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Abstract

This article continues the study of multiple blocking sets in PG(2, q).
In [3], using lacunary polynomials, it was proven that t-fold blocking
sets of PG(2, q), q square, t < q1/4/2, of size smaller than t(q + 1) +
cqq

2/3, with cq = 2−1/3 when q is a power of 2 or 3 and cq = 1 oth-
erwise, contain the union of t pairwise disjoint Baer subplanes when
t ≥ 2, or a line or a Baer subplane when t = 1. We now combine
the method of lacunary polynomials with the use of algebraic curves
to improve the known characterization results on multiple blocking
sets and to prove a t (mod p) result on small t-fold blocking sets of
PG(2, q = pn), p prime, n ≥ 1.

1 Introduction

Throughout this paper, let q = pn where p is a prime. We use the standard
notations PG(2, q) and AG(2, q) for the Desarguesian projective and affine
plane of order q. A t-fold blocking set B in PG(2, q) is a set of points such
that every line of PG(2, q) intersects B in at least t points.

A 1-fold blocking set is simply called a blocking set. A 1-fold blocking set
is called trivial if it contains a line of PG(2, q). A t-fold blocking set is called
minimal (or irreducible) when no proper subset of it still is a t-fold blocking
set.

Presently, the following bounds on the cardinalities of t-fold blocking sets
are known.

Theorem 1.1 Let B be a t-fold blocking set in PG(2, q), q = pn, p prime,
of size t(q + 1) + c. Let c2 = c3 = 2−1/3 and cp = 1 for p > 3.

(0) (Ball [1]) When q = p > 3 is a prime and t < p/2, then |B| ≥ (t +
1
2
)(p + 1).

(1) If n is odd and t < q/2 − cpq
2/3/2, then c ≥ cpq

2/3, unless t = 1 in
which case B contains a line, if |B| < q + 1 + cpq

2/3.
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(2) If q is a square, t < q1/4/2 and c < cpq
2/3, then c ≥ t

√
q and B contains

the union of t pairwise disjoint Baer subplanes, except for t = 1 in
which case B contains a line or a Baer subplane.

(3) If q = p2, p prime, and t < q1/4/2 and c < pd1
4
+

√

p+1
2
e, then c ≥ t

√
q

and B contains the union of t pairwise disjoint Baer subplanes, except
for t = 1 in which case B contains a line or a Baer subplane.

These results were obtained by using the relation between lacunary poly-
nomials and multiple blocking sets (Section 2).

We use algebraic curves to obtain further information on line intersections
of blocking sets (Section 3). An earlier version of this technique was published
as a conference abstract, see [6].

We now combine these two techniques to improve on Theorem 1.1. Our
main results are Theorem 4.12, the bounds of Section 5 which state that if
a t-fold blocking set in PG(2, q), q square, is not too large, then it consists
of the union of a Baer subplane and a (t − 1)-fold blocking set which are
disjoint, and the t (mod p) result of Section 3 (Theorem 3.1).

This latter t (mod p) result was already proven by Szőnyi [13] for minimal
1-fold blocking sets in PG(2, q), q = pn, p prime, with |B| < 3(q + 1)/2.

Recently, Sziklai [12] improved this latter 1 (mod p) result. Namely, let B
be a minimal blocking set in PG(2, q), q = pn, p prime, with |B| < 3(q+1)/2,
and let e be the maximal integer e for which a line intersects B in 1 (mod pe)
points. Then Sziklai [12] proved that e divides n, and proved that the lines
intersecting B in exactly 1 + pe points intersect B in a subline PG(1, pe).

2 Blocking sets, lacunary polynomials and al-

gebraic curves

We say that a polynomial in Fq[X] is fully reducible if it factors completely
in linear factors over Fq. If a large number of consecutive coefficients of a
polynomial vanish, this polynomial is called lacunary [11].

To each point P of a blocking set, we will associate a fully reducible
lacunary polynomial, called the excess polynomial, which encodes how the
points of the blocking set are distributed over the lines through P . Let B
be a t-fold blocking set in PG(2, q) of size t(q + 1) + c, with t + c < q
and P a point of B. Let the line ` be a (t + c1)-secant of B containing
P and choose homogeneous coordinates (X : Y : Z) in such a way that
P = (0 : 1 : 0) = (∞), ` has equation Z = 0 and B ∩ ` = {(1 : −yj : 0)||j =
1, . . . , t + c1 − 1} ∪ {(0 : 1 : 0)}.
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Let A be the affine plane PG(2, q) \ `, provided with affine coordinates,
such that (x, y) = (x : y : 1), and let

B ∩ A = {(ai, bi)||i = 1, . . . , tq + c2}

where c2 = c − c1. Let

F (U, V ) =

t+c1−1
∏

j=1

(V + yj)

tq+c2
∏

i=1

(U + aiV + bi),

be the Rédei-polynomial of the set. Since F (U, V ) vanishes at least t times
for all (u, v) ∈ F

