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In this talk we present various new developments in the
non-linear theory of generalized functions.

We will discuss non-linear theories for ultradistributions and
hyperfunctions. This includes:

Construction of new differential algebras and embeddings.
Optimality with respect to preservation of multiplication of
functions.
We also study Hörmander’s sheaves of infrahyperfunctions
(quasianalytic distributions).
Connection to the Cousin problem for quasianalytic
functions.

The talk is based on collaborative works with Andreas
Debrouwere and Hans Vernaeve.
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Introduction

The non-linear theory of generalized functions was initiated
by Colombeau, who gave a framework for non-linear
operations with distributions.
Schwartz ‘impossibility’ result (roughly): There is no
differential algebra containing D′ as a differential linear
subspace and simultaneously Ck as a subalgebra (k <∞).
Colombeau showed that the construction of such an
algebra is possible if Ck is replaced by C∞.
In 1992, T. Gramchev initiated the non-linear theory of
ultradistributions. However, there were always unsolved
problems concerning optimality of embeddings ...
The same year, the corresponding question for
hyperfunctions was posed by M. Oberguggenberger.
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Some very basic notions from sheaf theory
Let F be a sheaf (always of vector spaces, always on Rd ). Notation:

Sections on a open set Ω will be indistinctly denoted as
F(Ω) = Γ(Ω,F).
ΓK (Ω,F) is the space of sections on Ω with supports in K b Ω.

We write Fc(Ω) = Γc(Ω,F) =
⋃

KbΩ

ΓK (Ω,F).

For S closed, the space of germs is F [S] = Γ[S,F ].
F is soft if sections over a closed set can be extended globally.

Lemma (Extension principle)

Let X be second countable and let F and G be soft sheaves on X. Let
ρc : Fc(X )→ Gc(X ) be a linear mapping such that

supp ρc(T ) ⊆ supp T , T ∈ Fc(X ). (a local operator!)

Then, there is a unique sheaf morphism ρ : F → G such that, for every open
set U in X, we have ρU(T ) = ρc(T ) for all T ∈ Fc(U). If, moreover,

supp ρc(T ) = supp T , T ∈ Fc(X ), (support preserving)

then ρ is injective.
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The central problem: Setting
Most linear spaces of generalize functions (distributions,
hyperfunctions, ...) arise as sheaves having the following properties:

Let F be a sheaf of vector spaces (generalized functions) on Rd and
let R be a subsheaf (regular elements). Assume:

1 Every R(Ω) ⊆ C∞(Ω) is a topological algebra with continuous
action of partial derivatives.

2 The sections of F with support in a given compact set K b Ω are
given as follows:

ΓK (Ω,F) = R′[K ],

with R[K ] the space of germs on K .
3 F is an R-module and F has a “natural” action of linear PDOs

with coefficients in R.
4 Sometimes R and F come with additional intrinsic differential

structures (actions of infinite order differential operators).

Remark: Often, the third and fourth properties follow immediately
from the first and second one. (For example, if F is soft).
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The central problem: Formulation

Suppose that F and R are a above. The central problem of the
non-linear theory of generalized functions is:

Problem (Differential algebra embedding)

Find a sheaf of differential algebras G and a linear sheaf embedding
ι : F → G such that

1 ι commutes with all partial derivatives.

2 ι preserves the multiplication on R, namely, for all open set

ιΩ(f · g) = ιΩ(f ) · ιΩ(g), ∀f ,g ∈ R(Ω).

I refer to property 2 above and the next one as optimality:

Problem (Preservation of natural structures)

If R and F have an additional “differential structure”, find G with the
same structure in a embedding preserving fashion.
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A general strategy

Here is a recipe one may try to follow.
Suppose additionally that F is soft.
One can try to construct a suitable soft sheaf of differential
algebras G and a linear embedding at the level of compact
sections:

ιc : Fc(Rd )→ Gc(Rd ),

commuting with partial derivatives (and possibly,
preserving additional differential structures of F).
If ιc is support preserving, the extension principle takes
care of the existence of

ι : F → G,
usually with all desired properties, except perhaps
preservation of multiplication on R.
Usually, ιc is realized via a “regularization procedure”. The
regularization procedure should be good enough to
encode multiplication of the “regular sheaf of functions” R.
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The Colombeau algebra: Distribution case
The distribution case F = D′ and R = C∞ was solved by Colombeau.
We review here the construction of the so-called special algebra.

Consider the Fréchet space s of rapidly decreasing sequences,

s =
{

(an)n ∈ CN : an = O(1/nα), ∀α > 0
}
,

and its dual

s′ =
{

(an)n ∈ CN : an = O(nα), for some α > 0
}
.

