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Introduction

Moufang polygons are certain geometrical objects which play a very im-

portant role in the theory of Tits-buildings. In order to understand this

connection, we will start by giving a brief introduction to this theory. There

are several good books on this subject; see for example Brown’s book [9],

Ronan’s book [39] or Tits’s original lecture notes [44].

Let I be a set. A Coxeter diagram over I is a symmetric matrix M =
(mi j)i, j∈I such that mi j ∈ {2, 3, . . . } ∪ {∞} for all i 6= j ∈ I and such

that mii = 1 for all i ∈ I. A Coxeter diagram can also be represented as

an edge-labeled graph with vertex set I and with edge set consisting of

all unordered pairs {i, j} such that mi j ≥ 3, together with the label mi j.

(The label mi j = 3 is usually suppressed, and the label mi j = 4 is often

represented by a double edge connecting i and j.) A Coxeter diagram is

called irreducible if its corresponding graph is connected.

Let M be a Coxeter diagram over I. A Coxeter system of type M is a pair

(W, S), where W is a group and S = {si | i ∈ I} is a set of generators of W
such that

W =
〈
si | (sis j)

mi j = 1 for all i, j ∈ I
〉

is a presentation for W; W is then called a Coxeter group. Given a subset

J ⊆ I, then we put SJ := {s j | j ∈ J} and WJ := 〈SJ〉. If (W, S) is a

Coxeter system, then we have a natural length function from W into the

set of natural numbers, which assigns to each element of W the length of a

shortest representation as a product of elements of S; the length of w ∈ W
will be denoted by `(w). We define the distance between two elements

x, y ∈ W as dist(x, y) := `(x−1y). Two elements x and y of W are called

adjacent if dist(x, y) = 1, that is, if x−1y ∈ S.

For a given Coxeter diagram M, there exists up to isomorphism only

one Coxeter system (W, S) of type M. The diagram is called spherical1 if

the corresponding Coxeter group W is finite. In that case, there exists a

1The spherical Coxeter diagrams have been classified by H.S.M. Coxeter in [12]; they

always belong to the following famous list: An, Bn = Cn, Dn, E6, E7, E8, F4, G
(m)
2 , H3, H4.
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unique longest element r ∈ W with respect to the length function `; this

element r is always an involution.

Let (W, S) be a Coxeter system of type M. A root of (W, S) is a subsetα

of the form

{w ∈ W | dist(w, x) < dist(w, y)}

for some ordered pair (x, y) of adjacent elements of W.

Let I be a set, let M be a Coxeter matrix over I and let (W, S) be a

Coxeter system of type M. A building of type M is a pair B = (C , δ) where

C is a set and where δ : C × C → W is a distance function satisfying the

following axioms where x, y ∈ C and w = δ(x, y) :

B1. w = 1 if and only if x = y ;

B2. If z ∈ C is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws, and if

we have moreover that `(ws) = `(w) + 1, then δ(x, z) = ws ;

B3. If s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws .

Given a building B = (C , δ), then the elements of C are called chambers.

We call the group W the Weyl group, the pair (W, S) the Weyl system and

the map δ the W-distance function of the building B. The cardinality of

I is called the rank of the building B. A building B of type M is called

irreducible if the Coxeter diagram M is irreducible. Given a set J ⊆ I and

x ∈ C, the J-residue of x is the set

RJ(x) := {y ∈ C | δ(x, y) ∈WJ} .

Each J-residue is a building of type MJ with the distance function induced

by δ. For every i ∈ I, we define an i-panel as a set of the form

{x} ∪ {y ∈ C | δ(x, y) = si}

for some chamber x ∈ C. A building B is called thick if each panel contains

at least three chambers.

A building B = (C , δ) is called spherical if the corresponding Coxeter

diagram M is spherical. Every residue of a spherical building is again a

spherical building.

A map π from a subset X of W to C will be called an isometry if and

only if δ(xπ , yπ) = x−1y for all x, y ∈ X. An apartment of B is the image

of an isometry from W to C. A root of B is the image of an isometry from

a root of (W, S) to C. Let α be a root of B. The boundary of α, denoted

by ∂α, is the set of all panels of B which contain exactly one chamber in α.

The interior of α, denoted by α◦, is the set of all panels of B which contain
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two chambers in α. Now let B be a spherical building. The root group of B
corresponding to α, denoted by Uα, is defined as the group

Uα := {g ∈ Aut(B) | g acts trivially on each panel of α◦} .

We now come to the important notion of a Moufang spherical building.

A spherical building B is called Moufang if it is thick, irreducible, of rank

at least two and if for each root α of B, the root group Uα acts transitively

on the set of apartments containingα. We then also say that B satisfies the

Moufang condition.

We can now define a generalized polygon as a spherical building B of

rank 2. Since B is spherical, the number n := m12 is finite, and the Weyl

group W of the building B is the dihedral group D2n. The building B is

then called a generalized n-gon. A Moufang polygon is a generalized polygon

which satisfies the Moufang condition.

The following astonishing result, first proved by J. Tits in [47], gave rise

to the study of Moufang polygons.

Every thick irreducible spherical building of rank at least three

is Moufang. Moreover, every irreducible residue of rank at least

two of a Moufang spherical building is also a Moufang spherical

building.

The notion of a generalized polygon is actually older than the one of a

building. The terminology appeared for the first time in the appendix of a

long and difficult paper of 1959 “Sur la trialité et certains groupes qui s’en

déduisent,” by J. Tits, in which he discovered the simple groups of type 3D4

by classifying the trialities with at least one absolute point of a D4-geometry.

The methods he used were of a very geometric nature, and it should not

be surprising that the corresponding geometries came into play – this was

the official birth of the generalized hexagons. It should be mentioned that

generalized quadrangles were already studied avant la lettre, for example

as the point-line-geometries arising from a non-singular quadric of Witt

index 2, or arising from a symplectic polarity in PG(3, K). Also generalized

triangles, which are the projective planes, had already extensively been

studied before; see, for example, [38] and [22].

There is no hope that generalized polygons can be classified without re-

quiring some additional assumptions, since there exist free constructions of

generalized n-gons for all n [47]. But the fact that Moufang polygons could

be classified was already conjectured by J. Tits in his 1974 Lecture Notes2,

2In his addenda on Moufang polygons, J. Tits writes “The progress recently made on

that conjecture gives reasonable hope that it might be established soon”. It’s a matter of

taste whether you consider 28 years later to be “soon”. . .
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and became more apparent in [45]. The fact that Moufang n-gons exist

for n ∈ {3, 4, 6, 8} only was already proved shortly after this conjecture

[46, 48, 54]. As Tits already observed in the very beginning, the classifi-

cation of finite Moufang polygons easily follows from the papers by P. Fong

and G. Seitz on the classification of finite BN-pairs of rank 2 [18, 19].

In 1996, Jacques Tits and Richard Weiss decided to write down a proof

of the classification of Moufang polygons, in a way which is completely

elementary, and entirely independent of the work by Fong and Seitz. This

classification is now completed, and has recently appeared in the form of

a book “Moufang Polygons” [52]. Surprisingly, a new class of Moufang

quadrangles was found by R. Weiss during this classification process; these

quadrangles were then recognized by B. Mühlherr and H. Van Maldeghem

in the buildings of type F4 [34].

For n ∈ {3, 6, 8}, the proof of the classification theorem consists of

two nicely separated parts: it is first shown that every Moufang n-gon can

be parametrized by a certain algebraic structure, and then these algebraic

structures are classified. In the case n = 3, these algebraic structures are

the alternative division rings; in the case n = 6, they are the anisotropic

cubic norm structures (a subclass of the Jordan division algebras); and in

the case n = 8, they are the so-called octagonal systems.

For n = 4, no such a uniform algebraic structure was known, and the

proof of the classification of Moufang quadrangles does not consist of the

division into these two parts. Instead, there are six different classes of

Moufang quadrangles, and even then, this distinction is not apparent in

the two cases which lead to the exceptional quadrangles, that is, those of

type Ek with k ∈ {6, 7, 8} and those of type F4.

The second chapter of this thesis aims to provide such a uniform al-

gebraic structure for Moufang quadrangles. We introduce this structure

as a pair of two groups which act on each other, and which satisfy a cer-

tain list of axioms, and we show that every Moufang quadrangle can be

parametrized by such a structure which we therefore call a quadrangular

system. We then classify these structures without going back to the Mou-

fang quadrangles from which they arise, thereby also providing a new proof

for the classification of Moufang quadrangles. Apart from giving a new

proof of the classification, these quadrangular systems ought to give more

insight into the structure of the Moufang quadrangles.

In chapter 3, we give an application of these quadrangular systems. It

is needless to say that the study of the automorphism group G of a ge-

ometry is an interesting problem. On the other hand, for a building, the

root groups play a very important role, and the group G† generated by

all the root groups is an important normal subgroup of the automorphism
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group. In particular, it turns out to be useful to know the structure of the

quotient G/G†. In [52], this problem is solved for all Moufang triangles

and Moufang octagons, and some subclasses of Moufang quadrangles and

Moufang hexagons. The cases which are left open are the two cases of

the exceptional Moufang quadrangles (those of type Ek and those of type

F4), and the two cases of the exceptional Moufang hexagons, that is, those

which are parametrized by an exceptional Jordan division algebra (which

is of dimension 27 over the base field). We will solve the problem for the

case of the exceptional Moufang quadrangles of type F4; we will make very

extensive use of the structure of the quadrangular systems of type F4.

In the last chapter, we take a closer look at the exceptional Moufang

quadrangles of type E6, E7 and E8. It is already clear from the construc-

tion that the even Clifford algebra of the quadratic form which determines

such a Moufang quadrangle plays a prominent role in the understanding

of the structure of these exceptional quadrangles. We go one step further,

by showing that those quadratic forms are completely characterized by the

structure of their even Clifford algebra. The results of chapter 4 are used

in the appendix of [52] to show that the algebraic group-theoretical condi-

tion for the existence of a Moufang quadrangle of type Ek corresponds to

the elementary existence condition in terms of norm splittings.
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1 Preliminaries

In this very first chapter, we will recall a whole bunch of definitions and

facts which are more or less “standard”. In the first four sections, we give

the necessary geometric background; in the remaining five sections, we

introduce some important algebraic notions.

1.1 Graphs

A graph Γ is a pair (V(Γ), E(Γ)), where V(Γ) is a set and where E(Γ) is a

subset of the set of all unordered pairs of V(Γ). The elements of V(Γ) are

called vertices, the elements of E(Γ) are called edges.

Two vertices x, y ∈ V(Γ) are called adjacent if and only if {x, y} ∈ E(Γ).
The set of all vertices which are adjacent to some fixed vertex x, together

with the element x itself, is called the neighborhood of x and will be denoted

by Γx. A graph Γ is called thick if and only if |Γx| ≥ 3 for all x ∈ V(Γ).
A k-path or a path of length k (k ∈ N) is a sequence of k + 1 vertices

(x0, x1, . . . , xk) such that xi is adjacent to xi−1 for all i ∈ {1, . . . , k} and such

that xi+1 6= xi−1 for all i ∈ {1, . . . , k − 1}. A circuit of length k is a k-path

(x0, x1, . . . , xk) with k > 2 such that x0 = xk.

The distance between two vertices x and y, denoted by dist(x, y), is the

minimal length of a path joining x and y; the distance is defined to be ∞

if there is no such path. The diameter of a graph Γ , denoted by diam(Γ),
is defined as the maximal distance between two vertices of Γ . A graph Γ

is called connected if and only if diam(Γ) is finite. “Having finite distance”

is an equivalence relation on the vertices; its equivalence classes are called

the connected components of the graph Γ . The girth of a graph Γ is the

length of a shortest circuit of Γ ; it is defined to be ∞ if Γ has no circuits. A

tree is a connected graph with girth ∞, and every graph with girth ∞ is the
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disjoint union of trees (that is, each of its connected components is a tree).

A graph Γ is called bipartite if it does not have circuits of odd length.

Equivalently, Γ is bipartite if V(Γ) can be partitioned into two disjoint sets

such that every edge has one vertex in each of the partitions. We also say

that two vertices are of the same type with respect to such a partitioning if

and only if they belong to the same partition. If Γ is connected, then this

partitioning is unique.

1.2 Geometries

A geometry (of rank 2) is a triple Γ = (P ,L, I) where P and L are two dis-

joint sets, called points and lines, and where I ⊆ P ×L, called the incidence

relation. The dual geometry of Γ , denoted by ΓD, is the geometry (L,P , I′),
where LI′p if and only if pIL. We usually consider I as a symmetric relation,

and we will not distinguish between I and I′.
A subgeometry of a geometry Γ = (P ,L, I) is a geometry (P ′,L′, I′)

where P ′ ⊆ P , L′ ⊆ L, and I′ = I ∩ (P ′ ×L′). If we consider geometries

satisfying certain axioms, then we are usually interested in the subgeome-

tries which satisfy the same axioms.

A point or a line is called thick if it is incident with at least 3 elements.

If all points and lines of a geometry Γ are thick, then we say that Γ is thick.

A geometry Γ is called finite if P and L are finite.

We can associate in a very natural way a graph to each geometry Γ ,

called the incidence graph of Γ , which we define as follows. Let V(Γ) :=
P ∪ L, and let E(Γ) denote the set of incident point-line pairs of Γ . Then

the graph with vertex set V(Γ) and edge set E(Γ) is the incidence graph of

Γ ; it is always bipartite. Moreover, every bipartite graph is the incidence

graph of some geometry Γ .

The distance between two elements of a geometry Γ is defined as the

distance between the corresponding vertices in the incidence graph. In

particular, the distance between two elements of the same type (i.e., two

points or two lines), if finite, will always be even. A geometry Γ will be

called connected if and only if its incidence graph is connected.

Now let Γ = (P ,L, I) and Γ ′ = (P ′,L′, I′) be two geometries. An iso-

morphism or a collineation from Γ to Γ ′ is a pair (α,β), whereα is a bijection

from P to P ′ and β is a bijection from L to L′, preserving incidence and

non-incidence. The geometries Γ and Γ ′ are called isomorphic if and only if

there exists an isomorphism from Γ to Γ ′.

An automorphism of a geometry Γ is an isomorphism from Γ to itself.

An automorphism of order 2 is called an involution. An anti-isomorphism
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or duality from Γ to Γ ′ is a collineation from Γ to the dual Γ ′D of Γ ′. An anti-

isomorphism from Γ to itself is called a correlation or an anti-automorphism

of Γ . A correlation of order 2 is called a polarity.

All automorphisms of a geometry Γ form a group, called the automor-

phism group or collineation group of Γ , which is denoted by Aut(Γ). All

automorphisms and anti-automorphisms of Γ also form a group, called the

correlation group of Γ , which contains Aut(Γ) as a subgroup of index 1 or

2. We will denote the correlation group of Γ by Cor(Γ).
We now introduce a useful notation. Let Γ be a geometry, and let G

be an arbitrary subgroup of Aut(Γ). Then we will denote the pointwise

stabilizer of the set

{v ∈ V(Γ) | dist(x, v) ≤ i}

by G
[i]
x . Moreover, we define

G[i]
x1 ,x2,...,xk

:= G[i]
x1
∩ G[i]

x2
∩ · · · ∩ G[i]

xk
.

If i = 0, then we will simply write Gx1,x2,...,xk
. Note that G

[1]
x is the kernel of

the action of Gx on Γx.

Throughout this thesis, we will use the following convention. If S is

a group, then we define S∗ := S \ {neutral element}. If S is a set which

contains an element called “0”, then we define S∗ := S \ {0}. It will always

be clear from the context which definition we mean.

1.3 Generalized Polygons

A generalized n-gon is a connected bipartite graph with diameter n and

girth 2n, where n ≥ 2. If we do not want to specify the value of n, then we

call this a generalized polygon. We will also use the terminology generalized

triangle, generalized quadrangle, generalized hexagon, and so on, instead of

generalized 3- , 4- , 6-gon, respectively. This definition has been introduced

in 1959 by Jacques Tits in the appendix of [42]. One of the main recent

references on generalized polygons is [53].

As explained in section 1.2, every bipartite graph can be considered as a

geometry. From the geometric point of view, a generalized polygon is a ge-

ometry Γ = (P ,L, I) satisfying the following two axioms. See, for example,

[53, 1.3.1, 1.3.5 and 1.3.6] for the equivalence of these definitions.

GP1. If x, y ∈ P ∪ L and dist(x, y) = k < n, then there exists a unique

k-path from x to y.

GP2. For every x ∈ P ∪ L, we have that sup{dist(x, y) | y ∈ P ∪ L} = n.
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Here is another equivalent definition, which explains the terminology.

GP1′. Γ does not contain ordinary k-gons (as a subgeometry), for every

k ∈ {2, . . . , n− 1}.

GP2′. Every two elements x, y ∈ P ∪ L are contained in an ordinary n-gon

of Γ .

Every ordinary n-gon in a generalized n-gon Γ is called an apartment of

Γ . The subgraph spanned by the vertices of an n-path in Γ is called a half-

apartment or a root of Γ .

We will now briefly explain the geometric structure of a generalized

n-gon for the smallest values of n.

n = 2. A generalized 2-gon is a geometry in which every point is incident

with every line, that is, I = P ×L.

n = 3. A generalized triangle is exactly the same thing as a (possibly degen-

erate) projective plane. Every two points are incident with exactly

one line, and every two lines are incident with exactly one point.

Projective planes have been extensively studied in [38] and [22].

n = 4. A generalized quadrangle is a geometry Γ = (P ,L, I) satisfying the

following two axioms.

GQ1. For every non-incident point-line pair (p, L), there is a unique

point q and a unique line M such that pIMIqIL.

GQ2. Every point is incident with at least 2, but not with all, lines;

every line is incident with at least 2, but not with all, points.

One of the most important contributions to the theory of finite gener-

alized quadrangles is [35].

It is possible to give similar descriptions for other values of n as well,

but we will omit this.

Note that generalized n-gons do exist for all n ≥ 2; a free construction

starting from a so-called partial n-gon has been obtained by J. Tits [47].

However, we have the following famous theorem of Feit and Higman.

Theorem 1.3.1. Finite thick generalized n-gons exist for n ∈ {2, 3, 4, 6, 8}
only.

Proof. See [17].

We will now mention some basic properties about generalized n-gons.

Theorem 1.3.2. Let Γ be a thick generalized n-gon and let G ≤ Aut(Γ). Then
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(i) Every (n + 1)-path is contained in a unique apartment ;

(ii) G
[1]
x0
∩ Gx0,...,xn = Gx0,...,xn ∩ G

[1]
xn for every n-path (x0, . . . , xn) ;

(iii) G
[1]
x0,x1 ∩ Gx0,...,xn = 1 for every n-path (x0, . . . , xn) ;

(iv) G
[1]
x0,...,xk

= 1 for every k-path (x0, . . . , xk) with k ≥ n− 1 .

Proof. See [52, (3.2), (3.5), (3.7) and (3.8)].

1.4 Moufang Polygons

Let Γ be a thick generalized n-gon with n ≥ 3, and let γ be an (n− 2)-path

of Γ . An automorphism g of Γ is called a root elation, a γ-elation or simply

an elation if and only if g fixes all elements of Γ which are incident with at

least one element of γ.

Now consider a rootα = (x0 , x1, . . . , xn−1, xn), and let γ denote the sub-

(n − 2)-path (x1, . . . , xn−1). Then the group Uα of all γ-elations (called a

root group) acts semi-regularly on the set of vertices incident with x0 but

different from x1. If Uα acts transitively on this set (and hence regularly),

then we say that α is a Moufang root. It turns out that this definition is

independent of the choice of x0 and xn, and independent of the choice of

the direction of the n-path α. Moreover, it turns out that α is a Moufang

root if and only if Uα acts regularly on the set of apartments through α. A

Moufang n-gon is a generalized n-gon for which every root is Moufang. We

then also say that Γ satisfies the Moufang condition. The group generated

by all the root groups is sometimes called the little projective group of Γ .

Let us assume from now on that Γ is a thick Moufang n-gon for some

n ≥ 3, and let us fix an apartment Σ which we will label by the integers

modulo 2n in a natural way, that is, such that i + 1 ∈ Γi and i + 2 6= i for

all integers i.
For every root αi := (i, i + 1, . . . , i + n) in Σ, we define Ui := Uαi

. Note

that all root groups of Γ are non-trivial since Γ is thick and satisfies the

Moufang condition. Furthermore, we define

U[i, j] :=

{〈
Ui, Ui+1, . . . , U j

〉
if i ≤ j < i + n ;

1 otherwise .

Theorem 1.4.1. The groups Ui satisfy the following properties.

(i) [Ui, U j] ≤ U[i+1, j−1] for all j ∈ {i + 1, . . . , i + n− 1} ;

(ii) For every integer i, the product map from Ui ×Ui+1× · · · ×Ui+n−1 to

U[i,i+n−1] is bijective .
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Proof. See [52, (5.5) and (5.6)].

Thanks to this theorem, we can use the following notation. Let ai ∈ Ui

and a j ∈ U j, with j ∈ {i + 2, . . . , i + n− 1}. For each k such that i < k < j,
we set

[ai, a j]k = ak ,

where ak is the unique element of Uk appearing in the factorization of

[ai, a j] ∈ U[i+1, j−1].

The following property will allow us to identify root elations with auto-

morphisms of certain subgroups of Aut(Γ).

Lemma 1.4.2. Ui acts faithfully on U[i+1,i+n−1] and on U[i−n+1,i−1] for all i.

Proof. See [52, (6.5)].

We will now concentrate on the groups U1, . . . , Un. Let U+ := U[1,n] =
〈U1, . . . , Un〉. Let φ denote the map from V(Σ) = {1, . . . , 2n} to the set of

subgroups of U+ given by

φ(i) :=

{
U[1,i] if 1 ≤ i ≤ n ;

U[i−n,n] if n + 1 ≤ i ≤ 2n .

We can now define a graph Ξ as follows. Let

V(Ξ) := {(i,φ(i)g) | i ∈ V(Σ), g ∈ U+} ,

where φ(i)g is the right coset of the subgroup φ(i) containing g. Let

E(Ξ) := {{(i, R), ( j, T)} | |i− j| = 1, R ∩ T 6= ∅} ,

where the expression |i− j| = 1 is to be evaluated modulo 2n. Then Ξ :=
(V(Ξ), E(Ξ)) is a graph which is completely determined by the (n + 1)-
tuple

(U+, U1, U2, . . . , Un) .

Observe that there is a natural action of U+ on Ξ, given by (i, R)g = (i, Rg)
for all (i, R) ∈ V(Ξ) and all g ∈ U+.

The following theorem is fundamental for the classification of the Mou-

fang polygons.

Theorem 1.4.3. Ξ ∼= Γ . In particular, the Moufang n-gon Γ is completely

determined by the (n + 1)-tuple

(U+, U1, U2, . . . , Un) .
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Proof. See [52, Chapter 7].

It is clear that not every (n + 1)-tuple (U+, U1, U2, . . . , Un) will give rise

to a Moufang n-gon. In particular, such an (n + 1)-tuple will have to satisfy

the statements of Theorem 1.4.1:

M1. [Ui, U j] ≤ U[i+1, j−1] for 1 ≤ i < j ≤ n.

M2. The product map from U1 × · · · ×Un to U+ is bijective.

By Theorem 1.4.3, the graph Ξ above only depends on the (n + 1)-tuple

(U+, U1, U2, . . . , Un), and not on the full automorphism group Aut(Γ) in

which U+ is contained. So let us now assume that we start with a certain

group U+ which is generated by certain non-trivial subgroups U1, . . . , Un,

such that the conditions (M1) and (M2) hold; but we do not assume that

U+ is contained in a specific larger group. Furthermore, let us assume that

Σ is a circuit of length 2n labeled by the integers modulo 2n, but we do

not assume that Σ is a subgraph of some specific larger graph. Then we

can still construct a graph Ξ as above. We would like to know under which

conditions this graph Ξ is a Moufang n-gon.

We first introduce another notation. It follows from (M1) that the

group Un normalizes the group U[1,n−1]. Let Ũn denote the subgroup of

Aut(U[1,n−1]) induced by Un. By Lemma 1.4.2, Ũn
∼= Un. We will denote

the unique element of Ũn corresponding to an element an ∈ Un by ãn.

Similarly, U1 normalizes U[2,n], and we let Ũ1 denote the subgroup of

Aut(U[2,n]) induced by U1. Again by Lemma 1.4.2, Ũ1
∼= U1, and we will

denote the unique element of Ũ1 corresponding to an element a1 ∈ U1 by

ã1.

Theorem 1.4.4. Suppose that U+ is a group generated by non-trivial sub-

groups U1, . . . , Un , such that the following axioms hold.

M1. [Ui, U j] ≤ U[i+1, j−1] for 1 ≤ i < j ≤ n.

M2. The product map from U1 × · · · ×Un to U+ is bijective.

M3. There exists a subgroup Ũ0 of Aut(U[1,n−1]) such that for each an ∈ U∗n
there exists an element µ(an) ∈ Ũ∗0 ãnŨ∗0 such that U

µ(an)
j = Un− j for

1 ≤ j ≤ n − 1 and, for some en ∈ U∗n, Ũ
µ(en)
j = Ũn− j for j = 0 and

j = n.

