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Abstract

This article studies the small weight codewords of the functional code CHerm(X),
with X a non-singular Hermitian variety of PG(N, q2). The main result of this article
is that the small weight codewords correspond to the intersections of X with the
singular Hermitian varieties of PG(N, q2) consisting of q+1 hyperplanes through a
common (N −2)-dimensional space Π, forming a Baer subline in the quotient space
of Π. The number of codewords having these small weights is also calculated. In this
way, similar results are obtained to the functional codes C2(Q), Q a non-singular
quadric [?], and C2(X), X a non-singular Hermitian variety [?].

Dedicated to the memory of András Gács (1969-2009)

1 Introduction

Consider a non-singular Hermitian variety X of PG(N, q2) [?, Chapter 23]. Let Wi ∈
PG(N, q2) be the set of points with homogeneous coordinates (X0, . . . , XN) such that
Xj = 0 for j < i and Xi 6= 0. The family {Wi}0≤i≤N is a partition of PG(N, q2).
Let F be the Fq-vector space of the zero polynomial and all homogeneous polynomials
(X0, . . . , XN)A(X

q
0 , . . . , X

q
N ) of degree q+1 inN+1 variables, with A = (aij), 0 6 i, j 6 N ,

aqij = aji, aij ∈ Fq2 , defining Hermitian varieties of PG(N, q2).
In this article, a Hermitian form will always denote a non-zero polynomial belonging

to F .
The functional codes CHerm(X) that are investigated in this article are inspired by the

article of Lachaud [?] on linear codes defined on algebraic varieties. We denote by Fh the
set of the homogeneous polynomials of degree h over the finite field Fq in the variables
X0, . . . , XN . In general, for a fixed algebraic variety X in PG(N, q) with n = #X(Fq),
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denote the point set of X by X = {P1, . . . , Pn}, where the coordinates of the points Pi are
normalized with respect to the leftmost non-zero coordinate. Define the map

c : Fh → F
n
q : f 7→ c(f) = (f(P1), . . . , f(Pn)),

where
f(Q) = f(X0, ..., XN )/X

h
i , with Q = (X0, . . . , Xn) ∈ Wi.

The map c is also linear over Fq. The functional code

Ch(X) = {(f(P1), . . . , f(Pn))||f ∈ Fh}

is the image of the linear map c. Thus, it is a linear subspace of Fn
q and therefore a linear

code. We now construct a functional code over Fq defined by Hermitian forms.
The functional code CHerm(X) is the linear code

CHerm(X) = {(f(P1), . . . , f(Pn))||f ∈ F},

defined over Fq. We stress that because of the normalization of the points Q, the value
f(Q) always belongs to the subfield Fq of Fq2 .

This linear code CHerm(X) has length n = |X| and dimension k = N2 + 2N over Fq.
This dimension is determined in the following way. First of all, since c is a linear map,
from the Dimension Theorem in Linear Algebra we have

dimCHerm(X) = dimF − dimker c.

Secondly, a Hermitian variety in PG(N, q2) is defined by an equation

N
∑

i=0

N
∑

j=0

aijXiX
q
j = 0, where aqij = aji.

There are ((N + 1)2 − (N + 1))/2 = (N2 + N)/2 elements aij, with i < j. They belong
to Fq2 , so they define an (N2 + N)-dimensional vector space over Fq. The elements
a00, . . . , aNN belong to Fq, so they contribute additionally N +1 to this dimension. So F ,
the vector space over Fq defined by all the Hermitian forms on PG(N, q2), has dimension
equal to N2+2N+1. It is a known fact that two distinct Hermitian varieties cannot have
equations which are a scalar multiple of each other. So, since we take the intersection of
all Hermitian varieties with X (i.e. dim ker c = 1), the dimension of CHerm(X) is N

2+2N .
We stress that we investigate the properties of the code CHerm(X), on the basis of its

linearity properties over Fq.
The third fundamental parameter of this linear code CHerm(X) is its minimum distance

dmin.
We determine the 4 smallest weights of CHerm(X) via geometrical arguments (Tables 4

and 6). The small weight codewords of CHerm(X) correspond to the Hermitian varieties X′

of PG(N, q2) having the largest intersections with X since they have the largest numbers
of zeros.
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In this article, a Baer subline always denotes a projective subline defined over Fq.
The arguments presented in this article prove that these small weight codewords cor-

respond to Hermitian varieties X′ which are the union of q + 1 hyperplanes of PG(N, q2)
through a common (N − 2)-dimensional space Π, defining a Baer subline in the quotient
geometry of Π. There are 7 different possibilities for the intersection of such Hermitian
varieties with a non-singular Hermitian variety X, but some of them imply the same in-
tersection size. We determine in this way the 4 smallest weights of the functional code
CHerm(X) (Tables 4 and 6).

We also determine the exact number of codewords having the 4 smallest weights. This
leads to the following main result of this paper.

Theorem 1.1 Let X be a non-degenerate Hermitian variety in PG(N, q2). The code
CHerm(X) is an [n, k, dmin]q-code where,

n =
(qN+1 + (−1)N)(qN + (−1)N+1)

q2 − 1
, k = N2 + 2N,

dmin =

{

q2N−1 − q2N−2 − 2qN−1, if N is even

q2N−1 − q2N−2 − qN + qN−1, if N is odd.

