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Abstract

Moufang sets are split doubly transitive permutation groups, or
equivalently, groups with a split BN-pair of rank one. In this paper,
we study so-called special Moufang sets with abelian root groups, under
the model-theoretic restriction that the groups have finite Morley rank.
These groups have a natural base field, and we classify them under the
additional assumption that the base field is infinite. The result is that
the group is isomorphic to PSLy(K) over some algebraically closed
field K.
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1 Introduction

Groups of finite Morley rank have received a lot of attention during the last
decades, because of their strong connections to algebraic groups. In fact,
the famous Cherlin-Zil’ber Conjecture states that any simple group of finite
Morley rank is isomorphic, as an abstract group, to an algebraic group over
an algebraically closed field. Excellent progress has been made for groups
of even type (see the forthcoming work in [ABC]), but the situation in the
other cases is much less clear, mainly because of the lack of Sylow-p-theory
for primes p # 2.

In analogy with the classification of finite simple groups, a natural class
of groups to start investigating is the class of rank one groups, i.e. the groups
with a split BN-pair of rank one. An equivalent description of these groups
uses the notion of a Moufang set, introduced by J. Tits [T].

*The first author is a Postdoctoral Fellow of the Research Foundation - Flanders (Bel-
gium) (F.W.O.-Vlaanderen).



Definition 1.1. A Moufang set is a set X together with a collection of
subgroups (U,).cx, such that each U, is a subgroup of Sym(X) fixing x and
acting regularly (i.e. sharply transitively) on X \ {z}, and such that each U,
permutes the set {Uy | y € X'} by conjugation. The group G := (U, | z € X))
is called the little projective group of the Moufang set; the groups U, are
called root groups.

This point of view turns out to be very powerful, and has already led to
several deep results as well as connections with the theory of Jordan algebras
[DW, DS, DST]. We point out that each Moufang set can be constructed
only starting from one abstract group U (usually written additively, even
though U can be non-abelian), together with one additional permutation 7 €
Sym(U*). (Here and elsewhere, we write U* for U\ {0}.) The corresponding
Moufang set is denoted by M(U, 7); we refer to [DW] for more details.

It turns out that it is possible to make more progress in the theory of
Moufang sets by assuming that the Moufang set is special.

Definition 1.2. A Moufang set M(U, 1) is called special if (—a)T = —(aT)
for all a € U™.

The fact that this is a natural assumption, is illustrated by the fact that
it was considered independently by Timmesfeld [Tim, p.2] in the context of
abstract rank one groups, and by Borovik and Nesin [BN, p.221-222] in the
context of groups with a split BN-pair of rank one (where it is precisely the
condition that “a inverts U”).

Despite some good progress, the classification of special Moufang sets
with abelian root groups is still open.

Conjecture 1.3. Let M = M(U, 1) be a special Moufang set with U abelian.
Then M = M(J) for some quadratic Jordan division algebra J, where M(J)
is defined in a very natural way as described in [DW].

The following conjecture that we are dealing with in this paper, is the
intersection of Conjecture 1.3 and the Cherlin-Zil’ber Conjecture.

Conjecture 1.4. Let M = M(U,7) be an infinite special Moufang set of
finite Morley rank, with U abelian. Then M = M(K) for some algebraically

closed field K, where M(K) is the Moufang set whose little projective group
is PSLy(K).

If M(U,7) is a special Moufang set with abelian root groups, then it
is known that U is a vector group, i.e. it is the additive group of a vector
space Moreover, if char(U) # 2, then H, the two point stabilizer of G,
acts irreducibly on U, and hence by Schur’s Lemma, K := Cgyq)(H) is a



division ring. If the Moufang set has finite Morley rank, then this division
ring is definable, and hence it is either a finite field or an algebraically
closed field. In this paper, we prove Conjecture 1.4 in the case where K is an
algebraically closed field. In particular, this gives a complete classification of
special Moufang sets of finite Morley rank with U abelian and char(U) = 0.
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2 Setup

Let M := M(U, 7) be a special Moufang set with U abelian. Then either U is
an elementary abelian p-group, in which case we put char(U) = p, or U is a
torsion-free uniquely divisible group, in which case we put char(U) = 0; see
[DS, Prop. 4.6(5)]. By the main result of [SW], either char(U) = 2, or H acts
irreducibly on U, and hence by Schur’s Lemma, the ring K := Cgpq)(H)
is a division ring.

