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Abstract

We present results on the size of the smallest maximal partial ovoids and on the
size of the smallest maximal partial spreads of the generalized quadrangles W (q)
and Q(4, q).
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1 Introduction

A finite generalized quadrangle GQ(s, t) is an incidence structure S = (P,B, I)
consisting of two non-empty disjoint sets P and B, consisting respectively of
points and lines, such that:
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(1) every line is incident with s + 1 points and every point is incident with
t+ 1 lines,

(2) two distinct points are incident with at most one common line, and two
distinct lines are incident with at most one common point, and

(3) for every non-incident point-line pair (r, L), there exists a unique line M
and a unique point r′ such that r IM I r′ IL.

We call the pair (s, t) the order of this GQ(s, t). We denote collinear points x
and y by x ∼ y, and concurrent lines L and M by L ∼M .

The thick classical finite generalized quadrangles are respectively the non-
singular 4-dimensional parabolic quadrics Q(4, q) of order (q, q), the non-
singular 5-dimensional elliptic quadrics Q−(5, q) of order (q, q2), the non-
singular 3- and 4-dimensional Hermitian varieties H(3, q2) and H(4, q2) of
respective orders (q2, q) and (q2, q3), and the non-singular finite generalized
quadrangle W (q) of order (q, q) consisting of the points of PG(3, q) and of the
totally isotropic lines of a symplectic polarity η.

A spread of a GQ(s, t) is a set of lines partitioning the point set of this gen-
eralized quadrangle. A partial spread of a GQ(s, t) is a set of pairwise disjoint
lines of this generalized quadrangle. A partial spread is called maximal when
it is not contained in a larger partial spread. An ovoid O of a GQ(s, t) is a set
of points such that every line of this generalized quadrangle shares exactly one
point with O. A partial ovoid O of a GQ(s, t) is a set of points such that every
line of this generalized quadrangle shares at most one point with O. A partial
ovoid is called maximal when it is not contained in a larger partial ovoid.

A spread and an ovoid of a GQ(s, t) have size st+ 1.

A lot of attention has been paid to the (non-)existence of spreads and ovoids in
finite generalized quadrangles [18,19]. Similarly, a lot of research has already
been done on partial spreads and partial ovoids of size st+ 1− d, with small
deficiency d, with special emphasis on the extendability of such partial spreads
and partial ovoids to spreads and ovoids [4,12].

Recently, special attention has been paid to the smallest maximal partial
ovoids and to the smallest maximal partial spreads of finite generalized quad-
rangles.

A maximal partial ovoid in a GQ(s, t) always must have size greater than
or equal to s + 1 and a maximal partial spread in a GQ(s, t) must have size
greater than or equal to t+ 1.

In [1], Aguglia, Ebert and Luyckx studied the smallest maximal partial spreads
of Q−(5, q) =GQ(q, q2). They prove that the minimal size for such a maximal
partial spread is equal to t+1 = q2+1 if and only if q is even, and in this case,
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this maximal partial spread is equal to a spread of a subquadrangle Q(4, q).
For q odd, they prove that a maximal partial spread of Q−(5, q) must have
size larger than q2 + 2.

Since Q−(5, q) is dual to the generalized quadrangle H(3, q2), the analogous
results on maximal partial ovoids for H(3, q2) are valid.

Ebert and Hirschfeld studied the smallest maximal partial spreads of H(3, q2)
[10]. They prove that every maximal partial spread has size at least 2q + 1,
and for q ≥ 4, at least size 2q + 2. Their results translate into results on the
smallest maximal partial ovoids of Q−(5, q).

In [8], Cimráková and Fack present computer results obtained for the spectra
of sizes of maximal partial ovoids in Q−(5, q) and H(3, q2), including values
for small sizes.

We contribute to this study for the two thick finite classical generalized quad-
rangles W (q) and Q(4, q). We note that W (q) is dual to Q(4, q), and that
Q(4, q) and W (q) are self-dual if and only if q is even [14].

In [4,13], a (large) maximal partial ovoid of size q2 − q + 1 in W (q), q even,
is constructed and it is proven that no partial ovoids with sizes larger than
q2 − q + 1 and smaller than q2 + 1 exist. We present in this article a maximal
partial ovoid of size q2 − 2q + 3 of W (q), q even. The motivation for paying
special attention to maximal partial ovoids of size q2− 2q+3 follows from the
fact that computer searches seem to indicate that no maximal partial ovoids
of size larger than q2 − 2q + 3 and smaller than q2 − q + 1 exist in W (q), q
even; see also Table 1.