The second and the third weights are w2 = dmin + qN−1 and w3 = dmin + 2qN−1 for N
even, respectively w2 = dmin + qN − qN−1 and w3 = dmin + qN for N odd. The fourth
weight is w4 = dmin + qN−1(q + 1), both for N even and for N odd.
The number of codewords of these weights are given in Table 4 for N even, respectively in
Table 6 for N odd.

In this way, this article contributes to the study of small weight codewords in functional
codes. In [?, ?], Edoukou investigated the functional codes arising from the intersections
of quadrics with the non-singular Hermitian variety in PG(3, q2) and PG(4, q2), and the
functional codes arising from the intersections of quadrics with the non-singular quadrics
and the quadratic cone in PG(3, q). In [?], Hallez and Storme continued this study on the
functional codes arising from the intersections of quadrics with the non-singular Hermitian
variety in PG(N, q2), N < O(q2).

In a first article, the authors extended the results of Edoukou to the functional
codes arising from non-singular quadrics in PG(N, q) [?]. Since Hermitian varieties, like
quadrics, are sets of self-polar points in PG(N, q2), it is natural to study their functional
codes.

To conclude this introduction, the notation 〈Πs1 ,Πs2〉 will always denote the space
generated by the two subspaces Πs1 and Πs2 of PG(N, q). Similarly, the notation 〈Πs,Q〉
denotes the smallest subspace of PG(N, q) containing the subspace Πs and the quadric
Q.
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2 Hermitian varieties in PG(N, q2)

For the fundamental properties of Hermitian varieties, we refer to [?, Chapter 23]. We
repeat the properties of importance for the arguments in this article.

The non-singular Hermitian variety X in PG(N, q2) has standard equation

Xq+1
0 + · · ·+Xq+1

N = 0.

A non-singular Hermitian variety in PG(N, q2) contains (qN+1+(−1)N )(qN+(−1)N+1)
q2−1

points,
and the largest dimensional spaces contained in a non-singular Hermitian variety of
PG(N, q2) have dimension bN−1

2
c, where bxc denotes the largest integer smaller than

or equal to x.
We denote by Πd a d-dimensional subspace of PG(N, q2). All the Hermitian varieties of

PG(N, q2), including the non-singular Hermitian varieties, can be described as a Hermitian
variety having a d-dimensional vertex Πd of singular points, d ≥ −1, and having a non-
singular base H(N − d− 1, q2) in an (N − d− 1)-dimensional space ΠN−d−1 skew to Πd.
In this article, the notation ΠdH(N − d − 1, q2) will always denote a Hermitian variety
with vertex Πd and base the non-singular Hermitian variety H(N − d− 1, q2).

The largest dimensional subspaces contained in a Hermitian variety are called the
generators of this Hermitian variety.

Since the sizes of (non-)singular Hermitian varieties of PG(N, q2) are frequently used,
they are explicitly listed.

In PG(N, q2), a Hermitian variety having an (N − d− 1)-dimensional vertex ΠN−d−1

and a non-singular Hermitian variety H(d, q2) in PG(d, q2) as base has the following size:

d even: q2N−1 + q2N−3 + · · ·+ q2N−d+1 + q2N−d−2 + q2N−d−4 + · · ·+ q2 + 1;

d odd: q2N−1 + q2N−3 + · · ·+ q2N−d + q2N−d−1 + q2N−d−3 + · · ·+ q2 + 1.

Note that the size of the (non-)singular Hermitian variety having a non-singular Her-
mitian variety of odd dimension as base is always larger than the size of a (non-)singular
Hermitian variety having a non-singular Hermitian variety of even dimension as base.

The Hermitian varieties having the largest size are the union of q + 1 distinct hyper-
planes of PG(N, q2) and have size q2N−1+q2N−2+q2N−4+q2N−6+ · · ·+q2+1. The second
largest Hermitian varieties in PG(N, q2), N ≥ 3, are the Hermitian varieties having an
(N − 4)-dimensional vertex and a non-singular 3-dimensional Hermitian variety as base.
These Hermitian varieties have size q2N−1 + q2N−3 + q2N−4 + q2N−6 + · · · + q2 + 1. The
third largest Hermitian variety in PG(N, q2), N ≥ 5, has an (N − 6)-dimensional vertex
and a non-singular 5-dimensional Hermitian variety as base. These Hermitian varieties
have size q2N−1 + q2N−3 + q2N−5 + q2N−6 + q2N−8 + · · ·+ q2 + 1.

As mentioned in the introduction, the smallest weight codewords of the code CHerm(X)
correspond to the largest intersections of X with other Hermitian varieties X′ of PG(N, q2).
Let V be the intersection of the Hermitian variety X with the Hermitian variety X′. The
Hermitian pencil defined by X and X′ is the set of all the Hermitian varieties with equation
λX+µX′, (λ, µ) ∈ F

2
q \{(0, 0)}. Two distinct Hermitian varieties X and X′ define a unique
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pencil of Hermitian varieties. The points of V = X∩X′ belong to all the q+1 Hermitian
varieties in this pencil, while any point of PG(N, q2) not in V belongs to exactly one of
the Hermitian varieties in this pencil.