M4. There exists a subgroup Ũn+1 of Aut(U[2,n]) such that for each a1 ∈ U∗1
there exists an element µ(a1) ∈ Ũ∗n+1ã1Ũ∗n+1 such that U

µ(a1)
j = Un+2− j

for 2 ≤ j ≤ n and, for some e1 ∈ U∗1 , Ũ
µ(e1)
j = Ũn+2− j for j = 1 and

j = n + 1.
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Then the graph Ξ is a Moufang n-gon. Moreover, the automorphism groups Ũ0

and Ũn+1 and the maps µ from U∗n to Ũ∗0 Ũ∗nŨ∗0 and from U∗1 to Ũ∗n+1Ũ∗1 Ũ∗n+1

are uniquely determined.

Proof. See [52, (8.11) and (8.12)].

Definition 1.4.5. Let U+ be a group generated by non-trivial subgroups

U1, . . . , Un. Then the (n + 1)-tuple (U+, U1, U2, . . . , Un) will be called a

root group sequence if and only if (M1) – (M4) hold.

Remark 1.4.6. If Θ = (U+, U1, U2, . . . , Un) is a root group sequence, then

(U+, Un, Un−1, . . . , U1) is a root group sequence as well; it is called the

opposite of Θ, and is denoted by Θop.

We finally take one step further back. Suppose that some non-trivial

groups U1, . . . , Un are given (for some n ≥ 3), but not the larger group U+.

Let W := U1 × · · · ×Un. For i, j ∈ {1, . . . , n}, let

U[i, j] := {(a1, . . . , an) ∈W | ak = 1 if k < i or k > j} .

For each i ∈ {1, . . . , n}, we will identify Ui with the subset U[i,i] of W.

Suppose that for each i, j ∈ {1, . . . , n} we have a map ξi j from Ui ×U j to

U[i+1, j−1]. Let R be the set consisting of the relations

[ai, a j] = ξi j(ai, a j)

for all i, j ∈ {1, . . . , n} and all ai ∈ Ui and a j ∈ U j. We would like to know

under which conditions we can define a multiplication on W extending the

multiplication on the individual Ui so that W becomes a group fulfilling

conditions (M1) and (M2) in which the relations R hold. If such a group

structure exists, then products can be calculated using only the structure of

the individual Ui and the relationsR. This implies that the group structure,

if it exists, is unique. To show that such a group structure exists, we try to

define a group structure on U[i, j] for all i, j ∈ {1, . . . , n} with j − i = k,

starting with k = 1, and proceeding inductively. For k = 1, we can simply

make U[i, j] into the direct product Ui × U j since U[i+1, j−1] is trivial. We

now suppose that k ∈ {2, . . . , n− 1} and impose the following conditions

inductively:

Ak. For all i, j ∈ {1, . . . , n} with j − i = k and for all ai, bi ∈ Ui and

a j ∈ U j, the equation

ξi j(aibi, a j) = ξi j(ai, a j)
biξi j(bi, a j)

holds in the group U[i, j−1].
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Bk. For all i, j ∈ {1, . . . , n} with j − i = k and for all ai ∈ Ui and

a j, b j ∈ U j, the equation

ξi j(ai, a jb j) = ξi j(ai, b j)ξi j(ai, a j)
b j

holds in the group U[i+1, j].

Ck. For all i, j ∈ {1, . . . , n} with j− i = k and for all ai ∈ Ui, a j ∈ U j and

c ∈ U[i+1, j−1], the equation

cξi j(ai,a j) = ca−1
i a−1

j aia j

holds, where the right hand side is evaluated by using the action of

Ui and U j on U[i+1, j−1] obtained from the group structure on U[i, j−1]

and U[i+1, j] which is known by the induction hypothesis.

Theorem 1.4.7. Suppose that some non-trivial groups U1, . . . , Un are given

(for some n ≥ 3), together with the relations R as above, and suppose that

the conditions (Ak), (Bk) and (Ck) hold for all k ∈ {2, . . . , n− 1}. Then there

is a unique group structure on W = U1 × · · · ×Un such that the relations R
hold and such that the embeddings Ui ↪→W for i ∈ {1, . . . , n} are homomor-

phisms. This group and its subgroups U1, . . . , Un fulfill conditions (M1) and

(M2).

Proof. See [52, (8.13)].

We end this section by translating the notion of (anti-)isomorphisms

and automorphisms of Moufang polygons in terms of their root group se-

quences.

Theorem 1.4.8. Let Γ and Γ ′ be two Moufang n-gons for some n ≥ 3, let

Σ (in Γ) and Σ′ (in Γ ′) be apartments labeled by the integers and let Ui and

U ′i for i ∈ {1, . . . , n} be the root groups with respect to Σ and Σ′. Let β be

the map from Σ to Σ′ such that β(i) = i′ for all i. Suppose that α is an

isomorphism from U+ to U ′+ mapping Ui to U ′i for all i ∈ {1, . . . , n}. Then β

extends uniquely to an isomorphism from Γ to Γ ′ inducing α on U+.

Proof. See [52, (7.5)].

Using Theorem 1.4.7, we can restate this in terms of commutator rela-

tions, without mentioning the bigger groups U+ and U ′+:

Theorem 1.4.9. Let Γ and Γ ′ be two Moufang n-gons for some n ≥ 3, where

Γ is defined by some groups U1, . . . , Un and some commutator relations R,

and where Γ ′ is defined by some groups U ′1, . . . , U ′n and some commutator
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relations R′. Then Γ and Γ ′ are isomorphic or anti-isomorphic if and only if

there exist isomorphismsϕi from Ui to U ′i for all i ∈ {1, . . . , n} or from Ui to

U ′n+1−i for all i ∈ {1, . . . , n}, such that the relations R are mapped onto the

relations R′.

Now let Γ be a Moufang n-gon for some n ≥ 3, put G = Aut(Γ), and

let G† be its subgroup generated by all the root groups of Γ . An important

problem in the theory of Moufang polygons is to determine the structure of

the quotient G/G†. The following theorem already shows that G† must be

quite large.

Theorem 1.4.10. G† acts transitively on the set of pairs (Σ, e), where Σ is an

apartment of Γ and e an edge of Σ.

Proof. See [52, (4.12)].

Now let Σ = {0, . . . , 2n− 1} be a labeled base apartment of Γ , and let

H be the pointwise stabilizer of Σ. Moreover, let H† := H ∩ G†. Then it

follows from Theorem 1.4.10 that G = HG†, and hence

G/G† ∼= H/H† . (1.1)

The advantage of restricting to H is that we can do everything just in terms

of the root group sequence now:

Theorem 1.4.11. (i) H acts faithfully on U1 ×Un ;

(ii) H† = X1Xn, where Xi :=
〈
µ(U∗i )µ(U∗i )

〉
for i ∈ {1, n} .

Proof. (i) See [52, (33.5)].

(ii) See [52, (33.9)].

1.5 Quadratic Forms

There are several very good introductory text books about quadratic forms

available, for example [29] and [41].

Let K be an arbitrary commutative field (of arbitrary characteristic), and

let V be an arbitrary vector space over K. A map q from V to K is called a

quadratic form if and only if it satisfies the following two axioms.

QF1. q(tv) = t2q(v), for all v ∈ V and all t ∈ K.
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QF2. The map f : V ×V → K defined by the equation

f (u, v) := q(u + v)− q(u)− q(v) ,

for all u, v ∈ V, is bilinear over K.

The map f is called the bilinear form associated to q. Note that f is symmet-

ric. For every subspace V1 of V, we define

V⊥1 := {v ∈ V | f (v, V1) = 0} .

Two subspaces V1 and V2 are called orthogonal if and only if f (V1, V2) = 0.

The subspace V⊥ is called the radical of f , and will be denoted by Rad( f ).
A quadratic form q is called anisotropic if q(v) = 0 implies v = 0; it is

called isotropic otherwise; moreover, q is called hyperbolic if dimK ker(q) =
dimK V/2. The quadratic form q is called regular if Rad( f ) = 0; it is called

non-regular or singular otherwise.

Remark 1.5.1. If W is a regular subspace of (V, q), then V = W ⊕W⊥; see,

for example, [41, 3.3.4].

If q is a quadratic form from a vector space V to a field K, then the

triple (K, V, q) or simply the pair (V, q) if there is no confusion about the

field, is called a quadratic space. The dimension of a quadratic form is the

dimension of the vector space V over K on which q is defined.

If (K, V1 , q1) and (K, V2 , q2) are two quadratic spaces, then we can de-

fine the orthogonal sum of q1 and q2, denoted by q1 ⊥ q2, as the quadratic

form with underlying vector space V1 ⊕V2 defined by

(q1 ⊥ q2)(x1, x2) := q1(x1) + q2(x2) ,

for all x1 ∈ V1 and x2 ∈ V2. In particular, we have that dim(q1 ⊥ q2) =
dim(q1) + dim(q2).

Let q be an arbitrary anisotropic quadratic form from V to K, and let

c ∈ V∗ be arbitrary. Then we can define the reflection πc about c by the

equation

πc(v) := v− f (v, c)q(c)−1c

for all v ∈ V. These reflections satisfy the properties πc ◦ πc = 1 and

q ◦ πc = q for all c ∈ V∗.
Let q and q′ be two quadratic forms from V to K. Then q′ is called a

translate of q if there exists a fixed constant λ ∈ K∗ such that q′(v) = λq(v)
for all v ∈ V.

Two quadratic spaces (K1, V1, q1) and (K2, V2, q2) are called isomorphic

if and only if there exists a vector space isomorphism (ψ,ϕ) from (K1, V1)
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to (K2, V2) such that q2(ϕ(v)) = ψ(q1(v)) for all v ∈ V1; (ψ,ϕ) is then

called an isomorphism from q1 to q2, and we write q1
∼= q2. . If K1 = K2 and

ψ = 1, then q1 and q2 are called isometric, and we denote this by q1 ' q2;

the map ϕ is then called an isometry from q1 to q2. Two quadratic spaces

(K1, V1, q1) and (K2, V2, q2) are called similar if and only if there exists a

λ ∈ K∗1 such that q2
∼= λq1, that is, if and only if q2 is isomorphic to a

translate of q1. If (ψ,ϕ) is such a vector space isomorphism from (K1, V1)
to (K2, V2) for which q2(ϕ(v)) = ψ(λq1(v)) for all v ∈ V, then (ψ,ϕ) is

called a similarity from q1 to q2. If K1 = K2 and ψ = 1, then the map ϕ is

then called a similitude from q1 to q2, and the constant λ ∈ K∗1 is called the

multiplier of the similitude.

If (K1, V1, q1) = (K2, V2, q2) = (K, V, q), then we will speak about an

isometry of q and a similitude of q, respectively. Not every λ ∈ K∗ can occur

as multiplier of some similitude of q. The group of possible multipliers of

similitudes of (K, V, q) is denoted by G(K, V, q) or by G(q) for short. An in-

variant of quadratic forms is something which is invariant under isometries

of quadratic forms.

We will now define the discriminant d(q) of a regular n-dimensional

quadratic form q. First assume that char(K) 6= 2. Let {e1, . . . , en} be an

orthogonal basis of (K, V, q). (Such a basis always exists; see, for example,

[41, 1.3.5].) Then we can define the determinant of q, denoted by det(q),
as

det(q) := q(e1)q(e2) · · · q(en) ,

considered as an element of K∗/(K∗)2. One can prove that this definition is

independent of the choice of the orthogonal basis, and is hence an invari-

ant; see, for example, [41, 1.3.17]. We can now define the discriminant

d(q) = (−1)n(n−1)/2 det(q) ,

also considered as an element of K∗/(K∗)2.

Now assume that char(K) = 2, and let (e1, . . . , en/2, f1, . . . , fn/2) be a

symplectic basis of (K, V, q). (Such a basis always exists; see, for example,

[41, 9.4].) Then we define the discriminant

d(q) = q(e1)q( f1) + · · ·+ q(en/2)q( fn/2) ,

considered as an element of K/℘(K), where ℘(K) = {x + x2 | x ∈ K}. This

is also called the Arf invariant of q. One can prove that this definition is

independent of the choice of the symplectic basis, and is hence an invariant;

see, for example, [41, 9.4.2].

If char(K) 6= 2, we will say that the discriminant is trivial if and only if

d(q) ∈ (K∗)2; if char(K) = 2, it means that d(q) ∈ ℘(K).



1.5. Quadratic Forms 13

If the discriminant is non-trivial, then we can define the discriminant

extension of q (over K). If char(K) 6= 2, this will be the separable quadratic

extension K[X]/(X2 − d(q)); if char(K) = 2, this will be the separable

quadratic extension K[X]/(X2 + X + d(q)).
We now introduce the notion of a norm splitting, which is first seen in

[52, (12.9)]. First of all, observe that, if E/K is a separable quadratic exten-

sion with norm N, then N is a 2-dimensional anisotropic regular quadratic

form from E (as a vector space over K) to K. (This will also allow us to

speak about the discriminant of a norm. Note that the discriminant exten-

sion of N is exactly E/K.) We say that a 2d-dimensional regular quadratic

form q : V → K has a norm splitting, if and only if there exist constants

s1, s2, . . . , sd ∈ K∗ such that

q ' s1N ⊥ s2N ⊥ · · · ⊥ sdN .

The constants s1, s2, . . . , sd are called the constants of the norm splitting.

Since d(sN) = d(N), for all s ∈ K∗, this is equivalent to the assumption

that q has an orthogonal decomposition q ' q1 ⊥ q2 ⊥ · · · ⊥ qd, where

each qi is a 2-dimensional regular quadratic form with the same non-trivial

discriminant. Note that a 2d-dimensional regular quadratic form q is hy-

perbolic if and only if q has a decomposition q ' q1 ⊥ q2 ⊥ · · · ⊥ qd, where

each qi is a 2-dimensional regular quadratic form with trivial discriminant.

Remark 1.5.2. Every even dimensional regular quadratic form q has an or-

thogonal decomposition q ' q1 ⊥ q2 ⊥ · · · ⊥ qd, where each qi is a

2-dimensional regular quadratic form. If char(K) 6= 2, this follows from

the fact that q has a diagonal form; if char(K) = 2, this follows from the

fact that q has a normal form, see, for example, [41, 9.4].

Now let (K, V, q) be an arbitrary anisotropic quadratic space with cor-

responding bilinear map f . An automorphism T of V is called a norm

splitting map of q if and only if there exist constants α,β ∈ K with α = 0 if

char(K) 6= 2 and α 6= 0 if char(K) = 2, and with β 6= 0 in all characteris-

tics, such that

q(T(v)) = βq(v) ,

f (v, T(v)) = αq(v) ,

T(T(v)) +αT(v) +βv = 0 ,

for all v ∈ V. For each norm splitting map T, we can define a corresponding

norm splitting map T, defined by the relation T(v) := αv − T(v) for all

v ∈ V. It is straightforward to check that T is a norm splitting map with

the same parameters α and β as the original norm splitting map T.
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Let (V, q) be an arbitrary quadratic space, and let ε ∈ V∗ be an element

such that q(ε) = 1. Then (V, q,ε) is called a quadratic space with base point

ε. For such a quadratic space, we define a map v 7→ v by setting

v := −πεv = f (ε, v)ε− v ,

for all v ∈ V. Observe that v = v and q(v) = q(v) for all v ∈ V.

Remark 1.5.3. Let (V, q) be an arbitrary anisotropic quadratic space, and

let ε ∈ V∗ be arbitrary. If we set λ = q(ε)−1, then (V, λq,ε) is a quadratic

space with base point ε.

1.6 The Brauer Group

Let K be an arbitrary commutative field. A K-vector space A is called an

algebra over K or simply a K-algebra if and only if A has a multiplication

which makes it into a ring with unity 1 ∈ A∗, such that the map from K to

A mapping every t to t · 1 is a homomorphism from K to the center Z(A)
of A. We will then identify K with its image under this homomorphism.

A K-algebra A is called central if K = Z(A). An algebra A is called a

division algebra if every non-zero element is invertible in A. A K-algebra is

called simple if it does not contain non-trivial algebra ideals. The degree of

a K-algebra A is the smallest integer m such that every element of A is the

root of a polynomial over K of degree at most m.

For the rest of this section, we will only consider finite dimensional

vector spaces and algebras; this condition will not be repeated explicitly.

Theorem 1.6.1. Let A be an arbitrary simple K-algebra. Then A ∼= Matn(D)
for a suitable integer n and a suitable skew field D. Moreover, n is unique and

D is unique up to isomorphism.

Proof. This famous theorem is due to Wedderburn; see, for example, [41,

8.1.11].

Lemma 1.6.2. If A and B are K-algebras, then

Matm(A)⊗K Matn(B) ∼= Matmn(A⊗K B) .

Proof. This follows from [41, 8.2.3].

Theorem 1.6.3. Let A and B be two central simple K-algebras. Then A⊗K B
is again a central simple K-algebra.

Proof. See, for example, [41, 8.3.2].
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If R is a ring, we define a ring Rop by R = Rop as additive abelian groups

while the product • in Rop is defined by a • b := ba for all a, b ∈ R. The

ring Rop is called the opposite ring of R.

Theorem 1.6.4. Let A be a central simple K-algebra. Then

A⊗K Aop ∼= Matn(K) ,

where n = dimK A.

Proof. See, for example, [41, 8.3.4].

Definition 1.6.5. Let A and B be two central simple K-algebras. By Wed-

derburn’s Theorem 1.6.1, A ∼= Matn(D) and B ∼= Matm(E) for some inte-

gers m and n and some skew fields D and E. Then A and B will be called

similar if and only if D ∼= E; we will denote this by A ∼ B. It is obvious

that similarity is an equivalence relation. The set of similarity classes will

be denoted by Br(K). The similarity class of a central simple K-algebra A
will be denoted by [A] ∈ Br(K).

It follows readily from Theorem 1.6.3 and Lemma 1.6.2 that the tensor

product of central simple algebras induces a binary operator on Br(K).
Since A⊗K B ∼= B⊗K A and A⊗K (B⊗K C) ∼= (A⊗K B)⊗K C for all central

simple K-algebras A, B and C, it follows that this operator is commutative

and associative. We will hence write this operator on Br(K) additively, that

is, we will write

[A] + [B] := [A⊗K B]

for all central simple K-algebras A and B. It is clear that [K] is a (two-

sided) neutral element for this operator, hence we will write [K] = 0. It

now follows from Theorem 1.6.4 that

[A] + [Aop] = [A⊗K Aop] = [Matn(K)] = [K] = 0

for all central simple K-algebras A; hence every [A] ∈ Br(K) has an inverse

−[A] = [Aop] ∈ Br(K).
We conclude that Br(K) is an abelian group, and we call it the Brauer

group1 of the field K.

We end this section by mentioning a related theorem which we will

need in Chapter 4.

1In [6], Richard Brauer has shown the existence of this group whose properties give

great insight into the structure of simple algebras. This group became known (to its au-
thor’s embarrassment!) as the “Brauer group”, and played an essential part in the proof

by Brauer, Hasse and Noether of the longstanding conjecture that every rational division

algebra is cyclic over its center [8].
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Lemma 1.6.6. Let E/K be a separable quadratic extension. Let D be a finite

dimensional central division algebra over K.

(i) If E is not contained in D (i.e., if the minimal polynomial of E does not

have a root in D), then D⊗K E is a central division algebra over E ;

(ii) If E is contained in D (i.e., if the minimal polynomial of E has a root

in D), then the centralizer D0 of E in D is a finite dimensional central

division algebra over E and D⊗K E ∼= Mat2(D0) as E-algebras .

Proof. See [20, 11.A].

1.7 Quaternion Algebras

We will quickly recall the notion of a quaternion algebra2. It will be very

useful to have a characteristic-free approach. Suppose that E/K is a sepa-

rable quadratic extension with norm N, let σ be the non-trivial element in

Gal(E/K), and let γ ∈ K∗. Following the notation in [52, 9.2], we define

the quaternion algebra Q = (E/K,γ) to be the subring of Mat2(E) consist-

ing of the matrices
(

a γbσ

b aσ

)
for all a, b ∈ E. Let δ = d(N), then it is not very

hard to see that (E/K,γ) ∼= (δ,γ
K

) if char(K) 6= 2 and (E/K,γ) ∼= [δ,γ
K

) if

char(K) = 2; see also [28, 10.F]. Here (δ,γ
K ) denotes the unique K-algebra

with basis {1, i, j, k} satisfying the relations i2 = δ, j2 = γ, i j = k = − ji,
and [δ,γ

K ) denotes the unique K-algebra with basis {1, u, v, w} satisfying the

relations u2 + u = δ, v2 = γ, uv = w = vu + v. We will denote the image

of a quaternion algebra (E/K,γ) in the Brauer group Br(K) by [E/K,γ].

Theorem 1.7.1. Let E/K be a separable quadratic extension, and let β and

γ be arbitrary elements of K∗. Then, in Br(K),

[E/K,β] + [E/K,γ] = [E/K,βγ] .

Proof. See, for example, [52, 9.5] for a characteristic-free proof of this well

known fact.

2The (real) quaternions H were discovered by William Rowan Hamilton. In 1835, at

the age of 30, he had discovered how to treat complex numbers as pairs of real numbers.

Fascinated by the relation between C and 2-dimensional geometry, he tried for many years
to invent a bigger algebra that would play a similar role in 3-dimensional geometry. It

took him until the 16th of October, 1843, to realize that he really needed a 4-dimensional

algebra: “That is to say, I then and there felt the galvanic circuit of thought close; and
the sparks which fell from it were the fundamental equations between i, j and k; exactly

such as I have used them ever since.” And in a famous act of mathematical vandalism, he

carved these equations into the stone of the Brougham Bridge: i2 = j2 = k2 = i jk = −1.
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Lemma 1.7.2. Let E/K be a separable quadratic extension with norm N and

let γ ∈ K∗. Then [E/K,γ] = 0 in Br(K) if and only if γ ∈ N(E).

Proof. See, for example, [52, 9.4] for a characteristic-free proof of this well

known fact.

Theorem 1.7.3. Let E/K be a separable quadratic extension, and let γ ∈ K∗.
Then [E/K,γ] has order at most 2 in Br(K).

Proof. This follows immediately from Theorem 1.7.1 and Lemma 1.7.2,

since γ2 ∈ N(E) for all γ ∈ K∗.

Theorem 1.7.4. Suppose that Q1, Q2 and Q3 are three quaternion division

algebras over K. If [Q1] + [Q2] + [Q3] = 0 in Br(K), then Q1, Q2 and Q3

have a separable quadratic subfield E in common (up to isomorphism).

Proof. In odd characteristic, this result is essentially due to Albert [1]. In all

characteristics, but without the separability condition, this has been proved

almost simultaneously by Albert [3] and by Sah [40]. The full result as

stated above, is due to Draxl [16]. Two new and shorter proofs have been

given by Knus [27] and by Tits [50]. Very recently, an elementary proof of

the separability condition has been given by T.Y. Lam [30].

1.8 Clifford Algebras

We will now introduce the Clifford algebra3 of a quadratic form. Let (K, V, q)
be a quadratic space in arbitrary characteristic, with V 6= 0. The tensor al-

gebra of a vector space (K, V) is defined as the algebra

T(V) := K⊕V ⊕ (V ⊗K V)⊕ (V ⊗K V ⊗K V)⊕ · · · ,

and has the following universal property.

Theorem 1.8.1. Let (K, V) be a vector space, and let A be an arbitrary asso-

ciative K-algebra. Then any linear map from V to A has a unique extension

to a homomorphism from T(V) to A.

Proof. See, for example, [41, 9.2].

3Introduced by William Clifford in 1876 as a generalization of Grassmann’s exterior

algebra; see [11].
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Consider the ideal I(V, q) := 〈u⊗ u− q(u) · 1 | u ∈ V〉 of T(V). Then

the Clifford algebra of q, which we denote by C(V, q) or by C(q) for short,

is defined as the algebra

C(V, q) := T(V)/I(V, q) .

We will identify K and V with their natural image in the Clifford algebra.

The multiplication of two elements x, y ∈ C(q) will be denoted by xy in

place of x ⊗ y. With these conventions, we have that v2 = q(v) in C(q),
for all v ∈ V. Note that it follows from this that uv + vu = f (u, v), for all

u, v ∈ V. The Clifford algebra has the following universal property:

Theorem 1.8.2. Let (K, V, q) be a quadratic space, and let A be an arbitrary

associative K-algebra. Then any linear map T from V to A satisfying T(v)2 =
q(v) for all v ∈ V, has a unique extension to a homomorphism from C(V, q)
to A.

Proof. See, for example, [41, 9.2.2].

Theorem 1.8.3. Let (K, V, q) be an n-dimensional quadratic form over K
(which might or might not be regular), and let {e1, . . . , en} be a K-basis for

V. Then dimK C(V, q) = 2n, and the set

{
eα1

1 eα2
2 · · · e

αn
n | α1, . . . ,αn ∈ {0, 1}

}

is a K-basis for C(V, q).

Proof. See, for example, [41, 9.2.7] for a characteristic-free proof.

Remark 1.8.4. In [41, 9.2.7], it is assumed that char(K) 6= 2, but the proof

of (9.2.6) and hence also of (9.2.7) holds unchanged if char(K) = 2. In

particular, the assumption that the basis is orthogonal is not needed.

The even Clifford algebra of q, denoted by C0(V, q) or by C0(q) for short,

is defined as the subalgebra of C(V, q) generated by the products uv where

u, v ∈ V.