2
q, it can be written as

F (U, V ) =
t

∑

i=0

Fi(U, V )(U q − U)t−i(V q − V )i,

where deg(Fi) ≤ deg(F ) − qt, see [3, 4]. Considering the homogeneous part
of largest degree and substituting V = 1, we get

f(U) :=

tq+c2
∏

i=1

(U + ai) =
t

∑

i=0

fi(U)U q(t−i),

where fi(U) = Fi0(U, 1), and where Fi0 is the homogeneous part of Fi(U, V )
of highest degree. Since B is a t-fold blocking set, f contains the factor
(U + y) at least t − 1 times, for all y ∈ Fq. So f is divisible by (U q − U)t−1.
Dividing by (U q − U)t−1, we obtain the excess polynomial

ex(U) = U qf0(U) + f1(U) + (t − 1)Uf0(U)

of P . In [3], it was proven that deg(f1(U) + (t − 1)Uf0(U)) ≤ c. This poly-
nomial is determined up to projective linear transformations. Its geometric
meaning is the following: whenever a line X = y (through P ) meets B ∩ A
in r points, then U = −y is an (r − t + 1)-fold root of the excess polynomial
(of P ).

Definition 2.1 Let ex(U) be the excess polynomial of P . Let q = pn, p
prime. Let d(U) = gcd(f0(U), f1(U)). If e is the largest integer for which
ex(U)/d(U) is a pe-th power, then e is called the exponent of the point P .

In [3], it is shown that the exponent is well defined. We recall the main
theorem of [3] on fully reducible lacunary polynomials. The degree of a
polynomial f is denoted by f ◦; following Rédei [11].
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Theorem 2.2 Let f ∈ Fq[X], q = pn, p prime, be fully reducible, f(X) =
Xqh(X) + g(X), where gcd(g, h) = 1. Let k = max(g◦, h◦) < q. Let e be
maximal such that f is a pe-th power. Then we have one of the following
cases:

(1) e = n and k = 0;

(2) e ≥ 2n/3 and k ≥ pe;

(3) 2n/3 > e > n/2 and k ≥ pn−e/2 − (3/2)pn−e;

(4) e = n/2 and k = pe and f(X) = aT(bX + c) + d or f(X) = aN(bX +
c) + d for suitable constants a, b, c, d. Here T and N denote the trace
and norm function from Fq to F√

q, respectively;

(5) e = n/2 and k ≥ pe
⌈

1
4

+
√

(pe + 1)/2
⌉

;

(6) n/2 > e > n/3 and k ≥ pn/2+e/2 − pn−e − pe/2, or if 3e = n + 1 and
p ≤ 3, then k ≥ pe(pe + 1)/2;

(7) n/3 ≥ e > 0 and k ≥ ped(pn−e + 1)/(pe + 1)e;

(8) e = 0 and k ≥ (q + 1)/2;

(9) e = 0, k = 1 and f(X) = a(Xq − X).

The next two lemmas about lacunary polynomials will be used in our
proofs.

Lemma 2.3 Let B be a minimal t-fold blocking set, |B| = t(q + 1) + c and
let P be a point of exponent e > 0 in B. Then there are at least q − c lines
through P intersecting B in exactly t points.

Proof: Let P be the point (0 : 1 : 0), choose the line at infinity as a t-
secant and consider the excess polynomial ex(U) = U qh(U)+g(U) introduced
above. For simplicity, we wrote h(U) for f0(U) and g(U) for f1(U) + (t −
1)Uf0(U). As mentioned above, h◦, g◦ ≤ c. Let d(U) = gcd(h(U), g(U)).
Then ex(U)/d(U) = (U q/pe

h1(U) + g1(U))pe

. The vertical lines that are
not t-secants correspond to roots of ex(U). They are either roots of d(U)
or roots of U q/pe

h1(U) + g1(U). In the latter case, they are also roots of
Uh1(U)pe

+ g1(U)pe

. Now d◦ + peh◦
1 ≤ c, hence the number of lines that are

not t-secants is at most c + 1. Therefore, the number of t-secants is at least
q − c. 2
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Lemma 2.4 Let B be a minimal t-fold blocking set of PG(2, q) of size tq +
t + c. Let P be a point of exponent e. Then

(1) P lies on at least 2 + (q − c)/pe different lines meeting B in at least
pe + t points;

(2) P lies on at least (q − 3c)/pe + 4 distinct (pe + t)-secants to B.

Proof: In this argument, we assume that d(U) = 1. The excess polynomial
of P is a pe-th power, say ex(U) = (e1(U))pe

. Let e1(U) = U q/pe

h1(U) +
g1(U) with g◦

1, h
◦
1 ≤ c/pe, see Definition 2.1 and the comments preceding

it. Then e′1(U) divides U q/pe

h′
1(U) + g′

1(U), hence gcd(e1(U), e′1(U)) divides
g1(U)h′

1(U) − g′
1(U)h1(U). This contains the contribution of multiple roots

of e1. The degree of g1(U)h′
1(U) − g′

1(U)h1(U) is at most 2c/pe − 2. So, e1

has at least (q − c)/pe + 2 distinct roots. At most 2c/pe − 2 of them can be
multiple roots, hence e1(U) has at least (q − 3c)/pe + 4 simple roots.