The fact that the Hermitian pencil λX + µX′ of two Hermitian varieties X and X′ is
only defined for coefficients (λ, µ) ∈ F

2
q, was one of the reasons why in the introduction,

the code Herm(X) was defined over Fq instead of over Fq2 .
Let V = X∩X′. The sum of the numbers of points in the q+1 Hermitian varieties of

the pencil defined by X and X′ is |PG(N, q2)|+ q|V | points, since the points of V lie in all
the Hermitian varieties of the pencil and the other points of PG(N, q2) lie in exactly one
such Hermitian variety. So there is a Hermitian variety in the pencil containing at least
(|PG(N, q2)|+ q|V |)/(q + 1) points. Hence, a large intersection V implies that there is a
large Hermitian variety in the pencil of Hermitian varieties defined by X and X′.

If there is a Hermitian variety in the pencil of Hermitian varieties defined by X and X′,
equal to the union of q + 1 hyperplanes, then the desired conclusion is obtained that the
largest intersections of X arise from the intersections of X with the Hermitian varieties
which are the union of q+1 hyperplanes. So assume that all the q+1 Hermitian varieties
in the pencil of Hermitian varieties defined by X and X′ are irreducible (i.e. there is not a
Hermitian variety in this pencil which is the union of q+1 hyperplanes); this will lead to a
contradiction, if |V | is large enough. As already mentioned above, the largest irreducible
Hermitian varieties in PG(N, q2) are cones with vertex PG(N −4, q2) and base H(3, q2), a
non-singular Hermitian variety in PG(3, q2), and the second largest irreducible Hermitian
varieties are cones with vertex PG(N − 6, q2) and base H(5, q2), a non-singular Hermitian
variety in PG(5, q2). These observations will be used many times.

Remark 2.1 Consider a fixed line T of H(3, q2). Then the q3 + q lines of H(3, q2) inter-
secting T in one point form a minimal cover of H(3, q2). This cover is the smallest cover
of H(3, q2) [?].

There are exactly (1 + q)(q3 + 1) such covers since this is the total number of lines of
H(3, q2) [?, Table 23.1].

Theorem 2.2 In PG(N, q2), with N > 6, if

|V | > q2N−2 + 2q2N−4 + q2N−5 + q2N−6 + 2q2N−7 + 2q2N−9 + · · ·+ 2q3 + q,

then in the pencil of Hermitian varieties defined by X and X′, there is a Hermitian variety
consisting of the union of q + 1 hyperplanes.

Proof. Suppose that there is no Hermitian variety in the pencil of Hermitian varieties
defined by X and X′ equal to the union of q + 1 hyperplanes.

Since |V | > q2N−2 + q2N−4 + 2q2N−6 + q2N−8 + · · · + q2 + 1, the following inequality
(|PG(N, q2)| + q|V |)/(q + 1) > |ΠN−6H(5, q

2)| is valid; so there is a singular Hermitian
variety ΠN−4H(3, q

2) in the pencil of Hermitian varieties defined by X and X′. With the
lines of the cover of H(3, q2) of Remark ??, together with ΠN−4, q

3 + q different (N − 2)-
spaces ΠN−2 are formed. We wish to have that at least one of these (N − 2)-dimensional
spaces ΠN−2 intersects X in q + 1 (N − 3)-spaces. All points of V appear in at least
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one of these ΠN−2, so for at least one of these spaces, necessarily |ΠN−2 ∩ V | > |V |
q3+q

.

If |V |
q3+q

> |ΠN−6H(3, q
2)|, then ΠN−2 ∩ X is the union of q + 1 (N − 3)-spaces. When

|V | > q2N−2+2q2N−4+ q2N−5+ q2N−6+2q2N−7+2q2N−9+ · · ·+2q3+ q, then this is valid.

So ΠN−2 ∩ X =
⋃q+1

i=1 Π
(i)
N−3.

This means that X must have generators of dimension N − 3.

Hermitian variety dimension generator property fullfilled
X=H(2N ′, q2) N ′ − 1 N ′ 6 2

X=H(2N ′ + 1, q2) N ′ N ′ 6 2

Table 1: Non-discussed cases.

Except for the small cases for N ′, see Table 1, a contradiction is obtained, so there
is a Hermitian variety consisting of the union of hyperplanes in the pencil of Hermitian
varieties defined by X and X′. 2

The following results of Kestenband now are stated to compare the preceding bound on
|V | with the intersection size of two Hermitian varieties X and X′ in PG(N, q2), where the
pencil of Hermitian varieties defined by X and X′ does not contain a singular Hermitian
variety which is the union of q + 1 hyperplanes.

Theorem 2.3 (1) ([?, Lemma 2]) There exists a pencil of q + 1 non-singular Hermitian
varieties in PG(N = 2n, q2) intersecting in

(q2n−1 − 1)(q2n+1 + 1)

q2 − 1
= q4n−2 + q4n−4 + · · ·+ q2 + 1− q2n−1

points.
(2) ([?, Lemma 3]) There exists a pencil of q + 1 non-singular Hermitian varieties in

PG(N = 2n− 1, q2) intersecting in

(q2n − 1)(q2n−2 + 1)

q2 − 1
= q4n−4 + q4n−6 + · · ·+ q2n+2 + q2n + 2q2n−2 + q2n−4 + · · ·+ q2 + 1

points.

