: characterizes Vogt's (<u>DN</u>) property for its dual space.

Theorem

- Sheaf property: We showed the solvability of Cousin problem for vector-valued quasianalytic functions.
- Softness: Precise regularization procedure and extension operators for quasianalytic functions (adaptation of Hörmander's techniques).

- Quasianalytic case: G^{M_p} is a presheaf but not obvious at all whether it is a sheaf (no partitions of the unity available).
- We realized that showing *G*^{M^p} is a sheaf reduces to solve the Cousin problem for *E*^{{M_p}(Ω; s^{{M_p})</sup>.

• We needed the following assumption: Set $m_p = M_p/M_{p-1}$ $(M.2)^* \ 2m_p \le Cm_{pQ}$, for some $Q \in \mathbb{N}$, C > 0.

 (*M*.2)* is intrinsically related to the topology of s^{{M_p}}: characterizes Vogt's (<u>DN</u>) property for its dual space.

Theorem

- Sheaf property: We showed the solvability of Cousin problem for vector-valued quasianalytic functions.
- Softness: Precise regularization procedure and extension operators for quasianalytic functions (adaptation of Hörmander's techniques).

- Quasianalytic case: G^{M_p} is a presheaf but not obvious at all whether it is a sheaf (no partitions of the unity available).
- We realized that showing *G*^{M^ρ} is a sheaf reduces to solve the Cousin problem for *E*^{{M_ρ}(Ω; *s*^{{M_ρ})</sup>.
- We needed the following assumption: Set $m_p = M_p/M_{p-1}$ $(M.2)^* \ 2m_p \le Cm_{pQ}$, for some $Q \in \mathbb{N}$, C > 0.
- (M.2)* is intrinsically related to the topology of s^{{M_p}}: characterizes Vogt's (<u>DN</u>) property for its dual space.

Theorem

- Sheaf property: We showed the solvability of Cousin problem for vector-valued quasianalytic functions.
- Softness: Precise regularization procedure and extension operators for quasianalytic functions (adaptation of Hörmander's techniques).

- Quasianalytic case: G^{M_p} is a presheaf but not obvious at all whether it is a sheaf (no partitions of the unity available).
- We realized that showing *G*^{M^ρ} is a sheaf reduces to solve the Cousin problem for *E*^{{M_ρ}(Ω; *s*^{{M_ρ})</sup>.
- We needed the following assumption: Set $m_p = M_p/M_{p-1}$ $(M.2)^*$ $2m_p \leq Cm_{pQ}$, for some $Q \in \mathbb{N}$, C > 0.
- (*M*.2)* is intrinsically related to the topology of s^{{M_p}}: characterizes Vogt's (<u>DN</u>) property for its dual space.

Theorem

- Sheaf property: We showed the solvability of Cousin problem for vector-valued quasianalytic functions.
- Softness: Precise regularization procedure and extension operators for quasianalytic functions (adaptation of Hörmander's techniques).

- Quasianalytic case: G^{M_p} is a presheaf but not obvious at all whether it is a sheaf (no partitions of the unity available).
- We realized that showing *G*^{M^ρ} is a sheaf reduces to solve the Cousin problem for *E*^{{M_ρ}(Ω; s^{{M_ρ})</sup>.
- We needed the following assumption: Set $m_p = M_p/M_{p-1}$ $(M.2)^*$ $2m_p \leq Cm_{pQ}$, for some $Q \in \mathbb{N}$, C > 0.
- (M.2)* is intrinsically related to the topology of s^{{M_p}}: characterizes Vogt's (<u>DN</u>) property for its dual space.

Theorem

- Sheaf property: We showed the solvability of Cousin problem for vector-valued quasianalytic functions.
- Softness: Precise regularization procedure and extension operators for quasianalytic functions (adaptation of Hörmander's techniques).

The (first) Cousin problem for holomorphic functions

Theorem (Oka-Cartan)

Let $\Omega \subseteq \mathbb{C}^d$ be a Stein open and let $\{\Omega_i : i \in I\}$ be an open covering of Ω consisting of Stein open sets. Suppose $\varphi_{i,j} \in \mathcal{O}(\Omega_i \cap \Omega_j), i, j \in I$, are given such that

 $\varphi_{i,j} + \varphi_{j,k} + \varphi_{k,i} = 0$ on $\Omega_i \cap \Omega_j \cap \Omega_k$.