A blocking set of PG(n, q) is a set of points having a non-empty intersection
with every hyperplane of PG(n, q). A blocking set is called trivial when it
contains a line of PG(n, q). A blocking set is called minimal when none of its
proper subsets still is a blocking set.

In our study, blocking sets in PG(2, q) and in PG(3, q) will play an important
role.

In a generalized quadrangle, for a set A of points, the notation A⊥ denotes
the set of points collinear with every point of A. For two non-collinear points
x and y of a generalized quadrangle, the set {x, y}⊥⊥ is called the hyperbolic
line defined by x and y. We note that for the generalized quadrangle W (q),
the hyperbolic lines {x, y}⊥⊥ coincide with the projective lines xy of PG(3, q)
which are not totally isotropic with respect to the symplectic polarity η.
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2 Small maximal partial ovoids in W (q)

Theorem 2.1 The smallest maximal partial ovoids of W (q) have size q + 1
and consist of the point sets of the hyperbolic lines of W (q).

Proof. Consider W (q) in its natural representation in PG(3, q) described by
the symplectic polarity η, then it follows that every maximal partial ovoid
O of W (q) must be a blocking set of PG(3, q) with respect to the planes of
PG(3, q). Namely, if there is a plane π skew to O, then the point πη extends
O to a larger partial ovoid, which contradicts the maximality of O. Since,
from the result of Bose and Burton [3], the smallest blocking set of this type
consists of the q + 1 points of a line, the theorem follows. 2

Corollary 2.2 (1) The smallest maximal partial spreads of Q(4, q) have size
q + 1 and consist of the lines of a regulus of PG(3, q).

(2) The smallest maximal partial spreads of W (q), q even, have size q+1 and

consist of the lines of a regulus of PG(3, q).

(3) The smallest maximal partial ovoids of Q(4, q), q even, have size q + 1
and consist of the point sets of conics having the nucleus of Q(4, q) as their
nucleus.

Now that we have classified the smallest maximal partial ovoids of W (q),
we focus on results on the second smallest maximal partial ovoids of W (q).
Since the preceding proof shows that such a maximal partial ovoid must be
a blocking set with respect to the planes of PG(3, q), the planar non-trivial
blocking sets are obvious candidates for such maximal partial ovoids. However,
these are easily excluded.

Theorem 2.3 A maximal partial ovoid O ofW (q), different from a hyperbolic

line, cannot be a planar blocking set.

Proof. Suppose that O is a planar blocking set, lying in the plane π of
PG(3, q). Let r = πη. Then r 6∈ O. But since |O| > q+ 1, there is at least one
totally isotropic line through r in π containing more than one point of O; we
have a contradiction. 2

Lemma 2.4 A maximal partial ovoid O of W (q) is a minimal blocking set

with respect to the planes of PG(3, q).

Proof. It follows from the preceding proofs that O is a blocking set with re-
spect to the planes of PG(3, q). Assume that it is not minimal. Suppose that
the point r of O is not essential as point of O, considered as blocking set with
respect to the planes of PG(3, q). Then every plane through r contains a second
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point of O. So also the plane rη contains a second point r′ of O. Then the to-
tally isotropic line rr′ contains at least two points of O. This is impossible. 2

We now use results on the minimal blocking sets with respect to planes of
PG(3, q). The first result is of Bruen.

Theorem 2.5 (Bruen [5]) The smallest non-trivial blocking sets with respect

to planes of PG(3, q) are equal to the smallest planar non-trivial blocking sets

of PG(2, q).

Theorem 2.3 shows us that the second smallest maximal partial ovoids ofW (q)
cannot be equal to the smallest non-trivial minimal blocking sets with respect
to planes of PG(3, q). So for the second smallest maximal partial ovoids of
W (q), we need to focus on the second smallest non-trivial minimal blocking
sets with respect to planes of PG(3, q). This allows us to obtain a consider-
ably stronger result in some specific cases. We will first use the following two
theorems from [15].

Let s(q) denote the cardinality of the second smallest non-trivial minimal
blocking sets in PG(2, q).

Theorem 2.6 (Storme and Weiner [15, Theorem 4.9]) Let K be a blocking

set of PG(3, q2), q = ph, p > 3 prime, h ≥ 1, of cardinality smaller than or

equal to s(q2). Then K contains a line or a planar blocking set of PG(3, q2).

Theorem 2.7 (Storme and Weiner [15, Theorem 5.9 and 5.10]) A minimal

blocking set of PG(3, q3), q = ph, p ≥ 7 prime, h ≥ 1, of size at most q3 +
q2 + q + 1 is one of the following:

• a line,

• a Baer-subplane if q is a square,

• a minimal planar blocking set of size q3 + q2 + 1,
• a minimal planar blocking set of size q3 + q2 + q + 1,
• a subgeometry PG(3, q).