The Colombeau algebra on Ω is then

G(Ω) = C∞(Ω; s′)/C∞(Ω; s).

The embedding ιc : D′c(Rd ) = E ′(Rd )→ Gc(Rd ) is realized as
f 7→ [(f ∗ φn)n], where φn(x) = ndφ(nx), φ ∈ S(Rd ) is such that∫

Rd
φ(x)dx = 1,

∫
Rd

xαφ(x)dx = 0, ∀α 6= 0.

Sheaf theory can be avoided: glue with partitions of the unity.
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Denjoy-Carleman classes of ultradifferentiable
functions: Roumieu type

Let (Mp)p∈N be a weight sequence, that is, a positive increasing
sequence of real numbers with M0 = 1.

E{Mp}(Ω) consists of ϕ ∈ C∞(Ω) such that: for each K b Ω
there is h > 0 such that

sup
x∈K

|∂αϕ(x)|
h|α|M|α|

<∞.

Topology of E{Mp}(Ω): take first inductive limit with respect
to h and then projective limit with respect to K .
These are highly non-metrizable spaces!
If Mp = p!σ, σ > 0, one recovers the Gevrey classes.
The case Mp = p! is the space of real analytic functions. It
deserves a special notation (and attention!)

A(Ω) = E{Mp}(Ω)
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Basic assumptions on the weight sequences
We shall impose the following three conditions on Mp:

(M.1) M2
p ≤ Mp−1Mp+1. (logarithmic convexity⇒ E{Mp}(Ω) is an algebra)

(M.2) Mp ≤ AHp min
0≤q≤p

MqMp−q , (stability under ultradifferential operators)

Ultradifferential operators: P(D) =
∑
α∈Nd

cαDα, where

| cα |≤ CL
L|α|

M|α|
, (∀L > 0.)

(NE) p! ⊂ Mp (which translates in the dense inclusion A(Ω) ⊆ E{Mp}(Ω))

The associated function of Mp is defined as: M(t) = sup
p∈N

log+

tp

Mp
.

One then splits into two cases (Denjoy-Carleman theorem)

(M.3)′
∞∑

p=1

Mp−1

Mp
<∞ (non-quasianalyticity: D{Mp}(Ω) = D(Ω) ∩ E{Mp}(Ω))

(QA)
∞∑

p=1

Mp−1

Mp
=∞ (quasianalyticity: D{Mp}(Ω) = {0})
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Sheaves of linear generalized functions

We are interested in the sheaves of generalized functions
corresponding to the sheaf of regular functions R = E{Mp}.

Non-quasianalytic case: Here it is easy F = D′{Mp}, the
sheaf of non-quasianalytic ultradistributions.
Analytic case: R = A is the sheaf of real analytic functions,
and F = B is the sheaf of Sato hyperfunctions.
(ΓK (Rd ,B) = A′[K ] is the Martineau-Harvey duality
theorem).
General quasianalytic case: F = B{Mp} is the sheaf of
infrahyperfunctions (also called quasianalytic
ultradistributions), constructed first by Hörmander in his
seminal paper “Between distributions and hyperfunctions”.

Hörmander’s construction relies on a “hard analysis" approach
to quasianalytic functionals, that is, the dual spaces E ′{Mp}(Ω).
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Quasianalytic functionals
Assume (QA).

The space of germs E{Mp}[K ] is a (DFN)-space.

E{Mp}(Ω) ∼= lim←−
KbΩ

E{Mp}[K ]. Modern terminology: a (PLN)-space.

Consequently, E ′{Mp}(Ω) ∼= lim−→
KbΩ

E ′{Mp}[K ] =
⋃

KbΩ

E ′{Mp}[K ].

We say that K b Ω is a {Mp}-carrier of f ∈ E ′{Mp}(Ω) if
f ∈ E ′{Mp}[K ].

For f ∈ A′(Ω), there is a smallest {p!}-carrier of f , denoted by
suppA′ f .

Theorem (Hörmander’s support theorem)

In the quasianalytic case: For every quasianalytic functional
f ∈ E ′{Mp}(Ω) there is a smallest compact set among its {Mp}-carriers
and it coincides with suppA′ f . We simply denote this set by supp f
and call it its support.
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Infrahyperfunctions

Hörmander’s support theorem is the key to show:

Theorem (Hörmander)

Assume (QA) holds. There exists an (up to isomorphism)
unique flabby sheaf B{Mp} such that

ΓK (Rd ,B{Mp}) = E ′{Mp}[K ], K b Rd .