3 Hermitian variety in PG(5, q2)

This section now discusses the case that X is the Hermitian variety H(5, q2) in 5 dimen-
sions. Let V be the intersection of X with another Hermitian variety X′ in PG(5, q2).

If |V | > q8+ q6+2q4+ q2+1, then (|PG(5, q2)|+ q|V |)/(q+1) > |H(5, q2)|, so there is
a cone ΠN−4H(3, q

2) = LH(3, q2) in the pencil of Hermitian varieties defined by X and X′,
if it is assumed that no Hermitian variety in the pencil of Hermitian varieties defined by

X and X′ is the union of q + 1 hyperplanes. Form solids Π
(1)
3 , . . . ,Π

(q3+q)
3 with L and the

lines of a cover of H(3, q2), as defined in Remark 2.1. If |V | > q8 +2q6 + q5 + q4 +2q3 + q,
then there is a solid through L intersecting X in q + 1 planes. Now there are 3 different
cases that need to be discussed:
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1. L ⊂ V ,

2. |L ∩ V | = q + 1,

3. |L ∩ V | = 1.

Lemma 3.1 For X = H(5, q2), if |V | > q8 + 2q6 + q5 + q4 + 2q3 + q and L ⊂ V , then
there is a Hermitian variety consisting of the union of q + 1 hyperplanes in the pencil of
Hermitian varieties defined by X and X′.

Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by
X and X′ is the union of q+1 hyperplanes. Since (|PG(5, q2)|+ q|V |)/(q+1) > |H(5, q2)|,
there is a singular Hermitian variety LH(3, q2) in the pencil of Hermitian varieties defined
by X and X′.

By Remark ??, H(3, q2) can be covered by q3 + q lines. Considering the q3 + q solids
defined by L and the lines of this cover of H(3, q2), LH(3, q2) is covered by q3 + q solids.

Since |V |/(q3 + q) > |H(3, q2)|, there is a solid Π
(1)
3 through L intersecting V in q + 1

planes. Now L lies in one of these planes, since L ⊂ V .
Every point of V lies in at least one of these q3+q solids through L, defining the cover

of LH(3, q2).
In H(5, q2), a line L is contained in q + 1 planes completely lying in H(5, q2). Now we

want to have a bound on |V | so that we are sure that the line L lies in more than q + 1
planes contained in H(5, q2). Because then a contradiction is obtained to our assumption
that no Hermitian variety in the pencil of Hermitian varieties defined by X and X′ is the
union of q + 1 hyperplanes.

To find at least q + 2 planes of V through L, an inductive argument needs to be used
stating that if L lies in x planes of V , then it lies in x + 1 planes of V . To simplify the
calculations, we describe how the existence of q + 1 planes of V through L implies the
existence of q + 2 planes of V through L, in case |V | is large enough.

Assume that it is known that q+1 of the solids of the cover of size q3 + q of LH(3, q2)
intersect V in the union of q+1 planes, where these q+1 solids have distinct planes through
L in common with V . We want to have another solid which fullfils this condition, so that
the desired contradiction is obtained.

The desired contradiction is obtained when

|L|+
|V | − (q + 1)((q + 1)q4 + q2 + 1)

q3 − 1
> |H(3, q2)|. (1)

For the q+1 solids through L intersecting V in q+1 planes, each contain (q+1)q4+q2+1
points of V . Subtract this number from |V |. There remain q3 − 1 solids for the cover of
LH(3, q2). So there is a solid containing at least

|L|+
|V | − (q + 1)((q + 1)q4 + q2 + 1)

q3 − 1
> |H(3, q2)|
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points of V . Since the only Hermitian variety in PG(3, q2) containing more than |H(3, q2)|
points consists of the union of q + 1 planes, the desired (q + 2)-th plane of V through L
has been found.

The only problem that remains is that this (q + 2)-th plane must be different from
all the previous q + 1 planes of V through L. This goal is achieved in the following way.
The cover of H(3, q2) that is defined in Remark ?? consists of all the lines of H(3, q2)
intersecting a given line T of H(3, q2); this line T not included. For finding the (q+ 2)-th
plane of V through L, select for the line T , which defines the cover of H(3, q2), a line T
skew to the q + 1 points of H(3, q2) defining the q + 1 planes of V through L. This is
possible since these q+1 points lie in total on at most (q+1)2 lines of H(3, q2). So there is
certainly a line T of H(3, q2) skew to these q+1 points. Then we use the cover of H(3, q2)
of size q3 + q defined by this line T . The particular property of the corresponding cover
of LH(3, q2) is that the q + 1 planes of V through L, already determined, lie in exactly
one of those solids, so when we perform the division in the left hand side of (??), the
(q+2)-th solid through L intersecting V in q+1 planes cannot contain one of the already
determined q + 1 planes of V through L.

This gives at least q + 2 planes of H(5, q2) through L; which is impossible. So there
is a Hermitian variety consisting of q+ 1 hyperplanes in the pencil of Hermitian varieties
defined by X and X′. The condition in (??) is equivalent to

|V | > q8 + 2q6 + q5 + q4 + q2 + q + 1.

