
[Page 1]

A group theoretic approach to

(0, 2)-geometries

Matthew R. Brown∗, C. Tonesi‡and H. Van Maldeghem∗∗

Abstract. A (0, 2)-geometry is a geometry in which for any non-incident point-line pair
(x, L) there are exactly 0 or 2 lines incident with x and concurrent with L. In this paper
we use the special properties of a (0, 2)-geometry to define groups of projectivities and
Moufang-like conditions, in a similar way as is done for generalized polygons. These
definitions are explored and some partial classification results obtained.
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1. Introduction

There are two ways in which one can define a group related to a generalized
polygon. Either one looks at the automorphism group (sometimes called the
collineation group), or one considers the group of projectivities. The latter is the
group of permutations of all points on a line arising from the bijections between
the point sets of two opposite lines given by a pair of points being not opposite.
The existence and special properties of the relation “being opposite” is essential in
this context. Consequently, the notion of “group of projectivities” has only been
considered for generalized polygons (as a generalization of this notion for projec-
tive planes; more generally, one can consider spherical or twin buildings, but there
has been very little, to our knowledge, done in this direction in the literature). In
the present paper, we observe that (0, 2)-geometries also have a special geometric
property that enables one to define a group of projectivities in a very natural way.
It also allows us to characterize some classical nets by means of that group.

Moreover, the geometry of (0, 2)-geometries permits us to define Moufang-like
conditions. We introduce these conditions, develop some theory, and prove some
characterization theorems.
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It is a valuable exercise to compare the notions introduced in the present paper
with the existing notions for generalized polygons; we therefore refer to [12, 13].
Note that generalized polygons were introduced by Jacques Tits [11] and are ar-
guably the most important rank 2 incidence geometries, see [6]. Almost all other
rank 2 geometries are modelled after the generalized polygons by weakening some
axioms. The generalized polygons earn their status partly because of the proper-
ties of their automorphism groups and groups of projectivities. In this respect, the
present paper shows that (0, 2)-geometries are also fundamental. Unfortunately,
no complete classification theorem has yet been proved, however many partial
results are available.

2. Definitions and Preliminary Results

(0, 2)-geometries.

A (0, 2)-geometry Γ = (P,L, I) consists of a point set P, a line set L and a
symmetric incidence relation I ⊂ (P ×L)∪ (L×P), satisfying the axioms (ZT1),
(ZT2), (ZT3) and (ZT4) below. Before stating these, we give some standard
terminology of incidence geometries.

If xIL, with x ∈ P and L ∈ L, then we say that L contains x, or L goes through
x, or x is contained in L, or x is on L. When xILIyIM , with x, y ∈ P, L,M ∈ L,
x 6= y and L 6= M , then we say that L and M intersect in y, that L and M are
concurrent, that x and y are joined by L, that L joins x and y, or that x and y
are collinear, and we denote this by x ∼ y and L ∼ M . We will sometimes write
L as xy.

The incidence graph of Γ is the graph (P ∪ L, I), while the point graph of Γ is
the graph (P,∼).

(ZT1) Every line contains at least two points and every point is contained in at
least two lines.

(ZT2) Two lines intersect in at most one point.

(ZT3) For every line L and every point x not incident with L, there are either
exactly two lines incident with x and concurrent with L, or no line is incident
with x and concurrent with L.

(ZT4) The incidence graph of Γ is a connected graph.

The dual of Γ is the geometry Γdual = (L,P, I), obtained from Γ by interchang-
ing the point set with the line set.

It is easy to see that the dual of a (0, 2)-geometry is again a (0, 2)-geometry.
Hence everything we say or prove about (0, 2)-geometries has a dual meaning,
which we often do not state explicitly.
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Also note that Axiom (ZT4) is equivalent to the point graph of Γ being con-
nected. For a point or line α, and a natural number i, we denote by Γi(α) the set
of vertices of the graph (P ∪ L, I) at distance i from α.

A semipartial (0, 2)-geometry (often a semipartial geometry with α = 2 in the
literature) is a (0, 2)-geometry the collinearity graph of which is a strongly regular
graph. In other words, this is a (0, 2)-geometry where two noncollinear points
are collinear to a constant number µ of points. A semipartial (0, 2)-geometry in
which for every non-incident, point-line pair (x, L) there are exactly 2 lines incident
with x and concurrent with L is called a partial (0, 2)-geometry (often a partial
geometry with α = 2 in the literature). A semipartial geometry that is not a
partial geometry is called proper. Finally, a partial (0, 2)-geometry with t = 2 is
known as a (Bruck) net with order s + 1 and degree 3. (See [6] for more details
on (semi)partial geometries, including nets.) Such a Bruck net gives rise to Latin
squares and loops (see [2], for instance). In order to avoid confusion between the
order s + 1 of a Bruck net and the order (s, t) of it as a (0, 2)-geometry, we will
usually use the more systematic terminology of (0, 2)-geometries.

