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SPECIAL MOUFANG SETS, THEIR ROOT GROUPS AND THEIR µ-MAPS

TOM DE MEDTS, YOAV SEGEV and KATRIN TENT

Abstract

We prove Timmesfeld’s conjecture that special abstract rank one groups are quasisimple. We show that in a
special Moufang set the root groups are characterized on the one hand by being regular and normal in the point
stabilizer, and on the other hand a normal transitive nilpotent subgroup of the point stabilizer is a root group.
We prove that if a root group of a special Moufang set contains an involution, then it is of exponent 2. We also
show that the root groups are abelian if and only if the so-called µ-maps are involutions.

Introduction

A Moufang set is a set X with |X | ≥ 3, together with a collection of groups (Ux)x∈X acting
on X (called root groups), such that each Ux fixes x and acts regularly on X \ {x}, and such
that Uϕ

x = Uxϕ for each x ∈ X and each ϕ ∈ G† := 〈Uy | y ∈ X〉. The group G† is called the
little projective group of the Moufang set, and it is clear that this group acts doubly transitively
on X .

Moufang sets were introduced by J. Tits ([T]) as a tool to study absolutely simple algebraic
groups of relative rank one, but the notion is important beyond its original purpose. This
notion is closely related to that of a split BN-pair of rank one, which is another important
notion due to Tits. Moufang sets are thus very basic, natural objects. One additional related
concept is that of an “abstract rank one group”, as introduced by F. Timmesfeld [Ti], who
also introduced special rank one groups (see Definition 1.10 below). In [Ti, Remark, p. 26]
Timmesfeld conjectured that every special rank one group with abelian unipotent subgroups
is quasisimple, this conjecture is part (2) of the following.

Theorem 1.

(1) Let (X, (Ux | x ∈ X)) be a special Moufang set with |X | ≥ 5, and let G be its little
projective group. Pick distinct x, y ∈ X and let H = Gx ∩ Gy. Then [Ux, H ] = Ux, and
hence G is perfect.

(2) Let Y be a special abstract rank one group with unipotent subgroups A and B and let
K = NY (A) ∩ NY (B). Then A and B are abelian, and either Y ∼= SL2(2) or (P)SL2(3),
or [A, K] = A and hence Y is quasisimple.

Theorem 1 is Theorem 1.12 below.
As noted in the abstract we characterize the root groups of a special Moufang set in terms

of the permutation action and the structure of the little projective group. More precisely in §4
we prove:

Theorem 2. Let M = {X, (Ux | x ∈ X)} be a special Moufang set and let x ∈ X . Then
(1) the root group Ux is the unique normal subgroup of Gx which is regular on X r {x};
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(2) if Nx ≤ Gx is a normal nilpotent subgroup such that Nx is transitive on X r {x}, then
Nx = Ux.

Theorem 2(2) was already known before for many classes of Moufang sets (including some
non-special ones) by a case-by-case analysis; see [DHKV].

Unlike the concept of abstract rank one group, where the root groups are assumed to be
nilpotent, there is no assumption on the structure of the root groups of a Moufang set. In fact
the following is probably the most challenging conjecture in this area.

Root Groups Conjecture. Let M be a Moufang set, then

(1) the root groups of M are nilpotent;
(2) if M is special, then the root groups of M are abelian;
(3) if the root groups of M are abelian, then M is special.

Now part (1) of the Root Groups Conjecture (RGC for short) is too hard at this point. Note
that by [SW, Cor. 3.2], part (1) implies part (2). However, we believe that a direct proof of
RGC(2) is within reach, and a portion of this paper is devoted to it. We prove RGC(2) in the
case when the root groups of M contain involutions:

Theorem 3. If a root group of a special Moufang set contains involutions then it is
(abelian) of exponent 2.

Theorem 3 is proved in §5. Notice that in [Su], Suzuki essentially considered finite Moufang
sets in which the root groups have even order (see [Su, Theorem, p. 515]), but he did not
assume that the Moufang set is special. However on page 517 lines 16–17, he writes that it
is rather difficult, even in the finite case, to show that the root groups are 2-groups and it
requires character theory.

In view of Theorem 3, to resolve RGC(2) we may assume that the root groups of M do not
contain involutions. By [DS, Prop. 4.6] (see Proposition 1.6) U is uniquely-2-divisible. In §6
we use this fact to prove the following result which gives a natural path for proving RGC(2)
namely to show that the µ-maps are involutions. The µ-maps are defined in equation (1.1)
below and discussed further along that page.

Theorem 4. The root groups of a special Moufang set are abelian if and only if its µ-maps
are involutions.

The µ-maps play a fundamental role in the analysis of a Moufang set, see [DW], [DS] and
[SW]. In Corollary 6.4 we apply Theorem 4 to characterize the Moufang sets associated with
PSL2(k), k a commutative field of characteristic 6= 2: These are precisely those special Moufang
sets such that the two point stabilizer is abelian (and the root groups contain no involutions).

In the course of working with our Moufang sets (and not necessarily the special ones), we
encountered what we call the Opposite Moufang set and the Mirror Moufang set, these are
introduced in §2 and §3 respectively. Finally, §7 of this paper contains a number of results that
may help in proving part (2) of the RGC.

Acknowledgement. Part of this work was done while the first and second named authors
were guests of the University of Bielefeld and were partially supported by the DFG under
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1. Generalities on Moufang sets

Throughout this paper our notation follow [DS]. We recall some facts and definitions and
add some basic lemmas.

Definition 1.1. A Moufang set is a set X with |X | ≥ 3, together with a permutation
group G† ≤ Sym(X) and a family of subgroups {Ux | x ∈ X} such that

(1) G† = 〈Ux | x ∈ X〉;
(2) Ux fixes x and acts regularly on X r {x}, for all x ∈ X ;
(3) {Ux | x ∈ X} is a conjugacy class of subgroups of G†.

Notice that G† is a doubly transitive permutation group. The group G† is called the little
projective group of the Moufang set, and the subgroups {Ux | x ∈ X} are called the root
groups of the Moufang set.

Definition 1.2. An isomorphism between two Moufang sets (X, {Ux | x ∈ X}) and
(Y, {Vy | y ∈ Y }) is a bijection β from X to Y such that the map χβ : Sym(X) → Sym(Y ) :
g 7→ β−1gβ maps each root group Ux onto the corresponding root group Vxβ .

Here is a way to construct a Moufang set (cf. [DW]). Start with a group U and let ∞
be a new symbol (not in U). Let X denote the set X := U ∪ {∞}. We write U in additive
notation even though we do not assume that U is commutative. For a ∈ U∗ := U r {0}, we let
αa ∈ Sym(X) be the permutation which fixes ∞ and maps x to x+a for every x ∈ U . Suppose
that τ ∈ Sym(X) with 0τ = ∞ and ∞τ = 0, and let

U∞ = {αa | a ∈ U}, U0 = U τ
∞, and Ua = Uαa

0 for all a ∈ U∗.

Then G† := 〈Ux | x ∈ X〉 and the subgroups {Ux | x ∈ X} are candidates for being a Moufang
set. These “candidates” are encoded by the notation M(U, τ). For a ∈ U∗, let

µa := ατ
(−a)τ−1αaατ

−(aτ−1), (1.1)

where for group elements g, h, gh = h−1gh. These complicated looking permutations µa play
an important role in the analysis of Moufang sets. It can be easily shown that µa interchanges
0 and ∞, for all a ∈ U∗. In particular, for a ∈ U∗, τµa fixes 0 and ∞ and hence acts as a
permutation on the set U . In the main theorem (Theorem 2) of [DW] it is proved that the
fact that M(U, τ) is a Moufang set is equivalent to the fact that τµa ∈ Aut(U), for all a ∈ U∗.

The permutations µa, a ∈ U∗ are invariants of M(U, τ) in the following sense: First, from
the definition of M(U, τ) it follows that M(U, τ) = M(U, ρ) for every permutation ρ ∈ Sym(X)
that interchanges 0 and ∞ and satisfies Uρ

∞ = U τ
∞ = U0. Now although the permutations

µa appear to depend on τ , once it is established that M(U, τ) is a Moufang set, it turns out
that µa depends only on the subgroups U0 and U∞: it is the unique element in U0αaU0 that
interchanges 0 and ∞ (see [DS, Lemma 3.3(2)]). We observe that (cf. [DS, Prop. 3.8(1)])

M(U, τ) = M(U, µx), for all x ∈ U∗. (1.2)

When M(U, τ) is a Moufang set we let

H := G†
0,∞,

and we call H the Hua subgroup of M(U, τ). The following facts will be frequently used without
further reference (see [DS, Lemma 3.3(1)] and [DS, Prop. 3.9(2)]):

µ−a = µ−1
a , µµb

a = µ−aµb
, µh

a = µah, ∀a, b ∈ U∗ and ∀h ∈ H. (1.3)
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The above construction is of course the most general way to construct a Moufang set, as the
following two lemmas indicate.

Lemma 1.3. Let U be a regular permutation group on the set U . Pick an element in U and
denote it 0. For each a ∈ U let αa ∈ U be the unique permutation such that 0αa = a. Define a
binary operation (which is not necessarily commutative) on U by a + b := aαb, a, b ∈ U . Then
(U, +) is a group isomorphic to U , and a → αa is the right regular representation of U on itself.