Theorem 1.8.5. Let (K, V, q) be an n-dimensional quadratic form over K
(which might or might not be regular). Then dimK C0(V, q) = 2n−1.

Proof. This follows from Theorem 1.8.3. See, for example, [29, V.1.9].

Both the Clifford algebra and the even Clifford algebra play a very im-

portant role in the study of quadratic forms. Let (K, V, q) be an arbitrary

regular quadratic space. If dim(q) = dimK V is even, then C(V, q) is a
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central simple K-algebra; if dim(q) is odd, then C0(V, q) is a central simple

K-algebra (see, for example, [41, 9.2.10 and 9.4.7]). In particular, there

exists an invariant in Br(K) called the Clifford invariant or the Witt invari-

ant which is defined as follows:

c(q) :=

{
[C(q)] if dim(q) is even ;

[C0(q)] if dim(q) is odd .

A technique which we will use quite often in Chapter 4 is extending

the base field of a quadratic form. If we extend the scalars of (K, V, q)
to some extension field E over K, then we will denote the corresponding

quadratic space by (E, V ⊗K E, qE). One can check that the functors C and

C0 behave well with respect to field extensions, that is, C(qE) ∼= C(q)⊗K E
and C0(qE) ∼= C0(q)⊗K E.

We finally introduce the less known concept of a Clifford algebra with

base point, a notion which was introduced by N. Jacobson in [26]. Let

(V, q,ε) be an arbitrary quadratic space with base point ε. We define an

ideal I(q,ε) in T(V) as

I(q,ε) :=
〈
ε− 1, v⊗ v− q(v) · 1 | v ∈ V

〉
.

Then the Clifford algebra with base point C(V, q,ε) or C(q,ε) for short is

defined as the quotient C(q,ε) := T(V)/I(q,ε). Again, K and V will be

identified with their natural image in C(q,ε), and the multiplication will

be denoted by juxtaposition. With these conventions, we have ε = 1 and

vv = q(v) in C(q,ε) for all v ∈ V; it follows from this that uv + vu =
f (u, v) in C(q,ε) for all u, v ∈ V.

Theorem 1.8.6. C(q,ε) ∼= C0(q).

Proof. See [52, (12.51)].

1.9 Three other algebraic structures

In this final section of this chapter, we will introduce three other algebraic

structures which we will need later on in section 2.6 to describe some of

the Moufang quadrangles.

1.9.1 Indifferent Sets

Following [52], we define an indifferent set as a triple (K, K0 , L0), where

K is a commutative field of characteristic 2 and K0 and L0 are additive
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subgroups of K both containing 1, such that

K2
0 L0 ⊆ L0 ,

L0K0 ⊆ K0 ,

K0 generates K as a ring.

We will just mention a few properties of indifferent sets.

Lemma 1.9.1. Let (K, K0 , L0) be an arbitrary indifferent set, and let L be the

subring of K generated by L0. Then

(i) K2K0 ⊆ LK0 ⊆ K0 ;

(ii) K2L0 ⊆ L0 ;

(iii) L2
0 ⊆ K2

0 ⊆ L0 ⊆ K0 ;

(iv) K∗0 and L∗0 are closed under inverses ;

(v) L is a subfield of K ;

(vi) (L, L0, K2
0) is an indifferent set, called the opposite of (K, K0 , L0) .

Proof. See [52, (10.2)].

1.9.2 Involutory Sets

As in [52], we define an involutory set as a triple (K, K0 ,σ), where K is a

field or a skew-field, σ is an involution of K, and K0 is an additive subgroup

of K containing 1 such that

Kσ ⊆ K0 ⊆ FixK(σ) and

aσK0a ⊆ K0 for all a ∈ K ,

where Kσ := {a + aσ | a ∈ K}.
Note that if char(K) 6= 2, then Kσ = FixK(σ), and hence K0 = Kσ as

well, so the second condition is superfluous in this case. On the other hand,

if char(K) = 2, then the quotient FixK(σ)/Kσ is a right vector space over

K with scalar multiplication given by

(x + Kσ) · a = aσxa + Kσ

for all x ∈ FixK(σ) and all a ∈ K, so the second condition is equivalent to

the assertion that K0/Kσ is a subspace of FixK(σ)/Kσ .
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1.9.3 Pseudo-quadratic Forms

Let K be an arbitrary field or skew-field, let σ be an involution of K (which

may be trivial), and let V0 be a right vector space over K. A map h from

V0×V0 to K is called a sesquilinear form (with respect to σ) if and only if h
is additive in both variables, and h(at, bs) = tσh(a, b)s, for all a, b ∈ V0 and

all t, s ∈ K. A form h : V0 ×V0 → K is called hermitian, respectively skew-

hermitian, (with respect to σ) if and only if h is sesquilinear with respect to

σ and h(a, b)σ = h(b, a), respectively h(a, b)σ = −h(b, a), for all a, b ∈ V0.

Let (K, K0 ,σ) be an involutory set, let V0 be a right vector space over K
and let p be a map from V0 to K. Then p is a pseudo-quadratic form on V
(with respect to K0 andσ) if there is a form h on V0 which is skew-hermitian

with respect to σ such that

p(a + b) ≡ p(a) + p(b) + h(a, b) (mod K0) ,

p(at) ≡ tσ p(a)t (mod K0) ,

for all a, b ∈ V0 and all t ∈ K.

Again following [52], we define a pseudo-quadratic space as a quintuple

(K, K0 ,σ , V0, p) such that (K, K0 ,σ) is an involutory set, V0 is a right vector

space over K and p is a pseudo-quadratic form on V0 with respect to K0

and σ. A pseudo-quadratic space (K, K0 ,σ , V0, p) is called anisotropic if

p(a) ∈ K0 only for a = 0.

Let (K, K0 ,σ , V0, p) be an arbitrary anisotropic pseudo-quadratic space

with corresponding skew-hermitian form h. We define a group (T, �) as

T :=
{
(a, t) ∈ V0 × K | p(a)− t ∈ K0

}
,

where the group action is given by

(a, t) � (b, s) :=
(
a + b, t + s + h(b, a)

)
,

for all (a, t), (b, s) ∈ T. One can check that T is indeed a group with neutral

element (0, 0), and with the inverse given by �(a, t) = (−a,−t + h(a, a)),
for all (a, t) ∈ T.





2
Quadrangular

Systems

Very recently, the classification of Moufang polygons has been completed

by J. Tits and R. Weiss in [52]. It was first shown by J. Tits [46, 48]

that Moufang n-gons exist for n ∈ {3, 4, 6, 8} only; see also [54]. For

n ∈ {3, 6, 8}, the proof is divided into two parts, namely (A) it is shown

that a Moufang n-gon can be parametrized by a certain algebraic structure,

and (B) these algebraic structures are classified.

More precisely, it was already shown in 1933 (but in a slightly different

form1; see [4] or [21]) by R. Moufang (see [33]) that all Moufang trian-

gles can be described by an alternative division ring, a notion which had

been introduced by M. Zorn (see [55]). These alternative division rings

were classified by R. Bruck and E. Kleinfeld in 1951; see [10]. The Mou-

fang hexagons are described by unital quadratic Jordan division algebras of

degree three, also known as anisotropic cubic norm structures (see [45]).

These structures have been classified in its full generality in 1986 by H. Pe-

tersson and M. Racine [36, 37], whose proof is built on earlier work by A.

Albert [2], F.D. Jacobson and N. Jacobson [23], N. Jacobson [24, 25] and

K. McCrimmon [31, 32]. The Moufang octagons, finally, can be described

by a so-called octagonal system, as was shown by J. Tits in 1983 (see [49]);

since these systems have a very simple description, there is no need for part

(B) in this case.

The classification of Moufang quadrangles (n=4) in [52] is not orga-

nized in this way due to the absence of a suitable algebraic structure. In-

stead, there are six different parameter systems, and even then, the division

of the proof into parts (A) and (B) is missing in the two cases which lead to

the exceptional quadrangles. Surprisingly, one of these classes, namely the

exceptional quadrangles of type F4, had only been discovered by R. Weiss

1See the long footnote on page 176 of [52] for the full story.
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during the classification process, more than 20 years after Tits’s conjecture

in [45] that the Moufang polygons could be classified; see also [34].

The goal of this chapter is to present a uniform algebraic structure for

Moufang quadrangles. These “quadrangular systems”, as we will call them,

reveal some of the structure of Moufang quadrangles which is hard to see

without them. For example, we have successfully used them to answer a

basic question about the automorphism group of the Moufang quadrangles

of type F4 left open in (37.38) of [52]; see chapter 3. Moreover, it is possible

to classify these structures without referring back to the original Moufang

quadrangles from which they arise, thereby providing a new proof for the

classification of Moufang quadrangles, which does consist of the division

into parts (A) and (B).

We start by giving the (ad hoc) definition of the quadrangular systems.

Considering the background of the Moufang quadrangles, it should not be

too surprising that we need a large number of axioms to describe these

systems. In the next section, we give some elementary properties of these

systems. In section 2.3, we explain how to construct a Moufang quadrangle

starting from an arbitrary quadrangular system. In section 2.4, we show

that every Moufang quadrangle arises in this way. After a couple of remarks

in section 2.5, we present a list of 6 examples of quadrangular systems,

which corresponds to the 6 different classes of Moufang quadrangles as

described in [52]. Section 2.7, which makes up the largest part of this

chapter, is devoted to the classification of the quadrangular systems. We

conclude with a section in which we restate the axiom system for abelian

quadrangular systems and for some specific subclasses of those.

2.1 Definition

Consider an abelian group (V, +) and a (possibly non-abelian) group (W, �).
The inverse of an element w ∈ W will be denoted by �w, and by w1 � w2,

we mean w1 � (�w2). Suppose that there is a map τV from V×W to V and

a map τW from W × V to W, both of which will be denoted by · or simply

by juxtaposition, i.e. τV(v, w) = vw = v · w and τW(w, v) = wv = w · v for

all v ∈ V and all w ∈ W. Consider a map F from V × V to W and a map

H from W ×W to V, both of which are “bi-additive” in the sense that

F(v1 + v2, v) = F(v1, v) � F(v2, v) ;

F(v, v1 + v2) = F(v, v1) � F(v, v2) ;
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H(w1 � w2, w) = H(w1, w) + H(w2, w) ;

H(w, w1 � w2) = H(w, w1) + H(w, w2) ;

for all v, v1, v2 ∈ V and all w, w1, w2 ∈ W. Suppose furthermore that there

exists a fixed elementε ∈ V∗ and a fixed element δ ∈W∗, and suppose that,

for each v ∈ V∗, there exists an element v−1 ∈ V∗, and for each w ∈ W∗,

there exists an element κ(w) ∈ W∗, such that, for all w, w1, w2 ∈W and all

v, v1, v2 ∈ V, the following axioms are satisfied. We define

v := εF(ε, v)− v

Rad(F) := {v ∈ V | F(v, V) = 0}

Rad(H) := {w ∈W | H(w, W) = 0}

Im(F) := F(V, V)

Im(H) := H(W, W)

(Q1) wε = w.

(Q2) vδ = v.

(Q3) (w1 � w2)v = w1v � w2v.

(Q4) (v1 + v2)w = v1w + v2w.

(Q5) w(−ε) · v = w(−v).

(Q6) v · w(−ε) = vw.

(Q7) Im(F) ⊆ Rad(H).

(Q8) [w1, w2v]� = F(H(w2, w1), v).

(Q9) δ ∈ Rad(H).

(Q10) If Rad(F) 6= 0, then ε ∈ Rad(F).

(Q11) w(v1 + v2) = wv1 � wv2 � F(v2w, v1).

(Q12) v(w1 � w2) = vw1 + vw2 + H(w2, w1v).

(Q13) (v−1)−1 = v (if v 6= 0).

(Q14) κ(�κ(�w)) = w(−ε) (if w 6= 0).

(Q15) wv · v−1 = w (if v 6= 0).

(Q16) v−1 · wv = −v(�w) (if v 6= 0).

(Q17) F(v−1
1 , v2)v1 = F(v1, v2) (if v1 6= 0).

(Q18) vκ(w) · (�w) = −v (if w 6= 0).

(Q19) w · vκ(w) = κ(w)v (if w 6= 0).

(Q20) H(κ(w1), w2)w1 = H(w1, w2) (if w1 6= 0).
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Then we call the system (V, W,τV ,τW ,ε, δ) a quadrangular system. Note

that we omit the maps F and H in our notation, as well as the maps v 7→ v−1

and w 7→ κ(w). The reason is that they are uniquely determined by V, W,

τV , τW, ε and δ; see Theorem 2.2.7.

Remark 2.1.1. We will sometimes think about the maps τV from V ×W to

V and τW from W × V to W as “actions”, since it will turn out that, for

every w ∈ W∗, the map from V to itself which maps v to vw for every

v ∈ V is an automorphism of V; similarly, for every v ∈ V∗, the map from

W to itself which maps w to wv for every w ∈ W is an automorphism

of W; see Theorem 2.2.6. Note, however, that these maps are no group

actions in the proper sense of the word, since v(w1 � w2) 6= vw1 · w2 and

w(v1 + v2) 6= wv1 · v2 in general.

Remark 2.1.2. In writing down these axioms, we used the convention that

the maps which are denoted by juxtaposition preceed those which are de-

noted by “·”. Note, however, that there is no danger of confusion, since we

have not defined a multiplication on V or on W. Hence we will often write

wvv−1 instead of wv · v−1, for example.

We will show in Theorem 2.2.8 below that the following two identi-

ties are satisfied for every quadrangular system, for all v1, v2 ∈ V and all

w1, w2 ∈ W.

(Q21) F(v1, v2) = F(v2, v1).

(Q22) H(w1, w2) = −H(w2, w1).

Remark 2.1.3. These two identities show that, in some sense, F is a sym-

metric form and H is a skew-hermitian form. Note, however, that V and

W are not vector spaces in general.

Moreover, we will show in Theorem 2.5.1 that the following four iden-

tities are satisfied for every quadrangular system, for all v, c ∈ V and all

w, z ∈ W. We first introduce the notion of a reflection, which is a direct

generalization of the classical notion of a reflection in a quadratic space as

defined on page 11:

πv(c) := c− vF(v−1, c) (if v 6= 0)

Πw(z) := z � w(−H(κ(w), z)) (if w 6= 0) .

Then

(Q23) v · Πw(z) = −v(�w)zκ(w) (if w 6= 0).

(Q24) w · πv(ε)−1 · πv(c) = wvcv−1 (if v 6= 0).
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(Q25) πv(c · δv)w = πv(c · wv) (if v 6= 0).

(Q26) Π�z(w ·εz)v = Π�z(w · vz) (if w 6= 0).

Let Ω := (V, W,τV ,τW ,ε, δ) and Ω′ := (V ′, W ′,τV ′ ,τW ′ ,ε
′, δ′) be two

quadrangular systems. We say that (φ,ψ) is a morphism from Ω to Ω′ if

and only if φ is a morphism from V to V ′ and ψ is a morphism from W
to W ′ such that φ(ε) = ε′, ψ(δ) = δ′, φ(vw) = φ(v)ψ(w) and ψ(wv) =
ψ(w)φ(v), for all v ∈ V and all w ∈W.

A morphism (φ,ψ) is called an monomorphism (respectively epimor-

phism, isomorphism) if and only if both φ and ψ are monomorphisms (re-

spectively epimorphisms, isomorphisms). We call Ω and Ω′ isomorphic if

and only if there exists an isomorphism (φ,ψ) from Ω to Ω′.

2.2 Some Identities

We will now prove some identities which we will use in the construction of

the Moufang quadrangles in section 2.3, and which will also be used in the

classification of quadrangular systems.

Definition 2.2.1. For each w ∈ W∗, we define λ(w) := �κ(�w). Using

this definition, (Q14) can be rephrased as κ(λ(w)) = w(−ε).

Lemma 2.2.2. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W∗ and all v ∈ V, we have that

(i) vwκ(�w) = −v ;

(ii) κ(w)(v(�w)) = w(−v) .

Proof. If we plug in λ(w) for w in (Q18), then it follows from (Q14) that

v(w(−ε))(�λ(w)) = −v, and by (Q6) and the definition of λ, this is equiv-

alent to vwκ(�w) = −v, which proves (i).

If we plug in λ(w) for w in (Q19), then we get, again by (Q14), that

λ(w)(v · w(−ε)) = w(−ε)v. By (Q6), (Q5) and the definition of λ, this

is equivalent to �κ(�w)(vw) = w(−v). Replacing w by �w now yields

(ii).

Lemma 2.2.3. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

following holds, for all w ∈W and all v ∈ V :

(i) wv = 0 ⇐⇒ w = 0 or v = 0 ;

(ii) vw = 0 ⇐⇒ v = 0 or w = 0 .
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Proof. We will only prove statement (i); because of Lemma 2.2.2(i), the

proof of (ii) is completely similar. By choosing v1 = v2 = 0 in (Q11), we

get w0 = w0 � w0, from which it follows that w0 = 0. Similarly, it follows

from (Q3) that 0v = 0.

On the other hand, suppose that wv = 0. If v 6= 0, then it follows from

(Q15) that w = wvv−1 = 0v−1 = 0.

Lemma 2.2.4. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W and all v ∈ V, we have :

(i) (�w)v = �(wv) ;

(ii) (−v)w = −(vw) .

It follows that the notations �wv and −vw are unambiguous.

Proof. By putting w1 = w and w2 = �w in (Q3), we get 0v = wv � (�w)v,

from which it follows that (�w)v = �(wv). Similarly, (ii) follows from

(Q4).

Lemma 2.2.5. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

following holds, for all w ∈W and all v ∈ V :

(i) w1v = w2v ⇐⇒ w1 = w2 or v = 0 ;

(ii) v1w = v2w ⇐⇒ v1 = v2 or w = 0 .

Proof. By (Q3) and Lemma 2.2.4(i), we have (w1 � w2)v = w1v � w2v,

and so (i) is an immediate consequence of Lemma 2.2.3(i). Similarly, (ii)

follows from Lemma 2.2.3(ii).

Theorem 2.2.6. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then

(i) for every w ∈ W∗, the map from V to itself which maps v to vw for

every v ∈ V is an automorphism of V ;

(ii) for every v ∈ V∗, the map from W to itself which maps w to wv for

every w ∈W is an automorphism of W .

Proof. We will only show (i), the proof of (ii) being completely similar. So

let w ∈ W∗ be arbitrary, and let α be the map from V to itself which maps

v to vw for every v ∈ V. By Lemma 2.2.3(ii), we have that α(0) = 0, and

it follows from (Q4) that α(v1 + v2) = α(v1) +α(v2) for all v1, v2 ∈ V, so

α is a group morphism. Since w 6= 0, it follows from Lemma 2.2.5(ii) that

α is injective. Finally, it follows from (Q18) that α
(
−vκ(�w)

)
= v for all

v ∈ V, hence α is surjective as well, and we are done.
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Theorem 2.2.7. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

maps F and H and the maps v 7→ v−1 and w 7→ κ(w) are uniquely deter-

mined.

Proof. By (Q11), F(v2, v1) = �δv2 �δv1 �δ(v1 + v2), so F is uniquely deter-

mined. Note that this implies that the map v 7→ v is uniquely determined

as well. By (Q12), H(w2, w1) = −εw2−εw1 +ε(w1 + w2), so H is uniquely

determined. Suppose that v∗ were another “inverse” of v. Then it would

follow from (Q16) that v∗(wv) = v−1(wv), but then Lemma 2.2.5 would

imply that v∗ = v−1 after all. Similarly, it follows from Lemma 2.2.2(ii)

that the map κ is uniquely determined.

Theorem 2.2.8. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

identities (Q21) and (Q22) are satisfied for all v1, v2 ∈ V and all w1, w2 ∈W.

Proof. We will first show that (Q21) follows from (Q8), (Q9) and (Q11).

Since V is abelian, δ(v1 + v2) = δ(v2 + v1), and hence, by (Q11), we have

that

δv1 � δv2 � F(v2, v1) = δv2 � δv1 � F(v1, v2) ,

for all v1, v2 ∈ V. In order to show (Q21), it thus suffices to show that δv1

and δv2 commute for all v1, v2 ∈ V. By (Q8) and (Q9),

[δv1, δv2]� = F(H(δ, δv1), v2) = 0

for all v1, v2 ∈ V, and hence (Q21) holds.

Similarly, we will show that (Q22) follows from (Q12), (Q15) and (Q16).

By substituting �w for w andε for v in (Q16), we have thatεw = −ε−1(�w)
for all w ∈ W. Moreover, by (Q15), wε−1 = w for all w ∈ W. By (Q12) and

the fact that H is additive in both variables, we thus have that

H(w2, w1) = ε(w1 � w2)−εw1 −εw2

= −ε−1(�w2 � w1) +ε−1(�w1) +ε−1(�w2)

= −H(�w1, �w2ε
−1)

= −H(w1, w2)

for all w1, w2 ∈W, hence (Q22) holds.

Lemma 2.2.9. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

map v 7→ v is additive. In particular, we have that −v = −v for all v ∈ V.

Moreover, for all c ∈ V∗, the map πc is additive. In particular, we have that

πc(−v) = −πc(v) for all v ∈ V.
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Proof. It follows from (Q7) that H(F(ε, v2), F(ε, v1)) = 0, for all v1, v2 ∈ V.

Hence

εF(ε, v1 + v2) = ε(F(ε, v1) � F(ε, v2))

= εF(ε, v1) +εF(ε, v2) ,

by (Q12). Since v = εF(ε, v)− v, it follows from this that the map v 7→ v is

additive. Similarly, it follows from (Q7) that H(F(c−1, v2), F(c−1, v1)c) = 0,

for all c ∈ V∗ and all v1, v2 ∈ V. Since the map v 7→ v is additive, it now

follows, again by (Q12), that

πc(v1 + v2) = (v1 + v2)− cF(c−1, v1 + v2)

= v1 + v2 − c(F(c−1, v1) � F(c−1, v2))

= v1 − cF(c−1, v1) + v2 − cF(c−1, v2)

= πc(v1) + πc(v2) ,

which is what we wanted to show.

Lemma 2.2.10. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W∗ and all v ∈ V∗, we have

(i) (−v)−1 = −(v−1) ;

(ii) κ(�w) = �λ(w) .

Proof. If we replace w by δ in (Q16), we have that −(v−1)(δv) = v(�δ).

If we replace w by δ(−ε) in the same identity (Q16), then we get, by (Q5)

and (Q6) that v−1(δ(−v)) = −v(�δ). If we replace v by −v in this identity,

then we get, using the fact that −v = −v, that (−v)−1(δv) = v(�δ). It

follows that (−v)−1(δv) = −(v−1)(δv). Since δv is non-zero, this implies,

by Lemma 2.2.5(i), that (−v)−1 = −(v−1), which proves (i). Identity (ii)

follows immediately from the definition of λ.

Lemma 2.2.11. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W and all v ∈ V, we have

wv(−ε) = w(−v) .

Proof. Note that this identity is trivial if v = 0, so assume v 6= 0. By (Q15)

and Lemma 2.2.10(i), we have that wvv−1 = w(−v)(−v−1). It follows,

by (Q5), that wv(−ε)(−v−1) = w(−v)(−v−1). By Lemma 2.2.5(i), this

implies that wv(−ε) = w(−v), for all w ∈W and all v ∈ V.
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Lemma 2.2.12. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all v ∈ V, we have

v = v .

Proof. Assume v 6= 0. By replacing w by �δ in (Q16), we see that v =
−v−1(�δv). If, on the other hand, we replace v by v−1 and w by δv in this

same identity (Q16), then we get v(δvv−1) = −v−1(�δv). Combining those

two equalities gives us the required identity v = v, since v(δvv−1) is equal

to v because of (Q15) and (Q2).

Lemma 2.2.13. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W and all v ∈ V, we have

(i) w(−v) = F(vw, v) � wv ;

(ii) v(�w) = H(w, wv) − vw .

Proof. If we put v1 = −v and v2 = v in (Q11), then we get that w0 =
w(−v) � wv � F(vw,−v). Since F is additive in both variables, this is

equivalent to w(−v) = F(vw, v) � wv, which proves (i). Similarly, (ii)

follows from (Q12).

Lemma 2.2.14. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all v ∈ V∗, we have

(i) κ(δv) = δ(v)−1 ;

(ii) v−1 = (v)−1 .

Proof. If we substitute δv for w and −v−1 for v in Lemma 2.2.2(ii), then we

get that

κ(δv) · (−v−1(�δv)) = δvv−1 ,

and hence, by (Q16) and (Q15),

κ(δv) · v = δ .

By (Q15), it thus follows that κ(δv) = δ(v)−1, which shows (i). Note that

it follows from Lemma 2.2.13(ii) that v(�δ) = −v for all v ∈ V, since

δ ∈ Rad(H) by (Q9). By Lemma 2.2.2(i) with �δv in place of w, (Q16)

with v in place of v and �δ in place of w, Lemma 2.2.12, and (i) with v in

place of v, we now have that

(v)−1 = −(v)−1 · (�δv) ·κ(δv)

= v · δv−1 = −v−1(�δ) = v−1 ,

which shows (ii).
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Lemma 2.2.15. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all v1, v2 ∈ V and all w1, w2 ∈ W, we have that

(i) F(v1, v2)(−ε) = F(v1, v2) ;

(ii) H(κ(w1(−ε)), w2) = −H(κ(w1), w2) .