The assertions of the lemma come from the geometric reformulation of
these facts for the excess polynomial. 2

3 Multiple blocking sets and algebraic curves

The main result of this section is the following theorem.

Theorem 3.1 Let B be a minimal t-fold blocking set in PG(2, q), q = pn, p
prime, n ≥ 1, |B| = tq + t + c, c + t < (q + 3)/2. Then every line intersects
B in t (mod p) points.

In order to prove Theorem 3.1, let B be a t-fold blocking set with |B| =
tq + t+ c, c+ t < (q +3)/2. We use the notations of the previous section and
consider the Rédei polynomial where we assume that ` : Z = 0 is a t-secant
to B, so c1 = 0 and c2 = c, and

F (U, V ) =
t−1
∏

j=1

(V + yj)

tq+c
∏

i=1

(U + aiV + bi). (1)

By the results of the previous section,

F (U, V ) = (U q − U)tF0(U, V ) + (U q − U)t−1(V q − V )F1(U, V ) +

· · · + (V q − V )tFt(U, V ), (2)

where deg(Fi) ≤ c + t − 1.
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Select the reference system in such a way that the line X = 0 intersects
B in t points. If the line X = 0 intersects B ∩ A in the points (0, bj),
j = 1, . . . , t−1, then

∏t−1
j=1(U + bj) divides Ft(U, V ). Similarly,

∏t−1
j=1(V +yj)

divides F0(U, V ). The algebraic curves F0(U, V ) and Ft(U, V ) have a direct
geometric meaning: the point (b,m), b 6= −bj,m 6= −yj, j = 1, . . . , t − 1, of
Ft(U, V ) corresponds to a line Y = −mX−b intersecting B∩A in more than
t points. Similarly, a point (b,m) of F0(U, V ), with −m 6= yj, corresponds to
a line Y = −mX − b intersecting B ∩ A in more than t points. If m = −yj

or b = −bj and the line Y + mX + b = 0 intersects A in more than t points,
then F0(b,m) = Ft(b,m) = 0. Because of the above divisibility, F0(b,m) = 0
or Ft(b,m) = 0 do not imply that Y +mX + b = 0 intersects A in more than
t points.

Therefore, F0 and Ft have essentially the same set of Fq-rational points.
For 0 < j < t, this is not clear for Fj. Our aim is to prove that, again except
for the points on some lines, Fj also has the same set of Fq-rational points.
We prove this in a series of lemmas.

Lemma 3.2 If the line Y = −mX−b intersects B∩A in more than t points,
then F0(b,m) = . . . = Ft(b,m) = 0.

Proof: This is clear for F0 and Ft from the preceding calculations. Now
we verify the assertion for 0 < j < t.

Let (U, V ) = (U ′ + λV ′, V ′) be a change of variables, for some λ ∈ Fq, for
which the line X = −λ intersects B in t points. Then

F (U, V ) = F (U ′ + λV ′, V ′) =
∏

(V ′ + yj)
∏

(U ′ + (ai + λ)V ′ + bi) =

(U ′q − U ′)tF0(U
′ + λV ′, V ′) + . . . + (V ′q − V ′)t(Ft(.) + . . . + λtF0(.)).

Here U q − U = U ′q − U ′ + λ(V ′q − V ′) was used. Again, if (X = −λ) ∩ B =
{(−λ, cj)||j = 1, . . . , t − 1} ∪ {(∞)}, then

∏

(U ′ + cj)|(Ft + . . . + λtF0)(U
′ + λV ′, V ′),

and if the line Y = −mX − b intersects B ∩ A in more than t points, then
the point (b − λm,m) is a point of (Ft + . . . + λtF0)(U

′ + λV ′, V ′).
If we choose t + 1 pairwise different values λ such that the lines X = −λ

intersect B ∩ A in t − 1 points, then we simply get that Fj(b,m) = 0 for
all j, since we have a homogeneous system of t + 1 linear equations, and the
determinant is of Vandermonde type; whence the only solution is the trivial
one. 2

Lemma 3.3 The algebraic curve F0 does not have linear components differ-
ent from V + yj, j = 1, . . . , t − 1.
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Proof: To prove this, observe that a linear component of F0, dependent on
U , should have the form U +aV + b. Geometrically, this means that through
the point P : (a, b), the lines with slope m 6= −yj intersect B ∩A in at least
t+1 points. If P /∈ A, then |B ∩A| ≥ (t+1)(q +1− t)+ t2, a contradiction.

