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Abstract

We classify all embeddings θ : PG(n, K) −→ PG(d, F), with d ≥ n(n+3)
2 and K, F

skew fields with |K| > 2, such that θ maps the set of points of each line of PG(n, K) to
a set of coplanar points of PG(d, F), and such that the image of θ generates PG(d, F).
It turns out that d = 1

2n(n + 3) and all examples “essentially” arise from a similar
“full” embedding θ′ : PG(n, K) −→ PG(d, K) by identifying K with subfields of F
and embedding PG(d, K) into PG(d, F) by several ordinary field extensions. These
“full” embeddings satisfy one more property and are classified in [4]. They relate to
the quadric Veronesean of PG(n, K) in PG(d, K) and its projections from subspaces
of PG(d, K) generated by sub-Veroneseans (the points corresponding to subspaces
of PG(n, K)), if K is commutative, and to a degenerate analogue of this, if K is
noncommutative.

1 Introduction

The goal of this paper is to relax the conditions in a recent result of Thas & Van
Maldeghem [4]. This result concerns a classification of full generalized Veronesean em-
beddings of projective spaces, which, as the name suggests, relate strongly to the quadric
Veroneseans of these projective spaces. Given the importance of these objects in classical
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algebraic geometry and finite geometry, it is a worthwhile job to do. Let us sketch the
situation.

According to [4], a “full” generalized Veronesean embedding is an embedding θ : PG(n, q) −→
PG(d, q), with d ≥ n(n+3)

2
, such that θ maps the set of points of each line of PG(n, q) to a set

of coplanar points of PG(d, q) and such that the image of θ generates PG(d, q). The image

in PG(d, q) is then called a (full) generalized Veronesean. It is shown in [4] that d = n(n+3)
2

and that each such embedding θ is constructed as follows. Let α : PG(n, q) −→ PG(d, q)
be the ordinary quadric Veronesean map, and let U be an i-dimensional subspace of
PG(n, q), with −1 ≤ i ≤ n − 1. Put d′ = i(i+3)

2
. Then the image of U under α spans

a d′-dimensional subspace V of PG(d, q). Let W be a (d − d′ − 1)-dimensional subspace
of PG(d, q) skew to V and let θ′ : U → V be a (full) generalized Veronesean embedding
of U (defined inductively). Then define θ : PG(n, q) −→ PG(d, q) as θ(x) = θ′(x) for
x ∈ U , and θ(x) = 〈α(x), V 〉 ∩W for x ∈ PG(n, q) \ U . This embedding is called a (full)
(i + 1)-Veronesean embedding, and the subspace U will be referred to as the lid of the
embedding. Hence a (full) 0-Veronesean embedding is an ordinary quadric Veronesean
embedding and has empty lid.

The inductive definition implies that we can look at the lid of the lid, i.e., the lid of the
embedding induced by the lid, and we can refer to this as the second order lid. Similarly,
we can now define the `th order lid, for any positive integer `. It is clear that there is a
unique positive integer `0 such that the (`0 +1)st order lid is empty. Then we call the `0th
order lid the ultimate lid of the embedding, and `0 is called the depth of the embedding
(0 for a 0-Veronesean). The (`0 − 1)st order lid is called the pre-ultimate lid. For an
i-Veronesean embedding, the depth is at most equal to i.

The main result of [4] says that any (full) generalized Veronesean embedding is a (full)
i-Veronesean embedding, for some suitable i.

In the proof, one encounters lines L of PG(d, q) containing the image of all points of
some line of PG(n, q) but one. By finiteness it then follows that exactly one point z of
L does not belong to the embedding. The set of such points is shown to be a subspace
and the proof then continues, heavily relying on this observation. In the infinite case, an
additional condition implies the same thing (see below). The question is: what happens if
we do not have uniqueness of the point z above. This occurs if we substitute PG(d, q) with
PG(d, r) in the above definitions to obtain a “lax” generalized Veronesean embedding. In
principle, we have the inequality q ≤ r in mind, and expect GF(q) to be a subfield of
GF(r), but our curiosity asks to also allow for the case q > r and see what happens.