Then, there are $\varphi_i \in \mathcal{O}(\Omega_i)$, $i \in I$, such that

$$\varphi_{i,j} = \varphi_i - \varphi_j$$
 on $\Omega_i \cap \Omega_j$.

 Since every open set in R^d has a fundamental system of complex neighborhoods consisting of open sets, the Cousin problem is solvable for the sheaf of real analytic functions on R^d (now for arbitrary open sets and coverings)

 Is the Cousin problem solvable in general spaces of quasianalytic functions?

The (first) Cousin problem for holomorphic functions

Theorem (Oka-Cartan)

Let $\Omega \subseteq \mathbb{C}^d$ be a Stein open and let $\{\Omega_i : i \in I\}$ be an open covering of Ω consisting of Stein open sets. Suppose $\varphi_{i,j} \in \mathcal{O}(\Omega_i \cap \Omega_j), i, j \in I$, are given such that

 $\varphi_{i,j} + \varphi_{j,k} + \varphi_{k,i} = 0$ on $\Omega_i \cap \Omega_j \cap \Omega_k$.

Then, there are $\varphi_i \in \mathcal{O}(\Omega_i)$, $i \in I$, such that

$$\varphi_{i,j} = \varphi_i - \varphi_j$$
 on $\Omega_i \cap \Omega_j$.

- Since every open set in R^d has a fundamental system of complex neighborhoods consisting of open sets, the Cousin problem is solvable for the sheaf of real analytic functions on R^d (now for arbitrary open sets and coverings)
- Is the Cousin problem solvable in general spaces of quasianalytic functions?

The Cousin problem for quasianalytic functions

We solved the vector-valued Cousin problem in the following case:

Theorem

Assume (M.1), (M.2)', (QA), and (NE) and let F be a (DFS)-space such that its strong dual F'_{β} has the property (<u>DN</u>). Let $\Omega \subseteq \mathbb{R}^d$ be open and $\mathcal{M} = \{\Omega_i : i \in I\}$ be an open covering of Ω . Suppose $\varphi_{i,j} \in \mathcal{E}^{\{M_p\}}(\Omega_i \cap \Omega_j; F), i, j \in I$, are given F-valued functions such that

 $arphi_{i,j} + arphi_{j,k} + arphi_{k,i} = 0$ on $\Omega_i \cap \Omega_j \cap \Omega_k$,

for all $i, j, k \in I$. Then, there are $\varphi_i \in \mathcal{E}^{\{M_p\}}(\Omega_i; F)$, $i \in I$, such that

$$\varphi_{i,j} = \varphi_j - \varphi_i$$
 on $\Omega_j \cap \Omega_i$,

for all $i, j \in I$.

A Féchet space *E* with a generating system of semi-norms $\{ || ||_k : k \in \mathbb{N} \}$ has the Vogt property (*DN*) if

$$(\exists m \in \mathbb{N})(\forall k \in \mathbb{N})(\exists j \in \mathbb{N})(\exists \tau \in (0, 1))(\exists C > 0)$$

 $\|x\|_k \leq C \|x\|_m^{1-\tau} \|x\|_j^{ au}, \quad x \in E.$

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Quasianalytic case: Carrying out the regularization procedure

Now we know that $\mathcal{B}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft, the next step is to construct a regularization procedure for compact sections,

$$\iota_{c}: \mathcal{E}'^{\{M_{p}\}}(\mathbb{R}^{d}) \to \mathcal{G}_{c}^{\{M_{p}\}}(\mathbb{R}^{d}) \qquad f \to [(f * \theta_{n})_{n}].$$

We constructed θ_n as follows ("analytic mollifier sequence"):

- Take a Hörmander analytic cut-off sequence 0 ≤ χ_n ≤ 1 for the unit ball:
 - (*a*) $\chi_n \equiv 1$ on *B*(0, 1),
 - (b) $(\chi_n)_n$ is a bounded sequence in $\mathcal{D}(B(0,2))$,
 - (c) there is $L \ge 1$ such that $\|\chi_n^{(\alpha)}\|_{L^{\infty}(\mathbb{R}^d)} \le L(Ln)^{|\alpha|}, \ |\alpha| \le n.$
- We define θ_n via Fourier transform θ_n(x) = n^d F⁻¹(χ_n)(nx) and ask: for every c > 0 there are C, δ, γ > 0 such that

$$\sup_{|x| \ge c} |\theta_n^{(\alpha)}(x)| \le C e^{-\delta n} \gamma^{|\alpha|} \alpha!, \qquad \alpha \in \mathbb{N}^d, n \in \mathbb{N}.$$