If P ∈ A, then at least q +1− t lines through P intersect B in more than
t points. Comparing this with Lemma 2.3 gives a contradiction, so P cannot
be an essential point. 2

Lemma 3.4 The polynomials F0, . . . , Ft cannot have a common divisor, de-
pendent on U .

Proof: Indeed, such a polynomial would divide F (U, V ), hence it would
contain a linear component. By the previous lemma, this is impossible. 2

Remark 3.5 Actually, V + yj cannot be a common divisor of F0, . . . , Ft

either. This would imply that through the point (1 : −yj : 0) there passed
only one t-secant, namely the line at infinity. This is impossible by Lemma
2.3.

Proof of Theorem 3.1. Now let H(U, V ) be an absolutely irreducible
component of F0(U, V )/

∏t−1
j=1(V + yj), with deg(H) = s. Note that from

(1) and (2), F0(U, V )/
∏t−1

j=1(V + yj) is a polynomial of total degree c and of
U -degree c. So all the absolutely irreducible components of this polynomial
have terms in U .

There is an i such that H does not divide Fi. If H ′
U 6≡ 0, then H has at

least
(q + 1 − t)s − s(s − 1)

Fq-rational points, see [2, p. 145]. In this counting argument, we only consid-
ered the points (b,m) for which m 6= −yj; explaining the factor q+1−t. This
is motivated by the fact that these points all correspond to lines intersecting
A in more than t points. By Lemma 3.2, these points all belong to Fi, and
Bézout’s theorem gives

(q + 1 − t)s − s(s − 1) ≤ s(c + t − 1).

This gives the inequality

c + t + (t + s) ≥ q + 3,

and as s ≤ c, we immediately get

c + t ≥ (q + 3)/2.
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If c + t < (q + 3)/2, then H ′
U ≡ 0 for any component H, so all lines not

through (∞) and not passing through one of the points (1 : −yj : 0) intersect
B in t (mod p) points. By replacing the line at infinity by an other line
through (∞), it is possible to prove that all lines not through (∞) intersect
B in t (mod p) points. Since (∞) is an arbitrary point of B, all lines meet
B in t (mod p) points. This completes the proof of Theorem 3.1. 2

Theorem 3.1 already gives the existence of an integer e ≥ 1 such that
all lines meet B in t (mod pe) points. We first wish to relate this e to the
components of F0(U, V ). One direction is clear: all the components of F0 are
of the form H(U, V ) = x(Upe

, V ). If we take the minimum of these values e
where P varies over all the points of B, then all lines meet B in t (mod pe)
points. The next propositions go in the opposite direction. The following
argument is based on an argument from [13] or rather the improvement
presented in [14].

Proposition 3.6 Assume that c + t < (q + 3)/2 and let H(U, V ) be an
absolutely irreducible component of F0, which can be written as H(U, V ) =
x(Upe

, V ) with x′
U 6≡ 0. Then

c ≥ q + pe

pe + 1
− t + 1.

Proof: Let s denote the U -degree of the polynomial x. The total degree of
x is at most spe. Use Bézout’s theorem for the curves H and Fi, where H is
not a component of Fi (Lemma 3.4). Since all the points of H on the lines
different from V = −yj, j = 1, . . . , t− 1, are also points of Fi, the number of
such points of H is at most H◦F ◦

i ≤ spe(c + t − 1).
Let

F (U, y) =
t−1
∏

j=1

(y + yj)

tq+c
∏

i=1

(U + aiy + bi) = (U q − U)tF0(U, y),

with y 6= −yj, j = 1, . . . , t − 1.
Then these q + 1 − t lines V = y give linear factors over Fq for F0(U, y).

The factor x of F0 has U -degree s, so the number of points of x on these
lines, counted according to their intersection multiplicity with the vertical
lines, is (q + 1 − t)s. We need to subtract the affine intersections of x and
x′

U . By the improvement of [13, Lemma 5.1], see [14, pp. 267-268], this is at
most s(s− 1)pe. So x(U, V ) has at least (q +1− t)s− s(s− 1)pe points. This
gives

(q − t + 1)s − s(s − 1)pe ≤ spe(c + t − 1),
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from which

c ≥ q + pe

pe + 1
− t + 1

follows using spe ≤ c. 2

As in [7], we do the standard counting arguments to find an upper bound
on |B|. Suppose that there are τi lines that intersect B in exactly i points.
Then τi = 0 for i 6≡ 0 (mod pe). The equations are, with E = pe,

∑

i≥0

τt+iE = q2 + q + 1, (3)

∑

i≥0

(t + iE)τt+iE = |B|(q + 1), (4)

∑

i≥0

(t + iE)(t + iE − 1)τt+iE = |B|(|B| − 1). (5)

Now
∑

i≥0

iE2(i − 1)τt+iE ≥ 0,

so

|B|2 − |B|(1 + (q + 1)(2t − 1 + E)) + (q2 + q + 1)(t2 + tE) ≥ 0,

which leads to

|B| ≤ 1 + (q + 1)(2t − 1 + E) −
√

∆

2
,

with ∆ = (1 + (q + 1)(2t − 1 + E))2 − 4(q2 + q + 1)(t2 + tE).
We have the following theorem as final conclusion of this section.