In the infinite case, the above results hold substituting GF(q) with an arbitrary field K
(in the noncommutative case, though, there is no notion of Veronesean, and in this case
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only a (full) n-Veronesean embedding of PG(n, K) exists, which is defined directly but
inductively as follows: choose an affine space AG(n, K) in PG(n, K), embed it in a natural
way in a new n-dimensional projective space over K, and take the direct sum of the latter
with a (full) (n− 1)st Veronesean embedding of the (n− 1)-dimensonal projective space
PG(n, K) \ AG(n, K)), and adding the following condition. Let θ be an embedding of
PG(n, K) in PG(d, K), with the above restrictions. Then we additionally require that,

(*) for each line L of PG(n, K), and each point x ∈ θ(L), whenever the map y 7→ 〈x, y〉,
y ∈ θ(L) \ {x}, is injective, then there is a unique line T of PG(d, K) in 〈θ(L)〉
through x such that T ∩ θ(L) = {x}.

In the present paper we remove this additional condition and consider projective spaces
over two fields. Hence we consider maps θ : PG(n, K) −→ PG(d, F), with K and F (skew)
fields, such that collinear points are mapped onto coplanar ones. These are called lax
generalized Veronesean embeddings. For a given embedding θ : PG(n, K) −→ PG(d, F),
we will identify from now on each point of PG(n, K) with its image under θ. For θ a lax
generalized Veronesean embedding we call the image under θ a lax generalized Veronesean
in the projective space PG(d, F), but also in the generalized projective space generated
by the image (and which consists of the direct sum of ` + 1 proper subspaces, with ` the
depth of the embedding). We can then formulate our main result as follows.

Main Result. Let S = (P ,L,∈) be isomorphic to the geometry of points and lines

of PG(n, K), n ≥ 2, |K| > 2, with P ⊆ PG(d, F), 〈P〉 = PG(d, F), d ≥ n(n+3)
2

, and
such that every member L of L is a subset of points of a plane in PG(d, F). Then d =
1
2
n(n + 3) and either K is isomorphic to a subfield of F and there exist ` pairwise disjoint

subspaces PG(dj, Kj) of PG(d, F), with Kj
∼= K a subfield of F, 1 ≤ j ≤ `, such that P

is an i-Veronesean in the direct sum of all subspaces PG(dj, Kj), for j running through
{1, 2, . . . , `}, or

• the same thing holds, except that the ultimate or pre-ultimate lid is a line of PG(n, K)
and not all points of that line belong to any plane over some subfield isomorphic to
K, or

• |K| = 3, n = 2, the ultimate or pre-ultimate lid is a line L of PG(2, K) spanning
some plane π of PG(5, F), and the points of PG(2, K) not on L are contained in
a subplane π′ of PG(5, F) defined over a (commutative) subfield K′ of F, with K′

containing nontrivial cubic roots of unity.
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As in the full case, the case |K| = 2 is a true exception, since every injective mapping from
PG(n, 2) into PG(d, F), with d ≥ 1

2
n(n + 3), is a lax generalized Veronesean embedding as

soon as the image set generates PG(d, F). And this can be achieved whenever PG(d, F)
has at least 2n+1 − 1 points and d ≤ 2n+1 − 2.

But notice that, unlike the full case, also the case |K| = 3 and n = 2 is a special case
now with an unusual behaviour. This is due to the fact that affine planes of order 3 can
be embedded in projective spaces over fields with characteristic unequal to 3 admitting
nontrivial cubic root of unity, see Section 2.

The remainder of the paper is devoted to the proof of the Main Result. A lot of arguments
of the full case can be used in the lax case, but there are two main obstacles that have no
analogue in the full case. Firstly, we must identify appropriate subfields of F isomorphic
to K and define suitable subspaces over these subfields the direct sum of which contains
“almost all” points of S. Secondly, we must prove that the embedding in that direct sum
is full, i.e., we must verify the additional condition (*) for all lines of S.

For the sake of convenience, we will call a generalized Veronesean embedding of S in
PG(d, F), d = 1

2
n(n + 3), as explained in the statement of the Main Result, but distinct

from the last case |K| = 3 and n = 2, a lax i-Veronesean.

The proof of the Main Result is by induction on n, and in Section 3 we start with the
case n = 2. But first we prove a lemma on lax embeddings of affine planes (spaces) in
Desarguesian projective planes (spaces).