Perspectivities, projectivities and their duals.

Now let L and M be concurrent lines of a (0, 2)-geometry Γ intersecting in the
point x. Axiom (ZT3) implies that for every point y 6= x on L there is a unique
point yπL,M 6= x on M collinear with y. Hence if we define the mapping πL,M :
Γ1(L) → Γ1(M), with xπL,M = x, then πL,M is a bijection with inverse πM,L.
Such a bijection is called a perspectivity, and the composition of two or more
perspectivities πL1,L2πL2,L3 . . . πLn−1,Ln

, for lines L1, L2, . . . , Ln, with L1 ∼ L2 ∼
. . . ∼ Ln, is called a projectivity. For L1 = Ln, the projectivity is called a self-
projectivity of L1 and the set of all self-projectivities of a line L forms a permutation
group under the usual composition, called the group of projectivities of Γ, and
denoted Π(Γ), since it is clearly independent of the choice of L by a standard
argument using connectivity of the point graph (see [13] for instance). As usual,
one can also restrict to the self-projectivities that are composed of an even number
of perspectivities. We thus obtain the special group of projectivities of the line L
and denote this group by Π+(Γ). It is a subgroup of index 1 or 2 of Π(Γ). If we
consider perspectivities between lines of Γ containing a fixed point x, then, for
LIx, we obtain the restricted group of projectivities of L relative to x, and denote
this by Πx(Γ). We can also consider the special restricted group Π+

x (Γ) of all
elements of Πx(Γ) that are the composition of an even number of perspectivities
between lines containing x (and so not necessarily equal to Πx(Γ)∩Π+(Γ)). Notice
that both Πx(Γ) and Π+

x (Γ) in general depend on the choice of x.
All previous notions may be dualized; then we speak of dual perspectivities and

of the (special) (restricted) group of dual projectivities.
We remark that, since perspectivities are bijections, and since every (0, 2)-

geometry is connected by definition, all lines are incident with the same number
of points. We denote that constant by 1 + s. likewise, all points are incident with
constant number 1+t of lines. We say that the pair (s, t) is the order of Γ. Neither
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s nor t needs to be finite, but for finite Γ they both are. If s = 1, then Γ is a
complete graph.

Collineations.

Let Γ = (P,L, I) be a (0, 2)-geometry. A permutation θ : P ∪ L → P ∪ L that
induces a graph automorphism in the incidence graph (P ∪ L, I) will be called a
correlation of Γ. If the correlation θ maps at least one point to a point, than it is
a collineation. The group of all collineations of Γ will be denoted by AutΓ. Again,
this group may be viewed as a permutation group, either on P, or on L, or on
P ∪ L.

If θ is a collineation of Γ fixing all points on some line L, then we call L an
axis of θ. Dually, one defines a center of θ.

The following lemma will be responsible for the existence of a rather natural
notion of “elation” in (0, 2)-geometries.

Lemma 2.1. Let Γ = (P,L, I) be a (0, 2)-geometry, and let θ be a collineation
with some axis L and some center x. If xIL or x ∈ Γ3(L), then θ is the identity.
If x ∈ Γ5(L), then θ has order at most 2.

Proof. First suppose that xIL. Consider an arbitrary point y collinear with
x. We claim that y is fixed under θ. Indeed, this is trivial if yIL. Otherwise,
there is a unique point zIL, z 6= x, collinear with y. Since y is the unique point
on xy collinear with z and different from x, the claim follows. Now, every line
M through y meets a unique fixed line through x different from xy; hence y is a
center for θ. By connectivity, every point of Γ is a center, and so θ is trivial.

Now suppose x ∈ Γ3(L) and let M be a line through x meeting L in, say, the
point y. The line M is fixed and since every point on M is collinear with a unique
point of L different from y, we deduce that M is an axis. The assertion now follows
from the first paragraph.

Finally, suppose x ∈ Γ5(L), let y ∈ Γ2(x) ∩ Γ3(L), and let z ∈ Γ2(y) ∩ Γ1(L).
There are exactly two points y, y′ on xy collinear with z. Hence θ2 fixes both y
and y′. As above, this implies that y is a center of θ2. The second paragraph of
our proof now shows that θ2 is the identity. ut

Remark 2.2. In general, using similar arguments as above, one can prove that,
if x ∈ Γ2n+1(L), and if x is a center of θ and L an axis, then the order of θ is a
divisor of 2n−1 (n ≥ 1).