We now assume in addition that M is of finite Morley rank (in the
language of permutation groups). In particular, X, U and G are definable,
and so is the Hua subgroup H := Gg «, the pointwise stabilizer of 0 and oo.
Moreover, G is connected because it is a simple group [DST, Theorem 1.11],

and then U is connected since the connected group G acts transitively on
X =U U {oo}.

By [MP, Theorem 1.2(b)], K is definable, and then by [Ch], K is a
commutative field; by Macintyre’s theorem [M], it then follows that K is
either finite or algebraically closed; see also [BN, Thm 8.10].

In this paper, we assume in addition that K is not finite. We will show
the following theorem.

Theorem 2.1. Let M(U, 7) be a special Moufang set of finite Morley rank,
with U abelian and char(U) # 2. Assume that the field K := Cguqu)(H)
is infinite. Then M(U,7) = M(K), the unique Moufang set whose little
projective group is PSLy(K).

We start with a proposition which we will use later, but which is inter-
esting in its own right. The proof is identical to the argument used in [BN,
Theorem 11.89], but the result is slightly more general since we do not as-



sume the existence of involutions in H (but we do assume that the Moufang
set is special).

Proposition 2.2. Let M(U,7) be a special Moufang set of finite Morley
rank, with U not necessarily abelian, and assume that each h € H* has no

fizpoints in U* (equivalently, G is a split special Zassenhaus group). Then
G = PSLy(K) and M = M(K) for some algebraically closed field K .

Proof. Let a € U* be arbitrary; then the map h — ah is a bijection from
H to aH, and hence RM(H) = RM(aH) for each a € U*. On the other
hand, the map +b — pgup is an injection from the quotient space U/{£1}
into H, and hence RM(H) > RM(U). Therefore RM(aH) = RM(U) for
all a € U*, i.e. each orbit aH is generic in U. But U is connected, so
it follows that there is only one orbit, i.e. H is transitive on U*. Since
each h € H* acts freely, this implies that H is regular on U*, and hence
G is sharply 3-transitive. But then G = PSLy(K) and hence M = M(K)
for some algebraically closed field K (see, for example, [BN, Thm. 11.88];
alternatively, see [BN, Thm. 8.5]). O

We now make an easy but important observation.

Lemma 2.3. U is an n-dimensional vector space over K for some natural
number n, and H < GL,,(K).

Proof. 1t is clear that U is a vector space over K, and since U has finite
Morley rank, this vector space is finite-dimensional. It follows from the
definition of K that every element of H is a K-vector space automorphism
of U. O

Notation 2.4. Let F be the prime field of K, i.e. if char(K) = p > 0, then
F = GF(p), and if char(K) = 0, then F = Q.

3 A minimal counterexample

We assume from now on, and until the end of the paper, that M = M(U, 1) is
a minimal counterexample to Theorem 2.1, i.e. a counterexample for which

RM(U) (the Morley rank of U) is minimal.

Note that it follows from [DW, Thm. 6.1] that for such a counterexample,
H is non-abelian. Observe that this implies by Lemma 2.3 that dimg U > 2.
We start with a lemma which gives information about the elements of H in
such a counterexample.

Lemma 3.1. (i) Let h € H. Then either h = X -id for some A € K*, or
each eigenspace of h corresponding to an eigenvalue in F (if any) is
one-dimensional and induces a sub-Moufang set isomorphic to M(K).