Moreover, for any relatively compact open subset Ω of Rd ,

B{Mp}(Ω) = E ′{Mp}[Ω]/E ′{Mp}[∂Ω].

For Mp = p!, this result goes back to Martineau and we
have B{p!} = B, the sheaf of hyperfunctions.
Flabby means: the restriction B{Mp}(Rd )→ B{Mp}(Ω) are
surjective.
Flabbiness is the substitute for “partitions of the unity
arguments” in the quasianalytic context.
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Infrahyperfunctions

Let us supplement the previous result:

Theorem
(i) Let Np be non-quasianalytic. We have the support

preserving sheaf inclusions

D′ → D′{Np} → B{Mp} → B

(ii) For every ultradifferential operator P(D) of class {Mp}
there is a unique sheaf morphism

P(D) : B{Mp} → B{Mp}

that coincides on Γc(Rd ,B{Mp}) = E ′{Mp}(Rd ) with the usual
action of P(D) on quasianalytic functionals.
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Non-linear theory of ultradistributions and
infrahyperfunctions: What was known?

For non-quasianalytic ultradistributions:

T. Gramchev constructed a differential algebra containing
Gevrey ultradistributions (Mp = p!σ). Drawbacks:

1 Only works for σ > 2.
2 Loss of regularity: It contains D′{p!σ} but only preserves

multiplication on E{p!τ} ( E{p!σ} with τ = (σ + 1)/3.

Benmeriem and Bouzar improved the index to (σ + 1)/2, but
losing the action of ultradifferential operators.

Pilipović and collaborators (Scarpalezos, Delcroix, ...): more
general non-quasianalytic ultradistributions, but the loss of
regularity phenomenon shows up again.

For hyperfunctions:

Basically nothing was known preserving multiplication of
functions ...
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Algebras of generalized functions

We have introduced the following new algebra.

First a sequence space. Consider the (DFS)-space

s{Mp} =
{

(an) ∈ CN : |an| = O(e−M(λn)), for some λ > 0
}
,

its strong dual is the (FS)-space

s′{Mp} =
{

(an) ∈ CN : |an| = O(eM(λn)), ∀λ > 0
}
,

We define the algebra of generalized functions of class {Mp} as

G{Mp}(Ω) = E{Mp}(Ω; s′{Mp})/E{Mp}(Ω; s{Mp}).

That we get an algebra is implied by (M.1) and (M.2).
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Non-quasianalytic case: Embedding D′{Mp} into G{Mp}

We clearly have the embedding σ : E{Mp} → G{Mp}

mapping f into the (equivalence class) of a constant
sequence fn = f .
Note that D′{Mp} and G{Mp} are soft (partitions of the unity).
The rest is taking care of the regularization procedure.

We use a mapping ιc : E ′{Mp}(Rd )→ G{Mp}
c (Rd )

f → [(f ∗ φn)n].

The key point is to improve the properties of φ. We choose:
Another non-quasianalytic sequence Np satisfying ((M.1),
etc) and Np ≺ Mp. (⇒ E{Np} ( E{Mp} )

φ such that φ̂ ≡ 1 near the origin and φ̂ ∈ D{Np}(Rd ).
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Non-quasianalytic case: Embedding D′{Mp} into G{Mp}

Theorem
Suppose Mp satisfies (M.1), (M.2), and (M.3)′. There is a
sheaf monomorphism ι : D′{Mp} → G{Mp} having the following
properties on any open subset Ω of Rd

(i) ι|E ′{Mp}(Ω) = ιc .

(ii) ι commutes with {Mp}-ultradifferential operators P(D),

P(D)ι(f ) = ι(P(D)f ), f ∈ D′{Mp}(Ω).

(iii) ι|E{Mp}(Ω) coincides with the constant embedding σ. In
particular,

ι(fg) = ι(f )ι(g), f ,g ∈ E{Mp}(Ω).
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Quasianalytic case: Is G{Mp} even a sheaf?

Quasianalytic case: G{Mp} is a presheaf but not obvious at
all whether it is a sheaf (no partitions of the unity available).
We realized that showing G{Mp} is a sheaf reduces to solve
the Cousin problem for E{Mp}(Ω; s{Mp}).
We needed the following assumption: Set mp = Mp/Mp−1

(M.2)∗ 2mp ≤ CmpQ , for some Q ∈ N, C > 0.
(M.2)∗ is intrinsically related to the topology of s{Mp}:
characterizes Vogt’s (DN) property for its dual space.

Theorem

G{Mp} is a soft sheaf under (M.1), (M.2), (N.E), and (M.2)∗.