We call a line L of the (0, 2)-geometry Γ an axis of transitivity if, for some point
xIL, the group of collineations G[L] with axis L acts transitively on Γ1(x) \ {L}.
Dually, one defines a center of transitivity. An axis of transitivity is called an
elation line (dually, elation point) if, for some point xIL, there is a group E[L]

of collineations with axis L acting regularly on Γ1(x) \ {L}. Finally, an elation
line is a Moufang line (dually, a Moufang point) if, for some point xIL, there is a
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group UL of collineations with axis L acting regularly on Γ1(x)\{L} and such that
UL is normal in (AutΓ)L. If every point and line are Moufang, then Γ is called a
Moufang (0, 2)-geometry.

A Moufang set M = (X, G;Ux : x ∈ X) consists of a set X, a permutation
group G acting faithfully on X, and for each x ∈ X a subgroup Ux of the stabilizer
Gx of x in G such that

• each Ux is a normal subgroup of Gx and acts regularly on X \ {x};

• the family U := {Ux : x ∈ X} is a conjugacy class of subgroups in G;

• the group G is generated by U .

The following lemma is straightforward.

Lemma 2.3. Let x and y be two collinear Moufang points of the (0, 2)-geometry Γ,
with corresponding groups Ux and Uy. If G := 〈Ux, Uy〉, then Mxy := (Γ1(xy), G;UG

x )
is a Moufang set.

A (0, 2) geometry in which all points are centers of transitivity will be called
a (0, 2)-geometry with central transitivity. Dually, one has the notion of (0, 2)-
geometries with axial transitivity.

Lemma 2.4. If a (0, 2)-geometry Γ has two centers of transitivity, x and y and
two axes of transitivity, L and M , such that xILIyIM , then Γ is a (0, 2)-geometry
with both axial and central transitivity.

Proof. If Γ or its dual is a complete graph the result follows, so we suppose
that each point and each line is incident with at least three elements.

We first claim that we can map y to any point collinear with y, and M to any
line through y. Using G[x] and G[y] we see that all points of L are in the orbit of
y. Using G[L] and G[M ], the claim follows.

Now let z be an arbitrary point, and let i be such that z ∈ Γi(y) (i exists
by connectivity). Let y′ ∈ Γi−2(z) ∩ Γ2(y). By the previous claim, there is a
collineation θ mapping y′ to y; hence zθ ∈ Γi−2(y). An inductive argument on i
now shows that z is a center of transitivity.

The dual argument completes the proof of the lemma. ut

3. Examples

In this section we gather some examples of (0, 2)-geometries with emphasis on the
caes with centers and/or axes of transitivity, elation points and/or elation lines,
and Moufang points and/or Moufang lines.
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3.1. Some examples with s = 3.

Consider a projective space PG(n, 2), with n ≥ 3. Let H = PG(n − 2, 2) be a
fixed subspace of dimension n − 2. Then the geometry Hn∗

2 has as point set the
set of lines of PG(n, 2) which do not intersect H, and as line set the set of planes
of PG(n, 2) which intersect H in exactly one point (and with natural incidence
relation) is a (0, 2)-geometry (see [4] for more details). This construction can be
generalized to projective spaces of arbitrary order giving a semipartial geometry
Hn∗

q with α = q.

3.2. Some linear representations.

Let S be a set of points of the projective space PG(d, q), d > 0 and q any prime
power, with the property that any line of PG(d, q) meets S in either 0, 1 or 3
points. We also assume that S spans PG(d, q) linearly. Now embed PG(d, q) as a
hyperplane π∞ in PG(d+1, q) and let the point set of a geometry T ∗

d (S) (standard
in the literature) be all points of PG(d + 1, q) that do not belong to PG(d, q).
A line of T ∗

d (S) is a line of PG(d + 1, q) that intersects π∞ in a unique point
belonging to S. Then T ∗

d (S) is usually called the linear representation geometry of
S. It is easy to see that if T ∗

d (S) is connected, then it is indeed a (0, 2)-geometry
(actually, with diameter at least 2d+2). All points are Moufang points, as is easily
verified. Obviously, each line of T ∗

d (S) is an axis of transitivity if the collineations
of PG(d, q) leaving S invariant acts 2-transitively on S. In the special case where
q = 1 and hence |S| = 3 for the geometry to be connected, the geometry T ∗

1 (S)
is a net of order q and degree 3. This net has the property that every line is a
Moufang line. In this case we will also denote T ∗

2 (S) by Γ1,q.
There are a lot of sets S known, but we mention two special immediate cases.

One case is when S is the point set of a projective subspace PG(d, 2) arising from
PG(d, q), q even, by restricting coordinates from GF(q) down to GF(2). Another
special case arises for q = 3e, e > 1, with S the point set of an affine subspace
of PG(d, q) isomorphic to AG(d, 3) by first deleting a hyperplane of PG(d, q) and
then restricting the coordinates from GF(q) down to GF(3).