2 Affine planes in projective planes

Embeddings of affine planes in projective planes have been investigated by Limbos [2]
in her PhD thesis. Since these results are not published elsewhere, we provide a short
argument for the following lemma.

Lemma 1 Let A = (P ,L,∈) be an affine plane with P ⊆ PG(2, F), F a skew field, such
that every member L of L is a subset of a line of PG(2, F), and such that different members
of L define different lines of PG(2, F). Then A is Desarguesian and either the lines of
PG(2, F) corresponding to all lines of A belonging to an arbitrary parallel class meet in a
unique point of PG(2, F) and then the projective closure of A is canonically embedded in
PG(2, F) (consequently there is a subfield K of F such that A is an affine plane arising
from some subplane PG(2, K) of PG(2, F)), or A has order 2, or A has order 3 and F
contains nontrivial cubic roots of unity.
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Proof If A is not Desarguesian, then with a standard argument one can find a non-
closing Desargues configuration in A, contradicting the fact that this configuration should
close inside PG(2, F). Now let A be different from the projective planes of order 2 or 3.
Choose three parallel lines L1, L2, L3 in A and a line M ∈ L meeting all three of these in
points of A, say, x1, x2, x3, respectively. For any pair of points (z1, z2) on L1, z1 6= x1 6= z2,
we can find a point y on L2 such that none of the lines yz1 and yz2 of A is parallel to M
in A. Say they meet M in y1, y2, respectively. Then the self-projectivity σ2 of L1 defined
by first projecting L1 onto L2 from y1 followed by projecting L2 onto L1 from y2 fixes x1

and maps z1 onto z2. It can be easily checked with an elementary calculation that σ2 is
given by left multiplication with respect to a suitable coordinate system (putting x1 in
the origin). Likewise, there is such a projectivity σ3 similarly defined by considering L3

instead of L2. We may assume that for both projectivities a common coordinate system
on L1 was chosen. The projectivity σ2σ

−1
3 fixes x1, z1 and z2, and since it is given by left

multiplication, it fixes all points of L1. Hence the extension of σ2σ
−1
3 to PG(2, F) must

also fix all points of the line L′ containing all points of L. This now easily implies that
L′

1 ∩ L′
2 = L′

1 ∩ L′
3, with L′

i the line of PG(2, F) containing all points of Li, i = 1, 2, 3,
and so each point at infinity of A defines a unique point of PG(2, F). It remains to show
that all such points at infinity are collinear in PG(2, F). But this follows directly by the
dual argument, or, alternatively, by a standard argument using Desargues’ theorem. This
implies the lemma for A not of order 2 or 3.

If A has order 3, then a straightforward calculation yields the result. �

We also observe:

Lemma 2 Let A = (P ,L,∈) be the point-line geometry of an affine space of dimension
n ≥ 3 with P ⊆ PG(n, F), F a skew field, such that every member L of L is a subset of a
line of PG(2, F), such that different members of L define different lines of PG(n, F), and
such that P generates PG(n, F). Then the lines of PG(n, F) corresponding to all lines of
A belonging to an arbitrary parallel class meet in a unique point of PG(n, F) and then
the projective closure of A is canonically embedded in PG(n, F); consequently there is a
subfield K of F such that A is an affine space arising from some subspace PG(n, K) of
PG(n, F)).

Proof It suffices to show that the three lines L′
1, L

′
2, L

′
3 of PG(n, F) containing the

points of three parallel non-coplanar lines L1, L2, L3, respectively, of A meet in a point x
of PG(n, F). But this follows immediately since L′

1, L
′
2, L

′
3 are not coplanar (by a dimension

argument), but they are pairwise coplanar, and hence x is the intersection of the three
planes of PG(n, F) spanned by the respective pairs {L′

1, L
′
2}, {L′

2, L
′
3}, {L′

1, L
′
3}. �
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3 Lax generalized Veronesean embeddings of projec-

tive planes

In the present section, we assume that S = (P ,L,∈) is isomorphic to PG(2, K) with
P ⊆ PG(d, F), 〈P〉 = PG(d, F), d ≥ 5, and such that every member L of L is a subset of
points of a plane in PG(d, F), which we denote by πL if it is unique; if it is not unique,
then πL is the intersection of all such planes (and so πL is the line of PG(d, F) containing
all points of L).