Sheaf property: We showed the solvability of Cousin
problem for vector-valued quasianalytic functions.
Softness: Precise regularization procedure and extension
operators for quasianalytic functions (adaptation of
Hörmander’s techniques).
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The (first) Cousin problem for holomorphic functions

Theorem (Oka-Cartan)

Let Ω ⊆ Cd be a Stein open and let {Ωi : i ∈ I} be an open
covering of Ω consisting of Stein open sets. Suppose
ϕi,j ∈ O(Ωi ∩ Ωj), i , j ∈ I, are given such that

ϕi,j + ϕj,k + ϕk ,i = 0 on Ωi ∩ Ωj ∩ Ωk .

Then, there are ϕi ∈ O(Ωi), i ∈ I, such that

ϕi,j = ϕi − ϕj on Ωi ∩ Ωj .

Since every open set in Rd has a fundamental system of
complex neighborhoods consisting of open sets, the
Cousin problem is solvable for the sheaf of real analytic
functions on Rd (now for arbitrary open sets and coverings)
Is the Cousin problem solvable in general spaces of
quasianalytic functions?
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The Cousin problem for quasianalytic functions
We solved the vector-valued Cousin problem in the following case:

Theorem

Assume (M.1), (M.2)′, (QA), and (NE) and let F be a (DFS)-space such
that its strong dual F ′β has the property (DN). Let Ω ⊆ Rd be open and
M = {Ωi : i ∈ I} be an open covering of Ω. Suppose
ϕi,j ∈ E{Mp}(Ωi ∩ Ωj ; F ), i, j ∈ I, are given F-valued functions such that

ϕi,j + ϕj,k + ϕk,i = 0 on Ωi ∩ Ωj ∩ Ωk ,

for all i, j, k ∈ I.Then, there are ϕi ∈ E{Mp}(Ωi ; F ), i ∈ I, such that

ϕi,j = ϕj −ϕi on Ωj ∩ Ωi ,

for all i, j ∈ I.

A Féchet space E with a generating system of semi-norms {‖ ‖k : k ∈ N}
has the Vogt property (DN) if

(∃m ∈ N)(∀k ∈ N)(∃j ∈ N)(∃τ ∈ (0, 1))(∃C > 0)

‖x‖k ≤ C‖x‖1−τ
m ‖x‖τj , x ∈ E .
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Quasianalytic case: Carrying out the regularization
procedure

Now we know that B{Mp} and G{Mp} are soft, the next step is to
construct a regularization procedure for compact sections,

ιc : E ′{Mp}(Rd )→ G{Mp}
c (Rd ) f → [(f ∗ θn)n].

We constructed θn as follows (“analytic mollifier sequence”):

Take a Hörmander analytic cut-off sequence 0 ≤ χn ≤ 1 for the
unit ball:

(a) χn ≡ 1 on B(0,1),
(b) (χn)n is a bounded sequence in D(B(0,2)),
(c) there is L ≥ 1 such that ‖χ(α)

n ‖L∞(Rd ) ≤ L(Ln)|α|, |α| ≤ n.

We define θn via Fourier transform θn(x) = ndF−1(χn)(nx) and
ask: for every c > 0 there are C, δ, γ > 0 such that

sup
|x|≥c

|θ(α)
n (x)| ≤ Ce−δnγ|α|α!, α ∈ Nd ,n ∈ N.
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Quasianalytic case: Realization of the embedding

The above regularization procedure works to obtain:

Theorem

Suppose Mp satisfies (M.1), (M.2), (QA), (NE), and (M.2)∗. There is
a sheaf monomorphism ι : B{Mp} → G{Mp} having the following
properties on any open subset Ω of Rd

(i) ι|E′{Mp}(Ω) = ιc .

(ii) ι commutes with {Mp}-ultradifferential operators P(D).

(iii) ι|E{Mp}(Ω) coincides with the constant embedding σ
=⇒ ι preserves the multiplication of E{Mp}-functions .
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For further details on the topic of this talk, see our recent
articles:

A. Debrouwere, H. Vernaeve, J. Vindas, Optimal embeddings of
ultradistributions into differential algebras, Monatsh. Math., to
appear, doi:10.1007/s00605-017-1066-6.

A. Debrouwere, H. Vernaeve, J. Vindas, A non-linear theory of
infrahyperfunctions, Kyoto J. Math., to appear (preprint:
arXiv:1701.06996).

A. Debrouwere, J. Vindas, Solution to the first Cousin problem
for vector-valued quasianalytic functions, Ann. Mat. Pura Appl.,
doi:10.1007/s10231-017-0649-0.
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