Proof. This is obvious.

Lemma 1.4. Let M = (X, {Ux | x ∈ X}) be a Moufang set. Pick x ∈ X and denote ∞ := x.
Set

U := X r {∞} ,

pick an element in U and denote it 0. Let + be the binary operation on U as defined in Lemma
1.3 with U∞ in place of U . Let τ ∈ Sym(X) be any permutation interchanging 0 and ∞ such
that U τ

∞ = U0. Then M = M(U, τ).

Proof. Denote M(U, τ) = (X, {Ūx | x ∈ X}). By the definition of M(U, τ), Ū∞ = {αa | a ∈
U} = U∞, Ū0 = U τ

∞ = U0. Let a ∈ U∗, then Ūa = Ūαa

0 = Uαa

0 . Now since (X, {Ux | x ∈ X}) is
a Moufang set, Uαa

0 = U0αa
= Ua. Thus Ūa = Ua and the lemma is proved.

Let us recall the definition of a special Moufang set.

Definition 1.5. A Moufang set M(U, τ) is called special if the condition

(−a)τ = −(aτ) for all a ∈ U∗ (∗)

holds.

We will frequently use the following fact without further reference (see [DS, Lemma 4.3(2)]):

If M(U, τ) is special, then aµa = −a = aµ−a, for all a ∈ U∗. (1.4)

The following Proposition is taken from [DS, Prop. 4.6] and will be used several times in this
paper.

Proposition 1.6. Assume that M(U, τ) is a special Moufang set. Let a ∈ U∗, n ≥ 1 be a
positive integer such that a · n 6= 0, and ρ ∈ Sym(X) such that ρ interchanges 0 and ∞ and
satisfies M(U, ρ) = M(U, τ) = M(U, ρ−1). Then

(1) there exists a unique b ∈ U∗ such that b · n = a, we denote b := a · 1
n
;

(2) (aρ) · n 6= 0; (a · n)ρ = (aρ) · 1
n
, and hence (a · 1

n
)ρ = (aρ) · n;

(3) if U is torsion-free, then U is a uniquely divisible group;
(4) if b ∈ U∗ has finite order, then the order of b is a prime number;
(5) [Ti, Thm. 5.2(a), p. 55] if U is abelian then either U is an elementary abelian p-group, for

some prime p, or U is a divisible torsion-free abelian group;
(6) assume U is abelian and that U · n 6= 0 and let s ∈ {n, n−1}. Then xµa·s = xµa · s2, for

all x ∈ U∗. It follows that ha·s = ha · s2.

Remark 1.7. Notice that in Proposition 1.6 and throughout this paper we multiply an
element of U by an integer on the right. Note also that in view of Proposition 1.6, if M(U, τ)
is a special Moufang set, a ∈ U∗ and α = m/n ∈ Q, with gcd(m, n) = 1, then if a has infinite
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order, a · α is well defined, and if gcd(n, p) = 1 with |a| = p (where p is a prime), then a · α is
well defined.

Lemma 1.8. Let M(U, τ) be a Moufang set and let 0 6= V ≤ U be a subgroup. Assume
that V ∗µv = V ∗, for all v ∈ V ∗. Let x ∈ V ∗ and let ρ be the restriction: ρ := µx ↾ V ∪ {∞}.
Then M(V, ρ) is a Moufang set. If M(U, τ) is special, then M(V, ρ) is special.

Proof. Since M(U, τ) = M(U, µx) (see [DS, Prop. 3.8(1)]), we may assume that τ = µx. By
the main Theorem 2 of [DW], M(V, τ) is a Moufang set if and only if the Hua-maps of M(V, τ)
are contained in Aut(V ). But, by definition, the Hua-maps of M(V, τ) are the restriction of
the Hua-maps {ha | a ∈ V ∗} of M(U, τ) to V , and, by our hypothesis, V is invariant under
ha, a ∈ V ∗, because by [DS, Prop. 3.9(1)] ha = τµa. Since M(U, τ) is a Moufang set, the Hua
maps of M(U, τ) are in Aut(U) so their restrictions to V are in Aut(V ). It is evident that if
M(U, τ) is special then so is M(V, τ).

Corollary 1.9. Let M(U, τ) be a Moufang set.
(1) For h ∈ H , let V := {a ∈ U | ah = a} be the fixed point set of h on U . If V 6= 0, then

M(V, ρ) (where ρ = µx ↾ V ∪ {∞} and x ∈ V ∗) is a Moufang set;
(2) if M(U, τ) is special, a ∈ U∗ and 0 6= V ≤ U is a subgroup such that V ∗µa = V ∗, then

V ∗µw = V ∗, for all w ∈ V ∗ and hence M(V, ρ) is a special Moufang set, where x ∈ V ∗

and ρ = µx ↾ V ∪ {∞}.

Proof. (1): Let v, w ∈ V . Then, by equation (1.3), vµwh = vhµwh = vµw ∈ V , hence
V ∗µw = V ∗. Part (1) follows now from Lemma 1.8.

(2): Let v, w ∈ V with w 6= −v, then by Lemma 5.2(4) (below),

(v + w)µa = (vµw − w)µa + wµa,

by our hypothesis, (v +w)µa, wµa ∈ V , so (vµw −w)µa ∈ V and applying µ−a shows that also
vµw − w ∈ V , so vµw ∈ V . Furthermore, by equation (1.4), (−w)µw = w ∈ V . It now follows
from Lemma 1.8 that M(V, τ) is a special Moufang set.

We conclude this section by proving the perfectness of the little projective group of a special
Moufang set, and we prove a conjecture of Timmesfeld; see [Ti, Remark, p. 26]. First we define
what an abstract rank one group is.

Definition 1.10 [Ti, pp. 1–2]. An abstract rank one group with unipotent subgroups A
and B is a group Y generated by its nilpotent subgroups A and B, such that A 6= B and such
that

for each a ∈ A∗ there exists b ∈ B∗ with Ab = Ba and vice versa (∗)
(where Ab = b−1Ab). An abstract rank one group with unipotent subgroups A and B is called
special if

for each a ∈ A∗ and b ∈ B∗, Ab = Ba implies ab = (b−1)a. (∗∗)

The following facts, which appear in [Ti] and inside proofs there, will be used in the proof
of Theorem 1.12.

Proposition 1.11. Let Y be an abstract rank one group with unipotent subgroups A
and B. Let Ω = {Ay | y ∈ Y } and let K = NY (A) ∩ NY (B) be the diagonal subgroup. Let
◦ : Y → Y/Z(Y ) =: Y ◦ be the canonical homomorphism. Then
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(1) Y is not nilpotent;
(2) Z(Y ) is the kernel of the action of Y on Ω, and A ∩ Z(Y ) = 1 = B ∩ Z(Y );
(3) Y ◦ is an abstract rank one group with unipotent subgroups A◦ and B◦ and Z(Y ◦) = 1;
(4) NY (A) is the (full) inverse image under ◦ of NY ◦(A◦) and hence if H is the diagonal

subgroup of Y ◦ then the (full) inverse image of H under ◦ is K;
(5) Y is special if and only if for each a ∈ A∗ there exists b ∈ B∗ with ab = (b−1)a and vice

versa;
(6) if Y is special, then Y ◦ is special;
(7) if Y ◦ is special, then Y ◦ is (the little projective group of) a special Moufang set as defined

in Definition 1.5.

Proof. (1) follows from e.g. [Ti, (2.10), p. 25]. Let N be the kernel of the action of Y on Ω.
By [Ti, (1.10), p. 13], if N 6= Z(Y ), then Y = NA. But then A E Y , a contradiction, this shows
the first part of (2). The second part of (2) follows from the fact that NA(B) = NB(A) = 1,
(cf. [Ti, (1.2)(3), p. 2]). The first part in (3) follows from [Ti, Exercise (1.13)(2), p. 15] and
(1). The second part of (3) is by [Ti, (2.1), p. 17].

To prove (4) note first that for y ∈ NY (A),

A◦ = (Ay)◦ = (A◦)y◦

,

so NY (A)◦ ≤ NY ◦(A◦). Conversely, let g ∈ NY ◦(A◦), and let y ∈ Y with y◦ = g. Then
(Ay)◦ = A◦. Hence Ay ≤ AZ(Y ). But if Ay 6= A, then Y = 〈A, Ay〉 (because by definition
Y = 〈A, B〉 and Y is doubly transitive on Ω). Thus since by (1) Y 6= AZ(Y ), Ay = A, so
y ∈ NY (A) and the first part of (4) is established. The second part of (4) follows from the first
since the first part applies also to B in place of A.

Note that Timmesfeld’s definition of “special” (as defined in Definition 1.10) is not precisely
the assumption in (5). However, since NB(A) = 1, the b in condition (∗) in Definition 1.10 is
unique. Also, since A∩B = 1, the equality ab = (b−1)a implies that Ab = Ba. This shows that
(5) is equivalent to condition (∗∗) in Definition 1.10.

Finally (6) is immediate from (5), and for (7) see [DW, Remark 5.1, p. 430].