3.3. Some generalizations of linear representations with
symmetry.

3.3.1. The case d = 1 The case d = 1 above generalizes to the class of partial
(0, 2)-geometries with t = 2. Such a geometry is a net of degree 3 and is also
equivalent to a Latin square. Here we give a particular generalization that has a
large collineation group.

Let G be an arbitrary group containing at least three elements. Then the points
of the geometry ΓG, are all pairs of elements in G. The lines consist of the sets
Ha := {(g, a) : g ∈ G}, Va := {(a, g) : g ∈ G} and Da := {(g, ga) : g ∈ G}, for
all a ∈ G (where H,V, D stand for horizontal, vertical and diagonal, respectively).
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The direct product G×G acts (at the right) in a natural way on ΓG as a regular
permutation group on the point set. Moreover, for each a ∈ G, the involutive
mapping (x, y) 7→ (ay−1x, ay−1a) maps Hb to Hab−1a, maps Vb onto Dab−1 and
maps Db onto Vab−1 . Hence it fixes the line Ha pointwise and interchanges Ve,
where e is the identity element of G, with Da. So the line Ha is a Moufang line,
and by symmetry, every line Va is also a Moufang line. It follows that all lines are
Moufang lines.

Suppose now that ΓG admits a nontrivial collineation θ fixing a point. By the
sharply transitive action of G × G on the point set of ΓG we may assume that θ
fixes the point (e, e). By the above observation that each line is a Moufang line,
we may assume that θ fixes all lines through (e, e). Hence θ induces a permutation
σ on G via the action (x, e)θ = (xσ, e) of θ on the points of the line He. Note that
eσ = e.

Now the vertical line Va, a ∈ G \ {e}, is mapped under θ to a vertical line
(as every other line meets Ve, which is fixed by θ); hence Va is mapped onto Vaσ .
Similarly the diagonal line Da−1b is mapped onto another diagonal line which must
then be D((b−1a)σ)−1 . Hence the point (a, b), which is the intersection of Va with
Da−1b is mapped onto the point (aσ, aσ((b−1a)σ)−1). In view of the fact that
horizontal lines must be mapped onto (horizontal) lines, the second coordinate,
namely aσ((b−1a)σ)−1, is independent of a. Putting a = b, we see that it must be
equal to bσ, and we obtain the identity aσ = bσ(b−1a)σ, from which it follows that
θ is an automorphism of G.

Hence ΓG has centers of transitivity if and only if G admits a transitive au-
tomorphism group. In the finite case this is equivalent to G being elementary
abelian. In this case we say that ΓG is a classical net. It arises from AG(2, q) by
deleting q − 2 parallel classes of lines.

More generally, if in the above construction we allow G to be a quasigroup,
then ΓG is a net of degree 3. Further, any net of degree 3 may be constructed in
such a manner and in particular with G a loop (see [2] or [1], for instance). For
any such net Γ a translation is a collineation of Γ which fixes each of the three
parallel classes of Γ and each line of one of the parallel classes. The parallel class
fixed elementwise is called the axis of the translation. If the group of translations
with a fixed axis acts transitively on the set of points incident with one of the lines
of the axis, then the axis is called transitive (not to be confused with an axis of
transitivity defined earlier). A collineation β of Γ which fixes each of the parallel
classes is called a homology if all elements of 〈β〉, different from the identity, have
exactly one fixed point x which is called the centre of β. If the group of homologies
with centre x acts transitively on the points, different from x, on a line incident
with x, then x is called a transitive centre (not to be confused with an centre of
transitivity defined earlier). Any elation point or Moufang point of Γ can be shown
to be a transitive centre of Γ. In [1] a Lenz classification for loops and nets is given
in terms of transitive axes and transitive centres. The paper [1] also contains many
other results connecting the collineation group of a net to the algebraic structure
of a loop giving rise to the net.
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3.3.2. The affine case Let G be a group of exponent 3, that is, a group in
which every non-identity element has order 3. Let n be a positive integer. We
define a geometry Γn,G as follows. The point set of Γn,G is the Cartesian prod-
uct G × G × · · · × G (n + 1 factors). For each pair of nonnegative integers
(k, `), with k + ` ≤ n, and each n-tuple (a1, a2, . . . , an) of elements of G, the
set {(g, ga1, ga2, . . . , gak, g−1ak+1, . . . , g

−1ak+`, ak+`+1, . . . , an) : g ∈ G} and ev-
ery set obtained from this one by permuting the coordinates, but leaving the first
coordinate fixed, is a line of Γn,G.

If G is elementary abelian, then we obtain exactly the linear representation
related to the affine space AG(n, 3) inside PG(n, |G|). However there exist non-
abelian groups of exponent 3, and they give rise to new (0, 2)-geometries with a
transitive group of collineations, and with distance regular point graph. The small-
est example arises as the multiplicative group of upper diagonal 3 × 3 matrices
over GF(3) with 1 on each diagonal entry.