Corollary 2.8 The second smallest maximal partial ovoids O of W (q2), q =
ph, p > 3 prime, h ≥ 1, contain at least s(q2) + 1 points. If q = p > 2, then O
contains at least 3(p2 + 1)/2 + 1 points.

Proof. This follows immediately from Theorem 2.6 and the fact that s(p2) =
3(p2 + 1)/2 if p > 2 (see e.g. [16]). 2

Corollary 2.9 The second smallest maximal partial ovoids O of W (q3), q =
ph, p ≥ 7 prime, h ≥ 1, contain at least q3 + q2 + q + 1 points. If |O| =
q3 + q2 + q + 1, then O consists of the point set of a subgeometry PG(3, q) of
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PG(3, q3).

An open problem regarding maximal partial ovoids ofW (q3) is whetherW (q3)
effectively has maximal partial ovoids equal to a subgeometry PG(3, q).

Finally in the case when q = p prime, we can use the result of Blokhuis [2]
which states that every non-trivial planar blocking set of PG(2, p) contains at
least 3(p+ 1)/2 points.

Corollary 2.10 Let O be a second smallest maximal partial ovoid of W (p),
p prime. Then |O| ≥ 3(p+ 1)/2 + 1.

Remark 2.11 (1) The preceding results can be translated into results on
maximal partial spreads of Q(4, q), on maximal partial spreads of W (q), q
even, and on maximal partial ovoids of Q(4, q), q even.

(2) To conclude this section on the size of the second smallest maximal partial
ovoids of W (q), we note that an example of a maximal partial ovoid of size
2q+1 can be obtained by taking all points except one point r on a hyperbolic
line L in PG(3, q), together with one arbitrary point (not collinear with one
of the remaining points of L) from each of the q + 1 lines of W (q) through r.

3 Small maximal partial spreads in W (q)

The only cases we have not yet discussed are the smallest maximal partial
ovoids of Q(4, q), q odd, and the smallest maximal partial spreads of W (q), q
odd. Since W (q) is dual to Q(4, q), we concentrate on maximal partial spreads
of W (q), q odd.

Recall that when q is an odd prime power, {L1, L2, L3}
⊥ ∈ {0, 2} for every

triad of skew lines of W (q) (see e.g. [14]). We will use a counting technique
from [11] to prove the following theorem. In the following theorem, dxe denotes
the smallest integer greater than or equal to x.

Theorem 3.1 Suppose that S is a maximal partial spread of W (q), q odd.

Then |S| ≥ d1, 419qe.

Proof. Suppose that |S| = x. Then there are exactly D := q3 + q2 + q+1− x
lines of W (q) not belonging to S. Let ni, i = 1, . . . , q + 1, denote the number
of such lines intersecting exactly i lines of the partial spread S. By counting
in two ways the pairs (L,M), where L is a line not belonging to S, where M
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is a line belonging to S, and where L ∼M , we obtain

∑

i

ini = x(q + 1)q.

For the triples (L1, L2,M), where L1 6= L2 are lines belonging to S, where M
is a line not belonging to S and where L1 ∼M ∼ L2, we obtain

∑

i

(

i

2

)

ni =

(

x

2

)

(q + 1),

and for the quadruples (L1, L2, L3,M), where L1, L2, L3 are distinct lines be-
longing to S, where M is a line not belonging to S, and where M ∼ Lm,
m = 1, 2, 3, we obtain

∑

i

(

i

3

)

ni ≤

(

x

3

)

2.

Consider the polynomial P (i) := (i − r1)(i − r2)(i − r3) and the coefficients

a0, a1, a2, a3 such that P (i) = a3

(

i

3

)

+ a2

(

i

2

)

+ a1i + a0. We see that a3 = 6,

a2 = −2(r1 + r2 + r3) + 6, a1 = r1r2 + r1r3 + r2r3 − (r1 + r2 + r3) + 1, and
a0 = −r1r2r3. Henceforth,

∑

i

P (i)ni = a3

∑

i

(

i

3

)

ni + a2

∑

i

(

i

2

)

ni + a1

∑

i

ini + a0

∑

i

ni.