Theorem 1.12. Let M(U, τ) be a special Moufang set, let G be its little projective group
and let H = G0,∞ be its Hua-subgroup. Assume that |U | > 3, then

(1) [U∞, H ] = U∞, and hence G is perfect;
(2) let Y be a special abstract rank one group with unipotent subgroups A and B and let K =

NY (A) ∩ NY (B). Then A is abelian, and either Y ∼= SL2(2) or (P)SL2(3), or [A, K] = A
and hence Y is quasisimple.

Proof. (1): Let V ⊆ U be the set of elements u ∈ U such that αu ∈ [U∞, H ]. Note that
for all u ∈ U and all h ∈ H , we have

[αu, h] = α−uαh
u = α−uαuh = α−u+uh

so

−u + uh ∈ V, for all u ∈ U and h ∈ H. (1.5)

By (1.5) and (1.4), −u + uµuµw = −u − uµw ∈ V , for all u, w ∈ U∗. So since |U | > 3, there
exists u, w ∈ U∗, with uµw 6= −u or wµu 6= −w (see [DS, Lemma 4.9(3)]), and hence

V 6= 0.

Assume first that U is not a group of exponent 2. Since H normalizes U∞ it normalizes [U∞, H ],
and hence V is H-invariant. By [SW, Theorem 1.2], V = U .
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Hence we may assume that U is of exponent 2. Let Q := U/V , and write u ≡ w for
u + V = w + V in Q. As we saw, taking h = µuµw in (1.5) shows that

uµw ≡ u for all u, w ∈ U∗. (∗)
By (∗) and [DS, Lemma 4.4(3)] (see Proposition 5.2(5) below) we get for all distinct u, w ∈ U∗

u ≡ uµu+w = w + u + uµw + w ≡ w + u + u + w = 0.

Since u was arbitrary we get again that V = U . This shows that U∞ = [G, U∞]. It follows that
U∞ ≤ [G, G] and since G is generated by the conjugates of U∞, G = [G, G].

(2): If |A| = 2 or 3, then Y ∼= SL2(2) or Y ∼= (P)SL2(3), respectively; see for example [Ti,
(2.10)(1), p. 25]. Hence we may assume that |A| ≥ 4.

Let ◦ : Y → Y/Z(Y ) =: Y ◦ be the canonical homomorphism. By Proposition 1.11, Y ◦ is a
special Moufang set. Hence we may assume without loss that Y ◦ = G, A◦ = U∞ and B◦ = U0.
By definition, A ∼= U∞ is nilpotent, so by [SW, Cor. 3.2], A is abelian.

Let now αu ∈ U∞ and h ∈ H . Let a ∈ A with a◦ = αu, and using Proposition 1.11(4), let
y ∈ K with y◦ = h. Then [a, y] ∈ A and [a, y]◦ = [αu, h]. Thus we see that [A, K]◦ ≥ [U∞, H ] =
U∞, by (1). Since [A, K] ≤ A, and since ◦ : A → U∞ is bijective, we see that [A, K] = A. Thus
A ≤ [Y, Y ], and since Y is generated by the conjugates of A, Y is perfect.

Next, since G is perfect and U∞ is abelian, Iwasawa’s Lemma (cf. [Ro, Thm. 9.27, p. 263])
implies that G is simple. Thus Y is quasisimple.

2. The opposite Moufang set

For future reference we define and briefly discuss the notion of the opposite Moufang set.

Lemma 2.1. Let M(U, τ) be a Moufang set. Let (Uo,⊕) := (U, +)o be the opposite group,
i.e., as sets Uo = U and for a, b ∈ Uo, a ⊕ b = b + a. Let inv : U → U be the inverse map
(a) inv = −a and extend inv to a map inv : X → X via (∞) inv = ∞. Then M(Uo, τ inv) is a
Moufang set, where τ inv = inv ◦ τ ◦ inv.

Proof. Consider M(Uo, τ inv). By definition, Uo
∞ = {αo

a | a ∈ Uo}, where bαo
a = a + b, for

a ∈ Uo r {0} and b ∈ Uo. Hence Uo
∞ = U inv

∞ . It follows that Uo
0 = U inv

0 and then it is easy to
check that Uo

a = U inv
−a , for all a ∈ U∗. This implies that M(Uo, τ inv) is a Moufang set.

Notation 2.2. If M(U, τ) is a Moufang set, we denote by M(Uo, τ inv) the opposite Moufang
set as in Lemma 2.1. We us αo

a, µo
a, Uo

∞, Uo
a , etc. to denote the various maps and the root

groups of M(Uo, τ inv) as in Notation 3.1 and 3.2 of [DS].

Lemma 2.3. Let M(U, τ) be a Moufang set and let M(Uo, τ inv) be the opposite Moufang
set. Then
(1) for all a, b ∈ U , bαo

a = a + b and αinv
a = αo

−a, thus Uo
∞ = U inv

∞ ;
(2) let G (resp. Go) be the little projective group of M(U, τ) (resp. M(Uo, τ inv)), then Go =

Ginv.
(3) µinv

a = µo
−a, for all a ∈ U∗;

(4) H = Ho;
(5) M(U, τ) is special if and only if τ inv = τ and then µo

a = µ−a.

Proof. (1): By definition.

(2): By (1), Uo
∞ = U inv

∞ and hence also Uo
0 = U inv

0 . But by [DW], G = 〈U0, U∞〉 and
similarly for Go, so (2) holds.
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(3): Since U inv
0 = Uo

0 , we have (U0αaU0)
inv = Uo

0 αo
−aUo

0 . Now by [DS, Lemma 3.3(2)], for
any a ∈ U∗, µa is the unique element in U0αaU0 that interchanges 0 and ∞ and similarly for
µo

a. Since µinv
a interchanges 0 and ∞ it follows that µinv

a = µo
−a.

(4): Since M(U, τ) is a Moufang set the main theorem of [DW] says that H ≤ Aut(U).
Thus hinv = h, for all h ∈ H , from which it follows that Ho = H .

(5): First, by definition, M(U, τ) is special if and only if τ inv = τ . By [DS, Lemma 4.2],
τ inv = τ iff µinv

a = µa, for all a ∈ U . By [DS, Lemma 3.3], µ−a = µ−1
a , for all a ∈ U , hence (5)

is a consequence of (3).

Remark 2.4. We note here that clearly M(Uo, τ inv) ∼= M(U, τ). Indeed, the permutation
inv ∈ Sym(X) induces a Moufang set isomorphism from M(U, τ) to M(Uo, τ inv) since U inv

a =
Uo

(a)inv for all a ∈ X . This certainly does not mean that the concept is useless; one could
compare it to the fact that a quaternion algebra is isomorphic to (but not equal to) its opposite
algebra.

3. The Mirror Moufang set

In this section we start with a Moufang set M(U, τ) and we switch the role of U0 and U∞.
The resulting Moufang set M(U t, τ−1) is the same Moufang set, i.e. M(U, τ) = M(U t, τ−1),
however we give it a different name: the Mirror Moufang set. The reason is that the µ-maps
and the Hua-maps of M(U t, τ−1) are different from those of M(U, τ) and in this section we are
actually interested in how they are related.

Lemma 3.1. Let U t be the group with underlying set U r {0} ∪ {∞}, and with group
operation ⊕ defined by x ⊕ y = (xτ−1 + yτ−1)τ . Let ht

a (resp. µt
a) denote the Hua-maps

(resp. the µ-maps) for M(U t, τ−1). Then

(1) M(U t, τ−1) = M(U, τ);
(2) µt

a = µ−1
a and ht

a = τ−1µ−a, for all a ∈ U∗.

Proof. Notice first that ⊕ is a group operation. Note next that the neutral element of U t

is ∞, denote 0′ := ∞. The element that takes the role of ∞ for M(U t, τ−1) is 0, so denote
∞′ = 0. For a ∈ U t r {0′}, let αt

a ∈ Sym(X) be the permutation fixing ∞′ and such that
αt

a : b 7→ b ⊕ a, b ∈ U t. Then, by definition, for each a ∈ U t, bαt
a = bτ−1αaτ−1τ , that is

αt
a = γaτ−1

(recall from [DS] that γx = τ−1αxτ ∈ U0), which implies that U t
∞′ = U0. Then, U t

0′ =

(U t
∞′)τ−1

= U τ−1

0 = U∞. Further, by definition, for a ∈ U t r {0′} we get

U t
a = (U t

0′)αt
a = U

γ
aτ−1

∞ = U∞γ
aτ−1 = Ua.

We have thus shown that for each x ∈ X = U ∪ {∞}, U t
x = Ux, so M(U, τ) = M(U t, τ−1) and

(1) holds.
Let a ∈ U∗, by [DS, Prop. 3.10(4)], and since µ2

a ∈ Aut(U),

µa = α−(∼a)µ−aαaµaα(∼(−a))µ2
a
. (3.1)

Notice that

αµa
a = αt

aµa
,

since
(
αt

aµa

)µ−a
= α

τµ−a

aµaτ−1 = αa. But by definition of the µ-maps in M(U t, τ−1) (where the

roles of U0 and U∞ are interchanged), we know that µt
aµa

is the unique element of U∞αt
aµa

U∞
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that swaps 0 and ∞. Hence by equation (3.1),

µa = µt
aµa

.