(ii) Assume that h has eigenvalues N and —\ for some N\ € F*, with
eigenspaces Vi and V_, respectively. Then auy € Vi for every a € V4
and every b e V, UV_.

Proof. (i) Assume that h & K -id. Let A be any eigenvalue of h which lies
in F*, and let V' be the corresponding eigenspace; then V is a proper
non-trivial definable subspace of U. In particular, V' is infinite. By IS,
Lemma 3.5], V' is a root subgroup, i.e. it induces a sub-Moufang set.
By the minimality of our counterexample, this induced sub-Moufang
set is isomorphic to M(L) for some algebraically closed field L. Note
that L contains K as an (algebraically closed) subfield. However, the
additive group of L is just V, which is a finite-dimensional vector
space over K. This can only happen if L = K, and hence V is one-
dimensional over K.

(ii) This follows from [S, Lemma 3.5]. O
Notation 3.2. Let ¢ : U — U be the map a — —a for all a € U.

Notation 3.3. Let N := (u, | a € U*); then N = G{g}, the setwise
stabilizer of {0,00}. Note that H is an index two subgroup of N, and that
N is a definable subgroup of G.

The main idea behind the following proposition comes from [S, Prop. 6.2].

Proposition 3.4. Let a,b € U* be such that apy, = a. Then pqpp = t; in
particular, 1 € H.

Proof. Let a,b € U* be such that au, = a, and let h := pgpup; then h? =
Palta® = Haflay, = 1. Note that h # 1 since otherwise p1 = i, and hence
b = bup = —b #£ b.

Assume now that h # ¢, and let Vi :={z € U | zh =z} and V_ := {x €
U | zh = —z}; then by Lemma 3.1(i), both V} and V_ are either trivial
or one-dimensional subspaces of U. But since h? = 1, the only possible
eigenvalues of h are 1 and —1, and since dimg U > 2, it follows that neither
V4 nor V_ is trivial. Hence U =V, @ V_ and dimg V4 =dimg V_ = 1.

Now fix some ¢ € Vi, and observe that a,b € V_. Let g := pcpiq. By
Lemma 3.1(ii), both p. and p, stabilize the subsets V; and V*, and hence
the same is true for D := ¢(ue, ptq), i-€. the definable closure of the subgroup
of G generated by u. and p,. Note that g € D.

Assume first that the order of g is either odd or infinite. Then by [BN,
Exercise 1 on p.175], p. and p, are conjugate in D; say p. = ,ug for some
f € D. Since N is definable and p, g € N, we have D < N, and hence
ug = pas by [DS, Prop. 5.2(2)]. But now p. = pef, and this implies af = ¢



or af = —c; see [DS, Prop. 4.9(4)]. In both cases, this contradicts the fact
that f stabilizes the sets V; and V_.

Assume now that the order of g is 4t + 2 for some natural number t.
Then ,ugt commutes with p,. Let d := cg® € V; then it follows that g
commutes with p,. Hence pg = piqy,, from which it follows that a = apug
and similarly d = dpu,. (Note that the cases a = —apug and d = —djpu, cannot
occur since either of them would imply a = +d which is impossible since
a € V_ whereas d € V.) But since d € V., we have d = duqup = dup, and
therefore bug = b as well. But now pg fixes both a and b, which contradicts
[S, Prop. 4.1(3)].

Assume finally that the order of g is 4t for some natural number . Let
Ne = (g | x € V) for € € {+,—}. Then p, € N_ and p. € Ni; moreover,
ptq and g, normalize both Ny and N_. In particular, g* = [pe, o] € Ny N
N_. Now note that D is a finite dihedral group and that D N H is a cyclic
subgroup of index two, which has a unique involution, namely ¢*. Let
Dy = {pe, g% and D_ := (g, ¢%); then D, < DN N, and g% is still
the unique involution of D, N H for € € {+,—}. But by the structure of
M, = M(K), we know that N. N H has a unique involution, which inverts
each element of V;. Since this involution is equal to g?* for both € € {+, -},
we conclude that g? = .. On the other hand, h = peuy € N_ N H, and
therefore h = ¢ after all (which in fact contradicts our initial assumption
that h #1). O

Corollary 3.5. For each a € U*, the map pq has at most two fixrpoints.