The most severe condition on |V | arises from the fact that |V |/(q3 + q) > |H(3, q2)|;
which implies |V | > q8 + 2q6 + q5 + q4 + 2q3 + q. 2

Lemma 3.2 For X = H(5, q2), if |V | > q8 + 4q6 + q5 − 3q4 + 4q3 + 3q2 + q − 1 and
|L ∩ V | = q + 1, then there is a Hermitian variety consisting of q + 1 hyperplanes in the
pencil of Hermitian varieties defined by X and X′.

Proof. Assume that no Hermitian variety in this pencil is the union of q+1 hyperplanes.
Then, since the lower bound on |V | of the beginning of this section is valid, there is a
cone LH(3, q2) in the pencil of Hermitian varieties defined by X and X′. Assume that
L ∩ V = {R1, . . . , Rq+1}. Let the polar space of the secant line L with respect to X =
H(5, q2) be the 3-dimensional space intersecting H(5, q2) in the non-singular Hermitian
variety H(3, q2)L.

Suppose that we are sure that x+1 lines of a cover of size q3+q on H(3, q2), as defined
in Remark ??, define solids through L intersecting H(5, q2) in a union of q+1 planes. We
are sure of this when

q + 1 +
|V | − x((q + 1)q4 + q2 + 1)

q3 + q − x
> |H(3, q2)|. (2)

This is equivalent to |V | > q8 + 2q6 + q5 + q3 − q2 + x(q4 − q3 + q + 1).
Consider all covers of size q3 + q on H(3, q2) defined by Remark ??. There are exactly

(1 + q)(q3 + 1) such covers. Then we get at least (1 + q)(q3 + 1)(x + 1) lines of H(3, q2)
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defining solids of LH(3, q2) through L intersecting V in q + 1 planes. But every such line
could be counted up to q3 + q times. Nevertheless, we get at least

(1 + q)(q3 + 1)(x+ 1)

q3 + q
> q(x+ 1)

distinct lines of H(3, q2) defining solids of LH(3, q2) through L intersecting V in q + 1
planes.

But then for more than q(x+1) lines ` of the base H(3, q2), it is known that the solid
〈L, `〉 contains a plane of H(3, q2) through R1, . . . , Rq+1. So R1 lies in planes contained
in the intersection V . These planes lie in TR1

(X) = 〈R1,H(3, q
2)L〉, where 〈R1,H(3, q

2)L〉
denotes the 4-dimensional space spanned by R1 and the 3-dimensional Hermitian variety
H(3, q2)L. We prove that the cones RiH(3, q

2)L, i = 1, . . . , q + 1, lie completely in the
intersection V if x is large enough.

Consider again the cone LH(3, q2) in the pencil of Hermitian varieties defined by X
and X′. Let ` be a line of the base H(3, q2) defining a solid 〈L, `〉 intersecting V in the
union of q + 1 planes, which pass one by one through R1, . . . , Rq+1. Then these q + 1
planes intersect in a line `′ lying on H(3, q2)L. This line `′ is skew to L, so determines
〈L, `〉 uniquely. Hence, different lines ` of H(3, q2) define different lines `′ of H(3, q2)L.

So, we find more than q(x + 1) lines of H(3, q2)L completely lying in V . We can now
prove that the cones RiH(3, q

2)L, i = 1, . . . , q + 1, lie completely on V .
Consider a point P of the base H(3, q2)L and assume that P does not lie on one of

these q(x + 1) lines `′ of H(3, q2)L lying in V . Then they all intersect TP (H(3, q
2)L) in a

point. If q(x+ 1) > 2(q+ 1)q2, there is a point of H(3, q2)L in TP (H(3, q
2)L) on at least 3

of those lines. Denote this point by S and these three lines by `1, `2, `3. Then the three
planes 〈Ri, `1〉, 〈Ri, `2〉, 〈Ri, `3〉 lie completely in V . Then TS(H(3, q

2)L) shares already 3
lines with the intersection V , so it intersects V in all q + 1 lines `j, j = 1, . . . , q + 1, of
H(3, q2)L through S, and similarly, all q+1 planes 〈Ri, `j〉, j = 1, . . . , q+1, lie completely
in V . But one of these lines `j is the line SP , so the line RiP belongs to the intersection
V . So every point of the cone RiH(3, q

2)L lies in V .
The tangent cones RiH(3, q

2)L to H(5, q2) lie in q + 1 hyperplanes through the polar
space Π3 of L with respect to X, and these q + 1 hyperplanes define a Hermitian variety
X′′. Let S be a point of Π3\H(3, q

2)L. There is a unique Hermitian variety X′′′, containing
S, in the pencil of Hermitian varieties defined by X and X′. This Hermitian variety must
be the union of the q + 1 hyperplanes 〈Ri,H(3, q

2)L〉, but then we find that the pencil of
Hermitian varieties defined by X and X′ contains a Hermitian variety which is the union
of q + 1 hyperplanes. The desired results have been obtained.

The only condition q(x+ 1) > 2(q + 1)q2 implies that

|V | > q8 + 4q6 + q5 − 3q4 + 4q3 + 3q2 + q − 1

is required to have these results. 2

Lemma 3.3 For X = H(5, q2), if |V | > q8 + 2q6 + 2q5 + 2q4 − q3 + q + 2, then the case
|L ∩ V | = 1 does not occur.