Replacing a with aµ−a and recalling ([DS, Prop. 3.9(2)]) that µaµ−a
= µ−a we get µt

a = µ−1
a .

Now, by [DS, Proposition 3.9(1)], and keeping in mind that τ t = τ−1, we have

ht
a = τ tµt

a = τ−1µ−a ,

which finishes the proof of this lemma.

Remark 3.2. For a, b ∈ U∗ with a 6= ∼b, let

a ⊕ b := (aτ−1 + bτ−1)τ,

as above. Then

(aτ−1 + bτ−1)τ = (aτ−1 − (∼b)τ−1)τ.

By [DS, Proposition 3.3(1), 3.9(2) and 3.10(3)], we have

µ∼a = µ−((−a)µa) = µ−1
(−a)µa

= µ−1
a µ−aµa = µ−a,

it follows from [DS, Prop. 3.10(5)], that

µa⊕b = µbµ∼b−aµa.

Further, if M(U, τ) is special, then ∼a = −a and we have

µt
a⊕b = µ−(a⊕b) = µ(−b)⊕(−a) = µ−aµa+bµ−b.

4. Uniqueness of U in special Moufang sets

In this section we continue with the notation of [DS]. We let M(U, τ) be a special Moufang
set, G its little projective group and H = G0,∞ its Hua-subgroup. Our goal in this section is
to prove the following two characterizations of the root groups.

Theorem 4.1. Let M(U, τ) be a special Moufang set. Then U∞ is the unique normal
subgroup of G∞ which is regular on U .

Theorem 4.2. Let M(U, τ) be a special Moufang set. If N∞ ≤ G∞ is a normal nilpotent
subgroup such that N∞ is transitive on U , then U is abelian and N∞ = U∞.

We start with the proof of Theorem 4.1. We distinguish two cases according to whether U
is a group of exponent 2 or not. We start with the latter case so

until Lemma 4.8 we assume that U is not a group of exponent 2.

In particular, by the main result in [SW],

U contains no non-trivial proper H-invariant subgroup. (∗)

Lemma 4.3. Let G ≤ Sym(X) be a transitive permutation group on X . then
(1) CSym(X)(G) is semiregular;
(2) if G is regular, then CSym(X)(G) is regular;
(3) if G is abelian and regular then CSym(X)(G) = G.

Proof. Let σ ∈ CSym(X)(G). Since G is transitive on the fixed points of σ, it follows that
σ = 1 or σ has no fixed points, so (1) holds. (2) holds because the left regular representation
commutes with the right regular representation and (3) is immediate from (2).
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Lemma 4.4. Let W∞ ≤ G∞ be a normal subgroup which is regular on U with W∞ 6= U∞.
Then

(1) W∞ = {αo
a | a ∈ U}, where bαo

a = a + b, for all a, b ∈ U , and hence W∞ = Uo
∞, where

M(Uo, τ) is the opposite Moufang set of M(U, τ);
(2) the little projective group Go of M(Uo, τ) is equal to G;
(3) the center of U is trivial;
(4) µo

a = µ−a, for all a ∈ U .

Proof. (1): Since U∞ ∩W∞ is H-invariant and distinct from U∞, it follows from (∗) that
U∞ ∩ W∞ = 1, hence also [U∞, W∞] = 1. Thus, by Lemma 4.3, W∞ is as claimed. The rest
follows from Lemma 2.3(1 and 5).

(2): Recall from Lemma 2.3(2), that Go = Ginv. Now Uo
∞ ≤ G∞ and G∞ = Uo

∞H . But
by Lemma 2.3(4), Ho = H , so we see that G∞ = Uo

∞H = Uo
∞Ho ≤ Go. By Lemma 2.3(5),

µa ∈ Go, for all a ∈ U∗, so since for each a ∈ U∗, G = 〈G∞, µa〉, we see that G ≤ Go = Ginv

so G = Go.

(3): If Z(U) 6= 0, then since Z(U) is H-invariant, U is abelian, by (∗). But then, by Lemma
4.3(3), Uo

∞ = U∞, a contradiction.

(4): This is Lemma 2.3(5).

In view of Lemma 4.4(1), to prove Theorem 4.1 we may assume by contradiction that Uo
∞

is a normal subgroup of G∞. We let

βa := αo
a, a ∈ U where αo

a as in Lemma 4.4(1).

Lemma 4.5. Let a ∈ U∗, then
(1) αaαµb

−aµ−b
αa = µa = β−aβµb

aµ−b
β−a, for all b ∈ U∗;

(2) αaαµa
a αa = µa = β−aβµa

−aβ−a;
(3) if a · 2 6= 0, then α

a·2
αµa

a· 12
α

a·2
= µ

a·2
= β

−a·2
βµa

−a· 12
β

−a·2
, where a · 1

2 ∈ U∗ is the unique

element such that (a · 1
2 ) · 2 = a (see Proposition 1.6);

(4) ca := αaβ−a ∈ H ;
(5) cb commutes with µa, for every b ∈ U which commutes with a;
(6) µ2

a = ca·3.

Proof. (1): To get the first equality in (1) we apply [DS, Prop. 3.10(2)] to the Moufang
set M(U, τ) recalling that M(U, τ) = M(U, µb), for all b ∈ U∗. Notice that by [DS, Lemma
4.2], ∼a = −a where ∼a = (−aµ−b)µb, b ∈ U∗. So the first equality of (1) holds. The second
equality is a similar application to the Opposite Moufang set M(Uo, τ), using Lemma 2.3(5).

(2): Follows from (1) by taking b = a and recalling that aµ−a = −a.

(3): In (1), take a·2 in place of a and a in place of b. By Proposition 1.6(2), (a·2)µ−a = −a· 12 ,
so (3) follows.

(4): Since G∞ = U∞H , for each b ∈ U∗ there exists a ∈ U∗ such that αaβb ∈ H , because
βb ∈ G∞. In particular 0αaβb = 0, so b = −a.

(5): By [DS, Prop. 3.9(2)], for b ∈ CU (a) we have, µcb
a = µacb

= µa, so cb commutes with
µa.

(6): By (4) and (5),

αµa
a βµa

−a = αaβ−a,
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or

αaαµa
a αaα−aβaβ−aβµa

−aβ−a = α
a·2

β−a·2.

Using (2) we get

µaα−aβaµa = α
a·2

β−a·2,

so since µa commutes with c−a, (6) follows.

Proposition 4.6.

(1) There exists no a ∈ U∗ of order 2;
(2) U is a group of exponent 3.

Proof. (1): Assume that a ∈ U∗ has order 2. Then by [DS, Lemma 4.3(5)], µ2
a = 1. By

Lemma 4.5(6),

ca = ca·3 = µ2
a = 1,

so a is in the center of U . But the center of U is trivial, a contradiction.

(2): Let a ∈ U∗. By (1) a · 2 6= 0, so by Proposition 1.6 there exists a unique element
a · 1

2 ∈ U∗, such that (a · 1
2 ) · 2 = a. We have

(αa· 12
β−a· 12

)µa = cµa

a· 12
= ca· 12

= αa· 12
β−a· 12

(by Lemma 4.5(5))

αµa

a· 12
βµa

−a· 12
= αa· 12

β−a· 12

α
a·2

αµa

a· 12
α

a·2
α

−a·2
β

a·2
β

−a·2
βµa

−a· 12
β

−a·2
= αa·2 1

2
β−a·2 1

2

µ
a·2α−a·2βa·2µa·2 = αa·2 1

2
β−a·2 1

2
(by Lemma 4.5(3))

µ2
a·2

α
−a·2βa·2 = αa·2 1

2
β−a·2 1

2
([c

a·2 , µa·2 ] = 1)

αa·4β−a·4 = αa·2 1
2
β−a·2 1

2
(µ2

a·2
= ca·6)

αa·1 1
2
β−a·1 1

2
= 1

Thus, if a · 3 6= 0, then a · 1 1
2 is a nonzero element in the center of U , a contradiction.

Proposition 4.7. Let M(U, τ) be a special Moufang set such that U is not a group of
exponent 2. Then U∞ is the unique normal subgroup of G∞ which is regular on U .

Proof. Otherwise Uo
∞ 6= U∞ is a normal subgroup of G∞. By Proposition 4.6, U is a group

of exponent 3, so U is nilpotent (cf. [Rob, 12.3.5, 12.3.6]). Hence, by [SW, Cor. 3.2], U is
abelian, contradicting Lemma 4.4(3).

Lemma 4.8. Assume that U is of exponent 2. Then H contains no non-trivial normal
subgroup of exponent 2.

Proof. Recall that by [DS, Lemma 4.3(5)], µ2
x = 1, for all x ∈ U∗. Assume that 1 6= E E H

is a normal subgroup of exponent 2. Let 1 6= h ∈ E, choose an element a ∈ U∗ with a 6= ah,
and let c := ah. Then b := a + c is a non-zero fixed point of h. Using equation (1.3) we get

E ∋ [µbµa, h] = µaµb(µbµa)h = µaµbµbhµah = µaµbµbµc = µaµc ,

so

1 = (µaµc)
2 = µcµa

µc.