¿From this, using a3 > 0, it follows that

∑

i

P (i)ni ≤ 2a3

(

x

3

)

+(q+1)a2

(

x

2

)

+q(q+1)a1x+a0(q
3+q2+q+1−x). (1)

If we choose coefficients r1, r2, r3 in such a way that P (i)ni ≥ 0 for every
i ∈ {1, . . . , q + 1}, then

∑

i P (i)ni ≥ 0 and consequently x has to be such
that the right hand side of Equation (1) is greater than or equal to 0. We will
select r1 = 1, r2 = a, and r3 = a+1, with a ∈ N to be determined. We obtain
a0 = −a2 − a, a1 = a+ a2, a2 = −4a+ 2, and a3 = 6.

In order to obtain a bound of the form x ≥ cq, we substitute x = cq in
the right hand side of Equation (1), and we obtain a polynomial of degree
3 in q. As we want our bound to be valid for general q, the coefficient g =
ca2 + ca− 2ac2 − a2 − a+ c2 + 2c3 of q3 has to be less than or equal to 0. For
c = 1.419, we find that the solutions in a of g = 0 are 3.99 . . . and 4.612 . . . So
if we choose a = 4, it readily follows that x ≥ d1.419qe. 2

Remark 3.2 The result of the previous theorem can be slightly improved to
x ≥ d1.419q + be for certain b > 0, by substituting x = 1.419q+b and a = 4 in
the right hand side of Equation (1), and by solving for the greatest b for which
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the obtained polynomial in q is still negative. The expression for b obtained in
this way is a tedious formula in q, but it can easily be computed by computer
for given q. For example, in the cases q = 7, 9, 11, this increases the smallest
theoretical value of x by one to 11, 14 and 17, respectively. It should however
be noted that b is extremely small with respect to q.

4 Computer results

In this section, we present results obtained by computer searches implementing
the exhaustive and heuristic search techniques described in [9]. All programs
are written in Java and the results are obtained on a 1.6Ghz Pentium processor
running Linux.

4.1 Maximal partial ovoids in W (q)

In Table 1, we give results for maximal partial ovoids in W (q). For each value
of q, we list the sizes for which the heuristic search found maximal partial
ovoids of that given size. The notation a..b means that a maximal partial
ovoid of that size has been found for all values in the interval [a, b].

For q = 2, 3, 4, 5, exhaustive search confirmed that the spectrum found by the
heuristic is complete. Note that the largest value found for W (5) and W (7) is
indeed the size of the largest maximal partial ovoid – this was confirmed by
exhaustive search.

The results in Table 1 confirm the result from Theorem 2.1 that the smallest
maximal partial ovoids have size q + 1. For the cases presented here, we also
observe that maximal partial ovoids of size 2q + 1 were always found, while
no maximal partial ovoids with sizes between q + 1 and 2q + 1 were found.
As indicated in Remark 2.11, an example of a maximal partial ovoid of size
2q+1 can be obtained by taking all points except one point r on a hyperbolic
line L in W (q), together with one arbitrary point (not collinear with one of
the remaining points of L) from each of the q + 1 lines of W (q) through r.

Moreover, our results show the existence of a maximal partial ovoid of size
3q − 1, for all values of q considered. Such a maximal partial ovoid can be
constructed in the following way if q ≥ 4.

Let x and y be two non-collinear points of W (q) and consider the two hy-
perbolic lines H1 := {x, y}⊥ and H2 := {x, y}⊥⊥. Define O1 to be the set
H2 \ {x, y}. Let z be any point on H1 and H any hyperbolic line, distinct
from H1, through z in the plane xη (here η is the symplectic polarity defining
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q Spectrum found

2* 3,5

3* 4,7

4* 5,9, 11,13,17

5* 6,11, 12,14..18

7 8,15, 17..20..33

8 9,17, 21..23..47,49, 51,57,65

9 10,19, 25..26..51

11 12,23, 28..32..70

13 14,27, 38..92

16 17,33, 47,49,51..163,165, 227,241,257

17 18,35, 50..129

19 20,39, 56..150

23 24,47, 68..70,72..190

25 26,51, 74..76,78,80..203

27 28,55, 80..236

Table 1
Spectrum of sizes for maximal partial ovoids of W (q), for small values
of q. For q = 2, 3, 4, 5, the complete spectrum was obtained by exhaustive
search. For larger values of q, the results are obtained by heuristic search.
For q = 5, 7, the size of the largest partial ovoid was determined by
exhaustive search.