3.4. Other representations.

Consider the projective space PG(d, q) embedded as a hyperplane π∞ in PG(d +
1, q). Let S be a set of disjoint n-dimensional subspaces of π∞, 0 ≤ n < d. We
build the geometry ΓS as follows. The points are the points of PG(d+1, q) not lying
in π∞. The lines are the n + 1 dimensional subspaces of PG(d + 1, q) intersecting
PG(d, q) in a member of S. It is routine to verify that ΓS is a (0, 2)-geometry if
and only if S satisfies the following condition:

(C02) For every pair of members S, T ∈ S, and for every point x ∈ T , there exists
a unique element U ∈ S ∈ {X, T} that meets 〈S, x〉 nontrivially.

If the elements of S generate PG(d, q), then we call S a (0, 2)-representation
set of PG(d, q).

As an example, consider a spread S of the generalized quadrangle Q(4, 2) nat-
urally embedded in PG(4, 2). Then S satisfies condition (C02). We will denote
the corresponding (0, 2)-geometry by ΓQ(4,2).

Note that ΓS is a semipartial geometry if and only if for each point x of PG(d, q)
not in any member of S, there are a constant number of members S ∈ S such that
〈x, S〉 intersects two other members of S nontrivially. In this case the definition of
the (0, 2)-representation set (called an SPG regulus) and the construction of the
semipartial geometry are due to J.A. Thas ([10]).

4. Some classification results

In this section we consider semipartial (0, 2)-geometries with the property that
every two noncollinear points are collinear with exactly 6 points (µ = 6), in par-
ticular with t = 2 and s odd. By a theorem of Debroey ([4]) any proper semipartial
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(0, 2)-geometry with µ = 6, satisfying the diagonal axiom is isomorphic to the ge-
ometry Hn∗

2 , which has both central and axial transitivity. The diagonal axiom
states that, if with four points, no three on a line, one has at least 5 pairs of
collinear points, then all six pairs of points are collinear point pairs.

In the case of a proper semipartial (0, 2)-geometry with µ = 6 and s < t
Wilbrink and Brouwer ([14]) showed that the diagonal axiom is satisfied. (Further,
in [3] Cuypers observed that a (0, 2)-geometry with s < t and with the property
that every two noncollinear points are collinear with exactly 0 or 6 points, satisfies
the diagonal axiom.) If s = t, then Wilbrink and Brouwer ([14]) showed that a
proper semipartial geometry satisfies the diagonal axiom except possibly in the
case s = t = 28.

Since for a proper semipartial geometry we must have s ≤ t ([5]) it follows that
for a semipartial (0, 2)-geometry with µ = 6 and t = 2 the only cases not covered
above are the partial geometries, that is, the Bruck nets of degree 3.

Theorem 4.1. If Γ is a semipartial (0, 2)-geometry with central and axial tran-
sitivity, with the property that every two noncollinear points are collinear with
exactly 6 points, and such that the order (s, t) satisfies t = 2 and s is odd, then Γ
satisfies the diagonal axiom. In other words, if Γ is a net of degree 3 and order
s+1, s odd, with central and axial transitivity, then Γ satisfies the diagonal axiom.

Proof. Let p be any point of Γ, and let A,B, C be the three lines incident
with p. Let x be any point on A, different from p, and let Γ2(p) denote the set of
points of Γ collinear with p, but distinct from p. Define a graph G = (Γ2(p), E)
as follows. Two elements of Γ2(p) are adjacent if they are collinear, but lying
together on one of the lines A,B,C. Then x is adjacent with exactly two points of
Γ2(p), by the fact that α = 2. Hence G consists of disjoint polygons, in particular,
3n-gons, for fixed natural n. Indeed, by the fact that p is a center of transitivity,
all these polygons can be mapped onto each other. Now, since A is an axis of
transitivity, we can fix exactly n points of such a polygon, preserving it globally.
This is impossible if n > 2, since an element of a finite dihedral group can have at
most two fixed points on the corresponding polygon. Hence n ∈ {1, 2}. If n = 1,
then clearly Γ satisfies the diagonal axiom, and we are done. If n = 2, then s is
even, contradicting the hypothesis. ut

This has some interesting corollaries. The first one follows directly from the
previous Theorem and the main result in [9].

Corollary 4.2. Under the same assumptions of Theorem 4.1, we have that Γ is
embeddable in a Desarguesian affine plane of order q = s+1 = 2h. hence Γ arises
from AG(2, s + 1) by deleting s− 1 parallel classes of lines and is dual to Hh+1

2 .

The next corollary is a translation of the above result to the equivalent results
on loops.