It follows that µc = µcµa
. But the only fixed point of µx, x ∈ U∗ is x, because µx is conjugate

in G to αx (see [DS, 4.3(5)]). Thus c = cµa which implies a = c, a contradiction.
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Lemma 4.9. Assume U is of exponent 2. Then U∞ is the only regular normal subgroup of
G∞.

Proof. Let W = W∞ be a regular normal subgroup of G∞. Let w ∈ W ; then w = hαa, for
some a ∈ U and h ∈ H . Since W E G∞ conjugating by αa shows that αah ∈ W , which implies
that h2 = hαaαah ∈ W . But W is regular and h2 fixes 0, so h2 = 1. Thus we have shown that

if hαa ∈ W , where h ∈ H , then h2 = 1.

Let now h1αa, h2αb ∈ W . Then

W ∋ h1αah2αb = h1h2h2αah2αb = (h1h2)αah2+b.

This shows that

E := {h ∈ H | hαa ∈ W for some a ∈ U}
is an elementary abelian 2-subgroup of H . But if h ∈ E, then hαa ∈ W for some a ∈ U , and
then for g ∈ H we get

W ∋ (hαa)g = hgαag.

It follows that hg ∈ E, so E is normal in H . By Lemma 4.8, E = 1. Thus W ⊆ U∞, and since
W is regular W = U∞ as asserted.

Note now that by Proposition 4.7 and Lemma 4.9 the proof of Theorem 4.1 is complete. We
now turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. Set N := N∞. First suppose that U is not abelian, then by [SW,
Thm. 1.2] we have U∞∩N = 1 or U∞∩N = U∞. If U∞∩N = 1, then N centralizes U∞, so, by
Lemma 4.3, N ∼= U∞, so U is nilpotent and by [SW, Cor. 3.2], U is abelian, a contradiction.

If U∞∩N = U∞, then U∞ ≤ N and again U is nilpotent and hence abelian, a contradiction.
Thus U is abelian, in particular, by [DS, Lemma 5.1], µ2

x = 1, for all x ∈ U∗.
Replacing N by NU∞ we may assume U∞ ≤ N (notice that NU∞ is nilpotent). Let H :=

N ∩H , so N = U∞⋊H. Since no non-trivial element of H centralizes U∞, we have Z(N) ≤ U∞

(because if αah ∈ Z(N), h ∈ H, then h centralizes U∞). Let

W := {a ∈ U | αa ∈ Z(N)} = {a ∈ U | ah = a for all h ∈ H}.
Notice that W 6= 0 is H-invariant, so unless U is an elementary abelian 2-group, we have
W = U . But then any h ∈ H fixes all a ∈ U and hence h = 1, i.e. N = U∞.

We may thus assume that U has exponent 2 and that H 6= 1, so W 6= U . Note that H E H
and that for b ∈ W ∗ and h ∈ H we have µh

b = µbh = µb. Hence

hµa = hµbµa ∈ H for all h ∈ H, a ∈ U∗ and b ∈ W ∗.

Now for h ∈ H and a ∈ U∗ we have H ∋ [µa, h] = µaµah. It follows that for b ∈ W ∗,
b = bµaµah, so bµa = bµah = bh−1µah = bµah. Since bµa is fixed by all h ∈ H this implies that
bµa ∈ W . We have shown that

bµa ∈ W for all b ∈ W ∗ and a ∈ U∗. (i)

We have µa = αaαµa
a αa, so bµa = ((b + a)µa + a)µa + a ∈ W for all b ∈ W ∗, a ∈ U∗, or

a = bµa − ((b + a)µa + a)µa for all b ∈ W ∗ and a ∈ U∗. (ii)

We will find a /∈ W and b ∈ W ∗ such that (b + a)µa + a ∈ W , this contradicts (i) and (ii).
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Let αa ∈ (Z2(N) ∩ U∞) \ Z(N) (so a ∈ U r W ). Then [αa, h] ∈ Z(N), i.e.

a + ah ∈ W , for all h ∈ H. (iii)

For some h ∈ H we have b = a+ah ∈ W ∗, so ah = a+b 6= a. Now (a+b)µa +a = (ah)µa +a =
ahµa + a ∈ W because hµa ∈ H and by (iii); this contradiction completes the proof.

5. Special Moufang sets with Inv(U) 6= ∅ have abelian root groups

In this section M(U, τ) is a special Moufang set. We continue with the notation of [DS].

Lemma 5.1. Let a, b ∈ U∗, then the order of aµb equals the order of a.

Proof. This is because, (−a)µa = a so aµb = (−a)µaµb, and since µaµb ∈ Aut(U).

Lemma 5.2. Let M(U, τ) be a special Moufang set, let a, b, x ∈ U∗, and set c = (bµ−x −
aµ−x)µx. Then

(1) c = (−b − aµ−b)µb = (bµ−a + a)µa;
(2) µa−b = µaµcµ−b = µaµ−bµaµ−b+b = µ−a−bµ−a

µaµ−b;
(3) (aµx + bµx)µ−x = (a + b)µ−b + b = a + (a + b)µa;
(4) (a + b)µx = (aµb − b)µx + bµx = aµx + (−a + bµ−a)µx;
(5) aµa+b = −b − a + aµb − b;

Proof. (1): Recall that H ≤ Aut(U), so c is independent of x (given y ∈ U∗, c = cµ−yµy =
(bµ−y − aµ−y)µy) so (1) is obtained by choosing x = b for the first equality and x = a for the
second.

(2): The first equality in (2) is [DS, Prop. 3.10(5)]. Then, by (1) and [DS, Prop. 3.9(2)],

µa−b = µaµ
(−b−aµ

−b)µb
µ−b = µaµ−bµaµ−b+b.

For the third equality we have

µa−b = µaµ(bµ−a+a)µa
µ−b = µ−a−bµ−a

µaµ−b.

(3): This is [DS, Lemma 4.4(2)].

(4): By (3),

(a + b)µx = (aµxµ−x + bµxµ−x)µx = (aµx + bµx)µ−bµx
+ bµx

= (aµx + bµx)µ−xµbµx + bµx = (aµb − b)µx + bµx.

The other equality of (4) follows similarly from the second equality in (3).

(5): This is [DS, Lemma 4.4(3)].

Parts of the following proposition are included in [N, Cor. 5, p. 412].

Proposition 5.3.

(1) If x, y ∈ U∗ are such that [x, y] = 0 and k ∈ Q is such that x · k is well defined, then
[x · k, y] = 0;

(2) if a ∈ U∗ is an element whose order is a prime p, then CU (a) is a group of exponent p;
(3) if a ∈ U∗ is of infinite order, then CU (a) is a torsion-free uniquely divisible group.
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Proof. (1) is obvious from the unique divisibility in Proposition 1.6.
For (2) let b ∈ CU (a) and assume that the order of b is not p. Then the order of a + b is not

p and by (1) we have
(

(a + b) · 1
p
− b · 1

p

)

· p = a,

contradicting the fact that a has no p-root in U (cf. Proposition 1.6).
Finally (3) follows from (2), because by (2) each element in CU (a) has infinite order, and by

(1) and Proposition 1.6, CU (a) is uniquely divisible.

Proposition 5.4. Let a, b ∈ U∗, such that a ∈ Inv(U) and a inverts b. Then a centralizes
b and hence b ∈ Inv(U).

Proof. First note that

if x, y ∈ Inv(U), then x commutes with xµy , (∗)
Indeed, by Lemma 5.2(5), xµx+y = y +x+xµy + y, so by Lemma 5.1, x+xµy is an involution
and (∗) follows.

Notice that by Proposition 5.3,

CU (t) is a group of exponent 2, for all t ∈ Inv(U). (∗∗)
Let a ∈ Inv(U) and let b ∈ U∗ be an element inverted by a. We will show that b ∈ CU (a).

If b ∈ Inv(U), then we are done. So we may assume that b /∈ Inv(U). Consider the following
equality of Lemma 5.2(5)

aµa+b = −b + a + aµb − b = a + b + aµb − b.

Since a + b ∈ Inv(U) (because a inverts b), it follows from (∗) that a commutes with aµa+b so
a commutes with b + aµb − b. Conjugating by b we see that aµb commutes with −b + a + b,
hence

if a inverts x ∈ U∗ r Inv(U), then aµx commutes with −x + a + x. (5.1)

In what follows we will use the following facts from [DS, Prop. 4.10]:

(b · γ)µb·δ = −b · δ2

γ
, µµb·δ

b·γ = µ
b· δ2

γ

(5.2)

for all γ, δ ∈ Q such that b · γ, b · δ are well defined. Notice that the uniqueness of roots in U
implies that a inverts b · γ, for every γ ∈ Q for which b · γ is well defined. Let now α, β ∈ Q

such that b · α and b · β are well defined. From equation (5.1) we get

aµb·α commutes with −b · α + a + b · α. (5.3)

Applying µ−b·αµb·β ∈ Aut(U) to equation (5.3) we get

aµb·β commutes with −b · β2

α
+ aµ−b·αµb·β + b · β2

α
.