Proof. Indeed, assume that bu, = b and cu, = ¢, then it follows from
Proposition 3.4 that uppe = ¢ and pepy = ¢, and hence pp = ., implying
c= =£b. O

Proposition 3.6. (i) H acts transitively on U*.

(ii) For each a € U*, the map pg has precisely two fixpoints, namely ta-~,
where v = =1 in K.

(iii) For each a € U*, aK < U induces a sub-Moufang set isomorphic to
M(K).

Proof. Recall that we are considering a minimal counterexample to Theo-
rem 2.1. Hence by Proposition 2.2, there is at least one element h € H*
that has fixpoints in U*. It then follows from Lemma 3.1(i) that M has a
proper sub-Moufang set isomorphic to M(K). Write

U=a-KoW,



where a - K induces the sub-Moufang set; in particular,
(a-8)pas = —a - s 1t (3.1)

for all s,t € K. Observe that this implies that a K* C aH and hence that
aH is closed under scalar multiplication by elements of K*. Also, it follows
from equation (3.1) and Corollary 3.5 that

Fixp«(par) = {a - ty, —a - tv} (3.2)
for each t € K*. We now claim:
If 11 fixes some element of a K™, then b € a K™, (3.3)

Indeed, let b € U* be such that (at)u, = at for some t € K*. Then by [DST,
Prop. 7.8(1)], buq: = b. But by (3.2), this implies b € aK*, which proves
the claim (3.3).

Suppose that there is some b € U* \ aH, and let g := pqpup. If the order
of g is odd or infinite, then as before, u, and pp are conjugate in N; hence
there is an h € H such that p, = p? = pap; it follows that b = +ah € aH,
a contradiction. Hence g has order 2t for some natural number t.

The following claim is crucial.
If ag’ € aK*, then ¢ is even and ag’/? € aK*. (3.4)

Indeed, assume that ag’ = a -t for some natural number ¢ and some t € K*.
Let p € K* be such that p? = —t; then using equation (3.1) and the fact
that g € H commutes with scalar multiplication,

1 1

ap=—a-tp~' =—ag"-p7' = (=a- p papg "

= (ap)pp(papm)' ™",
ie. v = up(papn) ! fixes ap. If £is odd, say £ = 2s+1, then v = ,ugs = Lbgs-
But then by the claim (3.3), this implies bg® € aH and hence b € aH, a
contradiction. Hence £ is even, say £ = 2s, and v = uf = piq9s. Again
by (3.3), this implies ag® € a K*, proving the claim (3.4).

But g has order 2¢, hence pgqt = ,ugt = /14, and hence ag’ = +a € aK*.
Therefore we can start the descent argument of (3.4) and continue to divide
the exponent by 2, which leads to a contradiction since ¢ is a natural number.

Hence the assumption that there is some b € U* \ aH is false, and we
conclude that H is transitive on U*, proving (i).

Now let b € U* be arbitrary; then there is an h € H with b = ah, so in
particular pp = pf. Tt now follows from (3.2) that

Fixy- () = Fixy« () = Fixype (po)h = {£ayh} = {£by},



proving (ii). Moreover,
(bs)pvr = (ash)patn = ashply = (as)path = —as™t?h = —bs™'t?
for all s,t € K*, which proves (iii). O

Proposition 3.7. For all a,b € U* and all t € K*, we have

() (a- iy = o171
(i) apps = apy - 2.
Proof. (i) Let a,b € U* and t € K*. Then by Proposition 3.6(iii),
(at)up = (—apa)tiy = (—at™papp = (—a)papt ™" = appt™"

proving (i).
(ii) By (i) with a + b in place of a, we have

(at +bt)uy = (a+b)uy - 1.
By [DST, Lemma 5.2(4)] with = = b, this can be rewritten as

((at)ppe — bt pp + (bt = (aps — D)pay -t~ + by -t

Applying (i) again on both terms of the right hand side, we get

((at) o — )y + (08, = (apy - t — b8) iy + (bt) a5,

which simplifies to (at)up: = app - t. One final application of (i) yields
ap = apy - t2 as claimed. O

Corollary 3.8. K* < Z(H).