W (q)). Choose any point u ∈ H \ {z} and define O2 := (H \ {u, z}) ∪ {v},
where v is any point on xu distinct from x and u, and with v not contained in
H1. On the line yz of W (q), there is a unique point p collinear with all points
of H. Since q ≥ 4, it is possible to choose a point o ∈ yz \ {y, p, z} that is
not collinear with v. If w is the point of H1 on the line uv, then every point
(with exception of y) of the line yw is collinear with a point of O2. On each
of the q − 1 totally isotropic lines through y distinct from yz and yw, there
is a unique point, lying on the line uη ∩ yη = wp, collinear with no point of
O2 ∪ {o}. Denote by O3 the set (wp \ {w, p})∪ {o}. Then O := O1 ∪O2 ∪O3

is a maximal partial ovoid of size 3q − 1. We check the maximality. Since
O1 = H2 \ {x, y}, only points of xη and yη could extend O to a larger partial
ovoid. In xη, since O2 := (H \{u, z})∪{v}, only the points of xz could extend
O to a larger partial ovoid. Similarly, in yη, only points of yw could extend
O. A detailed check shows that no points of xz or yw extend O to a larger
partial ovoid.
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For q even, our computer searches also find a maximal partial ovoid of size
q2− q+1 and no maximal partial ovoids with sizes larger than q2− q+1 and
smaller than q2 + 1, as the results of [4] and [13] show. We also observed the
existence of a maximal partial ovoid with size q2−q+1− (q−2) = q2−2q+3,
and we found no maximal partial ovoids with size larger than q2− 2q+3 and
smaller than q2 − q + 1.

We can describe in a compact way a geometric construction for maximal par-
tial ovoids of sizes q2 − q + 1 and q2 − 2q + 3 of W (q), q even. We explain the
construction on Q(4, q) (recall that q is even and so Q(4, q) ∼= W (q)). First

notice that
∣

∣

∣C⊥
∣

∣

∣ ∈ {1, q+1} for any conic C in Q(4, q). From this we see that

if we consider a conic C in an elliptic quadric O := Q−(3, q) ⊂ Q(4, q), then
necessarily C⊥ is a unique point c. It is easily seen that (O∪{c})\C is a max-
imal partial ovoid of size q2− q+1. Now let O be an elliptic quadric of Q(4, q)
and suppose that C1 and C2 are two conics of O, with |C1 ∩ C2| = 2. Clearly
the points c1 := C⊥

1
and c2 := C⊥

2
are not collinear (since |C1 ∩ C2| = 2). If

q > 2, it follows easily that (O∪{c1, c2})\(C1∪C2) is a maximal partial ovoid
of size q2 − 2q + 3.

4.2 Maximal partial ovoids in Q(4, q), q odd

In Table 2, we give results for maximal partial ovoids in Q(4, q), q odd. For
each value of q, we list the value of the lower bound (LB) from Theorem 3.1
and Remark 3.2, and the sizes for which our program found maximal partial
ovoids of that given size. The notation a..b means that for all values in the
interval [a, b], a maximal partial ovoid of that size has been found.

For q = 3, 5, we confirmed by exhaustive search that the spectrum found is
complete. For q = 7, 9, we confirmed by exhaustive search for some sizes (also
given in the table) that no maximal partial ovoid of that size exists.

In spite of the fact that the theoretical lower bounds are linear in q, these
results rather seem to indicate a quadratic lower bound.

In all cases our heuristic finds an ovoid (of size q2 + 1). For q = 3, 5, 7, 11, a
maximal partial ovoid of size q2 − 1 is found; for q = 9, it is confirmed by
exhaustive search that no such maximal partial ovoid exists; for larger values
of q, no such maximal partial ovoids were found by the heuristic.

For all values of q considered, the largest (resp. second largest, for the cases
q = 3, 5, 7, 11) size for a maximal (strictly) partial ovoid found by the heuristic
search is q2 − q + 2.
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q LB Spectrum found Non-existence

(by heuristics) (exhaustive search)

3* 5 5,8,10 all other values

5* 8 13..20,22,24,26 all other values

7 11 14,17..42,44,48,50 10,11,43,45,46,47,49

(still open: 12,13,15,16)

9 14 22..68,70,73,74,82 79,80

11 17 28,30..106,109..110,112,120,122

13 19 41..42,44..136,138,140,146,148,158,170

17 25 67..218,220..224,226,228..230,

232..238,240,244,246..248,258,260,274,290

19 27 84..118,122..275,278,280,282..286,294,

296,298,300,310,312,326,328,344,362

Table 2
Spectrum of sizes for maximal partial ovoids of Q(4, q), for small values
of q. For q = 3, 5, the complete spectrum was obtained by exhaustive
search. For larger values of q, the results are obtained by heuristic search.
For q = 7, 9, the non-existence of maximal partial ovoids of certain sizes
was confirmed by exhaustive search.
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