Replacing in this last equality β with α and α with −β we get

aµb·α commutes with b · α2

β
+ aµb·βµb·α − b · α2

β
. (5.4)

From equations (5.3) and (5.4) using (∗∗) we see that

−b · α + a + b · α commutes with b · α2

β
+ aµbβµbα − b · α2

β

and after conjugating by −bα we get

a commutes with aµb·βµb·α − b · (α + α2

β
) · 2 (5.5)
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Notice that we have used (5.2) which implies that aµb·βµb·α inverts b (because µb·βµb·α ∈
Aut(U)). Since a and aµbβµbα invert b, a + aµb·βµb·α centralizes b. But by equation (5.5), a

commutes with c := a + aµb·βµb·α − b · (α + α2

β
) · 2 and c commutes with b. Hence, if c 6= 0,

then, by (∗∗), c is an involution, and hence b is an involution. We have thus shown that

aµb·βµb·α = a + b · (α + α2

β
) · 2. (5.6)

Taking in equation (5.6) α = β = −1 we get

aµ2
−b = a − b · 4. (5.7)

But taking in equation (5.6) β = −1 and α = 2 we also get

aµ−bµb·2 = a − b · 4. (5.8)

Hence aµ2
−b = aµ−bµb·2. Applying µb on both sides of this equality and using equation (5.2)

we obtain aµ−b = aµb· 12
or

a = aµb· 12
µb (5.9)

But from equations (5.6) and (5.9) we get

a = aµb· 12
µb = a + b · 6.

so b · 6 = 0. Since the order of b is a prime (see Proposition 1.6(4)) and b /∈ Inv(U) we see that
b · 3 = 0. But then, by [DS, 4.10(5)], µ4

−b = 1. However, by equation (5.7), aµ2
−b = a − b, so

a = aµ4
−b = aµ2

−b − b = a − b · 2.

This is a contradiction and the proof the proposition is complete.

As a corollary we get

Theorem 5.5. If Inv(U) 6= ∅, then U is a group of exponent 2.

Proof. Let b ∈ U∗. We will show that b ∈ Inv(U). Assume not and let a ∈ Inv(U), then
aµa+b = −b+a+aµb−b, and conjugating by b we get that −b ·2+a+aµb ∈ Inv(U), by Lemma
5.1. Thus aµb inverts −b · 2 + a, so, by Proposition 5.4, −b · 2 + a is an involution. It follows
that a inverts −b · 2 and hence a inverts b. But then, by Proposition 5.4, b is an involution, a
contradiction.

The following fact is well known, but our proof below relies only on the Feit-Thompson odd
order theorem but not on further results related to the classification of finite simple groups.

Corollary 5.6. Assume that M(U, τ) is finite, then U is abelian.

Proof. By Theorem 5.5, we may assume that |U | is odd, so, by the Feit-Thompson theorem,
U is solvable. But by [SW, Thm. 1.2], U is characteristically simple, so U is abelian.

6. Special Moufang sets in which the µ-maps are involutions have abelian root groups

Throughout this section M(U, τ) is a special Moufang set. Furthermore we assume that
Inv(U) = ∅, and hence, by Proposition 1.6, U is uniquely 2-divisible. We start with

Lemma 6.1. Let x, y ∈ U∗ with x 6= −y then
(1) xµ2

y+x = x ⇐⇒ xµy+x = −y + xµ−y − x − y;
(2) if xµ2

y+x = x = xµ2
y , then xµy+x = −y + xµy − x − y.
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Proof. We have xµ2
y+x = x if and only if xµy+x = xµ−x−y. But by Lemma 5.2(5),

xµ−x−y = −(−x)µ−x−y = −[y + x − xµ−y + y] = −y + xµ−y − x − y,

so (1) holds. If, in addition, xµ−y = xµy, then (2) holds.

Proposition 6.2. Let a, b ∈ U∗, then
(1) if aµ2

b = aµ2
−a+b+a = aµ2

b+a = aµ2
−b+a = a, then a and b commute;

(2) if aµx+a = −x + aµx − a − x, for x ∈ {b,−a + b}, then a and b commute.

Proof. We start with

aµ−a+b+a = b + a + aµb+a − a + b + a. (6.1)

Indeed,

aµ−a+b+a = −(−a)µ−a+(b+a)

= −[−a − b + a − aµb+a − a − b] (by Lemma 5.2(5))

= b + a + aµb+a − a + b + a.

Next we claim that

if aµ2
−a+b+a = a, then aµ−b+a = −a + b · 2 + a + aµb+a − a + b · 2 + a. (6.2)

By equation (6.1) with −b in place of b we have

aµ−a−b+a = −b + a + aµ−b+a − a − b + a. (6.3)

Since aµ2
−a+b+a = a, we get from equation (6.1) and equation (6.3) that

b + a + aµb+a − a + b + a = −b + a + aµ−b+a − a − b + a

and this shows (6.2).
Our next claim is

if aµ2
b = aµ2

−a+b+a = aµ2
b+a = a, then

aµ−b+a = −a + b · 2 + a − b · 2 + aµ−a+b − b · 2 − a + b · 2 + a. (6.4)

Using Lemma 6.1, it follows from equation (6.2) that

aµ−b+a = −a + b · 2 + a − b + aµb − a − b − a + b · 2 + a . (6.5)

However by Lemma 5.2(5),

aµ−a+b = −(−b + a − aµb − b) = b + aµb − a + b,

so aµb − a = −b+ aµ−a+b− b, and substituting in equation (6.5) gives the equality in equation
(6.4).

We can now proceed with the proof of the proposition.

(1): Set x = −a + b · 2 + a, y = b · 2 and z = aµ−b+a. Since aµ−b+a = aµ−a+b, equation
(6.4) may be written as z = x − y + z − y + x, so −x + z − x + z = −y + z − y + z. Thus, by
unique 2-divisibility, −x + z = −y + z, so x = y, that is a commutes with b · 2, so, by unique
2-divisibility, a commutes with b.

(2): We claim that

aµ−a+b+a = b + a − b + aµb − a − b − a + b + a. (6.6)

This is because by equation (6.1) and the hypothesis in (2) for x = b,

aµ−a+b+a = b + a + aµb+a − a + b + a

= b + a + [−b + aµb − a − b] − a + b + a.
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Also

aµ−a+b+a = −b + a + b + aµb − a + b − a − b + a, (6.7)

because by the hypothesis in (2) for x = −a + b and by Lemma 5.2(5),

aµ(−a+b)+a = −b + a + aµ−a+b − a − b + a

= −b + a − (−a)µ−a+b − a − b + a

= −b + a − [−b + a − aµb − b] − a − b + a

= −b + a + b + aµb − a + b − a − b + a .

Comparing (6.6) and (6.7) we get

b + a − b + [aµb − a − b − a + b + a] =

[−b + a + b + aµb − a] + [b − a − b + a] ⇐⇒

x
︷ ︸︸ ︷

aµb − a +

y
︷ ︸︸ ︷

(−b − a + b · 2 + a − b) =

−y
︷ ︸︸ ︷

(b − a − b · 2 + a + b)+

x
︷ ︸︸ ︷

aµb − a . (6.8)

So equation (6.8) says that x + y = −y + x and it follows that (x + y) · 2 = x · 2. By unique
2-divisibility, x + y = x, so y = 0, or b · 2 + a = a + b · 2. It follows that a commutes with b · 2
and hence (again by unique 2-divisibility) a commutes with b.

As a corollary we get Theorem 4 of the introduction (note that the case where Inv(U) 6= ∅
in Theorem 4 was already handled in Theorem 3).

Theorem 6.3. Let M(U, τ) be a special Moufang set. Then the following are equivalent:
(i) U is abelian.
(ii) µ2

a = 1, for all a ∈ U∗.
(iii) aµb+a = −b + aµb − a − b, for all a, b ∈ U∗.

Proof. By [DS, Lemma 5.1], if U is abelian, then µ2
a = 1, for all a ∈ U∗, so (i) implies (ii)

(and this is regardless of whether Inv(U) is empty or not). Assume µ2
a = 1, for all a ∈ U∗, then

(iii) follows by Lemma 6.1(2) and (i) follows by Proposition 6.2(1). Finally, by Proposition
6.2(2), (iii) implies (i).

A corollary to Theorem 6.3 is the following characterization of the Moufang set associated
with PSL2(k), where k is a commutative field of characteristic 6= 2.

Corollary 6.4. Let M(U, τ) be a special Moufang set with little projective group G† and
Hua subgroup H .
(1) For each h ∈ Z(H) r {1} we have CU (h) = 0;
(2) if H is abelian then U is abelian and G† ∼= PSL2(k) for some commutative field k with

char(k) 6= 2;
(3) if G† is Zassenhaus then U is abelian.

Proof. Recall that we are assuming Inv(U) = ∅ (and hence U is uniquely 2-divisible). Let
h ∈ Z(H) r {1}; now [SW, Theorem 1.2] says that U has no non-trivial proper H-invariant
subgroup, so since CU (h) is H-invariant, (1) holds.

Assume H is abelian. Then for each a ∈ U∗, µ2
a ∈ Z(H) and a ∈ CU (µ2

a), so by (1), µ2
a = 1.