Theorem 3.7 Associated to a minimal t-fold blocking set B in PG(2, q), q =
pn, p prime, there are t + 1 algebraic curves F0(U, V ), F1(U, V ), . . . , Ft(U, V )
having almost the same set of Fq-rational points. More precisely, if ` : Z = 0
is a t-secant and |B| = t(q +1)+ c, then deg(F0) = c+ t− 1 and F0 contains
the factor

∏t−1
j=1(V + yj). After factoring out these linear components, an

algebraic curve F ∗
0 of degree c is obtained.

(1) If F ∗
0 (b,m) = 0, m 6= −yj, then the line with equation Y = −mX − b

intersects B in more than t points.

(2) If F ∗
0 intersects the line U = b at the point (b,m), m 6= −yj, with

multiplicity r, then Y = −mX − b intersects B in exactly r + t points.
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(3) If c + t < (q + 3)/2, then all the components of F ∗
0 are of the form

x(Upe

, V ), for some e > 0. The same holds for the non-linear compo-
nents of Fj, j = 1, . . . , t. If e0 is the minimum of these values e taken
over all non-linear components of the algebraic curves Fj, j = 0, . . . , t,
then every line intersects B in t (mod pe0) points.

This number e0 is called the exponent of the minimal t-fold blocking set
B.

(4) If x(Upe

, V ) is an absolutely irreducible component of F ∗
0 (U, V ), with e

the maximal exponent for which this is true, then c ≥ q+pe

pe+1
− t + 1.

4 A characterization result on t-fold blocking

sets

In this section, we prove a characterization result on t-fold blocking sets which
either completely characterizes or partially characterizes a t-fold blocking set.
For the sake of simplicity, we only consider planes of order q = p6m, but the
arguments for other powers of the characteristic p are similar. Let B be a
minimal t-fold blocking set of PG(2, p6m) of size t(q + 1) + c. To simplify
the computations, we suppose that 2 ≤ t < q1/4/4, and c < p4m√p/2. These
restrictions on t and c will be used throughout this section.

To make the article as accessible as possible to the reader, avoiding de-
tailed calculations, we will not discuss during the presentation of the argu-
ments whether inequalities are valid for all characteristics p, or valid only if
some lower bound on the characteristic p holds. The calculations have been
done in detail to give the reader precise bounds on the cardinalities of t-fold
blocking sets. These bounds are presented in Section 5.

Proposition 4.1 A point of B has exponent 4m, 3m or 2m.
Moreover, when e = 3m, then this point defines a dual Baer subline of

lines all containing at least p3m + t points of B.

Proof: We have to check all the possibilities of Theorem 2.2. As an illus-
tration, we show that neither e > 4m nor 4m > e > 3m is possible. In the
first case, we would have c ≥ pe ≥ p4mp, contradicting our upper bound on
c. In the second case, c ≥ p6m−e/2 − 3

2
p6m−e would follow. Here the first

term is at least p4m+1/2, the second term is much smaller, so we again have
a contradiction. 2
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As indicated in Theorem 3.7 (3), there is another notion of “exponent”
introduced in Section 3. From Theorem 3.7 (3), we know that the components
of F ∗

0 are of the form x(Upe

, V ), for some e > 0.
The importance of this number e is that it improves the result that every

line ` intersects B in t (mod p) points.

Proposition 4.2 For any component x(Upe

, V ) of F ∗
0 (U, V ), we have e ≥

2m. In particular, every line meets B in t (mod p2m) points.

Proof: By Theorem 3.7 (4), we have the lower bound c ≥ q+pe

pe+1
− t+1. If e

was smaller than 2m, then the right hand side would be larger than p4m√p/2,
a contradiction. The geometric assertion follows immediately from Theorem
3.7 (2). 2

Lemma 4.3 A Baer subplane not contained in B shares at most M ≤ c +
t(
√

q + 1) points with B.

Proof: The argument in [3, Lemma 4.4] can be copied. 2

Definition 4.4 A line containing at least p4m + t points of B will be called
very long, while a line meeting B in at least p3m + t points will be called long.

Lemma 4.5 The dual Baer subline of long lines through a point of exponent
3m is unique.

Proof: Two dual Baer sublines through the same point meet in at most
two lines. If there would be two dual Baer sublines of long lines through the
same point, then B would have at least 1+2

√
q
√

q +(t−1)(q +1) ≥ (t+1)q
points, which is a contradiction. 2

Proposition 4.6 If there is a Baer subplane S contained in B, then B \ S
is a minimal (t − 1)-fold blocking set.