Corollary 4.3. Let G be a loop of even order and let ΓG be the net of degree 3 con-
structed from G. If ΓG has central and axial transitivity, then G is an elementary
abelian group of order 2n for some n ≥ 1.
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Proof. Apply Corollary 17.3 of [1] to Theorem 4.1. ut
In case s is even, we need some stronger assumptions in order to be able to

classify. This is achieved by invoking the Moufang condition.

Theorem 4.4. If Γ is a Moufang semipartial (0, 2)-geometry, with the property
that every two noncollinear points are collinear with exactly 6 points, and such
that the order (s, t) satisfies t = 2 and s is even, then Γ is isomorphic to ΓH , for
a group H admitting a sharply transitive group U of automorphisms, such that the
permutation group acting on H and generated by U and the right translations in
H is a sharply 2-transitive group. Conversely, let G be a group acting sharply 2-
transitively on a set Ω, and let H be the Frobenius kernel. Then ΓH is a Moufang
(0, 2)-geometry.

Hence, every Moufang net of degree 3 and order s + 1, s even, is isomorphic
to ΓH , with H an elementary abelian group of odd order.

Proof. First we assume that Γ is a Moufang semipartial (0, 2)-geometry with
the property that every two noncollinear points are collinear with exactly 6 points,
and such that the order (s, t) satisfies t = 2 and s is odd.

We start by applying Lemma 2.3. So let x and y be two collinear Moufang
points of Γ, and denote the corresponding groups Ux and Uy. If G := 〈Ux, Uy〉,
then Mxy := (Γ1(xy), G;UG

x ) is a Moufang set. Since Γ is a net, there are three
parallel classes of lines, and we may call them horizontal, vertical end diagonal,
respectively. We also may assume that the line xy is horizontal. Since the groups
Ux and Uy fix both the vertical and horizontal class of lines, the group G also fixes
each type of parallel class of lines.

Suppose that Gx,y, the stabilizer of both x and y in G, is nontrivial. We
claim that Gx,y fixes some point of xy different from x and y. Assume, by way of
contradiction, that Gx,y does not fix any point on xy except for x and y. There
are exactly two points of Γ, say z1 and z2, collinear with both x and y, and not
incident with xy (since Γ is a net of degree 3). If z1 were not collinear with z2,
then there would be a point u on xz2 different from both x and z2, collinear with
z1, and fixed under Gx,y. But u would be collinear with a point u′ on xy different
from both x and y (indeed, u′ 6= y since otherwise y is collinear with three points
on xz2), and u′ would be fixed under Gx,y, a contradiction to our assumption.
Hence z1 and z2 are collinear. It now follows easily that Γ satisfies the diagonal
axiom. But then s is odd, using [9]. The claim is proved.

The classification of finite Moufang sets (see [8, 7]) now implies easily that G
is a sharply 2-transitive group. Let H be the Frobenius kernel of G. Then H
preserves both the vertical and the diagonal class of lines. We now claim that H
fixes every horizontal line.

Indeed, suppose H has k orbits on the set of s horizontal lines distinct from xy.
Remember that H has order s + 1 and all nontrivial elements of H are conjugate.
Hence all nontrivial elements of H fix equally many horizontal lines, say m. By
Burnside’s result, the average number of horizontal lines distinct from xy fixed by
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a nontrivial element of H is equal to

k(s + 1)− s

s
=

k

s
(s + 1)− 1,

and since this has to be equal to the integer m, we conclude that k is a multiple
of s, implying k = s and the claim follows.

Let θ be the nontrivial collineation of Γ with axis the unique diagonal line L
through x (and swapping the horizontal and vertical lines). Then Hθ fixes all
vertical lines and preserves the other two classes of lines. Hence [H,Hθ] is trivial
(because each element of that commutator fixes all vertical and all horizontal
lines). Now, for h ∈ H, it is easy to see that hhθ stabilizes the line xy; hence if
we write the group 〈H,Hθ〉 as H ×Hθ, and if we identify a point z of Γ with the
group element of H ×Hθ taking x to z, then the set {(h, h) : h ∈ H} is a diagonal
line.

Clearly, the point (x, y) ∈ H × Hθ is mapped onto the point (xa, yb) by the
collineation (a, b) ∈ H × Hθ. It follows that, for all a ∈ H, the sets {(h, aθ) :
h ∈ H}, {(a, hθ) : h ∈ H} and {(h, hθaθ) : h ∈ H} represent all lines of Γ. We
conclude that Γ is isomorphic to ΓH , and the first part of the theorem is proved.

The second part of the theorem is now obvious. ut
We now easily obtain:

Corollary 4.5. A Moufang net Γ of degree 3 is isomorphic to the classical net
obtained from AG(2, q) by deleting q − 2 parallel classes of lines.

For even q, ΓH admits only one “Moufang structure”, but for odd q there are
more, as follows from the classification of sharply 2-transitive permutation groups.
Perhaps this is why the case s even is more difficult to treat and why we need the
stronger assumption of being Moufang.

