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voor papa

al raak je in ’t denken verloren
en lijkt je verstand wel bevroren

je blijft toegewijd
tot absurditeit

zo worden ideeën geboren





Preface

“It’s the questions we can’t answer that teach us the most. They teach
us how to think. If you give a man an answer, all he gains is a little fact.
But give him a question and he’ll look for his own answers.”

— Patrick Rothfuss, The Wise Man’s Fear

Picture yourself as an entry-level researcher in a mathematical field of
choice, eager to discover and build new mathematical theories of your own.
You dive into the existing literature to read up on what is already known
and what remains a mystery. Authors of renowned papers present their
results and meticulously describe the methods to obtain them. And despite
being able to replicate known techniques and approaches, all your attempts
lead to nothing. Frustrated, you throw away the piece of paper you were
writing on and enviously curse those successful scientists.
However, after a while, you slowly crawl your way towards something
interesting. Yes, the more you think about it, maybe this small idea has
some potential. You progress, you get stuck, you talk to fellow colleagues
and progress some more. Maybe you alter your objective or take a slightly
different path. Finally, you end up with something decent. Maybe not
as spectacular as the achievements of those other authors, but something
worth mentioning. Then, once you have written everything down neatly,
you realise that you’ve omitted the largest chunk of your journey: the
process, the obstacles, the failures.

Scientific literature seldom portrays which hurdles were conquered to
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achieve results. I myself am guilty of doing the very same thing. Because,
let’s face it, who’d want to publish an article titled ‘On some ideas that
led to nothing’?1 Therefore, I gladly break with tradition and dedicate this
Preface to all the difficulties one encounters when doing research. A tribute
to the process and a tribute to failure.

I started my scientific journey in October of 2017 as the co-supervisor of
the master’s thesis of Sam Adriaensen, my now most frequent co-author2.
Under the supervision of prof. Leo Storme, we aimed to characterise some
geometric codewords of small weight (Chapter 3). This led to my very first
article, which is a textbook example of the staggering difference between
process and result.
It took almost two years to finish the article. Results were found in small
bits and pieces, constantly improving the previous ones by just a small
amount. In the late spring of 2018, I participated in my first conference:
‘Combinatorics’. There, I met dr. Zsuzsa Weiner, who took me under her
wing and shared some valuable insights. I remember spending many
evenings lying on the floor of my residence, surrounded by large amounts
of scrap paper. Back in Belgium, I finalized all arguments and heaved a
sigh of relief when the article got submitted.

Honestly, after talking about the same topic for about two years, I was
getting afraid to be branded as ‘the guy who does nothing but characterise
codewords’. Hence, in the Spring of 2019, I decided that it was time for
something new. And by ‘new’, I mean some old research problem my
supervisor once proposed during my master’s. At that time, we tried to
generalise a well-known three-dimensional example of a saturating set —
called the ‘oval plus line’ construction — to arbitrary odd dimension. Sadly,
we failed to do so. But in the Spring of 2019, I managed to succeed (⋆).
Getting excited, I plunged into the vast world of saturating sets and dis-
covered another interesting example, this time in the projective plane. After
playing around with it combinatorially, some results were achieved for

1It’s tempting, I know.
2and vice versa, I will deny any future change of this status.
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ϱ = 1 (∗). A gut feeling convinced me that it was possible to prove the same
for general ϱ (∗∗), but I got stuck on some technical details and therefore
put the problem temporarily on hold.

In January of 2020, I visited prof. Daniele Bartoli in Perugia, where we
worked on some ideas I’d written down in 2018 concerning codewords
of small weight (Chapter 4). I also met prof. Fernanda Pambianco, an
expert on saturating sets and covering codes. When I proudly presented
my results so far, she helpfully pointed me towards some relevant articles,
showing me that the results I’d achieved ((⋆) and (∗)) were already known.
Needless to say, my soul got slightly crushed.
After allowing myself to have a day or two of self-pity, I took a deep breath
and put all my effort into proving (∗∗), determined not to throw in the
towel. Thankfully, some perceptive discussions with prof. Maarten De
Boeck put me back on track. Then, on a skiing trip3, I had an epiphany
while scribbling down some math in a little notebook: an intriguing link
between subgeometries and affine lines (Chapter 9), which allowed me to
tackle problem (∗∗) once and for all (Chapter 10).

Saturating sets can be constructed using strong blocking sets. So, at the start of
2021, it wasn’t that surprising to suddenly find myself playing around with
higgledy-piggledy sets, which form a fascinating family of strong blocking
sets. If one focuses on projective geometries of dimension at most five,
several authors show the existence of very small higgledy-piggledy sets.
Only a few cases remained open for me to sink my teeth in (Chapter 6).
I recall being on holiday and waiting for a bus in Greece when dr. Geertrui
Van de Voorde sent me an e-mail, expressing her interest in higgledy-
piggledy sets and their link with linear sets. I couldn’t help but feel an
overwhelming sense of delight take over me. Several thoughts and ideas
were exchanged, and before we knew it, a new research project was born. I
discussed this with my colleague and friend dr. Jozefien D’haeseleer, who
quickly joined the team4.

3The saying is true: mathematicians have their best ideas doing the most arbitrary stuff.
4We could finally check off ‘collaborated’ from our bucket list.
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Although the research matter was quite heavy and high-level, ‘the process’
had lost some of its cruelty. Or maybe I had gained some experience and
confidence. Regardless, the collaboration led to the results bundled in
Chapter 7, which finishes the search for small higgledy-piggledy sets in
projective geometries of dimension five or less.

Part I embodies all my results concerning the characterisation of codewords
arising from points and hyperplanes in a projective geometry. Chapter 2
consists mostly of new results I discovered while writing this thesis.
Parts II and III describe results concerning strong blocking sets and sat-
urating sets, respectively. Although this order reverses the chronology of
research, it felt like a more natural way to introduce the reader to these
notions.
The first chapter of each part is meant to get the reader familiar with the
relevant concepts and literature. Appendix A and Appendix B summarise
all work in a language of choice.

This dissertation stands for six years of mathematical research. Six years
of hardship and frustration, but also six years of joy and satisfaction when
things work out. A lot of care has been put into this thesis, with an eye for
detail and clarity, to make it as accessible as possible. The only thing left to
do is to read it. So, all in all, I’ve left the easy bit to you.

Lins Denaux
June 2023
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0 Preliminaries

As all works of scientific nature should have, this chapter is devoted to
preliminaries — definitions and concepts such that you as a reader are
familiar with the objects and structures we are dealing with. However, the
mathematical world is vast and virtually boundless, so we do not have
the luxury of discussing every elementary principle we build our work
upon. Therefore, we expect the reader to be familiar with basic notions of
set theory, graph theory, group theory and calculus, and to have a clear
understanding of (linear) algebra, emphasising vector spaces over finite
fields.

GENERAL ASSUMPTION
Throughout this work, we assume that d ∈ N \ {0} and that q is a
prime power, i.e. q := ph, where p is prime and h ∈ N \ {0}.

Moreover, we generally assume that k ∈ {0, 1, . . . , d}.

The Galois field of order q will be denoted by Fq. The d-dimensional vector
space over a field F will be denoted by V(d, F), or by V(d, q) if F = Fq.
The vector dimension of a vector subspace W of V := V(d, q) is denoted
by dimV(W). Vectors of a vector space are inherently column vectors. We
denote the zero vector by 0 and the all-one vector by 1.

1



2 CHAPTER 0. PRELIMINARIES

0.1 Finite geometries

Although coding theory is clearly put forward as the main topic of investiga-
tion, the toolkit used to obtain results within this area is of pure geometric
nature. In reverse order of generality, this section introduces the reader to
all relevant geometries that are needed to navigate through this work.

0.1.1 Incidence geometries

Several geometries will pop up throughout this thesis, and all of these are
derived from the general concept of an incidence geometry.

Definition 0.1.1 (incidence geometry)

For any r ∈ N, an incidence geometry of rank r is a tuple (V , I, Tr, t), with
V a set, I a symmetric relation on V and t a surjective map from V onto the
set Tr := {0, 1, . . . , r − 1} such that (v, v′) ∈ I implies that t(v) ̸= t(v′) for
all v, v′ ∈ V .

The elements of V are called varieties, I is called the incidence relation
and t is called the type map, hence any element v ∈ V is said to have type
t(v). As such a type map t often describes the dimension of a variety in most
geometries, varieties of type 0, 1, 2, 3 and r − 1 are called points, lines,
planes, solids and hyperplanes, respectively.
Any two varieties v, v′ ∈ V such that (v, v′) ∈ I are called incident and
are by definition of different types. If t(v) ⩽ t(v′), then v is said to be
(lying/contained) in or on v′, while v′ is said to contain or go through v. This
is denoted by v ⊆ v′ or v′ ⊇ v (respectively v ⊂ v′ or v′ ⊃ v if t(v) < t(v′)
and v ∈ v′ or v′ ∋ v if v is a point). Points incident with a common line are
said to be collinear, while lines incident with a common point are called
concurrent. Points or lines lying in a common plane are said to be coplanar.
If m ∈ N, a line is called an m-secant to a point set P if it contains precisely
m points of P . If m is 0, 1 or at least 2, such a line is also called external,
tangent or secant to P , respectively.
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If V is finite, then the incidence geometry is said to be a finite (incidence)
geometry. As one can suspect, all geometries considered in this thesis are
assumed to be finite.

If G := (V , I, Tr, t) is an incidence geometry of rank r, then G ′ := (V , I, Tr, t′)
is defined to be its dual, where t′ : V → Tr is a type map defined by
t′(v) := r − t(v)− 1. Naturally, G ′ is an incidence geometry of rank r as
well. Note that duality is a symmetric relation, i.e. G ′ is the dual of G if and
only if G is the dual of G ′.

An isomorphism between two incidence geometries G1 := (V1, I1, Tr, t1)
and G2 := (V2, I2, Tr, t2), necessarily of the same rank, is a bijection φ :
V1 → V2 such that t1(v) = t2(φ(v)) and (v, v′) ∈ I1 ⇔ (φ(v) , φ(v′)) ∈ I2
for all v, v′ ∈ V1. If G1 = G2 then φ is called an automorphism. If G1 and G2
are each other’s dual, then φ is said to be a duality. Although it is always
possible to construct the dual of an incidence geometry, a duality does not
necessarily exist. If a duality however does exist, the incidence geometry is
said to be self-dual.

Finally, if G1 := (V1, I1, Tr1 , t1) and G2 := (V2, I2, Tr2 , t2) are two incidence
geometries with the property that V1 ⊆ V2, t1(v) = t2(v) and (v, v′) ∈ I1 ⇔
(v, v′) ∈ I2 for all v, v′ ∈ V1, then G1 is called a subgeometry of G2. Note
that this implies that r1 ⩽ r2.

0.1.2 Point-line geometries and designs

An incidence geometry of rank 0 is a tuple of empty objects, while one
of rank 1 is essentially an arbitrary set. As the varieties of an incidence
geometry of rank 2 are partitioned into just two types, such a geometry
is simply called a point-line geometry. The fact that r = 2 allows Defin-
ition 0.1.1 to be substantially simplified: a point-line geometry is a tuple
(P ,L, I), with P and L a non-empty point and line set, respectively, and
I ⊂ (P ×L) ∪ (L×P) a symmetric (incidence) relation.
Note that the dual of a point-line geometry G := (P ,L, I) is simply the
point-line geometry G ′ := (L,P , I).



4 CHAPTER 0. PRELIMINARIES

A broad topic of investigation concerns the concept of a (block) design. For
any t, v, k, λ ∈ N \ {0} with t < k < v, a t − (v, k, λ) (block) design is a
point-line geometry (P ,B, I) such that |P| = v, such that each line (which
is often called a block) contains precisely k points and such that any t points
have precisely λ incident blocks in common. We assume that no two blocks
are incident with the same k points, hence any block is uniquely identified
by the set of points it contains.

Most designs considered in this work are 2 − (v, k, 1) designs, which are
also known as 2-Steiner systems.

0.1.3 Projective geometries

Denote by PG(d, F), or PG(d, q) if F = Fq, the d-dimensional projective
geometry over the field F, which is the incidence geometry (V , I, Td, t) of
rank d arising from the vector space V(d + 1, F): the set V consists of all
vector subspaces, the incidence relation I is inherited and the map t maps a
subspace W to its (projective) dimension1 dim(W) := dimV(W)− 1.
Varieties of PG(d, F) are called (projective) subspaces.

Projective geometries are the key players of this thesis. Without exception,
every topic is situated within a (finite) projective geometric context. This
is why, throughout this work, whenever ‘dimension’ or ‘subspace’ is men-
tioned, these are implied to be projective. A subspace of dimension k is
called a k-dimensional subspace, or k-subspace for short. As mentioned be-
fore, 0-, 1-, 2-, 3- and (d − 1)-subspaces of PG(d, F) are alternatively called
points, lines, planes, solids and hyperplanes, respectively. The unique
(−1)-dimensional subspace of PG(d, q) is called ‘the empty set’, while the
unique d-dimensional subspace is often referred to as ‘the whole space’.

As any vector subspace is a vector space in itself, any subspace can be
viewed as a projective geometry. Conversely, any d-dimensional project-

1Note that we mischievously deviate from the formal definition of an incidence geometry
by allowing a (unique) variety of (projective) dimension −1.
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ive geometry over a field is naturally embeddable as a d-subspace of a
projective geometry over the same field but of a larger dimension.

Below, we limit ourselves to all those projective geometric notions needed
to manoeuvre through this thesis. For an extensive work on projective
geometries and everything related, we refer to Hirschfeld and Thas [80–82].

Subspaces and subgeometries

As PG(d, q) has a finite number of subspaces, one can count the varieties
of each type. This can be done by observing the underlying vector space
V(d + 1, q). The number of k-subspaces of PG(d, q) equals the Gaussian
coefficient [

d + 1
k + 1

]
q

:=

(
qd+1 − 1

) (
qd − 1

)
· · ·
(
qd−k+1 − 1

)
(qk+1 − 1) (qk − 1) · · · (q − 1)

.

For simplicity’s sake, we denote the number of points (or hyperplanes) of
PG(d, q) by θd, i.e.

θd :=
[

d + 1
1

]
q
=

qd+1 − 1
q − 1

= qd + qd−1 + · · ·+ q + 1,

where we settle on the convention that θ−1 := 0. We write θd,q if we want to
emphasize the underlying field order.

Notions such as the span ⟨Π, Σ⟩ or intersection Π ∩ Σ of two (or more)
subspaces Π and Σ of PG(d, F) are naturally inherited from the underlying
vector space. Two subspaces are disjoint or skew if their intersection is
empty. If this is not the case, we say that such subspaces intersect or
meet each other. Certain subspaces are said to cover a point set P if every
point of P is contained in at least one of these subspaces. Moreover, as
the dimension of a subspace is equal to its vector dimension minus one,
Grassmann’s identity is still valid within a projective geometry:

dim(Π) + dim(Σ) = dim(⟨Π, Σ⟩) + dim(Π ∩ Σ) .
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This identity will be used numerously in arguments and proofs throughout
this thesis, often without mention.

A k-spread of PG(d, F) is a set of pairwise disjoint k-subspaces covering all
points of PG(d, F).

Certain k-subspaces of PG(d, F) are said to be in general position if

(1) every
⌈

d+1
k+1

⌉
of these subspaces span the whole space, and

(2) every
⌈

d+1
d−k

⌉
of these subspaces have an empty intersection.

The above definition is commonly only specified for k = 0 but is generalised
for the sake of this thesis. This notion stays invariant under a duality.
A set of points in general position is called an arc. A basis is defined to be
an arc of size d + 1, while an arc of size d + 2 is called a frame.

For any k-subspace Π and any point set B, the cone of PG(d, F) with vertex
Π and base B is the set consisting of all points in Π together with all points
lying in a line spanned by a point of Π and a point of B. The base B is
always assumed to lie in a (d − k − 1)-subspace disjoint to Π.

Finally, we consider three specific types of subgeometries of PG(d, F).

(1) The point-line geometry of PG(d, F) is the rank 2 subgeometry whose
set of varieties consists of the points and lines of PG(d, F); incidence
is inherited.

(2) A projective subgeometry is a subgeometry that is a projective geo-
metry in itself. Such a subgeometry PG(d′, F′), where F′ necessarily
is a subfield of F and d′ ⩽ d, will be called a d′-dimensional F′-
subgeometry of PG(d, F). Its subspaces are called F′-subspaces, its
lines and planes will be called F′-sublines and F′-subplanes, respect-
ively.

As a rule of thumb, an F′-subspace S is always treated as a variety
of PG(d′, F′). We write ⟨S⟩F (or simply ⟨S⟩q if F = Fq) to signal that
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S is being viewed as a variety of the ambient projective geometry
PG(d, F).

(3) An affine geometry, denoted by AG(d, F), is a rank d subgeometry
whose set of varieties consists of all subspaces of PG(d, F) except for
a hyperplane H∞ and all subspaces it contains. This hyperplane is
called the hyperplane at infinity. Varieties of AG(d, F) are called
affine subspaces.

As a rule of thumb, an affine subspace A is always treated as a variety
of AG(d, F). We write A, called the projective completion of A, to
signal that A is being viewed as a variety of the ambient projective
geometry PG(d, F).

Finally, two affine k-subspaces are said to be parallel if the intersection
of their projective completions contains a (k − 1)-subspace of H∞.
Note that parallelism is an equivalence relation on the set of affine
k-subspaces.

By considering the underlying vector space of the ambient projective geo-
metry, one can deduce that every projective subgeometry is uniquely de-
termined by a frame and a subfield.

Result 0.1.2 ([25, Theorems 2.6 and 2.8] and [37, Lemma 1])

Let F′ be a subfield of a field F. Then for each frame of PG(d, F), there exists a
unique F′-subgeometry containing each point of the frame.

We will frequently make use of projective subgeometries in Parts II and
III. In particular, the following observation will prove its usefulness in
Chapter 10.

Lemma 0.1.3

Suppose that t ∈ N \ {0}, consider a (d − 1)-dimensional Fq-subgeometry C of
PG
(
d, qt) and define Σ := ⟨C⟩qt . Let L be an Fq-subline of PG

(
d, qt) having a

point in common with C such that ℓ := ⟨L⟩qt ⊈ Σ. Then there exists a unique
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d-dimensional Fq-subgeometry containing both C and L.

Proof. Define P := C ∩L and consider a frame FC := {P, P1, P2, . . . , Pd} of C.
For any two distinct points Q1, Q2 ∈ L \ {P}, the set F := {P1, P2, . . . , Pd}∪
{Q1, Q2} is a frame of PG

(
d, qt). Therefore, by Result 0.1.2, there exists a

unique d-dimensional Fq-subgeometry B containing each point of F .
Note that both C and L are Fq-subspaces within B and therefore, by Grass-
mann’s identity, they intersect in a point of B, necessarily equal to Σ∩ ℓ = P.
Hence, B contains all points of FC and {Q1, Q2} and thus, by Result 0.1.2,
contains both C and L. ■

Coordinates and collineations

A point P of PG(d, F) corresponds to a vector line of V(d + 1, F). If
(x0, x1, . . . , xd)

⊺ is a non-zero vector of this line, then the vector line, and
therefore the point P, is given by the set of F-multiples of (x0, x1, . . . , xd)

⊺.
Hence, the coordinates of a point are defined up to a scalar multiple. These
are said to be homogeneous coordinates or simply coordinates.

If δ maps a point with coordinates (a0, a1, . . . , ad)
⊺ onto the hyperplane

defined by the set of points whose coordinates satisfy a0X0 + a1X1 + · · ·+
adXd = 0, and maps any k-subspace ⟨P0, P1, . . . , Pk⟩ onto the (d − k − 1)-
subspace δ(P0) ∩ δ(P1) ∩ · · · ∩ δ(Pk), then one can check that δ is a duality
of PG(d, F), making PG(d, F) self-dual.

The canonical frame is the point set {E0, E1, . . . , Ed, E}, where Ei has all-
zero coordinates except for a 1 in the (i + 1)th position, and E has coordin-
ates 1 = (1, 1, . . . , 1)⊺.

An automorphism of a projective geometry PG(d, F) is called a collineation.
The fundamental theorem of projective geometry states that every collineation of
PG(d, F), d ⩾ 2, arises from an element of the semilinear group ΓL(d + 1, F),
i.e. a mapping V → V : v 7→ Avσ of the underlying vector space V, where
A is a non-singular square matrix and σ is an automorphism of F. Any
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other semilinear map gives rise to the very same collineation if and only if
their corresponding field automorphism equals σ and their corresponding
matrix is a non-zero F-multiple of A. Therefore, by taking the quotient
group, we obtain the collineation group PΓL(d + 1, F) ∼= Aut(PG(d, F)).
A collineation is said to be a projectivity if it arises from an element of the
general group GL(d + 1, F) (i.e. an element of the semilinear group with the
identity map as its field automorphism). The set of all projectivities forms
the projectivity group PGL(d + 1, F). Two subsets of PG(d, F) are called
projectively equivalent if there exists a projectivity that maps one onto the
other.

The collineation group acts transitively on the set of all (ordered) frames
(the projectivity group even acts sharply transitively on this set). This is
why, given any configuration of subspaces of PG(d, F), one can choose any
frame to be the canonical frame to prove any property that remains invariant
with respect to collineations.

Axiomatic projective geometries

A projective geometry can be defined axiomatically, which eliminates the
need for fields or vector spaces.

Definition 0.1.4 (axiomatic projective geometry)

An axiomatic projective geometry is a point-line geometry that satisfies
the following three axioms:

(1) every two distinct points are contained in a unique line;

(2) Veblen’s axiom holds: if A, B, C and D are four distinct points such
that the lines AB and CD share a point, then so do the lines AC and
BD;

(3) every line contains at least three points.

Contrary to its vectorial counterpart, the above definition does not mention
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any notion of dimension (or rank), nor any concept of a subspace (or variety).
However, these can be derived axiomatically as well.

Definition 0.1.5 (axiomatic subspace and dimension)

A subspace of an axiomatic projective geometry is a point set S such that
any point on a line containing at least two points of S is also contained in S .
A subspace S has dimension k if it is the largest integer for which we can
find a strictly increasing chain of subspaces ∅ ⊂ S0 ⊂ S1 ⊂ · · · ⊂ Sk = S .
In this way, the dimension of an axiomatic projective geometry is defined
to be equal to the dimension of its entire point set.

One can easily check that the point-line geometry of a projective geometry
PG(d, F) satisfies the axioms of Definition 0.1.4, and that its notions of di-
mension and subspace coincide with the ones described in Definition 0.1.5.

Veblen and Young [110] proved that an axiomatic projective geometry of
dimension d ⩾ 3 is isomorphic to the point-line geometry of a projective
geometry arising from a vector space over a division ring. As Wedderburn’s
little theorem implies that every finite division ring is a field, their findings
led to the following important result.

Result 0.1.6 ([110])

A finite axiomatic projective geometry of dimension d ⩾ 3, extended with its axio-
matically defined subspaces and dimension map as described in Definition 0.1.5,
is isomorphic to PG(d, q) for a certain prime power q.

The above theorem is not true for d = 2 as numerous counterexamples
have been discovered.

0.1.4 Polar spaces

For any r ∈ N \ {0, 1, 2}, a polar space of rank r is an incidence geometry
(V , I, Tr, t) that satisfies the following axioms.
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(1) The subgeometry whose set of varieties consists of all elements of V
that are contained in a certain element v ∈ V is a t(v)-dimensional
projective geometry.

(2) If v1 and v2 are two distinct elements of V , then their intersection (i.e.
the set of all elements of V contained in both v1 and v2) is an element
of V as well.

(3) For every non-incident point-hyperplane pair (P, H), there exists a
unique hyperplane H′ ∋ P such that the intersection of H and H′ has
type r − 2 and contains all points in H that are collinear with P.

(4) There exist two hyperplanes whose intersection is empty.

The varieties of a polar space are called subspaces, which makes sense
as these are isomorphic to projective geometries and have a type equal to
their (projective) dimension. However, to avoid confusion, hyperplanes of
a polar space are called generators.

We can include the case r = 2 by slightly altering the above system of
axioms. Polar spaces of rank 2 are called generalised quadrangles; we only
consider their finite version. For any s, t ∈ N \ {0}, a generalised quad-
rangle of order (s, t) is a point-line geometry that satisfies the following
axioms.

(1) Two distinct points are contained in at most one line.

(2) Every line contains s + 1 points; every point is contained in t + 1 lines.

(3) For every non-incident point-line pair (P, ℓ), there exists a unique
point Q ∈ ℓ collinear with P.

Polar spaces are an interesting and broadly studied kind of incidence geo-
metry with many similarities to projective geometries. As with generalised
quadrangles, only the finite case will be considered. Tits [107] proved that
all finite polar spaces of rank r ⩾ 3 are classical, i.e. one of the following
five types: an elliptic, parabolic or hyperbolic quadric, a Hermitian polar space or
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a symplectic polar space. Quadrics are by far the most discussed finite polar
spaces of this thesis, with Hermitian polar spaces a not-so-close second. As
symplectic polar spaces do not emerge at all, we omit their definition.
For simplicity’s sake, we view and hence define these substructures as
particular point sets of PG(d, q). Their subspaces are defined to be the
subspaces of PG(d, q) that only contain points of the polar space. This
allows us to define finite polar spaces of general rank r ∈ N. By convention,
any polar space of rank 0 is the empty set.

An elliptic quadric of rank r is a point set of PG(2r + 1, q) projectively
equivalent to the point set Q−(2r + 1, q) whose coordinates satisfy

f (X0, X1) + X2X3 + · · ·+ X2rX2r+1 = 0,

where f is an irreducible homogeneous quadratic form over Fq.

A parabolic quadric of rank r is a point set of PG(2r, q) projectively
equivalent to the point set Q(2r, q) whose coordinates satisfy

X2
0 + X1X2 + X3X4 + · · ·+ X2r−1X2r = 0.

If q is even, then all tangent lines to P share a point called the nucleus
of P . A parabolic quadric of rank 1 is called a non-singular conic.

A hyperbolic quadric of rank r ⩾ 1 is a point set of PG(2r − 1, q) pro-
jectively equivalent to the point set Q+(2r − 1, q) whose coordinates
satisfy

X0X1 + X2X3 + · · ·+ X2r−2X2r−1 = 0.

A Hermitian polar space of rank r ⩾ 1 is a point set of PG
(
2r − ε, q2)

projectively equivalent to the point set H
(
2r − ε, q2) whose coordin-

ates satisfy
Xq+1

0 + Xq+1
1 + · · ·+ Xq+1

2r−ε = 0,

with ε ∈ {0, 1}. Context should make the value of ε clear. A Hermitian
polar space of rank 1 is called a non-singular Hermitian curve.
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Any line of PG(d, q) intersects a quadric in either 0, 1, 2 or q + 1 points and
any line of PG

(
d, q2) intersects a Hermitian polar space in either 1, q + 1 or

q2 + 1 points. From this observation, the definitions of an oval, hyperoval
and unital naturally arise.
An oval, respectively hyperoval, is an arc of PG(2, q) of size q + 1, respect-
ively q + 2. It is not hard to prove that a hyperoval can only exist if q is
even. A unital U is a point set of PG

(
2, q2) of size q3 + 1 such that any line

is either tangent or a (q + 1)-secant to U .

A classical example of a hyperoval is a non-singular conic of PG(2, q), q
even, together with its nucleus. Clearly, any non-singular conic is an oval
and any non-singular Hermitian curve is a unital. However, the converse
is generally untrue. The most notable result concerning the classification of
ovals is that of Segre [101, 102], who proved that, if q is odd, every oval of
PG(2, q) is indeed a non-singular conic.

One can check that the set of points and the set of generators of Q+(3, q)
form a generalised quadrangle of order (q, 1). The converse is also true.

Result 0.1.7 ([94, 4.4.8(ii)])

Let (P ,L, I) be a generalised quadrangle of order (q, 1) naturally embedded in
PG(3, q). Then P is a hyperbolic quadric of rank 2.

Using the above result, we can detect hyperbolic quadrics of PG(3, q) com-
binatorially.

Theorem 0.1.8

Suppose that P is a point set of PG(3, q) such that

(1) each line of PG(3, q) is either a 0-, 1-, 2- or (q + 1)-secant to P ,

(2) each point of P lies in precisely two (q + 1)-secants to P , and

(3) |P| = (q + 1)2.

Then P is a hyperbolic quadric of rank 2.
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Proof. Let L be the set of all (q + 1)-secants to P . If S is the set of all
pairs (P, ℓ) ∈ P × L such that P ∈ ℓ, then by double counting we obtain
|P| · 2 = |S| = |L| · (q + 1), which implies that |L| = 2 (q + 1).
By (2), each of the q + 1 points on a line ℓ ∈ L lies on a unique line of L
different from ℓ. The span of each such line with ℓ produces a unique plane
through ℓ. As there exist precisely q + 1 planes through ℓ, each of those
planes contains on average 2 lines of L. Due to the pigeonhole principle, this
implies that the following statements are equivalent.

(A) There exists a plane that contains precisely one line of L.

(B) There exists a plane that contains at least three lines of L.

We will prove that both of these equivalent statements are false.

Consider the case q = 2. Suppose that (B) holds, hence let π be a plane
that contains at least three lines of L. Then all but at most one point P of π
are contained in P . Note that each of these points is already contained in
two elements of L lying in π. As |P| = 9 and as π contains 7 points, there
exists a point Q ∈ P not contained in π. By (2), this point Q lies in two
lines of L, at least one of which has to intersect π in a point different from
P, causing a point of π to lie in least 3 elements of L, a contradiction.
Consider the case q ⩾ 3. Suppose that (A) holds, hence let π be a plane
that contains precisely one line ℓ of L. Note that π contains at most one
point P of P not contained in ℓ. After all, if π would contain two distinct
points P, Q ∈ P such that P, Q /∈ ℓ, then ⟨P, Q⟩ would intersect ℓ and
hence would contain at least 3 points of P , making ⟨P, Q⟩ an element of L
contained in π but different from ℓ, contradicting our starting assumption.
All lines of L \ {ℓ} intersect π in a point that is necessarily contained in
{P} ∪ ℓ. Hence, by (2), there are at most 2+ (q + 1) lines of L \ {ℓ} allowed
to intersect π, implying that |L \ {ℓ}| ⩽ 2 + (q + 1), which is equivalent to
q ⩽ 2, a contradiction.
Alternatively, the case q ⩾ 3 could be proven by supposing that (B) holds
and using Theorem 2.2.1 to conclude that all points in π must be points of
P , contradicting property (2).
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By Result 0.1.7, it suffices to prove that (P ,L), together with natural incid-
ence, forms a generalised quadrangle of order (q, 1). Note that only the
third axiom isn’t trivially fulfilled. Hence, take a point P ∈ P and a line
ℓ ∈ L such that P /∈ ℓ. By (2), there exist precisely two lines ℓ1, ℓ2 ∈ L
that contain P. At least one of these lines does not meet ℓ, as else the plane
⟨ℓ1, ℓ2⟩ would contain at least three lines of L, contradicting the fact that
(B) does not hold; without loss of generality, suppose that ℓ1 ∩ ℓ = ∅. By
the falseness of both (A) and (B), each plane through ℓ1 contains precisely
one line of L other than ℓ1. As a consequence of (2), these q + 1 lines of L
are pairwise disjoint and hence cover precisely (q + 1)2 = |P| points of P .
This implies that points of P lying in the plane ⟨ℓ1, ℓ2⟩ either lie on ℓ1 or
ℓ2. As this plane intersects ℓ in a point Q ∈ P , Q needs to lie on either ℓ1
or ℓ2, and as ℓ1 ∩ ℓ = ∅, Q ∈ ℓ2. In conclusion, Q is the unique point on ℓ
collinear with P. ■

Corollary 0.1.9

Suppose that q ⩾ 5 and let P be a point set of AG(3, q) such that

(1) each affine line of AG(3, q) is either a 0-, 1-, 2- or q-secant to P ,

(2) each point of P lies in precisely two q-secants to P , and

(3) |P| = q (q + 1).

Then P is the affine part of a hyperbolic quadric of rank 2 that meets the plane at
infinity in a non-singular conic.

Proof. First, we claim that it is impossible for an affine plane π to contain
two q-secants s1 and s2 to P , together with a point P ∈ P \ (s1 ∪ s2). If this
is the case, then there are at least q + 1 − 3 ⩾ 3 affine lines in π through P
that intersect s1 and s2 in distinct points. Due to property (1), such affine
lines must be concurrent q-secants to P , contradicting (2).
Consider an affine q-secant ℓ to P . By (2), through each of the q points in ℓ,
there exists a unique affine q-secant. Moreover, no two of such q-secants
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are coplanar, as else, the affine plane that contains these affine lines meets
the impossible standard we described at the start of this proof. Hence, for
each i ∈ {1, 2, . . . , q}, there exists a unique affine plane πi through ℓ that
contains exactly one q-secant ℓi that intersects ℓ precisely in a point.
Moreover, by our first claim, no other point of P besides the ones in ℓ ∪ ℓi
lies in πi. Due to property (3), the unique affine plane πq+1 through ℓ
different from π1, π2, . . . , πq must contain exactly q points of P apart from
the ones lying in ℓ. Let Q1 and Q2 be two distinct such points. Then
⟨Q1, Q2⟩ cannot intersect ℓ, as else, by (1), this affine line would be a q-secant
that intersects ℓ in a point that is contained in some ℓj, j ∈ {1, 2, . . . , q},
contradicting (2). As Q1 and Q2 were chosen arbitrarily, all q points of P in
πq+1 that does not lie in ℓ must be the points of a parallel affine line ℓq+1.

Now consider the plane at infinity π∞. As no two of the affine q-secants
ℓ1, ℓ2, . . . , ℓq+1 are coplanar, each of their projective completions ℓi determ-
ines a unique point Pi ∈ π∞. Define P := P ∪

{
P1, P2, . . . , Pq+1

}
and

consider an affine q-secant ℓi. As ℓ was initially chosen arbitrarily, we may
let ℓi temporarily play the role of ℓ to make two observations:

(1) Pi cannot be contained in the projective completion of an affine 2-
secant to P , hence each projective completion of an affine line is
either a 0-, 1-, 2- or (q + 1)-secant to P .

(2) Pi is contained in the projective completion of precisely one affine
q-secant other than ℓi.

Note that no three points of
{

P1, P2, . . . , Pq+1
}

are collinear, as else we find
a necessarily unique line that intersects the (pairwise disjoint) projective
completions of three affine lines of

{
ℓ1, ℓ2, . . . , ℓq+1

}
, contradicting the fact

that the projective completion of ℓ shares this property (see the concept
of transversal lines in Section 0.1.6). Therefore, P meets all conditions of
Theorem 0.1.8, finishing the proof. ■
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0.1.5 Normal rational curves

The following generalises the idea that a non-singular conic is the ‘most
standard’ type of arc of size q + 1.

Definition 0.1.10 (normal rational curve)

A normal rational curve of PG(d, q) is a point set of size q + 1 projectively
equivalent to the point set corresponding to the coordinates

{(0, 0, . . . , 0, 1)⊺} ∪
{(

1, α, α2, α3, . . . , αd
)⊺

: α ∈ Fq

}
.

We will somewhat break tradition by allowing normal rational curves to
be contained in a k-subspace (viewed as an embedded PG(k, q)). A normal
rational curve C has degree k if k is the smallest integer for which there
exists a k-subspace of PG(d, q) containing C.

As the above coordinates give rise to a Vandermonde matrix, it is easy to
check that a normal rational curve of degree k is an arc of the k-subspace it
is contained in. Note that a normal rational curve of degree 1 is a line, while
one of degree 2 is a non-singular conic. A normal rational curve of degree
3 is called a twisted cubic. These objects often arise when considering
intersections of quadrics.

While a subspace is uniquely defined by a basis and an Fq-subgeometry
is uniquely determined by a frame (Result 0.1.2), a slightly larger arc is
needed to fix a normal rational curve.

Result 0.1.11 ([76, Theorem 1.18])

Let q ⩾ d + 2. Then for each arc of PG(d, q) of size d + 3, there exists a unique
normal rational curve containing each point of the arc.

The following rather specific result is needed for Chapter 7.
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Result 0.1.12 ([82, Lemma 6.31(i)])

Suppose that C is a normal rational curve of PG(d, q) of degree k ⩾ 2. Consider a
point P ∈ C and a hyperplane Π ̸∋ P. Then

{⟨P, Q⟩ ∩ Π : Q ∈ C \ {P}}

is a point set of size q contained in a normal rational curve of degree k − 1.

Consider a normal rational curve C of the projective geometry PG(d, q)
embedded as an Fq-subgeometry of PG

(
d, qt), t ∈ N \ {0}. As the q + 1

points of C are defined by coordinates that satisfy a particular algebraic
condition over Fq, one can observe this condition over Fqt to find a normal
rational curve of PG

(
d, qt) of the same degree that extends C, which is called

an Fqt -extension of C. Note that, by Result 0.1.11, such an Fqt -extension is
unique whenever q ⩾ d + 2.

0.1.6 Reguli and transversal lines

Let t ∈ N \ {0}. A regulus R of PG(2t − 1, q) is a set of q + 1 pairwise
disjoint (t − 1)-subspaces with the property that any line meeting three
elements of R, intersects all elements of R. Such a line is said to be a
transversal line of R.

Suppose that R :=
{

ϱ0, ϱ1, . . . , ϱq
}

is a regulus of PG(2t − 1, q). Let P be
a point contained in an element of R; without loss of generality, P ∈ ϱ0.
By Grassmann’s identity, the subspace ⟨P, ϱ1⟩ has dimension t and hence
has to intersect ϱ2 in precisely a point R. As the line ⟨P, R⟩ necessarily
intersects ϱ1, it is a transversal line of R through P. In fact, any line through
P meeting both ϱ1 and ϱ2 has to lie in ⟨P, ϱ1⟩ and hence must contain R,
which implies that ⟨P, R⟩ is the only transversal line through P.
In conclusion, any transversal line of R through a point of one of its ele-
ments is unique. Therefore, we will often speak of the transversal line of R
through P.

Naturally, the set of the q + 1 transversal lines of a regulus R of PG(3, q)
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defines a regulus as well. Such a line set is called the opposite regulus of
R.

A well-known fact, provable by fiddling with an appropriate coordinate
system, is that any three pairwise disjoint lines of PG(3, q) are contained
in a unique regulus R. Now let P be the point set covered by the q + 1
lines of R and let L be the line set consisting of all lines of R together with
all its transversal lines. Then it is not hard to check that (P ,L), together
with natural incidence, forms a generalised quadrangle of order (q, 1) and
hence, by Result 0.1.7, P is a hyperbolic quadric of rank 2.
In conclusion, any three pairwise disjoint lines of PG(3, q) give rise to a
unique hyperbolic quadric. This neat fact will often be used in Chapter 6.

0.1.7 Field reduction and Desarguesian spreads

Field reduction is by far the most advanced concept that still deserves a
spot in this chapter. The number of interesting substructures in PG

(
d, ph)

increases proportionally to the number of divisors of h, and field reduction
is a useful tool to visualise these in a projective geometry of a larger di-
mension. In this way, this technique uncovers elegant connections between
certain substructures. A great survey on this topic can be found in [88].