We denote the line of PG(d, F) spanned by two points a, b ∈ P by 〈a, b〉, while the line
of S through a, b is denoted by ab. More generally, we use the symbol 〈A〉 to denote the
subspace of PG(d, F) generated by the elements of A.

We will assume that |K| > 3.

Recall the following lemma from [4].

Lemma 3 Let S1, S2, S3 be three sets, of at least three lines each, in PG(m, F), m ≥ 3,
such that each member of Si meets every member of Sj in a unique point, for i 6= j, for
all i, j ∈ {1, 2, 3}. Then there are distinct indices i, j ∈ {1, 2, 3} such that either all lines
of Si ∪ Sj are contained in a plane, or they contain a common point.

Also, the proof of the next lemma can be taken over from [4] (and is elementary anyway).

Lemma 4 If L, M are two distinct lines of S, meeting in the point z ∈ P, and x ∈ P is
a point off L ∪M not contained in 〈πL, πM〉, then every point y ∈ P off xz is contained
in the space W := 〈πL, πM , x〉.

We now prove the Main Result for n = 2 and |K| > 3. As in [4], we distinguish two cases.

(i) First suppose that for every line L of S, the set of points P \ L generates PG(d, F).
This, combined with Lemma 4, implies that d = 5 and every pair of lines of S
generates a 4-space of PG(5, F). This, in turn, implies that the projection of P \ xy
from the line 〈x, y〉, with x, y ∈ P is injective on the set of lines of S through x
or y. Hence, if 〈x, y〉 contained a third point z of S, then Lemma 3 would lead to
a contradiction. Hence, P is a cap and every line is a plane arc. This, in turn,
implies that the projection of P \ xy from πxy onto a suitable plane π is injective,
and since this projection forms an affine plane, and since |K| > 3, we see that there
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is a subfield K′ of F isomorphic to K such that this projection coincides with all
points of a projective subplane of π except for one line. Hence, for every line K ∈ L
and for every point z ∈ P on K, the lines 〈z, u〉, with u ∈ K \ {z} form an affine
line pencil over the subfield K′ of F. If we do this for two different points z1, z2 of K,
then the unique projective subplane π′ containing the respective affine line pencils
contains K, and there are unique tangents of K in π′ at z1 and z2. Varying z1 and
z2 in K we obtain the same projective plane, and unique tangent lines in π′ at every
point of K; hence K is an oval in π′. Note also that π′ is isomorphic to PG(2, K) and
defined over the subfield K′ of F. Now choose three lines L1, L2, L3 ∈ L not incident
with a common point of S and set yj = Lj ∩ L3, j = 1, 2. Let π′

i be the plane over
K′ containing Li as an oval, i = 1, 2, 3. Since 〈L1, L2〉 is 4-dimensional, the planes
π′

1 and π′
2 generate a unique 4-dimensional subspace ξ′ over K′. Choose an arbitrary

point y3 ∈ L3 \ {y1, y2} and let K0 be a line of S containing y3, but distinct from
L3, and assume also that K0 meets L1 and L2 in two distinct points, say u1 and
u2, respectively. Let L′

i be the projection of Li from 〈K0〉 onto a plane π0 skew to
〈K0〉, i = 1, 2, 3; we may assume that π0 is contained in 〈ξ′〉. Then L′

3 is contained
in the subplane π′

0 of π0 over K′ defined by the point set L′
1 ∪ L′

2 (use Lemma 1).
Also, the projection of ξ′ from 〈K0〉 is contained in π′

0 as our assumptions imply that
this projection coincides with the projection of ξ′ onto π0 from 〈u1, u2〉. It easily
follows now that each secant line of L3 containing y3 also contains a point of the
line 〈y1, y2〉K′ of ξ′, and hence such a point is contained in π′

3. Hence π′
3 ∩ ξ′ is a

line in both ξ′ and π′
3. Consequently L1, L2, L3 are contained in a unique subspace

PG(5, K′), generated by π′
1∪π′

2∪π′
3. Since |K| > 3, every point v of S \(L1∪L2∪L3)

is the intersection of two planes πM1 and πM2 , M1, M2 ∈ L, each of which intersects
L1 ∪ L2 ∪ L3 in three distinct noncollinear points, and hence belongs to PG(5, K′).
Consequently v belongs to PG(5, K′) and so P ⊆ PG(5, K′). Since the same space
PG(5, K′) is obtained starting from three other lines, we see that all lines are plane
ovals in PG(5, K′) and hence Condition (*) is satisfied and we can apply the Main
Result—General Version of [4] to conclude that P is a Veronesean embedding of
PG(2, K) in PG(5, K′); in fact, P is a 0-Veronesean in PG(5, K′).