Proof. If we substitute v2 for v2 in (Q17), then we get, using (Q21), that

F(v2, v−1
1 )v1 = F(v1, v2). Replacing v1 by −v1 in this last identity and ap-

plying Lemma 2.2.10(i) yields F(v2, v−1
1 )(−v1) = F(v1, v2). Thus, by (Q5),

F(v2, v−1
1 )(−ε)v1 = F(v2, v−1

1 )v1, and it follows from Lemma 2.2.5(i) that

F(v2, v−1
1 )(−ε) = F(v2, v−1

1 ). Replacing v1 by v−1
1 and using (Q13) com-

pletes the proof of (i).

The proof of (ii) is similar. If we substitute w1(−ε) for w1 in (Q20), then

we get that H(κ(w1(−ε)), w2) · w1(−ε) = H(w1(−ε), w2). On the other

hand, since Im(F) ⊆ Rad(H) by (Q7), it follows from Lemma 2.2.13(i)

that H(w1(−ε), w2) = H(�w1, w2) = −H(w1, w2). Hence

H(κ(w1(−ε)), w2) · w1(−ε) = −H(w1, w2) ,

and it follows from (Q6) and (Q20) that

H(κ(w1(−ε)), w2) · w1 = −H(κ(w1), w2) · w1 .

It now follows from Lemma 2.2.5(ii) that (ii) holds.

Lemma 2.2.16. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all w ∈W and all v ∈ V, we have

(i) F(vw, v−1) � w(−v)v−1 = w (if v 6= 0) ;

(ii) H(w,κ(w)(−v)) + vκ(w)w = v (if w 6= 0) .

Proof. Putting v1 = v and v2 = vw in (Q17), and using (Q21), yields

F(vw, v−1)v = F(vw, v), from which it follows, by (Q15), that F(vw, v−1) =
F(vw, v)v−1. It follows from Lemma 2.2.13(i) and from (Q3) that

w(−v)v−1 = (F(vw, v) � wv)v−1

= F(vw, v)v−1
� wvv−1

= F(vw, v−1) � w ,

from which (i) follows, since Im(F) ⊆ Z(W) by (Q7) and (Q8).

If we plug in vκ(w) for v in Lemma 2.2.13(ii), we get

vκ(w)(�w) = H(w, w · vκ(w))− vκ(w)w ,

and applying (Q18) and (Q19) yields−v = H(w,κ(w)v)− vκ(w)w. Replac-

ing v by −v gives us the required identity (ii).
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Theorem 2.2.17. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then,

for all w1 ∈W∗, w2 ∈W, v1 ∈ V∗ and v2 ∈ V, we have

(i) F(2v2 − v1F(v2, v−1
1 ), v−1

1 ) = 0 ;

(ii) H(κ(w1) � λ(w1), w2) + H(λ(w1), w1(−H(κ(w1), w2))) = 0 .

Proof. By (Q5), (Q15) and Lemma 2.2.15(i), we have

F(v2, v−1
1 )(−v1)v−1

1 = F(v2, v−1
1 )(−ε)v1v−1

1

= F(v2, v−1
1 ) .

If we put v = v1 and w = F(v2, v−1
1 ) in Lemma 2.2.16(i), we get

F(v1F(v2, v−1
1 ), v−1

1 ) = F(v2, v−1
1 ) � F(v2, v−1

1 )(−v1)v−1
1

= F(v2, v−1
1 ) � F(v2, v−1

1 )

= F(2v2 , v−1
1 ) ,

from which (i) follows.

To prove (ii), we first observe that, by (Q7), it follows from Lemma

2.2.13(i) that

H(w1(−v), w2) = H(F(vw1 , v) � w1v, w2)

= −H(w1v, w2) ,

for all w1, w2 ∈W and all v ∈ V. We also observe that

κ(λ(w))(−v) = w(−ε)(−v) = wv

because of (Q14) and (Q5), and that

vκ(λ(w)) = v(w(−ε)) = vw

because of (Q14) and (Q6), for all w ∈ W∗ and all v ∈ V. If we substitute

λ(w1) for w and −H(κ(w1), w2) for v in Lemma 2.2.16(ii), then we get,

using these remarks, that

H(λ(w1), w1(−H(κ(w1), w2)))

= −H(κ(w1), w2) + H(κ(w1), w2)w1λ(w1)

= −H(κ(w1), w2) + H(w1, w2)λ(w1)

= −H(κ(w1), w2)− H(w1(−ε), w2)λ(w1)

= −H(κ(w1), w2)− H(κ(λ(w1)), w2)λ(w1)

= −H(κ(w1), w2)− H(λ(w1), w2)

= −H(κ(w1) � λ(w1), w2) ,

where we have used identity (Q20) twice. This completes the proof of

(ii).



34 2. Quadrangular Systems

Lemma 2.2.18. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then, for

all v ∈ V∗, c ∈ V, w ∈W∗ and z ∈W, we have that

(i) πv(c) = c− vF(v−1, c) = c− v−1F(v, c) ;

(ii) Πw(z) = z � w(−H(κ(w), z)) = z � λ(w)H(w, z) .

Proof. By (Q17), (Q15) and (Q16), we have that

vF(v−1, c) = v · F(v, c)v−1

= −v−1(�F(v, c)) .

Since Im(F) ⊆ Rad(H) by (Q7), it follows from Lemma 2.2.13(ii) that

v−1(�F(v, c)) = −v−1F(v, c), and hence

vF(v−1, c) = v−1F(v, c) ,

which shows (i).

By (Q20), Lemma 2.2.2(i) and (Q19), we have that

w(−H(κ(w), z)) = w · (H(w, z)κ(�w))

= �κ(�w)H(w, z)

= λ(w)H(w, z) ,

which shows (ii).

In the sequel, we will use both expressions as definitions of πv and Πw,

without explicitly referring to this lemma.

Lemma 2.2.19. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system, and let

w ∈ Rad(H) and v ∈ V. Then wv ∈ Rad(H) as well.

Proof. By (Q8), [w, w2]� = 0 for all w2 ∈W, hence v(w � w2) = v(w2 � w).
It follows from (Q12) that H(w2, wv) = H(w, w2v) = 0 for all w2 ∈ W,

since w ∈ Rad(H). By (Q22), this implies that H(wv, w2) = 0 for all

w2 ∈W, hence wv ∈ Rad(H).

Lemma 2.2.20. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then we

have that vw = −v(δv−1)(�wv) for all v ∈ V∗ and all w ∈W.

Proof. It follows from (Q16) that vw = −v−1(�wv) for all v ∈ V∗ and all

w ∈ W. In particular, we have that v = −v−1(�δv) for all v ∈ V∗, and

hence that vκ(δv) = v−1 by Lemma 2.2.2(i). If we substitute this expres-

sion for v−1 in the first identity, then we get that vw = −vκ(δv)(�wv) for

all v ∈ V∗ and all w ∈ W. The result follows, since κ(δv) = δv−1 for all

v ∈ V∗ by Lemma 2.2.14(i) and Lemma 2.2.14(ii).
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Lemma 2.2.21. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then

πv(vw) = v(�w) for all v ∈ V∗ and all w ∈W.

Proof. Let v ∈ V∗ and w ∈ W be arbitrary. It follows from (Q5) and

(Q15) that w(−v)v−1 = w(−ε). It thus follows from Lemma 2.2.16(i)

that F(vw, v−1) = w � w(−ε). Hence, by (Q12), (Q5), (Q6) and Lemma

2.2.13(ii),

vF(vw, v−1) = v(w � w(−ε))

= vw + v · w(−ε) + H(w(−ε), wv)

= vw + vw + H(w(−ε), w(−ε)(−v))

= vw + vw− v(�w(−ε))− v(w(−ε))

= vw + vw− v(�w)− vw

= vw− v(�w) ,

and hence

πv(vw) = vw− vF(vw, v−1) = v(�w) ,

which is what we had to show.

The following two lemmas generalize some properties of reflections in

an ordinary quadratic space.

Lemma 2.2.22. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then

(i) F(v, πv(c)) = F(v,−c) for all v ∈ V∗ and all c ∈ V ;

(ii) H(λ(w),Πw(z)) = −H(κ(w), z) for all w ∈W∗ and all z ∈W .

Proof. By Lemma 2.2.18(i) and Theorem 2.2.17(i) with v−1 in place of v1

and c in place of v2, we have that

F(v, πv(c)) = F(v, c− v−1F(v, c))

= F(2c− v−1F(c, v), v) � F(c, v)

= F(v,−c) ,

which shows (i). By Theorem 2.2.17(ii) with w1 = w and w2 = z,

H(λ(w),Πw(z)) = H(λ(w), z � w(−H(κ(w), z)))

= H(κ(w) � λ(w), z) + H(λ(w), w(−H(κ(w), z)))

− H(κ(w), z)

= −H(κ(w), z) ,

which shows (ii).
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Lemma 2.2.23. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then

(i) πv(πv(c)) = c for all v ∈ V∗ and all c ∈ V ;

(ii) Π�w(Πw(z)) = z for all w ∈W∗ and all z ∈W .

Proof. By Lemma 2.2.22(i),

πv(πv(c)) = πv(c)− v−1F(v, πv(c))

= −πv(−c)− v−1F(v,−c)

= c + v−1F(v,−c)− v−1F(v,−c)

= c ,

which shows (i). By Lemma 2.2.10(ii) and Lemma 2.2.22(ii),

Π�w(Πw(z)) = Πw(z) � (�w)(−H(κ(�w),Πw(z)))

= Πw(z) � wH(λ(w),Πw(z))

= Πw(z) � w(−H(κ(w), z)

= z ,

which shows (ii).

2.3 From Quadrangular Systems To Moufang

Quadrangles

We will now describe how we can construct a Moufang quadrangle from

a quadrangular system. We will use the method described in section 1.4.

Therefore, we will describe 4 groups U1, U2, U3 and U4, and we will im-

plicitly define the group U+ := 〈U1, U2, U3, U4〉 by giving the commutator

relations between any two of those groups. In order to show that the con-

struction of the graph Ξ out of this sequence (U+, U1, U2, U3, U4) will ac-

tually result in a Moufang quadrangle, we will follow Theorems 1.4.7 and

1.4.4.

LetΩ = (V, W,τV ,τW ,ε, δ) be a quadrangular system. Let U1 and U3 be

two groups isomorphic to W, and let U2 and U4 be two groups isomorphic

to V. Denote the corresponding isomorphisms by

x1 : W → U1 : w 7→ x1(w) ;

x2 : V → U2 : v 7→ x2(v) ;

x3 : W → U3 : w 7→ x3(w) ;

x4 : V → U4 : v 7→ x4(v) ;
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we say that U1 and U3 are parametrized by W and that U2 and U4 are

parametrized by V. Now, we implicitly define the group U+ = U[1,4] by the

following commutator relations. Note that we continue to use the notation

vw or v · w for τV(v, w) and wv or w · v for τW(w, v).

[x1(w1), x3(w2)
−1] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)
−1] = x3(F(v1, v2)) ,

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} ,

(2.1)

for all w, w1, w2 ∈W and all v, v1 , v2 ∈ V. We will denote the corresponding

graph Ξ by Q(Ω) = Q(V, W,τV ,τW ,ε, δ). If we define

ξ13(x1(w1), x3(w2)
−1) = x2(H(w1, w2)) ,

ξ24(x2(v1), x4(v2)
−1) = x3(F(v1, v2)) ,

ξ14(x1(w), x4(v)−1) = x2(vw)x3(wv) ,

then we can rephrase the conditions Ak, Bk and Ck as follows.

For all (i, j) ∈ {(1, 3), (2, 4), (1, 4)}, the following conditions should

hold, for all ai, bi ∈ Ui, for all a j, b j ∈ U j, and for all c ∈ U[i+1, j−1].

Ai j. ξi j(aibi, a−1
j ) = ξi j(ai, a−1

j )biξi j(bi, a−1
j ).

Bi j. ξi j(ai, (a jb j)−1) = ξi j(ai, a−1
j )ξi j(ai, b−1

j )a−1
j .

Ci j. cξi j(ai,a
−1
j ) = ca−1

i a jaia
−1
j .

Theorem 2.3.1. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

corresponding graph Q(V, W,τV ,τW ,ε, δ) satisfies all of the conditions Ai j,

Bi j and Ci j.

Proof. By plugging in the formulas for the functions ξi j, we get the fol-

lowing explicit conditions, which must hold for all v, v′ , v1, v2 ∈ V and all

w, w′, w1, w2 ∈ W.

A13. x2(H(w1 � w2, w′)) = x2(H(w1, w′))x1(w2)x2(H(w2, w′)) ;

A24. x3(F(v1 + v2, v′)) = x3(F(v1, v′))x2(v2)x3(F(v2, v′)) ;

A14. x2(v(w1 � w2))x3((w1 � w2)v)
= (x2(vw1)x3(w1v))x1(w2) · (x2(vw2)x3(w2v)) ;

B13. x2(H(w′, w1 � w2)) = x2(H(w′, w1))x2(H(w′, w2))x3(�w2) ;

B24. x3(F(v′, v1 + v2)) = x3(F(v′, v1))x3(F(v′, v2))x4(−v2) ;
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B14. x2((v1 + v2)w)x3(w(v1 + v2))
= (x2(v1w)x3(wv1)) · (x2(v2w)x3(wv2))x4(−v1) ;

C13. x2(v)x2(H(w,w′)) = x2(v)x1(�w)x3(w′)x1(w)x3(�w′) ;

C24. x3(w)x3(F(v,v′)) = x3(w)x2(−v)x4(v′)x2(v)x4(−v′) ;

C14,2. x2(v′)x2(vw)x3(wv) = x2(v′)x1(�w)x4(v)x1(w)x4(−v) ;

C14,3. x3(w′)x2(vw)x3(wv) = x3(w′)x1(�w)x4(v)x1(w)x4(−v) .

Note that [U1, U2] = [U2, U3] = [U3, U4] = 1; some of the conditions can

be simplified by this observation.

Condition (A13) is equivalent to

x2(H(w1 � w2, w′)) = x2(H(w1, w′))x2(H(w2, w′)) ,

which is, in turn, equivalent to the fact that H is additive in the first vari-

able. Completely similarly, (A24), (B13) and (B24) also follow from the fact

that F and H are additive in both variables.

By (Q12), the left hand side of (A14) can be rewritten as

x2(vw1 + vw2 + H(w2, w1v))x3((w1 � w2)v) .

Using the fact that ba = [a, b−1]b, we can rewrite the right hand side as

x2(vw1)[x1(w2), x3(w1v)−1]x3(w1v)x2(vw2)x3(w2v)

which is also equal to

x2(vw1)x2(H(w2, w1v))x3(w1v)x2(vw2)x3(w2v) .

Since [U2, U2] = [U2, U3] = 1, we can rewrite this once more as

x2(vw1 + vw2 + H(w2, w1v))x3(w1v + w2v) .

It now follows from (Q3) that (A14) holds.

Similarly, (B14) follows from (Q11) and (Q4); we additionally need the

fact that Im(F) ≤ Z(W), which follows from (Q7) and (Q8).

Since [U2, U1] = [U2, U2] = [U2, U3] = 1, (C13) becomes trivial. Because

[U3, U2] = [U3, U4] = 1, we have that (C24) is equivalent to the condition

[w, F(v, v′)]� = 1. Since Im(F) ≤ Z(W), this is always satisfied.

To prove (C14,2), we need to show that

x2(v′) = x2(v′)x4(v)x1(w)x4(−v) ,
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which is the same as

(x2(v′)x4(v))x1(w) = x2(v′)x4(v) .

Since x2(v′)x4(v) = x2(v′)[x2(v′), x4(−v)−1] = x2(v′)x3(F(v′,−v)), we have

that

(x2(v′)x4(v))x1(w) = (x2(v′)x3(F(v′,−v)))x1(w)

= x2(v′)[x1(w), x3(F(v′,−v))−1]x3(F(v′,−v))

= x2(v′)x2(H(w, F(v′ ,−v)))x3(F(v′,−v))

= x2(v′)x3(F(v′,−v))

= x2(v′)x4(v)

since Im(F) ≤ Rad(H) by (Q7). Thus (C14,2) holds.

The left hand side of (C14,3) is equal to

x3(w′)[x3(w′), x3(wv)] ,

which is, by (Q8), also equal to

x3(w′ � F(H(w, w′), v)) .

The right hand side is equal to

x3(w′)x1(�w)x4(v)x1(w)x4(−v)

= (x2(−H(w, w′)) · x3(w′))x4(v)x1(w)x4(−v)

= (x2(−H(w, w′)) · x3(F(H(w, w′), v))x3(w′))x1(w)x4(−v)

= (x2(−H(w, w′)) · x3(w′ � F(H(w, w′), v)))x1(w)x4(−v)

= (x2(−H(w, w′)) · x2(H(w, w′ � F(H(w, w′), v)))

· x3(w′ � F(H(w, w′), v)))x4(−v)

= x3(w′ � F(H(w, w′), v))x4(−v)

= x3(w′ � F(H(w, w′), v)) ,

thus (C14,3) holds. This concludes the proof of this theorem.

It now follows Theorem 1.4.7 that the sequence (U+, U1, U2, U3, U4)
satisfies the conditions (M1) and (M2).

Let U0 be a group parametrized by V (via a map x0), and let U5 be a

group parametrized by W (via a map x5). We define an action of U0 on
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U[1,3] by the following commutator relations.

[U0, U1] = 1

[x0(v1), x2(v2)
−1] = x1(F(v1, v2))

[x0(v), x3(w)−1] = x1(wv)x2(−v(�w))

for all w ∈ W and all v, v1, v2 ∈ V. For each x4(v) ∈ U∗4 , we define an

element µ(x4(v)) ∈ U∗0 x4(v)U∗0 as

µ(x4(v)) = x0(v−1)x4(v)x0(v−1) .

We define an action of U5 on U[2,4] by the following commutator relations.

[x2(v), x5(w)−1] = x3(w(−v))x4(−v(�w))

[x3(w1), x5(w2)
−1] = x4(H(w2, w1))

[U4, U5] = 1

for all w, w1, w2 ∈ W and all v ∈ V. For each x1(w) ∈ U∗1 , we define an

element µ(x1(w)) ∈ U∗5 x1(w)U∗5 as

µ(x1(w)) = x5(κ(w))x1(w)x5(λ(w)) .

Note that, by Lemma 2.2.10, µ(x4(v)−1) = µ(x4(v))−1, and µ(x1(w)−1) =
µ(x1(w))−1.

In order to obtain a Moufang quadrangle, the graphQ(V, W,τV ,τW ,ε, δ)
has to satisfy the conditions (M3) and (M4) of Theorem 1.4.4. In Theorem

2.3.2, we will show that (M3) holds; the validity of (M4) will be shown in

Theorem 2.3.3.

Theorem 2.3.2. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

corresponding graph Q(V, W,τV ,τW ,ε, δ), together with the group U0 and

the map µ, satisfies the following conditions, for all v ∈ V.

(i) U
µ(x4(ε))
0 = U4 , considered as subgroups of Aut(U[1,3]) ;

(ii) U
µ(x4(v))
1 = U3 . More precisely, we have that x1(w)µ(x4(v)) = x3(w(−v))

for all w ∈W and all v ∈ V∗ ;

(iii) U
µ(x4(v))
2 = U2 . More precisely, we have that x2(v′)µ(x4(v)) = x2(πv(v′))

for all v′ ∈ V and all v ∈ V∗ ;

(iv) U
µ(x4(v))
3 = U1 . More precisely, we have that x3(w)µ(x4(v)) = x1(wv−1)

for all w ∈W and all v ∈ V∗ ;

(v) U
µ(x4(ε))
4 = U0 , considered as subgroups of Aut(U[1,3]) .
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Proof. For all w ∈ W and all v ∈ V∗, we have

x1(w)µ(x4(v)) = x1(w)x0(v−1)x4(v)x0(v−1)

= x1(w)x4(v)x0(v−1)

= (x1(w)x2(−vw)x3(w(−v)))x0(v−1)

= x1(w)x1(F(−vw, v−1))x2(−vw)x1(w(−v)v−1)

· x2(−v−1(�w(−v)))x3(w(−v))

= x3(w(−v)) ,

where we have used Lemma 2.2.16, (Q16) and Lemma 2.2.12 for the last

equality. By substituting wv−1 for w and −v for v, we also get

x1(wv−1)µ(x4(−v)) = x3(wv−1v) ,

and since µ(x4(−v)) = µ(x4(v))−1 and by (Q15), it follows that

x3(w)µ(x4(v)) = x1(wv−1) .

So we have proved that U
µ(x4(v))
1 ⊆ U3 and U

µ(x4(v))
3 ⊆ U1. If we replace

v by −v in those two relations, and conjugate by µ(x4(v)), it also follows

that U1 ⊆ U
µ(x4(v))
3 and U3 ⊆ U

µ(x4(v))
1 . So (ii) and (iv) are proved.

We will now prove (iii). For all v ∈ V∗ and all v′ ∈ V, we have

x2(v′)µ(x4(v)) = x2(v′)x0(v−1)x4(v)x0(v−1)

= (x1(F(v−1, v′))x2(v′))x4(v)x0(v−1)

= (x1(F(v−1, v′))x2(−vF(v−1, v′))x3(F(v−1, v′)(−v))

· x2(v′)x3(�F(v′, v)))x0(v−1)

= (x1(F(v−1, v′))x2(v′ − vF(v−1, v′)))x0(v−1) ,

where we have used (Q17) for the last equality. It follows that

x2(v′)µ(x4(v)) = x1(F(v−1, v′))x1(F(v−1, v′ − vF(v−1, v′)))

· x2(v′ − vF(v−1, v′))

= x2(v′ − vF(v−1, v′))

= x2(πv(v′)) ,

where we have used Lemma 2.2.9 and Theorem 2.2.17(i). It follows that

U
µ(x4(v))
2 ⊆ U2, and again by replacing v by−v and conjugating by µ(x4(v)),

we get that U2 ⊆ U
µ(x4(v))
2 as well, from which (iii) follows.
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To prove (v), we will check that the action of µ(x4(−ε))x4(v)µ(x4(ε))
on U[1,3] is the same as the action of x0(v) on U[1,3], for all v ∈ V. Note that

we will use the fact that wε−1 = w, which follows by choosing v = ε in

(Q15), and the fact that F(ε−1, v) = F(ε, v), which holds by substituting ε

for v1 in (Q17).

Using the definition of the map v 7→ v, we see that

x2(v)µ(x4(ε)) = x2(v−εF(ε−1, v))

= x2(v−εF(ε, v))

= x2(−v) ,

for all v ∈ V. Since −(−v) = v, replacing v by −v and conjugating by

µ(x4(−ε)) yields

x2(v)µ(x4(−ε)) = x2(−v)

for all v ∈ V, as well. For the action on U1, we have

x1(w)µ(x4(−ε))x4(v)µ(x4(ε)) = x3(w)x4(v)µ(x4(ε))

= x3(w)µ(x4(ε))

= x1(w)

= x1(w)x0(v) ;

for the action on U2, we have

x2(v′)µ(x4(−ε))x4(v)µ(x4(ε)) = x2(−v′)x4(v)µ(x4(ε))

= (x2(−v′)x3(F(v′, v)))µ(x4(ε))

= x2(v′)x1(F(v, v′))

= x2(v′)x0(v) .

To check the action on U3, we need (Q6), (Q5), (Q22), Lemma 2.2.9 and

Lemma 2.2.13(ii) :

x3(w)µ(x4(−ε))x4(v)µ(x4(ε)) = x1(w(−ε))x4(v)µ(x4(ε))

= (x1(w(−ε))x2(−vw)x3(wv))µ(x4(ε))

= x3(w)x2(vw)x1(wv)

= x1(wv)x2(vw + H(wv, w))x3(w)

= x1(wv)x2(vw− H(w, wv))x3(w)

= x1(wv)x2(−v(�w))x3(w)

= x3(w)x0(v) .
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Thus (v) is proved.

To prove (i), we will check that the action of µ(x4(ε))x4(v)µ(x4(−ε))
on U[1,3] is the same as the action of x0(v) on U[1,3]. We can take a shortcut

by observing that

µ(x4(ε))x4(v)µ(x4(−ε)) = µ(x4(ε))
2µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))

2 .

We just have to do a short calculation to see that

x1(w)µ(x4(ε))
2

= x1(w)µ(x4(−ε))
2

= x1(w(−ε)) ;

x2(v)µ(x4(ε))
2

= x2(v)µ(x4(−ε))2

= x2(v) ;

x3(w)µ(x4(ε))
2

= x3(w)µ(x4(−ε))
2

= x3(w(−ε)) .

For the action on U1, we have

x1(w)µ(x4(ε))x4(v)µ(x4(−ε)) = x1(w(−ε))µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= x1(w(−ε))µ(x4(−ε))
2

= x1(w)

= x1(w)x0(v) ;

for the action on U2, we have, by Lemma 2.2.15, that

x2(v′)µ(x4(ε))x4(v)µ(x4(−ε)) = x2(v′)µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= (x2(v′)x1(F(v, v′)))µ(x4(−ε))
2

= x2(v′)x1(F(v, v′)(−ε))

= x2(v′)x1(F(v, v′))

= x2(v′)x0(v) ;

Finally, for the action on U3, we have, using Lemma 2.2.11, that

x3(w)µ(x4(ε))x4(v)µ(x4(−ε)) = x3(w(−ε))µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= (x1(w(−v))x2(−v(�w))x3(w(−ε)))µ(x4(−ε))
2

= x1(wv)x2(−v(�w))x3(w)

= x3(w)x0(v) .