The field reduction map

Let r, t ∈ N \ {0}. As Fqt is a t-dimensional vector space over Fq, a natural
isomorphism exists between the vector spaces V

(
r, qt) and V(rt, q). The

idea behind field reduction is exploring the link between the projective
geometries PG

(
r − 1, qt) and PG(rt − 1, q) that directly emerges from this

isomorphism. In this way, one can map subspaces of PG
(
r − 1, qt) onto

subspaces of PG(rt − 1, q) by ‘reducing’ the underlying field to a subfield.
The authors of [88] formally introduce the field reduction map

Fr,t,q : PG
(
r − 1, qt)→ PG(rt − 1, q) , (0.1)

which maps subspaces onto subspaces by viewing these as embedded
projective geometries and applying field reduction. We extend the domain
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of Fr,t,q to point sets as well, in the sense that

Fr,t,q(P) :=
{
Fr,t,q(P) : P ∈ P

}
for any point set P of PG

(
r − 1, qt). The subscript of Fr,t,q is often omitted

once the context is clear on what parameters are being considered.

One can easily deduce some strong properties concerning the field re-
duction map. Any (k − 1)-subspace is mapped onto a (kt − 1)-subspace.
Moreover, disjoint subspaces are mapped onto disjoint subspaces and in-
cidence is preserved. Finally, the set of all points of PG

(
r − 1, qt) is mapped

onto a (t − 1)-spread of PG(rt − 1, q), which is denoted by Dr,t,q. Any
spread isomorphic to Dr,t,q is called Desarguesian. Just as with the field
reduction map, we remove the subscript of Dr,t,q if the context leaves no
room for confusion.

Result 0.1.13 ([88, Theorem 2.6])

The field reduction map F2,t,q maps the point set of an Fq-subline of PG
(
1, qt)

onto a regulus of PG(2t − 1, q).

Indicator spaces

There is a way to naturally construct a Desarguesian spread without any
need for the field reduction map, which was originally introduced by Segre
[103].

Let r ∈ N \ {0}, let t ∈ N \ {0, 1} and interpret Ω ∼= PG(rt − 1, q) as an
Fq-subgeometry of PG

(
rt − 1, qt). The subgroup of PΓL

(
rt, qt) pointwise

fixing Ω is isomorphic to Aut(Fqt/Fq). Consider a generator g of this group
and take note of the following two facts (see [39]).

(1) There exists an (r − 1)-subspace Π of PG
(
rt − 1, qt) disjoint to Ω.

(2) Any k-subspace of PG
(
rt − 1, qt) intersects Ω in a k-dimensional Fq-

subspace κ if and only if ⟨κ⟩qt is fixed by g.
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For any point P ∈ Π, it is clear that the (t − 1)-subspace
〈

P, Pg, . . . , Pgt−1
〉

is fixed by g and hence, by (2), intersects Ω in a (t − 1)-dimensional Fq-
subspace. Repeating this process for every point of Π, one obtains a
set of pairwise disjoint (t − 1)-dimensional Fq-subspaces of Ω, forming
a spread S . One can prove that this spread is Desarguesian. The set{

Π, Πg, . . . , Πgt−1
}

is called the indicator set of S , its elements are called
indicator spaces. Casse and O’Keefe [39, Theorem 6.1] proved that each
Desarguesian (t − 1)-spread of PG(rt − 1, q) possesses a unique indicator
set in PG

(
rt − 1, qt).

0.1.8 Linear sets

We introduce the reader to the basics of linear sets, see [88, 95] for a more
thorough introduction to this topic.

Let n, r, t ∈ N \ {0}. The following definition is a generalisation of the
concept of a projective subgeometry.

Definition 0.1.14 (linear set)

A non-empty point set Lπ of PG
(
r − 1, qt) is an Fq-linear set of rank n if

n is the smallest integer such that there exists an (n − 1)-subspace π of
PG(rt − 1, q) for which

Fr,t,q(Lπ) = B(π) ,

where B(π) is the set of elements of the Desarguesian spread Dr,t,q that
intersect π.

An Fq-linear set of rank 1 is a point, while one of rank 2 is an Fq-subline.

The weight of a point P ∈ Lπ is equal to dim(F (P) ∩ π) + 1. The weight
of a point of a linear set is however only well-defined if we specify the
subspace π defining Lπ.
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Definition 0.1.15 (clubs and scattered linear sets)

An Fq-linear set Lπ of rank n is called scattered if every point in Lπ has
weight one. If this is the case, the subspace π is said to be scattered as well.
If a point H ∈ Lπ has weight w ∈ {2, 3, . . . , n − 1} while all others have
weight one, then Lπ is called a w-club and H is called the head of the
w-club. An (n − 1)-club is simply called a club.

Similar to the weight of a point, the head of a club relies on which subspace
π is considered.

Clearly, a scattered Fq-linear set of rank n consists of θn−1 points, while a
club contains qn−1 + 1 points.

Proposition 0.1.16

Through every three distinct points of a club Lπ in PG
(
r − 1, qt), one of which is

the head, there exists a unique Fq-subline contained in Lπ.

Proof. Let P1, P2 ∈ Lπ be two distinct points different from the head H.
Then the line ℓ spanned by the points F (P1)∩ π and F (P2)∩ π necessarily
intersects the (n − 2)-subspace F (H) ∩ π. Therefore, ℓ determines an Fq-
linear set of rank 2 — hence an Fq-subline — contained in Lπ. Result 0.1.2
finishes the proof. ■

We only concern ourselves with Fq-linear sets of PG
(
1, qt). In this specific

case of r = 2, Lavrauw and Van de Voorde unravelled some interesting
geometric properties.

Result 0.1.17 ([89, Theorem 8])

An Fq-linear set of rank n in PG
(
1, qt) intersects an Fq-subline in at most n or

precisely q + 1 points.
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Result 0.1.18 ([89, Corollary 15], [109, Theorem 3.7.4 and further])

Suppose that q ⩾ 3 and consider a scattered Fq-linear set Lπ of rank 3 in
PG
(
1, q3). Then

(1) every two distinct points of Lπ lie in exactly two Fq-sublines contained in
Lπ, and

(2) if P ∈ π is a point, then there exists a unique plane π′ ̸= π through P
such that B(π) = B(π′).

Result 0.1.19 ([89, Theorem 23])

Suppose that q ⩾ 4. Then two distinct Fq-linear sets of rank 3 in PG
(
1, q3) share

at most 2q + 3 points.

Counting the number of Fq-linear sets is generally not an easy task, but
manageable in a few specific cases.

Lemma 0.1.20

Let Lπ1 = Lπ2 be two clubs of PG
(
1, qt) sharing the same head H. If there exists

a point P ∈ π1 ∩ π2, P /∈ F (H), then π1 = π2.
Therefore, given a club Lπ with head H, there exist exactly θt−1 subspaces π′

such that the club Lπ′ = Lπ has head H as well.

Proof. Suppose, to the contrary, that π1 ̸= π2. Then there exists a point Q1 ∈
π1 not lying in π2 nor in F (H). As B(π1) = B(π2), the spread element
B(Q1) intersects π2 in a point Q2. Both ⟨P, Q1⟩ and ⟨P, Q2⟩ necessarily
intersect F (H). Therefore, these lines both intersect B(P), B(Q1) = B(Q2)
and F (H) and hence both give rise to a (by Result 0.1.2) unique Fq-subline
in Lπ1 = Lπ2 . However, the spread elements B(P), B(Q1) = B(Q2) and
F (H) are pairwise disjoint (t − 1)-subspaces of PG(2t − 1, q), implying
that there exists a unique line through P meeting both B(Q1) = B(Q2) and
F (H), a contradiction.
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Finally, it is known that the collineation subgroup that stabilises each
element of the Desarguesian spread D acts transitively on the points in a
spread element (see e.g. [88, proof of Lemma 4.3]). Therefore, if Lπ is a
club of PG

(
1, qt) with head H and P ∈ Lπ \ {H}, then for all θt−1 points

R ∈ B(P), we find a unique subspace π′ through R with B(π′) = B(π)
that maximally intersects F (H). ■

Proposition 0.1.21

There are qt−n+1[ t
n−1]q clubs of PG

(
1, qt) of rank n with a fixed head H.

Proof. There are [ t
n−1]q subspaces of dimension n − 2 in F (H), and each of

these lies in exactly θ2t−n − θt−n subspaces of dimension n− 1 not contained
in F (H). By Lemma 0.1.20, a fixed club is determined by precisely θt−1 of
these (n − 1)-subspaces. Hence, we find that there are

[ t
n−1]q (θ2t−n − θt−n)

θt−1
= qt−n+1

[
t

n − 1

]
q

clubs with head H. ■

Proposition 0.1.22

There are [ t
n−1]q clubs of PG

(
1, qt) of rank n through a fixed point P with a fixed

head H ̸= P. In total, there are qt[ t
n−1]q clubs of PG

(
1, qt) of rank n through P

with a head different from P.

Proof. An (n − 2)-subspace σ ⊂ F (H) and a point Q ∈ F (P) span an
(n − 1)-subspace ⟨σ, Q⟩ which determines a club through P with head H.
By Lemma 0.1.20, every club through P with head H is determined by
exactly θt−1 such (n − 1)-subspaces, so the total number of clubs through
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P with head H equals
[ t
n−1]qθt−1

θt−1
.

■

Proposition 0.1.23

There are 1
2 q3 (q3 − 1

)
scattered Fq-linear sets of PG

(
1, q3) of rank 3 through a

fixed point.

Proof. We first discuss the case of q = 2. Take any set P of seven points
in PG(1, 8) and let P1 and P2 be the two points not contained in P . Define
Di := F (Pi), i ∈ {1, 2}.
For every point Q ∈ Di and every line ℓ ⊂ D3−i, there exists a unique plane
that intersects Di in Q and D3−i in ℓ. For every pair of points (Q1, Q2) ∈
D1 × D2, there exist precisely q3 + q2 − q − 1 = 9 planes that intersects Di
exactly in Qi, namely all planes through ⟨Q1, Q2⟩ not contained in the solids
⟨Q1, D2⟩ or ⟨Q2, D1⟩, which necessarily intersect each other in ⟨Q1, Q2⟩.
Therefore, we find 2 · 72 + 72 · 9 = 539 planes that meet both D1 and
D2. Easier arguments show that there exist 883 planes that intersect Di,
implying that there are exactly[

6
3

]
2
− 2 · 883 + 539 = 168 (0.2)

planes in PG(5, 2) disjoint to both D1 and D2.
Now consider a point P ∈ P , define D := F (P) and let ℓ be a line in D. The
hyperplane ⟨Di, ℓ⟩ meets D3−i in a line ℓ3−i. Each of the q + 1 points of ℓ3−i
determines a unique plane through ℓ that intersects both D1 and D2. The
other q2 planes in ⟨Di, ℓ⟩ through ℓ meet only Di. Therefore, there exists
a total of 2q2 + q + 1 planes through ℓ that intersects D1 or D2, the other
q3 − q2 = 4 planes through ℓ are disjoint to these planes. As a consequence,
there are exactly

|P| (7 · 3 + 1) = 154
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planes disjoint to both D1 and D2 that meet each of the planes in F (P) in at
least a line. By (0.2), there are 168− 154 = 14 planes disjoint to both D1 and
D2 that intersect each of the seven planes of F (P) in at most a point, and
therefore, by the pigeonhole principle, in precisely a point. To conclude,
every set of seven points in PG(1, 8) is a scattered F2-linear set.

Assume that q ⩾ 3. We first count the number of scattered planes in PG(5, q)
with respect to the Desarguesian plane spread D. Consider triples (D, ℓ, π),
where D ∈ D, ℓ is a line in D and π is a plane through ℓ different from D.
An easy check confirms that there are

(
q3 + 1

) (
q2 + q + 1

) (
q3 + q2 + q

)
such triples, and since the choice of π uniquely determines both D and
ℓ, we find that there are

(
q3 + 1

) (
q2 + q + 1

) (
q3 + q2 + q

)
planes meeting

some spread element in exactly a line. Therefore, there are [63]q −
(
q3 + 1

)
−(

q3 + 1
) (

q2 + q + 1
) (

q3 + q2 + q
)
=
(
q3 + 1

)
q3 (q3 − 1

)
scattered planes

with respect to D.
Now count all triples (π, P,S), where π is a scattered plane through the
point P such that S = Lπ. On one hand, we have

(
q3 + 1

)
q3 (q3 − 1

)
scattered planes π determining a unique Fq-linear set S , and q2 + q + 1
points P ∈ π. On the other hand, by Result 0.1.18(2), we have that, given
P and S , there are exactly two planes π through P such that S = Lπ.
Therefore, denoting the total number of scattered Fq-linear sets by x, we
know that

(
q3 + 1

)
q3 (q3 − 1

) (
q2 + q + 1

)
= x

(
q2 + q + 1

)
2 and hence,

x =
(q3+1)q3(q3−1)

2 . The fact that the number of scattered Fq-linear sets
through each of the q3 + 1 points of PG

(
1, q3) is a constant finishes the

proof. ■

0.2 Linear codes

This section describes a branch of discrete mathematics with many (!) prac-
tical (and mostly invisible) applications in day-to-day life. Since the dawn
of (error-correcting) coding theory, researchers began rapidly developing
systems of highly optimised communication, significantly reducing the
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risk of noise interfering with the message being conveyed. Examples from
the endless list of applications include cryptography, data compression,
transmission and storage, deep space communication and genetic sequence
analysis.
See e.g. [11] for an introduction to the topic of coding theory.

As mentioned before, finite geometries will be used to obtain characterisation
and construction results within this research domain.

0.2.1 Support, weight, equivalence and duality

A (q-ary) linear code C of length n is a vector subspace of Fn
q , its elements

are called codewords. The dimension of C is equal to dimFn
q (C). By denot-

ing the latter by k, we call C an [n, k]q-code. A generator matrix for C is a
(k × n)-matrix whose rows form a basis of C.

In the context of coding theory, we say that any vector v ∈ Fn
q consists of

symbols (of Fq), each appearing in a unique position (of {1, 2, . . . , n}). We
define the support of v, denoted by supp(v), as the set of all positions
with non-zero symbols. The size of this set is called the weight of v and
is denoted by wt(v) := |supp(v)|. The minimum weight of the code C is
defined as wt(C) := min{wt(c) : 0 ̸= c ∈ C}.

Two q-ary linear codes are said to be equivalent if one can be obtained
from the other by performing a sequence of one of the following operations
applied to every one of its codewords simultaneously:

(1) permuting its positions;

(2) multiplying the symbol in a fixed position by a fixed non-zero scalar.

If each codeword of a linear code C has a 0 in a fixed position i, then this
particular position entails no contribution to the practical use of C or any
equivalent linear code. Such a linear code C is called degenerate. A linear
code is said to be non-degenerate if each position i is contained in the
support of at least one codeword.
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The dual code C⊥ is the orthogonal complement of C with respect to the
dot product for vectors in Fn

q , i.e.

C⊥ :=
{

v ∈ Fn
q : (∀c ∈ C) (c · v = 0)

}
.

If C is an [n, k]q-code, then C⊥ is an [n, r]q-code, where r := n − k is said to
be the redundancy of C. A generator matrix of C⊥ is called a parity check
matrix of C. For such an (r × n)-dimensional parity check matrix H, the
code C can be redefined as

C :=
{

c ∈ Fn
q : Hc = 0

}
.

0.2.2 Projective geometric codes, minimal codes and covering
codes

We now introduce three specific categories of linear codes over a finite field.
Each type of code corresponds to one of the three parts of this thesis, in
which we discuss geometric methods to improve or extend existing results
from the literature.

Projective geometric codes

Interesting classes of linear error-correcting codes can be constructed in a
projective geometric setting; see for instance [99]. One such class of codes
are projective geometric codes, which belongs to the more general family of
generalised Reed-Muller codes; see [11, 15, 59, 60, 66, 85, 90]. These codes
are used in various applications of wireless communication, particularly in
deep space communication.

Consider the projective geometry PG(d, q) and let j and k be natural num-
bers such that 0 ⩽ j < k < d. An incidence matrix of j- and k-subspaces
of PG(d, q) is an Fp-matrix whose rows are labelled by the k-subspaces
and whose columns are labelled by the j-subspaces of PG(d, q) such that
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each entry is equal to 1 if the corresponding row’s k-subspace contains the
corresponding column’s j-subspace, and equal to 0 otherwise.
The p-ary linear code generated by the rows of such an incidence matrix is
called a projective geometric code. Note that any two incidence matrices
of j- and k-subspaces are permutation-similar, hence a different choice of an
incidence matrix results in an equivalent code. Therefore, up to equivalence,
the parameters j, k, d and q uniquely determine a projective geometric code,
which we denote by Cj,k(d, q). If j = 0, we simply write Ck(d, q).

The incidence matrix used to generate Cj,k(d, q) is not a generator matrix.
Determining the dimension of Cj,k(d, q) is generally not an easy task, and
has only been determined in case j = 0 [75] and in case k = d − 1 [2]. See
[85] for a survey on these codes and their duals.

Denote the point set of PG(d, q) by P(d, q). In Part I of this work, we focus
on the codes Cd−1(d, q) and fix a one-to-one correspondence between the
positions of a vector v ∈ F

θd
p and the points in P(d, q). In this way, we can

interpret any vector of F
θd
p as an element of the p-ary vector space F

P(d,q)
p

that maps any point onto the symbol in its corresponding position. As a
consequence, a point P ∈ P(d, q) has a fixed value v(P) ∈ Fp with respect
to a vector (or codeword) v.
Moreover, we can redefine the notion of the support of v as being the set of
all points with non-zero values. Points having value 0 with respect to v are
called holes of v. The weight of v remains equal to the size of its support.

By definition, a codeword c ∈ Cd−1(d, q) is equal to a p-ary linear combina-
tion of all incidence vectors vHi of hyperplanes with respect to the points of
PG(d, q), i.e. there exist scalars α1, α2, . . . , αθd ∈ Fp such that

c =
θd

∑
i=1

αivHi .

As this is rather tedious to work with, we will ignore all incidence vectors
appearing trivially in the above linear combination, i.e. all incidence vec-
tors corresponding to a zero coefficient. We informally state that “c is a
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linear combination of the hyperplanes H1, . . . , Hs” if c can be written as a
linear combination in which the incidence vectors of these hyperplanes are
precisely the ones that appear non-trivially.

For any k-subspace κ ∈ PG(d, q), we can naturally define the restriction of
v to κ as the map v|κ ∈ F

P(k,q)
p restricted to the point set P(k, q) ⊂ P(d, q)

of κ ∼= PG(k, q). Using the fact that all scalar multiples of the all-one vector
1 are codewords of Cd−1(d, q), the following can easily be proved.

Result 0.2.1 ([96, Remark 3.1])

If c is a codeword of Cd−1(d, q) and κ is a k-subspace of PG(d, q), then c|κ is a
codeword of Ck−1(k, q).

This lemma will be used numerously in arguments and proofs throughout
Part I, often without mention.

Keep in mind that the above (re)defined notions and conventions are only
of relevance when considering the codes Cd−1(d, q) (see Part I).

Minimal codes

Let C be a q-ary linear code. A codeword c ∈ C is called minimal if for each
c′ ∈ C with supp(c′) ⊆ supp(c), there exists an α ∈ Fq such that c′ = αc.
The code C is called minimal if every one of its codewords is minimal, or,
equivalently, if the set of supports of its non-zero codewords is an antichain
with respect to setwise inclusion.

Minimal codewords can be used to describe access structures in linear code-
based secret sharing schemes (see [91, 92]), which is a method to distribute
shares of a secret to certain participants P in such a way that only the
authorised subsets of P (a.k.a. the access structure) could reconstruct the
secret; see [29, 104]. In [91, 92], Massey proposed the use of a linear code
C for realising secret sharing schemes in which the access structure is
specified by the supports of minimal codewords in C⊥ having a 1 in the
smallest position of its support.
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Due to the difficulty of determining the set of minimal codewords of a
linear code [27, 35], research is mainly focused on analysing codes for
which every codeword is minimal; see for instance [10, 18, 31, 40, 43, 65, 79,
111].
In Part II, we discuss new results concerning minimal codes of a small
dimension. Minimality will also pop up in Part I, where we analyse which
small weight codewords of a projective geometric code are minimal (see
Chapter 4). Note that a projective geometric code is never minimal as 1 is a
codeword.

Covering codes

To introduce the reader to the concept of a covering code, we need a metric on
the vector space. For this, we can use the Hamming distance. The Hamming
distance between two vectors of Fn

q equals the number of positions in
which their corresponding symbols differ. The covering radius of a q-ary
linear code C is the smallest integer R such that every vector of Fn

q lies
within Hamming distance R of a codeword. Whenever linear codes are
investigated with the goal of optimising the length or (co)dimension with
respect to the covering radius, such codes are called covering codes.
Due to their link with saturating sets (see Part III), covering codes are
described by their redundancy r := n − k rather than their dimension k. If a
q-ary linear code C has length n, redundancy r and covering radius R, then
C is called an [n, n − r]qR-code.

Covering codes are connected to several areas of information theory, such
as data compression and storage, and decoding errors and erasures. See
[46, Section 1] for an extensive overview of various applications of covering
codes.

New results concerning covering codes of small length are discussed in
Part III. As the reader will discover, covering codes can be constructed
using minimal codes. Therefore, the results presented in Parts II and III are
strongly interlinked.
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1 A tale of few lines and odd code-
words

Elodin proved a difficult man to find. He had an office in Hollows, but
never seemed to use it. When I visited Ledgers and Lists, I discovered he
only taught one class: Unlikely Maths. However, this was less than
helpful in tracking him down, as according to the ledger, the time of the
class was ‘now’ and the location was ‘everywhere’.

— Patrick Rothfuss, The Name of the Wind

Throughout this and other chapters of Part I, we turn the spotlight on
the projective geometric codes Cd−1(d, q). Although these codes are well-
defined (see Section 0.2), it is generally hard to capture the behaviour of its
codewords. In particular, the weight distribution of these codewords is not
known and hence a subject of interest to the research world.

Let us consider the non-zero codewords of small weight. Naturally, any
non-zero scalar multiple of a hyperplane is a codeword of weight θd−1.
Immediately, two questions arise. Does there exist a non-zero codeword
having a smaller weight? Are all codewords of weight θd−1 equal to a scalar
multiple of a hyperplane?
It turns out that the answers are respectively “no” and “yes”, as the fol-
lowing characterisation result is known even for the more general codes
Cj,k(d, q).

35
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Result 1.0.1 ([11, 60] and [15, Theorem 1])

The minimum weight of Cj,k(d, q) equals the number of j-subspaces in a fixed
k-subspace. The minimum weight codewords are the non-zero scalar multiples of
k-subspaces.

In a certain sense, the behaviour of codewords with the smallest non-zero
weight is exactly as one can expect. However, what can be said about
codewords beyond weight θd−1? Do these behave equally well? These
questions have lingered in the minds of various mathematicians for several
years.

1.1 The planar case

To have a clear grasp of the problem, researchers initially investigated the
small weight codewords of C1(2, q) having weight larger than the minimum
weight. Several results emerged in case q = p is prime, starting with
McGuire and Ward [93]. They discovered a gap in the weight spectrum by
proving that no codeword of C1(2, p) has weight w ∈

{
p + 2, . . . , 3

2 (p + 1)
}

,
p ̸= 2 [93, Corollary 2.3]. Chouinard [41, Proposition 27] extended this
result by showing that no codeword has weight w ∈ {p + 2, . . . , 2p − 1}.
A decade later, Fack, Fancsali, Storme, Van de Voorde and Winne [66]
generalised this result by proving, if p ⩾ 11, that any codeword of C1(2, p)
of weight smaller than 5

2 p is equal to a linear combination of at most two
lines. Add another decade, then Bagchi [14] extended this result to all
codewords of weight smaller than 3p − 3, p ⩾ 5.

During this communal quest, researchers cautiously conjectured that all
small weight codewords of C1(2, q) are equal to a linear combination of a few
lines. In this context, ‘a few’ indicates that the weight of such a codeword
directly determines the number of lines needed to obtain it.
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Open Problem 1.1.1

For a certain bound W(q), every codeword c ∈ C1(2, q) having weight
wt(c) ⩽ W(q) is equal to a linear combination of exactly

⌈
wt(c)
q+1

⌉
lines.

In 1991, Key [83] proved that the incidence vector of a Hermitian variety
is a codeword of Cd−1

(
d, q2), while Blokhuis, Brouwer and Wilbrink [30]

showed that any unital H of PG
(
2, q2) is a non-singular Hermitian curve if

and only if its incidence vector vH is a codeword of C1
(
2, q2), or, in other

words, if and only if vH is equal to a p-ary linear combination of lines.
By the intersection properties of a non-singular Hermitian curve, a line ℓ
appearing in such a linear combination contains at most q + 1 points of
supp(vH). This means that at least q2 − q points in ℓ are holes of vH, which
can only be the case if each of these points is contained in at least one extra
line appearing in the linear combination.
This simple argument proves that any linear combination of lines equal to
vH consists of at least q2 − q + 1 lines, which is substantially larger than⌈

wt(vH)
q2+1

⌉
= q and implies that Open Problem 1.1.1 is false if q is square and

W(q) ⩾ q
√

q + 1.

Nevertheless, researchers kept trying to prove that the conjecture is true
for a bound W(q) as close to q

√
q + 1 as possible. However, Bagchi [13,

Theorem 5.2] and De Boeck and Vandendriessche [54, Example 1.8] inde-
pendently discovered a peculiar codeword that rivals the conjecture if q
is prime. De Boeck already mentioned this discovery in his PhD thesis
[53, Example 10.3.4]. Below, we present a generalisation of this codeword
described by Szőnyi and Weiner [105, Example 4.7].

Configuration 1.1.2 ([13, 53, 54, 105])

Suppose that p ̸= 2 and let β1, β2, β3 ∈ Fp. Consider a coordinate system
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(X0, X1, X2) for PG(2, p) and define c ∈ F
P(2,p)
p as follows:

c(P) :=



α1 + β1 if P = (0, 1, α1) ,
α2 + β2 if P = (1, 0, α2) ,
−α3 + β3 if P = (1, 1, α3) ,
β1 + β2 + β3 if P = (0, 0, 1) ,
0 otherwise.

The points of supp(c) lie in the union of lines ℓ1, ℓ2, ℓ3 corresponding
to the equations X0 = 0, X1 = 0, and X0 = X1, resp. Furthermore,
wt(c) = 3p − 3 if β1 + β2 + β3 = 0 and wt(c) = 3p − 2 otherwise.

Solely analysing the above configuration does not make it clear why the
described vector is a codeword of C1(2, p). The proof of this relies on the
fact that C1(2, p)⊥ ⊂ C1(2, p) [53, Lemma 10.3.3], as one can manually check
that the vector described in Configuration 1.1.2, minus ∑ βiℓi, is indeed
an element of C1(2, p)⊥ if p ̸= 2. In this and subsequent chapters, such a
codeword will be called an odd codeword of C1(2, q) and only exists if q is
an odd prime.

As the line ℓi contains p − 1 points with distinct non-zero values, an odd
codeword can never be written as a linear combination of fewer than p − 1
lines. If p > 3, then p − 1 is larger than

⌈
wt(c)
p+1

⌉
⩽ 3, implying that Open

Problem 1.1.1 is false if q > 3 is prime and W(q) ⩾ 3q − 3.
Note that the characterisation results of Chouinard and Bagchi imply that
the conjecture is in fact true if q is prime and W(q) < 3q − 3, and also if
q ∈ {2, 3} and W(q) = 3q − 3.

Using polynomial methods, Szőnyi and Weiner contributed considerably
to the characterisation of small weight codewords of C1(2, q) for somewhat
larger values of q.
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Result 1.1.3 ([105, Theorems 4.3, 4.8 and Corollary 4.10])

Let c be a codeword of C1(2, q), q = ph, p prime.
If h = 1, p ⩾ 19 and wt(c) ⩽ max{3p + 1, 4p − 22}, then c is either a linear
combination of at most three lines or given by Configuration 1.1.2.
If h ⩾ 2, q ⩾ 32 and

wt(c) <


(p−1)(p−4)(p2+1)

2p−1 if h = 2,(⌊√
q
⌋
+ 1
) (

q + 1 −
⌊√

q
⌋)

if h ⩾ 3,

then c is a linear combination of exactly
⌈

wt(c)
q+1

⌉
lines.

The above result improves the prime case by showing that odd codewords
are the only type of codewords of weight w ≈ 3p defying our expectations.
Moreover, it proves, if q is not small nor prime, that Open Problem 1.1.1 is
solved if W(q) = O

(
q
√

q
)
. If q ⩾ 32 and if h ⩾ 4 is even, then their result

is sharp.

1.2 The general case

If we shift our focus to the small weight codewords of Cd−1(d, q), d ⩾ 3,
much less is known. Analogous to the planar case, researchers started by
investigating whether a gap exists in its weight spectrum. Based on the
results of Key [83] and in line with Open Problem 1.1.1, one can speculate
that any codeword of Cd−1(d, q) of weight lower than qd−1√q is equal to

a linear combination of exactly
⌈

wt(c)
θd−1

⌉
hyperplanes. We mainly base this

overview on the survey article of Lavrauw, Storme and Van de Voorde [85].

While this was already utilized in the planar case, Lavrauw, Storme and
Van de Voorde [86, 87] exploited a strong, general link between codewords
of Ck(d, q) of small weight and k-blocking sets (see Definition 5.1.1). One
year later, Lavrauw, Storme, Sziklai and Van de Voorde [84, Theorem 12]



40 CHAPTER 1. A TALE OF FEW LINES AND ODD CODEWORDS

proved that there exist no codewords in Ck(d, q) \ Cd−k(d, q)⊥, p > 5, with
weight in the interval

]
θk, 2qk[. As pointed out in [85, Theorem 3.12], using

a known lower bound on the minimum weight of Cd−k(d, q)⊥ [15, Theorem
3], one can show that there exist no codewords of Ck(d, q), p > 5, having

weight in the interval
]
θk, 2

(
qd−1

qd−k−1

(
1 − 1

p

)
+ 1

p

)[
.

By analysing what is known about the codewords in Ck(d, q) ∩ Cd−k(d, q)⊥

and narrowing their view to the cases k = d − 1 and q prime, Lavrauw,
Storme, Sziklai and Van de Voorde managed to prove that no codewords
of Ck(d, q), p > 5, have weight in the interval

]
θk, 2qk[ if k = d − 1 or if q is

prime [84, Corollaries 19 and 21].

Roughly a decade later, Polverino and Zullo characterised all codewords of
Cd−1(d, q) up to the second smallest non-zero weight:

Result 1.2.1 ([96, Theorem 1.4])

There are no codewords of Cd−1(d, q) with weight in the interval
]
θd−1, 2qd−1[.

Any codeword of weight 2qd−1 is equal to a scalar multiple of the difference of two
distinct hyperplanes.

Very recently, Adriaensen [1] gave a significantly shorter proof of the above
result.

In the following chapters, we discuss new results concerning the character-
isation of small weight codewords of Cd−1(d, q), extending [96] for all but a
few small values of q [3].

Based on [3], we also obtained similar results concerning the small weight
codewords of the more general code Cj,k(d, q). In addition, new results
concerning its dual code Cj,k(d, q)⊥, whose minimum weight is generally
unknown, are obtained as well. More specifically, we managed to reduce
both problems of determining its minimum weight and characterising
its minimum weight codewords to the case C1(d, q)⊥ [2]. These results,
however, will not be discussed in this thesis.



2 Ordinary small weight codewords

This and the following chapter are devoted to characterising small weight
codewords of Cd−1(d, q), d ⩾ 3, based on known planar results. The core ar-
guments are based on induction, and the results presented in both chapters
are an extension of Result 1.1.3 to arbitrary dimension. Just like the planar
result, we ignore small values of q.

In this chapter, we focus on the case of q being a composite prime power,
q ⩾ 32, and prove that all codewords up to weight roughly

√
qθd−1 are a

linear combination of at most
√

q hyperplanes (see Theorem 2.4.8). This
result is precisely how one would expect small weight codeword to behave,
hence the name of this chapter. Note that this significantly improves the
main result found in [23], on which this chapter is based.

A partial result concerning the case of q prime is considered as well, but
only as a stepping stone to the results presented in Chapter 3.

While most arguments are of a combinatorial nature, they rely on a strong
algebraic result concerning point sets that allow m-secants only if m is either
small or large (see Section 2.2). The proof is based on a bounding method
that is more commonly known as the standard equations. We first present
this technique in its most general form.

41
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2.1 The standard equations

For v, k, λ ∈ N \ {0}, 2 < k < v, let (P ,B, I) be a 2 − (v, k, λ) design.
Define r to be the number of blocks through a fixed point, i.e.

r :=
(v − 1) λ

k − 1
.

Consider a point set S ⊆ P and let γi denote the number of blocks that
contain exactly i points of S , i ∈ {0, 1, . . . , k}. A simple observation yields

k

∑
i=0

γi = |B| = v (v − 1) λ

k (k − 1)
. (2.1)

By double counting the set of all incident point-block pairs, where points
are elements of S , we obtain

k

∑
i=0

iγi = |{(P, B) : P ∈ B ∩ S}| = |S| r (2.2)

and, analogously,

k

∑
i=0

i2γi = |{(P, Q, B) : P, Q ∈ B ∩ S}|

= |S| r + |S| (|S| − 1) λ

= |S|2 λ + |S| (r − λ) .

(2.3)

Now suppose that there exist values α, β ∈ {0, 1, . . . , k}, α ⩽ β, such that
every block contains at most α or at least β points of S . Equivalently, for
every block B ∈ B that contains i ∈ {0, 1, . . . , k} points of S , we have
(i − α) (i − β) ⩾ 0. As a consequence, we know that

k

∑
i=0

i2γi − (α + β)
k

∑
i=0

iγi + αβ
k

∑
i=0

γi =
k

∑
i=0

(i − α) (i − β) γi ⩾ 0.



2.2. A WEIGHT SPECTRUM FOR SUBSPACES 43

Plugging (2.1), (2.2) and (2.3) in the left-hand side, we obtain

λ |S|2 − ((α + β − 1) r + λ) |S|+ αβ |B| ⩾ 0. (2.4)

By viewing the left-hand side as a quadratic polynomial in |S|, it is clear
that this inequality forces the size of the point set S to be either small or
large, mimicking the gap between α and β.

The above method is used for more than just bounding the size of S , as
equality in (2.4) implies that every block contains exactly α or β points of S ,
which can be a crucial argument in characterising such point set.

2.2 A weight spectrum for subspaces

One can now apply the standard equations to an arbitrary point set of a
projective geometry. If such a point set intersects every line in either a few
or many points, the same should be true for every subspace.

Theorem 2.2.1

Let µ1, µ2 ∈ {0, 1, . . . , q} with (µ1 + 1) (µ2 + 1) ⩽ q + 1. Consider a point set
P of PG(d, q) such that every line contains either at most µ1 or at least q+ 1− µ2
points of P . Then any k-subspace contains either

at most µ1θk−1 or at least θk − µ2θk−1

points of P .

Proof. If µ1 + µ2 ⩾ q, then (θk − µ2θk−1)− (µ1θk−1) ⩽ 1, making the state-
ment to be proved trivially true. Therefore, we may assume that

µ1 + µ2 < q. (2.5)

We proceed by induction on k. The cases k = 0 and k = 1 trivially hold,
hence let k ⩾ 2 and assume the statement to be true for all (k − 1)-subspaces.
Consider an arbitrary k-subspace κ. The set of points in κ, together with
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the set of all (k − 1)-subspaces incident with κ, form a 2 − (θk, θk−1, θk−2)
design. Thus, using the induction hypothesis, we know that (2.4) is true for
S := κ ∩ P , α := µ1θk−2 and β := θk−1 − µ2θk−2, where α < β due to (2.5).
This results in

θk−2 |κ ∩ P|2 − ((µ1θk−2 + θk−1 − µ2θk−2 − 1) θk−1 + θk−2) |κ ∩ P|
+ µ1θk−2 (θk−1 − µ2θk−2) θk ⩾ 0,

which can be rewritten to

θk−2 |κ ∩ P|2 − ((µ1θk−2 + qθk−2 − µ2θk−2) θk−1 + θk−2) |κ ∩ P|
+ (µ1θk−1θk − µ1µ2θk−2θk) θk−2 ⩾ 0.

Dividing both sides by θk−2 yields

|κ ∩ P|2 − (θk + (µ1 − µ2) θk−1) |κ ∩ P| + µ1θk−1θk − µ1µ2θk−2θk ⩾ 0.
(2.6)

The left-hand side is a quadratic polynomial in |κ ∩ P| and reaches its
smallest value if |κ ∩ P| = 1

2 (θk + (µ1 − µ2) θk−1), which is equal to

(µ1θk−1 + 1) + (θk − µ2θk−1 − 1)
2

.

Therefore, by the symmetry of the (parabolic) graph of this polynomial, it
obtains the same value regardless of whether |κ ∩ P| equals µ1θk−1 + 1 or
θk − µ2θk−1 − 1. If we assume |κ ∩ P| = µ1θk−1 + 1, (2.6) becomes

µ2
1θ2

k−1 + 2µ1θk−1 + 1 − µ1θk−1θk − µ1 (µ1 − µ2) θ2
k−1

− θk − (µ1 − µ2) θk−1 + µ1θk−1θk − µ1µ2θk−2θk ⩾ 0,

which simplifies to

−θk + µ1µ2
(
θ2

k−1 − θk−2θk
)
+ (µ1 + µ2) θk−1 + 1 ⩾ 0.

Using the fact that θ2
k−1 − θk−2θk = qk−1, we obtain

−qk + (µ1µ2 + µ1 + µ2) qk−1 − (q − µ1 − µ2) θk−2 ⩾ 0.
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Enlarging the left-hand side using µ1µ2 + µ1 + µ2 ⩽ q yields

− (q − µ1 − µ2) θk−2 ⩾ 0,

which contradicts (2.5). As the left-hand side of (2.6) is quadratic in |κ ∩ P|,
the observations above imply that

|κ ∩ P| /∈ {µ1θk−1 + 1, . . . , θk − µ2θk−1 − 1} . ■

We can slightly improve [2, Lemma 5.7] by including the case q = 3.

Theorem 2.2.2

Let q ⩾ 3 and consider a point set P of PG(d, q) such that every line contains
either at most 1 or at least q points of P . Then there exists a hyperplane that either
contains all points of P or all points of its complement P c.
Moreover, if |P| = θn, n ∈ N, then P is the point set of an n-subspace.

Proof. Suppose the contrary. Then there must exist a basis {P0, P1, . . . , Pd} ⊂
P and a basis {Q0, Q1, . . . , Qd} ⊂ P c of PG(d, q).
We claim that the k-subspace ⟨P0, . . . , Pk⟩ contains at least qk points of P ,
for every k ∈ {0, 1, . . . , d}. The proof of this claim is done by induction
on k. If k = 0, there is nothing to prove, hence assume that k ⩾ 1. By the
induction hypothesis, the (k − 1)-subspace ⟨P0, . . . , Pk−1⟩ contains at least
qk−1 points of P . Connecting each of these points with Pk gives rise to at
least qk−1 lines, each of which necessarily contains at least q points of P ,
implying that ⟨P0, . . . , Pk⟩ contains at least

qk−1 (q − 1) + 1 > θk−1

points of P . Theorem 2.2.1 finishes the proof of the claim. Analogously,
⟨Q0, . . . , Qk⟩ contains at least qk points of P c. Putting k := d, we conclude
that θd = |P|+ |P c| ⩾ 2qd, a contradiction.