(ii) Now suppose that for some line L of S, the set of points P \ L generates a proper
subspace W of PG(d, F). Since U := 〈L〉 is at most 2-dimensional, the codimension
c of W is at most 3.

(a) Suppose c = 3. Then W ∩ U = ∅, and for every line M 6= L of S the plane
πM meets W in a line LM , and only one point of M does not belong to LM .
Hence the set of lines LM , for M 6= L, forms the affine plane arising from S
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by deleting L. It follows that W is 2-dimensional and d = 5. Since |K| > 3,
there is a subfield K′ of F and a unique subplane PG(2, K′) of W such that all
lines of PG(2, K′) but one are of the form LM , M ∈ L. Hence, in this case, the
Main Result follows.

(b) Suppose c = 2. Then W ∩ U is a point x, and if x does not belong to P , then
all lines of S distinct from L again meet W in a line, and arguing as in (a)
we deduce d = 4, a contradiction. Hence x ∈ P . We can choose three points
z1, z2, z3 on L distinct from x (this is also possible if |K| = 3), and considering
the intersection with W of the nine planes πM obtained by choosing three lines
M ∈ L, M 6= L, through each of z1, z2, z3, we see that Lemma 3 implies that
W is a plane, and so d = 4, a contradiction. Hence Case (b) does not occur.

(c) Suppose c = 1. If U \ W contains two points y, z of S, then the planes
corresponding to the lines of S through y, z (distinct from L) meet W in lines
which contain all points of S not on L. It easily follows that W has at most
dimension 3, hence d ≤ 4, a contradiction. Hence there is a unique point
x ∈ P not contained in W . For every line M ∈ L through x we have that
πM ∩ W is a line. Let y ∈ P \ {x}. Let K1, K2 be two lines of S through y
different from xy. Suppose X := 〈πK1 , πK2〉 is at most 3-dimensional. Then
〈X, x〉 is a proper subspace of PG(d, F), and Lemma 4 ensures that it contains
all points of S except possibly those of the line xy. Hence 〈X, x〉 ∩W , which
has dimension at most 3, contains all points of S except possibly those of xy,
hence we are in a previous case. So we may assume that X has dimension 4,
for arbitrary K1, K2. If we project P\xy from y onto some suitable hyperplane
of W , then the projections of the lines of S through x and y are part of two
complementary reguli (since the dimension of that hyperplane is at least 3),
and so d = 5. Also, if we consider a line K ∈ L neither through x nor y,
then the projection of its points not on xy lie on the intersection of a plane
and a hyperbolic quadric, hence the points of K \ xy form an arc. It follows
easily that K is an arc in πK (by re-choosing y). This now implies that the
projection of P \xy from πxy onto a suitable plane of W is injective. As before,
this projection is an affine plane isomorphic to AG(2, K). It follows easily that,
for every line M of S through x, the intersection W ∩πM is an affine line over a
subfield K′ isomorphic to K. Likewise, for every line K ∈ L not through x, and
for every point z ∈ P on K, the lines 〈z, u〉, with u ∈ K \ {z}, form an affine
line pencil over the very same subfield K′ of F. As in (i) above, this implies
that K is an oval (even a conic, as follows from our previous arguments) in a
subplane of πK over K′. Considering now the affine lines over K′ arising from
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two lines of S through x, and the plane over K′ corresponding with some line
of S not through x, we can construct, similarly as in (i), a projective subspace
PG(4, K′) of W containing P \ {x}. Adding x, there is a subspace PG(5, K′)
containing P such that Condition (*) is satisfied. We can now apply the Main
Result—General Version of [4].

4 Lax generalized Veronesean embeddings of PG(2, 3)

In this section, we consider the case K = GF(3) and n = 2. It is easy to check that the
arguments in the previous section lead here, too, to the following three cases; we also
remark that d = 5.

Case I. For every line L of S, the set of points P \ L generates PG(5, F).