So we have proved (i), and this completes the proof of this theorem.

Theorem 2.3.3. Let (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then the

corresponding graph Q(V, W,τV ,τW ,ε, δ), together with the group U5 and

the map µ, satisfies the following conditions, for all w ∈W.
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(i) U
µ(x1(δ))
5 = U1 , considered as subgroups of Aut(U[2,4]) ;

(ii) U
µ(x1(w))
4 = U2 . More precisely, we have that x4(v)µ(x1(w)) = x2(vw) for

all v ∈ V and all w ∈W∗ ;

(iii) U
µ(x1(w))
3 = U3 . More precisely, we have that x3(w′)µ(x1(w)) = x3(Πw(w′))

for all w′ ∈W and all w ∈W∗ ;

(iv) U
µ(x1(w))
2 = U4 . More precisely, we have that x2(v)µ(x1(w)) = x4(−vκ(w))

for all v ∈ V and all w ∈W∗ ;

(v) U
µ(x1(δ))
1 = U5 , considered as subgroups of Aut(U[2,4]) .

Proof. The proof of this theorem is very similar to the previous one, so we

will skip most of the calculations.

For all w ∈W∗ and all v ∈ V, we have

x2(v)µ(x1(w)) = x2(v)x5(κ(w))x1(w)x5(λ(w))

= x4(−vκ(w)) ,

where we have to use (Q19) and Lemma 2.2.16(ii). By substituting −w for

w and vw for v, we also get

x2(vw)µ(x1(�w)) = x4(−vwκ(�w)) ,

and since µ(x1(�w)) = µ(x1(w))−1 and by Lemma 2.2.2(i), it follows that

x4(v)µ(x1(w)) = x2(vw) .

So we have proved that U
µ(x1(w))
4 ⊆ U2 and U

µ(x1(w))
2 ⊆ U4. If we replace

w by �w in those two relations, and conjugate by µ(x1(w)), it also follows

that U4 ⊆ U
µ(x1(w))
2 and U2 ⊆ U

µ(x1(w))
4 . So (ii) and (iv) are proved.

We will now prove (iii). For all w ∈ W∗ and all w′ ∈W, we have

x3(w′)µ(x1(w)) = x3(w′)x5(κ(w))x1(w)x5(λ(w))

= x3(w′ � w(−H(κ(w), w′)))

= x3(Πw(w′)) ,

where we have to use (Q20) and Theorem 2.2.17(ii). Hence U
µ(x1(w))
3 ⊆ U3,

and again by replacing w by −w and conjugating by µ(x1(w)), we get that

U3 ⊆ U
µ(x1(w))
3 as well, from which (iii) follows.

To prove (v), we will check that the action of µ(x1(�δ))x1(w)µ(x1(δ))
on U[2,4] is the same as the action of x5(w) on U[2,4], for all w ∈ W. First

of all, observe that it follows from Lemma 2.2.13(ii) and from the fact that
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δ ∈ Rad(H) (by (Q7)) that v(�δ) = −v. If we put w = δ in (Q18), it

thus follows that vκ(δ) = v; if we put w = �δ in this same identity (Q18),

it follows that vκ(�δ) = −v. Furthermore, if we put w1 = δ in (Q20), it

follows from (Q7) that H(κ(δ), w) = 0, for all w ∈W.

Using these facts, we can prove that

x4(v)µ(x1(�δ))x1(w)µ(x1(δ)) = x4(v)x5(w) ;

x3(w′)µ(x1(�δ))x1(w)µ(x1(δ)) = x3(w′)x5(w) ;

x2(v)µ(x1(�δ))x1(w)µ(x1(δ)) = x2(v)x5(w) ,

where we have to use (Q21) and Lemma 2.2.13(i) as well. Thus (v) is

proved.

To prove (i), we have to check that the action ofµ(x1(δ))x5(w)µ(x1(�δ))
on U[2,4] is the same as the action of x5(w(−ε)) on U[2,4]. Again, we can take

a shortcut by observing that

µ(x1(δ))x1(w)µ(x1(�δ)) = µ(x1(δ))
2µ(x1(�δ))x1(w)µ(x1(δ))µ(x1(�δ))

2 .

First, we observe that

x2(v)µ(x1(δ))
2

= x2(v)µ(x1(�δ))
2

= x2(−v) ;

x3(w)µ(x1(δ))
2

= x3(w)µ(x1(�δ))
2

= x3(w) ;

x4(v)µ(x1(δ))
2

= x4(v)µ(x1(�δ))
2

= x4(−v) .

It now follows from a short calculation that

x4(v)µ(x1(δ))x5(w)µ(x1(�δ)) = x4(v)x5(w(−ε)) ;

x3(w′)µ(x1(δ))x5(w)µ(x1(�δ)) = x3(w′)x5(w(−ε)) ;

x2(v)µ(x1(δ))x5(w)µ(x1(�δ)) = x2(v)x5(w(−ε)) .

So we have proved (i), and this completes the proof of this theorem.

This completes the proof of the fact that the graph Q(V, W,τV ,τW ,ε, δ)
is a Moufang quadrangle.

2.4 From Moufang Quadrangles To

Quadrangular Systems

In this section, we will prove that every Moufang quadrangle can be ob-

tained from the construction described in the previous sections. We will
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make intensive use of Chapter 21 “Quadrangles” in [52]. Since we are

dealing with the same objects as in [52], it should not be very surprising

that we need these same properties. However, after recalling these facts,

our approach will very quickly diverge from the one given in [52].

Let Γ be an arbitrary Moufang quadrangle. As in section 1.4, we will fix

an apartment Σ = (0, 1, . . . , 7), where the vertices are labeled modulo 8,

and we will denote its root groups U(i, i + 1, . . . , i + 4) by Ui, for all i ∈ Z.

Let Vi := [Ui−1, Ui+1] ≤ Ui and Yi := CUi
(Ui−2) ≤ Ui for each i. It can

be shown (see [52, (21.20.i)]) that Yi = CUi
(Ui+2) as well.

The following theorem defines the functions κ, λ and µ.

Theorem 2.4.1. For each i, there exist unique functions κi, λi : U∗i → U∗i+4,

such that (i− 1)aiλi(ai) = i + 1 and (i + 1)κi(ai)ai = i− 1, for all ai ∈ U∗i . The

product µi(ai) := κi(ai)aiλi(ai) fixes i and i + 4 and reflects Σ, and U
µi(ai)
j =

U2i+4− j for each ai ∈ U∗i and each j.

Proof. See [52, (6.1)].

Since we will apply these functions only when it is clear in which U∗i
the argument lies, we will write κ, λ and µ in place of κi, λi and µi. Note

that it follows from the last statement of this theorem, that Ui and U j are

conjugate (and hence isomorphic) whenever i and j have the same parity.

Lemma 2.4.2. For all ai ∈ U∗i , we have :

(i) µ(a−1
i ) = µ(ai)−1 ;

(ii) λ(a−1
i ) = κ(ai)−1 ;

(iii) µ(a
g
i ) = µ(ai)g for every element g ∈ Aut(Γ) mapping Σ to itself .

Proof. See [52, (6.2)].

The following “Shift Lemma” is essential.

Theorem 2.4.3. Suppose, for some i, that [ai, a−1
i+3] = ai+1ai+2, with ak ∈ Uk

for each k, and with ai and ai+3 non-trivial. Then we have:

(i) ai = a
µ(ai+3)
i+2 and ai+1 = a

µ(ai)
i+3 ;

(ii) [κ(ai+3), a−1
i+2] = aiai+1 ;

(iii) [ai+1, λ(ai)−1] = ai+2ai+3 .

Proof. See [52, (21.19)].

The following theorem already puts strong restrictions on the root groups.
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Theorem 2.4.4. By relabeling the vertices of Σ by the transformation i 7→
5− i if necessary, we can assume the following :

(i) Yi 6= 1, [Ui, Ui] ≤ Vi ≤ Yi ≤ Z(Ui), for all odd i ;

(ii) Ui is abelian, for all even i .

Proof. See [52, (21.28)].

From now on, we will assume that we have chosen the labeling of our

apartment Σ in such a way that the statements of Theorem 2.4.4 hold.

We will also use the following results from [52].

Theorem 2.4.5. (see [52, (21.29)])

If a1 ∈ Y∗1 , then κ(a1) and λ(a1) both lie in Y∗5 .

Theorem 2.4.6. (see [52, (21.33)])

Let h = µ(a1)2, for some a1 ∈ Y∗1 . Then :

(i) ah
3 = a3, for all a3 ∈ U3 ;

(ii) ah
4 = a−1

4 , for all a4 ∈ U4 .

Theorem 2.4.7. (see [52, (21.34)])

κ(a4) = λ(a4), for all a4 ∈ U∗4 .

Theorem 2.4.8. (see [52, (21.36)])

Let a1 ∈ U∗1 , a2 ∈ U2, a3 ∈ U3 and a4 ∈ U∗4 . Then :

(i) a
µ(a4)
2 a−1

2 = [[λ(a4), a−1
2 ], a4]2 ;

(ii) [[λ(a4), a−1
2 ], a4]3 = [a2, a4]−1 ;

(iii) [a1, [a3,κ(a1)]−1]2 = [a1, a−1
3 ]−1 .

Theorem 2.4.9. (see [52, (21.37)])

[µ(a4)2, Y1U2Y3U4] = 1, for all a4 ∈ U∗4 .

Proof. For all the proofs of these theorems, see [52], except for Theorem

2.4.8(iii), for which the proof is completely similar to the proof of Theorem

2.4.8(ii).

We can now start to build up our quadrangular systems. We start the

construction by choosing an arbitrary parametrization of the group U1 by

some group (W, �) ∼= U1, and an arbitrary parametrization of the group

U4 by some group (V, +) ∼= U4. We will denote the isomorphisms from

W to U1 and from V to U4 by x1 and x4, respectively. Choose some fixed

elements e1 = x1(δ) ∈ Y∗1 (note that Y∗1 is non-empty because of Theorem

2.4.4(i)) and e4 = x4(ε) ∈ U∗4 , where we choose e4 in Y∗4 if Y4 6= 1. Since
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U3 is isomorphic to U1, we can also have it parametrized by the same group

(W, �) by some isomorphism x3, which we define by setting

x3(w) := [x1(w), e−1
4 ]3 ,

for all w ∈ W. Similarly, we let U2 be parametrized by (V, +), via the

isomorphism x2 defined by

x2(v) := [e1, x4(v)−1]2 ,

for all v ∈ V. To parametrize U0 and U5, we choose the following isomor-

phisms x0 and x5 from V to U0 and from W to U5, respectively :

x0(v) := x4(v)µ(e4) ,

x5(w) := x1(w)µ(e1) ,

for all w ∈W and all v ∈ V. We will now define a map F from V ×V to W
and a map H from W ×W on V, by setting

[x1(w1), x3(w2)
−1] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)
−1] = x3(F(v1, v2)) ,

for all w1, w2 ∈ W and all v1, v2 ∈ V. Furthermore, we define a map τV

from V ×W to V and a map τW from W × V to W, both of which will be

denoted by · or by juxtaposition, by setting

[x1(w), x4(v)−1]2 = x2(τV(v, w)) = x2(vw) ,

[x1(w), x4(v)−1]3 = x3(τW(w, v)) = x3(wv) ,

for all w ∈ W and all v ∈ V. Finally, for each w ∈ W∗, we define two

elements κ(w), λ(w) ∈W∗ by setting

κ(x1(w)) = x5(κ(w)) ,

λ(x1(w)) = x5(λ(w)) ,

and for each v ∈ V∗, we define an element v−1 ∈ V∗, by setting

κ(x4(v)) = x0(v−1) .

Note that, by Theorem 2.4.7, λ(x4(v)) = x0(v−1) as well.

If we can now prove that these data satisfy all of the axioms (Q1) – (Q20),

then we have proved that every Moufang quadrangle can actually be ob-

tained from the construction in the previous sections, since we have started

from an arbitrary Moufang quadrangle. At the same time, however, we will

show that the identities (Q21) – (Q26) hold; see Theorem 2.5.1.
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Remark 2.4.10. It is interesting to observe that the choice of δ and ε is

arbitrary (up to some restrictions about the radical). This gives us some

freedom for the choice of the base points for the parametrizing structure of

an arbitrary Moufang quadrangle. See also Remark 2.5.4.

By Theorem 2.4.4(ii), the group U4 is abelian. Since U4 is parametrized

by (V, +), we have that V is abelian as well.

By the definition of the isomorphism x3 and the definition of the map

from V ×W to V, we have, for all w ∈ W, that x3(w) = [x1(w), e−1
4 ]3 =

[x1(w), x4(ε)−1]3 = x3(wε), from which it follows that w = wε, which

proves (Q1). Similarly, we can prove that (Q2) holds.

We now take a look at the subgroups V3 and Y3 of U3. By definition,

we have V3 = [U2, U4] = [x2(V), x4(V)−1] = x3(F(V, V)) = x3(Im(F)).
The elements of U3 which commute with every element of U1, are exactly

those elements x3(w) ∈ U3 such that [x1(w′), x3(w)] = 1, for all w′ ∈ W,

this is, such that x2(H(w′ , w)) = 1 or equivalently H(w′, w) = 0, for all

w′ ∈ W. This means that Y3 = CU3
(U1) = x3(Rad(H)). It now follows

from Theorem 2.4.4(i) that [W, W] ≤ Im(F) ≤ Rad(H) ≤ Z(W). In

particular, we have proved (Q7). We have also proved that [Im(F), W] = 1.

Completely similarly as in the previous paragraph, it follows from the

definitions that Y1 = CU1
(U3) = x1(Rad(H)) and that Y4 = CU4

(U2) =
x4(Rad(F)). It thus follows from e1 = x1(δ) ∈ Y∗1 that δ ∈ Rad(H)∗, and it

follows from the fact that e4 = x4(ε) was chosen to lie in Y∗4 if Y4 6= 1 that

ε ∈ Rad(F)∗ if Rad(F) 6= 0. Hence we have shown (Q9) and (Q10).

Using the identity [ab, c−1] = [a, c−1]b[b, c−1] and the fact that U1 and U2

commute (because of Theorem 1.4.1(i)), we can deduce that

x2(H(w1 � w2, w′)) = [x1(w1 � w2), x3(w′)−1]

= [x1(w1)x1(w2), x3(w′)−1]

= [x1(w1), x3(w′)−1]x1(w2)[x1(w2), x3(w′)−1]

= x2(H(w1 , w′))x1(w2)x2(H(w2, w′))

= x2(H(w1 , w′))x2(H(w2, w′))

= x2(H(w1 , w′) + H(w2, w′)) ,

for all w1, w2, w′ ∈ W, so H is additive in the first variable. Similarly, it

follows from the identity [a, (bc)−1] = [a, b−1][a, c−1]b−1
that H is additive

in the second variable. In the same way, we can deduce from those two

identities that F is additive in both variables. Since we will use this fact

very often from now on, we will not mention it explicitly anymore.

Using the same identity [ab, c−1] = [a, c−1]b[b, c−1] and the fact that

[U2, U2] = 1 (since V is abelian) and [U2, U3] = 1 (by Theorem 1.4.1(i)),
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we deduce that

x2(v(w1 � w2))x3((w1 � w2)v)

= [x1(w1 � w2), x4(v)−1]

= [x1(w1)x1(w2), x4(v)−1]

= [x1(w1), x4(v)−1]x1(w2)[x1(w2), x4(v)−1]

= (x2(vw1)x3(w1v))x1(w2)x2(vw2)x3(w2v)

= x2(vw1)x2(H(w2 , w1v))x3(w1v)x2(vw2)x3(w2v)

= x2(vw1 + vw2 + H(w2, w1v))x3(w1v � w2v) ,

for all w1, w2 ∈ W and all v1, v2 ∈ V. By Theorem 1.4.1(ii), this implies

that

x2(v(w1 � w2)) = x2(vw1 + vw2 + H(w2, w1v)) and

x3((w1 � w2)v) = x3(w1v � w2v) ,

for all w1, w2 ∈ W and all v1, v2 ∈ V, from which it follows that (Q12) and

(Q3) hold.

Similarly, it follows from the identity [a, (bc)−1] = [a, b−1][a, c−1]b−1
, the

fact that [Im(F), W] = 1 and the fact that [U2, U3] = 1 (because of Theorem

1.4.1(i)), that (Q11) and (Q4) hold.

Now, we will define a map v 7→ v from V to V, by setting

x2(v)µ(e4) = x2(−v) ,

for all v ∈ V; we will prove later on (see page 57) that v = εF(ε, v)− v.

Note that, by Theorem 2.4.9, we have that x2(v)µ(e4)
2

= x2(v), and hence

−(−v) = v, for all v ∈ V. If we invert the identity x2(v)µ(e4) = x2(−v),
then we get x2(−v)µ(e4) = x2(v); it follows that −v = −v, for all v ∈ V.

Combining these two relations, we also get v = v, for all v ∈ V.

Theorem 2.4.11. For all w ∈W and all v ∈ V, we have:

(i) x0(v)µ(e4) = x4(v) ;

(ii) x1(w)µ(e4) = x3(w(−ε)) ;

(iii) x2(v)µ(e4) = x2(−v) ;

(iv) x3(w)µ(e4) = x1(w) ;

(v) x4(v)µ(e4) = x0(v) ;

(vi) x1(w)µ(e1) = x5(w) ;

(vii) x2(v)µ(e1) = x4(−v) ;

(viii) x3(w)µ(e1) = x3(w) ;

(ix) x4(v)µ(e1) = x2(v) ;

(x) x5(w)µ(e1) = x1(w(−ε)) .
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Proof. First of all, (iii), (v) and (vi) hold by definition. By Theorem 2.4.9,

x4(v)µ(e4)
2
= x4(v). So if we conjugate (v) by µ(e4), we get (i). If we apply

Theorem 2.4.3(i) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

we get that

x1(w) = x3(wv)µ(x4(v)) and

x2(vw) = x4(v)µ(x1(w)) ,

for all w ∈ W∗ and all v ∈ V∗. If we choose v = ε in the first equality,

we get, by (Q1), that x1(w) = x3(w)µ(e4), which proves (iv). If we choose

v = −ε in this same equality, we get

x1(w) = x3(w(−ε))µ(e−1
4 )

= x3(w(−ε))µ(e4)
−1

,

by Lemma 2.4.2(i); conjugating by µ(e4) yields (ii).

If we choose w = δ in the second equality, then it follows from (Q2)

that x2(v) = x4(v)µ(e1), which proves (ix). By Theorem 2.4.6(ii), we have

that x4(v)µ(e1)
2
= x4(−v). So if we conjugate (ix) by µ(e1), we get (vii).

By Theorem 2.4.5, we know that µ(e1) ∈ Y5Y1Y5. Since Y1 = CU1
(U3)

and Y5 = CU5
(U3), it follows that [µ(e1), U3] = 1, which implies (viii).

If we conjugate the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv)

by µ(e1)2, we get, using (vi), (vii), (viii) and (ix), that

[x5(w)µ(e1), x4(−v)−1] = x2(−vw)x3(wv) ,

for all w ∈ W and all v ∈ V. If we choose v = −ε, then this yields

[x5(w)µ(e1), e−1
4 ] = x2(εw)x3(w(−ε)) .

It now follows from Theorem 2.4.3(i) and (iv) that

x5(w)µ(e1) = x3(w(−ε))µ(e4) = x1(w(−ε)) ,

for all w ∈ W, which proves (x).
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So far, we have proved (Q1), (Q2), (Q3), (Q4), (Q7), (Q9), (Q10), (Q11)

and (Q12). We now continue to prove the other axioms.

If we conjugate the identity

[x1(w1), x3(w2)
−1] = x2(H(w1, w2))

by µ(e4), we get, by Theorem 2.4.11, that

[x3(w1(−ε)), x1(w2)
−1] = x2(−H(w1, w2)) ,

for all w1, w2 ∈ W. Using the fact that [b, a] = [a, b]−1, it follows that

[x1(�w2), x3(�w1(−ε))
−1] = x2(H(w1, w2)) ,

hence

x2(H(�w2, �w1(−ε))) = x2(H(w1, w2)) ,

for all w1, w2 ∈W. Using the fact that H is additive, it follows from this last

equality that H(w2, w1(−ε)) = H(w1, w2)), for all w1, w2 ∈W. Note that it

follows from (Q12) that H(w2, w1(−ε)) = −H(w2, w1), for all w1, w2 ∈W,

so we have that −H(w2, w1) = H(w1, w2)), which proves (Q22).

Completely similarly, we can conjugate the identity

[x2(v1), x4(v2)
−1] = x3(F(v1, v2))

by µ(e1), and, again by Theorem 2.4.11, we find after a short calculation

that F(v1, v2) = F(v2, v1), for all v1, v2 ∈ V, which proves (Q21).

If we conjugate the identity

[x1(w), x4(−v)−1] = x2(−vw)x3(w(−v))

by µ(e1)2, then we get, by Theorem 2.4.11, that

[x1(w(−ε)), x4(v)−1] = x2(vw)x3(w(−v)) ,

for all w ∈W and all v ∈ V. But on the other hand, we have that

[x1(w(−ε)), x4(v)−1] = x2(v(w(−ε)))x3(w(−ε)v) ,

for all w ∈ W and all v ∈ V. By Theorem 1.4.1(ii), this implies that

vw = v(w(−ε)) and w(−v) = w(−ε)v, for all w ∈ W and all v ∈ V. Thus

we have proved (Q6) and (Q5).

If we conjugate the same identity

[x1(w), x4(v)−1] = x2(vw)x3(wv)
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by µ(e4)2, we get, again by Theorem 2.4.11, that

[x1(w(−ε)), x4(v)−1] = x2(vw)x3(wv(−ε)) ,

from which it follows immediately (by Theorem 1.4.1(ii)) that w(−ε)v =
wv(−ε), for all w ∈ W and all v ∈ V. This means that w(−v) = wv(−ε)
as well.

We will now prove (Q8). We will make use of the identity [a, b] = a−1ab

and of the identity [abc, d] = [a, d]bc[b, d]c[c, d].

x3(F(H(w2, w1), v))

= [x2(H(w2, w1)), x4(v)−1]

= [[x1(w2), x3(w1)
−1], x4(v)−1]

= [x1(w2), x3(w1)
−1]−1[x1(w2), x3(w1)

−1]x4(v)−1

= [x1(w2), x3(w1)
−1]−1[x1(w2)x2(vw2)x3(w2v), x3(w1)

−1] .

If a1 ∈ U1, a2 ∈ U2 and a3, b3 ∈ U3, then [a2, b3] ∈ [U2, U3] = 1 and

[a1, b3] ∈ [U1, U3] ≤ U2 (by Theorem 1.4.1(i)), and since [U2, U2U3] = 1,

we have that [a1, b3]a2a3 = [a1, b3]. Therefore [a1a2a3, b3] = [a1, b3][a3b3].
Hence

x3(F(H(w2 , w1), v)) = [x1(w2), x3(w1)
−1]−1[x1(w2), x3(w1)

−1]

· [x3(w2v), x3(w1)
−1]

= [x3(w2v), x3(w1)
−1]

= x3(�w2v � w1 � w2v � w1) ,

and since Im(F) ≤ Z(W), we have that

x3(F(H(w2, w1), v)) = x3(�w1 � w2v � w1 � w2v)

= x3([w1, w2v]�)

as well, for all w1, w2 ∈W and all v ∈ V, which proves (Q8).

We will now apply the Shift Lemma 2.4.3(ii) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) .

This gives us the identity

[κ(x4(v)), x3(wv)−1] = x1(w)x2(vw) .

Note that, by definition, we have κ(x4(v)) = x0(v−1). If we conjugate this

identity by µ(e4), we thus get, by Theorem 2.4.11, that

[x4(v−1), x1(wv)−1] = x3(w(−ε))x2(−vw) .
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Inverting this identity and replacing w by �w yields

[x1(wv), x4(−(v−1))−1] = x2(v(�w))x3(w(−ε)) ,

for all w ∈W and all v ∈ V∗. But on the other hand, we have

[x1(wv), x4(−(v−1))−1] = x2(−(v−1)(wv))x3(wv(−(v−1))) ,

for all w ∈W and all v ∈ V∗. By Theorem 1.4.1(ii), this implies that

v(�w) = −(v−1)(wv) ,

w(−ε) = wv(−(v−1)) ,

for all w ∈W and all v ∈ V∗. If we apply the identity w(−v) = wv(−ε) on

the second equality, we can conclude that this is equivalent to

v−1(wv) = −v(�w) ,

wvv−1 = w ,

for all w ∈W and all v ∈ V∗. So we have proved (Q16) and (Q15).

If we replace v by v−1 and w by wv in (Q16), then we get

(v−1)−1(wvv−1) = −v−1(�wv) ,

for all w ∈W and all v ∈ V∗. Using (Q15) and (Q16) once again, and using

the fact that −(−v) = v for all v ∈ V, we get

(v−1)−1w = vw ,

for all w ∈W and all v ∈ V∗. If we choose w = δ, it follows that (v−1)−1 =
v, for all v ∈ V∗, which proves (Q13).