Finally, suppose that |P| = θn. We prove by induction on i ∈
{0, 1, . . . , d − n} that P must be contained in a (d − i)-subspace. If i = 0,
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this is trivial. Hence, let 1 ⩽ i ⩽ d − n and assume, by the induction hypo-
thesis, that P is contained in a (d − i + 1)-subspace κ. If P c is contained
in a (d − i)-subspace of κ, then |P| ⩾ qd−i+1 > θd−i ⩾ θn, a contradiction.
Therefore, by the first part of this proof, P is contained in a (d − i)-subspace.
Putting i := d − n finishes the proof. ■

2.3 Implications for codewords

ASSUMPTION
Throughout this section, we assume that d ⩾ 3 and q ⩾ 32, and fix a
codeword c ∈ Cd−1(d, q).

To simplify notation, we make use of the integer values

Aq :=


2 or 3 if q is prime,⌊ 1

2
√

q − 9
4

⌋
if q = p2,⌊√

q − 1
2

⌋
otherwise;

Bq :=


3q − 3 if Aq=p = 2,
4q − 21 if Aq=p = 3,
Aq (q + 1) + 1 otherwise.

One can check that

Aq (q + 1) <

 (
√

q−1)(
√

q−4)(q+1)
2
√

q−1 if q = p2,(⌊√
q
⌋
+ 1
) (

q + 1 −
⌊√

q
⌋)

if q = ph, h ⩾ 3.
(2.7)

Proposition 2.3.1

Let π be a plane that contains an m-secant ℓ to supp(c). Then

wt(c|π) ⩾
{

Bq if Aq + 1 ⩽ m ⩽ q − Aq + 1,
m (q − m + 2) otherwise.

Proof. Suppose that wt(c|π) ⩽ Bq − 1. Then by (2.7) and Result 1.1.3, there
exists a set L of at most Aq lines covering the points of supp(c|π), each
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such a line containing at least q − |L|+ 2 ⩾ q − Aq + 2 unique points of
supp(c|π). If ℓ ∈ L, then m ⩾ q − Aq + 2. If ℓ /∈ L, then it intersects each
line of L in exactly one point, implying that m ⩽ Aq.
In conclusion, if wt(c|π) ⩽ Bq − 1, then either m ⩽ Aq or m ⩾ q − Aq + 2.
Moreover, by the above observation, we know that

wt(c|π) ⩾ |L| (q − |L|+ 2) ⩾ m (q − m + 2) . ■

Lemma 2.3.2

Let q be prime.

If q ⩾ 37 and wt(c) ⩽ 3
(

1 − 3
q

)
θd−1, then every line contains either at

most 2 or at least q points of supp(c).

If q ⩾ 53 and wt(c) ⩽ 4
(

1 − 8
q

)
θd−1, then every line contains either at

most 3 or at least q − 1 points of supp(c).

Proof. Note that Aq ∈ {2, 3} as q is prime. We aim to prove that every line
contains either at most Aq or at least q − Aq + 2 points of supp(c). Suppose,
to the contrary, that m is the smallest integer, Aq + 1 ⩽ m ⩽ q − Aq + 1, for
which there exists an m-secant ℓ to supp(c). By Proposition 2.3.1, all planes
through ℓ must contain at least Bq points of supp(c), implying that

wt(c) ⩾ Bqθd−2 − m (θd−2 − 1)

⇐⇒ m ⩾
Bqθd−2 − wt(c)

qθd−3
. (2.8)

Case 1: wt(c) < Aq

(
1 +

1
q

)
θd−1.
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By the above assumption on wt(c), (2.8) implies

m >
Bqθd−2 − Aq

(
1 + 1

q

)
θd−1

qθd−3

= Bq − Aq (q + 1) +

Bq
q − Aq

(
1 + 1

q

)2

θd−3
⩾ Bq − Aq (q + 1) .

This results, as m is integer, in m ⩾ Bq − Aq (q + 1) + 1. Let π be any
plane through ℓ, thus wt(c|π) ⩾ Bq. As the points and lines in π form a
2 −

(
q2 + q + 1, q + 1, 1

)
design and due to the minimality of m, (2.4) holds

for S := supp(c|π), α := Aq and β := Bq − Aq (q + 1) + 1, which results in
wt(c|π)2 −

(
q2 − 2q − 2

)
wt(c|π) + 2q3 − 6q2 − 6q − 8 ⩾ 0

if Aq = 2,
wt(c|π)2 −

(
q2 − 20q − 20

)
wt(c|π) + 3q3 − 66q2 − 66q − 69 ⩾ 0

if Aq = 3.

Substituting wt(c|π) for
(

Aq +
1
2

)
(q − 1) or q2 −

(
A3

q − 3
)

q both result in
false statements, hence the same can be said for all values in between. This
implies that either

wt(c|π) <
2Aq + 1

2
(q − 1) or wt(c|π) > q2 −

(
A3

q − 3
)

q.

The first (upper) bound contradicts the fact that wt(c|π) ⩾ Bq, hence the
second (lower) bound must hold for all planes containing ℓ. This immedi-
ately gives

Aq

(
1 +

1
q

)
θd−1 > wt(c) ⩾

(
q2 −

(
A3

q − 3
)

q − m
)

θd−2

⩾
(

q2 −
(

A3
q − 2

)
q + Aq − 1

)
θd−2

> (q − 25) qθd−2,
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which implies that

Aq

(
1 +

1
q

)
> q − 25 − q − 25

θd−1
,

a contradiction for q ⩾ 37.

Case 2: wt(c) ⩾ Aq

(
1 +

1
q

)
θd−1.

The point-line geometry of PG(d, q) is a 2 − (θd, q + 1, 1) design. Hence, by
the minimality of m, (2.4) is true for S := supp(c), α := Aq and β equal to
the right-hand side of (2.8). Note that α ⩽ β, as the contrary implies that

Aq >
Bqθd−2 − wt(c)

qθd−3

⇐⇒ wt(c) > Bqθd−2 − Aqqθd−3

>
(

Bq − Aq
)

θd−2,

which contradicts the given upper bounds on the weight of c. Therefore,
(2.4) becomes

wt(c)2 −
((

Aq +
Bqθd−2 − wt(c)

qθd−3
− 1
)

θd−1 + 1
)

wt(c)

+ Aq

(
Bqθd−2 − wt(c)

qθd−3

) [
d + 1

2

]
q
⩾ 0.

By multiplying both sides with q (q − 1)
(
q2 − 1

) (
qd−2 − 1

)
, we obtain

(q + 1)2
(

qd−1 − 1
)
((q − 1)wt(c))2

−
(((

Aq − 1
)

q
(

qd−2 − 1
)
+ Bq

(
qd−1 − 1

))
(q + 1)

(
qd − 1

)
+ q

(
q2 − 1

) (
qd−2 − 1

)
+ Aq

(
qd − 1

) (
qd+1 − 1

))
((q − 1)wt(c))

+ AqBq

(
qd−1 − 1

) (
qd − 1

) (
qd+1 − 1

)
⩾ 0.
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Now, using some preferred computing software, one can plug in
Aq = 2, Bq = 3q − 3 and either (q − 1)wt(c) = 2

(
1 + 1

q

) (
qd − 1

)
or

(q − 1)wt(c) = 3
(

1 − 3
q

) (
qd − 1

)
, to check that the above statement is

false if d ⩾ 3 and q ⩾ 37. The same conclusions can be drawn for Aq = 3,

Bq = 4q − 21, (q − 1)wt(c) = 3
(

1 + 1
q

) (
qd − 1

)
or (q − 1)wt(c) =

4
(

1 − 8
q

) (
qd − 1

)
, d ⩾ 3 and q ⩾ 53. As the left-hand side of the inequality

in question is quadratic in (q − 1)wt(c), and by this case’s assumption on
wt(c), we obtain

wt(c) >

3
(

1 − 3
q

)
θd−1 if Aq = 2,

4
(

1 − 8
q

)
θd−1 if Aq = 3,

a contradiction. ■

Lemma 2.3.3

Let wt(c) ⩽
(
q − Aq + 1

)
θd−1 and suppose that every line contains either

at most Aq or at least q − Aq + 2 points of supp(c). Then the existence of a(
q − Aq + 2

)
-secant implies the existence of an Aq-secant to supp(c).

Proof. Suppose that there exists a
(
q − Aq + 2

)
-secant ℓ to supp(c). By

Theorem 2.2.1, every plane contains either at most Aq (q + 1) or at least
q2 −

(
Aq − 2

)
(q + 1) points of supp(c). If every plane through ℓ would

contain at least q2 −
(

Aq − 2
)
(q + 1) points of supp(c), we would obtain

wt(c) ⩾
(
q2 −

(
Aq − 2

)
(q + 1)−

(
q − Aq + 2

))
θd−2 + q − Aq + 2

=
(
q − Aq + 1

)
θd−1 + 1,

a contradiction. Hence, there exists a plane π through ℓ such that wt(c|π) ⩽
Aq (q + 1). By Result 1.1.3, all points of supp(c|π) must be contained in
the union of precisely Aq lines, each of which containing at least q − Aq + 2
unique points of supp(c|π) as the line ℓ must be one of them and contains
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precisely Aq − 1 holes. At most (Aq
2 ) <

1
2 q points lie in at least 2 of these

lines, hence there must exist a line in π that intersects each of these Aq lines
in distinct points, which necessarily lie in supp(c). ■

Lemma 2.3.4

Let m ∈
{

0, 1, . . . , Aq
}

and wt(c) ⩽
(
q −√

q
)

θd−1. Suppose that every line
contains either at most m or at least q − Aq + 2 points of supp(c). If κ is a
k-subspace that contains an m-secant ℓ to supp(c), then wt(c|κ) ⩽ mθk−1.

Proof. Suppose, to the contrary, that wt(c|κ) > mθk−1. Due to Theorem 2.2.1,
κ contains at least qk −

(
Aq − 2

)
θk−1 points of supp(c). If k = d, we obtain

a direct contradiction to the weight assumption on c, hence assume that
k < d. Consider a (k + 1)-space κ+ through κ. By Proposition 2.3.1, every
plane in κ+ through ℓ but not lying in κ contains at least m (q − m + 2)
points of supp(c), implying that

wt(c|κ+) ⩾ qk −
(

Aq − 2
)

θk−1 + qk−1 (m (q − m + 2)− m)

= mθk + qk −
(
m2 + Aq − 2

)
qk−1 −

(
Aq + m − 2

)
θk−2

⩾ mθk + qk −
((

√
q − 1

2

)2

+
√

q − 1
2
− 2

)
qk−1

−
(

2
(
√

q − 1
2

)
− 2
)

θk−2

= mθk +
9
4

qk−1 − 2θk−2
√

q + 3θk−2 > mθk.

By Theorem 2.2.1, wt(c|κ+) ⩾ qk+1 −
(

Aq − 2
)

θk =
(
q − Aq + 1

)
θk + 1. As

this holds for all (k + 1)-spaces through κ, we get

wt(c) ⩾
((

q − Aq + 1
)

θk − θk
)

θd−k−1

> (q −√
q) θkθd−k−1

⩾ (q −√
q) θd−1,

which contradicts the assumption on the weight of c. ■
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2.4 Thin and thick subspaces

ASSUMPTION
Throughout this section, we assume that d ⩾ 3 and q ⩾ 32, and fix a
codeword c ∈ Cd−1(d, q) such that wt(c) ⩽ W(d, q), where

W(d, q) :=


3
(

1 − 3
q

)
θd−1 if q is prime,(⌊ 1

2
√

q − 9
4

⌋
− 1
)

θd−1 if q = p2,(⌊√
q − 1

2

⌋
− 1
)

θd−1 otherwise.

To simplify notation, we introduce the integer value

∆q :=


2 if q is prime,⌊ 1

2
√

q − 9
4

⌋
− 1 if q = p2,⌊√

q − 1
2

⌋
− 1 otherwise.

If every line contained at least ∆q + 1 points of supp(c), then so would
every line through a fixed hole, implying that wt(c) ⩾

(
∆q + 1

)
θd−1, which

contradicts wt(c) ⩽ W(d, q). This allows us to define

δq := max
{

m ∈
{

0, 1, . . . , ∆q
}

: there exists an m-secant to supp(c)
}

.
(2.9)

The following notions facilitate the use of Theorem 2.2.1.

Definition 2.4.1 (thin and thick subspaces)

A k-subspace κ is called

thin if wt(c|κ) ⩽ δqθk−1, and

thick if wt(c|κ) ⩾ qk −
(
δq − 2

)
θk−1.
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Lemma 2.4.2

Every line contains either at most ∆q or at least q − ∆q + 2 points of supp(c).

Proof. If q is prime, the proof is finished by Lemma 2.3.2, so assume q not
to be prime and suppose, to the contrary, that ℓ is an m-secant to supp(c)
with ∆q + 1 ⩽ m ⩽ q − ∆q + 1.
We first consider the case that ∆q + 2 ⩽ m ⩽ q − ∆q. By Proposition 2.3.1,
any plane through ℓ has to contain at least

(
∆q + 1

)
(q + 1) + 1 points of

supp(c), which leads to the following contradiction:

wt(c) ⩾
((

∆q + 1
)
(q + 1) + 1 − m

)
θd−2 + m

⩾
((

∆q + 1
)
(q + 1) + 1 −

(
q − ∆q

))
θd−2 + m

> q∆qθd−2 + m
= ∆qθd−1 + m − ∆q > W(d, q) .

As a result, every line contains either at most ∆q + 1 or at least q − ∆q + 1
points of supp(c). Due to Lemma 2.3.3, it suffices to prove that there cannot
exist a

(
∆q + 1

)
-secant to supp(c).

Suppose, to the contrary, that ℓ is a
(
∆q + 1

)
-secant. Then Proposition 2.3.1

states that each plane through ℓ contains at least(
∆q + 1

) (
q − ∆q + 1

)
= q∆q + q − ∆2

q + 1

points of supp(c), implying that

wt(c) ⩾
(

q∆q + q − ∆2
q + 1 −

(
∆q + 1

))
θd−2 + ∆q + 1

= ∆qθd−1 +
(

q − ∆2
q − ∆q

)
θd−2 + 1

> ∆qθd−1 +
(

q − (
√

q − 1)2 − (
√

q − 1)
)

θd−2 + 1

= ∆qθd−1 +
√

qθd−2 + 1,

a contradiction. ■
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Lemma 2.4.3

Every line is either thin or thick.

Proof. Consider an arbitrary line ℓ. If all planes through ℓ are not thin,
then, by Lemma 2.4.2 and Theorem 2.2.1, each such plane contains at least
q2 −

(
∆q − 2

)
(q + 1) points of supp(c), implying that

wt(c) ⩾
(
q2 −

(
∆q − 2

)
(q + 1)− (q + 1)

)
θd−2 + q + 1

>
(
q2 − (

√
q − 2) (q + 1)

)
θd−2 + q + 1

=

(
q −√

q + 2 − 1
√

q
+

2
q

)
θd−1 +

√
q − 1 +

1
√

q
− 2

q

> (q −√
q) θd−1,

contradicting the weight assumption on c. Therefore, there exists a thin
plane π through ℓ. By Result 1.1.3, c|π is a linear combination of exactly⌈

wt(c|π)
q+1

⌉
=: n lines of π. If n > δq, then we can find a line in π containing

more than δq but less than q − ∆q + 2 points of supp(c|π), thus n ⩽ δq.
Therefore, all lines of π, including the line ℓ, are either thin or contain at
least q + 1 − (n − 1) ⩾ q − δq + 2 points of supp(c). ■

Corollary 2.4.4

Every k-subspace is either thin or thick.

Proof. This follows from Lemma 2.4.3 and Theorem 2.2.1. ■

Corollary 2.4.5

wt(c) ⩽ δqθd−1.

Proof. This is a direct consequence of Corollary 2.4.4, as the whole space
cannot be thick due to wt(c) ⩽ W(d, q). ■
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Proposition 2.4.6

If c is a linear combination of exactly δq hyperplanes, then δq =
⌈

wt(c)
θd−1

⌉
.

Proof. As every two distinct hyperplanes have θd−2 points in common, we
can naively state that

wt(c) ⩾ δq
(
θd−1 −

(
δq − 1

)
θd−2

)
=

(
δq −

δ2
q − δq

q

)
θd−1 +

δ2
q − δq

q
>
(
δq − 1

)
θd−1.

Combining this with Corollary 2.4.5, we obtain δq − 1 <
⌈

wt(c)
θd−1

⌉
⩽ δq. ■

Lemma 2.4.7

If there exists a thick hyperplane, then c is a linear combination of exactly
⌈

wt(c)
θd−1

⌉
hyperplanes.

Proof. Let Π be a thick hyperplane, consider a point Q ∈ Π and denote by
x the number of thick lines in Π through Q. Making use of Lemma 2.4.3,
we get

qd−1 −
(
δq − 2

)
θd−2 ⩽ wt(c|Π) ⩽ (θd−2 − x) δq + xq + 1,

which implies that

x ⩾
qd−1

q − δq
−
(
2δq − 2

)
θd−2 + 1

q − δq

=
qd−1

q − δq
−

2δq

q − δq
qd−2 +

2qd−2 − 2
(
δq − 1

)
θd−3 − 1

q − δq

⩾
(

1 −
2δq

q − δq

)
qd−2. (2.10)



56 CHAPTER 2. ORDINARY SMALL WEIGHT CODEWORDS

Consider a δq-secant ℓ to supp(c). By Lemma 2.3.4, ℓ cannot be contained
in the thick hyperplane Π and therefore intersects it in a point P. By
Lemma 2.3.4, every plane π spanned by ℓ and a thick line t through P is a
unique thin plane. Moreover, by Result 1.1.3, c|π is a linear combination
of exactly δq (thick) lines. This implies that t is one of these lines, that
P ∈ supp(c) (as each of the points of supp(c|ℓ) lies on precisely one thick
line of π), and hence that at least q − δq + 2 points of t have the non-zero
value c(P). By (2.10), at least(

1 −
2δq

q − δq

)
qd−2 (q − δq + 2 − 1

)
points of Π have the same non-zero value with respect to c. The above
expression is at least

(
q−6
q−2

)
qd−2 (q − 1) > 1

2 θd−1 if q is prime and is at least(
1 −

2
(√

q − 1
)

q −√
q + 1

)
(q −√

q + 1) qd−2 = (q − 3
√

q + 3) (q − 1) · qd−2

q − 1

⩾
q2

2
· qd−2

q − 1
>

1
2

qd − 1
q − 1

=
1
2

θd−1

if q is not prime.
In conclusion, more than half of the points in Π have a non-zero value
α := c(P). This means that c − αvΠ is a codeword of a smaller weight than
c, where vΠ is the incidence vector of Π.
Now suppose, to the contrary, that c is a codeword of minimal weight,
wt(c) ⩽ ∆qθd−1, with the property that c cannot be written as a linear
combination of at most δq hyperplanes. Due to the minimal weight of c,
the codeword c − αvΠ must be equal to a linear combination of at most
δq hyperplanes, which means that c has to be a linear combination of at
most, therefore precisely, δq + 1 hyperplanes. This, however, implies the
existence of a

(
δq + 1

)
-secant to supp(c), contradicting the definition of δq.

We conclude that c is equal to a linear combination of exactly δq hyperplanes,
hence Proposition 2.4.6 finishes the proof. ■
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Theorem 2.4.8

Let d ⩾ 2, q ⩾ 32, and consider a codeword c ∈ Cd−1(d, q) with

wt(c) ⩽


3
(

1 − 3
q

)
θd−1 if q is prime,(⌊ 1

2
√

q − 9
4

⌋
− 1
)

θd−1 if q is the square of a prime,(⌊√
q − 1

2

⌋
− 1
)

θd−1 otherwise.

Then c is a linear combination of exactly
⌈

wt(c)
θd−1

⌉
hyperplanes.

Proof. By Corollary 2.4.5, we may assume that δq ⩾ 1.
We proceed by induction on d. The base case follows directly from Res-
ult 1.1.3, hence assume that d ⩾ 3. Due to Corollary 2.4.4, we may formulate
the induction hypothesis as follows: every hyperplane Π is either thin or
thick, and in the former case, the codeword c|Π is a linear combination of
exactly

⌈
wt(c|Π)

θd−2

⌉
(d − 2)-subspaces of Π. Due to Lemma 2.4.7, it suffices to

prove that there exists a thick hyperplane.
Consider a δq-secant ℓ. By Proposition 2.3.1, all planes through ℓ contain at
least δq

(
q − δq + 2

)
points of supp(c), which implies that

wt(c) ⩾
(
δq
(
q − δq + 2

)
− δq

)
θd−2 + δq

= δqqd−1 −
(

δ2
q − 2δq

)
θd−2. (2.11)

Now suppose, to the contrary, that all hyperplanes are thin. Let Π be a
thin hyperplane through ℓ. By the induction hypothesis, c|Π is a linear
combination of exactly δq (d − 2)-subspaces of Π. Let Σ be one of these
(d − 2)-subspaces. Any hyperplane Π′ through Σ is assumed to be thin,
hence all points of supp(c|Π′) are covered by Σ and δq − 1 other (d − 2)-
subspaces of Π′, implying that

wt(c) ⩽ (q + 1)
(
δq − 1

)
qd−2 + θd−2 =

(
δq − 1

)
qd−1 + δqqd−2 + θd−3.
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Combining this with (2.11), we obtain(
δq − 1

)
qd−1 + δqqd−2 + θd−3 ⩾ δqqd−1 −

(
δ2

q − 2δq

)
θd−2

⇐⇒ 0 ⩾ qd−1 −
(

δ2
q − δq

)
qd−2 −

(
δq − 1

)2
θd−3.

Using that δ2
q − δq <

(√
q − 1

)2 −
(√

q − 1
)

and
(
δq − 1

)2
< q − 1, we get

0 > 3 (
√

q − 1) qd−2 + 1,

a contradiction. ■



3 Odd small weight codewords

Just as Chapter 2, we focus on characterising small weight codewords
of Cd−1(d, q), d ⩾ 3, but only consider the case of q prime, allowing the
existence of odd codewords. This makes the quest of characterising small
weight codewords significantly more difficult, as the key argument in the
proof of Lemma 2.4.7 cannot be applied here.

If q is prime and q ⩾ 53, we show that all codewords up to weight
4
(

1 − 8
q

)
θd−1 are equal to a linear combination of hyperplanes through a

common (d − 3)-subspace (see Theorem 3.3.2). This turns out to be equival-
ent to stating that such codewords are equal to either a linear combination of
at most three hyperplanes or a certain generalisation of Configuration 1.1.2
(see Lemma 3.1.2).

The results presented in this chapter are slight improvements on the ones
given in [3].

ASSUMPTION
Throughout this chapter, we assume that d ⩾ 3 and q is prime, q ⩾ 53,
and fix a codeword c ∈ Cd−1(d, q) such that

3
(

1 − 3
q

)
θd−1 < wt(c) ⩽ 4

(
1 − 8

q

)
θd−1.

59
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Corollary 3.0.1

Every k-subspace contains either

at most 3θk−1 or at least qk − θk−1

points of supp(c).

Proof. This follows directly from Lemma 2.3.2 and Theorem 2.2.1. ■

3.1 Codeword and subspace types

Using Results 0.2.1 and 1.1.3, we say that any plane π, or similarly that any
codeword c|π, has type

T0 if c|π = 0,

T1 if c|π is a non-zero scalar multiple of a line,

T2 if c|π is a linear combination of precisely two lines,

Todd
3 if c|π is a codeword as described in Configuration 1.1.2,

T△
3 if c|π is a linear combination of three nonconcurrent lines, or

T⋆
3 if c|π is a linear combination of precisely three concurrent lines.

Define

T := {T0, T1, T2} ∪ T 3 where T 3 :=
{

Todd
3 , T△

3 , T⋆
3

}
.

For convenience, we say that the plane π, or the codeword c|π, has type T
if it has some type T ∈ T . If π or c|π does not have type T , we say that
they are of type O.
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Corollary 3.1.1

Every plane of type O contains at least q2 − q − 1 points of supp(c).

Proof. This is a consequence of Corollary 3.0.1 and the fact, due to Res-
ult 1.1.3, that any plane of type O contains at least 4q − 21 points of
supp(c). ■

Lemma 3.1.2

Consider a k-subspace Π, k ⩾ 2, and let κ be a (k − 3)-subspace of Π. Then c|Π
is a linear combination of (k − 1)-subspaces through κ if and only if there exist a
plane π ⊂ Π disjoint to κ and a scalar µ ∈ Fp such that

c|Π(P) =

{
µ if P ∈ κ,
c(⟨P, κ⟩ ∩ π) if P ∈ Π \ κ.

(3.1)

If this holds for some plane π, then it holds for all planes in Π disjoint to κ.
Moreover, if π has type T ∈ T , then those planes have type T as well.

Proof. Assume that c|Π is a linear combination of (k − 1)-subspaces through
κ. All points of κ lie in each of these (k − 1)-subspaces and hence have the
same value with respect to c|Π. A (k − 1)-subspace through κ contains a
point P ∈ Π \ κ if and only if it contains ⟨P, κ⟩. Therefore, all points lying
in a (k − 2)-subspace through κ but not in κ, are contained in the same
(k − 1)-subspaces through κ and thus have the same value with respect to c.
The fact that any plane in Π disjoint to κ intersects every (k − 2)-subspace
through κ in a point concludes this part of the proof.
Conversely, assume that there exist a plane π ⊂ Π disjoint to κ and a
scalar µ ∈ Fp such that all points P ∈ Π satisfy (3.1). If c|π = ∑i αiℓi, with
αi ∈ Fp and ℓi lines in π, then c|Π takes the same values as the codeword
∑i αi ⟨ℓi, κ⟩ in all points of Π \ κ. Therefore, their Hamming distance is at
most θk−3 < θk−1, thus, by Result 1.0.1, they must be equal. Hence, c|Π is a
linear combination of (k − 1)-subspaces through κ.
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Consider a plane σ in Π disjoint to κ. Since c|Π is a linear combination of
(k − 1)-subspaces through κ, the first part of the proof implies that (3.1)
holds when replacing π with σ. Moreover, c|σ = ∑i αi (⟨ℓi, κ⟩ ∩ σ). Note
that mapping ℓi onto ⟨ℓi, κ⟩ ∩ σ induces a collineation from π ∼= PG(2, q)
to σ ∼= PG(2, q). This directly implies that if c|π has type T ∈ T , c|σ must
be of type T as well. ■

Thanks to the above lemma, we can unambiguously extend the notion
of type to arbitrary subspaces. We say that any k-subspace Π of PG(d, q),
k ⩾ 2, or similarly that any codeword c|Π, has type T ∈ T if

(1) there exists a (k − 3)-subspace κ ⊂ Π, called an apex, and

(2) there exists a plane π ⊂ Π of type T disjoint to κ,

such that c|Π is a linear combination of (k − 1)-subspaces through κ, or
equivalently, such that κ and π satisfy (3.1) for some scalar µ ∈ Fp. We say
that Π, or c|Π, has type T if it has some type T ∈ T , else we say that it is
of type O.

Proposition 3.1.3

Suppose that Π is a hyperplane of type T ∈ T 3, with κ a (d − 4)-dimensional
apex of Π. Let ℓ be a 3-secant contained in Π. Then ℓ is disjoint to κ. The qd−3

planes through ℓ that are disjoint to κ are planes of type T, while the other θd−4

planes through ℓ have type T⋆
3 .

Proof. This follows immediately from Lemma 3.1.2. ■

The main goal is to prove that the codeword c has type T . As mentioned
at the start of this chapter, this is equivalent to saying that c is equal to a
linear combination of hyperplanes through a common (d − 3)-subspace.
After all, by Lemma 3.1.2, c having type T is equivalent to the existence
of a (d − 3)-dimensional apex κ and a plane π of type T disjoint to κ such
that all points satisfy (3.1) for some scalar µ ∈ Fp. Therefore, wt(c) =

wt(c|π) qd−2 + δθd−3, with δ = 0 if µ = 0 and δ = 1 otherwise. Since
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wt(c) ⩽ 4
(

1 − 8
q

)
θd−1, this implies that

wt(c|π) ⩽ 4
(

1 − 8
q

)
θd−1

qd−2 ⩽ 4q − 22

and thus, by Result 1.1.3, π has type T .

3.2 The power of the 3-secant

Before getting to the main result, we first need some properties about
certain types of subspaces sharing a specific line.

Definition 3.2.1 (long line)

A line is called long if it contains at least q − 1 points of supp(c).

Lemma 3.2.2

Let π be a plane of type T ∈
{

Todd
3 , T△

3

}
. Then all planes σ of type T intersect-

ing π in a long line are planes of type T as well. Moreover, wt(c|σ) = wt(c|π).

Proof. Suppose that the plane σ ̸= π is a plane of type T(σ) ∈ T and
let ℓ denote the long line π ∩ σ. As T ∈

{
Todd

3 , T△
3

}
, no q points of ℓ

have the same non-zero value with respect to c. As a consequence, T(σ) /∈{
T0, T1, T2, T⋆

3

}
. If T = Todd

3 , we find at least q points on ℓ with distinct

values. If T = T△
3 , we find at most 3 points on ℓ with distinct values.

Hence, if T(σ) ̸= T, then q ⩽ 3, a contradiction. Furthermore, it is not hard
to check that the set of values of points in ℓ fixes the weight of c|σ. ■

Lemma 3.2.3

There exists a 3-secant to supp(c).
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Proof. Suppose the contrary. By Corollary 3.0.1 and Lemma 2.3.3, all lines
intersect supp(c) in at most 2 or in at least q points. As a consequence,
Theorem 2.2.1 (where k := d) contradicts the weight assumption on c. ■

Lemma 3.2.4

If κ is a k-subspace containing a 3-secant, then wt(c|κ) ⩽ 3θk−1. In particular,
all planes containing a 3-secant have type T .

Proof. Due to the weight assumption on c, Corollary 3.0.1 implies that
wt(c) ⩽ 3θd−1. The statement therefore follows from Lemma 2.3.4. ■

Lemma 3.2.5

Let κ and κ̃ be two k-subspaces, k ⩾ 2, of type T, T̃ ∈ T 3, respectively, having a
3-secant s in common. Then at least one of the following holds:

(1) T = T⋆
3 .

(2) T̃ = T⋆
3 .

(3) T = T̃.

Furthermore, if T = T̃, then wt(c|κ) = wt(c|κ̃).

Proof. Consider two planes π and π̃ through s lying in κ and κ̃, respectively,
but disjoint to their respective apexes. By definition, these planes inherit
the type of their corresponding k-subspace. Define Σ := ⟨π, π̃⟩.
Furthermore, let Pα, Pβ and Pγ be the points of supp(c|s) with correspond-
ing non-zero values α, β, γ ∈ Fp with respect to c. For every x ∈ {α, β, γ},
let ℓx, respectively ℓ̃x, be the unique long lines in π, respectively π̃, through
Px.

Case 1: T ̸= T̃ .
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Suppose, to the contrary, that T ̸= T⋆
3 ̸= T̃. Without loss of generality, we

may assume that T = Todd
3 and T̃ = T△

3 .
Consider a plane σ ⊂ Σ through ℓ̃α. Note that ℓ̃α is a long line containing
q − 1 points with non-zero value α, one point with value α + β and one
point with value α + γ. Therefore, the plane σ cannot be

a plane of type T0, as α ̸= 0.

a plane of type T1, T2 or T⋆
3 , else α + β = α or α + γ = α.

a plane of type Todd
3 , as ℓ̃α contains at least 3 points with the same

value α.

a plane of type T△
3 , unless each 3-secant in σ contains points with

values α, β and γ as well. This is unambiguously determined by the
two points of ℓ̃α with values α + β and α + γ.

However, the plane σ can only have type T△
3 in a few cases. Suppose that σ

has type T△
3 and intersects π in a 3-secant t. One of the points of supp(c|t)

must be Pα, as this point belongs to both ℓ̃α and π. The other two points of
supp(c|t) lie in ℓβ and ℓγ and must have (not necessarily corresponding)
values β and γ. As π is a plane of type Todd

3 , there are only two possibilities
for σ to intersect π, namely when the β-valued point of t lies in ℓβ (then
σ = π̃), or when the β-valued point of t lies in ℓγ. In conclusion, of the
at least q − 2 planes through ℓ̃α in Σ that intersect π in a 3-secant, at least
q − 4 of them cannot be a plane of type T△

3 and thus must be planes of type

O. In addition, the plane
〈
ℓα, ℓ̃α

〉
can never be a plane of type T△

3 as well,
as ℓα contains many differently valued points. Thus, we find at least q − 3
planes of type O in Σ through ℓ̃α, each containing at least q2 − q − 1 points
of supp(c) due to Corollary 3.1.1. By Proposition 2.3.1, each of the other
planes in Σ through ℓ̃α contains at least 3q − 3 points of supp(c). We get

wt(c|Σ) ⩾
(
q2 − q − 1

)
(q − 3) + 4 (3q − 3)− q (q + 1)

= q3 − 5q2 + 13q − 9,
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which contradicts Lemma 3.2.4.

Case 2: T = T̃ .

Suppose, to the contrary, that wt(c|κ) ̸= wt(c|κ̃). Without loss of generality,
we can assume that wt(c|π) ̸= wt(c|π̃) as well.
First, assume that T = T̃ ∈

{
Todd

3 , T⋆
3

}
. By analysing the types of these

planes and by Configuration 1.1.2, wt(c|π) ̸= wt(c|π̃) implies that both
α + β + γ = 0 and α + β + γ ̸= 0, a contradiction.
Now assume that T = T̃ = T△

3 and consider the pairs of values of the
points ℓα ∩ ℓβ and ℓ̃α ∩ ℓ̃β, ℓβ ∩ ℓγ and ℓ̃β ∩ ℓ̃γ, and ℓα ∩ ℓγ and ℓ̃α ∩ ℓ̃γ.
As wt(c|π) ̸= wt(c|π̃), at least one of these pairs of values consists of a
zero value and a non-zero value, implying conflicting conditions on the
corresponding values. ■

Lemma 3.2.6

No 3-secant is contained in θd−2 hyperplanes of the same type T ∈
{

Todd
3 , T△

3

}
.

Proof. Suppose, to the contrary, that there exists a 3-secant s with the de-
scribed property.

Case 1: d = 3.

Fix a plane π through s. By Lemma 3.2.5, the weight of the codeword c is
known, as we can count:

wt(c) = (q + 1) (wt(c|π)− 3) + 3 = (q + 1)wt(c|π)− 3q. (3.2)

Note that, regardless of whether π is a plane of type Todd
3 or T△

3 , we can
always find a 2-secant r in π such that s and r intersect in a point P ∈
supp(c). Consider an arbitrary plane σ through r, different from π. There
exists a long line ℓ in σ through P, as else wt(c|σ) ⩽ wt(c|r)+ 2q = 2 (q + 1),
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which implies, by Result 1.1.3, that there does exist a long line in σ through
P, a contradiction. Now consider the plane ⟨s, ℓ⟩. As it contains the 3-secant
s, it has the same type as π. However, by Lemma 3.2.2, the plane ⟨s, ℓ⟩ has
the same type as σ as well, as they share the long line ℓ, unless σ is a plane
of type O.
In conclusion, any plane σ through r satisfies either wt(c|σ) = wt(c|π) (if σ
is a plane of type T ), or wt(c|σ) ⩾ 4q − 21 ⩾ wt(c|π) (if σ is a plane of type
O). In both cases, this yields a lower bound on wt(c), which, combined
with (3.2), results in

(q + 1)wt(c|π)− 3q = wt(c) ⩾ (q + 1) (wt(c|π)− 2) + 2,

a contradiction.

Case 2: d ⩾ 4.

Define

S := {(π, Π) : s ⊂ π ⊂ Π, π a plane, Π a hyperplane, both of type T} .

Fix an arbitrary plane π0 ⊃ s of type T. As all hyperplanes through s are
of the same type T, all hyperplanes through π0 have this property as well.
Thus, the number of elements in S with a fixed first argument π0 equals
θd−3.
Fix an arbitrary hyperplane Π0 ⊃ s of type T. By Proposition 3.1.3, the
number of elements in S with a fixed second argument Π0 equals qd−3.
Let xπ be the total number of type-T planes through s. By double counting,
we get

xπ · θd−3 = |S| = θd−2 · qd−3

⇐⇒ xπ =
qd−1 − 1
qd−2 − 1

qd−3 = qd−2 + 1 − qd−3 − 1
qd−2 − 1

.

As xπ is an integer, the fraction on the right-hand side of the latter equation
must also be an integer. This is never the case if d ⩾ 4. ■
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3.3 Knitting codewords together

One last, technical lemma is needed before presenting the main result of
this chapter.

Lemma 3.3.1

Consider, for i ∈ {1, 2}, a hyperplane Πi of type T⋆
3 and let Si be the set of its

three (d − 2)-subspaces present in the linear combination c|Πi , which therefore
intersect in a common (d − 3)-subspace κi. If S1 ∩ S2 ̸= ∅, then κ1 = κ2.

Proof. Let Σ be a (d − 2)-subspace that S1 and S2 have in common and
suppose, to the contrary, that κ1 ̸= κ2. As these are subspaces of the same
dimension, we can find points P1 ∈ κ1 \ κ2 and P2 ∈ κ2 \ κ1 which define a
line ℓ := ⟨P1, P2⟩. All points of Σ \ κi lie in supp(c) and every point of ℓ is
contained in Σ \ κi for at least one choice of i, which implies that ℓ must be
a (q + 1)-secant to supp(c). Now consider, for each i ∈ {1, 2}, a plane πi in
Πi through ℓ not contained in Σ. Due to this choice, the plane πi intersects
each (d − 2)-subspace of Si in a line (through Pi). Define σ := ⟨π1, π2⟩.
Choose a (q + 1)-secant ℓ̃ in π1, different from ℓ. As P1 ̸= P2, all planes
in σ through ℓ̃ (different to π1) intersect π2 in a 3-secant and thus, by
Lemma 3.2.4, are planes of type T . As π1 is a plane of type T as well, we
conclude that all planes in σ through ℓ̃ are planes of type T .
This means that wt(c|σ) ⩽ q (2q) + (3q + 1) = 2q2 + 3q + 1 ⩽ 3

(
1 − 3

q

)
θ2.

By Theorem 2.4.8, c|σ is a linear combination of at most two planes. As ℓ̃
necessarily lies in one of such planes, we see that not all planes through ℓ̃
in σ can be of type T , resulting in a contradiction. ■
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Theorem 3.3.2

Let d ⩾ 2, q ⩾ 53 prime, and consider a codeword c ∈ Cd−1(d, q) with wt(c) ⩽
4
(

1 − 8
q

)
θd−1. Then c is a linear combination of hyperplanes through a common

(d − 3)-subspace.