In this case, which corresponds to Case (i) of Section 3, the lines of S are plane arcs
in PG(5, F). We use coordinates which are determined up to right multiples, and we
consider indices modulo 13. Let {p1, p2, . . . , p13} be the set of points of PG(2, 3), with line
set {{pi, pi+1, pi+3, pi+9} : i = 1, 2, . . . , 13}. Without loss of generality, we can assign the
following coordinates:

p1(1, 0, 0, 0, 0, 0), p3(0, 0, 0, 0, 0, 1), p13(1, 1, 0, 0, 0, 1),
p9(0, 1, 0, 0, 0, 0), p2(0, 0, 0, 0, 1, 0), p4(1, 0, 1, 0, 1, 0),
p10(0, 0, 1, 0, 0, 0), p12(0, 0, 0, 1, 0, 0), p5(0, 1, a, 1, 0, 0),

with a ∈ F. Since p11 is collinear with p2, p3 and p5, there are constants b, c ∈ F so
that the coordinates of p11 are (0, 1, a, 1, b, c). Likewise, using the line {p3, p4, p6, p12},
there are constants d, e ∈ F so that the coordinates of p6 are (1, 0, 1, d, 1, e), and using
{p2, p8, p12, p13}, there are constants f, g ∈ F so that p8 has the coordinates (1, 1, 0, f, g, 1).

Expressing that p4, p8, p9, p11 are collinear gives the equivalent conditions c = −a, f =
−a−1 and a−ga = b. Similarly, p6, p10, p11, p13 collinear implies d = b = −1 and c+e = 1,
and p1, p5, p6, p8 collinear means f = 1− da, g = −a and ea = −1. All this implies

b = −1, d = −1, f = 1 + a,
c = −a, e = 1 + a, g = −a,

with 1 + a + a2 = 0. But expressing that p7 is the intersection of the planes 〈p2, p6, p9〉
and 〈p3, p8, p10〉 we obtain f = d = −1, hence a = −2 and so 3 = 0. It follows easily that
P lies in a 5-dimensional subspace PG(5, 3) over the prime field of F (of order 3). Hence
P is a 0-Veronesean in the subspace PG(5, 3) of PG(5, F).
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Case II. There are three lines L1, L2, L3 ∈ L not containing a common point such that (L1 ∪
L2 ∪ L3) \ (L1 ∩ L2) is contained in a 4-space PG(4, F), such that Li \ (L1 ∩ L2),
i = 1, 2, is contained in a line of PG(4, F), and such that L3 is an arc in πL3, which
is entirely contained in PG(4, F).

This case corresponds to Case (ii)(c) of Section 3.

With the same notation as above, we can take without loss of generality,

p1(0, 0, 0, 0, 0, 1), p2(0, 0, 0, 1, 0, 0), p3(1, 0, 0, 0, 0, 0),
p4(0, 0, 1, 1, 0, 0), p5(0, 0, 0, 0, 1, 0), p9(0, 1, 0, 0, 0, 0),
p10(0, 0, 1, 0, 0, 0), p12(0, 1, 1, 0, 1, 0), p13(1, 1, 0, 0, 0, 0).

Expressing that p7 belongs to the plane 〈p4, p5, p13〉, p11 belongs to the plane 〈p2, p3, p5〉,
and p12 belongs to the line 〈p7, p11〉, there exists a constant a such that p7 has coordinates
(1, 1, 1, 1, a, 0) and p11 has coordinates (1, 0, 0, 1, a − 1, 0). Also, one calculates that p8

has coordinates (1, a, a− 1, a, a− 1, 0), as the intersection of 〈p4, p9, p11〉 and 〈p2, p12, p13〉.
Expressing that p8 belongs to 〈p3, p7, p10〉, we see that a2 − a + 1 = 0. Expressing that
p6 is the intersection of the plane 〈p2, p7, p9〉 with the line 〈p5, p8〉, we obtain a = 2. This
now implies that F has characteristic 3, that all points of S are contained in a subspace
PG(5, 3) over the prime field of F (of order 3) and that P is a 1-Veronesean in PG(5, 3).

Case III. There is a unique line L ∈ L all points of which lie outside a certain plane π of
PG(5, F), while π contains all other points of S.

This case corresponds to Case (ii)(a) of Section 3.