9



Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by
X and X′ is the union of q + 1 hyperplanes. Then again there is a singular Hermitian
variety LH(3, q2) in the pencil and in this Hermitian variety the line L is skew to the solid
of H(3, q2).

Suppose that we are sure that x+1 lines of a cover of size q3+q on H(3, q2), as defined
in Remark ??, define solids through L intersecting H(5, q2) in a union of q+1 planes. We
are sure of this when

1 +
|V | − x((q + 1)q4 + q2 + 1)

q3 + q − x
> |H(3, q2)|. (3)

This is equivalent to |V | > q8 + 2q6 + q5 + q4 + q3 + x(q4 − q3 + 1).
Similarly as in the preceding proof, for more than q(x+1) lines ` of the base H(3, q2)

of the cone LH(3, q2), the solid 〈L, `〉 contains q + 1 planes of V , so of H(5, q2); they all
pass through the unique intersection point R of L with H(5, q2), so they all lie in the
tangent hyperplane TR(X) to X in R. Hence, this solid 〈L, `〉, and so in particular the
line `, lies completely in TR(X).

If x ≥ q + 2, then the base H(3, q2) of LH(3, q2) lies completely in TR(X). But also L
lies in TR(X) since L shares only one point with X. However, this implies that L and the
base H(3, q2) of the cone LH(3, q2) share a point, but this is false.

So a contradiction is obtained if x ≥ q + 2, which is valid if

|V | > q8 + 2q6 + 2q5 + 2q4 − q3 + q + 2

. 2

Corollary 3.4 Let X be a non-singular Hermitian variety in PG(5, q2), and let V be the
intersection of X with another Hermitian variety X′.

If |V | > q8 + 4q6 + q5 − 3q4 + 4q3 + 3q2 + q − 1, then this intersection V is also the
intersection of X with a Hermitian variety which is the union of q + 1 four-dimensional
spaces.

The lower bound on |V | of Corollary ?? is again compared to a result of Kestenband
to have an idea of the sharpness of the bound of the preceding corollary.

Theorem 3.5 ([?, Lemma 3]) There exists a pencil of q + 1 non-singular Hermitian
varieties in PG(5, q2) intersecting in

(q6 − 1)(q4 + 1)

q2 − 1
= q8 + q6 + 2q4 + q2 + 1.

points.
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4 A divisibility condition on the weights

In this section, it is proven that the weights of the code CHerm(X) are divisible by qN−1 in
case X is a non-singular Hermitian variety in PG(N, q2). This result is a particular case
of a more general result on the divisibility of the functional codes Ch(X), defined on the
non-singular Hermitian variety X of PG(N, q2) by the hypersurfaces of degree h [?].

To achieve this goal, the known result is first of all mentioned that a Hermitian variety
X in PG(N, q2) can be made to correspond to a quadric in PG(2N + 1, q).

Let X :
∑N

i,j=0 aijXiX
q
j = 0, aij ∈ Fq2 , a

q
ij = aji.

Define Fq2 as a quadratic extension of Fq via an element e ∈ Fq2 \ Fq, satisfying a
quadratic equation X2 −X − b = 0, so e2 = e+ b, eq = −e+ 1, and eq+1 = −b.

Then every element Xi ∈ Fq2 can be described as Xi = Yi+eZi, Yi, Zi ∈ Fq. Substitute
Xi = Yi + eZi in the equation of X. By using the above description for e2, eq, eq+1, and
using that Y q

i = Yi and that Zq
i = Zi, the following equation in the variables Yi and Zi is

obtained:

X :
N
∑

i=0

(aiiY
2
i + aiiYiZi − baiiZ

2
i ) +

N
∑

i,j=0;i<j

((2α + β)YiYj + (α− 2βb)YiZj + (α + β(2b+ 1))ZiYj − (2α + β)bZiZj) = 0,

which defines a quadric in PG(2N + 1, q).

Theorem 4.1 For a non-singular Hermitian variety X in PG(N, q2), the weights of the
code CHerm(X) are divisible by qN−1.

Proof. In this proof, the theorem of Ax and Katz is used [?, Theorem 1.0].
The intersection points of the Hermitian variety X in PG(N, q2) with another Hermi-

tian variety X′ in PG(N, q2) correspond to the intersection points of two corresponding
quadrics Q and Q′ in PG(2N + 1, q), or alternatively in the vector space V (2N + 2, q).

In this vector space V (2N + 2, q), in the notation of [?, Theorem 1.0], the number of
intersection points is N(S, T, f) ≡ 0 (mod qµ(S,T,f)), where

µ(S, T, f) ≥
Card(S)−

∑

i∈T di

supi∈T (di)
.

Here Card(S) = 2N + 2, since there are 2N + 2 variables Yi, Zi, i = 0, . . . , N , and
d1 = d2 = 2 since the intersection of two quadrics is investigated.

So

µ(S, T, f) ≥
2N + 2− 4

2
= N − 1.

Consequently, in V (2N +2, q), the number of elements in X∩X′ is 0 (mod qN−1), and
in PG(2N + 1, q),

|X ∩ X′| =
kqN−1 − 1

q − 1
,
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for some k ∈ N
∗.