Proof. If wt(c) ⩽ 3
(

1 − 3
q

)
θd−1, then Theorem 2.4.8 proves the statement,

so assume that 3
(

1 − 3
q

)
θd−1 < wt(c) ⩽ 4

(
1 − 8

q

)
θd−1. We will prove

that there exist a (d − 3)-subspace κ and a plane π satisfying (3.1) of
Lemma 3.1.2; this will be done by induction on d.
If d = 2, we refer to Result 1.1.3. Assume that d ⩾ 3 and suppose that
the statement is true for c restricted to any k-subspace, 2 ⩽ k < d, given
that the weight of this restricted codeword is at most 4

(
1 − 8

q

)
θk−1. By

Lemma 3.2.3, there exists a 3-secant s with corresponding non-zero values
α, β and γ. By the induction hypothesis and Lemma 3.2.4, each hyperplane
through s is a hyperplane of type T . Therefore, by Lemma 3.2.5, there
exist two types TA = T⋆

3 and TB ∈
{

Todd
3 , T△

3

}
such that each of these

hyperplanes has either type TA or TB. Furthermore, by Lemma 3.2.6, there
must exist a hyperplane Π through s of type TA, which means that

c|Π = αΣ1 + βΣ2 + γΣ3

for certain (d − 2)-subspaces Σi of Π having a (d − 3)-subspace κ in com-
mon. Note that, by Proposition 3.1.3, each plane through s has either type
TA or TB as well. Now choose a plane π as follows: if all planes through s
are planes of type TA, choose π to be any plane through s not contained in
Π. Else, choose π to be a plane through s of type TB. By Proposition 3.1.3,
π cannot be contained in Π.
Note that c|κ = (α + β + γ) · 1. Moreover, as all lines in Π that intersect κ
are either 0-, 1-, q- or (q + 1)-secants, we know that κ must be disjoint to
the 3-secant s and hence also be disjoint to the plane π ⊃ s, as π ⊈ Π.
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The only statement left to prove is that, for every point P /∈ κ,

c(P) = c(⟨κ, P⟩ ∩ π) . (3.3)

Choose an arbitrary 3-secant s1 in π through the point Σ1 ∩ π, thus having
corresponding non-zero values α, β1 and γ1. By Lemma 3.2.4, the induction
hypothesis implies that Π1 := ⟨Σ1, s1⟩ is a hyperplane of type T . We claim
that Π1 is a hyperplane of type TA. Indeed, let π1 be a plane in Π1 through
s1, thus intersecting Π in a line ℓ of Σ1. Then this intersection line ℓ must
be a line containing at least q points of supp(c) with non-zero value α. By
Lemma 3.2.4, π1 has to be a plane of type T and hence, at it contains both
ℓ and s1, a plane of type TA. By the arbitrary choice of π1, all planes in Π1
through s1 must be planes of type TA, thus Π1 contains at least θd−3 planes
of type TA through a fixed 3-secant (s1). By Proposition 3.1.3, at least one of
these planes is of the same type as Π1, thus this hyperplane must have type
TA. Let κ1 be the (d − 3)-subspace of Π1 in which the three hyperplanes of
c|Π1 intersect. By Lemma 3.3.1, we know that κ = κ1. In this way, it is easy
to see that all points in Π1 \ κ fulfil property (3.3).
We can now repeat the above process by choosing another (d − 2)-subspace
Σ2 in one of the linear combinations of c|Π or c|Π1 and considering the
span Π2 = ⟨Σ2, s2⟩, with s2 an arbitrary 3-secant in π through the point
Σ2 ∩ π. All points in Π2 \ κ fulfil property (3.3) as well. To conclude, if,
for each point P in π, there exists a sequence of 3-secants s1, s2, . . . , sn ∋
P in π such that s ∩ s1 ∈ supp(c) and si ∩ si+1 ∈ supp(c) for all i ∈
{1, 2, . . . , n − 1}, then this theorem is proven by consecutively repeating
the above arguments. Unfortunately, not all points in π satisfy this property.
However, if a point P ∈ π does not lie in such a (sequence of) 3-secant(s),
we can easily prove that this point lies in a 0-, 1- or 2-secant r in π of
which the other q points are reached by such a (sequence of) 3-secant(s).
Thus, we already know the value of many points in the hyperplane ⟨κ, r⟩.
As wt

(
c|⟨κ,r⟩

)
⩽ 2qd−2 + θd−3 + wt

(
c|⟨κ,P⟩

)
− wt(c|κ) ⩽ 3qd−2 + θd−3 ⩽

4
(

1 − 8
q

)
θd−2, this hyperplane is a hyperplane of type T by the induction

hypothesis. Therefore, all points in ⟨κ, r⟩ \ κ must satisfy property (3.3). ■



4 Minimal small weight codewords

As mentioned before, projective geometric codes are never minimal, as
these always contain the all-one vector. In this chapter, we aim to partially
characterise the minimal codewords of Cd−1(d, q). To be more precise, we
will only consider codewords of small weight and develop a sufficient
condition for which these are minimal. All results of Section 4.2 are based
on [23].

We first briefly discuss the odd codeword before moving on to the ‘ordinary’
case, in which codewords are characterised up to a significantly larger
weight (see Chapter 2).

4.1 The odd codeword is minimal

Theorem 4.1.1

Let q ⩾ 19 be prime. Then any codeword given by Configuration 1.1.2 is minimal.

Proof. Consider a codeword c as described by Configuration 1.1.2 and sup-
pose that c′ ∈ C1(2, q) is a non-zero codeword with supp(c′) ⊆ supp(c).
Then wt(c′) ⩽ wt(c) ⩽ 3q − 2 and thus, by Result 1.1.3, c′ is characterised.
Moreover, as there exist three concurrent lines ℓ1, ℓ2 and ℓ3 such that each
contains exactly one hole with respect to c that does not lie in any of the
other two, the only remaining option is for c′ to be given by Configura-
tion 1.1.2 as well. As supp(c′) ⊆ supp(c), the holes with respect to c lying

71
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in ℓ1 ∪ ℓ2 ∪ ℓ3 different to S := ℓ1 ∩ ℓ2 ∩ ℓ3 are holes with respect to c′ as well.
Denote these points by H1, H2 and H3, respectively. We adopt the same
notation as used in Configuration 1.1.2 when considering the codeword c′.
If β := β1 + β2 + β3 = 0, then H1, H2 and H3 are collinear. Consider a
point P1 ∈ ℓ1 different from S and H1. Then the line ⟨P, H2⟩ has to intersect
each of the lines ℓ1, ℓ2 and ℓ3 in points with values summing up to β = 0,
implying that ⟨P, H2⟩ intersects ℓ3 in a point Q with value −c′(P). In
conclusion, the value of P uniquely defines the value of Q with respect
to c′. Starting with the point Q and the hole H1, we can duplicate this
argument to obtain a point R ∈ ℓ2 whose value is uniquely determined by
the value of Q, and therefore by the value of P. We can now repeat this
process until we end up with at least three points on each line, different
from S, each of which has a value that is uniquely determined by c′(P). By
the way Configuration 1.1.2 is constructed and due to Result 0.1.2, those
three points on ℓi fix the values of all points lying in a subline of ℓi. As q is
prime, this subline must be equal to ℓi.
If β ̸= 0, then H1, H2 and H3 are not collinear. The lines ⟨H1, H2⟩, ⟨H2, H3⟩
and ⟨H1, H3⟩ have to intersect each of the lines ℓ1, ℓ2 and ℓ3 in points with
values summing up to β, implying that their unique respective intersection
points P1, P2 and P3 of supp(c′) have value β. Repeating this argument
with P1, P2 and P3 instead of H1, H2 and H3, we yet again find at least
three points in each line, different from S, each of which has a value that is
uniquely determined by β. ■

Naturally, one can ask the same question of minimality in case d ⩾ 3 and
q ⩾ 53 is prime. By Theorem 3.3.2, any codeword c ∈ Cd−1(d, q) of weight
at most

4
(

1 − 8
q

)
θd−1

is equal to a linear combination of hyperplanes through a common (d − 3)-
subspace κ, which, by Lemma 3.1.2, is equivalent to stating that there exist
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a plane π disjoint to κ and a scalar µ ∈ Fp such that

c(P) =

{
µ if P ∈ κ,
c(⟨P, κ⟩ ∩ π) if P /∈ κ.

If c|π is given by Configuration 1.1.2, then c|π is minimal by Theorem 4.1.1.
Due to Lemma 3.1.2, all planes disjoint to κ are also given by Configura-
tion 1.1.2, which forces c to be minimal as well.

4.2 Minimality in the ordinary case

We copy the assumptions made at the start of Section 2.4.

ASSUMPTION
Throughout this section, we assume that q ⩾ 32 and fix a codeword
c ∈ Cd−1(d, q) such that wt(c) ⩽ W(d, q), where

W(d, q) :=


3
(

1 − 3
q

)
θd−1 if q is prime,(⌊ 1

2
√

q − 9
4

⌋
− 1
)

θd−1 if q = p2,(⌊√
q − 1

2

⌋
− 1
)

θd−1 otherwise.

Due to Theorem 2.4.8, any codeword c ∈ Cd−1(d, q), wt(c) ⩽ W(d, q), is
equal to a linear combination of exactly

tc :=
⌈

wt(c)
θd−1

⌉
hyperplanes that form a set Hc := {H1, H2, . . . , Htc}.

Proposition 4.2.1

If c′ ∈ Cd−1(d, q) with supp(c′) ⊆ supp(c), then Hc′ ⊆ Hc. As a consequence,
the following holds.

(1) The set Hc is unique, in the sense that there exists no other set of tc hyper-
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planes of which a linear combination equals c.

(2) If αi, βi ∈ Fp such that c = ∑tc
i=1 αi Hi = ∑tc

i=1 βi Hi, then αi = βi.
Therefore, we definea

c(H) :=

{
αi if H = Hi,
0 otherwise,

(4.1)

for any hyperplane H of PG(d, q).

aThis naturally extends the definition of the value c(P) of a point P (see section 0.2.2).

Proof. Suppose, to the contrary, that there exists a hyperplane H ∈ Hc′ \Hc.
Then all hyperplanes in (Hc ∪Hc′) \ {H} cover at most

(2tc − 1) θd−2 ⩽
(

2
⌈

W(d, q)
θd−1

⌉
− 1
)

θd−2 ⩽ (2
√

q − 3) θd−2 < θd−1

points of H. As a consequence, there exists a point P ∈ H which
is not contained in any hyperplane of (Hc ∪Hc′) \ {H} and therefore
P ∈ supp(c′) ⊆ supp(c). However, as P is not contained in any hyperplane
of Hc, P /∈ supp(c), a contradiction.
Statement (1) follows immediately by considering c′ := c. Statement (2)
follows by repeating the above arguments for each element of the unique
set Hc. In this way, we observe that each hyperplane of Hc contains a point
that is not contained in any other hyperplane of Hc, hence its coefficient
with respect to c is uniquely determined. ■

Definition 4.2.2 (codeword restricted to a hyperplane set)

Keeping (4.1) in mind, we can definea

c|H := ∑
H∈H

c (H) H
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for any subset H ⊆ Hc. In particular, c|Hc = c.

aThis shouldn’t cause confusion with the definition of a restricted codeword c|κ (see
section 0.2.2), as in that context, κ is a subspace.

Definition 4.2.3 (partition graph)

Consider a partition Hc of Hc and let ΓHc be the graph with vertex set Hc,
where two vertices V1 and V2 are adjacent if and only if there exists a point
P such that

(1) P is a hole of c,

(2) P belongs to the support of both c|V1 and c|V2 , and

(3) P is a hole of c|V for every V ∈ Hc \ {V1,V2}.

Definition 4.2.4 (codeword partitions)

Let H0
c := (Hc

1 ) be the set of singletons containing a unique hyperplane of
Hc. For each i ∈ N, we recursively define

Hi+1
c :=

{ ⋃
V∈V

V : V is the vertex set of a component in ΓHi
c

}
.

Note that Hi
c is a partition of Hc and a refinement of Hi+1

c . Hence, as Hc is
finite, there exists a j ∈ N such that H

j
c = H

j+1
c = H

j+2
c = . . . =: H∞

c .

Figure 4.1 is an illustration of the way Definition 4.2.4 deals with a specific
codeword c ∈ C1(2, q) of small weight, where q is chosen large enough.
The drawing consists of four ‘stages’, and one can check that

(1) H0
c =

{
{a0} , {a1} , {a2} , {ã} , {b0} , {b1} , {b2} , {b3} ,

{
b̃
}}

,
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a0 α ã 2α

a1
a2 −α

−α

b0 βb̃ 3β

b1

b2

b3
−β

−β

−β

a0 α ã 2α

a1
a2 −α

−α

b0 βb̃ 3β

b1

b2

b3
−β

−β

−β

3α + 4β = 0

a0 α ã 2α

a1
a2 −α

−α

b0 βb̃ 3β

b1

b2

b3
−β

−β

−β

a0 α ã 2α

a1
a2 −α

−α

b0 βb̃ 3β

b1

b2

b3
−β

−β

−β

Figure 4.1: The application of Definition 4.2.4 to an example codeword
c ∈ C1(2, q) of weight 9q − 12. More specifically, we consider nine
lines of PG(2, q) and define the codeword c := α (a0 − a1 − a2) + 2α ã +
β (b0 − b1 − b2 − b3) + 3β b̃. For this specific example, we assume q not
prime, q ⩾ 529 if h = 2 (to be able to apply Result 1.1.3) and q ⩾ 125,
p /∈ {2, 3, 7, 11, 13}, if h > 2. Furthermore, α, β ∈ Fq are two non-zero
elements such that 3α + 4β = 0.
Lines are clustered in four ‘stages’, each of which consists of ‘clustering’ the
lines by following the rule of thumb described in Definitions 4.2.3 and 4.2.4.
Holes that are about to ‘merge’ clusters are indicated by squares instead of
circles. In the first stage (top left), every line forms its own cluster. From
the second stage (top right) onward, clustered lines are put in bold, with
different line patterns to distinguish each cluster.
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(2) H1
c =

{
{a0, a1, a2} , {ã} , {b0, b1, b2, b3} ,

{
b̃
}}

,

(3) H2
c =

{
{a0, a1, a2, ã} ,

{
b0, b1, b2, b3, b̃

}}
, and

(4) H3
c =

{{
a0, a1, a2, ã, b0, b1, b2, b3, b̃

}}
= H∞

c .

Hence, for this specific codeword c, we end up with |H∞
c | = 1, a property

which turns out to imply that c is a minimal codeword of C1(2, q).

Theorem 4.2.5

Let q ⩾ 32 and consider a codeword c ∈ Cd−1(d, q) with wt(c) ⩽ W(d, q). If
|H∞

c | = 1, then c is minimal.

Proof. Consider a codeword c′ ∈ Cd−1(d, q) for which supp(c′) ⊆ supp(c).
We want to prove that there exists an α ∈ Fp such that c′ = αc. Keeping
Definition 4.2.2 in mind, this will be done by proving that

(∀i ∈ N)
(
∀V ∈ Hi

c

) (
∃αV

i ∈ Fp : c′|V = αV
i c|V

)
. (4.2)

Indeed, if (4.2) is true, then it is true for i = ∞ (read: for i large enough).
As H∞

c only contains the element Hc, and as Hc′ ⊆ Hc by Proposition 4.2.1,
this implies that there exists an α := αHc

∞ ∈ Fp such that

c′ = c′|Hc′
= c′|Hc = αc|Hc = αc.

We will prove (4.2) by induction on i. In case i = 0, the set H0
c = (Hc

1 )
partitions Hc in singletons. Hence, for an arbitrary element V ∈ H0

c ,
there exists a hyperplane H ∈ Hc such that V = {H}, meaning that
c′|V = c′ (H) H and c|V = c (H) H. As H ∈ Hc implies that c (H) ̸= 0, we
find an αV

0 := c′ (H) c (H)−1 meeting the requirements.
Now assume that (4.2) is true for a fixed i ∈ N. Choose an arbitrary
V ∈ Hi+1

c . As Hi
c is a refinement of Hi+1

c , V = V ′
1 ⊔V ′

2 ⊔ · · · ⊔ V ′
m for certain

pairwise disjoint sets of hyperplanes V ′
1,V ′

2, . . . ,V ′
m ∈ Hi

c, m ∈ {1, 2, . . . , tc}.
Moreover, V ′

1,V ′
2, . . . ,V ′

m are precisely all the vertices of a component in
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the graph ΓHi
c
. Consider two of these vertices that are adjacent with re-

spect to the graph ΓHi
c
; without loss of generality, consider V ′

1 and V ′
2. By

Definition 4.2.3, there exists a point P such that

(1) c (P) = 0, which implies that c′ (P) = 0 as supp(c′) ⊆ supp(c),

(2) c|V ′
1
(P) ̸= 0 ̸= c|V ′

2
(P), and

(3) for all V ′ ∈ Hi
c \ {V ′

1,V ′
2}, c|V ′ (P) = 0, implying that c′|V ′ (P) = 0 by

the induction hypothesis.

As Hi
c is a partition of Hc, we know that c = c|Hc = ∑V ′∈Hi

c
c|V ′ . Moreover,

as Hc′ ⊆ Hc by Proposition 4.2.1, we have c′ = c′|Hc′
= c′|Hc = ∑V ′∈Hi

c
c′|V ′ .

Hence, by properties (1) and (3), we obtain

0 = c (P) =

 ∑
V ′∈Hi

c

c|V ′

 (P) = c|V ′
1
(P) + c|V ′

2
(P) , and (4.3)

0 = c′ (P) =

 ∑
V ′∈Hi

c

c′|V ′

 (P) = c′|V ′
1
(P) + c′|V ′

2
(P) . (4.4)

By the induction hypothesis, there exist elements α
V ′

1
i , α

V ′
2

i ∈ Fp such that

c′|V ′
1
= α

V ′
1

i c|V ′
1

and c′|V ′
2
= α

V ′
2

i c|V ′
2
. Combining this with (4.3), (4.4) and the

fact that c|V ′
1
(P) ̸= 0 ̸= c|V ′

2
(P) (property (2) above), we obtain that

α
V ′

1
i =

(
c|V ′

1
(P)
)−1

c′|V ′
1
(P) =

(
−c|V ′

2
(P)
)−1 (

−c′|V ′
2
(P)
)

=
(

c|V ′
2
(P)
)−1

c′|V ′
2
(P) = α

V ′
2

i .

In conclusion, for any two elements V ′
j1 ,V ′

j2 ∈ {V ′
1,V ′

2, . . . ,V ′
m} that are

adjacent with respect to the graph ΓHi
c
, the corresponding values α

V ′
j1

i and

α
V ′

j2
i (found by the induction hypothesis) are equal. As the elements of
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{V ′
1,V ′

2, . . . ,V ′
m} are precisely the vertices of a component of ΓHi

c
, we can

conclude that
c′|V ′

j
= α

V ′
1

i c|V ′
j
, ∀j ∈ {1, 2, . . . , m} .

By defining αV
i+1 := α

V ′
1

i , we conclude that, for any V ∈ Hi+1
c ,

c′|V =
m

∑
j=1

c′|V ′
j
=

m

∑
j=1

αV
i+1c|V ′

j
= αV

i+1

m

∑
j=1

c|V ′
j
= αV

i+1c|V .
■

Definition 4.2.6 (support holes)

Define P∞
c to be the set of all holes, each belonging to the support of c|V

for some V ∈ H∞
c .

Theorem 4.2.7

Let q ⩾ 32 and consider a codeword c ∈ Cd−1(d, q) with wt(c) ⩽ W(d, q). If
|P∞

c | ⩽ |H∞
c | − 2, then c is not minimal.

Proof. Define m := |H∞
c | and n := |P∞

c |, hence let H∞
c = {V1,V2, . . . ,Vm}

and P∞
c = {P1, P2, . . . , Pn}. Consider the following system of n linear

equations over Fp:

c|V1 (Pi) X1 + c|V2 (Pi) X2 + · · ·+ c|Vm (Pi) Xm = 0, i = 1, 2, . . . , n.
(4.5)

As n ⩽ m − 2, the solution space of the above system of linear equations
is a vector space over Fp of dimension at least two. Therefore, we can
find a solution (α1, α2, . . . , αm)

⊺ ∈ V(m, p) that is not a scalar multiple of
1 ∈ V(m, p). Define

c′ := α1c|V1 + α2c|V2 + · · ·+ αmc|Vm .

By the choice of (α1, α2, . . . , αm)
⊺, the codeword c′ is not a scalar multiple of
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c = c|V1 + c|V2 + · · ·+ c|Vm . Hence, once we verify that supp(c′) ⊆ supp(c),
the proof is done.
Consider a hole Q of c. Then either Q ∈ P∞

c or Q /∈ P∞
c . If Q ∈ P∞

c , then
Q = Pi′ for an i′ ∈ {1, 2, . . . , n}. As (α1, α2, . . . , αm)

⊺ is a solution to (4.5),
c′ (Q) = α1c|V1 (Pi′) + α2c|V2 (Pi′) + · · ·+ αmc|Vm (Pi′) = 0. If Q /∈ P∞

c , then
c|V (Q) = 0 for every V ∈ H∞

c , hence c′ (Q) = α1c|V1 (Q) + α2c|V2 (Q) +
· · · + αmc|Vm (Q) = 0 + 0 + · · · + 0 = 0. In both cases, c′ (Q) = 0. As
Q was an arbitrarily chosen, all holes of c are holes of c′, implying that
supp(c′) ⊆ supp(c). ■

Corollary 4.2.8

Let q ⩾ 32 and consider a codeword c ∈ Cd−1(d, q) with wt(c) ⩽ W(d, q). If
|H∞

c | = 2, then c is not minimal.

Proof. By Theorem 4.2.7, it suffices to prove that P∞
c = ∅. Let H∞

c =
{V1,V2} and suppose, to the contrary, that there exists a point P ∈ P∞

c .
Without loss of generality, we can assume that c|V1 (P) ̸= 0. As P ∈ P∞

c , we
know that P is a hole of c, hence 0 = c (P) = c|V1 (P) + c|V2 (P), implying
that c|V2 (P) ̸= 0 as well. However, by Definitions 4.2.3 and 4.2.4, this
would imply that |H∞

c | = 1, a contradiction. ■

Theorem 4.2.9

Suppose that q = ph, p ⩾ 5. Then there exists a minimal codeword c ∈ C1(2, q)
with wt(c) ⩽ W(2, q), |H∞

c | = 3 and |P∞
c | = 2.

Proof. Consider a line r and let S, T ∈ r be two distinct points. Let s1,
s2 and s′ be three distinct lines through S, different from r, and let t1,
t2 and t′ be three distinct lines through T, different from r. Define c :=
r − s1 − s2 + s′ − t1 − t2 + t′.
One can check that H∞

c = {{s1, s2, t′} , {t1, t2, s′} , {r}} and that P∞
c =

{S, T}, and also manually check that this codeword is minimal. ■
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Strong blocking sets
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5 A tale of wild lines and minimal
codes

Owl feathers, apple cores and sweet wrappers littered the floor, a
number of spellbooks lay higgledy-piggledy among the tangled robes on
his bed, and a mess of newspapers sat in a puddle of light on his desk.

— J. K. Rowling, Harry Potter and the Half-Blood Prince

The closure of Part I marks the end of the ‘characterising codes’ bit of this
thesis’s title. Part II and III focus on peculiar geometrical constructions that
directly prove the existence of codes with favourable properties.

This part is focused on constructions that take the form of so-called higgledy-
piggledy sets of k-subspaces, which give rise to a particular type of strong
blocking sets, that in turn produce minimal codes.

The results in this chapter are based on [62, 64].

5.1 Strong blocking sets and minimal codes

One type of structure that is being thoroughly investigated in the literat-
ure is a blocking set. Occasionally, entire PhD theses are devoted to these
fascinating point sets. We adopt the definition used in [52].

83
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Definition 5.1.1 (blocking set)

A k-blocking set of PG(d, q) is a point set that meets every (d − k)-
dimensional subspace. A 1-blocking set will simply be called a blocking
set.

The point set of a k-subspace is the simplest (and smallest) example of a
k-blocking set of PG(d, q) [32]. A natural generalisation of a k-blocking set
of PG(d, q) is the concept of a t-fold k-blocking set, which is a point set of
PG(d, q) that meets every (d − k)-dimensional subspace in at least t points.
As an example, the unionised point set of t pairwise disjoint k-subspaces is
a t-fold k-blocking set.

Definition 5.1.2 (strong blocking set)

A strong k-blocking set of PG(d, q) is a point set that meets every (d − k)-
dimensional subspace κ in a set of points spanning κ. A strong 1-blocking
set will simply be called a strong blocking set.

The concept of a strong k-blocking set was introduced in [46, Definition 3.1].
However, these are also known as generator sets ([69, Definition 2]) and
cutting blocking sets ([31, Definition 3.4]) in case k = 1.

Alfarano, Borello and Neri [6] and Tang, Qiu, Liao and Zhou [106] inde-
pendently proved that minimal codes have a one-to-one correspondence to
strong blocking sets. Recently, this correspondence was reproven “much
more transparently” in [77, Corollary 19].

Result 5.1.3 ([6, Theorem 3.4], [106, Theorem 3.2])

Suppose that n, k′ ∈ N \ {0, 1} and let C be a non-degenerate [n, k′]q-code
with generator matrix G := (g1, g2, . . . , gn). Given a coordinate system
for PG(k′ − 1, q), let B be the point set corresponding to the coordinate set
{g1, g2, . . . , gn}. Then C is a minimal code if and only if B is a strong blocking
set.

As one is generally interested in the smallest possible length of minimal



5.2. HIGGLEDY-PIGGLEDY SETS 85

[n, k′]q-codes for fixed parameters k′ and q, one defines m(k′, q) to be the
smallest possible length of such a code. Naturally, researchers try to de-
termine lower and upper bounds for m(k′, q). By the above result, this
quest goes hand in hand with the search for small strong blocking sets of
PG(k′ − 1, q).

5.2 Higgledy-piggledy sets

While any strong k-blocking set is necessarily a (d − k + 1)-fold k-blocking
set, the converse is generally false. Following this line of thought, one could
wonder if a strong k-blocking set could be constructed as the unionised
point set of some well-chosen k-subspaces. Although sporadic examples
of such point sets were already presented in [46], this idea was thoroughly
investigated in [69, 78] for k = 1 and later generalised in [68] to arbitrary k.

Definition 5.2.1 (higgledy-piggledy set)

If K is a set of k-subspaces of PG(d, q) such that the union of their point sets
is a strong k-blocking set, then the elements of K are said to be in higgledy-
piggledy arrangement and the set K itself is said to be a higgledy-piggledy
set of k-subspaces.

Higgledy-piggledy sets are the protagonists of Part II. The name originates
from the mind of Hungarian mathematician Tamás Héger and illustrates
the way such sets of k-subspaces are figuratively ‘well-spread-out’ (copying
a well-put description of [68, 69]). By Result 5.1.3, the existence of small line
sets in higgledy-piggledy arrangement implies the existence of minimal
codes and covering codes (see Part III) of relatively small length.

While the case k = d is barely worth mentioning, the cases k ∈ {0, d − 1}
are trivial as well. After all, any basis of PG(d, q) in general position is a
higgledy-piggledy point set of smallest size. Conversely (or by duality,
see Proposition 5.4.4), any set of d + 1 hyperplanes in general position is a
higgledy-piggledy set of hyperplanes of smallest size.
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If 1 ⩽ k ⩽ d − 2, however, it is generally not an easy task to find small
higgledy-piggledy sets of k-subspaces. The following ‘almost-equivalent’
condition was first derived for sets of lines in [69] and later generalised
to sets of k-subspaces in [68] and is a great tool to ease the search for
higgledy-piggledy sets.

Result 5.2.2 ([68, Theorem 4 and Proposition 5])

Let K be a set of k-subspaces of PG(d, q). If no (d − k − 1)-subspace meets each
element of K, then K is a higgledy-piggledy set of k-subspaces. If |K| ⩽ q, the
converse holds as well.

As one generally wishes to construct higgledy-piggledy sets of small size,
lower bounds on the size of such sets were determined to reveal which sizes
would (theoretically) be optimal. A lower bound on higgledy-piggledy line
sets was determined in [69] for q large enough, and recently strengthened
in [77] to all values of q.

Result 5.2.3 ([77, Theorem 28])

A higgledy-piggledy line set of PG(d, q) contains at least d +
⌊

d
2

⌋
−
⌊

d−1
q

⌋
elements.

Based on the reasoning behind [69, Theorem 14], the authors of [68] induct-
ively determined a lower bound on the size of general higgledy-piggledy
sets of k-subspaces.

Result 5.2.4 ([68, Theorem 20])

A higgledy-piggledy set of k-subspaces of PG(d, q) contains at least
min

{
q, ∑k

i=0

⌊
d−k+i

i+1

⌋}
+ 1 elements.

The latter theorem can in fact be improved if k > d−1
2 by using the fact that

a projective geometry admits a duality.
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Theorem 5.2.5

A higgledy-piggledy set of k-subspaces of PG(d, q) contains at least

min

{
q, max

{
(k + 1) +

k+1

∑
i=1

⌊
d − k − 1

i

⌋
, (d − k) +

d−k

∑
i=1

⌊
k
i

⌋}}
+ 1

elements.

Proof. This follows immediately from Result 5.2.4 and Proposition 5.4.4.■

The main topic of Part II concerns the flip side of the coin, namely the
search for tighter upper bounds on the size of the smallest possible higgledy-
piggledy sets of k-subspaces of PG(d, q). This is naturally done by construct-
ing small higgledy-piggledy sets, ideally with a size as close as possible to
the theoretical lower bound.
A naive but interesting example of a general higgledy-piggledy line set is
the tetrahedron, first mentioned in [51, Theorem 6]. This is the set of all
lines containing two points of a fixed basis of PG(d, q), resulting in a set of
d(d+1)

2 lines in higgledy-piggledy arrangement. Several years later, smaller
higgledy-piggledy line sets were found and subsequently generalised.

Result 5.2.6 ([69, Theorem 24], [68, Proposition 10])

If q > (d − k) (k + 1), then there exist (d − k) (k + 1) + 1 k-subspaces of
PG(d, q) in higgledy-piggledy arrangement.

Although the theorems above present very strong upper bounds on the size
of the smallest possible higgledy-piggledy sets of k-subspaces, the case of
q small is neglected. Using a probabilistic approach, Héger and Nagy [77,
Theorems 31 and 37] recently obtained strong upper bounds for all values
of q, which coincide with the results above if q > (d − k) (k + 1).

Besides these general results, sporadic examples of higgledy-piggledy sets
can be found in the literature.
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Result 5.2.7 ([46, Theorem 3.7], [24, Proposition 12], [19, Theorem 3.15])

(1) There exist four pairwise disjoint lines of PG(3, q) in higgledy-piggledy
arrangement.a

(2) If q ⩾ 36097 is no power of 2 or 3, then there exist six pairwise disjoint
lines of PG(4, q) in higgledy-piggledy arrangement.

(3) There exist seven pairwise disjoint lines of PG(5, q) in higgledy-piggledy
arrangement.

aSide note: an easy exercise proves that three lines of PG(3, 2) are in higgledy-piggledy
arrangement if and only if they are pairwise disjoint.

Fancsali and Sziklai discovered the same construction behind Result 5.2.7(1)
in [69, Example 9]. The authors of [46] also prove the existence of nine
planes of PG(4, q) in higgledy-piggledy arrangement. However, if q ⩾ 7,
Result 5.2.6 improves this result, as it implies the existence of seven planes
of PG(4, q) in higgledy-piggledy arrangement.

5.3 Optimal higgledy-piggledy line sets

Consider a higgledy-piggledy line set of smallest theoretical size (see Res-
ult 5.2.3). Is it possible to micro-optimise the strong blocking set arising
from this set by making some of these lines intersect? In other words, which
are the optimal higgledy-piggledy line sets?

Lemma 5.3.1

Consider a higgledy-piggledy line set L of PG(d, q) with |L| = d +
⌊

d
2

⌋
⩽ q.

Then every
⌈

d+1
2

⌉
lines of L span the whole space.

Proof. Suppose, to the contrary, that there exists a subset L′ ⊂ L consisting
of
⌈

d+1
2

⌉
lines contained in a hyperplane Π. For each ℓ ∈ L \ L′, choose a
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point in the subspace Π ∩ ℓ. This results in a choice of at most d +
⌊

d
2

⌋
−⌈

d+1
2

⌉
= d − 1 points in Π spanning a subspace Σ ⊂ Π of dimension at

most d − 2. Any (d − 2)-subspace of Π through Σ is a (d − 2)-subspace
that intersects every line of L, contradicting Result 5.2.2. ■

Proposition 5.3.2

Consider a higgledy-piggledy line set L of PG(d, q) with |L| = d +
⌊

d
2

⌋
⩽ q.

Then the following holds.

(1) If d is odd, the lines of L are pairwise disjoint.

(2) If d ⩾ 4 is even, at most two lines of L intersect.

Proof. Let d be odd. The statement is trivial if d = 1, hence we can as-
sume that d ⩾ 3. Suppose, to the contrary, that two lines ℓ, ℓ′ ∈ L span
a plane π. Consider n := d−3

2 lines ℓ1, ℓ2, . . . , ℓn ∈ L \ {ℓ, ℓ′}. Then
⟨ℓ, ℓ′, ℓ1, ℓ2, . . . , ℓn⟩ = ⟨π, ℓ1, ℓ2, . . . , ℓn⟩ is a span of d+1

2 lines of L equal
to a subspace of dimension at most d − 1, contradicting Lemma 5.3.1.
Let d ⩾ 4 be even. Suppose, to the contrary, that there exist two doubletons
of intersecting lines with corresponding intersection points S1 and S2;
define L′ to be the set of these lines. We distinguish two cases depending
on the size of L′ and on the equality of the intersection points S1 and S2.
If |L′| = 3 or if S1 = S2, then there exists a solid σ containing at least
three lines of L′. Consider n := d−4

2 lines ℓ1, ℓ2, . . . , ℓn ∈ L \ L′. Then
⟨σ, ℓ1, ℓ2, . . . , ℓn⟩ is a subspace of dimension at most d − 1 that contains at
least d+2

2 lines of L, contradicting Lemma 5.3.1.
If |L′| = 4 and S1 ̸= S2, then the line s := ⟨S1, S2⟩ intersects all four lines
of L′. Consider n := d−2

2 lines ℓ1, ℓ2, . . . , ℓn ∈ L \ L′. As ⟨s, ℓ1, ℓ2, . . . , ℓn⟩
has dimension at most d − 1, we can choose a hyperplane Π through this
subspace. For each ℓ ∈ L \ (L′ ∪ {ℓ1, ℓ2, . . . , ℓn}), choose a point in the
subspace Π ∩ ℓ. This results in a choice of at most d + d

2 − (4 + n) =



90 CHAPTER 5. A TALE OF WILD LINES AND MINIMAL CODES

d − 3 points in Π spanning, together with the line s, a subspace Σ ⊂ Π of
dimension at most d − 2. Any (d − 2)-subspace of Π through Σ is a (d − 2)-
subspace that intersects every line of L, contradicting Result 5.2.2. ■

Proposition 5.3.3

Consider a higgledy-piggledy set K of (d − 2)-subspaces of PG(d, q) with |K| =
d +

⌊
d
2

⌋
⩽ q. Then every

⌈
d+1

2

⌉
elements of K have no point in common.

Moreover, the following holds.

(1) If d ⩾ 3 is odd, the elements of K pairwise intersect in a (d − 4)-subspace.

(2) If d ⩾ 4 is even, at most two elements of K intersect in a (d − 3)-subspace.

Proof. These results follow immediately by combining Lemma 5.3.1
and Proposition 5.3.2 with Proposition 5.4.4 (see Section 5.4). ■

Note that, alternatively, we could have dualised both statement and proof
of Lemma 5.3.1 and Proposition 5.3.2 to obtain Proposition 5.3.3.

Propositions 5.3.2 and 5.3.3 give us an understanding of the best possible
set-ups for higgledy-piggledy sets of k-subspaces, k ∈ {1, d − 2}, of size at
most q. Therefore, we define the following accordingly.

Definition 5.3.4 (optimal higgledy-piggledy set)

Let d ⩾ 3 and k ∈ {1, d − 2}, and consider a higgledy-piggledy set K of
k-subspaces of PG(d, q). Then K is called optimal if |K| = d +

⌊
d
2

⌋
⩽ q

and either

(1) d is odd, or

(2) d is even and two elements of K intersect in a (k − 1)-subspace.
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5.4 Construction methods

There are several ways to construct higgledy-piggledy sets of k-subspaces
of PG(d, q). Constructions via projection or dualisation make use of the
existence of other higgledy-piggledy sets to construct new ones of similar
size. Construction via linear sets relies on the existing knowledge on Fq-
linear sets to prove the existence of higgledy-piggledy sets of k-subspaces
contained in Desarguesian spreads.

5.4.1 Projection

Proposition 5.4.1

Suppose that B is a strong k-blocking set of PG(d, q). Take a hyperplane Π and a
point P /∈ B ∪ Π. Then B′ := {⟨P, S⟩ ∩ Π : S ∈ B} is a strong k-blocking set
of Π ∼= PG(d − 1, q).

Proof. Suppose, to the contrary, that there exists a (d − k − 1)-subspace
Σ ⊂ Π that meets B′ in a point set contained in a (d − k − 2)-subspace
Σ′. By the definition of B′, this means that ⟨Σ, P⟩ is a (d − k)-subspace
that meets B in a point set contained in the (d − k − 1)-subspace ⟨Σ′, P⟩, a
contradiction. ■

Corollary 5.4.2

Consider a higgledy-piggledy set K of k-subspaces of PG(d, q). Take a hy-
perplane Π and a point P /∈ Π not contained in any of the elements of K.
Then K′ := {⟨P, κ⟩ ∩ Π : κ ∈ K} is a higgledy-piggledy set of k-subspaces in
Π ∼= PG(d − 1, q) of size at most |K|.

Remark 5.4.3

Let d ⩾ 3, k ∈ {1, d − 2}, and suppose there exists an optimal higgledy-
piggledy set of k-subspaces for each odd, respectively even, d. Then, by
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Corollary 5.4.2, there exists a higgledy-piggledy set of k-subspaces of size
d +

⌊
d
2

⌋
+ 1 for each even, respectively odd, d (for d even, one simply has

to choose the point of projection within the span of the two k-subspaces
that maximally intersect). This reduces the search for small (‘near-optimal’)
higgledy-piggledy sets of k-subspaces, k ∈ {1, d − 2}, to one parity class
of d.

5.4.2 Duality

A second construction technique makes use of a duality of PG(d, q), and
although this insight is anything but groundbreaking, we want to note that
this has also been pointed out in [68, Theorem 9, Proposition 10].

Proposition 5.4.4

Consider a higgledy-piggledy set K of k-subspaces of PG(d, q) with |K| ⩽ q.
Then the set Kδ consisting of the dual subspaces of the elements in K is a higgledy-
piggledy set of (d − k − 1)-subspaces of PG(d, q).

Proof. By Result 5.2.2, no (d − k − 1)-subspace meets each element of K.
Taking the dual of this statement, we know that no k-subspace meets each
element of Kδ. Applying Result 5.2.2 yet again, we conclude that Kδ must
be a higgledy-piggledy set of (d − k − 1)-subspaces of PG(d, q). ■

Theorem 5.2.5 is an excellent example of the usage of this method. Moreover,
as we will discover in Chapter 6, this technique will imply the existence of
a small higgledy-piggledy plane set of PG(4, q) (see Corollary 6.2.6).