The affine plane of order 3 arising from S by deleting L is embedded in π, and so the last
case of the Main Result follows from Lemma 1.

This takes care of the case F = GF(3) and n = 2, which we will also need in the next
section for the induction argument.

5 Lax generalized Veronesean embeddings of projec-

tive spaces of dimension at least 3

Here we assume that S = (P ,L,∈) is isomorphic to PG(n, K), n > 2, with P ⊆ PG(d, F),
〈P〉 = PG(d, F), d ≥ 1

2
n(n + 3), and such that every member L of L is a subset of points
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of a plane in PG(d, F), which we again denote by πL if it is unique; if it is not unique,
then πL is again the line of PG(d, F) containing all points of L.

We use the same notation as before to distinguish lines of S from lines of PG(d, F): we
denote the line of PG(d, F) spanned by two points a, b ∈ P by 〈a, b〉, while the line of
S through a, b is denoted by ab. More generally, we use the symbol 〈A〉 to denote the
subspace of PG(d, F) generated by the elements of A, and we use 〈A〉S to denote the
subspace of S spanned by A.

We will assume that |K| > 2 as for K = GF(2) every injective map from S to PG(d, F)
such that the image of S spans PG(d, F) is a lax generalized Veronesean embedding, for
every d.

Our proof proceeds by induction on n. The result for n = 2 has been proved in Sec-
tion 3, and we assume that the result is true for any generalized Veronesean embedding
of PG(n′, K) in PG(d′, F), with n′ < n and d′ ≥ 1

2
n′(n′ +3). For |K| = 3, we of course only

assume what we have proved in Section 4.

We first state some facts from [4] the proof of which can be taken over verbatim in our
lax case.

Proposition 1 If d ≥ 1
2
n(n + 3), then d = 1

2
n(n + 3) and every i-dimensional subspace

U of S, i ≤ n − 1, generates in PG(d, F) a subspace of dimension 1
2
i(i + 3). Hence the

induction hypothesis implies that U is a lax `-Veronesean, for some nonnegative integer
` ≤ i. In particular, for every line L ∈ L holds that πL is 2-dimensional.

Now, as in the full case, we introduce the following notions. Let L ∈ L be arbitrary. Then
we say that L is a semiaffine line if there is a unique point x on L such that 〈L \ {x}〉
is 1-dimensional. The point x is called a lid point, or the lid of L. The line L is called a
box for x. Clearly, the lid of a semiaffine line is unique, but a lid point can have several
boxes. The lid of S is the set of the lid points of all semiaffine lines.

We will denote by L the lid of S. The following proposition is proved in [4] for the full
case, but the proof easily holds without this restriction.

Proposition 2 The set L is a proper subspace of S. Also, if a line L ∈ L intersects L

in a unique point x, then L is a box for x.

Note that every line L ∈ L disjoint from L is an arc in πL; this follows from the case
n = 2.

We now first treat a special case.

11



Proposition 3 If L is a hyperplane, then S is a lax n-Veronesean.

Proof By Proposition 1, the space 〈L〉 has dimension 1
2
(n−1)(n+2), and by induction,

L is a lax i-Veronesean, 0 ≤ i ≤ n−1, say in a generalized subspace W of dimension 1
2
(n−

1)(n+2). Also, Proposition 2 combined with the lax 2-Veronesean structure of any plane
of S not contained in L, and Lemma 2, imply that the inclusion map ι : S \L ⊆ PG(d, F)
induces an isomorphism between affine spaces. Since 1

2
n(n+3) = 1+ 1

2
(n− 1)(n+2)+n,

we see that the subspace of PG(d, F) generated by the image of ι and the one generated
by L are disjoint. Hence the result follows now from the induction hypothesis (note that
this also holds for |K| = 3 as in this case the characteristic of F is 3 by the property of
the inclusion map ι above inducing an isomorphism). �

We can now finish the proof of our Main Result.