If we take ai = x4(v) in Lemma 2.4.2(ii), then we get that λ(x4(−v)) =
κ(x4(v))−1, for all v ∈ V∗. By the definition of v−1, this is equivalent to

x0((−v)−1) = x0(−(v−1)), from which it follows that (−v)−1 = −(v−1),
for all v ∈ V∗.

Similarly, if we choose ai = x1(w) in Lemma 2.4.2(ii), then we get that

λ(x1(�w)) = κ(x1(w))−1, for all w ∈ W∗. By the definition of κ and λ,

this is equivalent to x5(λ(�w)) = x5(�κ(w)), from which it follows that

λ(�w) = �κ(w), for all w ∈W∗.

If we apply the Shift Lemma 2.4.3(iii) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,
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then we get that

[x2(vw), λ(x1(w))−1] = x3(wv)x4(v) ,

for all w ∈W∗ and all v ∈ V. By definition, we have λ(x1(w)) = x5(λ(w)).
If we conjugate this identity by µ(e1)−1, we thus get, by Theorem 2.4.11,

that

[x4(vw), x1(λ(w))−1] = x3(wv)x2(−v) ,

for all w ∈ W∗ and all v ∈ V. We can rewrite this identity as

[x1(�λ(w)), x4(−vw)−1] = x2(v)x3(�wv) ,

for all w ∈ W∗ and all v ∈ V. On the other hand, we also have that

[x1(�λ(w)), x4(−vw)−1] = x2(−vw(�λ(w)))x3(�λ(w)(−vw)) ,

for all w ∈ W∗ and all v ∈ V. It follows from Theorem 1.4.1(ii) that

v = −vw(�λ(w)) ,

wv = λ(w)(−vw) ,

for all w ∈W∗ and all v ∈ V. If we replace w by �λ(w) and v by vw in the

second equality, then we get

�λ(w)(vw) = λ(�λ(w))(−vw(�λ(w))) ,

for all w ∈ W∗ and all v ∈ V. If we use these same equalities once again,

then we can simplify this to

�w(−v) = λ(�λ(w))v ,

for all w ∈W∗ and all v ∈ V. If we choose v = ε, then we get λ(�λ(w)) =
�w(−ε), for all w ∈ W∗. Since λ(�w) = �κ(w), for all w ∈ W∗, this is

the same as κ(λ(w)) = w(−ε), for all w ∈ W∗, so we have proved (Q14).

If we replace w by �w, then we get λ(κ(w)) = w(−ε) as well. Now, we

substitute κ(w) for w in the equations

v = −vw(�λ(w)) ,

wv = λ(w)(−vw) ;

this gives us, using the fact that λ(κ(w)) = w(−ε), that

v = −vκ(w)(�w(−ε)) ,

κ(w)v = w(−ε)(−vκ(w)) ,
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for all w ∈ W∗ and all v ∈ V. It suffices to use (Q6) and (Q5) to see that

those two equations are equivalent to (Q18) and (Q19), respectively.

If we put a2 = x2(v2) and a4 = x4(v1) in Theorem 2.4.8(ii), then we get

[[λ(x4(v1)), x2(v2)
−1], x4(v1)]3 = [x2(v2), x4(v1)]

−1 ,

for all v1 ∈ V∗ and all v2 ∈ V. First of all, we have that

[λ(x4(v1)), x2(v2)
−1] = [x0(v−1

1 ), x2(v2)
−1]

= [x4(v−1
1 ), x2(−v2)

−1]µ(e4)

= ([x2(v2), x4(−v−1
1 )−1]−1)µ(e4)

= (x3(F(v2,−v−1
1 ))−1)µ(e4)

= x3(F(v2, v−1
1 ))µ(e4)

= x1(F(v2, v−1
1 )) ,

for all v1 ∈ V∗ and all v2 ∈ V. So it follows from this identity that

[x1(F(v2, v−1
1 )), x4(−v1)

−1]3 = [x2(v2), x4(−v1)
−1]−1 ,

for all v1 ∈ V∗ and all v2 ∈ V, from which it follows that

F(v2, v−1
1 )(−v1) = F(v2, v1) ,

for all v1 ∈ V∗ and all v2 ∈ V. If we now replace v1 by −v1, then we get,

using the fact that (−v1)−1 = −(v−1
1 ) and (Q21), that (Q17) holds.

If we choose v1 = ε in (Q17), then we get that F(ε−1, v) = F(ε, v), for

all v ∈ V. If we put a2 = x2(v) and a4 = e4 in Theorem 2.4.8(i), then we

get

x2(v)µ(e4)x2(v)−1 = [[λ(e4), x2(v)−1], e4]2 ,

for all v ∈ V. We have that

[λ(e4), x2(v)−1] = x1(F(v,ε−1))

= x1(F(ε, v)) ,

for all v ∈ V. Thus we have

x2(v)µ(e4)x2(v)−1 = [[λ(e4), x2(v)−1], e4]2

= [x1(F(ε, v)), x4(−ε)
−1]2

= x2(−εF(ε, v)) ,
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for all v ∈ V. Since x2(v)µ(e4)x2(v)−1 = x2(−v− v), we conclude that

v = εF(ε, v)− v ,

for all v ∈ V; see page 50.

If we put a1 = x1(w1) and a3 = x3(w2) in Theorem 2.4.8(iii), then we

get

[x1(w1), [x3(w2),κ(x1(w1))]
−1]2 = [x1(w1), x3(w2)

−1]−1 ,

for all w1 ∈ W and all w2 ∈W∗. First of all, we have that

[x3(w2),κ(x1(w1))] = [x3(w2), x5(κ(w1))]

= [x3(w2), x1(κ(w1))]
µ(e1)

= ([x1(κ(w1)), x3(�w2)
−1]−1)µ(e1)

= (x2(−H(κ(w1), w2))
−1)µ(e1)

= x2(H(κ(w1), w2))
µ(e1)

= x4(−H(κ(w1), w2)) ,

for all w1 ∈ W and all w2 ∈W∗. So it follows from this identity that

[x1(w1), x4(−H(κ(w1), w2))
−1]2 = [x1(w1), x3(w2)

−1]−1 ,

for all w1 ∈ W and all w2 ∈W∗, from which it follows that

−H(κ(w1), w2)w1 = −H(w1, w2) ,

for all w1 ∈ W and all w2 ∈W∗. So we have proved (Q20).

Since we have shown all of the identities (Q1) – (Q20), we can conclude

that every Moufang quadrangle can be obtained from a quadrangular sys-

tem.

In particular, we are now allowed to use the results of section 2.3 as

well. We thus continue to show that the identities (Q23) – (Q26) hold.

In order to show (Q23), we will calculate the expression

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ))

with v ∈ V and w, z ∈ W∗ in two different ways. We have shown in

Theorem 2.3.3(iii) that

x3(z)µ(x1(w)) = x3(Πw(z))

for all w, z ∈ W∗. If we let µ(e4) act on both sides of this equality, then it

follows by Lemma 2.4.2(iii) and Theorem 2.4.11 that

x1(z)µ(x3(w(−ε))) = x1(Πw(z))
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and it thus follows by substituting w(−ε) for w and by Lemma 2.4.2(iii)

that

µ(x1(z))µ(x3(w)) = µ(x1(Πw(−ε)(z)))

for all w, z ∈ W∗. By Lemma 2.2.15(ii), we have Πw(−ε)(z) = Πw(z) for all

w, z ∈ W∗. Since δ ∈ Rad(H) by (Q9), it now follows that

µ(x1(z))µ(x3(w))µ(x3(δ)) = µ(x1(Πw(z)))

and hence, since Πw(δ) = δ,

[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ)) = µ(x1(δ))µ(x1(Πw(z)))

for all w, z ∈ W∗. Note that vκ(δ) = v for all v ∈ V. Since we have shown

in Theorem 2.3.3 that

x2(v)µ(x1(w)) = x4(−vκ(w)) and

x4(v)µ(x1(w)) = x2(vw)

for all v ∈ V and all w ∈W∗, it thus follows, by Lemma 2.4.2(i), that

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ)) = x2(v)µ(x1(δ))µ(x1(Πw(z)))

= x4(−v)µ(x1(Πw(z)))

= x2(−v · Πw(z))

for all w, z ∈ W∗.

On the other hand, if we let µ(e4) act on both sides of the identity

x4(v)µ(x1(w)) = x2(vw), then we can deduce that

x0(v)µ(x3(w)) = x2(−vw) and

x2(v)µ(x3(w)) = x0(vκ(w))

for all v ∈ V and all w ∈W∗. Hence, by Lemma 2.4.2(i),

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ))

= x2(v)µ(x3(�δ))µ(x3(�w))µ(x1(δ))µ(x1(z))µ(x3(w))µ(x3(δ))

= x2

(
v(�w)

)µ(x1(δ))µ(x1(z))µ(x3(w))µ(x3(δ))

= x2

(
−v(�w)z

)µ(x3(w))µ(x3(δ))

= x2

(
v(�w)zκ(w)

)

for all w, z ∈ W∗. Hence we have shown that (Q23) holds.



2.4. From Moufang Quadrangles To Quadrangular Systems 59

The proof of (Q24) follows in a completely similar way by calculating

the expression

x3(w)[µ(x4(ε))µ(x4(c))]µ(x2(v))µ(x2(ε))

with w ∈W and v, c ∈ V∗ in two different ways.

We will now show (Q25). Let c ∈ V, v ∈ V∗ and w ∈ W∗ be arbitrary.

This time, we will calculate the expression

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))

in two different ways. By Theorem 2.3.2(ii),

x1(w)µ(x4(v)) = x3(w(−v))

for all v ∈ V∗ and all w ∈W, and hence, by Lemma 2.4.2(iii),

[µ(x1(δ))µ(x1(w))]µ(x4(−v)) = µ(x3(δv))µ(x3(wv)) .

It follows that

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))

= x2(c)µ(x3(δv))µ(x3(wv))

= x2(c ·κ(δv))µ(x3(wv))

= x2(−c ·κ(δv) · wv) .

On the other hand, we have shown in Theorem 2.3.2(iii) that

x2(u)µ(x4(v)) = x2(πv(u))

for all u ∈ V and all v ∈ V∗, and hence, by Lemma 2.4.2(i),

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))

= x2(c)µ(x4(v))µ(x1(δ))µ(x1(w))µ(x4(−v))

= x2(πv(c))µ(x1(δ))µ(x1(w))µ(x4(−v))

= x2(−πv(c)w)µ(x4(−v))

= x2(−π−v(πv(c)w)) .

Since π−v(u) = πv(u) for all u ∈ V and all v ∈ V∗, it follows by comparing

these two expressions that

c ·κ(δv) · wv = πv(πv(c)w) .

If we substitute c · δv for c in the last identity and apply πv on both sides,

then we get, by Lemma 2.2.23(i), that

πv(c · δv ·κ(δv) · wv) = πv(c · δv)w .
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Since δv ∈ Rad(H) by (Q9) and Lemma 2.2.19, it follows by Lemma

2.2.13(ii) and Lemma 2.2.2(i) that

c · δv ·κ(δv) = −c · (�δv) ·κ(δv) = c ,

which completes the proof of (Q25).

The proof of (Q26) follows in a completely similar way by calculating

the expression

x3(w)[µ(x4(ε))µ(x4(−v))]µ(x1(z))

with w ∈W, z ∈ W∗ and v ∈ V∗ in two different ways.

This concludes the proof of all of the identities (Q1) – (Q26).

2.5 Some Remarks

We start by pointing out that we have really shown that the identities

(Q23) – (Q26) follow from the axioms (Q1) – (Q20).

Theorem 2.5.1. Let Ω := (V, W,τV ,τW ,ε, δ) be a quadrangular system.

Then the identities (Q23) – (Q26) hold, for all v, c ∈ V and all w, z ∈ W.

Proof. Let Ω := (V, W,τV ,τW ,ε, δ) be a quadrangular system. Then it fol-

lows from section 2.3 that we can construct a Moufang quadrangle Γ start-

ing from Ω. In section 2.4, it is shown that every Moufang quadrangle can

be constructed from a quadrangular system for which additionally the iden-

tities (Q23) – (Q26) hold. In particular, Γ can be constructed from a quad-

rangular system, which can be chosen to coincide with the quadrangular

system Ω that we started with, since the choice of the parametrization of

the groups U1 and U4 and of the elements ε and δ was arbitrary. (Note that

the parametrization of the groups U2 and U3 and the definition of the maps

F and H then automatically coincide by construction.) This shows thatΩ is

a quadrangular system for which additionally the identities (Q23) – (Q26)

hold. Since Ω was arbitrary, these identities hold for every quadrangular

system.

Remark 2.5.2. One might wonder why we pay so much attention to these

last four identities (Q23), (Q24), (Q25) and (Q26). The reason is that these

identities turn out to be essential for the classification of the quadrangular

systems, but still, we are not aware of a direct proof for the fact that they

follow from the other axioms.
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Remark 2.5.3. Although every quadrangular system gives rise to a Mou-

fang quadrangle and every Moufang quadrangle can be constructed from a

quadrangular system, it is not true that there is a bijection between the set

of classes of isomorphic quadrangular systems and the set of classes of iso-

morphic Moufang quadrangles. In particular, two non-isomorphic quadran-

gular systems can give rise to isomorphic Moufang quadrangles. However,

two isomorphic quadrangular systems will always give rise to isomorphic

Moufang quadrangles.

Remark 2.5.4. We could as well have defined a quadrangular system

without axiom (Q10). The reason that we added this axiom has to do with

the classification of the so-called wide quadrangular systems which are the

extension of a quadrangular system of quadratic form type. Without axiom

(Q10), one would have to define a translate of a quadrangular system of

type F4 in order to describe all possible quadrangular systems (up to iso-

morphism), which is not needed now because of this extra axiom. (See

section 2.7.5 for more details.)

On the other hand, if there are no quadrangles of type F4 involved in a

certain application, then it can often be more convenient to drop this axiom

(Q10), since it gives more freedom in the choice of the base point ε ∈ V∗.
See also Remark 2.4.10 and Remark 2.8.1.

2.6 Examples

We will now present a list of six examples of quadrangular systems. These

examples correspond to the six different classes of Moufang quadrangles in

[52]. The goal of the next section is to prove that, up to isomorphism, this

list is complete.

In each case, we will describe a parametrization for the groups V and W,

that is, we will describe V and W as groups which are isomorphic to certain

other groups Ṽ and W̃, respectively; we will denote the isomorphisms from

Ṽ to V and from W̃ to W by square brackets: a ∈ Ṽ 7→ [a] ∈ V and

b ∈ W̃ 7→ [b] ∈W.

2.6.1 Quadrangular Systems of Quadratic Form Type

Consider a non-trivial anisotropic quadratic space (K, V0 , q) with base point

ε. Let V be parametrized by (V0, +), and let W be parametrized by the

additive group of K. We define a map τV from V ×W to V and a map τW



62 2. Quadrangular Systems

from W ×V to W as follows:

τV([v], [t]) := [v][t] := [tv] ,

τW([t], [v]) := [t][v] := [tq(v)] ,

for all v ∈ V0 and all t ∈ K. Then (V, W,τV ,τW , [ε], [1]) is a quadrangular

system. One can check that

F([u], [v]) = [ f (u, v)] ,

H([s], [t]) = [0] ,

for all u, v ∈ V0 and all s, t ∈ K, and that

[v]−1 = [q(v)−1v] ,

κ([t]) = [t−1] ,

for all v ∈ V∗0 and all t ∈ K∗. Note that

[v] = εF(ε, [v])− [v] = [ε][ f (ε, v)]− [v] = [v]

for all v ∈ V.

These are the quadrangular systems of quadratic form type. They will be

denoted by ΩQ(K, V0 , q).

2.6.2 Quadrangular Systems of Involutory Type

Consider an involutory set (K, K0 ,σ). Let V be parametrized by the additive

group of K, and let W be parametrized by K0. We define a map τV from

V ×W to V and a map τW from W ×V to W as follows:

τV([a], [t]) := [a][t] := [ta] ,

τW([t], [a]) := [t][a] := [aσ ta] ,

for all a ∈ K and all t ∈ K0. Then (V, W,τV ,τW , [1], [1]) is a quadrangular

system. One can check that

F([a], [b]) = [aσb + bσa] ,

H([s], [t]) = [0] ,

for all a, b ∈ K and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,
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for all a ∈ K∗ and all t ∈ K∗0 . Note that

[a] = εF(ε, [a])− [a] = [1][a + aσ ]− [a] = [aσ ]

for all a ∈ K.

These are the quadrangular systems of involutory type. They will be

denoted by ΩI(K, K0 ,σ).

2.6.3 Quadrangular Systems of Indifferent Type

Consider an indifferent set (K, K0 , L0). Let V be parametrized by L0, and

let W be parametrized by K0. We define a map τV from V ×W to V and a

map τW from W ×V to W as follows:

τV([a], [t]) := [a][t] := [t2a] ,

τW([t], [a]) := [t][a] := [ta] ,

for all a ∈ L0 and all t ∈ K0. Then (V, W,τV ,τW , [1], [1]) is a quadrangular

system. One can check that

F([a], [b]) = [0] ,

H([s], [t]) = [0] ,

for all a, b ∈ L0 and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,

for all a ∈ K∗ and all t ∈ K∗0 . Note that [a] = [a] for all a ∈ K.

These are the quadrangular systems of indifferent type. They will be

denoted by ΩD(K, K0 , L0).

2.6.4 Quadrangular Systems of Pseudo-quadratic Form

Type

Let (K, K0 ,σ , V0, p) be an arbitrary anisotropic pseudo-quadratic space with

corresponding skew-hermitian form h, and let the group (T, �) be as in

section 1.9.3. Let V be parametrized by the additive group of K, and let W
be parametrized by T. We define a map τV from V ×W to V and a map τW

from W ×V to W as follows:

τV([v], [a, t]) := [v][a, t] := [tv] ,

τW([a, t], [v]) := [a, t][v] := [av, vσ tv] ,
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for all v ∈ K and all (a, t) ∈ T. Then (V, W,τV ,τW , [1], [0, 1]) is a quadran-

gular system. One can check that

F([u], [v]) = [0, uσv + vσu] ,

H([a, t], [b, s]) = [h(a, b)] ,

for all u, v ∈ K and all (a, t), (b, s) ∈ T, and that

[v]−1 = [v−1] ,

κ([a, t]) = [at−σ , t−σ ] ,

for all v ∈ K∗ and all (a, t) ∈ T∗. Note that

[v] = [1]F([1], [v])− [v] = [1][0, v + vσ ]− [v] = [vσ ]

for all v ∈ K.

These are the quadrangular systems of pseudo-quadratic form type. They

will be denoted by ΩP(K, K0 ,σ , V0, p).

2.6.5 Quadrangular Systems of Type E6, E7 and E8

Let K be an arbitrary commutative field, let V0 be a vector space over K,

and let q be an anisotropic quadratic form from V0 to K. Then

• q is a quadratic form of type E6 if and only if dimKV0 = 6 and q has a

norm splitting q ' s1N ⊥ s2N ⊥ s3N.

• q is a quadratic form of type E7 if and only if dimKV0 = 8 and q has a

norm splitting q ' s1N ⊥ · · · ⊥ s4N such that s1s2s3s4 6∈ N(E).

• q is a quadratic form of type E8 if and only if dimKV0 = 12 and q has a

norm splitting q ' s1N ⊥ · · · ⊥ s6N such that −s1s2s3s4s5s6 ∈ N(E).

An anisotropic quadratic space (K, V0, q) is called of type E6, E7 or E8 if and

only if q is a quadratic form of type E6, E7 or E8, respectively.

Theorem 2.6.1. Let (K, V0, q) be a quadratic space of type Ek with k ∈
{6, 7, 8}, with base point ε. Let T be a norm splitting map of q, and let

X0 be a vector space over K of dimension 2k−3. Then there exists a unique map

(a, v) 7→ av from X0 ×V0 to X0 and an element ξ ∈ X∗0 such that

at = a(tε) ,

(av)v = aq(v) ,

ξT(v) = (ξT(ε))v ,

for all a ∈ X0, t ∈ K and v ∈ V0.
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Proof. This follows from [52, (12.56) and (13.11)].

From now on, we let T be a fixed arbitrary norm splitting map of q,

and we let X0 be a fixed vector space over K of dimension 2k−3. We apply

Theorem 2.6.1 with these choices of T and X0. Note that ξ is not uniquely

determined; see [52, (13.12)].

Remark 2.6.2. The first two conditions of Theorem 2.6.1 say that X0 is a

C(q,ε)-module, where C(q,ε) is the Clifford algebra of q with base point

ε as defined on page 19. It actually turns out that the structure of C(q,ε),
which is, by Theorem 1.8.6, the same as the structure of the even Clifford

algebra C0(q), plays a crucial role in the understanding of the exceptional

Moufang quadrangles of type E6, E7, and E8. In particular, quadratic forms

of type E6, E7, and E8 are completely characterized by the structure of their

even Clifford algebra only; see chapter 4.

Theorem 2.6.3. We can choose the norm splitting (E, {v1, . . . , vd}) in such

a way that v1 = ε (and hence s1 = 1). Furthermore, if k = 8, then we can

choose it in such a way that ξv2v3v4v5v6 = ξ as well.

Proof. This follows from [52, (27.20) and (27.13)].

So assume that the norm splitting satisfies the conditions of this Theo-

rem. Then we can now define a subspace M0 of X0 as follows.

If k = 6, then we set

M0 := {ξtv2v3 | t ∈ E} ;

If k = 7, then we set

M0 := {ξt1v2v3 +ξt2v1v3 +ξt3v1v2 +ξtv1v2v3 | t1, t2, t3, t ∈ E} ;

If k = 8, then we set

M0 :=

{
∑

i, j∈{2,...,6}
i< j

ξti jviv j | ti j ∈ E

}
.

Theorem 2.6.4. X0 = ξV0 ⊕M0.

Proof. See [52, (13.14)].

Theorem 2.6.5. There is a unique map h from X0×X0 to V0 which is bilinear

over K, such that

(i) h(ξ ,ξv) = T(v)− T(v) , for all v ∈ V0 ;
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(ii) h(ξ , a) = 0 , for all a ∈ M0 ;

(iii) h(a, b) = −h(b, a) , for all a, b ∈ X0 ;

(iv) h(a, bv) = h(b, av) + f (h(a, b),ε)v , for all a, b ∈ X0 and all v ∈ V0 .

Proof. See [52, (13.15)].

We now define an element ζ ∈ V0 as follows. Note that, if char(K) = 2,

then f (ε, T(ε)) = α 6= 0 by the definition of T.

ζ :=

{
ε/2 if char(K) 6= 2

T(ε)/ f (ε, T(ε)) if char(K) = 2
.

Next, let g be the bilinear form from X0 × X0 to K given by

g(a, b) := f (h(b, a),ζ)

for all a, b ∈ X0. Set

v∗ :=

{
0 if char(K) 6= 2

f (v,ζ)ε+ f (v,ε)ζ + v if char(K) = 2
,

for all v ∈ V0.

Theorem 2.6.6. There is a unique map θ from X0 × V0 to V0 satisfying the

following conditions, for all a, b ∈ X0 and all u, v ∈ V0:

(i) θ(ξ , v) = T(v) ;

(ii) θ(a + b, v) = θ(a, v) +θ(b, v) + h(b, av)− g(a, b)v ;

(iii) θ(av, w) = θ(a, w̄)q(v)−θ(a, v) f (w, v̄) +
f (θ(a, v), w̄)v̄ + f (θ(a, v∗), v)w .

Proof. See [52, (13.30), (13.31) and (13.37)].

Letϕ be the map from X0 ×V0 to K defined as

ϕ(a, v) := f (θ(a, v∗), v) ,

for all a ∈ X0 and all v ∈ V0.

Finally, we define a group (S, �) as S := X0×K where the group action

is given by

(a, t) � (b, s) := (a + b, t + s + g(a, b)) ,

for all (a, t), (b, s) ∈ S. One can check that S is indeed a group with neutral

element (0, 0), and with the inverse given by �(a, t) = (−a,−t + g(a, a)),
for all (a, t) ∈ S.
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Let V be parametrized by (V0, +), and let W be parametrized by S. We

define a map τV from V ×W to V and a map τW from W × V to W as

follows:

τV([v], [a, t]) := [v][a, t] := [θ(a, v) + tv] ,

τW([a, t], [v]) := [a, t][v] := [av, tq(v) +ϕ(a, v)] ,

for all v ∈ V and all (a, t) ∈ S. Then (V, W,τV ,τW , [ε], [0, 1]) is a quadran-

gular system. One can check that

F([u], [v]) = [0, f (u, v)] ,

H([a, t], [b, s]) = [h(a, b)] ,

for all u, v ∈ V and all (a, t), (b, s) ∈ S, and that

[v]−1 = [q(v)−1v] ,

κ([a, t]) =

[
aθ(a,ε) + ta

q(θ(a,ε) + tε)
,

t

q(θ(a,ε) + tε)

]
,

for all v ∈ K∗ and all (a, t) ∈ S∗.