Hence by Theorem 6.3, U is abelian, and (2) is now a consequence of [DW, Thm. 6.1].
Finally, if G† is Zassenhaus, then for each a ∈ U∗, the element µ2

a ∈ G† has at least three
fixpoints 0, ∞ and a, and hence µ2

a = 1 for all a ∈ U∗. By Theorem 6.3 again, U is abelian.
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7. Toward a general proof for RGC(2)

In this section we collect some results that will hopefully become useful for the general proof
of part (2) of the Root Groups Conjecture. We assume that M(U, τ) is a special Moufang set
and that Inv(U) = ∅. Notice that by Proposition 1.6 this implies that U is uniquely-2-divisible.
Throughout this section p denotes an odd prime.

Lemma 7.1. Let a, b ∈ U∗, then

(1) −b · 2 − a = −b + aµa+b + b − aµb, in particular
(2) if U contains elements of order p, then every element in U is the sum of of two elements

of order p.

Proof. By Lemma 5.2(5), aµa+b = −b − a + aµb − b, so (1) holds. For (2) we choose a of
order p, and then by Lemma 5.1, −b + aµa+b + b and aµb have order p. Since U is 2-divisible,
and b is an arbitrary element of U∗, b · 2 is an arbitrary element of U∗. Thus −b · 2 − a is an
arbitrary element of U r {−a} and so part (2) holds.

Lemma 7.2. Let a, b ∈ U∗, then the equality −a + b + a = −b never holds in U (i.e. a does
not invert b).

Proof. This follows from the unique 2-divisibility of U . Indeed, suppose that −a+b+a = −b.
Then b + a + b = a and hence (b + a) · 2 = a · 2. By the unique 2-divisibility of U we get that
b + a = a, a contradiction.

Notation 7.3. Let a ∈ U∗ and let |a| be the order of a. We denote Fa = GF(p) if |a| = p,
where p is a prime, and Fa = Q, if |a| = ∞ (see Proposition 1.6(4))). We let Xa := 〈µa, αa·t |
t ∈ Fa〉. Observe that by Remark 1.7, a · t is well defined for every t ∈ Fa.

Lemma 7.4. Let c ∈ U∗ and set F := Fc (see Notation 7.3). Then Xc is a special rank one
group with abelian unipotent subgroups (see Definition 1.10). Hence if |c| > 3, then Xc is a
perfect central extension of PSL2(F), and if |c| = p is a prime, then Xc

∼= (P)SL2(p).

Proof. Let X := Xc, A := {αc·t | t ∈ F} and B := {αµc

c·t | t ∈ F}. Notice first that X =
〈A, B〉, because by [DS, Lemma 4.3(3)], µc = αcα

µc
c αc. We claim that for each a = αc·t ∈ A∗,

the element b = αµc

−c·t−1 ∈ B∗ satisfies the equality ab = b−a; it will then follow by Proposition
1.11(5) that Xc is a special rank one group.

To prove the claim, we first show that

αµc

c·t−1 = αµc·t

c·t (7.1)

for all t ∈ F. Indeed, we apply both sides on some arbitrary element x ∈ U :

(xµ−1
c + c · t−1)µc = (xµ−1

c·t + c · t)µc·t ⇐⇒
xµ−1

c + c · t−1 = (xµ−1
c·t + c · t)µc·tµ

−1
c ⇐⇒

xµ−1
c + c · t−1 = xµ−1

c + (c · t)µc·tµ
−1
c ,

where we have used the fact that µc·tµ
−1
c ∈ Aut(U). Using [DS, 4.10(1)], we have that

(c · t)µc·tµ
−1
c = (−c · t)µ−1

c = c · t−1 ,

which proves equation (7.1).
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Now let d = c · t; then, by equation (7.1), b−1 = αµd

d , so the equation ab = b−a can be
rewritten as

α
(α

µd
−d)

d = αµdαd

d .

This can be rewritten as

µ−1
d αdµdαdµ

−1
d α−dµd = α−dµ

−1
d αdµdαd ⇐⇒

αdµ
−1
d αdµdαdµ

−1
d = µ−1

d αdµdαdµ
−1
d αd ;

using the fact that µ2
d commutes with αd, this is equivalent to

(αdµd)
3 = µd(αdµd)

3µ−1
d .

But by [DS, Lemma 4.3(4)], we know that (αdµd)
3 = µ4

d, and this finishes the proof of the
first part of the lemma. The second part now follows from [Ti, Theorem 5.6].

Lemma 7.5. Let the notation be as in Notation 7.3 and let a ∈ U∗ with |a| 6= 3. Let
La denote PSL2(Fa) if |a| = ∞ or |a| < ∞ and µ2

a = 1, while La = SL2(Fa), if |a| < ∞
and µ2

a 6= 1 = µ4
a. Let δa : SL2(Fa) → PSL2(Fa) be the canonical homomorphism in the first

two cases and let δa be the identity map on SL2(Fa) in the third case. Then there exists an
epimorphism ϕa : Xa → La such that

(αa·t)ϕa =

(
1 t
0 1

)δa

and (µa)ϕa =

(
0 1
−1 0

)δa

.

Moreover, if |a| < ∞, then ϕa is an isomorphism. We furthermore have

(µa·t)ϕa =

(
0 t

−t−1 0

)δa

.

Proof. First by [St, Theorem 10] (see also [Ti, (5.1), p. 54], the universal perfect central
extension of PSL2(Fa) is the group X generated by the symbols a(t), b(t) subject to the relations
(A) a(t)a(s) = a(t + s), b(t)b(s) = b(t + s), t, s ∈ Fa;
(B) a(u)n(t) = b(−t−2u), u ∈ Fa, t ∈ F∗

a, n(t) := a(−t)b(t−1)a(−t).
For u ∈ Fa and t ∈ F∗

a, let

α(t) := αa·t , β(t) = αµa

−a·t , ν(t) = µ−a·t ,

where α(0) = β(0) = 1. Then clearly the relations (A) are satisfied by α(t) and β(t). Also, by
[DS, 3.10(2)] with τ = µa (noting that ∼a = −a in a special Moufang set), we have

µ−a·t = α−a·tα
µa

(a·t)µ−a
α−a·t,

thus by Proposition 1.6(2),

µ−a·t = α−a·tα
µa

−a·t−1α−a·t,

we thus see that ν(t) = α(−t)β(t−1)α(−t). We now check that α(u)ν(t) = β(−t−2u). We have

α(u)ν(t) = β(−t−2u) ⇐⇒
α

µ−a·t
a·u = αµa

a·t−2u
⇐⇒

α
µ−a·tµ−a
a·u = αa·t−2u ⇐⇒

α(a·u)µ−a·tµ−a
= αa·t−2u ⇐⇒

αa·t−2u = αa·t−2u,

where we have used [DS, Prop. 4.10(1)] for the last equivalence above. So we have shown that
α(t) and β(t) satisfy the relations (B) as well.
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Next, if we let ◦ : SL2(Fa) → PSL2(Fa) be the canonical homomorphism, then

a(t) :=

(
1 t
0 1

)◦

, b(t) :=

(
1 0
t 1

)◦

, n(t) :=

(
0 −t

t−1 0

)◦

, t ∈ Fa,

satisfy the Steinberg relations (A), (B) above. By the universal properties of the universal
central extension of PSL2(Fa) the map ϕa exists in the first two cases. Since the universal
central extension of PSL2(p) is SL2(p) for an odd prime p 6= 3, ϕa exists also in the third case.

Our next few lemmas investigate the fixed points of the µ-maps. Lemma 7.6 below is a useful
(slight) extension of [DS, Prop. 4.9(3)] and will be used in the proof of Lemma 7.7.

Lemma 7.6. Let a, b ∈ U∗. If aµb = −a, then b ∈ {a,−a}.

Proof. We have µµb
a = µ−aµb

= µa and hence µb = µµa

b = µ−bµa
. Thus, by [DS, Prop. 4.9(4)],

bµa ∈ {b,−b}. But if bµa = b, then, by Lemma 7.7(1) below, aµb = a, a contradiction. Thus
bµa = −b and hence, by [DS, Prop. 4.9(3)], b ∈ {a,−a}.

Proposition 7.7. Let a, b ∈ U∗ be two elements such that aµb = a, then
(1) bµa = b;
(2) a and b have the same order;
(3) µ2

a = µ2
b ;

(4) if |b| < ∞ and |b| ≡ 1 (mod 4), then a ∈ {b ·
√
−1,−b ·

√
−1} (note that

√
−1 ∈ Fb, see

Notation 7.3);
(5) 〈a, b〉 is nilpotent of class ≤ 2;
(6) if a has order 3 then a and b commute.

Proof. First we claim that

aµa+b = −b · 2, (7.2)

because by Lemma 5.2(5), aµa+b = −b − a + aµb − b = −b · 2.

(1): Using Proposition 1.6(2) Lemma 5.2(5) we have:

(−b · 2)µ−b−a = a ⇐⇒
−bµ−b−a = a · 2 ⇐⇒

a + b − bµ−a + a = a · 2 ⇐⇒
b = bµ−a,

so (1) holds.

(2): This follows from equation (7.2) and Lemma 5.1.