(日)

Quasianalytic case: Carrying out the regularization procedure

Now we know that $\mathcal{B}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft, the next step is to construct a regularization procedure for compact sections,

$$\iota_{c}: \mathcal{E}'^{\{M_{p}\}}(\mathbb{R}^{d}) \to \mathcal{G}_{c}^{\{M_{p}\}}(\mathbb{R}^{d}) \qquad f \to [(f * \theta_{n})_{n}].$$

We constructed θ_n as follows ("analytic mollifier sequence"):

Take a Hörmander analytic cut-off sequence 0 ≤ χ_n ≤ 1 for the unit ball:

(a) $\chi_n \equiv 1$ on B(0, 1), (b) $(\chi_n)_n$ is a bounded sequence in $\mathcal{D}(B(0, 2))$, (c) there is $L \ge 1$ such that $\|\chi_n^{(\alpha)}\|_{L^{\infty}(\mathbb{R}^d)} \le L(Ln)^{|\alpha|}, \ |\alpha| \le n$.

We define θ_n via Fourier transform θ_n(x) = n^d F⁻¹(χ_n)(nx) and ask: for every c > 0 there are C, δ, γ > 0 such that

$$\sup_{|x| \ge c} |\theta_n^{(\alpha)}(x)| \le C e^{-\delta n} \gamma^{|\alpha|} \alpha!, \qquad \alpha \in \mathbb{N}^d, n \in \mathbb{N}.$$

Quasianalytic case: Carrying out the regularization procedure

Now we know that $\mathcal{B}^{\{M_p\}}$ and $\mathcal{G}^{\{M_p\}}$ are soft, the next step is to construct a regularization procedure for compact sections,

$$\iota_{c}: \mathcal{E}'^{\{M_{p}\}}(\mathbb{R}^{d}) \to \mathcal{G}_{c}^{\{M_{p}\}}(\mathbb{R}^{d}) \qquad f \to [(f * \theta_{n})_{n}].$$

We constructed θ_n as follows ("analytic mollifier sequence"):

- Take a Hörmander analytic cut-off sequence 0 ≤ χ_n ≤ 1 for the unit ball:
 - (a) $\chi_n \equiv 1$ on B(0, 1), (b) $(\chi_n)_n$ is a bounded sequence in $\mathcal{D}(B(0, 2))$, (c) there is $L \ge 1$ such that $\|\chi_n^{(\alpha)}\|_{L^{\infty}(\mathbb{R}^d)} \le L(Ln)^{|\alpha|}, \ |\alpha| \le n$.
- We define θ_n via Fourier transform θ_n(x) = n^d F⁻¹(χ_n)(nx) and ask: for every c > 0 there are C, δ, γ > 0 such that

$$\sup_{|x|\geq c} |\theta_n^{(\alpha)}(x)| \leq C e^{-\delta n} \gamma^{|\alpha|} \alpha!, \qquad \alpha \in \mathbb{N}^d, n \in \mathbb{N}.$$

The above regularization procedure works to obtain:

Theorem

Suppose M_p satisfies (M.1), (M.2), (QA), (NE), and (M.2)*. There is a sheaf monomorphism $\iota : \mathcal{B}^{\{M_p\}} \to \mathcal{G}^{\{M_p\}}$ having the following properties on any open subset Ω of \mathbb{R}^d

(*i*)
$$\iota_{|\mathcal{E}'^{\{M_p\}}(\Omega)} = \iota_c.$$

(ii) ι commutes with $\{M_p\}$ -ultradifferential operators P(D).

(iii) $\iota_{|\mathcal{E}^{\{M_p\}}(\Omega)}$ coincides with the constant embedding σ

 $\implies \iota$ preserves the multiplication of $\mathcal{E}^{\{M_p\}}$ -functions.

For further details on the topic of this talk, see our recent articles:

- A. Debrouwere, H. Vernaeve, J. Vindas, Optimal embeddings of ultradistributions into differential algebras, Monatsh. Math., to appear, doi:10.1007/s00605-017-1066-6.
- A. Debrouwere, H. Vernaeve, J. Vindas, A non-linear theory of infrahyperfunctions, Kyoto J. Math., to appear (preprint: arXiv:1701.06996).
- A. Debrouwere, J. Vindas, Solution to the first Cousin problem for vector-valued quasianalytic functions, Ann. Mat. Pura Appl., doi:10.1007/s10231-017-0649-0.

A (10) × (10) × (10)