Rewriting, this is equivalent to

|X ∩ X′| =
kqN−1 − 1

q − 1
= k′qN−1 +

qN−1 − 1

q − 1
, (4)

with k = k′(q − 1) + 1, for some k′ ∈ N.
So

|X ∩ X′| = k′qN−1 + qN−2 + qN−3 + · · ·+ q + 1

in PG(2N + 1, q).
By changing the setting from PG(N, q2) to PG(2N + 1, q), the points of PG(N, q2)

correspond to the lines of a 1-spread of PG(2N +1, q), i.e., a partitioning of the points of
PG(2N + 1, q) into (q2N+2 − 1)/(q2 − 1) pairwise disjoint lines.

Consequently, since every intersection point of X∩X′ in PG(N, q2) defines q+1 collinear
intersection points of one of those lines of this 1-spread of PG(2N + 1, q), |X ∩ X′| ≡ 0
(mod q + 1) in the setting of PG(2N + 1, q).

The theorem of Ax and Katz is now applied to the Hermitian variety X itself in the
setting of PG(2N + 1, q). This gives µ(S, T, f) ≥ (2(N + 1) − 2)/2 = N . So |X| ≡ 0
(mod qN) in V (2N + 2, q). Hence, over PG(2N + 1, q), |X| = (jqN − 1)/(q − 1) =
j′qN + qN−1 + qN−2 + · · ·+ q + 1, with j = j′(q − 1) + 1 for some j′ ∈ N.

Case 1. Assume that N is even. Then

k′qN−1 + qN−2 + · · ·+ q + 1 ≡ 0 (mod q + 1)

in PG(2N + 1, q), which implies that

k′ ≡ 1 (mod q + 1).

So k′ = k′′(q + 1) + 1, which implies that

|X ∩ X′| = k′′(q + 1)qN−1 + qN−1 + qN−2 + · · ·+ q + 1

in PG(2N + 1, q).
Similarly, in PG(2N + 1, q),

|X| = j′qN + qN−1 + · · ·+ q + 1 ≡ 0 (mod q + 1),

which implies that j′ = j′′(q + 1) for some j′′ ∈ N.
Then, in PG(2N + 1, q),

|X| = j′′(q + 1)qN + qN−1 + · · ·+ q + 1.

So the weight of a codeword of CHerm(X) in the setting of PG(2N + 1, q) is

j′′(q + 1)qN − k′′(q + 1)qN−1 ≡ 0 (mod qN−1).

12



But one point of X∩X′ in PG(N, q2) corresponds to q+1 collinear intersection points
of X ∩ X′ in PG(2N + 1, q), so in the setting of PG(N, q2), the weight of a codeword of
CHerm(X) is

j′′qN − k′′qN−1 ≡ 0 (mod qN−1).

This shows that the weight of this codeword of CHerm(X) is a multiple of qN−1.
Case 2. Assume that N is odd.
This case is treated in the same way as the case N even.

2

5 Small weights of CHerm(X)

The Tables 2 and 6 show that the preceding results determine the 4 smallest weights
of CHerm(X). These small weight codewords correspond to the intersection of the non-
singular Hermitian variety X in PG(N, q2) with Hermitian varieties X′ which are the union
of q + 1 hyperplanes. These latter q + 1 hyperplanes have an (N − 2)-dimensional space
ΠN−2 in common. The polar space of ΠN−2 with respect to X is a line L, which can be
tangent, secant to, or contained in X. The discussion is made depending on the position
of L with respect to the Hermitian variety X.

If L is secant to X, then ΠN−2 intersects X in a non-singular Hermitian variety HN−2

in PG(N−2, q2). If P ∈ L∩X, then the hyperplane 〈P,ΠN−2〉 intersects X in the tangent
cone PHN−2. If P ∈ L \X, then the hyperplane 〈P,ΠN−2〉 intersects X in a non-singular
Hermitian variety HN−1 in PG(N − 1, q2). Since two distinct Baer sublines share 0, 1, or
2 points, consequently, q+ 1, 0, 2 or one of the q+ 1 hyperplanes of X′ through ΠN−2 can
contain a point of L ∩ X, respectively cases (1), (2), (3) and (4) in Table 2. In the case
that L is tangent to X, then ΠN−2 intersects X in a singular Hermitian variety PHN−3 in
PG(N − 2, q2). In this case, one or none of the q+1 hyperplanes of X′ through ΠN−2 can
contain the intersection point of L with X, respectively cases (6) and (7) in Table 2. In
the case that L is contained in X, then ΠN−2 intersects X in a singular Hermitian variety
LHN−4 in PG(N − 2, q2). In this final case, all the q + 1 hyperplanes of X′ are tangent
hyperplanes to X; this is case (5) in Table 2. In Table 2, Hi denotes a non-singular Her-
mitian variety in PG(i, q2), PHN−2 denotes a singular Hermitian variety in PG(N −1, q2)
with vertex a point P and base HN−2, LHN−4 denotes a singular Hermitian variety in
PG(N − 2, q2) with vertex the line L and base HN−4, and PHN−3 denotes a singular
Hermitian variety in PG(N − 2, q2) with vertex the point P and base HN−3.
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ΠN−2 ∩ X |X ∩ X′|
(1) HN−2 (q + 1)|PHN−2| − q|HN−2|
(2) HN−2 (q + 1)|HN−1| − q|HN−2|
(3) HN−2 2|PHN−2|+ (q − 1)|HN−1| − q|HN−2|
(4) HN−2 |PHN−2|+ q|HN−1| − q|HN−2|
(5) LHN−4 (q + 1)|PHN−2| − q|LHN−4|
(6) PHN−3 |PHN−2|+ q|HN−1| − q|PHN−3|
(7) PHN−3 (q + 1)|HN−1| − q|PHN−3|

Table 2: Different cases for ΠN−2 ∩ X and the corresponding sizes for |X ∩ X′|.