Corollary 5.4.5

There exist seven solids of PG(5, q), q ⩾ 7, in higgledy-piggledy arrangement.

Proof. This follows from Result 5.2.7(3) and Proposition 5.4.4. ■

This set is an optimal higgledy-piggledy set of solids of PG(5, q). Note that,
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by Proposition 5.3.3, these seven solids are in general position.

5.4.3 Linear sets

This particular method for constructing higgledy-piggledy sets is useful if
(and only if) d + 1 is composite. As a side note, a different perspective can
be found in (very) recent literature [7].

Let r, t ∈ N \ {0} and recall the definition of an Fq-linear set (see sec-
tion 0.1.8). Note that an Fq-linear set of PG

(
r − 1, qt) has rank (r − 1) t + 1

if and only if it equals the whole point set of PG
(
r − 1, qt). With this in

mind, the following theorem states that any point set that is not contained
in a ‘proper’ Fq-linear set gives rise to a higgledy-piggledy set.

Theorem 5.4.6

Let r, t ∈ N \ {0} and consider a point set P of PG
(
r − 1, qt) that is not

contained in an Fq-linear set of rank (r − 1) t. Then Fr,t,q(P) is a higgledy-
piggledy set of pairwise disjoint (t − 1)-subspaces of PG(rt − 1, q).

Proof. Suppose, to the contrary, that Fr,t,q(P) is not a higgledy-piggledy
set of (t − 1)-subspaces of PG(rt − 1, q). By Result 5.2.2, there exists an
((r − 1) t − 1)-subspace that meets all elements of Fr,t,q(P), implying that
the latter is contained in an Fq-linear set of rank (r − 1) t, a contradiction.■

This idea of searching for higgledy-piggledy sets as a subset of a Desar-
guesian spread was first used in [8, 19] (see e.g. Result 5.2.7(3)).

Remark 5.4.7 ([8, Remark 4.3])

As an Fq-subline of PG
(
1, q2) is uniquely determined by any three of its

points (Result 0.1.2), one can choose four points of PG
(
1, q2) not contained

in any Fq-subline (which is precisely an Fq-linear set of rank 2). Therefore,
Theorem 5.4.6 provides an alternative proof for Result 5.2.7(1).



94 CHAPTER 5. A TALE OF WILD LINES AND MINIMAL CODES

Eight planes of PG(5, q)

Theorem 5.4.6 can not only be used to prove the existence of higgledy-
piggledy line sets of PG(5, q). By Result 5.2.6, we know that there exists
a higgledy-piggledy set of planes of PG(5, q) of size ten. Based on some
strong results found in [89], we can prove the following.

Theorem 5.4.8

There exist eight pairwise disjoint planes of PG(5, q), q ⩾ 7, in higgledy-piggledy
arrangement.

Proof. Consider four distinct points C, B1, B2 and B3 of PG
(
1, q3) that do

not lie in an Fq-subline. For every i ∈ {1, 2, 3}, let bi be the (by Result 0.1.2
unique) Fq-subline through the points of the set {C, B1, B2, B3} \ {Bi} and
choose a point Di ∈ bi \ {C, B1, B2, B3}. In this way, we obtain three distinct
Fq-sublines that pairwise intersect in two points and have the point C in
common. Define

P := {C, B1, B2, B3, D1, D2, D3} .

By Result 0.1.17, any Fq-linear set that contains all points of P has to contain
all points of b1 ∪ b2 ∪ b3, as such Fq-linear set contains at least four points of
each subline. As |b1 ∪ b2 ∪ b3| = 3q − 2 > 2q + 3, Result 0.1.19 implies that
there exists at most one Fq-linear set L of rank 3 that contains all points of
P . Choose a point Q /∈ L. Then P ∪ {Q} is a set of eight points of PG

(
1, q3)

that is not contained in any Fq-linear set of rank 3. Theorem 5.4.6 finishes
the proof. ■

In Chapter 7, we show, with a bit more effort, how the above result can be
improved.



6 lines of PG(4, q)

This and the following chapter focus on the construction of small higgledy-
piggledy sets of PG(4, q) and PG(5, q), respectively.

Non-trivial higgledy-piggledy sets of k-subspaces of PG(4, q) arise if k ∈
{1, 2}. By Theorem 5.2.5, any such set consists of at least six elements. As
described in Result 5.2.7(2), Bartoli, Kiss, Marcugini and Pambianco proved
the existence of six pairwise disjoint lines of PG(4, q) in higgledy-piggledy
arrangement. They however exclude the cases of field characteristic 2
and 3 and impose a relatively large lower bound on the general field
size. Therefore, the question arises whether such a construction is possible
without any significant field restrictions. Bonus points if such a line set
turns out to be optimal.

The results in this chapter are based on [62]. This entire chapter consists
of one long chain of arguments leading up to Theorem 6.2.5, many of
which rely on Section 0.1.6. We will juggle with points, lines and planes of
PG(4, q), and introduce many notations to avoid confusing repetitions of
arguments. If you lose track of any such notation, use the index at the end
of this work to pinpoint the correct definition.

6.1 The base configuration

A blocking set of PG(2, q) is defined to be a point set meeting every line
of the projective plane (see Definition 5.1.1). In the literature, researchers
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have also investigated point sets of PG(2, q) that meet every line of a fixed
line set. In particular, blocking sets with respect to the external lines of
a non-singular conic were considered. In 2006, Aguglia and Korchmáros
[4] managed to characterise such blocking sets of minimal size in case q is
odd. One year later, Giulietti [71] tackled the case of q even. Although a
characterisation is known, for the purpose of this chapter, we only require
the following, which will prove its usefulness near the very end of this
chapter.

Result 6.1.1 ([4, 71])

The minimum size of a blocking set with respect to the external lines of a non-
singular conic of PG(2, q) equals q − 1.

Throughout this chapter, keep the following base configuration in mind.

Configuration 6.1.2

Suppose that Σ1, Σ2 and Σ3 are solids of PG(4, q) such that their intersec-
tion m := Σ1 ∩ Σ2 ∩ Σ3 is a line. Let M1 and M2 be two distinct points
on m. Define, for every i, j ∈ {1, 2, 3}, i < j, the plane πij := Σi ∩ Σj
and let Pij ∈ πij \ m be a point. Consider, for each i ∈ {1, 2}, the line
ℓi2 := ⟨P12, Pi3⟩ and the line ℓi1 lying in Σi through Mi not intersecting ℓi2
and not contained in π12 or πi3. Define the line s := ⟨P13, P23⟩, the plane
β := ⟨ℓ11, ℓ21⟩ ∩ Σ3 and their intersection point S := s ∩ β. To conclude,
consider the following projections:

(1) the line ℓ′11 := ⟨P13, ℓ11⟩ ∩ π12, and

(2) the line ℓ′′i1 := ⟨P12, ℓi1⟩ ∩ πi3 for each i ∈ {1, 2}.

See Figure 6.1 for a visualisation of this configuration.
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PG(4, q)PG(4, q)

Σ1

Σ2

Σ3

ℓ11

ℓ12

π12

ℓ′11 ℓ21

ℓ22

P12

π13
ℓ′′11 π23

ℓ′′21

m

ℓ31

s

β := ⟨ℓ11, ℓ21⟩ ∩ Σ3

Q
S

M1

M2

M3

P13 P23

Figure 6.1: The set-up as described in Configurations 6.1.2 and 6.2.4. Note
that the lines of interest, namely ℓ11, ℓ12, ℓ21 and ℓ22 (and ℓ31, see Con-
figuration 6.2.4) are drawn in red, while their projections as defined in
Configuration 6.1.2 are shown in orange.
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6.2 Pencils and conics

Denote with Π(4) the set of all planes of PG(4, q) that intersect each of the
lines ℓ11, ℓ12, ℓ21 and ℓ22.

Lemma 6.2.1

Each plane of Π(4) either

(1) intersects Σ3 in a line of π13 through M2 not equal to m,

(2) intersects Σ3 in a line of π23 through M1 not equal to m,

(3) is equal to π12, or

(4) intersects π12 in precisely one point not contained in ⟨Mi, P12⟩ \ {Mi, P12},
i ∈ {1, 2}.

Moreover, for every point A ∈ π12 \ (⟨M1, P12⟩ ∪ ⟨M2, P12⟩), there exists a
unique plane of Π(4) that intersects π12 in precisely the point A.

Proof. Consider a plane α ∈ Π(4) and suppose that α is contained in Σi for
a certain i ∈ {1, 2}. Then α has to contain the points M3−i and P12 to be
able to intersect the lines ℓ(3−i)1 and ℓ(3−i)2, respectively, and hence has to
intersect Σ3 in a line r ⊂ πi3 through M3−i. If r ̸= m, then either property
(1) or property (2) is true. If r = m, then property (3) holds.
Now suppose that α is not contained in Σ1 nor Σ2, then α intersects these
solids in lines a1 and a2, respectively. If α intersects π12 in a line, then
this line has to be equal to a1 = a2 which consequently has to contain the
non-collinear points M1, M2 and P12 to be able to intersect the lines ℓ11, ℓ21,
ℓ12 and ℓ22, a contradiction. Hence, α intersects π12 in precisely a point
A := a1 ∩ a2 and is therefore equal to ⟨a1, a2⟩. It is clear that, for i ∈ {1, 2},
the line ai has to intersect the disjoint lines ℓi1 and ℓi2. If A /∈ {M1, M2, P12},
then there exists a unique line through A intersecting both of these lines,
which hence has to be equal to ai. This means that A cannot be contained
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in ⟨Mi, P12⟩, as else ai = ⟨Mi, P12⟩ ⊂ π12, and that α is uniquely defined by
its intersection point A with π12, finishing the proof. ■

Thanks to the above lemma, we can now introduce the following notation.
For every point A ∈ π12 \ (⟨M1, P12⟩ ∪ ⟨M2, P12⟩), let α(A) be the unique
plane of Π(4) intersecting π12 in precisely the point A. For every i ∈ {1, 2, 3},
define the line a(A)

i := α(A) ∩ Σi.

Lemma 6.2.2

Let a be a line in π12 through P12 that avoids M1 and M2. Then{
a(A)

3 : A ∈ a \ {P12}
}

is a set of q lines that

lie in a plane of Σ3 through s, and

go through a fixed point of β.

Proof. For every A ∈ a \ {P12} and each i ∈ {1, 2}, the line a(A)
i is contained

in ⟨a, ℓi2⟩, a plane independent of the choice of A that intersects ℓi1 necessar-
ily in a point Qi /∈ (π12 ∪ πi3). The line a(A)

i has to intersect ℓi1, thus it has to

go through the point Qi. As a first result, all lines of
{

a(A)
3 : A ∈ a \ {P12}

}
lie in the plane ⟨a, ℓ12, ℓ22⟩ ∩ Σ3 and hence are coplanar; the corresponding
plane contains both P13 and P23 and hence also the line ⟨P13, P23⟩ = s. As
a second result, all planes of

{
α(A) : A ∈ a \ {P12}

}
go through ⟨Q1, Q2⟩,

which is a line that intersects Σ3 necessarily in a point Q3 /∈ {Q1, Q2}. Con-
sequently, all lines of

{
a(A)

3 : A ∈ a \ {P12}
}

have to go through the point
Q3. As Q1 ∈ ℓ11 and Q2 ∈ ℓ21, the line ⟨Q1, Q2⟩ lies in ⟨ℓ11, ℓ21⟩ and, hence,
Q3 lies in ⟨ℓ11, ℓ21⟩ ∩ Σ3 = β. ■

For every line a in π12 through P12 that avoids M1 and M2, the q lines
of
{

a(A)
3 : A ∈ a \ {P12}

}
are coplanar and concurrent. We denote this

unique plane by γ(a) ⊃ s and this unique point of concurrence by A(a) ∈ β.
The q lines will often be called the pencil of lines corresponding to A(a).
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Lemma 6.2.3

The point set
{
A(a) : P12 ∈ a ⊂ π12; M1, M2 /∈ a

}
∪ {M1, M2} is a non-

singular conic contained in β that contains the point S.

Proof. The fact that ℓ11 and ℓ12 are disjoint implies that P12 /∈ ℓ′11, hence each
point A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩) defines a distinct line ⟨A, P12⟩. As a con-

sequence, each of the q − 1 points of
{
A(a) : P12 ∈ a ⊂ π12; M1, M2 /∈ a

}
corresponds to one of the q − 1 points in ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩). By
Lemma 6.2.2, it suffices to prove the statement for the set of intersection
points of the lines in

{
a(A)

3 : A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩)
}

with the plane
β.
By the definition of ℓ′11, all lines of

{
a(A)

1 : A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩)
}

go through P13, hence the lines of
{

a(A)
3 : A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩)

}
go through P13 as well. On the other hand, the lines ℓ′11, ℓ21 and ℓ22 are pair-
wise disjoint and lie in the solid Σ2, hence these define a unique regulus R
corresponding to a hyperbolic quadric Q (see Section 0.1.6). Let R′ denote
its opposite regulus. As the lines of

{
a(A)

2 : A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩)
}

each have to intersect ℓ′11, ℓ21 and ℓ22, these lines are contained in R′.
We claim that Q∩ π23 is a non-singular conic. To prove this, first observe
that ℓ′11 intersects the line ⟨M2, P12⟩ in a point other than M2 or P12. As M2
and P12 are contained in Q, this implies that ⟨M2, P12⟩ is a generator of Q.
Hence, M2 is contained in the following two generators of Q: ⟨M2, P12⟩ and
ℓ21, neither of which are contained in π23. As a consequence, there does not
exist a generator of Q in π23 through M2 ∈ Q, which implies that Q∩ π23
is a non-singular conic C (containing M1, M2 and P23). In conclusion, each
of the q − 1 lines of

{
a(A)

3 : A ∈ ℓ′11 \ ({M1} ∪ ⟨M2, P12⟩)
}

intersects the
plane π13 in the point P13 and intersects the plane π23 in a distinct point of
C \ {M1, M2}. Hence, these lines lie in the cone with vertex P13 and base C.
Switching our views to the plane β instead of the plane π23 simply switches
the base of this cone and hence finishes the proof. ■
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Having obtained the above lemma, we can yet again introduce a notation.
For every line a in π12 through P12 that avoids M1 and M2, let r(a) be the
unique line in γ(a) through A(a) not contained in

{
a(A)

3 : A ∈ a \ {P12}
}

.
Note that such a line is skew to m and differs from s.

We are now ready to choose a fifth line ℓ31 that is skew to most planes of
Π(4).

Configuration 6.2.4

Let q ̸= 2. We extend Configuration 6.1.2. Let t be the tangent line
through S with respect to the non-singular conic described in Lemma 6.2.3,
let M0 := t ∩ m /∈ {M1, M2} and consider the line a0 := ⟨M0, P12⟩ ⊂ π12.
Note that A(a0) = S, as all lines of its corresponding pencil have to intersect
β in a point of the conic lying on the tangent line t (which is part of this
pencil). Choose a point M3 ∈ m \ {M0, M1, M2} and choose ℓ31 to be a
line through M3 intersecting r(a0) in a point outside of π13 ∪ π23 ∪ β. Note
that, in this way, ℓ31 is skew to all q lines of

{
a(A)

3 : A ∈ a0 \ {P12}
}

, in
particular the line s. Finally, define Q := ⟨m, ℓ31⟩ ∩ s.
Be sure to keep Figure 6.1 at hand to maintain an overview of this config-
uration.

Denote with Π(5) the set of all planes of Π(4) that intersect ℓ31.

Theorem 6.2.5

There exist six lines of PG(4, q) in higgledy-piggledy arrangement, two of which
intersect.

Proof. One can easily check the statement for q = 2 using, for example, the
package FinInG [17] within GAP [70]. Therefore, we can assume that q ̸= 2
throughout this proof and consider Configuration 6.2.4. By Result 5.2.2, it
suffices to prove that there exists a sixth line ℓ32 skew to all planes of Π(5).
Considering the four properties described in Lemma 6.2.1, all planes of
Π(5) either meet property (3) or (4) due to the choice of ℓ31. Hence, we can
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consider a partition {Π1, Π2, Π3, Π4} of Π(5), where

Π1 is the set of all planes of Π(5) intersecting the plane π12 in precisely
a point not contained in ⟨M1, P12⟩ ∪ ⟨M2, P12⟩,

Π2 is the set of all planes of Π(5) intersecting the plane π12 in precisely
the point P12,

Π3 is the set of all planes of Π(5) intersecting the plane π12 in precisely
a point of {M1, M2}, and

Π4 := {π12}.

By Lemma 6.2.2, the planes of Π1 intersect the solid Σ3 in a set of q2 − q
lines, grouped in q − 1 pencils of q coplanar, concurrent lines; the planes
containing each pencil are the q − 1 planes through s not containing M1 or
M2, and the points of concurrence of the pencils form, together with M1
and M2, a non-singular conic C of β (Lemma 6.2.3). As ℓ31 is skew to s and
is not contained in β (nor contains M1 or M2), the line ℓ31 meets at most
one line per pencil. By the choice of ℓ31 (see Configuration 6.2.4), this line is
skew to all lines of at least one pencil. In conclusion, Π1 consists of at most
q − 2 planes, one of which intersects Σ3 in the line ⟨M3, S⟩.
Now consider the planes of Π2. By the definition of ℓ′′11 and ℓ′′21, each
line connecting a point of ℓ′′11 \ {M1} with a point of ℓ′′21 \ {M2} defines a
unique plane of Π(4) that intersects π12 in precisely the point P12. Of these
q2 planes, only q intersect ℓ31 (thus |Π2| = q) as part of a regulus of the
unique hyperbolic quadric Q defined by the pairwise disjoint lines ℓ′′11, ℓ′′21
and ℓ31.
Let e be an external line to C in β through M3 (note that this always exists,
as M3 lies on the 2-secant m to C and hence can never be a nucleus) and
define the plane ε := ⟨e, Q⟩. We claim that ε intersects Q in a non-singular
conic. Note that, as M1, M2, M3 ∈ Q, the line m is a generator of Q through
M3. The second generator of Q through M3 is ℓ31. None of these two
generators are contained in ε, hence there does not exist a generator of Q
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that is contained in ε and goes through M3 ∈ Q, implying that ε ∩Q must
be a non-singular conic.
Observe that all planes of Π1 intersect ε in at most a point. After all, if
this would not be the case, an intersection line of a plane of Π1 with Σ3
would lie in ε. Such an intersection line also contains a point of the conic
C. However, the plane ε intersects the plane β in the external line e to C, a
contradiction.
Note that, as said before, precisely one of the planes of Π1 intersects Σ3
in a line going through M3 ∈ ε and hence intersects ε in precisely that
point. However, M3 is already contained in Q. In conclusion, all planes of
Π1 ∪ Π2 intersect the plane ε in a point set P consisting of all q + 1 points
of a non-singular conic containing M3 (originating from Π2), together with
at most q − 3 extra points (originating from Π1). By Result 6.1.1, we can
choose a line ℓ32 in ε that avoids all points of P ∪ {Q}. As ℓ32 ⊂ Σ3 is
consequently skew to the line m ∋ M3 (as m ⊈ ε), this line is skew to all
planes of Π1 ∪ Π2 ∪ Π4.

We claim that ℓ32 is skew to all planes of Π3 as well, finishing the proof.
Suppose that α ∈ Π3. Note that α ⊈ Σ3 as else it has to contain the points
M1, M2, P13 and P23 to be able to intersect the lines ℓ11, ℓ12, ℓ21 and ℓ22, but
those points are not coplanar. Hence, for each i ∈ {1, 2, 3}, α intersects
Σi in a line ai. Suppose that α intersects π12 in precisely the point Mj for
a j ∈ {1, 2} (which implies that a1 ̸= a2). Then, for every i ∈ {1, 2}, the
line ai intersects ℓi2 in a point Qi. Hence, the plane α contains two distinct
points Q1 and Q2 of the plane ⟨ℓ12, ℓ22⟩ and hence has to intersect the line s,
which means that the line a3 has to intersect the line s. As a3 has to intersect
the line ℓ31 as well, it has to be contained in the plane

〈
Mj, ℓ31

〉
, which

intersects the line s in Q; thus a3 has to go through Q. In conclusion, as a3
is not contained in ε (because Mj /∈ ε), it has to intersect ε in precisely the
point Q, which gets avoided by the line ℓ32. ■
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Corollary 6.2.6

There exist six planes of PG(4, q), q ⩾ 7, in higgledy-piggledy arrangement, two
of which intersect in a line.

Proof. This follows from Theorem 6.2.5 and Proposition 5.4.4. ■

Short minimal codes of dimension 5

The following bundles all known results concerning the smallest possible
length of minimal linear codes of dimension 5.

Result 6.2.7 ([6, 8, 19, 24, 69])

m(5, 2) = 13 and 16 ⩽ m(5, 3) ⩽ 20. In general, the following holds:

4q + 4 ⩽ m(5, q) ⩽


6q + 6 if q > 36086 and 2, 3 ∤ q,
7q + 7 if q ⩾ 7,
8q − 3.

Moreover, if q ⩾ 9, then 4q + 5 ⩽ m(5, q).

Proof. The lower bounds on m(5, q) are proved in [8, Theorem 2.14 and
Corollary 2.19]. The first two upper bounds arise by combining respectively
Result 5.2.7(2) and Result 5.2.6 with Result 5.1.3, while the third upper
bound and the cases q ∈ {2, 3} are given in [6, Construction 2]. ■

The main result of this chapter comes down to the following.

Theorem 6.2.8

m(5, q) ⩽ 6q + 5.

Proof. Directly from Theorem 6.2.5 and Result 5.1.3. ■



7 planes of PG(5, q)

In Chapters 5 and 6, we discussed several higgledy-piggledy sets in pro-
jective geometries of small dimension. In PG(3, q), the only non-trivial
higgledy-piggledy sets are line sets, which must have size at least 4 if q ⩾ 3
(see Result 5.2.4). The existence of a set of four lines in higgledy-piggledy
arrangement was already provided by the literature (see Result 5.2.7(1)).
In PG(4, q), optimal higgledy-piggledy sets must be line or plane sets of
size 6 with two maximally intersecting elements, the existence of which
is described in Chapter 6. In PG(5, q), optimal higgledy-piggledy sets
are necessarily line or solid sets of size 7, which are proven to exist by
Result 5.2.7(3) and Corollary 5.4.5 (if q ⩾ 7).

If one restricts their view to projective geometries of dimension at most
5, the only non-trivial case remaining are higgledy-piggledy plane sets of
PG(5, q), which necessarily contain at least 7 elements. This chapter is
devoted to this particular case and is based on [64].

Proposition 7.0.1

Let q ⩾ 7. Then any seven planes of PG(5, q) in higgledy-piggledy arrangement
are pairwise disjoint.

Proof. Let K := {π1, π2, . . . , π7} be the higgledy-piggledy set in question
and suppose, to the contrary (and without loss of generality), that there
exists a hyperplane Π containing π1 and π2. Define ℓ3 and ℓ4 to be lines
contained in π3 ∩ Π and π4 ∩ Π, respectively, and let Σ be a solid in Π that
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contains ⟨ℓ3, ℓ4⟩. Choose a point Pi in Σ ∩ πi for every i ∈ {5, 6, 7}. Then
any plane π ⊂ Σ that contains ⟨P5, P6, P7⟩ obviously contains a point of π5,
π6 and π7. Moreover, as π is contained in Σ ⊃ ℓ3, ℓ4, this plane intersects
π3 and π4 as well. Finally, as π ⊂ Π, we conclude that π meets all planes
of K, contradicting Result 5.2.2. ■

Two chapters ago, we have shown the existence of eight pairwise disjoint
planes in higgledy-piggledy arrangement (see Theorem 5.4.8). Despite the
length of this chapter, we already have the tools to prove the existence of
seven such planes.

Theorem 7.0.2

There exist seven planes of PG(5, q) in higgledy-piggledy arrangement.

Proof. If q ⩽ 7, we can easily verify the statement using a computer package
such as GAP [17, 70] (see e.g. [62, Code Snippet 56]a).
Assume that q ⩾ 8. By Theorem 5.4.6, it suffices to find seven points of
PG
(
1, q3) that are not contained in an Fq-linear set of rank 3. Consider a

point P of PG
(
1, q3). Due to Propositions 0.1.21 to 0.1.23, we know that

there are q
(
q2 + q + 1

)
clubs with head P, q3 (q2 + q + 1

)
clubs through

P with head different from P, and 1
2 q3 (q3 − 1

)
scattered Fq-linear sets

containing P. Let x denote the number of tuples (P1, P2, P3, P4, P5, P6,L),
where Pi ̸= Pj ̸= P are points of PG

(
1, q3) (i, j ∈ {1, 2, . . . , 6}, i ̸= j) and

where L is an Fq-linear set of rank 3 containing P and every Pi. Then

x = q
(
q2 + q + 1

)
cq + q3 (q2 + q + 1

)
cq +

1
2

q3 (q3 − 1
)

sq,

where cq := ∏5
i=0
(
q2 − i

)
, respectively sq := ∏5

i=0
(
q2 + q − i

)
, equals the

number of ways to choose six distinct points, different from P, contained
in a club, respectively scattered Fq-linear set, through P. If all choices of 6
points P1, . . . , P6 would be contained in at least one Fq-linear set of rank 3
through P, then x ⩾ ∏5

i=0
(
q3 − i

)
, which leads to a contradiction if q ⩾ 8.■

aIn fact, there exist six such planes in PG(5, 3) and five such planes in PG(5, 2).
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So why bother to continue reading this chapter, you might ask? In truth,
the above result was only found after meticulously describing the ABB-
representation of linear sets (see Section 7.2). This description, however, is
still of a certain mathematical value and allows us to give a constructive
proof of the result above (for infinite values of q, see Theorem 7.3.3).

7.1 Generalising the bundle of conics

ASSUMPTION
Throughout this section, we assume that t ∈ N \ {0, 1} and con-
sider PG

(
t − 1, qt), in which we embed D∞ ∼= PG(t − 1, q) as an

Fq-subgeometry. Moreover, let E0 /∈ D∞ be a point and σ be a col-

lineation fixing every point of D∞ such that
{

E0, Eσ
0 , . . . , Eσt−1

0

}
is a

basis of PG
(
t − 1, qt).a

Given a positive divisor s | t, it is known that Fix (σs) ∼=
PG(t − 1, qs); define Σs :=

〈
E0, Eσs

0 , Eσ2s

0 , . . . , Eσt−s

0

〉
⊆ Fix (σs). Then

the set
{

Σs, Σσ
s , . . . , Σσs−1

s

}
is the unique indicator set of a Desar-

guesian (s − 1)-spread Ds of D∞.

aThis mimics the set-up described in the second part of Section 0.1.7 (r = 1).

Consider the case t = 3. In [16], Baker, Brown, Ebert and Fisher describe
three types of projective bundles, which were originally introduced in Glynn’s
PhD thesis as packings [72]. These are collections of q2 + q + 1 non-singular
conics in D∞ that mutually intersect in exactly one point. One of the
described types is the circumscribed bundle, which is the set of all non-
singular conics in D∞ that possess an Fq3-extension containing the points

E0, Eσ
0 and Eσ2

0 .
Consider the point-line geometry (P ,L, I), where P consists of all points in
D∞, L consists of all non-singular conics of the circumscribed bundle and
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incidence is symmetric set-theoretic containment. In the literature (see e.g.
[72, Section 1.2], or [109, Remark on page 61] combined with [89, Corollary
19]), it is known that this point-line geometry is isomorphic to the point-line
geometry of PG(2, q).

In this section, we aim to generalise this observation to arbitrary t, proving
that a certain collection of normal rational curves in D∞ gives rise to a
point-line geometry isomorphic to the point-line geometry of PG(t − 1, q).
If t is prime, such a generalisation turns out to be quite straightforward. If
t is not prime, however, extra care must be taken.

7.1.1 Choosing the right coordinates

We make use of a particular coordinate system to conveniently deal with
normal rational curves.

Configuration 7.1.1

Choose coordinates in such a way that E0 corresponds to coordinates
(1, 0, . . . , 0)⊺ and that a point Px ∈ D∞ has coordinates(

1
x

,
1
xq ,

1
xq2 , . . . ,

1
xqt−1

)⊺

for a certain x ∈ Fqt \ {0}. Let σ be the collineation arising from the map

(x0, x1, x2, . . . , xt−1)
⊺ 7→

(
xq

t−1, xq
0, xq

1, . . . , xq
t−2

)⊺
.

Note that Eσi

0 = Ei for every i ∈ {0, 1, . . . , t − 1}, where {E0, E1, . . . , Et−1}
is part of the canonical frame.

Faina, Kiss, Marcugini and Pambianco [67] considered the cyclic model of
PG(t − 1, q), in which the ‘additive inverse’ of a line is a normal rational
curve.
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Result 7.1.2 ([67, Theorem 3.4 and further])

If y, z ∈ Fqt \ {0}, y/z /∈ Fq, then the point set{
Pyu−zv : (u, v) ∈ F2

q \ {(0, 0)}
}

is a normal rational curve.

Consider a spread element D ∈ Ds and a point Px ∈ D, where s | t and
x ∈ Fqt \ {0}. As Σs = ⟨E0, Es, E2s, . . . , Et−s⟩, one can check that the point
Qs := ⟨D⟩qs ∩ Σs has coordinates

(
1
x

, 0, . . . , 0,
1

xqs , 0, . . . , 0,
1

xq2s , 0, . . . . . . . . . , 0,
1

xqt−s , 0, . . . , 0
)⊺

. (7.1)

Note that, despite x being present in (7.1), the definition of Qs does not rely
on the choice of Px ∈ D.

Lemma 7.1.3

Let s | t and y, z ∈ Fqt \ {0}. Then Py and Pz lie in the same element of Ds if and
only if y/z ∈ Fqs .

Proof. The points Py and Pz lie in the same element of Ds if and only if
the vector in (7.1) represents the coordinates of a fixed point regardless of
whether x is replaced by y or z. This is equivalent to the existence of an
α ∈ Fqt such that

yqks

zqks = α for every k ∈ {0, 1, . . . , t/s − 1} ,

which is equivalent to y/z = (y/z)qs
, finishing the proof. ■
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Lemma 7.1.4

Suppose that y, z ∈ Fqt \ {0}, y/z /∈ Fq, let s be the smallest integer such that Py
and Pz lie in the same spread element D ∈ Ds and define Qs := ⟨D⟩qt ∩ Σs. Then
there exists a unique normal rational curve of degree s − 1 in ⟨D⟩qs containing

Py, Pz and the s conjugate points Qs, Qσ
s , . . . , Qσs−1

s . This curve meets D in the
normal rational curve

Cy,z :=
{

Pyu−zv : (u, v) ∈ F2
q \ {(0, 0)}

}
.

Proof. Consider, within ⟨D⟩qt , the point set C corresponding to the set of
coordinates{

s−1

∑
i=0

s−1

∏
j=0,j ̸=i

(
yqj

u − zqj
v
)

ai : (u, v) ∈ F2
qt \ {(0, 0)}

}
, (7.2)

where

a0 = y
(

1
y

, 0, . . . , 0,
1

yqs , 0, . . . . . . . . . , 0,
1

yqt−s , 0, . . . , 0
)⊺

a1 = yq
(

0,
1
yq , 0, . . . , 0,

1
yqs+1 , 0, . . . . . . . . . , 0,

1
yqt−s+1 , 0, . . . , 0

)⊺

...

as−1 = yqs−1
(

0, . . . , 0,
1

yqs−1 , 0, . . . , 0,
1

yq2s−1 , 0, . . . . . . . . . , 0,
1

yqt−1

)⊺

.

From the literature, we know that C is a normal rational curve and that there
are exactly deg(C) + 1 points of PG

(
1, qt) corresponding to the coordinates

T :=
{(

yqi
, zqi
)⊺

: i ∈ {0, . . . , t − 1}
}

(see e.g. [76, Example 1.17]). By

Lemma 7.1.3, s is the smallest integer such that (y/z)qs
= y/z, which implies

that T gives rise to s unique points, making the degree of C equal to s − 1.
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We now prove that points of C lie in D if and only if either v = 0 or u/v ∈ Fq.

Consider an arbitrary point P ∈ C and suppose that P ∈ D, hence P = Px
for an x ∈ Fqt \ {0}. As y/x ∈ Fqs by Lemma 7.1.3, yqi/xqi ∈ Fqs as well,

implying that yqi/xqi = (yqi/xqi)qks
for every i ∈ {0, 1, . . . , s − 1} and every

k ∈ {0, 1, . . . , t/s − 1}. Therefore, one can check that(
1
x

,
1
xq , . . . ,

1
xqt−1

)⊺

=
s−1

∑
i=0

1
xqi ai.

As Px ∈ C, an Fqt -multiple of the above must be an element of (7.2), or, in
other words, there must exist an α ∈ Fqt \ {0} and an (u, v) ∈ F2

qt \ {(0, 0)}
such that

α
s−1

∑
i=0

1
xqi ai =

s−1

∑
i=0

s−1

∏
j=0,j ̸=i

(
yqj

u − zqj
v
)

ai

⇐⇒ 0 =
s−1

∑
i=0

(
s−1

∏
j=0,j ̸=i

(
yqj

u − zqj
v
)
− α

xqi

)
ai

⇐⇒ 0 =
s−1

∏
j=0,j ̸=i

(
yqj

u − zqj
v
)
− α

xqi , ∀i ∈ {0, 1, . . . , s − 1} ,

implying that

α = xqi
s−1

∏
j=0,j ̸=i

(
yqj

u − zqj
v
)

, ∀i ∈ {0, 1, . . . , s − 1} .

As α ̸= 0, each factor on the right-hand side is non-zero as well, hence
we can divide by ∏s−1

j=0

(
yqj

u − zqj
v
)

and take the inverse of both sides to
conclude that there exists a value β ∈ Fqt \ {0} such that

β =
(y

x

)qi

u −
( z

x

)qi

v, ∀i ∈ {0, 1, . . . , s − 1} .
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Note that, by Lemma 7.1.3, the above holds for all i ∈ N. Therefore, it is
equivalent to stating that either v = 0 or

(y
x

)qi

u −
( z

x

)qi

v =
(y

x

)qi+1

u −
( z

x

)qi+1

v ⇐⇒ u
v
=

( z
x

)qi
−
( z

x

)qi+1( y
x

)qi
−
( y

x

)qi+1 ,

for all i ∈ N, implying that u/v stays invariant under taking qth powers,
thus u/v ∈ Fq.

Conversely, if v = 0, then u ̸= 0 and (7.2) produces the coordinates

s−1

∑
i=0

s−1

∏
j=0,j ̸=i

(
yqj

u
)

ai.

As yqj ̸= 0, we can divide this by us−1 ∏s−1
j=0 yqj

to obtain

s−1

∑
i=0

1
yqi ai,

which are the coordinates of the point Py.
Now suppose that u, v ∈ Fqt , v ̸= 0, such that w := u/v ∈ Fq. Note

that if yqj
u − zqj

v is zero, then (z/y)qj
= w ∈ Fq, implying that z/y =

(z/y)qs
=
(
(z/y)qj

)qs−j

∈ Fq, a contradiction. Therefore, we may divide the

coordinates in (7.2) by ∏s−1
j=0

(
yqj

u − zqj
v
)

to obtain

s−1

∑
i=0

1
yqi u − zqi v

ai, (7.3)

which is equal to a vector of V
(
t, qt) with

yqi

yqi u − zqi v
· 1

yqks+i =
1
v
·
(

y
yw − z

)qi

· 1
yqks+i (7.4)
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in the (ks + i + 1)th position (k ∈ {0, 1, . . . , t/s − 1}, i ∈ {0, 1, . . . , s − 1}).
The fact that z/y ∈ Fqs implies that yw−z

y = w − z
y ∈ Fqs as well. Therefore,

y
yw−z ∈ Fqs , hence

y
yw − z

=
yqks

(yw − z)qks .

Plugging this into (7.4) gives 1
v ·

1

(yw−z)qks+i , making (7.3) equal to

1
v

(
1

yw − z
,

1
(yw − z)q , . . . ,

1

(yw − z)qt−1

)⊺

,

which are the coordinates of the point Pyw−z. Note that Pyw−z ∈ D due to
Lemma 7.1.3 and the fact that y

yw−z ∈ Fqs .

Finally, for every l ∈ {0, 1, . . . , s − 1}, one can put (u, v) =
(

zql
, yql

)
in (7.2)

to obtain a non-zero Fqt -multiple of al , representing the coordinates of Qσl

s
(recall the arguments leading up to (7.1)).

By Result 0.1.11, C is unique in the sense that it lies in ⟨D⟩qt , has degree

s − 1 and contains Py, Pz and the s conjugate points Q, Qσ, . . . , Qσs−1
. Due

to the arguments above, this normal rational curve meets D precisely in
the point set

{
Pyu−zv : (u, v) ∈ F2

q \ {(0, 0)}
}

, which is a normal rational
curve by Result 7.1.2. ■
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7.1.2 A subspace of curves

We can now introduce the following generalisation of the circumscribed
bundle of conics.

Definition 7.1.5 (circumscribed bundle of curves)

Keeping Configuration 7.1.1 in mind, consider the point-line geometry
(P ,L, I) with natural incidence, where

P is the set of points in D∞, and

L :=
{
Cy,z : y, z ∈ Fqt \ {0} , y/z /∈ Fq

}
(see Lemma 7.1.4).

We will call this point-line geometry the circumscribed bundle of curves.

If t = 3, the above point-line geometry is precisely the one arising from the
circumscribed bundle of conics.

Theorem 7.1.6

Let t ∈ N \ {0, 1}. Then the circumscribed bundle of curves is isomorphic to the
point-line geometry of PG(t − 1, q).

Proof. By Lemma 7.1.4, this point-line geometry is a 2 − (θt−1, q + 1, 1)
design. Note that the statement is trivial if t = 2 and was already known in
the literature in case t = 3 ([109, Remark on page 61] combined with [89,
Corollary 19]).
If t ⩾ 4, by Result 0.1.6, it suffices to prove that the point-line geometry is
an axiomatic projective geometry (see Definition 0.1.4). The first and third
axioms follow from Lemma 7.1.4; below, we verify Veblen’s axiom.
Let Pa, Pb, Pc and Pd be four distinct points in D∞ such that the normal
rational curves Ca,b and Cc,d share a point P (a, b, c, d ∈ Fqt \ {0}). Therefore,
P = Pau1−bv1 = Pcu2−dv2 for certain (u1, v1) , (u2, v2) ∈ F2

q \ {(0, 0)}. By
Lemma 7.1.3, (au1 − bv1)/(cu2 − dv2) ∈ Fq. Hence, there exists an element
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w ∈ Fq \ {0} such that

au1 − bv1 = w (cu2 − dv2)

⇐⇒ au1 − c (wu2) = bv1 − d (wv2) . (7.5)

Note that (u1, wu2) ̸= (0, 0), as else v1 ̸= 0 ̸= v2 and hence (7.5) would
imply that b/d ∈ Fq, which means, by Lemma 7.1.3, that Pb = Pd, a con-
tradiction. Similarly, (v1, wv2) ̸= (0, 0). Therefore, by (7.5), Pau1−c(wu2) =
Pbv1−d(wv2), thus the normal rational curves Ca,c and Cb,d have a point in
common as well. ■

By the theorem above, the circumscribed bundle of curves (see Defini-
tion 7.1.5) admits subspaces of a certain dimension as explained in Defini-
tion 0.1.5. To avoid confusion with subspaces of a projective geometry, we
will call these subspaces consisting of normal rational curves N -subspaces.