Proof: This follows immediately from Proposition 4.2. 2

Therefore, from now on, we can suppose that B does not contain a Baer
subplane.

Definition 4.7 If P is a point of the t-fold blocking set B of exponent 3m
defining a dual Baer subline of long lines, and ` is one of the lines of this
dual Baer subline, then we call P a special point of `.
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Lemma 4.8 If a line ` contains 2t + 1 special points, then there is a Baer
subplane contained in B.

Proof: This proof is essentially the first part of the proof of [3, Proposition
4.5]. Let P1, . . . , P2t+1 ∈ ` be special points, and let Bi be the intersection

of B and ∪
√

q
j=1`

i
j, where `i

j and ` are the lines of the (unique) dual Baer
subline of long lines through Pi. Then |Bi| ≥

√
q(
√

q + t − 1), |Bi ∩ Bj| ≤
|B ∩ Sij|, where Sij is the affine Baer subplane determined by the dual Baer
sublines, different from `, through Pi and Pj. If Sij 6⊆ B, then by Lemma
4.3, |B ∩ Sij| ≤ c + t(

√
q + 1). By inclusion-exclusion,

|B \ `| ≥ (2t + 1)
√

q(
√

q + t − 1) −
(

2t + 1

2

)

max
i6=j

|Bi ∩ Bj|.

Substituting the cardinalities

t(q + 1) + c − |B \ `| ≥ (2t + 1)
√

q(
√

q + t − 1) − (2t + 1)t(c + t + t
√

q)

follows. Considering the main terms, one gets tq + c ≥ 2tq − 2t2c − 2t3
√

q.
Using the fact that 2t3

√
q ≤ tq/8, we obtain that 2t2c + c ≥ 7qt/8. Finally,

2t2c ≤ tp11m/2√p/4 ≤ tq/4 which implies that tq/4 + c ≥ 2t2c + c ≥ 7tq/8
and so c ≥ 5qt/8, a contradiction. 2

Proposition 4.9 There are at most 2t points of exponent 4m.

Proof: Suppose that there are at least 2t+1 points of exponent 4m. Choose
2t + 1 of them, P1, . . . , P2t+1. By the previous lemma, through a point Pi of
exponent 4m, there are at least p2m − √

p and at most p2m +
√

p very long
lines. At most 2t of them pass through an other point Pj, j 6= i. On the
remaining very long lines through Pi, there are at least p4m +t−2t(p2m +

√
p)

points which are not on very long lines passing through Pj, j 6= i. Therefore
the total number of points of B on very long lines is at least (2t + 1)(p2m −√

p − 2t)(p4m + t − 2tp2m − 2t
√

p). This number is larger than tp6m + c + t,
a contradiction. 2

Let x denote the number of points of B of exponent 3m, and let y denote
the number of points of exponent 4m. The previous proposition says that
y ≤ 2t. Now we bound the number of points of exponent 3m if B does not
contain a Baer subplane.

Lemma 4.10 The number L of long lines is at most

L ≤ (x
√

q + 2tp2m + |B| 4c√
q − p2m

)/(
√

q + t).

12



Proof: Count the number of incident (point of B, long line) pairs. Then

L(
√

q + t) ≤ x
q + c√

q
+ y(p2m +

c√
q
) + (|B| − x − y)

4c√
q − p2m

.

Namely, if we subtract 1+(t−1)(q+1) from |B|, we know the number q+c
of points of B lying ”extra” on the lines through a point R of B. For a point
R of exponent 3m, every long line passing through this point R still needs

√
q

other points of B, so such a point lies on at most (q + c)/
√

q long lines. For
a point R of exponent 2m, we know that it lies on at least (p6m−3c)/p2m +4
lines with exactly p2m + t points. So at least p6m − 3c + 4p2m ”extra” points
of B are on these lines with exactly p2m + t points. Then at most 4c − 4p2m

points of B remain which lie on lines through R with more than p2m+t points.
We want to count the number of lines through R with at least p3m + t points
of B; so there are at most (4c − 4p2m)/(p3m − p2m) < 4c/(

√
q − p2m) such

lines through R.
If we do the reasoning for a point R of exponent 4m, we extract the power

p4m from the excess polynomial (Section 2) Xqh(X) + g(X) = Xqf0(X) +
+(f1(X)+(t−1)Xf0(X)) after we have divided by gcd(g(X), h(X)). Suppose
that d = deg(gcd(g(X), h(X))). Then we see that there are at most (q + c−
d)/p4m lines through R which are very long. The linear factors arising from
gcd(g(X), h(X)) also can lead to long lines through R, so there are at most
(q + c − d)/p4m + d/p3m ≤ p2m + c/p3m long lines through R. 2

Lemma 4.11 x ≤ c.

Proof: Count the number of pairs (point of exponent 3m, line of its dual
Baer subline of long lines). Then x(

√
q + 1) ≤ 2tL, by Lemma 4.8. Substi-

tuting the bound obtained in the previous lemma, we obtain that

x(
√

q + 1)(
√

q + t) ≤ 2tx
√

q + 4t2p2m + (tq + t + c)
8ct√

q − p2m
.