In view of the previous proposition, we may assume 0 ≤ m < n − 1, with m = dim L.
If we consider a plane of S meeting L in at most one point (this is possible in view of
m < n − 1), then we see that, by Sections 3 and 4, the characteristics of K and F are
equal, and K is commutative. Now let H1 and H2 be two hyperplanes of S containing L.
The previous remark and the induction hypothesis imply that H1 and H2 are both lax
(m+1)-Veroneseans. Note that 〈H1〉 and 〈H2〉 both have dimension 1

2
(n− 1)(n+2), and

the dimension of 〈H1∩H2〉 is 1
2
(n−2)(n+1). It follows that the dimension of 〈H1, H2〉 is at

most 1
2
n(n+3)−1. So we can choose a point x ∈ P outside H1∪H2 which does not belong

to 〈H1, H2〉. Since every line L not meeting L is an arc in πL, we see that all points of P ,
except possibly those lying in the hyperplane H3 of S generated by x and H1 ∩ H2, are
contained in 〈H1, H2, x〉. Since there are at least four hyperplanes of S through H1 ∩H2,
we can interchange the roles of x and a point y ∈ P not contained in H1 ∪H2 ∪H3 and
obtain that P ⊆ 〈H1, H2, x〉. This also implies that dim〈H1, H2〉 = 1

2
n(n + 3) − 1 and

〈H1〉 ∩ 〈H2〉 = 〈H1 ∩H2〉 has dimension 1
2
(n− 2)(n + 1).

Note that a similar argument (used inductively) as in the previous paragraph shows that
PG(d, F) is generated by 〈H1〉 and n+1 points of S outside H1, in general position viewed
as points of S. Similarly for H2.

The induction hypothesis implies that Hi \ L, i = 1, 2, is contained in a subspace Wi of
PG(d, F) of dimension 1

2
(n− 1)(n + 2)− 1

2
m(m + 3)− 1 defined over some subfield Ki of

F isomorphic to K, and such that this embedding is isomorphic to the projection from
a subspace Ui (generated by a sub-Veronesean induced by an m-dimensional subspace of
PG(n − 1, K)) of the full Veronesean embedding of PG(n − 1, K) minus the subspace Ui.
Moreover, the intersection W1∩W2 has dimension 1

2
(n−2)(n+1)− 1

2
m(m+3)−1, implying

W1 and W2 generate (over F) a subspace of dimension 1
2
n(n + 3)− 1

2
m(m + 3)− 2. Now
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consider an arbitrary plane π of S through x meeting H1 ∩ H2 in a point (which might
or might not belong to L). Then our arguments in Section 3 (especially those leading
to the lax 0- and 1-Veronesean) imply that π is contained in a unique 5-dimensional
subspace PG(5, K′) of PG(d, F) defined over a subfield K′ of F isomorphic to K (use
the fact that there is a line L ∈ L through x in π skew to L and that PG(5, K′) is
determined by L and the intersections of π with the Hi, i = 1, 2). Moreover, we see
that 〈π〉 ∩ 〈Hi〉 is 2-dimensional (indeed, this follows immediately from the fact that, by
the previous paragraph, 〈π〉, 〈Hi〉 and n − 2 well-chosen additional points of S generate
PG(d, F)) and the points of S in this plane are contained in a subplane over both K′

and Ki. We infer from the fullness of the embedding that K1 = K′ = K2. Also, the
intersection (H1\L)∩(H2\L) is an embedding in 〈W1〉∩〈W2〉 isomorphic to an appropriate
projection of a full Veronesean of H1 ∩H2. It follows that 〈W1〉 ∩ 〈W2〉 = 〈W1 ∩W2〉 and
Wi ∩ 〈W1 ∩ W2〉 = W1 ∩ W2, i = 1, 2 (this can also be seen using planes of S through x
meeting H1 ∩ H2 in lines). Hence (π ∪ H1 ∪ H2) \ L is contained in a unique subspace
PG(d′, K′), with d′ = 1

2
n(n + 3)− 1

2
m(m + 3)− 1.

But now every point z of P \ (H1 ∪H2) is contained in PG(d′, K′) since we can include it
in a plane π′ of S which contains L. Then the argument above leading to the uniqueness
of PG(5, K′) can now be recycled to show that π′ is entirely contained in PG(d′, K′).

This concludes the proof of our Main Result.

References

[1] J. W. P. Hirschfeld & J. A.Thas, General Galois Geometries, Oxford Mathematical
Monographs, Oxford Science Publications, The Clarendon Press, Oxford University
Press, New York, 1991.

[2] M. Limbos, Plongement et Arcs Projectifs, PhD Thesis, Université Libre de Bruxelles
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