7.2 The ABB-representation of linear sets

André [9] and Bruck and Bose [36] independently derived a representa-
tion of an axiomatic projective plane as a point-line geometry embedded
in PG(2t, q). We refer to this correspondence as the André/Bruck-Bose
representation, or ABB-representation for short.

Several researchers have studied the ABB-representation of certain ‘nice’
substructures in PG

(
2, qt), as this already has been done for Fq-sublines

and -subplanes (Result 7.2.2), (sub)conics [97] and Hermitian unitals [26].
Therefore, one can wonder what the ABB-representation of Fq-linear sets
looks like, as such information can help us get a better grasp on these exotic
point sets.

7.2.1 The André/Bruck-Bose representation

The following description of the ABB-representation is based on [98].
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Let H∞ be a hyperplane of PG(2t, q) playing the role of hyperplane at
infinity for AG(2t, q) and let S be a (t − 1)-spread in H∞. Let P be the
set consisting of all affine points together with the qt + 1 spread elements
of S . Let L be the set consisting of H∞ together with all t-subspaces of
PG(2t, q) meeting H∞ in exactly an element of S . Then the point-line
geometry (P ,L, I), with I the naturally inherited incidence of PG(2t, q), is
isomorphic to an axiomatic projective plane. This plane is isomorphic to
PG
(
2, qt) if and only if the spread S is Desarguesian.

ASSUMPTION
Throughout this section, we assume that t ∈ N \ {0, 1} and consider
PG
(
2, qt), in which ℓ∞ plays the role of line at infinity for AG

(
2, qt).

Define H∞ := F (ℓ∞), which is a (2t − 1)-dimensional subspace of
PG(3t − 1, q), and fix a (2t)-subspace Λ through H∞. It is not hard to
check, within PG(2t, q) ∼= Λ, that the ABB-representation of a point
P of PG

(
2, qt) can be defined as F (P) ∩ Λ, which is either a point or

a (t − 1)-subspace. We let φ denote the André/Bruck-Bose map that
maps any point P of PG

(
2, qt) onto

φ(P) := F (P) ∩ Λ

and any line different from ℓ∞ onto the unique t-subspace containing
the image of every point on that line.
Consider a line ℓ of PG

(
2, qt) that intersects ℓ∞ exactly in a point P∞

and define D∞ := φ(P∞) and Π := φ(ℓ).

Finally, recall the set-up and notation described at the start of Sec-
tion 7.1. Note that we identify the points E0, Eσ

0 , . . . , Eσt−1

0 as the
unique t conjugate points that give rise to the spread element D∞
of the Desarguesian (t − 1)-spread F ({P : P ∈ ℓ∞}) in H∞. As de-
duced in Section 7.1, the spread element D∞ allows N -subspaces.
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Definition 7.2.1 (tangent and external linear sets)

We call an Fq-linear set in ℓ ∼= PG
(
1, qt) tangent if it contains P∞ and

external otherwise.

The ABB-representation of general Fqs -sublines and tangent Fqs -subplanes
of PG

(
2, qt) was studied by Rottey, Sheekey and Van de Voorde [98]. We

only concern ourselves with a special case of their findings to fit our needs.
By slightly rewriting their results, we can remove the original condition
that q ⩾ t in the second part of the statement below, as this was mainly
introduced because the authors deal with a more common definition of
normal rational curves, where one imposes that these are arcs of PG(t, q).

Result 7.2.2 ([98])

(1) The ABB-representation of the affine points of a tangent Fq-subline in ℓ are
the points of an affine line in Π and vice versa.

(2) Consider an external Fq-subline L in ℓ for which s is the smallest positive
divisor of t such that L is contained in a tangent Fqs -subline. Then the
ABB-representation of the points in L is a set of affine points C in Π such
that

(i) C is a normal rational curve contained in an s-subspace π ⊆ Π
intersecting D∞ in an element of Ds, and

(ii) there exists a unique normal rational curve in ⟨π⟩qt of degree s that

contains C and intersects the indicator set
{

Σs, Σσ
s , . . . , Σσs−1

s

}
of Ds

in s conjugate points.

and vice versa, any affine point set C in Π with those properties (for a
smallest s) gives rise to the point set of such an external Fq-subline.

Proof. While (1) is a special case of [98, Theorem 3.3] and (2) follows from
[98, Theorem 3.6] if q ⩾ t, we provide some additional arguments on why
(2) remains true for small values of q.
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The first part of the proof of [98, Theorem 3.6] remains true for all q, i.e. the
ABB-representation of such an external Fq-subline is a particular normal
rational curve with the described properties. Conversely, any three affine,
non-collinear points A, B and C in Π are contained in an affine point set
C in Π that satisfies properties (i) and (ii) for some divisor s, which must
be minimal by [98, Lemma 3.5]. Now, while an Fqt -extension of C is not
necessarily unique, by Result 0.1.11 (as qt ⩾ s + 2 due to t ⩾ s ⩾ 2), there
does exist a unique normal rational curve of degree s in ⟨π⟩qt that contains
the 3 points A, B and C, together with the s conjugate points in the indicator
set of Ds. Therefore, the proposed counting argument still holds for all q.■

7.2.2 Tangent clubs of PG
(
1, qt)

Proposition 7.2.3

A point set L in ℓ is a club of rank n ∈ N \ {0} with head P∞ if and only if
the ABB-representation of L \ {P∞} is equal to the point set of an affine (n − 1)-
subspace of Π.

Proof. Suppose that L is a club in ℓ of rank n with head P∞ and let
P1, P2 ∈ L \ {P∞} be two distinct points. By Proposition 0.1.16, the unique
Fq-subline through P1, P2 and P∞ is contained in L. Therefore, due to
Result 7.2.2(1), all affine points on the line ⟨φ(P1) , φ(P2)⟩ are part of the
ABB-representation of L \ {P∞}. As P1 and P2 were chosen arbitrarily, this
ABB-representation must be an affine subspace, necessarily of dimension
logq(|L \ {P∞}|) = n − 1.
Conversely, a simple counting argument shows that there exist exactly

qt (qt − 1
) (

qt − q
)
· · ·
(
qt − qn−2)

qn−1 (qn−1 − 1) (qn−1 − q) · · · (qn−1 − qn−2)
= qt−n+1

[
t

n − 1

]
q

affine (n − 1)-subspaces in Π, which equals the number of clubs of
PG
(
1, qt) of rank n with a fixed head (Proposition 0.1.21). ■
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Proposition 7.2.4

Let n ∈ N \ {0}. Then there exist qt[ t
n−1]q cones in Π with vertex an affine point

and base an (n − 2)-dimensional N -subspace of D∞.

Proof. Due to Theorem 7.1.6, the number of (n − 2)-dimensional N -
subspaces of D∞ is equal to the number of (n − 2)-subspaces in PG(t − 1, q).
Each of the qt affine points in Π and each of such N -subspaces define a
unique cone. ■

Theorem 7.2.5

Suppose that q ⩾ 3. A point set L in ℓ is a tangent club of rank n ∈ N \ {0} with
head H ̸= P∞ if and only if the ABB-representation of L \ {P∞} is equal to the
affine point set of a cone in Π with vertex φ(H) and base an (n − 2)-dimensional
N -subspace of D∞.

Proof. Suppose that L is a tangent club of rank n with head H ̸= P∞ and let
P ∈ L \ {H, P∞} be a point. By Proposition 0.1.16, the unique Fq-subline
through H, P and P∞ is contained in L. Therefore, due to Result 7.2.2(1), all
affine points in the line ⟨φ(H) , φ(P)⟩ are part of the ABB-representation of
L \ {P∞}. As P was chosen arbitrarily, this ABB-representation is precisely

the set of affine points on a union of qn−1−1
q−1 = θn−2 lines through φ(H), that

is, they form a cone with vertex φ(H). Those lines meet D∞ in a set B of
θn−2 points.
Let B1 and B2 be two arbitrary, distinct points of B. For each i ∈ {1, 2},
choose an affine point Pi ∈ ⟨φ(H) , Bi⟩ distinct from φ(H), which, by the
above arguments, is part of the ABB-representation of L \ {P∞}. Therefore,
by Proposition 0.1.16, the unique Fq-subline L through H, φ−1(P1) and
φ−1(P2) is contained in L. Note, as B1 ̸= B2, that the points φ(H), P1 and P2
cannot be collinear, hence L is an external Fq-subline due to Result 7.2.2(1).
Let s be the smallest positive divisor of t such that L is contained in a
tangent Fqs -subline. Then, by Result 7.2.2(2), the ABB-representation of
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the points in L is a normal rational curve C going through φ(H), P1 and P2
for which there exists a normal rational curve C∗ of degree s in ⟨Π⟩qt that
intersects the indicator set of Ds in s conjugate points. By Result 0.1.12, the
set {

⟨H, Q⟩ ∩ ⟨D∞⟩qt : Q ∈ C∗ \ {H}
}

consists of qt points contained in a normal rational curve C̃∗ of degree
s − 1 in ⟨D∞⟩qt that necessarily contains the aforementioned s conjugate
points, as these all lie in ⟨D∞⟩qt , and contains at least q points of B. Due

to Lemma 7.1.4, C̃∗ meets D∞ in an N -line. As B1 and B2 were chosen
arbitrary, we conclude that B is a point set of size θn−2 for which any N -line
contains either at most one or at least q points. Therefore, by Theorems 2.2.2
and 7.1.6, B is an (n − 2)-dimensional N -subspace.
Conversely, by Propositions 0.1.22 and 7.2.4, the number of such cones
equals the number of tangent clubs of rank n with a head different from
P∞. ■

7.2.3 Tangent scattered linear sets of PG
(
1, q3)

Proposition 7.2.6

Consider the case t = 3. There exist 1
2 q3 (q3 − 1

)
hyperbolic quadrics in Π

that intersect the plane D∞ in a non-singular conic C of which an Fq3-extension
contains the 3 conjugate points corresponding to D∞.

Proof. By Theorem 7.1.6, there are θ2 non-singular conics in D∞ that have
the described properties. It is known that the total number of hyperbolic
quadrics in Π is equal to 1

2 q4 (q2 + 1
) (

q3 − 1
)

[82, Lemma 1.1]. The number
of non-singular conics contained in a fixed hyperbolic quadric equals the
number of non-tangent (hyper)planes, i.e. θ3 − (q + 1)2 = q

(
q2 − 1

)
, and

the number of non-singular conics in a solid is q2 (q3 − 1
)

θ3, which is the
number of non-singular conics in a fixed plane multiplied by the total
number of planes in PG(3, q). We can now perform a double counting
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argument to conclude that there exist

1
2 q4 (q2 + 1

) (
q3 − 1

)
q
(
q2 − 1

)
q2 (q3 − 1) θ3

=
1
2

q3 (q − 1)

hyperbolic quadrics containing a fixed non-singular conic. Hence, in total,
there are θ2

1
2 q3 (q − 1) = 1

2 q3 (q3 − 1
)

hyperbolic quadrics Q in Π that
intersect the plane D∞ in a non-singular conic C of which an Fq3−extension
contains the 3 conjugate points corresponding to D∞. ■

Theorem 7.2.7

Suppose that q ⩾ 5 and consider the case t = 3. A point set L in ℓ is a tangent
scattered Fq-linear set of rank 3 if and only if the ABB-representation of L \ {P∞}
is equal to the affine point set of a hyperbolic quadric in Π that meets the plane
D∞ in a non-singular conic whose Fq3-extension contains the 3 conjugate points
corresponding to D∞.

Proof. Suppose that L is a tangent scattered Fq-linear set of rank 3 and
define A to be the ABB-representation of L \ {P∞}. Observe the following
properties.

(1) By Result 7.2.2(1), any affine line in Π corresponds to a tangent Fq-
subline of ℓ and therefore, due to Result 0.1.17, either contains 0, 1, 2
or q points of A.

(2) Consider an arbitrary point A ∈ A. By Result 0.1.18(1), through
φ−1(A) and P∞, there exist precisely two (tangent) Fq-sublines con-
tained in L. Due to Result 7.2.2(1), this implies that there are exactly
two affine q-secants to A through P in Π.

(3) |A| = |L \ {P∞}| = q (q + 1).

Therefore, the affine point set A meets all conditions of Corollary 0.1.9,
stating that A is the affine part of a hyperbolic quadric Q of rank 2 that
meets D∞ in a non-singular conic.
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Due to Result 0.1.18(1), through any two points of L \ {P∞}, there exist two
Fq-sublines contained in L. By Result 0.1.2, at least one of these Fq-sublines,
say L, does not contain P∞. Due to Result 7.2.2, L corresponds to a normal
rational curve C in Π for which there exists a twisted cubic C∗ in ⟨Π⟩q3

that contains the 3 conjugate points determining the spread element D∞.
Since L ⊂ L, C∗ is contained in ⟨Q⟩q3 and hence, ⟨Q ∩ D∞⟩q3 contains the 3
conjugate points defining D∞.
To prove the converse, it suffices to note that the number of such hyperbolic
quadrics (Proposition 7.2.6) equals the number of scattered Fq-linear sets
containing P∞ (Proposition 0.1.23). ■

7.3 Constructing the seven planes

We can now use the results of the previous section to explicitly construct a
set of seven planes in PG(5, q) in higgledy-piggledy arrangement. For this,
we need to constrict ourselves to the case t = 3.

Lemma 7.3.1

Let ω ∈ Fq3 \ Fq and λ1, λ2, λ3 ∈ Fq such that ω3 + λ1ω2 + λ2ω + λ3 = 0. If
C is a conic of PG(2, q) whose points have coordinates satisfying

aX2
0 + bX0X1 + cX0X2 + dX2

1 + eX1X2 + f X2
2 = 0

for certain a, b, c, d, e, f , g ∈ Fq, not all zero, such that an Fq3-extension contains

the points with coordinates
(
1, ω, ω2)⊺,

(
1, ωq, ω2q)⊺,

(
1, ωq2

, ω2q2
)⊺

, then C
is given by

gd,e, f (X0, X1, X2) := (λ3e − λ1λ3 f ) X2
0

+ (λ2e + (λ3 − λ1λ2) f ) X0X1

+
(
λ1e +

(
λ2 − λ2

1
)

f − d
)

X0X2

+ dX2
1 + eX1X2 + f X2

2 = 0, (7.6)

for some d, e, f ∈ Fq, not all zero.
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Proof. Note that if the point P with coordinates
(
1, ω, ω2)⊺ lies in an Fq3-

extension of C, then so do the points corresponding to
(
1, ωq, ω2q)⊺ and(

1, ωq2
, ω2q2

)⊺
. Expressing that P lies in this Fq3-extension, using that

ω4 =
(
λ2

1 − λ2
)

ω2 + (λ1λ2 − λ3)ω + λ1λ3 and that
{

1, ω, ω2} is an Fq-
independent set, we find the following system of equations:

a − λ3e + λ1λ3 f = 0
b − λ2e + (λ1λ2 − λ3) f = 0
c + d − λ1e +

(
λ2

1 − λ2
)

f = 0. ■

Proposition 7.3.2

Suppose that q ⩾ 5 and let P1, P2, . . . , P6 be six non-coplanar points of AG(3, q)
contained in an elliptic quadric that intersects the plane D∞ : X3 = 0 at infinity
in the non-singular conic X0X2 − X2

1 = 0. Denote the coordinates of Pi by(
x(i)0 , x(i)1 , x(i)2 , 1

)
, i ∈ {1, 2, . . . , 6}, and consider the quadratic surfaces whose

points have coordinates satisfying

Q(d, e, f , s, t, u, v, X0, X1, X2, X3)

:= gd,e, f (X0, X1, X2) + X3 (sX0 + tX1 + uX2 + vX3) = 0. (7.7)

Let A be the (6 × 7)-matrix whose ith row (A)i satisfies

(A)i · (d, e, f , s, t, u, v)⊺ = Q
(

d, e, f , s, t, u, v, x(i)0 , x(i)1 , x(i)2 , 1
)

.

If rk(A) = 6, then the point set {P1, . . . , P6} is the ABB-representation of a set
of six points of PG

(
1, q3) not contained in an Fq-linear set of rank 3 through P∞.

Proof. We coordinatise Π in such a way that the three conjugate points de-

fining D∞ have coordinates
(
1, ω, ω2, 0

)⊺,
(
1, ωq, ω2q, 0

)⊺,
(

1, ωq2
, ω2q2

, 0
)⊺

.
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Given Proposition 7.2.3 and Theorems 7.2.5 and 7.2.7, we need to find six af-
fine points of Π such that these are not contained in a plane, nor a cone with
vertex not in π and base a non-singular conic of which an Fq3-extension
contains the 3 conjugate points, nor a hyperbolic quadric through such a
conic. All quadratic surfaces meeting D∞ in a conic as described in (7.6) are
given by an equation of the form

gd,e, f (X0, X1, X2) + X3 (sX0 + tX1 + uX2 + vX3) = 0. (7.8)

Hence, if we choose six points contained in an elliptic quadric E meeting
D∞ in the non-singular conic X0X2 − X2

1 = 0, X3 = 0, we simply need to
show that E is the only quadratic surface corresponding to an equation
of the form (7.8) through those six points. This happens if and only if
the homogeneous system of six equations in the variables d, e, f , s, t, u, v
that arises from substituting the coordinates of the six points has a unique
solution up to scalar multiple, which happens if and only if its coefficient
matrix A has full rank. ■

Theorem 7.3.3

Suppose that q ≡ 1 (mod 6) and let µ be a non-square of Fq \
{

2−1}. Then the
six points of Π with coordinates

(1, 0,−µ, 1)⊺ , (1, 0,−µ,−1)⊺ , (1, 1, 1 − µ, 1)⊺ ,
(1,−1, 1 − µ, 1)⊺ , (1, 1, 1 − µ,−1)⊺ , (1,−1, 1 − µ,−1)⊺

give rise to a higgledy-piggledy set of seven planes in PG(5, q).

Proof. Since q ≡ 1 (mod 3), there exist elements ω ∈ Fq3 \ Fq and λ ∈ Fq

such that ω3 + λ = 0. Using Lemma 7.3.1, the quadrics of the form (7.7)
become

λeX2
0 + λ f X0X1 − dX0X2 + dX2

1 + eX1X2 + f X2
2

+ X3 (sX0 + tX1 + uX2 + vX3) = 0. (7.9)
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One can check that the given six points are not coplanar. Furthermore, they
are contained in the elliptic quadric with equation X0X2 − X2

1 + µX2
3 =

0, which meets D∞ in the non-singular conic X0X2 − X2
1 = 0, X3 = 0.

Substituting the coordinates of the six points into (7.9) yields a system of
six homogeneous equations in d, e, f , s, t, u, v whose associated coefficient
matrix is given by

µ λ µ2 1 0 −µ 1
µ λ µ2 −1 0 µ 1
µ 1 − µ + λ (1 − µ)2 + λ 1 1 1 − µ 1
µ µ − 1 + λ (1 − µ)2 − λ 1 −1 1 − µ 1
µ 1 − µ + λ (1 − µ)2 + λ −1 −1 µ − 1 1
µ µ − 1 + λ (1 − µ)2 − λ −1 1 µ − 1 1


.

■

This matrix has full rank if and only if (1 − µ) (2µ − 1) ̸= 0. The statement
follows from Proposition 7.3.2 and Theorem 5.4.6.

Remark 7.3.4

In the proof of Theorem 5.4.8, we chose eight points in PG
(
1, q3) not

contained in an Fq-linear set of rank 3 without knowing their ABB-
representation. If you interpret the point C as the point at infinity, then one
can now realise that the ABB-representation of the other points in P are
six points of AG(3, q) lying in the union of three (non-concurrent) affine
lines ℓ1, ℓ2 and ℓ3, each of which containing three of the six points.
Clearly, no cone with a non-singular conic as base and no hyperbolic
quadric can contain the points of P \ {C}. The only Fq-linear set containing
these points is the club L with head C for which the ABB-representation of
L \ {C} is equal to the point set of the affine plane ⟨ℓ1, ℓ2, ℓ3⟩.
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8 A tale of mixed lines and covering
codes

Flowers for the ones you love
Flowers, flowers
Flowers for the ones you lost
Flowers, flowers

— Deluxe, Flowers1

Part III adopts the philosophy of its predecessor: the discovery of a particu-
lar family of geometrical structures directly leads to finding linear codes
with valuable properties. While Part II was devoted to the link between
higgledy-piggledy sets and minimal codes, Part III submits itself to con-
structing small saturating sets to obtain short covering codes.

ASSUMPTION
Throughout Part III, we assume that ϱ ∈ {0, 1, . . . , d}.

All results found in Part III are based on [61, 63].

8.1 Saturating sets and covering codes

The following combinatorial structures are compelling from a coding theor-
etical point of view, since they have a one-to-one correspondence to linear
covering codes with covering radius ϱ + 1.

1It is obligatory to put this song on repeat while cruising through Part III.
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Definition 8.1.1 (saturating set)

Consider a point set S of PG(d, q).

(1) A point P of PG(d, q) is said to be ϱ-saturated by S (or, conversely, the
set S ϱ-saturates P) if there exists a subspace through P of dimension
at most ϱ that is spanned by points of S .

(2) The set S is a ϱ-saturating set of PG(d, q) if ϱ is the smallest integer
such that all points of PG(d, q) are ϱ-saturated by S .

If ϱ is clear from context, the prefix ‘ϱ−’ is often omitted.

Let r, R ∈ N \ {0}, R ⩽ r, and consider a point set S of PG(r − 1, q) of
size n. Given a coordinate system for PG(r − 1, q), denote by h1, h2, . . . , hn
the coordinate vectors of the points in S . We claim that S is an (R − 1)-
saturating set of PG(r − 1, q) if and only if H := (h1, h2, . . . , hn) is a parity
check matrix of an [n, n − r]qR-code C.
Consider an arbitrary vector v ∈ V(n, q). If Hv ̸= 0, then Hv are the
coordinates of a certain point P of PG(r − 1, q). Due to the way H is defined,
the point P is (R − 1)-saturated by S if and only if Hv is equal to an Fq-
linear combination of at most R columns of H. This is equivalent to the
existence of a vector w ∈ V(n, q) of weight at most R such that Hv =
Hw ⇐⇒ H (v − w) = 0. If Hv = 0, the latter statement still holds, as we
can choose w := 0.
Therefore, S is an (R − 1)-saturating set of PG(r − 1, q) if and only if the
Hamming distance between v and v − w ∈ C is at most wt(w) ⩽ R. Note
that if S is a saturating set of PG(r − 1, q), then the rank of H must equal
r, hence all vectors of V(r, q) are reached by left-multiplying vectors of
V(n, q) with H.

We conclude that there exists a one-to-one correspondence between satur-
ating sets and linear covering codes. To summarise, any ϱ-saturating set S
of PG(d, q) corresponds to an [n, n − r]qR-code and vice versa, where

n = |S| , r = d + 1 and R = ϱ + 1.
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Due to this correspondence, the quest of finding short [n, n − r]qR-codes
can be translated to searching for small ϱ-saturating sets in PG(d, q). In line
with the literature (see e.g. [20, 21, 48, 49]), we define

sq(d, ϱ) := min{|S| : S is a ϱ-saturating set of PG(d, q)} ,

as well as the length function (see e.g. [34, 42])

ℓq(r, R) := min
{

n ∈ N : there exists an [n, n − r]qR code
}

.

Note that ℓq(r, R) = sq(r − 1, R − 1).

Contrary to the relatively new concept of higgledy-piggledy sets, plenty of
extensive research has already been done concerning the topic of saturating
sets and covering codes. The existing literature covers decades of work and
forms a symbolic jungle for an inexperienced young researcher.

8.2 Approaches of the literature

Based on the way to approach this topic of research, the literature is divided.
On the one hand, one can observe the topic geometrically by analysing
small ϱ-saturating sets of PG(d, q). On the other hand, one can convert
this geometrical point of view to a coding theoretical one by investigating
covering codes of small length.

Contrary to the work on which this chapter is based [61], we mainly restrict
ourselves to a geometric viewpoint.

8.2.1 A lower bound defines the quest

In order to know which saturating sets are viewed as being ‘small’, we
will be guided by the following lower bound on the size of arbitrary ϱ-
saturating sets. Several variants of this bound were already known in the
literature [20–22, 46, 48, 49], but some only state the bound for specific
values of ϱ, while others describe an approximate lower bound for large
values of q.
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Proposition 8.2.1

Consider a ϱ-saturating set S of PG(d, q). Then

|S| > ϱ + 1
e

· q
d−ϱ
ϱ+1 +

ϱ

2
,

where e equals Euler’s number.

Proof. If |S| ⩽ ϱ, then the points of S would be contained in a subspace
of dimension at most ϱ − 1 < d, making it impossible for S to saturate
all points of PG(d, q), a contradiction. Therefore, we can consider the set
Π⩽ϱ of all subspaces spanned by ϱ + 1 distinct points of S . As S saturates
PG(d, q), we know that Π⩽ϱ has to cover all points, thus(

|S|
ϱ + 1

)
θϱ ⩾ θd.

Expanding the binomial above and rearranging the inequality, we get

ϱ

∏
i=0

(|S| − i) ⩾ (ϱ + 1)! · θd

θϱ
⩾ (ϱ + 1)! · qd−ϱ. (8.1)

Note that the map f : N \ {0} → R : n 7→
n√n!
n is strictly decreasing

with lim
n→∞

f (n) = 1
e , hence f (n) > 1

e for all n ∈ N \ {0}, or, equivalently,
n
√

n! > n
e . Combining this with (8.1) after taking the (ϱ + 1)th root of the

left- and right-hand side, we obtain

ϱ+1

√√√√ ϱ

∏
i=0

(|S| − i) >
ϱ + 1

e
· q

d−ϱ
ϱ+1 .

Applying the AM-GM inequality to the left-hand side finishes the proof.■
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Roughly speaking, Proposition 8.2.1 implies that

sq(d, ϱ) ⩾ c · ϱ q
d−ϱ
ϱ+1 , or, equivalently, ℓq(r, R) ⩾ c · R q

r−R
R , (8.2)

where c > 1
3 is a constant independent of these parameters. Naturally, re-

searchers aim to prove that (8.2) is sharp by constructing small ϱ-saturating
sets of PG(d, q) or, equivalently, constructing [n, n − r]qR covering codes of
small length.

Open Problem 8.2.2

Find a value cd,ϱ > 0, preferably independent of d and ϱ, such that

sq(d, ϱ) ⩽ cd,ϱ · ϱ q
d−ϱ
ϱ+1 ,

or, equivalently, find a value cr,R > 0, preferably independent of r and R,
such that

ℓq(r, R) ⩽ cr,R · R q
r−R

R .

With the exception of Remark 8.2.3, all mentioned results within this section
solve the above open problem for specific values of d, ϱ and q (equivalently,
r, R and q), some in a more effective way than others. Most results in the
literature present solutions to Open Problem 8.2.2 if

(1) d + 1 ≡ 0 (mod ϱ + 1) (see section 8.2.2), or

(2) q = (q′)ϱ+1 (see section 8.2.3).

Remark 8.2.3

Some results present upper bounds that are slightly larger than the desired
one described in Open Problem 8.2.2. More specifically, the authors of
articles [20–22, 47, 48, 50], some with the aid of computer searches, present

upper bounds on sq(d, ϱ), ϱ ∈ {1, 2}, of the form sq(d, ϱ) ⩽ c · q
d−ϱ
ϱ+1 ϱ+1

√
ln q,

with c > 0 a small constant.
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Chapter 10 presents an addition to the case q = (q′)ϱ+1, see Theorem 10.3.3
and Corollary 10.3.4. These results solve Open Problem 8.2.2 for cd,ϱ inde-
pendent of d and linearly dependent on ϱ (equivalently, cr,R independent
of r and linearly dependent on R).

8.2.2 The case ϱ + 1 | d + 1

A simple, recursive upper bound on sq(d, ϱ) can be obtained geometrically
by observing saturating sets contained in two disjoint subspaces spanning
the whole space. As stated in [51, Theorem 5], the same bound arises from
the direct sum construction of linear codes over a common finite field.

Result 8.2.4 ([108, Lemma 10])

sq(d1 + d2 + 1, ϱ1 + ϱ2 + 1) ⩽ sq(d1, ϱ1) + sq(d2, ϱ2).

Corollary 8.2.5

For any m ∈ N, sq((m + 1) (ϱ + 1)− 1, ϱ) ⩽ (ϱ + 1) θm.

Proof. We proceed by induction on ϱ. If ϱ = 0, this is a trivial statement.
Inductively using Result 8.2.4, we obtain

sq((m + 1) (ϱ + 1)− 1, ϱ) ⩽ sq((m + 1) ϱ − 1, ϱ − 1) + sq(m, 0)
⩽ ϱθm + θm. ■

Although, for d + 1 a multiple of ϱ + 1, Corollary 8.2.5 already solves Open
Problem 8.2.2 (for cd,ϱ independent of d and ϱ), we want to stress that better
upper bounds concerning this special case are known in the literature.
Davydov [44, Theorem 5.1] and Davydov and Östergård [51, Theorem 7]
slightly improved the bound above in case m = 1 and ϱ = 1, 2, respectively.
The constructions behind these results are commonly denoted as the ‘oval
plus line’ and ‘two ovals plus line’ constructions. In [46, Theorems 6.1 and
6.2], these bounds are generalised. Davydov, Marcugini and Pambianco
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[49, Theorem 1] managed to generalise this ‘oval(s) plus line’ construction
to a ϱ-saturating set of PG(2ϱ + 1, q). Using a coding theoretical tool called
‘qm-concatenating constructions’ [44–46, 49], they generalised their results
even further and improved the upper bound depicted in Corollary 8.2.5
under some minor restrictions on the parameters.

8.2.3 The case q = (q′)ϱ+1

In this subsection, we discuss some relevant known results based on the
assumption that q = (q′)ϱ+1 (equivalently, q = (q′)R). This assumption
allows mathematicians to exploit the existence of Fq′ -subgeometries. In the
literature, one can notice two main approaches for constructing saturating
sets using subgeometries. We call these two approaches the strong blocking
set approach and the mixed subgeometry approach.

The strong blocking set approach

The strong blocking set approach shifts the focus from finding saturating
sets to constructing strong (d − ϱ)-blocking sets in PG(d, q′). If one embeds
the latter projective geometry as an Fq′ -subgeometry of PG(d, q), then such
a strong (d − ϱ)-blocking set is a ϱ-saturating set.

Result 8.2.6 ([46, Theorem 3.2])

Let q = (q′)ϱ+1 and consider a d-dimensional Fq′-subgeometry B of PG(d, q).
Then any strong (d − ϱ)-blocking set of B ∼= PG(d, q′) is a ϱ-saturating set of
PG(d, q).

Several results solving Open Problem 8.2.2 were found using this approach
and were often generalised using qm-concatenating constructions.

Result 8.2.7 ([46, Corollary 3.9, Theorem 5.1])

Let t ∈ N \ {0} and r = 3t + 1. Suppose that q = (q′)3, with q′ ⩾ 4 if t ⩾ 2.
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Then
ℓq(r, 3) ⩽ 4

(
q′
)r−3

+ 4
(
q′
)r−4 .

Result 8.2.8 ([46, Theorems 3.16 and 5.2])

Let t ∈ N \ {0} and r = 3t + 2. Suppose that q = (q′)3, with q′ ⩾ 3 if t ⩾ 2.
Then

ℓq(r, 3) ⩽ 9
(
q′
)r−3 − 8

(
q′
)r−4

+ 4
(
q′
)r−5 .

Note that Result 8.2.7 arises from the existence of four lines of PG(3, q′) in
higgledy-piggledy arrangement (Result 5.2.7(1)), while Result 8.2.8 is based
on the existence of a higgledy-piggledy set of nine planes in PG(4, q′) [46,
Theorem 3.16]. The main result of Chapter 10 (Corollary 10.3.4) implies that

ℓq(r, 3) ⩽ 6
(q′)r−2 − 1

q′ − 1
, (8.3)

which clearly does not improve Result 8.2.7 but does improve Result 8.2.8
significantly. However, Chapter 6 offers new results on higgledy-piggledy
plane sets of PG(4, q′), which in turn improves (8.3).

Theorem 8.2.9

Let t ∈ N \ {0} and r = 3t + 2. Suppose that q = (q′)3, with q′ ⩾ 3 if t ⩾ 2.
Then

ℓq(r, 3) ⩽ 6
(
q′
)r−3

+ 5
(
q′
)r−4 − 9

(
q′
)r−5 .

Proof. This is analogous to the proof of [46, Theorem 5.2], taking Corol-
lary 6.2.6 as a base case. ■

More generally, the authors of [46] presented the following.
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Result 8.2.10 ([46, Theorem 3.15])

Let ϱ ⩽ d − 2 and suppose that q = (q′)ϱ+1. Then

sq(d, ϱ) ⩽
∑

d−ϱ+1
i=0 (q′ − 1)i (d+1

i )− 1
q′ − 1

∼
(

d + 1
ϱ

) (
q′
)d−ϱ .

At first sight, the main result of Chapter 10 (Theorem 10.3.3) is a significant
improvement on the bound presented in Result 8.2.10, as the binomial
coefficient (d+1

ϱ ) is reduced to (ϱ+1)(ϱ+2)
2 . However, a certain degree of

nuance is needed, as the authors presented several more technical results
in case q = (q′)ϱ+1, proving that

sq(d, ϱ) ≲
(

ϱ + 1 + γ

ϱ

) (
q′
)d−ϱ ,

if q is large enough, where 0 ̸= γ ≡ d + 1 (mod ϱ + 1) (see [46, Theorems
6.3 and 6.4, and Corollary 7.2]).

Furthermore, Results 5.2.6 and 8.2.6 imply the following.

Result 8.2.11 ([69, Theorem 24] and [68, Proposition 10])

Suppose that q = (q′)ϱ+1, q′ > (d − ϱ + 1) ϱ. Then

sq(d, ϱ) ⩽ ((d − ϱ + 1) ϱ + 1)
(q′)d−ϱ+1 − 1

q′ − 1
.

If q′ > (d − ϱ + 1) ϱ, one can check that the main result of Chapter 10
(Theorem 10.3.3) improves Result 8.2.11 if and only if ϱ < 2d−1

3 .

Theorem 8.2.12

s
(q′)4(4, 3) ⩽ 6q′ + 5.

Proof. Directly from Theorem 6.2.5 and Result 8.2.6 ■
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The mixed subgeometry approach

The mixed subgeometry approach is based on constructing saturating sets
as a union of the point sets of several distinct subgeometries which are not
part of a common, larger subgeometry. This approach is the main source of
inspiration for Chapter 10 and is used much less than the strong blocking set
approach. In fact, Result 8.2.13 below is the only instance using the mixed
subgeometry approach that we encountered in the literature.

Result 8.2.13 ([44, Theorem 5.2])

Suppose that q = (q′)2. Let b1, b2 and b3 be three distinct Fq′-sublines spanning
PG(2, q) and sharing a common point P, with the addition that b1 and b2 share a
point Q ̸= P as well. Then (b1 ∪ b2 ∪ b3) \ {P} is a 1-saturating set of PG(2, q).
As a consequence,

sq(2, 1) ⩽ 3q′ − 1.

Better bounds on sq(2, 1), q square, are known (see [49, Proposition 9] for
an overview). Interestingly, as noted in [49, Remarks 3 and 4], if q equals
the square of a prime number, no better bound on sq(2, 1) than the one
depicted in Result 8.2.13 is known. In essence, Configuration 10.2.2 is a
highly generalised version of the (sub)geometric construction described in
Result 8.2.13.

By making use of variations of qm-concatenating constructions, the follow-
ing bound is obtained, generalising the bound of Result 8.2.13.

Result 8.2.14 ([45, Example 6, Equation 33])

Let d be even and q ⩾ 16 be square. Then

sq(d, 1) ⩽ (3
√

q − 1) q
d
2−1 +

⌊
q

d
2−2
⌋

.



9 Parallel subgeometries

In Section 7.1 of Chapter 7, we established an isomorphism between a
certain set of normal rational curves and the line set of a projective geometry.
Such a link allowed us to define subspaces of normal rational curves.

In this chapter, we put the topic of saturating sets temporarily on hold and
aim to do a similar trick by associating certain subgeometries to affine lines.
This, in turn, permits us to replicate the notions of parallelism and affine
subspaces to these subgeometries, which is crucial in the arguments used in
Chapter 10.

ASSUMPTION
Throughout this chapter, we assume that s, t ∈ N \ {0}.

All results are based on [61, 63].

9.1 Three peculiar point-line geometries

The key players in this chapter are three particular point-line geometries,
each embedded in a certain projective geometry. Although these point-line
geometries differ significantly, they will turn out to be isomorphic.

139
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Definition 9.1.1 (point-line geometry X [57, Section 3])

Consider a (t − 1)-dimensional subspace π of PG(s + t − 1, q). The point-
line geometry X(s, t, q) is the incidence structure (PX,LX) with natural
incidence, where

PX is the set of all (s − 1)-subspaces of PG(s + t − 1, q) disjoint to π,
and

LX is the set of all s-subspaces of PG(s + t − 1, q) meeting π exactly
in one point.

Definition 9.1.2 (point-line geometry Y)

Consider a hyperplane ΣY of PG
(
s, qt) containing an (s − 1)-dimensional

Fq-subgeometry CY. The point-line geometry Y(s, t, q) is the incidence
structure (PY,LY) with natural incidence, where

PY is the set of all points of PG
(
s, qt) not contained in ΣY, and

LY is the set of all s-dimensional Fq-subgeometries of PG
(
s, qt)

through CY.

Definition 9.1.3 (point-line geometry Z)

Consider a hyperplane ΣZ of PG(t, qs) containing a (t − 1)-dimensional
Fq-subgeometry CZ. The point-line geometry Z(s, t, q) is the incidence
structure (PZ,LZ) with natural incidence, where

PZ is the set of all points of PG(t, qs) not contained in ΣZ, and

LZ is the set of all lines of PG(t, qs) meeting both ΣZ and CZ exactly
in one and the same point.
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The point-line geometry X(s, t, q) considers certain sets of subspaces min-
imally intersecting a fixed subspace and was first introduced in [57]. The
point-line geometry Y(s, t, q) considers subgeometries sharing a fixed sub-
geometry of one dimension smaller. This point-line geometry hasn’t been
considered in the literature before.1

Finally, the point-line geometry Z(s, t, q) considers certain parallel classes
of lines in an affine geometry. In fact, Z(s, t, q) is a special case of what
is commonly known as a linear representation of a point set K lying in
ΣZ. Despite the fact that Definition 9.1.3 specifies K as the point set of a
(t − 1)-dimensional Fq-subgeometry, K can be any other choice.

The concept of a linear representation was independently introduced for
hyperovals by Ahrens and Szekeres [5] and Hall [74], and extended to
general point sets by De Clerck [55].
Linear representations are mainly investigated when K is a well-known
object, such as a hyperoval (if s = 1, t = 3 and q is even, see [28, 73]), a
Buekenhout-Metz unital (if s = 2 and t = 3, see [56]) or, like Definition 9.1.3,
a subgeometry (see [55, 57, 58]). Results on general linear representations
were proven as well, see e.g. [12, 38, 57].