5.1 N even

For N even, Table 3 gives for the corresponding intersections of Table 2 the sizes of these
intersections. Then Table 4 gives the corresponding weights in the code CHerm(X). Note
that (2) gives the smallest weight w1, (4) and (7) give the second smallest weight w1+qN−1,
cases (3), (5), and (6) give the third smallest weight w1 + 2qN−1, while case (1) gives the
fourth smallest weight w1 + qN−1(q + 1). Table 4 also gives the number of codewords
having these weights. When there are different cases leading to the same weight, in the
rightmost column of Table 4, the total number of codewords of that weight is written as
a sum of the corresponding numbers of codewords corresponding to the respective cases
of Table 2.

|X ∩ X′|
(1) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+1 − qN + qN−1 + qN−2 + qN−4 + · · ·+ q2 + 1
(2) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+1 + 2qN−1 + qN−2 + qN−4 + · · ·+ q2 + 1
(3) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+1 + qN−2 + qN−4 + · · ·+ q2 + 1
(4) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN−1 + qN−2 + qN−4 + · · ·+ q2 + 1
(5) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+1 + qN−2 + qN−4 + · · ·+ q2 + 1
(6) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+1 + qN−2 + qN−4 + · · ·+ q2 + 1
(7) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN−1 + qN−2 + qN−4 + · · ·+ q2 + 1

Table 3: Sizes of |X ∩ X′| corresponding to Table 2.
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Weight Number of codewords

(2) w1 = qN−1(qN − qN−1 − 2) (qN+1+1)(qN−1)q2N−1(q−1)(q−2)
2(q+1)2

(4)+(7) w2 = w1 + qN−1 (qN+1+1)(qN−1)q2N−2(q−1)
q+1

+
(qN+1+1)(qN−1)qN (qN−1+1)(q−1)

(q+1)2

(3)+(5)+(6) w3 = w1 + 2qN−1 (qN+1+1)(qN−1)q2N

2(q+1)
+

q(qN+1+1)(qN−1)(qN−1+1)(qN−2−1)
(q2−1)(q+1)

+
(qN+1+1)(qN−1)qN−1(qN−1+1)

q+1

(1) w4 = w1 + qN−1(q + 1) (qN+1+1)(qN−1)q2N−2

(q+1)2

Table 4: The four smallest weights of CHerm(X), N even.

5.2 N odd

For N odd, Table 5 gives for the corresponding intersections of Table 2 the sizes of these
intersections. Then Table 6 gives the corresponding weights in the code CHerm(X). Note
that (1) gives the smallest weight w1, (3), (5), and (6) give the second smallest weight
w1+qN−qN−1, cases (4) and (7) give the third smallest weight w1+qN , while case (2) gives
the fourth smallest weight w1 + qN−1(q + 1). Table 6 also gives the number of codewords
having these weights. When there are different cases leading to the same weight, in the
rightmost column of Table 6, the total number of codewords of that weight is written as
a sum of the corresponding numbers of codewords corresponding to the respective cases
of Table 2.

|X ∩ X′|
(1) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN+2 + 2qN + qN−3 + qN−5 + · · ·+ q2 + 1
(2) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN − qN−1 + qN−3 + qN−5 + · · ·+ q2 + 1
(3) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN + qN−1 + qN−3 + · · ·+ q2 + 1
(4) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN + qN−3 + qN−5 + · · ·+ q2 + 1
(5) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN + qN−1 + qN−3 + · · ·+ q2 + 1
(6) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN + qN−1 + qN−3 + · · ·+ q2 + 1
(7) q2N−2 + q2N−3 + q2N−5 + · · ·+ qN + qN−3 + qN−5 + · · ·+ q2 + 1

Table 5: Sizes of |X ∩ X′| corresponding to Table 2.
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Weight Number of codewords

(1) w1 = qN−1(qN−1 − 1)(q − 1) (qN+1−1)(qN+1)q2N−2

(q+1)2

(3) + (5) + (6) w2 = w1 + qN − qN−1 (qN+1−1)(qN+1)q2N

2(q+1)
q(qN+1−1)(qN+1)(qN−1−1)(qN−2+1)

(q2−1)(q+1)
+

qN−1(qN+1−1)(qN+1)(qN−1−1)
q+1

(4)+(7) w3 = w1 + qN (qN+1−1)(qN+1)q2N−2(q−1)
q+1

+
qN (qN+1−1)(qN+1)(qN−1−1)(q−1)

(q+1)2

(2) w4 = w1 + qN−1(q + 1) q2N−1(qN+1−1)(qN+1)(q−1)(q−2)
2(q+1)2

Table 6: The four smallest weights of CHerm(X), N odd.
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