Using that 8t2 <
√

q/2, and the bound c < p4m√p/2, we get a contradiction
after some computations, if x > c is assumed. 2

Theorem 4.12 A minimal t-fold blocking set B in PG(2, p6m), 2 ≤ t <
p3m/2/4, with |B| < tp6m +p4m√p/2+ t, not containing a Baer subplane, has
size |B| ≥ tp6m + tp4m − O(p2m).

Proof: Let |B| = tq + t + c. We count the number S of (p2m + t)-secants
by using the algebraic curve F ∗

0 associated to B, see Theorem 3.7, and by
using Lemma 2.4. There are at least tq − t points of B having exponent

13



2m. Through any such point, there are at least (p6m − 3c)/p2m different
(p2m + t)-secants, hence

S ≥ (tq − t)(q − 3c)

p2m(p2m + t)
.

Through the t infinite points of B, there are at most t(q + c)/p2m such
lines. If such a line does not pass through an infinite point of B, then
it corresponds to a point of the algebraic curve F ∗

0 . In this latter case, a
(p2m + t)-secant can only correspond to a point on a component of F ∗

0 with
e = 2m. Let w be such a component. There can be at most deg(w)(q+1)/p2m

distinct points on this component. Summing this over all components w of
F ∗

0 , we find (q + 1)c/p2m as upper bound. So

(q + 1)c/p2m + t(q + c)/p2m ≥ S ≥ (tq − t)(q − 3c)

p2m(p2m + t)
.

Studying this inequality, the lower bound on c follows. 2

5 Detailed bounds

We now present bounds arising from detailed calculations of the preceding
arguments. Let p be a prime.

5.1 General bounds

Theorem 5.1 (1) If B is a minimal t-fold blocking set in PG(2, p6m), m ≥
1, 2 ≤ t < p3m/2/4, with |B| < tp6m + p4m√p/2 + t, not containing a
Baer subplane, then

|B| ≥ tp6m + tp4m − 4t2p2m + t.

Such a minimal t-fold blocking set only can have points of exponents
2m, 3m and 4m.

(2) If B is a minimal t-fold blocking set in PG(2, p6m+1), m ≥ 1, 2 ≤ t <
p3m/2+1/4/4, with |B| < tp6m+1 + p4m+1 − 2p2m+1 + t, then

|B| ≥ tp6m+1 + t + max(tp4m − 4t2p2m−1, p4m+1 − p4m − p2m+1/2).

Such a minimal t-fold blocking set only can have points of exponent
2m + 1.
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(3) If B is a minimal t-fold blocking set in PG(2, p6m+2), m ≥ 1, p ≥ 5,
with 2 ≤ t < p3/(4(p + 1)) when m = 1 and with 2 ≤ t < p(3m+1)/2/4
when m > 1, and with |B| < tp6m+2 + p4m+2/2 + t, not containing a
Baer subplane, then

|B| ≥ tp6m+2 + tp4m+1 − 4t2p2m + t.

Such a minimal t-fold blocking set only can have points of exponents
2m + 1, 3m + 1 and 4m + 1.

(4) If B is a minimal t-fold blocking set in PG(2, p6m+3), m ≥ 0, 2 ≤ t <
p(6m+3)/4/4, |B| < tp6m+3 + p4m+2√p/2 + t, where p ≥ 23 for m = 0
and p ≥ 3 for m = 1, then

|B| ≥ tp6m+3 + tp4m+2 − 4t2p2m+1 + t.

Such a minimal t-fold blocking set only can have points of exponents
2m + 1 and 4m + 2.

(5) If B is a minimal t-fold blocking set in PG(2, p6m+4), m ≥ 1, with
2 ≤ t < p(3m+2)/2/4, and with |B| < tp6m+4 + p4m+3 − 2p2m+2 + t, not
containing a Baer subplane, then

|B| ≥ tp6m+4 + t + max(tp4m+2 − 4t2p2m, p4m+3 − p4m+2 − p2m+2/2).

Such a minimal t-fold blocking set only can have points of exponents
2m + 2 and 3m + 2.

(6) If B is a minimal t-fold blocking set in PG(2, p6m+5), m ≥ 0, p ≥ 5,
with |B| < tp6m+5 + p4m+4/2 + t, with 2 ≤ t < p3m/2+5/4/4 for m > 0
and 2 ≤ t ≤ (p − 3)/4 for m = 0, then

|B| ≥ tp6m+5 + t+max(tp4m+3−4t2p2m+1, p4m+3√p−p4m+3−p2m+2/2).

Such a minimal t-fold blocking set only can have points of exponents
2m + 2 and 4m + 3.

5.2 Complete classifications

We now present for q = p6m, p6m+2 and p6m+4, the cases in which a complete
description of the t-fold blocking sets is given.