Remark 9.1.4

Keeping Result 0.1.2 in mind, one can check that any line of the point-line
geometries described in Definitions 9.1.1 to 9.1.3 is uniquely determined
by the set of points it is incident with.

Proposition 9.1.5

(1) |PX| = |PY| = |PZ| = qst.

(2) |LX| = |LY| = |LZ| = qs(t−1)θt−1.

1The case s = 1 is an exception to this statement, as there exists a well-known isomorph-
ism between the affine parts of Fq-sublines of PG

(
1, qt) through a fixed point and the lines

of AG(t, q) (see e.g. Result 7.2.2(1)).



142 CHAPTER 9. PARALLEL SUBGEOMETRIES

Proof. (1) Observe that |PY| = qst = |PZ| as the sizes of these sets are
equal to the number of points in AG

(
s, qt) and AG(t, qs), respectively.

To prove that |PX| = qst, one has to count the number of (s − 1)-
subspaces in PG(s + t − 1, q) disjoint to a fixed (t − 1)-subspace, see
e.g. [100, section 170].

(2) By double counting the elements of the set

{(P, L) : P ∈ PX, L ∈ LX, P ∈ L} ,

one obtains that qstθt−1 = |PX| θt−1 = (θs − θs−1) |LX|, implying that
|LX| = qs(t−1)θt−1.

By double counting the elements of the set{
(ℓ,B) : ℓ is a line of PG

(
s, qt) ,B ∈ LY, |ℓ ∩ (B \ CY)| = q

}
,

one obtains that

θs−1

(
θs−1,qt − θs−2,qt

) qt (qt − 1
)

q (q − 1)
= θs−1 (θs−1 − θs−2) |LY| ,

where we made use of Lemma 0.1.3 to obtain the factor
qt(qt−1)
q(q−1) . This

implies that |LY| = qs(t−1)θt−1.

Finally, an easy observation yields |LZ| = θt−1
(
θt−1,qs − θt−2,qs

)
=

qs(t−1)θt−1. ■

Result 9.1.6 ([57, Theorem 4.1])

The point-line geometries X(s, t, q) and Z(s, t, q) are isomorphic.

We will prove that Y(s, t, q) is a member of this isomorphism class by
constructing explicit isomorphisms to both X(s, t, q) and Z(s, t, q).
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Remark 9.1.7

One can prove that the isomorphism behind Result 9.1.6 transfers the
notion of parallelism from Z(s, t, q) to X(s, t, q) in the following way: two
elements of LX are ‘parallel’ if and only if they share a point of π. This
description does not, however, provide any ‘hidden’ equivalence relation
on the elements of LX.
Towards the end of this chapter, we show that the presence of parallelism in
Z(s, t, q) does, in fact, uncover a beneficial relation on the lines of Y(s, t, q).

9.2 The isomorphism between Y(s, t, q) and X(s, t, q)

An explicit isomorphism between Y(s, t, q) and X(s, t, q) will be constructed
using field reduction.

9.2.1 Generalised reguli

Lemma 9.2.1

Consider a regulus R of PG(2t − 1, q) and let R1, R2, . . . , Rt−1 be t − 1 points
in general position lying in an element of R, with ℓ1, ℓ2, . . . , ℓt−1 their respective
transversal lines. Then ⟨ℓ1, ℓ2, . . . , ℓt−1⟩ is a (2t − 3)-subspace intersecting each
element of R exactly in a (t − 2)-subspace.

Proof. Let R =
{

σ0, σ1, . . . , σq
}

and suppose, without loss of generality, that
R1, R2, . . . , Rt−1 ∈ σ0. If t = 1, there is nothing left to prove, so assume that
t ⩾ 2. We will prove by induction on i ∈ {1, 2, . . . , t − 1} that ⟨ℓ1, ℓ2, . . . , ℓi⟩
is a (2i − 1)-subspace intersecting each element of R exactly in an (i − 1)-
subspace. If i = 1, then the proof is done as ℓ1 is a transversal line. Hence,
let i ⩾ 2 and assume that T ′ := ⟨ℓ1, ℓ2, . . . , ℓi−1⟩ is a (2i − 3)-subspace
intersecting each element σj ∈ R exactly in a (i − 2)-subspace σ′

j .

Suppose, to the contrary, that ℓi meets an element of
{

σ′
0, σ′

1, . . . , σ′
q

}
. If

ℓi intersects two distinct elements of this set, then ℓi ⊆ T ′, implying that
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Ri ∈ σ′
0 = ⟨R1, R2, . . . , Ri−1⟩, a contradiction. Therefore, ℓi meets precisely

one element of
{

σ′
0, σ′

1, . . . , σ′
q

}
. Without loss of generality, assume that ℓi

intersects σ′
1 and hence is disjoint to both σ′

0 and σ′
2. Then ℓi intersects T ′ in

a point (of σ′
1), thus dim(⟨T ′, ℓi⟩) ⩽ 2i − 2. However, the disjoint (i − 1)-

subspaces ⟨σ′
0, Ri⟩ and ⟨σ′

2, ℓi ∩ σ2⟩ are contained in ⟨T ′, ℓi⟩, implying that
dim(⟨T ′, ℓi⟩) ⩾ 2i − 1, a contradiction.
In conclusion, the transversal line ℓi does not intersect any element of the set{

σ′
0, σ′

1, . . . , σ′
q

}
, which forces T := ⟨T ′, ℓi⟩ to be a (2i − 1)-subspace that

intersects each subspace σj at least in an (i − 1)-subspace, but also at most,
as else we can find two disjoint subspaces in T that span a (2i)-subspace.■

Lemma 9.2.2

Consider an (s − 1)-dimensional Fq-subgeometry C of PG
(
s − 1, qt) and let

PC be its point set. Then there exists an (st − s − 1)-dimensional subspace of
PG(st − 1, q) intersecting each element of the set Fs,t,q(PC) exactly in a (t − 2)-
subspace.

Proof. Within this proof, we extend the notation PA as being the point set
of any Fq-subgeometry A and remove the subscript of Fs,t,q.
We proceed by induction on s. If s = 1, the statement is trivially true. Hence,
let s ⩾ 2 and consider an (s − 2)-dimensional Fq-subgeometry C ′ ⊂ C for

which there exists an (st − s − t)-dimensional subspace TC ′ of F
(
⟨C ′⟩qt

)
intersecting each element of the set F (PC ′) exactly in a (t − 2)-subspace.
Now

define ΠC ′ := F
(
⟨C ′⟩qt

)
,

let Q ∈ C ′ and define σQ := F (Q) and σ′
Q := TC ′ ∩ σQ,

consider an Fq-subline L of C through Q not contained in C ′ and let

ΠL := F
(
⟨L⟩qt

)
, and
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PG(3t − 1, q)PG(3t − 1, q)
Π

[2t − 1]

Π′

[2t − 1]

σQ

σP

σ Q 1

σQ2

σQ′
2

σQ′
1

Π1 [2t − 1]

Π2 [2t − 1]

Figure 9.1: A visualisation of the proof of Lemma 9.2.2, or how ⟨TL, TL′⟩
should intersect σP in a (t − 2)-subspace, P ∈ ⟨L,L′⟩ \ (L∪ L′). All circles
are (t − 1)-subspaces.
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define RL := F (PL).

By Result 0.1.13, RL is a regulus contained in the (2t − 1)-subspace ΠL.
Hence, by Lemma 9.2.1, we can consider a (2t − 3)-dimensional subspace
TL in ΠL through σ′

Q intersecting each element of RL exactly in a (t − 2)-
subspace. Moreover, as the (2t − 1)-subspace ΠL intersects the (st − t − 1)-
subspace ΠC ′ precisely in the (t − 1)-subspace σQ, we know that TL inter-
sects TC ′ exactly in the (t − 2)-subspace σ′

Q, hence

T := ⟨TL, TC ′⟩

has dimension (2t − 3) + (st − s − t)− (t − 2) = st − s − 1. We will prove
that T is the (st − s − 1)-subspace of PG(st − 1, q) we are looking for.

Choose an arbitrary point P ∈ C and define σP := F (P). The only thing left
to prove is that T intersects σP exactly in a (t − 2)-subspace. Note that T
intersects ΠL and ΠC ′ at least in TL and TC ′ , respectively, but also at most, as
else we can use Grassmann’s identity to prove that dim(T ) > st − s − 1, a
contradiction. If P ∈ L∪ C ′, then σP is contained in either ΠL or ΠC ′ , hence
T will intersect σP exactly in a (t − 2)-subspace.
Now suppose that P /∈ L∪ C ′. Let P be the Fq-subplane of C spanned by L
and P. This subplane intersects C ′ in an Fq-subline L′ through Q. Let ΠL′

be the image under F of ⟨L′⟩qt . Note that by the above arguments, T will
intersect ΠL′ in a (2t − 3)-subspace TL′ as well. Hence, we can shift our
view to the (3t − 1)-subspace ⟨ΠL, ΠL′⟩ ⊃ σP to continue this proof (see
Figure 9.1).
Let L1 and L2 be two distinct Fq-sublines in P through P, not containing Q.
Define

Q1 := L∩ L1, Q2 := L∩ L2, Q′
1 := L′ ∩ L1, Q′

2 := L′ ∩ L2.

Correspondingly, define

σQ1 := F (Q1) , σQ2 := F (Q2) , σQ′
1

:= F
(
Q′

1
)

, σQ′
2

:= F
(
Q′

2
)

,
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and

σ′
Q1

:= T ∩ σQ1 , σ′
Q2

:= T ∩ σQ2 , σ′
Q′

1
:= T ∩ σQ′

1
, σ′

Q′
2

:= T ∩ σQ′
2
.

As Q1, Q2, Q′
1, Q′

2 ∈ L ∪ L′ ⊆ L ∪ C ′, we know that the above subspaces
have dimension t − 2. Finally, define

Π := ⟨σQ1 , σQ2⟩ =ΠL, Π1 :=
〈

σQ1 , σQ′
1

〉
,

Π′ :=
〈

σQ′
1
, σQ′

2

〉
=ΠL′ , Π2 :=

〈
σQ2 , σQ′

2

〉
,

these all being (2t − 1)-subspaces of PG(st − 1, q). Note that σQ is con-
tained in both Π and Π′.
Observe that, as Π ∩ Π′ = σQ and as both TL ⊂ Π and TL′ ⊂ Π′ intersect
σQ in the (t − 2)-subspace σ′

Q, the intersection TL ∩ TL′ has dimension t − 2,
hence dim(⟨TL, TL′⟩) = 3t − 4.
We can prove that ⟨TL, TL′⟩ ∩ Π1 =

〈
σ′

Q1
, σ′

Q′
1

〉
. Indeed, we know that

Π1 =
〈

σQ1 , σQ′
1

〉
; as TL intersects σQ1 in σ′

Q1
and as TL′ intersects σQ′

1
in σ′

Q′
1
,

the subspace ⟨TL, TL′⟩ ∩ Π1 contains
〈

σ′
Q1

, σ′
Q′

1

〉
. If ⟨TL, TL′⟩ would contain

a subspace of Π1 of dimension larger than dim
(〈

σ′
Q1

, σ′
Q′

1

〉)
, then ⟨TL, TL′⟩

would contain both the (t − 2)-subspace σ′
Q ⊂ σQ and a (2t − 2)-subspace

of Π1, which are disjoint to each other as σQ and Π1 are disjoint. This would
imply that dim(⟨TL, TL′⟩) ⩾ (t − 2) + 2t − 2 + 1 = 3t − 3, a contradiction.
As a consequence, T cannot contain σP, as else the (2t − 3)-subspace
⟨TL, TL′⟩ ∩ Π1 contains both the (t − 2)-subspace σ′

Q1
and the (t − 1)-

subspace σP, which are disjoint to each other, a contradiction. Hence,
T intersects σP at most in a (t − 2)-subspace. It remains to prove that T
intersects σP at least in a (t − 2)-subspace.
As Π ∩ Π′ = σQ, we have that

dim(⟨Π1, Π2⟩) = dim
(〈

σQ1 , σQ′
1
, σQ2 , σQ′

2

〉)
= dim

(〈
Π, Π′〉) = 3t − 1.
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Hence, dim(Π1 ∩ Π2) = (2t − 1) + (2t − 1) − (3t − 1) = t − 1. As the
(t − 1)-subspace σP is contained in both Π1 and Π2, this means that Π1 ∩
Π2 = σP (see Figure 9.1).
Recall that TL =

〈
σ′

Q1
, σ′

Q2

〉
, TL′ =

〈
σ′

Q′
1
, σ′

Q′
2

〉
and that the span ⟨TL, TL′⟩ is

a (3t − 4)-dimensional subspace. Hence, we can make a similar reasoning
as above and obtain that

dim
(〈

σ′
Q1

, σ′
Q′

1

〉
∩
〈

σ′
Q2

, σ′
Q′

2

〉)
= 2 (2t − 3)− dim

(〈
σ′

Q1
, σ′

Q′
1
, σ′

Q2
, σ′

Q′
2

〉)
= 2 (2t − 3)− dim(⟨TL, TL′⟩)
= t − 2.

As
〈

σ′
Q1

, σ′
Q′

1

〉
⊂ Π1 and

〈
σ′

Q2
, σ′

Q′
2

〉
⊂ Π2, the (t − 2)-subspace〈

σ′
Q1

, σ′
Q′

1

〉
∩
〈

σ′
Q2

, σ′
Q′

2

〉
lies in Π1 ∩ Π2 = σP. Hence, T intersects σP at

least in this (t − 2)-subspace, and the proof is done. ■

9.2.2 The isomorphism

We now have all the tools we need to construct an isomorphism between
X(s, t, q) and Y(s, t, q). We refer to Figure 9.2 for a visualisation of the map
φX we are about to define.

Definition 9.2.3 (isomorphism φX)

Consider the point-line geometry Y(s, t, q) together with all corresponding
notation (see Definition 9.1.2). By Lemma 9.2.2 (and temporarily restrict-
ing the field reduction map to ΣY

∼= PG
(
s − 1, qt)), we can consider an

(st − s − 1)-dimensional subspace χ of the (st − 1)-subspace F (ΣY) that
intersects F (Q) exactly in a (t − 2)-subspace, for every Q ∈ CY (see Fig-
ure 9.2).
Now consider a duality δ of PG(st + t − 1, q) and define the map

φX : PG
(
s, qt)→ PG(s + t − 1, q) : τ 7→

(
F (τ)δ ∩ χδ

)
,
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where we identify χδ ∼= PG(s + t − 1, q) and where τ is a subspace of
PG
(
s, qt).

Theorem 9.2.4

Let s, t ∈ N \ {0}. Then φX induces an isomorphism between Y(s, t, q) and
X(s, t, q).

Proof. By the properties of a duality, χ ⊂ F (ΣY) implies F (ΣY)
δ ⊂ χδ,

hence φX(ΣY) = F (ΣY)
δ. In line with Definition 9.1.1, we

identify χδ with PG(s + t − 1, q), and

define π := φX(ΣY) = F (ΣY)
δ.

Claim 1: φX is a bijection between PY and PX .

Let P be a point of PY. As P /∈ ΣY, F (P) is a (t − 1)-subspace disjoint
to the (st − 1)-subspace F (ΣY). Hence, F (P)δ is an (st − 1)-subspace of
PG(st + t − 1, q) disjoint to the (t − 1)-subspace F (ΣY)

δ = φX(ΣY) = π.
Therefore, χδ intersects F (P)δ in a subspace of dimension at least s − 1, as
both subspaces are contained in PG(st + t − 1, q). Conversely, χδ intersects
F (P)δ in a subspace of dimension at most s − 1 as π and F (P)δ ∩ χδ are
disjoint subspaces that are both contained in the (s + t − 1)-subspace χδ.
As a result, φX maps elements of PY onto elements of PX. Note that φX
inherits injectivity from the field reduction map. Proposition 9.1.5 proves
bijectivity.

Claim 2: φX maps points contained in a fixed element of LY onto points
contained in a fixed element of LX .

At this point, Figure 9.2 comes in handy to visualise the following argu-
ments.
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PG
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s, qt)PG
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[s − 1]
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Figure 9.2: Visualisation of the map φX, see Definition 9.2.3.
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Let B ∈ LY, consider two distinct points P1, P2 ∈ B \ CY and define
Q := P1P2 ∩ CY. Note that F (P1) and F (P2) are disjoint (t − 1)-subspaces,
each of which is disjoint to the (st − 1)-subspace F (ΣY) ⊃ F (Q). There-
fore, they span a (2t − 1)-subspace Ψ := ⟨F (P1) ,F (P2)⟩. Any two distinct
elements of the set {F (P1) ,F (P2) ,F (Q)} span Ψ. Dualising these obser-
vations, we know that F (P1)

δ, F (P2)
δ and F (Q)δ are (st − 1)-subspaces

intersecting each other in the (st − t − 1)-subspace Ψδ, where F (P1)
δ and

F (P2)
δ are disjoint to π = F (ΣY)

δ. Any two distinct elements of the set{
F (P1)

δ ,F (P2)
δ ,F (Q)δ

}
intersect each other exactly in Ψδ. Moreover, the

fact that Q ∈ ΣY means that F (Q)δ is an (st − 1)-subspace going through
π.
As χ intersects F (Q) exactly in a (t − 2)-subspace, χδ intersects F (Q)δ in
an (s + t − 2)-subspace φX(Q) = F (Q)δ ∩ χδ. Moreover, as both χδ and
F (Q)δ are subspaces through π, their intersection φX(Q) contains π as
well. The subspace Ψδ is disjoint to π, so F (Q)δ is spanned by π and Ψδ; by
Grassmann’s identity, the (s + t − 2)-subspace φX(Q) = F (Q)δ ∩ χδ inter-
sects Ψδ in an (s − 2)-subspace. This means that χδ intersects both F (P1)

δ

and F (P2)
δ in an (s − 2)-subspace, which implies that φX(P1) intersects

φX(P2) in an (s − 2)-subspace.
As P1 and P2 were arbitrarily chosen points of B \ CY, we conclude that for
any two points of the latter point set, their images under φX intersect each
other maximally. Hence, this set of images φX(B \ CY) forms an Erdős-Ko-
Rado set [33, section 9.3], which means that

(1) either all elements of φX(B \ CY) lie in an s-subspace, or

(2) all elements of φX(B \ CY) have a fixed (s − 2)-subspace in common.

If (1) generally holds, the proof of the claim is done, as this s-subspace is
contained in χδ and contains (at least) an (s − 1)-subspace (of φX(B \ CY))
disjoint to π. Hence, by Grassmann’s identity, this s-subspace intersects π
exactly in one point.
Suppose that (2) holds. As the points of the set B \ CY span the whole space
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PG
(
s, qt), the elements of F (B \ CY) span the whole space PG(st + t − 1, q).

However, as (2) holds, the intersection of all elements of φX(B \ CY) has
dimension at least s− 2, hence the intersection of all elements of F (B \ CY)

δ

has dimension at least s − 2 as well. Dualising this statement, we obtain
that the span of all elements of F (B \ CY) has dimension at most st + t −
1− (s − 2)− 1 = st − s + t. This is only possible if st + t − 1 ⩽ st − s + t ⇔
s ⩽ 1 ⇔ s = 1.
Hence, this implies that s = 1. Then χδ is a t-subspace of PG(2t − 1, q)
through the (t − 1)-subspace π, intersecting each element of φX(B \ CY)
exactly in a point. Denote the set of points in B by PB . As B ∼= PG(1, q), by
Result 0.1.13, F (PB) is a regulus of PG(2t − 1, q). Let Q1, Q2 ∈ B \ CY and
define Q′

1 := φX(Q1) and Q′
2 := φX(Q2). Then Q′

1Q′
2 lies in the t-subspace

χδ and hence intersects the (t − 1)-subspace π = F (Q) (here, Q = CY).
In this way, we see that Q′

1Q′
2 meets at least three elements of the regulus

F (PB) (namely F (Q1), F (Q2) and F (Q)), hence Q′
1Q′

2 has to intersect all
elements of that regulus. As Q′

1Q′
2 is contained in χδ and as each element

of F (B \ CY) intersects χδ exactly in a point, all these intersection points
have to lie on Q′

1Q′
2 and hence the proof of the claim is done.

As φX induces a bijection between PY and PX, by Claim 2 and Remark 9.1.4,
this map induces an injection with respect to the line sets LY and LX.
Proposition 9.1.5 proves bijectivity. ■

9.3 The isomorphism between Y(s, t, q) and Z(s, t, q)

An explicit isomorphism between Y(s, t, q) and Z(s, t, q) will be constructed
using coordinates.

9.3.1 Coordinate swapping

Consider the following configuration.
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Configuration 9.3.1 (Using the notation of Definitions 9.1.2 and 9.1.3)

Choose a coordinate system for PG
(
s, qt) such that{

E(Y)
0 , E(Y)

1 , . . . , E(Y)
s , E(Y)

}
is the canonical frame,

F(Y) is the point with coordinates (0, 1, . . . , 1)⊺, and

CY is the (by Result 0.1.2 unique) (s − 1)-dimensional Fq-

subgeometry in ΣY containing E(Y)
1 , . . . , E(Y)

s and F(Y).

Choose a coordinate system for PG(t, qs) such that{
E(Z)

0 , E(Z)
1 , . . . , E(Z)

t , E(Z)
}

is the canonical frame,

F(Z) is the point with coordinates (0, 1, . . . , 1)⊺, and

CZ is the (by Result 0.1.2 unique) (t − 1)-dimensional Fq-

subgeometry in ΣZ containing E(Z)
1 , . . . , E(Z)

t and F(Z).

Lemma 9.3.2

Consider Configuration 9.3.1. Let P, Q /∈ ΣY be two distinct points of PG
(
s, qt)

with coordinates (1, x1, x2, . . . , xs)
⊺ and (1, y1, y2, . . . , ys)

⊺, xi, yi ∈ Fqt , such
that ⟨P, Q⟩ intersects ΣY in F(Y). If B is the (by Lemma 0.1.3 unique) s-
dimensional Fq-subgeometry containing CY, P and Q, then the set of coordinates
of the points in B \ CY is equal to{

(1, x1 + k1 (y1 − x1) , . . . , xs + ks (y1 − x1))
⊺ : k1, . . . , ks ∈ Fq

}
.

Proof. It is clear that the hyperplane ΣY is defined by the equation X0 =
0. Let B0 be the (by Result 0.1.2 unique) s-dimensional Fq-subgeometry

containing the frame
{

E(Y)
0 , E(Y)

1 , . . . , E(Y)
s , E(Y)

}
. As this is the canonical
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frame, the set of coordinates of the points in B0 \ CY is equal to{
(1, k1, k2, . . . , ks)

⊺ : k1, . . . , ks ∈ Fq
}

.

One can find a unique element of PGL
(
s + 1, qt) that maps the (ordered)

canonical frame
(

E(Y)
0 , E(Y)

1 , . . . , E(Y)
s , E(Y)

)
onto the (ordered) frame(

P, E(Y)
1 , . . . , E(Y)

s , Q
)

, which can be represented by an Fqt -multiple of the
following matrix:

1 0 0 · · · 0
x1 y1 − x1 0 · · · 0
x2 0 y2 − x2 · · · 0
...

...
...

. . .
...

xs 0 0 · · · ys − xs

 .

Such a matrix maps a point of B0 with coordinates (1, k1, k2, . . . , ks)
⊺, ki ∈

Fq, onto a point of B with coordinates

(1, x1 + k1 (y1 − x1) , x2 + k2 (y2 − x2) , . . . , xs + ks (ys − xs))
⊺ .

As F(Y) ∈ ⟨P, Q⟩, the vector (0, y1 − x1, y2 − x2, . . . , ys − xs)
⊺ has to be an

Fqt -multiple of (0, 1, 1, . . . , 1)⊺, which implies that yi − xi = yj − xj for all
i, j ∈ {1, 2, . . . , s}. Hence, the set of coordinates of the points in B \ CY can
be simplified to{

(1, x1 + k1 (y1 − x1) , . . . , xs + ks (y1 − x1))
⊺ : k1, . . . , ks ∈ Fq

}
. ■

9.3.2 The isomorphism

We now introduce the following map φZ.
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Definition 9.3.3 (isomorphism φZ)

Consider Configuration 9.3.1. Choose primitive elements α ∈ Fqt and β ∈
Fqs for field extensions Fqt /Fq and Fqs /Fq, respectively, i.e. Fq(α) = Fqt

and Fq(β) = Fqs . Define the map φZ : PY → PZ that maps a point of PY
with coordinates

(1, z1, z2, . . . , zs)
⊺ =

(
1,

t

∑
j=1

z1jα
j−1,

t

∑
j=1

z2jα
j−1, . . . ,

t

∑
j=1

zsjα
j−1

)⊺

onto the point of PZ with coordinates(
1,

s

∑
i=1

zi1βi−1,
s

∑
i=1

zi2βi−1, . . . ,
s

∑
i=1

zitβ
i−1

)⊺

,

where zk ∈ Fqt and zij ∈ Fq.

Theorem 9.3.4

Let s, t ∈ N \ {0}. Then φZ induces an isomorphism between Y(s, t, q) and
Z(s, t, q).

Proof. Note that the choice of coordinates made in Configuration 9.3.1
does not affect the generality of the theorem. After all, any collin-
eation of PG

(
s, qt) preserves elements of LY as being s-dimensional Fq-

subgeometries containing the image of CY, hence the whole set LY is pre-
served and, furthermore, incidence is retained. The same holds for the
point-line geometry Z(s, t, q).
Let B be an arbitrary element of LY. Suppose that P, Q ∈ B \ CY are two
distinct points with coordinates (1, x1, x2, . . . , xs)

⊺ and (1, y1, y2, . . . , ys)
⊺,

xi, yi ∈ Fqt , such that ⟨P, Q⟩ intersects ΣY in F(Y). By Lemma 9.3.2, the set
of coordinates of the points in B \ CY is equal to{

(1, x1 + k1 (y1 − x1) , . . . , xs + ks (y1 − x1))
⊺ : k1, . . . , ks ∈ Fq

}
.
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Note that φZ is a bijection, as one can easily define its inverse (see Defin-
ition 9.3.3). If xi = ∑t

j=1 xijα
j−1 and yi = ∑t

j=1 yijα
j−1 for certain values

xij, yij ∈ Fq (i ∈ {1, 2, . . . , s}), then a point is the image of a point in B \ CY
under φZ if and only if its coordinates are equal to(

1,
s

∑
i=1

(xi1 + ki (y11 − x11)) βi−1, . . . ,
s

∑
i=1

(xit + ki (y1t − x1t)) βi−1

)⊺

for certain values k1, . . . , ks ∈ Fq

=

(
1,

s

∑
i=1

xi1βi−1, . . . ,
s

∑
i=1

xitβ
i−1

)⊺

+
s

∑
i=1

kiβ
i−1 (0, y11 − x11, . . . , y1t − x1t)

⊺

for certain values k1, . . . , ks ∈ Fq

=

(
1,

s

∑
i=1

xi1βi−1, . . . ,
s

∑
i=1

xitβ
i−1

)⊺

+ k (0, y11 − x11, . . . , y1t − x1t)
⊺

for a certain value k ∈ Fqs . (9.1)

Therefore, the images under φZ of the points in B \ CY are precisely the
points in ℓ \ ΣZ, with ℓ a line of PG(t, qs) through φZ(P) /∈ ΣZ intersect-
ing ΣZ in the point of CZ with coordinates (0, x11 − y11, . . . , x1t − y1t)

⊺ ∈
V(t + 1, q). Hence, as φZ maps points in a fixed line of Y(s, t, q) onto points
in a fixed line of Z(s, t, q), this map naturally induces a morphism from
Y(s, t, q) to Z(s, t, q). Furthermore, as φZ is a bijection between PY and PZ,
by Remark 9.1.4, this map is injective with respect to the line sets LY and
LZ. Proposition 9.1.5 proves bijectivity. ■

The purpose of the isomorphism described above is to be able to explicitly
transfer natural notions of parallelism and affine subspaces from Z(s, t, q) to
Y(s, t, q).

9.3.3 Parallelism, independence and affyne subspaces

Theorem 9.3.4 states that the point-line geometry Y(s, t, q) is isomorphic
to Z(s, t, q), whose lines are essentially affine lines of AG(t, qs) (see Defini-
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tions 9.1.2 and 9.1.3). Therefore, notions of parallelism and affine subspaces
seem transferable to the point-line geometry Y(s, t, q).

Definition 9.3.5 (affine notions of subgeometries)

Consider the point-line geometry Y(s, t, q) and its corresponding (induced)
isomorphism φZ to Z(s, t, q) (see Definitions 9.1.2, 9.1.3 and 9.3.3). Then

distinct lines of LY are called concurrent if they contain a common
point (of PY).

two lines of LY are said to be parallel if their images under φZ are
parallel,

concurrent lines of LY are called independent if their images under
φZ intersect CZ in points that lie in general position, and

for any k ∈ {0, 1, . . . , t}, a set of qks points of PY is said to be a k-
dimensional affynea subspace if the images of its points under φZ
lie in a fixed k-subspace containing θk−1 points of CZ.

aThis is not a typo! The conventional ‘i’ is replaced by a ‘y’ as a subtle wink to the
point-line geometry Y(s, t, q).

A careful attitude is required when moving forward with the above defin-
itions. Recall, after all, that the isomorphism induced by φZ relies on a
specific choice of coordinates within the respective projective geometries in
which Y(s, t, q) and Z(s, t, q) are embedded.

Lemma 9.3.6

The notions described in Definition 9.3.5 are well-defined.

Proof. Assume that Y(s, t, q) is chosen in such a way that it corresponds to
the coordinate system described in Configuration 9.3.1. For this lemma to
be true, we want to prove that if one of the last three notions described in
Definition 9.3.5 holds for certain points or lines of Y(s, t, q), it still holds for



158 CHAPTER 9. PARALLEL SUBGEOMETRIES

the images of these points or lines with respect to any collineation of the
ambient geometry PG

(
s, qt).

Let B be an arbitrary element of LY and P, Q ∈ B \ CY be two distinct
points with coordinates (1, x1, x2, . . . , xs)

⊺ and (1, y1, y2, . . . , ys)
⊺, respect-

ively (xi, yi ∈ Fqt ), such that ⟨P, Q⟩ intersects ΣY in F(Y) (see Configura-
tion 9.3.1), implying that

y1 − x1 = · · · = ys − xs. (9.2)

Assuming that xi = ∑t
j=1 xijα

j−1 and yi = ∑t
j=1 yijα

j−1 (Fq(α) = Fqt and
xij, yij ∈ Fq, see Definition 9.3.3), just as in (9.1), the set of coordinates of
the images of the points in B \ CY under φZ is equal to{

(coordinates of φZ(P)) + k · (0, y11 − x11, . . . , y1t − x1t)
⊺ : k ∈ Fqs

}
.

Any two elements B(1),B(2) ∈ LY are therefore parallel if and only if

there exists an element γ ∈ Fqs such that
(

0, y(1)11 − x(1)11 , . . . , y(1)1t − x(1)1t

)⊺
=

γ ·
(

0, y(2)11 − x(2)11 , . . . , y(2)1t − x(2)1t

)⊺
. Moreover, as both of these coordinates

are vectors of V(t + 1, q) and as the values y(2)1j − x(2)1j cannot all be zero
(P ̸= Q), γ has to be an element of Fq. Combining this with (9.2), we get that

y(1)ij − x(1)ij = γ
(

y(2)ij − x(2)ij

)
for all i ∈ {1, 2, . . . , s} and all j ∈ {1, 2, . . . , t},

implying that(
y(1)1 − x(1)1 , . . . , y(1)s − x(1)s

)⊺
= γ ·

(
y(2)1 − x(2)1 , . . . , y(2)s − x(2)s

)⊺
for a γ ∈ Fq. (9.3)

As Fq is fixed under any automorphism of the ambient field Fqt , we can
observe that property (9.3) remains valid if P(1), Q(1), P(2) or Q(2) are
moved by an element of PΓL

(
s + 1, qt). This implies that parallelism of

elements of LY is invariant with respect to collineations, hence this notion
is well-defined.
Using this, we can prove the same for the notion of a k-dimensional af-
fyne subspace, k ∈ {0, 1, . . . , t}. If k = 0, this is trivially true. If k ⩾ 1,



9.3. THE ISOMORPHISM BETWEEN Y(s, t, q) AND Z(s, t, q) 159

a k-dimensional affyne subspace occurs as a set of qks points of PY lying
in a union of q(k−1)s parallel lines through each of the points of a (k − 1)-
dimensional affyne subspace. As any collineation of PG

(
s, qt) preserves

incidence, parallelism and, inductively, (d − 1)-dimensional affyne sub-
spaces, the claim follows.
Finally, as the points of PY lying on k concurrent, independent lines of LY
are contained in a unique k-dimensional affyne subspace, the invariance
of the latter affyne subspace implies the invariance of the independence of
those lines. ■

Consider the following configuration.

Configuration 9.3.7

Consider an (s − 1)-dimensional Fq-subgeometry CY lying in an (s − 1)-
subspace ΣY of PG

(
s + 1, qt) and choose three distinct hyperplanes Π1, Π2

and Π3 through ΣY.
For each i ∈ {1, 2, 3}, consider a point-line geometry (PYi ,LYi) in Πi

∼=
PG
(
s, qt) isomorphic to Y(s, t, q) (with CY as a common ‘central’ subgeo-

metry).

Lemma 9.3.8

Consider Configuration 9.3.7. Let B ∈ LY1 and S ∈ PY2 . Then there exists a
unique (s + 1)-dimensional Fq-subgeometry AB,S containing B, S and a point
of PY3 .

Proof. Choose a point R ∈ B \ CY. Then the line ⟨R, S⟩ has to intersect Π3
in a point T /∈ ΣY. Any (s + 1)-dimensional Fq-subgeometry that contains
B and S and intersects Π3 in a point outside of ΣY, has to contain T and, in
particular, the (by Result 0.1.2) unique Fq-subline defined by R, S and T.
By Lemma 0.1.3, there exists exactly one such Fq-subgeometry. ■
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Definition 9.3.9 (projection and shadow map)

Consider Configuration 9.3.7. For any point S ∈ PY2 , we introduce the
projection map

projSΠ1,Π3
: LY1 → LY3 : B 7→ (AB,S ∩ Π3) ,

and the shadow map

shadS
Π1,Π3

: LY1 → LY2 : B 7→ (AB,S ∩ Π2) ,

with AB,S the (by Lemma 9.3.8) unique (s + 1)-dimensional Fq-
subgeometry containing B, S and a point of PY3 . Furthermore, for a fixed
element B ∈ LY1 , we can naturally extend the maps above and define, for
any subset T ⊆ PY2 ,

projTΠ1,Π3
(B) :=

⋃
S∈T

{
P ∈ PY3 : P ∈ projSΠ1,Π3

(B)
}

and
shadT

Π1,Π3
(B) :=

⋃
S∈T

{
P ∈ PY2 : P ∈ shadS

Π1,Π3
(B)

}
.

Lemma 9.3.10

Consider Configuration 9.3.7. Let B ∈ LY1 and S1, S2 ∈ PY2 . Then
shadS1

Π1,Π3
(B) and shadS2

Π1,Π3
(B) are parallel.

Proof. Choose a coordinate system for PG
(
s + 1, qt) such that

{E0, E1, . . . , Es+1, E} is the canonical frame and the points F and G
correspond to the coordinates (0, 1, 1, . . . , 1)⊺ and (0, 0, 1, . . . , 1)⊺, re-
spectively. By Lemma 9.3.6, we may assume, without loss of generality,
that

CY is (by Result 0.1.2) uniquely defined by the points E2, . . . , Es+1 and
G,
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E1 is a point of B, and

E0 and E are the points ℓ ∩ Π2 and ℓ ∩ Π3, respectively, with ℓ ⊈ Π1
an arbitrarily chosen line intersecting Π1 in a point of B \ (CY ∪ {E1}).

In this way, B is (indirectly by Lemma 0.1.3) uniquely defined by CY,
E1 and F ∈ ⟨E0, E⟩ = ℓ. If S1 has coordinates (1, 0, x2, . . . , xs+1)

⊺

(xi ∈ Fqt ), the line ⟨F, S1⟩ intersects Π3 in a point T1 with coordinates
(1, 1, 1 + x2, . . . , 1 + xs+1)

⊺.
By Lemma 9.3.8, there exists a unique (s + 1)-dimensional Fq-subgeometry
AB,S1 containing B, S1 and T1. By Lemma 9.3.2, the set of coordinates of the
points in AB,S1 \ B is equal to{

(1, k1, x2 + k2, . . . , xs+1 + ks+1)
⊺ : k1, . . . , ks+1 ∈ Fq

}
.

As a consequence, the set of coordinates of the points of shadS1
Π1,Π3

(B) is
equal to {

(1, 0, x2 + k2, . . . , xs+1 + ks+1)
⊺ : k2, . . . , ks+1 ∈ Fq

}
. (9.4)

Restricting these coordinates to the geometry PG
(
s, qt) ∼= Π2 (by ignoring

the second coordinate 0), the set of coordinates of the images of the points
(9.4) under φZ is, as in (9.1), equal to{

(coordinates of φZ(S1)) + k · (0, 1, 0, . . . , 0)⊺ : k ∈ Fqs
}

.

As the line parallel class of the affine line that arises in this way does not
rely on the choice of the point S1 ∈ PY2 , the lemma is proven. ■

Lemma 9.3.11

Consider Configuration 9.3.7. Let B1,B2, . . . ,Bj ∈ LY1 be j independent lines
sharing a point R ∈ PY1 , j ∈ {1, 2, . . . , t}, and suppose that T ⊆ PY2 is a
(j − 1)-dimensional affyne subspace. Then there exists a k ∈ {1, 2, . . . , j} such
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that projTΠ1,Π3
(Bk) is a j-dimensional affyne subspace.

Proof. Choose a point S ∈ T and define T := ⟨R, S⟩ ∩ Π3. The projection
of points of Π1 onto Π2 via the point T is a natural projectivity between
the subspaces when interpreted as distinct projective geometries. Hence,
if one projects each of the subgeometries B1,B2, . . . ,Bj onto Π2 via T, we
obtain j independent lines B′

1,B′
2, . . . ,B′

j ∈ LY2 sharing the point S ∈ T . As
T is a (j − 1)-dimensional affyne subspace, there has to exist a B′

k which
has only the point S in common with T . Moreover, it is easy to see that
B′

k = shadS
Π1,Π3

(Bk). Hence, by Lemma 9.3.10, shadT
Π1,Π3

(Bk) is a union of
|T | distinct, parallel elements of LY2 , each containing a unique point of
T . In other words, shadT

Π1,Π3
(Bk) is a j-dimensional affyne subspace. By

considering the natural projection of points of Π2 onto Π3 via R, one can
check that shadT

Π1,Π3
(Bk) gets projected onto projTΠ1,Π3

(Bk). ■



10 Flowers in bloom

This final chapter puts us back on track concerning the topic of saturating
sets. By exploiting the presence of parallelism and affine subspaces (see
Chapter 9), we are able to construct relatively small saturating sets by
‘mixing’ certain several distinct, partially overlapping subgeometries.

The results of this chapter can be found in [61].

10.1 One flower is almost enough

First, let us define what we mean by a flower.