5. Moufang (0, 2)-geometries arising from
(0, 2)-representation sets

For the moment it is not feasible to classify all Moufang (0, 2)-geometries arising
from a linear representation, or arising from a (0, 2)-representation set. However,
there is one subclass that we can handle. We begin with a lemma.

Lemma 5.1. Let S be a (0, 2)-representation set of PG(5n−1, q), n ≥ 1, consist-
ing of (2n− 1)-dimensional subspaces. Then q is even.

Proof. Consider two distinct elements S, T of S. For x a point of T by
definition there exists a unique U ∈ S \ {S, T} meeting 〈S, x〉 non-trivially and
hence a unique elements U ∈ S\{S, T} such that x ∈ 〈S, U〉. It follows that the sets
〈S, U〉∩T , U ∈ S \{S, T}, form a partition of T . Since the dimension of 〈S, U〉∩T
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is at least n−1 for U ∈ S \{S, T}, it follows that either the dimension of 〈S, U〉∩T
is exactly n−1 for all U ∈ S\{S, T} and |S| = (qn+1)+2 = qn+3; or that |S| = 3
and the elements of S are contained in 〈S, T 〉. In the latter case the elements of
S do not generate PG(5n− 1, q) and so do not form a (0, 2)-representation set of
PG(5n− 1, q).

Now, if we project S from S onto a (3n−1)-dimensional subspace PG(3n−1, q)
skew to S, then we obtain a set S ′ of qn + 2 subspaces of PG(3n − 1, q), each of
dimension 2n− 1 with the properties

(DA1) two distinct elements of S ′ intersect in an (n−1)-dimensional subspace, and

(DA2) three distinct elements of S ′ meet in the empty set.

Consider distinct S′, T ′ ∈ S ′ and put R = S′ ∩ T ′. Let x be any point of
PG(3n − 1, q) not contained in S′ ∪ T ′, and put R∗ = 〈x,R〉. From (DA1) and
(DA2) above it follows that each point of R∗ is contained in either 0 or 2 elements
of S ′. Also, every member of S ′ distinct from both S′ and T ′ intersects the n-
dimensional space R∗ in a point (since, if the intersection contained a line, this line
would meet R nontrivially, contradicting (DA2)). We now see that the number of
elements of S ′ distinct from S′ and T ′ is even, hence the lemma. ut

A representation set as in the previous lemma will be called tight.
We now have the following classification.

Theorem 5.2. Let S be a tight (0, 2)-representation set of lines in PG(4, q). Sup-
pose that all lines of the corresponding (0, 2)-geometry Γ are Moufang and that the
corresponding groups are induced by collineations of PG(4, q). Then Γ is isomor-
phic to ΓQ(4,2).

Proof. By Lemma 2.3, the action of the groups related to two intersecting
Moufang lines induced on S defines a Moufang set on S, with |S| = q + 3 odd by
Lemma 5.1. By the classification of finite Moufang sets in [8, 7], either q + 2 is a
prime power, implying q = 2, or q + 3 is a prime power (and there is a sharply
2-transitive action on S). In any case, the number (q + 3)(q + 2) must divide
the order of the collineation group of PG(4, q), which is q10(q4 + q3 + q2 + q +
1)(q3 + q2 + q + 1)(q2 + q + 1)(q + 1)(q − 1)4. Since q is even, q + 3 does not have
any nontrivial divisor in common with q, q − 1 or q + 1. Furthermore, the only
possible nontrivial common divisors of q + 3 with q2 + q + 1, q3 + q2 + q + 1 and
q4 + q3 + q2 + q + 1 are 7, 5 and 61, respectively. Hence either q = 2 or q = 4.
If q = 2, then the result follows readily from the fact that PGL(5, 2) admits only
one conjugacy class of elements of order 5.

Now let q = 4. By the transitive action on S, there is an element θ of order 5
cyclically permuting the elements of S. Since the number of points, 341, is equal
to 5 modulo 7, there are at least 5 fixed points; dually, there are at least 5 fixed
hyperplanes of PG(4, 4). It is easy to see that there are exactly five fixed points,
and that they are incident with a common line L (otherwise θ is the identity).
Dually, θ fixes a plane π and all five hyperplanes through it. The plane π and
the line L are skew. Evidently, no member of S meets π or L. Since 〈θ〉 is the
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Frobenius kernel of a sharply 2-transitive group G acting on S, the stabilizer in G
of an element of S in G fixes L and π; hence it stabilizes the projection of S from
L onto π. But in π, there is no group of order 6 permuting transitively six lines
and fixing one. ut

Theorem 5.3. Let S be a tight (0, 2)-representation set of (2n − 1)-dimensional
subspaces in PG(5n − 1, q), n ≥ 2. Suppose that all lines of the correspond-
ing (0, 2)-geometry are Moufang and that all corresponding groups are induced by
collineations of PG(5n− 1, q). Then we have the following cases:
1. n = 2, q = 2 (in PG(9, 2));
2. n = 2, q = 4 (in PG(9, 4));
3. n = 3, q = 2 (in PG(14, 2));
4. n = 4, q = 2 (in PG(19, 2)).