Presently, the following complete characterizations of blocking sets are
known.
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Theorem 5.2 (Polverino, Polverino and Storme [7, 8, 9]) The smallest min-
imal blocking sets in PG(2, p3h), p prime, p ≥ 7, with exponent e ≥ h, are:

(1) a line,
(2) a Baer subplane of cardinality p3h + p3h/2 + 1, when ph is a square,
(3) a set of cardinality p3h + p2h + 1, equivalent to

{(x, T (x), 1)||x ∈ Fp3h} ∪ {(x, T (x), 0)||x ∈ Fp3h \ {0}},

with T the trace function from Fp3h to Fph,
(4) a set of cardinality p3h + p2h + ph + 1, equivalent to

{(x, xph

, 1)||x ∈ Fp3h} ∪ {(x, xph

, 0)||x ∈ Fp3h \ {0}}.

Theorem 5.3 Let B be a minimal t-fold blocking set in PG(2, p6m), p prime,
m ≥ 1, with 2 ≤ t < p3m/2/4, of size |B| < tp6m + p4m√p/2 + t.

If
|B| < tp6m + 2p4m + (t − 2)p3m − 16p2m + t,

then B is the union of t pairwise disjoint Baer subplanes or the union of t−1
Baer subplanes and one minimal blocking set of size p6m + p4m(+p2m) + 1,
which all are pairwise disjoint.

Proof: We apply inductively the result of Theorem 5.1 (1) to prove that
B is the union of t − 2 Baer subplanes and a 2-fold blocking set of size
|B| < 2p6m + 2p4m − 16p2m + 2, which all are pairwise disjoint. From Theo-
rem 5.1 (1), this remaining 2-fold blocking set is the union of a Baer subplane
and an other blocking set which are pairwise disjoint. This latter blocking set
is either a Baer subplane or a minimal blocking set of size p6m+p4m(+p2m)+1
since it has exponent e ≥ 2m (Theorem 5.2). 2

The question is whether there exist t-fold blocking sets which are the
union of t − 1 Baer subplanes and a minimal blocking set of size p6m +
p4m(+p2m) + 1 in PG(2, p6m), which are pairwise disjoint.

Polverino and Storme found a particular example of such a 2-fold blocking
set.

Theorem 5.4 (Polverino and Storme [10]) In PG(2, p6m), p odd, m ≥ 1,
pm ≡ 5 (mod 7), there exists a minimal 2-fold blocking set which is the union
of a Baer subplane and a minimal blocking set of size p6m + p4m + p2m + 1,
which are pairwise disjoint.
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Similarly, parts (4) and (1) of Theorem 5.1 state lower bounds on the size
of minimal t-fold blocking sets in PG(2, p6m+3), and on the size of minimal
t-fold blocking sets in PG(2, p6m) not containing a Baer subplane. Also here,
the question arises whether an example of a minimal t-fold blocking set exists
whose size is of this order. Again, such an example of a 2-fold blocking set
was found by Polverino and Storme.

Theorem 5.5 (Polverino and Storme [10]) In PG(2, p3h), ph ≡ 2 (mod 7),
there exists a minimal 2-fold blocking set which is the union of two disjoint
minimal blocking sets of size p3h + p2h + ph + 1.

We end the article with a discussion of t-fold blocking sets in PG(2, p6m+2)
and PG(2, p6m+4).

Theorem 5.6 Let B be a minimal t-fold blocking set in PG(2, p6m+2), p
prime, m ≥ 1, with 2 ≤ t < p3m/2+1/2/4, of size |B| < tp6m+2 + p4m+2/2 + t.

If
|B| < tp6m+2 + 2p4m+1 + (t − 2)p3m+1 − 16p2m + t,

then B is a union of t pairwise disjoint Baer subplanes.

Proof: Applying Theorem 5.1 (3) inductively, we obtain that B is a union
of pairwise disjoint t− 1 Baer subplanes and one other minimal blocking set
of size smaller than p6m+2 + 2p4m+1 − p3m+1 − 16p2m + 1.

This latter minimal blocking set must have exponent e ≥ 2m + 1. More-
over, by the recent results of Sziklai [12], this exponent must be a divisor of
6m+2. Hence, e ≥ 3m+1, and this implies that this latter blocking set also
is a Baer subplane. 2

A similar argument gives the following theorem.

Theorem 5.7 Let B be a minimal t-fold blocking set, 2 ≤ t < p(3m+2)/2/4,
in PG(2, p6m+4), m ≥ 1, of size |B| < tp6m+4 + p4m+3 − 2p2m+2 + t.

If

|B| < tp6m+4+t+(t−2)p3m+2+max(2p4m+2−16p2m, p4m+3−p4m+2−p2m+2/2),

then B is the union of t pairwise disjoint Baer subplanes.
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[13] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes.
Finite Fields Appl. 3 (1997), 187-202.
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