Definition 10.1.1 (flower)

Let m ∈ N. A set F of ϱ + 1 m-subspaces of PG(d, q) is said to be an
m-flower if

they share an (m − 1)-subspace called the pistil of F , and

their span has dimension m + ϱ.

The elements of F are called the petals of the m-flower.

163
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Lemma 10.1.2

Let F :=
{

τ1, τ2, . . . , τϱ+1
}

be a (d − ϱ)-flower of PG
(
d, qϱ+1) whose pis-

til ΣY contains a (d − ϱ − 1)-dimensional Fq-subgeometry CY. For every

j ∈ {1, 2, . . . , ϱ + 1}, consider the point-line geometry
(
Pτj

Y ,Lτj
Y

)
∼=

Y(d − ϱ, ϱ + 1, q) (see Definition 9.1.2) and take j independent lines
B(1)

j ,B(2)
j , . . . ,B(j)

j ∈ Lτj
Y sharing a point Fj ∈ Pτj

Y . Then the point set

B :=
ϱ+1⋃
j=1

j⋃
k=1

(
B(k)

j \ CY

)
ϱ-saturates all points of PG

(
d, qϱ+1) not lying in the span of ϱ petals of F .

Proof. Let P be an arbitrary point not contained in the span of any ϱ petals
of F . Define Πj :=

〈
τj, τj+1, . . . , τϱ+1

〉
for every j ∈ {1, 2, . . . , ϱ + 1}. Note

that Π1 is equal to the whole space, hence P ∈ Π1.

Now consider the (d − ϱ)-subspace π0 := ⟨ΣY, P⟩ with its corresponding
point-line geometry

(
Pπ0

Y ,Lπ0
Y

) ∼= Y(d − ϱ, ϱ + 1, q), and define the point
set T0 := {P}. One can now iterate through the following process, for j
going from 1 to ϱ.

(1) Define πj. Note that πj−1 and τj are distinct (d − ϱ)-subspaces
through ΣY, contained in Πj but not contained in Πj+1. As
Πj+1 is a hyperplane of Πj,

〈
πj−1, τj

〉
intersects Πj+1 in a (d − ϱ)-

subspace πj with corresponding point-line geometry
(
Pπj

Y ,Lπj
Y

)
∼=

Y(d − ϱ, ϱ + 1, q).

(2) Define Tj. Observe that πj−1, τj and πj are three distinct
(d − ϱ)-subspaces through ΣY that span a (d − ϱ + 1)-subspace.
Moreover, Tj−1 ⊂ Pπj−1

Y is a (j − 1)-dimensional affyne subspace.

By Lemma 9.3.11, there exists a B(k)
j ∈ Lτj

Y such that Tj :=
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proj
Tj−1
τj,πj

(
B(k)

j

)
⊂ Pπj

Y is a j-dimensional affyne subspace.

(3) Define Qj. Note that any point Tj ∈ Tj lies in the span of a point of

B∩ τj and a point of Tj−1. Indeed, by definition of proj
Tj−1
τj,πj , there has

to exist a point T′
j ∈ Tj−1 such that Tj ∈ proj

T′
j

τj,πj

(
B(k)

j

)
. Hence, there

exists a point Qj ∈ B(k)
j \ CY that is projected via T′

j onto Tj.

Eventually, we conclude that Tϱ ⊂ Pπϱ

Y is a ϱ-dimensional affyne sub-
space, which is an affyne hyperplane. Furthermore, note that Tϱ ⊂ πϱ ⊆
Πϱ+1 = τϱ+1. As B ∩ τϱ+1 is a union of ϱ + 1 concurrent, independ-
ent Fq-subgeometries, there has to exist a point Qϱ+1 ∈ Tϱ ∩

(
B∩ τϱ+1

)
,

since any union of ϱ + 1 concurrent, independent lines of AG
(
ϱ + 1, qd−ϱ

)
meets any hyperplane in at least one point. By recursively backtrack-
ing the observation obtained in step (3), we conclude that Qϱ+1 lies in〈

Qϱ, Qϱ−1, . . . , Q1, P
〉
, with Qj ∈ B∩ τj (j ∈ {1, 2, . . . , ϱ + 1}). This implies

that P ∈
〈

Q1, Q2, . . . , Qϱ+1
〉
, as no point of

{
Q1, Q2, . . . , Qϱ+1

}
can lie in

the span of the others by the definition of a flower. ■

By the lemma above, we can find a relatively small point set that ϱ-saturates
‘most’ of the points of PG

(
d, qϱ+1). We could end our quest right here and

now, by recursively copying smaller versions of similar point sets in the
span of any ϱ petals of F . However, as this would dramatically increase
the size of the saturating set, a need to optimise the construction arises.

To compensate for the somewhat restricted ϱ-saturating capabilities de-
scribed by the lemma above, we construct a ϱ-saturating set as a mix of
several layers of flowers.
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10.2 An intricate bouquet

ASSUMPTION
Throughout this section, we fix the following value:

λ := min{ϱ, d − ϱ} .

Definition 10.2.1 (ceilfloor map)

For every i ∈ {1, . . . , λ}, define the map

⌈·⌋(i) : {ϱ + 2 − λ, . . . , ϱ + 1} → {ϱ + 2 − λ, . . . , ϱ + 1}

: j 7→ ⌈j⌋(i) :=

{
j + i − 1 if j + i − 1 ⩽ ϱ + 1,
ϱ + 2 − i otherwise.

As the map above could induce some confusion, we will give the reader
an intuition of Configuration 10.2.2 (further on) before plunging into the
technical details.

10.2.1 The general idea

As said before, the main construction will be built by making use of a mix
of multiple flowers. These flowers will be stacked upon each other, forming
a total of λ ‘layers’, in the sense that

the ‘largest’ layer (layer i = 1) is a (d − ϱ)-flower whose petals are
numbered 1, 2, . . . , ϱ + 1,

within this layer, we consider a (d − ϱ − 1)-flower (layer i = 2),
whose petals are each contained in a unique petal of the layer ‘above’,

...

the ‘smallest’ layer (layer i = λ) is a (d − ϱ − λ + 1)-flower whose
petals are each contained in a unique petal of the layer ‘above’.



10.2. AN INTRICATE BOUQUET 167

In this way, we obtain ϱ + 1 ‘layered’ petals. Inspired by Lemma 10.1.2, we
now choose a set of concurrent, independent Fq-subgeometries in certain
petals. The number of such subgeometries depends on the number of the
layer (i) and the number of the petal (j). If j ⩽ ϱ + 1 − λ, we choose j
concurrent, independent Fq-subgeometries in the top layer (i = 1) of petal
j, and none in any of its other layers. If j > ϱ + 1 − λ, we choose ⌈j⌋(i)
concurrent, independent Fq-subgeometries in layer i of petal j, i.e.

⌈j⌋(1) = j concurrent, independent Fq-subgeometries in the top layer
of petal j,

⌈j⌋(2) = j + 1 concurrent, independent Fq-subgeometries in the next
layer (i = 2) of petal j,

...

⌈j⌋(ϱ+2−j) = ϱ + 1 concurrent, independent Fq-subgeometries in the
next layer (i = ϱ + 2 − j) of petal j,

⌈j⌋(ϱ+3−j) = j − 1 concurrent, independent Fq-subgeometries in the
next layer (i = ϱ + 3 − j) of petal j,

...

⌈j⌋(λ) = ϱ + 2 − λ concurrent, independent Fq-subgeometries in the
bottom layer (i = λ) of petal j.

The reason for this sophisticated way of choosing certain Fq-subgeometries
is to ensure that for every point P, there exists an adequate flower within
this particular configuration that ϱ-saturates P (described in Lemma 10.1.2).

10.2.2 The nitty-gritty

We now formalise the intuitive configuration of the previous subsection
and hence introduce the main configuration of this chapter. Be sure to
keep Figure 10.1 at hand for a visualisation of an example case with three
two-layered petals.
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Configuration 10.2.2

Consider two sets {C1, . . . , Cλ} and {Σ1, . . . , Σλ} of Fq-subgeometries and
subspaces of PG

(
d, qϱ+1), respectively, such that

for every i ∈ {1, . . . , λ}, Ci is a (d − ϱ − i)-dimensional Fq-
subgeometry with ⟨Ci⟩qϱ+1 = Σi, and

C1 ⊃ C2 ⊃ · · · ⊃ Cλ, implying that Σ1 ⊃ Σ2 ⊃ · · · ⊃ Σλ.

Moreover, let {F1, . . . ,Fλ} be a set of flowers such that

for every i ∈ {1, . . . , λ}, Fi :=
{

τi1, . . . , τi(ϱ+1)

}
is a (d − ϱ − i + 1)-

flower with pistil Σi, and

for every j ∈ {1, . . . , ϱ + 1}, τ1j ⊃ τ2j ⊃ · · · ⊃ τλj.

For every i ∈ {1, . . . , λ} and j ∈ {1, . . . , ϱ + 1}, consider the point-line
geometry

(
Pτij

Y ,Lτij
Y

)
∼= Y(d − ϱ − i + 1, ϱ + 1, q) with respect to Ci. Now

define, for every j ∈ {1, . . . , ϱ + 1},

Pj :=


⋃j

k=1

(
B(k)

1j \ C1

)
if j ⩽ ϱ + 1 − λ,⋃λ

i=1
⋃⌈j⌋(i)

k=1

(
B(k)

ij \ Ci

)
if j > ϱ + 1 − λ,

where B(1)
ij ,B(2)

ij , . . . ,B
(
⌈j⌋(i)

)
ij ∈ Lτij

Y are ⌈j⌋(i) independent lines sharing a

point Fij ∈ Pτij
Y \ τ(i+1)j (i ∈ {1, . . . , λ}, τ(λ+1)j := ∅).

Finally, define

P′
1 :=

{⋃λ
i=2 (B′

i1 \ Ci) if q = 2,
∅ if q ̸= 2,

with B′
i1 ∈ Lτi1

Y such that ⟨B′
i1⟩qϱ+1 intersects B′

(i−1)1 only in Ci (i ∈
{2, . . . , λ}, B′

11 := B(1)
11 ).
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PG
(
5, q3)PG
(
5, q3)

Σ1

Σ2

C1

C2

τ23B(1)
23 ∪B(2)

23

F23 τ13

F13

B(1)
13 ∪B(2)

13 ∪B(3)
13

τ22

B
(1)

22
∪B

(2)
22
∪B

(3)
22

F22

τ12

F12

B(1)
12 ∪B(2)

12

τ21

F21

τ11

F11

B(1)
11

Figure 10.1: A visualisation of Configuration 10.2.2 in case d = 5 and ϱ = 2;
we observe two stacked flowers, resulting in three two-layered petals. The
2-saturating set is shown in red. The petal τ11 has a number j = 1 not
exceeding ϱ + 1 − λ = 1. The petals with number j = 2 correspond to
⌈2⌋(1) = 2 chosen Fq-subgeometries in the top layer and ⌈2⌋(2) = 3 chosen
Fq-subgeometries in the bottom layer (increasing). The petals with number
j = 3 correspond to ⌈3⌋(1) = 3 chosen Fq-subgeometries in the top layer
and ⌈3⌋(2) = 2 chosen Fq-subgeometries in the bottom layer (decreasing).
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Lemma 10.2.3

Consider a (d − 1)-dimensional Fq-subgeometry C1 of PG
(
d, qϱ+1) and a

(d − 2)-dimensional Fq-subgeometry C2 ⊂ C1. Define Σi := ⟨Ci⟩qϱ+1 . Let
B1 and B2 be two distinct d-dimensional Fq-subgeometries, both containing C1
and a point F /∈ Σ1, and suppose that Π is a (d − 1)-subspace through Σ2 not
equal to Σ1 and not containing F. Then Π cannot intersect both B1 and B2 in a
(d − 1)-dimensional Fq-subgeometry.

Proof. Suppose that the contrary is true. Choose a point F′ ∈ C1 \ C2. Then
the line ⟨F, F′⟩qϱ+1 intersects Π in a point P. As Π intersects both B1 and B2
in an Fq-subgeometry of maximal dimension, P has to be a point of both
B1 and B2. Moreover, as both these subgeometries contain C1 ∋ F′ and F,
the unique Fq-subline containing F, F′ and P has to be contained in both B1
and B2. By Lemma 0.1.3, this would imply that B1 = B2, a contradiction.■

Lemma 10.2.4

Consider Configuration 10.2.2. Then the point set

B(d,ϱ) := P′
1 ∪

ϱ+1⋃
j=1

Pj

ϱ-saturates all points of PG
(
d, qϱ+1) not contained in Σ1.

Proof. Let P be an arbitrary point not contained in Σ1 and let

µ := min{|F| : F ⊆ F1, P ∈ ⟨τ : τ ∈ F⟩} ∈ {1, 2, . . . , ϱ + 1} .

Hence, there exists a subset F ′
1 :=

{
τ′

11, τ′
12, . . . , τ′

1µ

}
of the (d − ϱ)-flower

F1 with pistil Σ1 such that P lies in the span of all petals of F ′
1 but does not

lie in the span of any µ − 1 petals of F ′
1.

For each petal τ′
1j, j ∈ {2, 3, . . . , µ − 1}, only the points of B(d,ϱ) in the top

layer (i = 1) of τ′
1j will be used to prove point saturation. As a consequence,
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we can assume without loss of generality that τ′
1j = τ1j for every j ∈

{2, 3, . . . , µ − 1}. If q > 2, the same can be said about petal τ′
11. If q = 2,

however, two possibilities can occur:

(i) either there exist at least two (d − ϱ)-dimensional Fq-subgeometries
B1 and B2 in τ′

11, both containing C1 and a point F ∈ τ′
11 \ Σ1, such

that (B1 ∪ B2) \ C1 ⊂ B(d,ϱ), or

(ii) τ′
11 = τ11.

Note that for both (i) and (ii), there exists one (d − ϱ)-dimensional Fq-
subgeometry B in τ′

11 containing C1 such that B \ C1 ⊂ B(d,ϱ); this is the
only property needed of petal τ′

11 in Case 1, Case 2 and Case 3 (step (1) and
(2)) below. Only in Case 3 (step (3)), a distinction between possibility (i) and
(ii) has to be made. In light of this, we assume, for now, that τ′

11 = τ11, and
remove this assumption in the third step of Case 3. Finally, we may assume
that τ′

1µ ∈
{

τ1µ, τ1(µ+1), . . . , τ1(ϱ+1)

}
, hence there has to exist a j′ ⩾ µ such

that τ′
1µ = τ1j′ .

Hence, to recap, we assume that F ′
1 =

{
τ11, τ12, . . . , τ1(µ−1), τ1j′

}
for a

certain j′ ⩾ µ.

If µ = ϱ + 1, the proof follows immediately due to Lemma 10.1.2. We
consider three cases, depending on the other possible values of µ.

Case 1: µ = 1.

In this case, P is contained in τ11, which is a (d − ϱ)-dimensional subspace
containing B(1)

11 \ C1 ⊂ B(d,ϱ). As the affine point set of PG(d − ϱ, q) is a
strong (d − ϱ)-blocking set, Result 8.2.6 proves the claim.

Case 2: 1 < µ ⩽ ϱ + 1 − λ.

Note that the occurrence of this case implies that λ = d − ϱ.
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Choose d − ϱ + 1 points of B(1)
1j′ \ C1 spanning the subspace τ1j′ ⊃ Σ1 and

pick one point of each set B(1)
11 \ C1, . . . ,B(1)

1(µ−1) \ C1. These choices result
in a total of (d − ϱ + 1) + (µ − 1) ⩽ (d − ϱ + 1) + (ϱ − λ) = ϱ + 1 points
spanning

〈
τ11, τ12, . . . , τ1(µ−1), τ1j′

〉
∋ P.

Case 3: ϱ + 1 − λ < µ ⩽ ϱ.

Consider the following series of steps within ‘layer’ i = 2.

(1) For every j ∈ {1, 2, . . . , µ − 1} ∪ {j′}, define τ̃2j :=
〈
Σ2, F1j

〉
and

consider, for every k ∈ {1, 2, . . . , j}, the (d − ϱ − 1)-dimensional Fq-

subgeometry A(k)
2j := B(k)

1j ∩ τ̃2j. In this way, we obtain a union

A(1)
2j ∪A(2)

2j ∪ · · · ∪ A(j)
2j of j independent (d − ϱ − 1)-dimensional Fq-

subgeometries contained in the (d − ϱ − 1)-dimensional subspace τ̃2j
of τ1j, each containing C2 and sharing the point F1j.

(2) Consider the union B(1)
2j′ ∪ B(2)

2j′ ∪ · · · ∪ B
(
⌈j′⌋(2)

)
2j′ consisting of ⌈j′⌋(2)

independent (d − ϱ − 1)-dimensional Fq-subgeometries contained in
the (d − ϱ − 1)-dimensional subspace τ2j′ ̸= τ̃2j′ of τ1j′ , each contain-
ing C2 and sharing the point F2j′ . It is clear that τ2j′ and τ̃2j′ span the
subspace τ1j′ , as these are distinct hyperplanes of the latter subspace.

(3) As described at the start of this proof, we remove the assumption that
τ′

11 = τ11.

Note that
〈

τ22, τ23, . . . , τ2(µ−1), τ2j′
〉

and
〈

τ22, τ23, . . . , τ2(µ−1), τ̃2j′
〉

both span hyperplanes of
〈

τ′
11, τ12, . . . , τ1(µ−1), τ1j′

〉
that do not con-

tain τ′
11, hence each of these hyperplanes intersects τ′

11 in a (d − ϱ − 1)-
subspace τ21 and τ̃21, respectively, both containing C2.

The goal is to find a subset of a (d − ϱ − 1)-flower consisting of µ + 1
petals such that the jth petal contains j concurrent, independent
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(d − ϱ − 1)-dimensional Fq-subgeometries contained in B(d,ϱ) ∪ C2,
with the additional property that P lies in the span of these petals,
but not in the span of any µ petals. It is clear that, if we can find
a (d − ϱ − 1)-subspace τ̂21 /∈ {τ21, τ̃21} in τ′

11, not lying in Σ1 and
containing a (d − ϱ − 1)-dimensional Fq-subgeometry B ⊃ C2, B \
C2 ⊂ B(d,ϱ), then

{
τ̂21, τ22, . . . , τ2(µ−1), τ2j′ , τ̃2j′

}
is the subset we are

looking for.

If q > 2, then there exists a (d − ϱ − 1)-dimensional subspace of
B(1)

11 spanning a (d − ϱ − 1)-subspace τ̂21 that contains Σ2, but is
not equal to Σ1, τ21 or τ̃21.

If q = 2, we distinguish the two possibilities described at the
start of the proof:

(i) suppose that there exist at least two (d − ϱ)-dimensional
Fq-subgeometries B1 and B2 in τ′

11, both containing C1 and
a point F ∈ τ′

11 \ Σ1, such that (B1 ∪ B2) \ C1 ⊂ B(d,ϱ). By
Lemma 10.2.3, we find at least three (d − ϱ − 1)-subspaces
through Σ2, not lying in Σ1, that intersect either B1 or B2 in
a (d − ϱ − 1)-dimensional Fq-subgeometry. Hence, one of
these three (d − ϱ − 1)-dimensional subspaces τ̂12 cannot be
equal to τ21 or τ̃21.

(ii) if τ′
11 = τ11, then, by the definition of the set P′

1, we can
always find a (d − ϱ − 1)-dimensional subspace τ̂21 with the
desired properties.

Intuitively, the steps above split the initial (d − ϱ)-subflower with µ petals
into a (d − ϱ − 1)-subflower with µ + 1 petals. For this new (sub)flower,
the property that P is contained in the span of all of its petals, but not in
the span of any fewer petals, still holds. We execute the steps above a total
of ϱ + 1 − µ times, leaving us with a (d − 2ϱ + µ − 1)-flower F ′

ϱ+2−µ. Note
that this is always possible, as by the assumption corresponding to this
case, ϱ + 1 − µ ⩽ λ − 1, which means that, in each step, one can always
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choose smaller petals containing subgeometries (see Configuration 10.2.2)
which fulfil the desired conditions.
Moreover, for each j ∈ {1, . . . , ϱ + 1}, there must exist a petal in
F ′

ϱ+2−µ with j concurrent, independent (d − 2ϱ + µ − 1)-dimensional Fq-
subgeometries contained in B(d,ϱ) ∪ C1. Indeed, let Li be the tuple of num-
bers of concurrent, independent (d − ϱ − i)-dimensional Fq-subgeometries
we can find in the respective petals of the flower we obtain after going
through the steps i times. Then, by considering the nature of the maps ⌈·⌋(·)
(see Definition 10.2.1), we get

L0 =
(
1, 2, . . . , µ − 1, j′

)
,

L1 =
(
1, 2, . . . , µ − 1, j′, j′ + 1

)
,

L2 =
(
1, 2, . . . , µ − 1, j′, j′ + 1, j′ + 2

)
,

...
Lϱ+1−j′ =

(
1, 2, . . . , µ − 1, j′, j′ + 1, . . . , ϱ + 1

)
,

Lϱ−j′ =
(
1, 2, . . . , µ − 1, j′ − 1, j′, j′ + 1, . . . , ϱ + 1

)
,

...
Lϱ+1−µ =

(
1, 2, . . . , µ − 1, µ, µ + 1, . . . , j′ − 1, j′, j′ + 1, . . . , ϱ + 1

)
.

Hence, Lemma 10.1.2 finishes the proof. ■

10.2.3 Examining the size

Lemma 10.2.5

Consider Configuration 10.2.2. Then

∣∣P′
1
∣∣ = {(2λ−1 − 1

)
· 2d−ϱ−λ+1 if q = 2,

0 if q ̸= 2.
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Lemma 10.2.6

Consider Configuration 10.2.2. Let j ∈ {1, . . . , ϱ + 1}. If j ⩽ ϱ + 1 − λ, then∣∣Pj
∣∣ = jqd−ϱ − (j − 1) .

If j > ϱ + 1 − λ, then one can choose Pj in such a way that

∣∣Pj
∣∣ = jqd−ϱ +

ϱ+1−j

∑
k=1

(j − 1 + k) qd−ϱ−k

+
λ−1

∑
k=ϱ+2−j

(ϱ − k) qd−ϱ−k − λ (2ϱ − λ + 1)
2

.

Proof. If j ⩽ ϱ + 1 − λ, this result is easily obtained, as distinct elements of
Lτ1j

Y can share at most one point of Pτ1j
Y . Hence, assume that j > ϱ + 1 − λ.

To minimise the size of Pj, we can choose B(1)
ij to be a subspace of B(1)

(i−1)j,

for every i ∈ {2, . . . , λ}. In this way, keeping the nature of ⌈·⌋(·) in mind
(see Definition 10.2.1), we obtain the following:∣∣Pj

∣∣ = jqd−ϱ − (j − 1)

+ jqd−ϱ−1 − j

+ (j + 1) qd−ϱ−2 − (j + 1)
...

...

+ ϱqd−ϱ−(ϱ+1−j) − ϱ

+ (j − 2) qd−ϱ−(ϱ+2−j) − (j − 2)

+ (j − 3) qd−ϱ−(ϱ+3−j) − (j − 3)
...

...

+ (ϱ + 1 − λ) qd−ϱ−(λ−1) − (ϱ + 1 − λ) .

Viewing the expression above as a polynomial in q, the corresponding
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constant term equals

− ((ϱ + 1 − λ) + · · ·+ ϱ) =
(ϱ − λ) (ϱ + 1 − λ)

2
− ϱ (ϱ + 1)

2

= −λ (2ϱ − λ + 1)
2

. ■

Lemma 10.2.7

Consider Configuration 10.2.2. One can choose P1, . . . ,Pϱ+1 in such a way that

ϱ+1

∑
i=1

|Pi| =
(ϱ + 1) (ϱ + 2)

2
qd−ϱ +

λ−1

∑
j=1

a(d, ϱ, j) qd−ϱ−j − c(d, ϱ) ,

with
a(d, ϱ, j) :=

λ (2ϱ − λ + 2j + 1)− j (3j + 1)
2

and
c(d, ϱ) :=

ϱ (ϱ + 1) + λ (λ − 1) (2ϱ − λ + 1)
2

.

Proof. Let P1, . . . ,Pϱ+1 be sets of size equal to the values described in
Lemma 10.2.6. Interpret ∑

ϱ+1
i=1 |Pi| as a polynomial in q of degree d − ϱ; let

a(d, ϱ, j) be the coefficient corresponding to qd−ϱ−j (j ∈ {0, 1, . . . , d − ϱ − 1})
and let −c(d, ϱ) be the constant term.
It is clear that a(d, ϱ, 0) = ∑

ϱ+1
i=1 i = (ϱ+1)(ϱ+2)

2 . Furthermore, we can deduce
that

a(d, ϱ, j) = (ϱ + j + 1 − λ) + (ϱ + j + 2 − λ) + · · ·+ (ϱ)︸ ︷︷ ︸
from Pϱ+2−λ,Pϱ+3−λ, ... ,Pϱ+1−j

+ j (ϱ − j)︸ ︷︷ ︸
from Pϱ+2−j, ... ,Pϱ+1

=
λ (2ϱ − λ + 2j + 1)− j (3j + 1)

2
,
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if j ∈ {1, 2, . . . , λ − 1} and that a(d, ϱ, j) = 0 if j ∈ {λ, λ + 1, . . . , d − ϱ − 1}.
Furthermore, we have that

−c(d, ϱ) = −1 − 2 − 3 − · · · − (ϱ − λ)︸ ︷︷ ︸
from P2,P3, ... ,Pϱ+1−λ

+ λ

(
−λ (2ϱ − λ + 1)

2

)
︸ ︷︷ ︸
from Pϱ+2−λ,Pϱ+3−λ, ... ,Pϱ+1

= −ϱ (ϱ + 1) + λ (λ − 1) (2ϱ − λ + 1)
2

. ■

10.3 Reaping the rewards

Theorem 10.3.1

Let ϱ ∈ {0, 1, . . . , d} such that ϱ + 1 ∤ d + 1. Then

sqϱ+1(d, ϱ) ⩽
m(d,ϱ)

∑
i=1

(
(ϱ + 1) (ϱ + 2)

2
qd+1−i(ϱ+1)

)

+
m(d,ϱ)−1

∑
i=1

ϱ−1

∑
j=1

ã(ϱ, j) qd+1−i(ϱ+1)−j

+
ℓ(d,ϱ)−1

∑
j=1

a(d, ϱ, j) qℓ(d,ϱ)−j − c̃(d, ϱ)− c(d, ϱ)

+ δq=2

((
2ϱ−1 − 1

) m(d,ϱ)−1

∑
i=1

(
2d−ϱ+2−i(ϱ+1)

)
+ 2ℓ(d,ϱ) − 2

)
,

with

m(d, ϱ) :=
⌈

d−ϱ
ϱ+1

⌉
,

ℓ(d, ϱ) := d + 1 − m(d, ϱ) · (ϱ + 1) = (d (mod ϱ + 1)) + 1,

ã(ϱ, j) := ϱ(ϱ+2j+1)−j(3j+1)
2 ⩽ ϱ(2ϱ+1)

3 ,
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a(d, ϱ, j) := ℓ(d,ϱ)(2ϱ−ℓ(d,ϱ)+2j+1)−j(3j+1)
2 ⩽ ã(ϱ, j),

c̃(d, ϱ) := (m(d, ϱ)− 1) ϱ2(ϱ+1)
2 ⩾ 0,

c(d, ϱ) := ϱ(ϱ+1)+ℓ(d,ϱ)(ℓ(d,ϱ)−1)(2ϱ−ℓ(d,ϱ)+1)
2 ⩾ 0,

δq=2 :=

{
1 if q = 2,
0 if q ̸= 2.

Proof. By Lemma 10.2.4, we can choose a point set B(d,ϱ) in PG
(
d, qϱ+1) (de-

scribed in Configuration 10.2.2) which ϱ-saturates all points of PG
(
d, qϱ+1),

except for the points contained in a certain (d − ϱ − 1)-subspace Σ.
If d − ϱ − 1 ⩽ ϱ, then d − ϱ − 1 < ϱ, as else d + 1 would be a multiple of
ϱ + 1. Hence, in this case, all points of Σ are ϱ-saturated by B(d,ϱ) as well,
as we can simply choose ϱ + 1 points in P1 that span the subspace τ11 ⊃ Σ.
If d − ϱ − 1 > ϱ, then, by Lemma 10.2.4, we can choose a point set
B(d−(ϱ+1),ϱ) in Σ which ϱ-saturates all points of Σ, except for the points
contained in a certain (d − 2 (ϱ + 1))-subspace of Σ. We can repeat this
process to obtain a union

B(d,ϱ) ∪B(d−(ϱ+1),ϱ) ∪ · · · ∪B(d−(m(d,ϱ)−1)(ϱ+1),ϱ)

of m(d, ϱ) point sets that ϱ-saturates all points of PG
(
d, qϱ+1). One only

needs to determine the size of this particular ϱ-saturating set.
For each i ∈ {1, 2, . . . , m(d, ϱ)}, the size of the point set B(d−(i−1)(ϱ+1),ϱ) can
be calculated using Lemma 10.2.5 and Lemma 10.2.7, where every instance
of d has to be replaced by d − (i − 1) (ϱ + 1), hence every instance of λ has
to be replaced by λi := min{ϱ, d − (i − 1) (ϱ + 1)− ϱ}.

If i ∈ {1, 2, . . . , m(d, ϱ)− 1}, then ϱ < d − (i − 1) (ϱ + 1)− ϱ, which
implies that λi = ϱ.

If i = m(d, ϱ), then ϱ ⩾ d− (m(d, ϱ)− 1) (ϱ + 1)− ϱ (keeping in mind
that d + 1 is no multiple of ϱ + 1), which implies that λm(d,ϱ) = ℓ(d, ϱ).
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Finally, we claim that a(d, ϱ, j) ⩽ ã(ϱ, j) ⩽ ϱ(2ϱ+1)
3 , for all j ∈ {1, . . . , ϱ}. In-

deed, for the first inequality, one can interpret ℓ(d,ϱ)(2ϱ−ℓ(d,ϱ))
2 as a quadratic

polynomial in ℓ(d, ϱ), which reaches its maximum value if ℓ(d, ϱ) = ϱ. For
the second inequality, one can interpret ã(ϱ, j) as a quadratic polynomial
in j, which reaches its maximum value if j = 2ϱ−1

6 . However, the latter is
never an integer. Hence, one can conclude that

ã(ϱ, j) ⩽ max
{

a
(

ϱ,
2ϱ − 1

6
− 1

6

)
, a
(

ϱ,
2ϱ − 1

6
+

1
6

)}
=

ϱ (2ϱ + 1)
3

,

for all j ∈ {1, . . . , ϱ}. ■

Remark 10.3.2

Theorem 10.3.1’s condition that ϱ + 1 ∤ d + 1 can be omitted, as one can
prove that Corollary 8.2.5 directly implies the described upper bound on
sqϱ+1(d, ϱ) (see [61, Theorem 7.2.9]).

As the upper bound presented in Theorem 10.3.1 is not easy to work with in
practice, a simplified upper bound is desired. If ϱ is large enough, the upper
bound of Theorem 10.3.1 simplifies considerably. More precisely, if ϱ ⩾ d−1

2 ,
then m(d, ϱ) = 1 and ℓ(d, ϱ) = d − ϱ, hence the bound of Theorem 10.3.1
becomes the following:

sqϱ+1(d, ϱ) ⩽
(ϱ + 1) (ϱ + 2)

2
qd−ϱ +

d−ϱ−1

∑
j=1

a(d, ϱ, j) qd−ϱ−j

− c(d, ϱ) + δq=2 ·
(

2d−ϱ − 2
)

.

In case ϱ > 1, one can deduce from Theorem 10.3.1 the following easy-to-
read but slightly weaker bound, which is considered the main result.



180 CHAPTER 10. FLOWERS IN BLOOM

Theorem 10.3.3

Let ϱ ∈ {2, 3, . . . , d − 1} such that ϱ + 1 ∤ d + 1. Then

sqϱ+1(d, ϱ) ⩽
(ϱ + 1) (ϱ + 2)

2
qd−ϱ + ϱ (ϱ + 1)

qd−ϱ − 1
q − 1

.

Translating the result above in coding theoretical terminology (see Sec-
tion 8.1), one obtains the following.

Corollary 10.3.4

Let R ∈ {3, 4, . . . , r − 1} such that R ∤ r. Then

ℓqR(r, R) ⩽
R (R + 1)

2
qr−R + (R − 1) R

qr−R − 1
q − 1

.



A English summary

This thesis is split into three main parts. In Part I, we discuss characterisa-
tion results concerning small weight codewords of projective geometric
codes, while in Parts II and III, we focus on construction results related to
minimal codes and covering codes, respectively. Various finite geometries
form the toolkit used to obtain these coding-theoretical results.

In Part I, we consider projective geometric codes arising from the incidence
of points and hyperplanes of a projective geometry. Over the span of
several years, numerous mathematicians worked towards determining the
weight spectrum of such codes. Characterising the codewords of relatively
small weight is commonly accepted to be a natural place to start.
We essentially generalise planar results to arbitrary dimension d. A distinc-
tion needs to be made whether the order of the underlying field q is prime,
as the existence of odd codewords complicates the characterisation quest
considerably. If q is prime, all codewords up to weight roughly 4qd−1 are
successfully characterised. If q is not prime, we characterise all codewords
up to weight roughly qd−1√q.
Finally, using both old and new characterisation results, we determine a
graph-theoretical sufficient condition to determine which small weight
codewords are minimal.

We take a completely different track in Part II. A known one-to-one cor-
respondence between minimal codes and strong blocking sets justifies the
search for certain subspaces in higgledy-piggledy arrangement.
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We focus on higgledy-piggledy sets in projective geometries of dimension at
most 5 and describe which of these are deemed to be theoretically optimal.
Known existence results are then listed and extended. Two open problems
concerning the existence of a particular line and plane set are solved.
We first show the existence of six lines of PG(4, q) in higgledy-piggledy
arrangement, two of which intersect in a point. The arguments leading
up to this result are extensive but of pure geometric nature. We then
constructively prove the existence of seven planes of PG(5, q) in higgledy-
piggledy arrangement. By carefully characterising the André/Bruck-Bose
representation of Fq-linear sets living on the projective line, a particular
point set of PG

(
1, q3) is selected, which eventually, using field reduction,

gives rise to the desired higgledy-piggledy plane set.

Part III is of the same nature as its predecessor. We search for small saturat-
ing sets, as such structures imply the existence of short covering codes.
First, an isomorphism is determined between particular point-line geomet-
ries which involve projective subgeometries. As one of these point-line
geometries is embedded in an affine geometry, notions of parallelism and
affine subspaces are transcribed to Fq-subgeometries. This sheds more light
on the intricate interplay between subgeometries that share a (subgeomet-
ric) hyperplane.
Subsequently, we exploit these insights to describe a tricky construction of
so-called flowers, which contain a number of well-chosen Fq-subgeometries.
We prove that this floral construction turns out to be a ϱ-saturating set
of PG

(
d, qϱ+1) of size roughly 1

2 ϱ2 · qd−ϱ, which is relatively close to the
theoretical lower bound of roughly ϱ · qd−ϱ.



B Nederlandstalige samenvatting

Dit proefschrift bestaat uit drie delen. In Deel I bespreken we karakteri-
satieresultaten rond codewoorden van projectief-meetkundige codes van
klein gewicht, terwijl we ons in Delen II en III concentreren op construc-
tieresultaten gerelateerd aan minimale codes, respectievelijk bedekkingsco-
des. Diverse eindige meetkundes vormen de gereedschapskist die gebruikt
wordt om deze codeertheoretische resultaten te bekomen.

In Deel I beschouwen we projectief-meetkundige codes die voortkomen uit
de incidentie van punten en hypervlakken van een projectieve meetkunde.
Gedurende verschillende jaren hebben talrijke wiskundigen gewerkt aan
het bepalen van het gewichtsspectrum van dergelijke codes. Het karak-
teriseren van de codewoorden van relatief klein gewicht wordt algemeen
beschouwd als een natuurlijk beginpunt.
In essentie veralgemenen we resultaten in het vlak naar algemene dimensie
d. Het is nodig onderscheid te maken of de orde van het onderliggend
veld q priem is, gezien het bestaan van bizarre codewoorden de tocht naar
karakterisatie merkbaar bemoeilijkt. Als q priem is, zijn alle codewoorden
tot en met gewicht ruwweg 4qd−1 succesvol gekarakteriseerd. Als q niet
priem is, karakteriseren we alle codewoorden tot een gewicht van ruwweg
qd−1√q.
Tenslotte bepalen we met behulp van oude en nieuwe karakterisatieresul-
taten een graaftheoretische voldoende voorwaarde om te bepalen welke
codewoorden van klein gewicht minimaal zijn.

In Deel II gooien we het over een volledig andere boeg. Een gekende
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één-op-één-correspondentie tussen minimale codes en sterke blokkerende
verzamelingen rechtvaardigt de zoektocht naar bepaalde deelruimten in
higgledy-piggledy-opstelling.
We concentreren ons op higgledy-piggledy-verzamelingen in projectieve
meetkundes van dimensie ten hoogste 5 en beschrijven welke hiervan
theoretisch worden bestempeld als optimaal. Gekende bestaansresultaten
worden vervolgens opgesomd en uitgebreid. Twee open problemen rond
het bestaan van een specifieke rechten- en vlakkenverzameling worden
opgelost.
Eerst tonen we het bestaan van zes rechten van PG(4, q) in higgledy-
piggledy-opstelling aan, waarvan er twee elkaar snijden in een punt. De
argumenten die tot dit resultaat leiden zijn uitgebreid, maar van zuiver
meetkundige aard. Vervolgens bewijzen we constructief het bestaan van
zeven vlakken van PG(5, q) in higgledy-piggledy-opstelling. Door middel
van de André/Bruck-Bose-representatie van Fq-lineaire verzamelingen op
de projectieve rechte zorgvuldig te karakteriseren, kunnen we een spe-
cifieke puntenverzameling van PG

(
1, q3) selecteren, die uiteindelijk via

veldreductie leidt tot de gewenste higgledy-piggledy-vlakkenverzameling.

Deel III is van dezelfde aard als haar voorganger. We gaan op zoek naar
kleine verzadigende verzamelingen, gezien dergelijke structuren leiden tot
het bestaan van korte bedekkingscodes.
Eerst wordt er een isomorfisme bepaald tussen specifieke punt-rechte-
meetkundes die te maken hebben met projectieve deelmeetkundes. Gezien
een van deze punt-rechte-meetkundes is ingebed in een affiene meetkunde,
worden begrippen als parallellisme en affiene deelruimten vertaald naar
deelmeetkundes. Dit werpt meer licht op de delicate wisselwerking tussen
deelmeetkundes die een (deelmeetkundig) hypervlak gemeen hebben.
Vervolgens gebruiken we deze inzichten om een complexe constructie be-
staande uit zogenaamde bloemen te beschrijven, die een aantal goedgekozen
Fq-deelmeetkundes bevatten. We bewijzen dat deze bloemenconstructie
een ϱ-verzadigende verzameling van PG

(
d, qϱ+1) blijkt te zijn, waarvan

de grootte ruwweg gelijk is aan 1
2 ϱ2 · qd−ϱ, wat relatief dicht ligt bij de

theoretische ondergrens van ruwweg ϱ · qd−ϱ.
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