Remark 2.6.7. It is not obvious at all to verify that this is a quadrangular

system. Quite a lot of identities involving these functions h, g, θ and ϕ

are needed. We will omit these calculations, since our main interest here

is to give a classification, and not to prove existence. However, see [52,

Chapter 13 and (32.2)] for more details about these identities.

These are the quadrangular systems of type E6, E7 and E8. They will be

denoted by ΩE(K, V0, q).

2.6.6 Quadrangular Systems of Type F4

Consider an anisotropic quadratic space (K, V0, q) with base point ε. As-

sume that char(K) = 2 and that the quadratic form has non-trivial radical

R := Rad( f ) = {v ∈ V0 | f (v, V0) = 0} 6= 0. Then this quadratic space is

said to be of type F4 if and only if L := q(R) is a subfield of K, and there is a

complement S of R in V0 such that the restriction of q to the subspace S has

a norm splitting (E, {v1, v2}) with constants s1, s2 ∈ K∗ such that s1s2 ∈ L∗.

From now on, we will assume that (K, V0 , q) is of type F4. Since t2 =
q(tε) ∈ q(R) = L for all t ∈ K, we have that K2 ⊆ L ⊆ K. Denote

the restriction of q to S by q1. Denote the norm of the extension E/K by

N, and denote the non-trivial element of Gal(E/K) by u 7→ u (not to be
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confused with the map v 7→ v in the definition of a quadrangular system).

Set B0 := E⊕ E. Then B0 is a 4-dimensional vector space over K which can

be identified with S by the relation

(u, v) ∈ B0 ←→ uv1 + vv2 ∈ S .

In particular, we will write q1(u, v) = s1N(u) + s2N(v) for all (u, v) ∈ B0.

Next, we define a commutative field D := E2L = {u2s | u ∈ E, s ∈ L}.
Then E2 ⊆ D ⊆ E, D/L is a separable quadratic extension, and D∩K = L.

The non-trivial element of Gal(D/L) is precisely the restriction of the map

u 7→ u to D; hence we will also denote it by x 7→ x. Also, the norm of

D is precisely the restriction of N to D, and so we will denote it by N as

well. Now set A0 := D⊕ D; then A0 is a 4-dimensional vector space over

L. Observe that both s−1
1 s2 and s−3

1 s2 are elements of L. We now define a

quadratic form q2 on A0 given by

q2(x, y) := s−1
1 s2N(x) + s−3

1 s2N(y)

for all (x, y) ∈ A0. If we set α := s−1
1 s2 ∈ L and β := s−1

1 ∈ K, then we

have

q1(u, v) = β−1 · (N(u) +αN(v)) for all (u, v) ∈ B0 .

q2(x, y) = α · (N(x) +β2N(y)) for all (x, y) ∈ A0 .

We will denote the bilinear forms corresponding to q1 and q2 by f1 and f2,

respectively.

Theorem 2.6.8. For all (u, v) ∈ B0 and all (x, y) ∈ A0 we have:

(i) q1(u, v) ∈ L ⇐⇒ (u, v) = (0, 0) ;

(ii) q2(x, y) ∈ K2 ⇐⇒ (x, y) = (0, 0) ;

(iii) α ∈ L \ K2 ;

(iv) β ∈ K \ L .

Proof. See [52, (14.8)].

Note that it follows from (iii) and (iv) of this Theorem that K2 ⊂ L ⊂ K.

In particular, K is not perfect.

Since L ⊆ K, we can consider K as a (left) vector space over L by the

trivial scalar multiplication s · t := st for all s ∈ L and all t ∈ K. Since

K2 ⊆ L and char(K) = 2, we can also consider L as a (left) vector space

over K by the scalar multiplication t ∗ s := t2s for all t ∈ K and all s ∈ L.
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One can check that in this sense, q is a vector space isomorphism from R to

L = q(R).
From now on, we will identify R with L via q, and we still identify S

with B0 = E ⊕ E. Combining those two identifications, we have actually

identified V0 with B0⊕ L. Then ε = (0, 1), and we have q(b, s) = q1(b) + s,
for all (b, s) ∈ V0.

Now set W0 := A0 ⊕ K. Then W0 is a vector space over L, and we can

define a quadratic form q̂ from W0 to f given by q̂(a, t) = q2(a) + t2 for all

(a, t) ∈ W0. It follows from Theorem 2.6.8(ii) that q̂ is anisotropic as well.

One can actually check that (L, W0, q̂) is again a quadratic form of type F4.

Finally, we define a map Θ from A0⊕ B0 to B0, a map Υ from A0⊕ B0 to

A0, a map ν from A0 ⊕ B0 to K, and a map ψ from A0 ⊕ B0 to L as follows.

Θ((x, y), (u, v)) := (α · (x̄v +βyv̄), xu +βyū) ,

Υ((x, y), (u, v)) := (yū2 +α ȳv2,β−2 · (xu2 +αx̄v2)) ,

ν((x, y), (u, v)) := α · (β−1 · (xuv̄ + x̄ūv) + yūv̄ + ȳuv) ,

ψ((x, y), (u, v)) := α · (xȳu2 + x̄yū2 +α · (xyv̄2 + x̄ȳv2)) ,

for all (x, y) ∈ A0 = D⊕ D and all (u, v) ∈ B0 = E⊕ E.

Let V be parametrized by (V0, +), and let W be parametrized by (W0, +).
We define a map τV from V ×W to V and a map τW from W ×V to W as

follows:

τV([b, s], [a, t]) := [b, s][a, t] := [Θ(a, b) + tb, q̂(a, t)s +ψ(a, b)] ,

τW([a, t], [b, s]) := [a, t][b, s] := [Υ(a, b) + sa, q(b, s)t + ν(a, b)] ,

for all (b, s) ∈ V0 and all (a, t) ∈ W0. Then (V, W,τV ,τW , [0, 1], [0, 1]) is a

quadrangular system. One can check that

F([b, s], [b′, s′]) = [0, f1(b, b′)] ,

H([a, t], [a′, t′]) = [0, f2(a, a′)] ,

for all (b, s), (b′ , s′) ∈ V0 and all (a, t), (a′ , t′) ∈W0, and that

[b, s]−1 = [q(b, s)−1b, q(b, s)−2s] ,

κ([a, t]) = [q̂(a, t)−1a, q̂(a, t)−1t] ,

for all (b, s) ∈ V∗0 and all (a, t) ∈ W∗
0 .

Remark 2.6.9. It would be a very tedious job to check that this is indeed a

quadrangular system by only using the definitions of the different functions

involved. However, it is not very hard to prove the following list of twelve

identities, after which the verification of the axioms for the quadrangular

systems is straightforward.
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Theorem 2.6.10. For all a, a′ ∈ A0 and all b, b′ ∈ B0, we have that

(i) ν(a, b + b′) = ν(a, b) + ν(a, b′) + f1(Θ(a, b), b′) ;

(ii) ψ(a + a′, b) = ψ(a, b) +ψ(a′, b) + f2(Υ(a, b), a′) ;

(iii) Υ(Υ(a, b), b) = q1(b)2a ;

(iv) Θ(a,Θ(a, b)) = q2(a)b ;

(v) Θ(Υ(a, b), b) + bν(a, b) = q1(b)Θ(a, b) ;

(vi) Υ(a,Θ(a, b)) + aψ(a, b) = q2(a)Υ(a, b) ;

(vii) ν(Υ(a, b), b) = q1(b)ν(a, b) ;

(viii) ψ(a,Θ(a, b)) = q2(a)ψ(a, b) ;

(ix) ψ(Υ(a, b), b) = q1(b)2ψ(a, b) ;

(x) ν(a,Θ(a, b)) = q2(a)ν(a, b) ;

(xi) q1(Θ(a, b)) = q1(b)q2(a) +ψ(a, b) ;

(xii) q2(Υ(a, b)) = q1(b)2q2(a) + ν(a, b)2 .

These are the quadrangular systems of type F4. They will be denoted by

ΩF(K, V0 , q).

Remark 2.6.11. Although it can be very useful to have these explicit formu-

las to calculate with, this description is not very clarifying. The description

in terms of the quadrangular systems ought to give more insight in the

structure of these F4-quadrangles; see section 2.8.3 and chapter 3.

2.7 The Classification

We will now start the classification of the quadrangular systems. We start

with some definitions.

Definition 2.7.1. A quadrangular system Ω = (V, W,τV ,τW ,ε, δ) is called

indifferent if F ≡ 0 and H ≡ 0, reduced if F 6≡ 0 and H ≡ 0 and wide if

F 6≡ 0 and H 6≡ 0.

Remark 2.7.2. We will prove that if Ω = (V, W,τV ,τW ,ε, δ) is a quadran-

gular system with F ≡ 0 and H 6≡ 0, then Ω∗ := (W, V,τW ,τV , δ,ε) is a

reduced quadrangular system; see Theorem 2.7.13.

Remark 2.7.3. Let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system. If

X ⊆ V and Y ⊆ W, then the restriction of τV to X × Y and the restriction

of τW to Y× X will also be denoted by τV and τW, respectively.
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Definition 2.7.4. Let Ω = (V, W,τV ,τW ,ε, δ) be a wide quadrangular sys-

tem. Set Y := Rad(H). We will show below that Γ := (V, Y,τV ,τW ,ε, δ) is

a reduced quadrangular system; see Theorem 2.7.14. We then say that Ω

is an extension of Γ .

Definition 2.7.5. Let Ω = (V, W,τV ,τW ,ε, δ) be a reduced quadrangular

system. ThenΩ is said to be normal if and only if for all w1, w2, . . . , wi ∈W,

there exists a w ∈ W such that εw1w2 . . . wi = εw.

Let Ω = (V, W,τV ,τW ,ε, δ) be an arbitrary quadrangular system. The

classification will be divided up into the following five theorems.

Theorem 2.7.6. If Ω is reduced but not normal, then Ω ∼= ΩI(K, K0 ,σ) for

some involutory set (K, K0 ,σ) such that σ 6= 1 and K is generated by K0 as a

ring.

Theorem 2.7.7. If Ω is normal, then Ω ∼= ΩQ(K, V0 , q) for some anisotropic

quadratic space (K, V0, q).

Theorem 2.7.8. If Ω is indifferent, then Ω ∼= ΩD(K, K0 , L0) for some indif-

ferent set (K, K0 , L0).

Theorem 2.7.9. If Ω is an extension of the reduced quadrangular system

Γ = ΩI(K, K0 ,σ) for some involutory set (K, K0 ,σ) such that σ 6= 1 and K is

generated by K0 as a ring, then Ω ∼= ΩP(K, K0 ,σ , V0 , p) for some anisotropic

pseudo-quadratic space (K, K0 ,σ , V0, p).

Theorem 2.7.10. If Ω is an extension of the reduced quadrangular system

Γ = ΩQ(K, V0 , q) for some anisotropic quadratic space (K, V0 , q), then one of

the following holds:

• There exists

(a) a multiplication on V0 making the vector space V0 into an alge-

bra over K such that either V0 is a field and V0/K is a separable

quadratic extension with norm q or V0 is a quaternion division

algebra over K with norm q ,

(b) an involution σ of V0 (which is the unique non-trivial element of

Gal(V0/K) if dimK V0 = 2 and which is the standard involution

of V0 if dimK V0 = 4) ,

(c) a non-trivial right vector space X over V0 ,

(d) a pseudo-quadratic form π on X ,

such that (V0, K,σ , X, π) is an anisotropic pseudo-quadratic space, Γ ∼=
ΩI(V0, K,σ) and Ω ∼= ΩP(V0, K,σ , X, π).
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• (K, V0 , q) is a quadratic space of type E6, E7 or E8, andΩ ∼= ΩE(K, V0 , q).

• (K, V0 , q) is a quadratic space of type F4, and Ω ∼= ΩF(K, V0 , q).

We will now prove the two theorems which we mentioned in the above

remarks. But first, we make an easy but useful observation.

Lemma 2.7.11. If Rad(F) 6= 0, then W is abelian, and all elements of V and

W have order 1 or 2. Furthermore, πr(v) = v for all r ∈ Rad(F)∗ and all

v ∈ V, and v = v for all v ∈ V.

Proof. Let r be an arbitrary non-zero element of Rad(F). If we substitute r
for v in (Q8), then we get that [w1, w2r]� = 0 for all w1, w2 ∈ W. Substi-

tuting w2r−1 for w2 shows, by (Q15), that W is abelian.

If we substitute r for v in 2.2.13(i), then we get that

w(−r) = F(rw, r) � wr = �wr

for all w ∈ W. By (Q5), this implies that w(−ε)r = �wr, and therefore

w(−ε) = �w for all w ∈ W. It thus follows from (Q6) that v(�w) = vw
for all v ∈ V and all w ∈ W. In particular, v(�δ) = v. On the other hand,

it follows from 2.2.13(ii) that v(�δ) = H(δ, δv) − vδ = −v, for all v ∈ V.

Hence v = −v for all v ∈ V, so every element of V has order 1 or 2.

In particular, ε = −ε, hence w = w(−ε) = �w for all w ∈ W, that is,

every element of W has order 1 or 2.

Finally, πr(v) = v + r−1F(r, v) = v for all r ∈ Rad(F)∗ and all v ∈ V.

Since it follows from (Q10) that ε ∈ Rad(F), we have in particular that

v = πε(v) = v for all v ∈ V.

Remark 2.7.12. Apart from the last statement, we have avoided to use

(Q10). We thereby want to stress the fact that this axiom is not essen-

tial, and is really only needed to simplify the list of the wide quadrangular

systems which have Rad(F) 6= 0. See Remark 2.5.4.

Theorem 2.7.13. Let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system

with F ≡ 0 and H 6≡ 0. Then Ω∗ := (W, V,τW ,τV , δ,ε) is a reduced quad-

rangular system.

Proof. Since F ≡ 0, it follows from Lemma 2.7.11 that W is abelian and

that all elements of V and W have order 1 or 2. In particular, we will write

+ in place of � and �. We define w := δH(δ, w) + w, for all w ∈W. Then

it follows from (Q9) that w = w, for all w ∈ W. We also set w−1 := κ(w)
for all w ∈W∗ and κ(v) := v−1 for all v ∈ V∗. Let F∗ ≡ H and H∗ ≡ F ≡ 0.

We will denote the axioms that we have to prove for Ω∗ by (Qi)
∗.
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Since all elements of V and W have order 1 or 2, the axioms (Q5)
∗ and

(Q6)
∗ are trivial. Note that v = v for all v ∈ V and w = w for all w ∈W.

We now prove the remaining axioms. We observe that (Q1)
∗ ≡ (Q2),

(Q2)
∗ ≡ (Q1), (Q3)

∗ ≡ (Q4), (Q4)
∗ ≡ (Q3), (Q13)

∗ ≡ (Q14), (Q14)
∗ ≡ (Q13),

(Q17)
∗ ≡ (Q20) and (Q20)

∗ ≡ (Q17). It follows from F ≡ 0 that Rad(F) = V
and hence Im(H) ⊆ Rad(F) 3 ε; this shows (Q7)

∗ and (Q9)
∗. Now

(Q8)
∗ follows from the fact that V is abelian and that F ≡ 0; (Q10)

∗ fol-

lows from (Q9). By (Q22), H(w1, w2) = H(w2, w1) for all w1, w2 ∈ W.

Since W is abelian, it follows from (Q12) that v(w1 + w2) = v(w2 + w1) =
vw2 + vw1 + H(w1, w2v) = vw1 + vw2 + H(w2v, w1) for all v ∈ V and all

w1, w2 ∈ W. This proves (Q11)
∗. Vice versa, it follows from (Q11) that

w(v1 + v2) = wv1 + wv2 for all w ∈ W and all v1, v2 ∈ V, which proves

(Q12)
∗. By (Q13), we have that (Q15) is equivalent to wv−1v = w. It fol-

lows that (Q15)
∗ ≡ (Q18) and (Q18)

∗ ≡ (Q15). Again by (Q13), we have

that (Q16) is equivalent to v(wv−1) = v−1w. Hence (Q16)
∗ ≡ (Q19) and

(Q19)
∗ ≡ (Q16). It follows that Ω∗ is a quadrangular system, which is re-

duced since H∗ ≡ 0 and F∗ 6≡ 0.

Theorem 2.7.14. Let Ω = (V, W,τV ,τW ,ε, δ) be a wide quadrangular sys-

tem. Set Y := Rad(H). Then Γ := (V, Y,τV ,τW ,ε, δ) is a reduced quadran-

gular system; see Remark 2.7.3.

Proof. First of all, we observe that Y is a subgroup of W: if w1, w2 ∈ Y, then

H(w1 � w2, w) = H(w1, w) + H(w2, w) = 0 for all w ∈ W, so w1 � w2 ∈ Y
as well. It only remains to show that τW(Y × V) ⊆ Y, F(V, V) ⊆ Y and

κ(Y∗) ⊆ Y. So let w be an arbitrary element of Y, and let v be an ar-

bitrary element of V. Then [w, w2]� = 0 for all w2 ∈ W by (Q8), and

therefore v(w � w2) = v(w2 � w). It follows from (Q12) that H(w2, wv) =
H(w, w2v) = 0 for all w2 ∈ W. By (Q22), this implies that H(wv, w2) = 0
for all w2 ∈ W, hence wv ∈ Y. So we have proved that τW(Y × V) =
Y ·V ⊆ Y.

It follows from (Q7) that F(V, V) ⊆ Y. Now let w be an arbitrary ele-

ment of Y∗. Substituting −ε for v in 2.2.2(ii) yields κ(w)(−ε(�w)) = w,

hence κ(w) = w(−ε(�w))−1 ∈ Y · V ⊆ Y. So Γ is a quadrangular system,

which is reduced since H restricted to Y×Y is identically zero.

2.7.1 Quadrangular Systems of Involutory Type

Our goal in this section is to classify the quadrangular systems which are

reduced but not normal.

Let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system. For the moment,

we only assume that H ≡ 0, so Ω is reduced or indifferent.
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Since H ≡ 0, it follows from (Q8) that W is abelian. We will write +
and − in place of � and �, respectively. It follows from 2.2.13(ii) that

v(−w) = −vw for all v ∈ V and all w ∈ W. If we replace w2 by −w2 in

(Q12), we get v(w1 − w2) = vw1 − vw2, for all v ∈ V and all w1, w2 ∈ W.

In particular, it follows from εw1 = εw2 that w1 = w2, by 2.2.3(ii).

By (Q18), we have εκ(w)w = ε for all w ∈ W. If we replace w by

−w, we get that ε(−κ(−w))w = ε for all w ∈ W. Hence εκ(w)w =
ε(−κ(−w))w, so εκ(w) = ε(−κ(−w)) by 2.2.5(ii) and hence κ(w) =
−κ(−w) for all w ∈ W by the previous paragraph. Moreover, by (Q6)

and the result of the previous paragraph, we have that w(−ε) = w for all

w ∈W. It now follows from (Q14) that κ(κ(w)) = w, for all w ∈W. Hence

we will write w−1 in place of κ(w), for all w ∈ W. Note that it follows from

2.2.2(i) that vww−1 = v, for all v ∈ V and all w ∈W∗.

For all w1, w2, . . . , wn ∈ W∗, let m = w1 • w2 • · · · • wn be the auto-

morphism of V which maps v to vw1w2 . . . wn for all v ∈ V; see Theorem

2.2.6(i). Let M be the set of all such automorphisms. Then (M, •) is a

group with neutral element δ. We denote the action of an element m ∈ M
by right juxtaposition, i.e. vm = vw1w2 . . . wn. Let K be the set of ho-

momorphisms from V to itself (additively) generated by a finite number

of elements of M. We write k = m1 + · · ·+ m`, where m1, . . . , m` ∈ M.

Again, we denote the action of an element k ∈ K by right juxtaposition, so

we have vk = vm1 + · · ·+ vm`. Then K with this + as addition and with

• as multiplication is a ring with multiplicative identity δ. Note that, by

(Q12), v(w1 + w2) = vw1 + vw2, hence the notation w1 + w2 is unambigu-

ous. Let σ be the automorphism of M which maps m = w1 • · · · • wn to

mσ := wn • · · · • w1. We extend σ to K by setting kσ := mσ
1 + · · ·+ mσ

` for

all k = m1 + · · ·+ m` ∈ K. Let E := εK.

Lemma 2.7.15. w ·εm · v = w · vm for all v ∈ V, w ∈ W and m ∈ M.

Proof. Let m = w1 • · · · • wn be an arbitrary element of M, so w1, . . . , wn

are elements of W∗. We will show the lemma by induction on n.

Note that Π�z ≡ idW since H ≡ 0; hence by (Q26), the lemma holds for

n = 1. Assume that w ·εw1 . . . wn−1 · v = w · vw1 . . . wn−1 for all w ∈ W and

all v ∈ V. Then, by repeated use of (Q26),

w ·εw1 . . . wn · v = w · (εw1 . . . wn−1 · wn) · v

= w · (εwn) ·εw1 . . . wn−1 · v

= w · (εwn) · vw1 . . . wn−1

= w · (vw1 . . . wn−1 · wn)

= w · vw1 . . . wn
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for all w ∈ W and all v ∈ V, and we are done.

Lemma 2.7.16. For all v ∈ V and all w, z ∈W, we have that vwz = vzw.

Proof. Let v ∈ V and w, z ∈ W. We may assume that w 6= 0. Note that

Πw(z) = z since H ≡ 0. Since v(−w) = −vw, it follows from (Q23) that

vz = vwzw−1 .

Since (w−1)−1 = w and by 2.2.12, it follows from this that vzw = vwz.

Lemma 2.7.17. For all v ∈ V, all w ∈ W and all m ∈ M, we have that

vwm = vmw and vmw = vwm.

Proof. Let m = w1 • · · · • wn be an arbitrary element of M, so w1, . . . , wn

are elements of W∗. We will prove by induction on n that

vww1 . . . wn = vw1 . . . wnw .

For n = 1, this was shown in Lemma 2.7.16. Assume that we have proved

the current lemma for n− 1. Then

vww1 . . . wn = vww1 . . . wn−1 · wn

= vw1 . . . wn−1wwn

= vw1 . . . wnw ,

again by Lemma 2.7.16 with vw1 . . . wn−1 in place of v. This proves the first

identity; the second then follows from the first by substituting v for v.

Lemma 2.7.18. For all v ∈ V and all k1, k2 ∈ m, we have that vk1k2 = vk2k1.

Proof. Since both sides are additive in k1 and k2, it suffices to show this

for k1 = m1 ∈ M and k2 = m2 ∈ M. Let m2 = z1 • · · · • zn for some

z1, . . . , zn ∈W∗. By repeated use of Lemma 2.7.17, we have that

vm1m2 = vm1z1 . . . zn

= vz1m1z2 . . . zn

= . . .

= vz1 . . . znm1

= vm2m1 ,

which proves the lemma.
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Theorem 2.7.19. εk = εkσ , for all k ∈ K.

Proof. It is sufficient to prove this for k ∈ M. Let k = w1 • · · · • wn be an

arbitrary element of M, so w1, . . . , wn ∈W∗. We will prove by induction on

n that εw1 . . . wn = εwn . . . w1.

First assume that n = 1. Since v(−w) = −vw for all v ∈ V and all

w ∈W, it follows from 2.2.21 that εw1 = −πε(εw1) = −ε(−w1) = εw1.

Now assume that we have proved that εw1 . . . wn−1 = εwn−1 . . . w1, for

all w1, . . . , wn−1 ∈W∗. Then it follows from 2.2.12 and Lemma 2.7.17 that

εw1 . . . wn = εw1 . . . wn−1wn

= εwn−1 . . . w1wn

= εwnwn−1 . . . w1

= εwnwn−1 . . . w1 ,

since εwn = εwn = εwn.

Theorem 2.7.20. ∆ := (E, W,τV ,τW ,ε, δ) is a quadrangular system; see

Remark 2.7.3.

Proof. First of all, we observe that E = εK is a subgroup of V, since

εk1 +εk2 = ε(k1 + k2) for all k1, k2 ∈ K. It only remains to show that

τV(E ×W) ⊆ E, H(W, W) ⊆ E and (E∗)−1 ⊆ E. Since K •W = K, we

have that τV(E×W) = εK ·W = ε(K •W) = εK = E. Since H ≡ 0, it is

obvious that H(W, W) ⊆ E. Finally, if we substitute δ for w in (Q16) and

apply the fact that vww−1 = v, we get that v−1 = v(δv)−1 for all v ∈ V∗. In

particular, we get that (εk)−1 = εk(δ ·εk)−1 = ε(kσ • (δ ·εk)−1) ∈ εK for all

k ∈ K∗, where we have used Theorem 2.7.19. Thus ∆ := (E, W,τV ,τW ,ε, δ)
is a quadrangular system.

Lemma 2.7.21. If vk = 0 for some v ∈ V and some k ∈ K, then vk2k = 0 for

all k2 ∈ K.

Proof. We may assume that v 6= 0. We will first show the lemma for k2 =
w ∈ W. Since v(−w) = −vw, it follows from 2.2.20 that vw = vm where

m = δv−1 • wv ∈ M. By Lemma 2.7.18, it follows from vk = 0 that

vwk = vmk = vkm = 0, which proves the lemma in this case.

Now let k2 = m = w1 • · · · • wn be an arbitrary element of M, then it

follows by induction on n that vmk = 0.