Proof. By the definition of K, every element of K < End(U) commutes
with H, so it suffices to show that K* < H. So let t € K* be arbitrary,
and let s € K* be such that s> = t. Then by Proposition 3.7(ii), we have
Upptp.s = 52 -id =t - id, and hence t -id € H for all t € K*. O

Proposition 3.7 allows us to extend Lemma 3.1 to all elements of K.

Lemma 3.9. (i) Let h € H. Then either h = X -id for some A € K*, or
each eigenspace of h is one-dimensional and induces a sub-Moufang
set isomorphic to M(K).

(ii) Assume that h has eigenvalues N\ and —\ for some A\ € K*, with
eigenspaces Vi and V_, respectively. Then auy € Vi for every a € Vi
and every b€ VL UV_.



Proof. Simply observe that by Proposition 3.7 above, the short proof of [S,
Lemma 3.5] now holds for all elements A € K (see also Lemma 3.10(i) below),
and hence the proof of Lemma 3.1 extends to K without any change. (]

We will now start to investigate the elements of H inside GL, (K). We
first examine the spectrum of elements of H. The next easy lemma is crucial
for this proposition.

Lemma 3.10. Let h € H, and let Spec(h) be the set of eigenvalues of h.
Assume that o, 3 € Spec(h), and let a,b € U be such that ah = a-« and bh =
b-B. Then a=13? € Spec(h) as well; more precisely, (aup)h = (auy) o132

Proof. Note that «, 3 # 0 since h is invertible. Then by Proposition 3.7 and
[DS, Prop. 5.2(2)], (app)h = ahupy, = (ac)pupg = apy - =132, which proves
that ajy is an eigenvector of h with eigenvalue a~!32. U

Proposition 3.11. Let h € H, and let Spec(h) be the set of eigenvalues
of h. Then there exists some A € K* and some natural number r such that

Spec(h) = {\-¢* | ke {0,1,...,r —1}},

t

where (, is a primitive r'* root of 1 in K. Moreover, either r =1 orr is an

odd prime number.

Proof. If h has only one eigenvalue, then this is clearly satisfied with r = 1.
So assume that h has eigenvalues A and A - ¢ for some A\, & € K*. Then by
Lemma 3.10, X - &1 X - €2 € Spec(h) as well. By induction (separately for
m even and m odd), we see that X\ - ™ € Spec(h) for each integer m. Since
Spec(h) is a finite set, this implies that £ has finite order s, and

A-e{r-¢F|kef0,1,...,5s—1}} CSpec(h).

Now assume that A-p is another eigenvalue of h. Then similarly, p has finite
order ¢, and

Ape{N-¢F|kef0,1,...,t —1}} C Spec(h).

Observe that we are free to replace ¢, and ¢; by any primitive s'" and "

root of 1, respectively; we choose them in such a way that ¢}, = (; and
¢t, = ¢, for some primitive (st)™ root (g of 1. Let ¢’ := ngd(s’t); then ¢’ is

a primitive lem(s, t)™" root of 1.

Now write s = 2%s’ and ¢t = 2° with s’ and ' odd; we may assume that
a > b. Then ged(s,t) = ged(2s,t), and hence there exist natural numbers p
and ¢ such that 2sp — tq = ged(s, t). Then by Lemma 3.10 again,

Spec(h) 3 (A- ¢TI )2 =X =N ¢



clearly
NEX-prCiN-C*ke{0,1,...,lem(s,t) — 1}} C Spec(h).