Proof. We have already proved that q is even. As in the previous proof,
there is an induced Moufang set on S, and it must arise from a sharply 2-transitive
group. Let F be the Frobenius kernel of that group. Then all nontrivial elements
of F are mutually conjugate.

Suppose that F is not of prime order. We claim that F fixes a point x. If
not, then every element of F acts freely on the point set of PG(5n − 1, q), and
hence F is contained in a Singer cycle. But then F is cyclic, a contradiction. The
claim follows. Similarly, F fixes a line through x. We can continue this argument
until we obtain that F fixes a maximal flag. But then F is contained in the Borel
subgroup, which is the normalizer of a Sylow 2-subgroup, and hence the unique
prime p that divides |F | also divides q(q − 1). Since p is odd, p divides q − 1 and
this contradicts the fact that p also divides qn + 3.

So we have shown that |F | = qn +3 = p is a prime. Consequently qn +3 divides
some number qi − 1, for some i, with n + 1 ≤ i ≤ 5n. We have now to distinguish
between 4n < i ≤ 5n, 3n < i ≤ 4n, 2n < i ≤ 3n and n < i ≤ 2n.

We give the details of the case 4n < i ≤ 5n, which is the most involved one.
The other cases are left to the reader.

Put i = 5n−k. Then, modulo qn +3, the number qi−1 is equal to 81qn−k−1,
and this must be 0 mod qn + 3. Clearly, this first implies

81qn−k − 1 ≥ qn + 3,

hence k ≤ 6 if q = 2, or k ≤ 3, if q = 4, or k ≤ 2 if q = 8, or k = 1 if q ≥ 16, and
k = 0 if q ≥ 128.

In any case, the number qn+3 divides 81qn−qk, hence it divides 243+qk. Since
qk is always a power of 2 and is at most 26, we have that qn + 3 divides 244, 245,
247, 251, 259, 275, or 307. Consequently qn + 3 is smaller than 260. the primes
of the form 2j + 3 not exceeding 259 are 5, 7, 11, 19, 67 and 131. Since k < n, the
only possibilities are (q, n, k) = (2, 2, 1), (q, n, k) = (4, 2, 1) and (q, n, k) = (2, 4, 2).
These give rise to cases 1,2 and 4, respectively.

Similarly, the case 3n < i ≤ 4n gives rise to (q, n, k) = (2, 3, 2), which is case
3, and 2n < i ≤ 3n implies (q, n, k) = (2, 2, 0), which is case 1 again. Finally,
n < i ≤ 2n yields (q, n, k) = (2, 2, 1), which is again case 1. ut
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6. Perspectivities

If a net of degree 3 comes from a Desarguesian affine plane, then it is easy to see
that the group of projectivities of a line is a Frobenius group, i.e., it is transitive,
but the stabilizer of two points is trivial. Indeed, the group is transitive because
the projectivity A → B → C → A for a triangle A,B, C interchanges the two
intersection points A ∩B and A ∩ C.

Conversely, suppose a net of degree 3 and even order has a group of projectiv-
ities which is a Frobenius group. Let A,B,C be as above, and let D,E be such
that A,D,E form a triangle, with A ∩ B = A ∩ D and A ∩ C = A ∩ E, with
D 6= B and E 6= C. Let X be the unique line through B ∩ C distinct from both
B,C. If we assume that Γ does not satisfy the diagonal axiom, then X, D, E form
a triangle. The projectivity X → D → E → X has an involutory pair and a fixed
point (namely, B ∩ C), which is impossible for a Frobenius group acting on an
even number of points.

Hence we have proved the following theorem.

Theorem 6.1. If Γ is a semipartial (0, 2)-geometries with the property that every
two noncollinear points are collinear with exactly 6 points, and such that the order
(s, t) satisfies t = 2 and s is odd, and if the group of projectivities of Γ is a frobenius
group, then Γ is isomorphic to Hq∗

2 , with q = (s+1)/2 an even prime power (hence
Γ arises from a Desarguesian projective plane of even order s+1 by deleting s− 2
parallel classes of lines, or, in other words, Γ is a classical net of degree 3 and
order s− 1).

Note that in the case of a (0, 2)-geometry that is a net of degree 3 that our
definition of projectivity group is equivalent to that of Barlotti and Strambach in
[1]. In [1] there are many interesting results on the groups of projectivities of nets.
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