(3): By equation (7.2) and by [DS, Prop. 3.9(2)],

µ
µa+b

−a = µ−b·2,

and hence (µ2
−a)µa+b = µ2

−b·2. However, by equation (1.3),

µ
µ2

a

a+b = µ(a+b)µ2
a

= µaµ2
a+bµ2

a
= µa+b,

so µ2
a centralizes µa+b and, by [DS, Prop. 4.10(4)], µ2

−b·2 = µ2
−b, so (3) holds.

(4): By Lemma 1.6(2) we have (a ·
√
−1)µb = aµb · (

√
−1)−1 = −a ·

√
−1, and so part (4) is

a consequence of Lemma 7.6.
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(5): Assume now that the order of a is not 3. Note that by part (2), the order of b is not 3
either. Using Lemma 7.11(2) below we get

a · 1
2 − b · 2 − a · 2 + a · 1

2 = −b − a + a − b · 2 − a + b,

so

a · 1
2 − b · 2 − a · 1

2 = −b · 3 − a + b + a, (7.3)

Let x := a · 1
2 − b · 2 − a · 1

2 and y := −a + b + a. Then equation (7.3) says that x = −b · 3 + y,
and replacing b with −b in equation (7.3) gives −x = b · 3 − y. Together this implies that b · 3
commutes with y, and by unique 3-divisibility, b commutes with y, so b commutes with [a, b].
By symmetry a commutes with [a, b] and (5) holds.

(6): It remains to prove the case when a and b have order 3. By (7.2),

µb = µaµa+b
= µ−1

a+bµ−aµa+b,

multiplying by µ−b on the right and by µa+b on the left gives

µa+b = µ−aµa+bµ−b,

and using Lemma 5.2(2) we obtain

µ−aµa+bµ−b = µ−(aµ−b+bµ−b)µb
= µ−(a−b)µb

= µ(b−a)µb
.

It follows that

µa+b = µ(b−a)µb
.

By [DS, Prop. 4.9(4)] we get

(b − a)µb = ±(a + b), (7.4)

and applying µb to both sides of (7.4) gives

(a + b)µb = ±(b − a), (7.5)

using (7.4), (7.5) and Lemma 5.2(4) we obtain

±(b − a) = (a + b)µb = (aµb − b)µb − b

= (a − b)µb − b

= ±(a + b) − b

so

±(b − a) = ±(a + b) − b. (7.6)

Taking the plus sign in the RHS of (7.6) gives ±(b − a) = a which says that either b = 0 or
b = −a, a contradiction. Thus we have

±(b − a) = −b − a − b. (7.7)

Taking the minus sign in the LHS of (7.7) implies that a = b, which is impossible. Hence
b − a = −b − a − b or −b − a = −a − b as asserted.

Notation 7.8. Let a ∈ U∗. We denote by Ga the following group:
(1) if |a| = ∞, or |a| < ∞ and µ2

a = 1, Ga := PGL2(Fa);
(2) if |a| < ∞ and µ2

a 6= 1 = µ4
a, then we let j /∈ Fa be an element with j2 = −1 ∈ Fa (thus

{1,−1, j,−j} is a cyclic group of order 4) and

Ga :=
{
ǫg g | g ∈

〈
SL2(Fa),

(
0 1
1 0

)〉}
,

where ǫg = 1 if g ∈ SL2(Fa) and ǫg = j otherwise. Multiplication in Ga is defined by
(ǫg g)(ǫh h) = (ǫgǫh) (gh).
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Lemma 7.9. Let a, b ∈ U∗ and assume that aµb = a. Set H := 〈Xa, µb〉. Then
(1) µb normalizes Xa;
(2) if |a| ≡ 1 (mod 4), then H = Xa;
(3) suppose that a 6≡ 1 (mod 4). Then the map ϕa : Xa → La of Lemma 7.5 extends to

an epimorphism ϕ : H → Ga, where Ga is as in Notation 7.8. The map ϕ is defined by
(µb)ϕ = ( 0 1

1 0 )
δa , if a is as in case (1) of Notation 7.8, while (µb)ϕ = j ( 0 1

1 0 ) , otherwise. In
particular, if |a| < ∞, then ϕ is an isomorphism.

Proof. (1): By [DS, Lemma 4.3(1)] (with τ = µb) and by Lemma 1.6(2) we have

µa·t = αa·tα
µb

−a· 1
t

αa·t, t ∈ Fa

and hence

αµb

a·t = αa· 1
t
µ−a· 1

t
αa· 1

t
and µµb

a = µ−a. (7.8)

This shows that µb normalizes Xa.

(2): If b ≡ 1 (mod 4), then by Lemma 7.7(4), b = a · t, for t =
√
−1 ∈ Fa, so µb ∈ Xa and (2)

follows.

(3): Suppose that a 6≡ 1 (mod 4). Let ϕ be as stated above. Then by equation (7.8),

(αµb

a·t)ϕ = ((αa·t)ϕ)(µb)ϕ, ((µa)µb)ϕ = ((µa)ϕ)(µb)ϕ. (7.9)

Since
√
−1 /∈ Fa, this shows that (µb)ϕ /∈ Xaϕ. It follows that H 6= Xa. By Lemma 7.7(3),

|H/Xa| = 2. By equation (7.9) ϕa, can be extended to a homomorphism ϕ as claimed.

We believe that our next result will eventually lead to a proof that CU (a) is abelian, for all
a ∈ U∗.

Hypothesis Ab. Let a ∈ U∗. We will say that a satisfies Hypothesis Ab if CU (a)∗µa =
CU (a)∗.

Proposition 7.10. Let a ∈ U∗ and assume that CU (a)∗µa = CU (a)∗, then
(1) [aµx, bµx] = 0, for all b ∈ CU (a)∗ and x ∈ U∗;
(2) CU (a)∗µx = CU (a)∗ = C(aµx)∗, for all x ∈ CU (a)∗ and hence CU (a) is either an abelian

group of exponent p, for some prime p, or a Q-vector space.

Proof. (1): Let b ∈ CU (a)∗. By hypothesis, bµa ∈ CU (a), so since µ−aµx ∈ Aut(U), we
have

0 = [aµ−aµx, bµaµ−aµx] = [−aµx, bµx].

this shows (1).

(2): Let b, x ∈ CU (a)∗ with b − x 6= 0. By Lemma 5.2(4),

(b + x)µa = (bµx − x)µa + xµa

By hypothesis (b+x)µa, xµa ∈ CU (a), hence also (bµx−x)µa ∈ CU (a). But then, by hypothesis,
bµx − x = (bµx − x)µaµ−a ∈ CU (a). It follows that bµx ∈ CU (a).

We have thus shown that CU (a)∗µx = CU (a)∗. Now

CU (aµx) = CU ((−a)µaµx) = CU (a)µaµx = CU (a)µx = CU (a).

Set V := CU (a). Then, by Lemma 1.8, M(V, µa) is a special Moufang set. But a is in the center
of V and since M(V, µa) is special, the center of V is either V or trivial (this follows from [SW,
Theorem 1.2]). Thus V = CU (a) is abelian. The rest of (2) follows from Proposition 5.3, since
M(V, µa) is a special Moufang set and V is abelian.
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We conclude this section with a lemma that gives various relations amongst the elements of
U .

Lemma 7.11. Let a, b ∈ U∗ and let 1 ≤ n < |a|, then
(1) (−b − a · n + aµb · 1

n
− b) · n = −b− a · n− b − a · (n− 1)− · · · − b − a + aµb − b − b − a−

b − a · 2 − · · · − b − a · (n − 1); in particular,
(2) aµb · 1

2 − b · 2 − a · 2 + aµb · 1
2 = −b − a + aµb − b · 2 − a + b.

(3) a + b − aµb · 1
2 commutes with a · 2 + b · 2 − aµb.

Proof. (1): Let n < |a| then, by Lemma 1.6(2) and Lemma 5.2(5),

aµa·n+b = (a · n)µa·n+b · n = (−b − a · n + aµb · 1
n
− b) · n.

On the other hand

aµa·n+b = aµa+a·(n−1)+b

= −b − a · n + aµa·(n−1)+b − b − a · (n − 1) .

Then computing aµa·(n−1)+b = aµa+a·(n−2)+b as above and continuing in this manner yields
(1).

(2): By (1) with n = 2 we have

−b − a · 2 + aµb · 1
2 − b · 2 − a · 2 + aµb · 1

2 − b = −b − a · 2 − b − a + aµb − b · 2 − a.

this shows (2).

(3): For (3) we first prove that

b − aµb · 1
2 + a commutes with −a + aµb − b · 2 − a. (7.10)

For that we rewrite (2)

x
︷ ︸︸ ︷

(aµb · 1
2 − b)+

y
︷ ︸︸ ︷

(−b − a)+

z
︷ ︸︸ ︷

(−a + aµb · 1
2 )

= −b +

z
︷ ︸︸ ︷

(−a + aµb · 1
2 )+

x
︷ ︸︸ ︷

(aµb · 1
2 − b)+

y
︷ ︸︸ ︷

(−b − a)+b.

Thus

−z + (z + x + y) + z = −b + z + x + y + b,

and we see that b − z commutes with z + x + y. This shows equation (7.10). Now conjugate
the identity of (7.10) by −a to get that a + b− aµb · 1

2 commutes with aµb − b · 2− a · 2, so (3)
holds.
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