Continuing in this way, this process will eventually end since Spec(h) is a
finite set, and this proves that Spec(h) has the required form.

Now suppose that r is a composite number, say r = s - ¢t for some nat-
ural number s,¢ > 1. Then hA® has at least ¢ distinct eigenvalues, each
with an eigenspace of dimension at least s over K. But this contradicts
Lemma 3.9(1). It remains to exclude the case » = 2. So assume that
Spec(h) = {\, —=A}, let ah = a - XA and bh = —b- A. Then by Lemma 3.9(ii),
apy is contained in the eigenspace of the eigenvalue A, which is a - K by
Lemma 3.9(i). Hence app = a - v for some v € K*. Let p be a square root
of v in K; then (ap)uy, = appp™ ' = avp~! = ap. But this would contradict
Proposition 3.6(ii). O

We are grateful to Pierre-Emmanuel Caprace for providing us a concep-
tual proof of the following lemma.

Lemma 3.12. Let g,h be two unipotent elements in GL, (K) with a one-
dimensional fizpoint space. Assume that g> = h?>. Then g = h.

Proof. Since g and h have a one-dimensional fixpoint space, they both have
the same Jordan normal form

possibly with respect to a different basis. Note that J and J? fix a unique
maximal flag [(0,...,0,0,%),(0,...,0,%,%),...,(0,%,...,%,%)] in the projec-
tive space PG(n, K). (Recall that char(K) # 2.) Since g> = h?, they fix
the same unique maximal flag, but of course ¢ and ¢* fix the same unique
maximal flag, and the same is true for h and h?. Hence g and h fix the same
unique maximal flag, i.e. they lie in the same unipotent subgroup. But since
char(K) # 2, the unipotent subgroups are uniquely 2-divisible, and hence
g% = h? implies g = h. (]

The next proposition produces (too) many fixpoint free elements in H.
Proposition 3.13. For all a,b € U*, either poupy = 1 or pguy has no
fixpoints in U*.

Proof. Assume a,b € U* are such that ugup has a fixpoint ¢ € U*. Then
Clla = ciuy, and hence ficy, = piey,- By [DS, Prop. 5.2(2)], this implies
[apiefta = Pofiepty and hence (piapic)® = (pppie).
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By Proposition 3.11, there exist elements A, u € K* and odd numbers
r,s (either 1 or prime) such that

Spec(tatic) :{)\-C,If | ke {0,1,...,r—1}},
Spec(pppe) = {p- ¢ | k€ {0,1,...,s = 1}}.

Let g := (pape)™ and h = (uppe)™; then Spec(g) = {A\"™} and Spec(h) =
{u"s}. Since g = h?, we have pu™ = £\ let ¢’ := g- A" and b/ =
h-pu~"s. We still have (¢')2 = (h')?, but now Spec(g’) = Spec(h’) = {1}. If
g =1, then it follows from the unique 2-divisibility of a unipotent subgroup
containing A’ that A’ = 1 as well. So by Lemma 3.9(i), ¢’ and A’ have
a one-dimensional fixpoint space. It now follows from Lemma 3.12 that
g =h',s0g=hor g= —h. Since rs is odd, this implies jiqjte = pppte Or
Lalle = —ple, hence pqpp is 1 or —1. But since ¢ is a fixpoint of pqpup, we
must have g, = 1. O

We now arrive at our final contradiction. Indeed, since n > 2, there
exist two linearly independent elements a,b € U*. Consider h = pqup € H,
and let A be an eigenvalue of h. Let ¢t € K* be such that > = A\~!; then
Haltbt = Mafty - A~1 has 1 as an eigenvalue, i.e. it has a non-trivial fixpoint
in U*. Hence by Proposition 3.13, pqpus: = 1, but this would imply a = +bt,
and we have reached our final contradiction. This proves Theorem 2.1.
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