Finally, let k2 = m1 + · · · + m` be an arbitrary element of K, then it

follows from the previous paragraph that vk2k = vm1k + · · ·+ vm`k = 0,

which completes the proof of this lemma.
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Lemma 2.7.22. For all v1, v2 ∈ V and all k ∈ K, we have that

F(v1k, v2) = F(v1, v2kσ) .

Proof. Since both V and W are abelian, it follows from (Q21) and (Q11)

that F(v1w, v2) = F(v1, v2w) for all v1, v2 ∈ V and all w ∈ W. For m ∈ M,

say m = w1 • · · · • wn, it follows by induction on n that F(v1m, v2) =
F(v1, v2mσ). Since F is additive in both variables, it now follows that

F(v1k, v2) = F(v1, v2kσ) for any k = m1 + · · ·+ m` ∈ K.

Our first goal is to prove that ∆ is a quadrangular system of involutory

type. Assume from now on that V = E, that is, that Ω = ∆.

Lemma 2.7.23. (i) Let k ∈ K. If εk = 0, then k = 0.

(ii) Let k1, k2 ∈ K. If εk1 = εk2, then k1 = k2.

Proof. Let k ∈ K be such that εk = 0. By Lemma 2.7.21, it follows that

εk2k = 0 for all k2 ∈ K, and hence Vk = Ek = εKk = 0, which implies that

k = 0 (remember that the elements of K are endomorphisms of V). This

proves (i); (ii) now follows from (i) by substituting k1 − k2 for k.

Definition 2.7.24. For each k ∈ K∗, we define k′ as the (unique!) element

in K such that (εk)−1 = εk′.

Lemma 2.7.25. For all k ∈ K∗ and all w ∈W, we have that

k • w = w(εk) • (k′)σ .

Proof. By (Q16), we have that

(εk)w = (εk)−1 · w(εk)

= ε · k′ · w(εk)

= ε · (k′ •w(εk))

= ε · (w(εk) • (k′)σ) ,

where we have used Theorem 2.7.19. It follows by Lemma 2.7.23(ii) that

k • w = w(εk) • (k′)σ .

Lemma 2.7.26. For all k ∈ K∗ and all w ∈W∗, we have that

(k •w)′ = w−1 • k′ .
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Proof. By Lemma 2.7.25 with k • w in place of k and w−1 in place of w and

by (Q19), we have that

k •w = ((k • w) •w−1) • w

= w−1(ε(k •w)) • (k • w)′σ • w

= w(εk) • (k • w)′σ • w ,

which, together with Lemma 2.7.25, implies that

w(εk) • (k′)σ •w−1 = w(εk) • (k • w)′σ .

If we apply σ to both sides, we get that

w−1 • k′ • w(εk) = (k • w)′ •w(εk) ,

from which it follows that w−1 • k′ = (k • w)′ since w(εk) is invertible in

K.

Lemma 2.7.27. For all w1, . . . , wn ∈W∗, we have that

(w1 • · · · •wn)
′ = w−1

n • · · · • w−1
1 .

Proof. By Lemma 2.7.26 with k = δ, we have that w′1 = w−1
1 . Again by

Lemma 2.7.26, it now follows by induction on n that

(w1 • · · · • wn)
′ = w−1

n • (w1 • · · · • wn−1)
′

= w−1
n • w−1

n−1 • · · · •w−1
1 ,

which is what we wanted to show.

Since it follows from this lemma that m •m′ = m′ •m = δ, we will from

now on write m−1 in place of m′ for all m ∈ M.

Lemma 2.7.28. For all m ∈ M and all w ∈W, we have that

w(εm) = m •w •mσ .

Proof. First of all, observe that it follows from Lemma 2.7.27 that (m−1)σ =
(mσ)−1. By Lemma 2.7.25, we have that m • w = w(εm) • (m−1)σ . It

follows that m • w •mσ = w(εm).

Lemma 2.7.29. For all k1, k2 ∈ K, we have that

F(εk1,εk2) = k1 • kσ2 + k2 • kσ1 .
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Proof. Since v + v = εF(ε, v) for all v ∈ V, we have that εF(ε,εk) =
εk + εk = εk + εkσ and hence F(ε,εk) = k + kσ , for all k ∈ K. It now

follows from Lemma 2.7.22 that

F(εk1,εk2) = F(ε,εk2kσ1 )

= F(ε,ε(k2 • kσ1 ))

= k2 • kσ1 + k1 • kσ2 ,

which proves the lemma.

Theorem 2.7.30. For all k ∈ K and all w ∈W, we have that

w(εk) = k • w • kσ .

Proof. In Lemma 2.7.28, we have shown this theorem for all k ∈ M. Now

suppose that the theorem holds for k1, k2 ∈ K. We will show that it then

holds for k1 + k2 as well, which will prove the theorem for all k ∈ K.

It follows from (Q11) and Lemma 2.7.29 that

w(ε(k1 + k2)) = w(εk1 +εk2)

= w(εk1) + w(εk2) + F(εk2w,εk1)

= k1 • w • kσ1 + k2 •w • kσ2 + (k2 •w) • kσ1 + k1 • (k2 •w)σ

= k1 • w • kσ1 + k2 •w • kσ2 + k2 • w • kσ1 + k1 • w • kσ2
= (k1 + k2) •w • (k1 + k2)

σ ,

which is what we had to show.

Theorem 2.7.31. K+,• is a field or a skew-field.

Proof. We already know that K+,• is a ring. Let k be an arbitrary element of

K∗. We will show that k′ • k = k • k′ = δ.

By (Q15), Theorem 2.7.30 and Lemma 2.7.25, we have that

δ = δ(εk)(εk)−1

= δ(εk)(εk′)

= k′ • δ(εk) • (k′)σ

= k′ • (k • δ)

= k′ • k ,

and if we substitute k′ for k, then we get that δ = k • k′ as well, since it

follows from the definition of k′ that k′′ = k.

Hence every non-zero element k ∈ K∗ is invertible with inverse k−1 = k′.
It follows that K+,• is a field or a skew-field.
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For technical reasons which will be clear in a moment, we now define

K+,· := K
op
+,•, that is, we set k1k2 := k2 • k1 for all k1, k2 ∈ K.

Theorem 2.7.32. (K, W,σ) is an involutory set. Furthermore, K is generated

by W as a ring.

Proof. We have just shown that K is a field or a skew-field. It is obvious from

the definition that σ2 = 1 and that (k1k2)σ = (k2 • k1)σ = kσ1 • kσ2 = kσ2 kσ1
for all k1, k2 ∈ K, so σ is an involution of K. W is an additive subgroup

of K containing δ. By Lemma 2.7.29, k + kσ = F(ε,εk) ∈ Im(F) ⊆ W
for all k ∈ K, hence Kσ ⊆ W, and by the definition of σ, all elements of

W are fixed by σ. Finally, it follows from Theorem 2.7.30 that kσWk =
k •W • kσ ⊆W(εk) ⊆W for all k ∈ K. Thus (K, W,σ) is an involutory set.

The fact that K is generated by W as a ring follows immediately from

the definition of the ring K.

Theorem 2.7.33. (E, W,τV ,τW ,ε, δ) ∼= ΩI(K, W,σ).

Proof. Let φ be the isomorphism from [K] to E which maps [k] to εk for all

k ∈ K, and let ψ be the isomorphism from [W] to W which maps [w] to w
for all w ∈W. Then φ([δ]) = εδ = ε and ψ([δ]) = δ. Furthermore,

φ([k][w]) = φ([wk]) = ε(wk) = ε(k •w) = εk · w = φ([k])ψ([w]) , and

ψ([w][k]) = ψ(kσwk) = kσwk = k •w • kσ = w(εk) = ψ([w])φ([k]) ,

for all w ∈ W and all k ∈ K. Hence (φ,ψ) is an isomorphism from

ΩI(K, W,σ) to (E, W,τV ,τW ,ε, δ).

The next lemma shows the “σ 6= 1” part of Theorem 2.7.6.

Lemma 2.7.34. If (K, K0 ,σ) is an involutory set withσ = 1, thenΩI(K, K0 ,σ)
is normal or indifferent.

Proof. Since σ is an involution, ab = (ab)σ = bσaσ = ba for all a, b ∈ K,

hence K is abelian. It follows that F([a], [b]) = [2ab] for all a, b ∈ K. If

char(K) = 2, then F ≡ 0, hence ΩI(K, K0 ,σ) is indifferent. So we can

assume that char(K) 6= 2. But then Kσ = {2a | a ∈ K} = K, and hence

K0 = K. It follows that for all elements t1, t2, . . . , tn ∈ K0, the product

t1t2 . . . tn lies in K0 as well, and hence [1][t1][t2] . . . [tn] = [1][t1t2 . . . tn],
which implies that ΩI(K, K0 ,σ) is normal.

From now on, we drop our assumption that V = E (but we still assume

that H ≡ 0). Our next goal is to show that if Ω is reduced but not normal,

then V = E after all.

We start with a generalization of Lemma 2.7.18:
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Lemma 2.7.35. For all v ∈ V∗, all c ∈ V and all k1, k2 ∈ K, we have that

πv(πv(c)k1)k2 = πv(πv(ck2)k1) .

Proof. If we substitute c(δv)−1 for c in (Q25), then we get that πv(c)w =

πv

(
c(δv)−1(wv)

)
, and hence πv(πv(c)w) = c(δv)−1(wv) for all c, v ∈ V

and all w ∈W. It thus follows by 2.2.23(i) and Lemma 2.7.18 that

πv(πv(c)w1)w2 = c(δv)−1(w1v)w2

= cw2(δv)−1(w1v)

= πv(πv(cw2)w1) ,

which shows the lemma for all k1, k2 ∈ W. In the same way as in Lemma

2.7.17 and Lemma 2.7.18, we can use induction to deduce from this that

the lemma holds for all k1, k2 ∈ M. Since πv is additive, it then follows that

the lemma holds for all k1, k2 ∈ K.

Lemma 2.7.36. For all v ∈ V∗ and all k ∈ K, we have that πv(vk) = −vkσ .

Proof. Since πv is additive, it suffices to show that πv(vm) = −vmσ for all

m = w1 • · · · •wn ∈ M, which we will do by induction on n.

It already follows from 2.2.21 that πv(vw1) = −vw1, which shows the

statement for n = 1. Now assume that πv(vw1 . . . wn−1) = −vwn−1 . . . w1

for all w1, . . . , wn−1 ∈W. Then it follows by Lemma 2.7.35 that

πv(vw1 . . . wn) = −πv(πv(vwn−1 . . . w1)wn)

= −πv(πv(v)wn)wn−1 . . . w1

= −vwnwn−1 . . . w1 ,

since πv(πv(v)wn) = −πv(vwn) = vwn.

Lemma 2.7.37. For all v ∈ V and all w ∈W, we have that vww = v ·δ(εw).

Proof. We may assume that v 6= 0. Since H ≡ 0, it follows from (Q26) that

δ(εw)v = δ(vw), and hence δ(εw) = δ(vw)v−1. By (Q16), it follows that

v · δ(εw) = v ·
(
δ(vw)v−1

)
= v−1 · δ(vw) .

If we substitute vw for v, v−1 for c and w−1 for w in (Q25), then we get, by

(Q19), (Q16) and 2.2.21, that

πvw(v−1 · δ(vw))w−1 = πvw(v−1 · w−1(vw))

= πvw(v−1 · wv)

= πvw(vw)

= −vw ,
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and hence πvw(v · δ(εw)) = −vww, from which it follows, by 2.2.23(i),

that v · δ(εw) = −πvw(vww) = vww by Lemma 2.7.36, which is what we

had to show.

Lemma 2.7.38. For all v ∈ V and all w, z ∈W, we have that

vwzw = v · z(εw) .

Proof. We may assume that v 6= 0. Since H ≡ 0, it follows from (Q26) that

z(εw)v = z(vw). By (Q16), it follows that

v · z(εw) = v ·
(

z(vw)v−1
)

= v−1 · z(vw) .

If we substitute vw for v, v−1 for c and z for w in (Q25), then we get that

πvw(v−1 · δ(vw))z = πvw(v−1 · z(vw)) ,

and hence

πvw(v · δ(εw))z = πvw(v · z(εw)) .

It now follows from Lemma 2.7.37 and Lemma 2.7.36 that

v · z(εw) = πvw(πvw(vww)z)

= πvw(−vwwz)

= vwzw ,

which proves the lemma.

Lemma 2.7.39. For all v ∈ V, all z ∈W and all m ∈ M, we have that

vmzmσ = v · z(εm) .

In particular, vmmσ = v · δ(εm).

Proof. Let m = w1 • · · · • wn with w1, . . . , wn ∈ W∗. We will prove the

lemma by induction on n.

We have already shown in Lemma 2.7.38 that the current lemma holds

for n = 1. Now assume that

vw1 . . . wn−1ywn−1 . . . w1 = v · y(εw1 . . . wn−1)

for all y ∈W. Then by Lemma 2.7.38 and (Q26), we have that

vw1 . . . wnzwn . . . w1 =
(
(vw1 . . . wn−1)wnzwn

)
wn−1 . . . w1

= vw1 . . . wn−1 · z(εwn) · wn−1 . . . w1

= v · z(εwn)(εw1 . . . wn−1)

= v · z(εw1 . . . wn−1wn) ,

and we are done.
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Lemma 2.7.40. For all v ∈ V and all w1, w2, w3 ∈W, we have that

(i) F(vw1, vw2w3) = F(εw1,εw2w3)v ;

(ii) vw1w2w3 + vw3w2w1 = vF(εw1,εw3w2) .

Proof. By (Q21), (Q11) and (Q26), we have that

F(vw1, vw2w3) = w3(vw1 + vw2)− w3(vw1)− w3(vw2)

= w3 · v(w1 + w2)− w3 · vw1 − w3 · vw2

= w3 ·ε(w1 + w2) · v− w3 ·εw1 · v− w3 ·εw2 · v

= (w3 · (εw1 +εw2)− w3 ·εw1 − w3 ·εw2) · v

= F(εw1,εw2w3)v ,

which proves (i). By Lemma 2.7.36, the definition of πv, Lemma 2.7.22, (i)

and (Q16), we have that

vw1w2w3 + vw3w2w1 = vw3w2w1 − πv(vw3w2w1)

= v−1F(v, vw3w2w1)

= v−1F(vw1, vw3w2)

= v−1 · F(εw1,εw3w2)v

= vF(εw1,εw3w2) ,

which proves (ii).

Lemma 2.7.41. Let w1, w2, w3 ∈ W be arbitrary. Let k = w1 + w2 •w3 ∈ K.

Then

(i) vkkσ = v · δ(εk) for all v ∈ V ;

(ii) If εk = 0, then k = 0 .

Proof. By Lemma 2.7.39, Lemma 2.7.40(ii) and (Q11), we have that

vkkσ = v(w1 + w2 •w3)(w1 + w3 •w2)

= vw1w1 + vw2w3w3w2 + vw1w3w2 + vw2w3w1

= v · δ(εw1) + v · δ(εw2w3) + vF(εw1,εw2w3)

= v · (δ(εw1) + δ(εw2w3) + F(εw1,εw2w3))

= v · δ(εw1 +εw2w3)

= v · δ(εk)

for all v ∈ V, which proves (i).
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Now suppose that εk = εw1 + εw2w3 = 0. Then it follows, by (Q11),

Lemma 2.7.15 and Lemma 2.7.40(i), that

0 = δ · (εw1 +εw2w3) · v

= δ ·εw1 · v + δ ·εw2w3 · v + F(εw1,εw2w3) · v

= δ · vw1 + δ · vw2w3 + F(vw1, vw2w3)

= δ · (vw1 + vw2w3)

= δ · vk ,

and hence vk = 0, for all v ∈ V. So k = 0.

Remark 2.7.42. It will follow from the classification that the statements in

Lemma 2.7.40 and Lemma 2.7.41 actually hold in a much broader gener-

ality, for all reduced quadrangular systems. More precisely, we have that

(i) F(vk1, vk2) = F(εk1,εk2)v ;

(ii) vk + vkσ = vF(εk,ε) ;

(iii) vkkσ = v · δ(εk) ;

(iv) If εk = 0, then k = 0 ;

for all v ∈ V and all k, k1, k2 ∈ K. However, we are not aware of a simple

proof of these facts at this step of the classification.

By definition,Ω = (V, W,τV ,τW ,ε, δ) is normal if and only ifεM = εW.

To complete the proof of Theorem 2.7.6, it will thus suffice to prove the

following theorem:

Theorem 2.7.43. If V 6= E and F 6≡ 0, then εM = εW. Furthermore,

vm = vmσ and vm = vm for all v ∈ V \ E and all m ∈ M.

Proof. We start by showing that vw = vw for all v ∈ V \ E and all w ∈ W.

So let v ∈ V \ E and w ∈W be arbitrary. By 2.2.20, vw = v · δv−1 ·wv, and

hence vw− vw = vk for k = w− δv−1 • wv. On the other hand,

vw− vw = vw−εF(v,ε)w− vw

= vw−εF(εF(v,ε)w− vw,ε) +εF(v,ε)w− vw

= εF(v,ε)w−εF(εF(v,ε)w− vw,ε)

∈ εK ,

hence vk ∈ εK. Suppose that vk 6= 0. Then it would follow from Lemma

2.7.41 that εk 6= 0 and that vkkσ · (δ(εk))−1 = v. Hence we would have

v ∈ εK · kσ · (δ(εk))−1 ⊆ εK = E, which contradicts the choice of v. So we

must have vk = 0, and thus vw = vw, which shows that vw = vw.
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We will now show by induction on n that vw1 . . . wn = vw1 . . . wn for

all v ∈ V \ E and all w1, . . . , wn ∈ W. We have already shown this for

n = 1, so suppose that it holds for n − 1. We may assume that wi 6= 0
for all i ∈ {1, . . . , n}. If v ∈ V \ E, then also vw1 . . . wn−1 ∈ V \ E, since

v = vw1 . . . wn−1w−1
n−1 . . . w−1

1 . Hence we can substitute vw1 . . . wn−1 for v in

the result of the previous paragraph, and we get that

vw1 . . . wn = vw1 . . . wn−1 · wn

= vw1 . . . wn−1 · wn

= vw1 . . . wn ;

the statement thus holds for n as well. This shows that vm = vm for all

v ∈ V \ E and all m ∈ M.

We will now prove by induction on n that vw1 . . . wn = vwn . . . w1 for

all v ∈ V and all w1, . . . , wn ∈ W. Again, we have already shown this for

n = 1, so suppose that it holds for n− 1. Then, by Lemma 2.7.17,

vw1 . . . wn = vwn−1 . . . w1wn

= vwnwn−1 . . . w1

= vwn . . . w1 ,

so it holds for n as well. We have thus proved that vm = vmσ for all m ∈ M.

Since v ∈ V \ E if and only if v ∈ V \ E, it follows from the previous

two paragraphs that vm = vmσ for all v ∈ V \ E and all m ∈ M.

We first assume that ε 6∈ Rad(F). Since E is a proper subgroup of V, V
is generated by V \ E. Since ε 6∈ Rad(F), this implies that F(ε, V \ E) 6= 0,

so there exists an element v ∈ V \ E such that F(ε, v) 6= 0. Let m be an

arbitrary element of M, and let m2 := F(ε, v)−1 • m ∈ M. Then it follows

from vm2 = vm2 that

εF(ε, vm2)− vm2 = εF(ε, v)m2 − vm2

and hence

εF(ε, vF(ε, v)−1m) = εF(ε, v)F(ε, v)−1m

from which it follows that

εm = εF(ε, vF(ε, v)−1m) ∈ εW ,

for all m ∈ M. So we have shown that εM = εW in this case.

Now assume that ε ∈ Rad(F). By Lemma 2.7.11, all elements of V and

W have order at most 2, and v = v for all v ∈ V.
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Since F 6≡ 0, there exists an element η ∈ V \ Rad(F). We have that

Rad(F) · K = Rad(F) by Lemma 2.7.22, so E = εK ⊆ Rad(F), and hence

η ∈ V \ E. It follows that ηm = ηmσ for all m ∈ M, which implies, by

Lemma 2.7.36, that πη(ηm) = ηmσ = ηm. By the definition of πη, this

implies that η−1F(η, ηm) = 0, and hence F(η, ηm) = 0 for all m ∈ M.

Since F is additive, this in turn implies that F(η, ηK) = 0. Since we chose

η 6∈ Rad(F), we conclude that V 6= ηK.

We now show that πη(vw) = πη(v)w for all v ∈ V \ ηK and all w ∈ W.

So let v ∈ V \ ηK and w ∈ W be arbitrary. If we substitute η for v and

v(δη)−1 for c in (Q25), then we get that πη(v)w = πη(v(δη)−1(wη)), and

hence πη(πη(v)w) = v(δη)−1(wη). Hence vw + πη(πη(v)w) = vk where

k = w + (δη)−1 • (wη) ∈ K. On the other hand,

vw + πη(πη(v)w) = vw + πη(vw + ηF(η−1, v)w)

= vw + vw + ηF(η−1, v)w + ηF(η−1, vw + ηF(η−1, v)w)

= ηF(η−1, v)w + ηF(η−1, vw + ηF(η−1, v)w)

∈ ηK,

hence vk ∈ ηK. In a similar way as in the first paragraph, it would follow

from vk 6= 0 that v ∈ ηK, which would contradict the choice of v. Hence

vk = vw + πη(πη(v)w) = 0, and thus πη(vw) = πη(v)w.

Again, it follows by induction on n that πη(vw1 . . . wn) = πη(v)w1 . . . wn

for all v ∈ V \ ηK and all w1, . . . wn ∈ W, that is, πη(vm) = πη(v)m for all

v ∈ V \ ηK and all m ∈ M.

Since ηK is a proper subgroup of V, V is generated by V \ ηK. Since

η 6∈ Rad(F), this implies that F(η, V \ ηK) 6= 0, so there exists an element

v ∈ V \ ηK such that F(η, v) 6= 0. It follows from (Q17) that F(η−1, v) =
F(η, v)η−1 6= 0 as well.

Let m be an arbitrary element of M, and let m2 := F(η−1, v)−1 •m ∈ M.

Then it follows from πη(vm2) = πη(v)m2 that

vm2 + ηF(η−1, vm2) = vm2 + ηF(η−1, v)m2

and hence

ηF(η−1, vF(η−1, v)−1m) = ηF(η−1, v)F(η−1, v)−1m ,

from which it follows that

ηm = ηF(η−1, vF(η−1, v)−1m) ,

for all m ∈ M. So we have shown that ηM = ηW.
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Since η ∈ V \ Rad(F) and ε ∈ Rad(F), we have η+ε ∈ V \ Rad(F)
as well. So the conclusion of the previous paragraph is also valid for η+ε,

that is, (η+ ε)M = (η+ε)W. Now let m be an arbitrary element of M.

Then ηm = ηw1 and (η+ε)m = (η+ε)w2 for some w1, w2 ∈W. It follows

that

εm = ηm + (η+ε)m

= ηw1 + (η+ε)w2

= η(w1 + w2) +εw2 .

If w1 + w2 6= 0, then it would follow from this that

η = (εm +εw2) · (w1 + w2)
−1 ∈ εK = E ⊆ Rad(F) ,

which contradicts the choice of η. Hence we must have w1 + w2 = 0,

and it follows that εm = εw2. Since m was arbitrary, we have shown that

εM = εK also in this case.

This completes the proof of this theorem, and thereby also the proof of

Theorem 2.7.6.

2.7.2 Quadrangular Systems of Quadratic Form Type

Our goal in this section is to classify the quadrangular systems which are

normal.

Let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system which is normal.

In particular, Ω is reduced, so H ≡ 0.

Lemma 2.7.44. K is abelian, i.e. vk1k2 = vk2k1 for all v ∈ V and all

k1, k2 ∈ K. Equivalently, σ = 1.

Proof. Note that by the definition of σ, K is abelian if and only if σ = 1.

It suffices to show that vw1w2 = vw2w1 for all v ∈ V and all w1, w2 ∈W.

If v ∈ V \ E, then this follows by substituting w1 • w2 for m in Theorem

2.7.43. If v = ε, then εw1w2 = εw3 for some w3 ∈ W since Ω is normal.

Hence, by Theorem 2.7.19, εw1w2 = εw3 = εw3 = εw1w2 = εw2w1.

Finally, assume that v = εk for some k ∈ K. Then vw1w2 = εkw1w2 =
εw2w1kσ = εw1w2kσ = εkw2w1 = vw2w1, again by Theorem 2.7.19. This

shows the lemma in all possible cases.

Lemma 2.7.45. For all v ∈ V, we have that vK = vW.
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Proof. It suffices to show that vM = vW.

First, assume that v ∈ E, say v = εk for some k ∈ K. Let m ∈ M be

arbitrary. Then εm = εw for some w ∈ W, since Ω is normal. Since K
is abelian by Lemma 2.7.44, it follows that vm = εkm = εmk = εwk =
εkw = vw, which shows that vM = vW in this case.

Now, assume that v ∈ V \ E. Note that it is sufficient to show that

vw1w2 ∈ vW for all w1, w2 ∈ W; it then follows by induction that vM =
vW. Choose two arbitrary elements w1, w2 ∈ W. By Lemma 2.7.40(ii) and

Lemma 2.7.44, we have that vw1w2w3 + vw1w2w3 = vF(εw1,εw2w3), or

equivalently, vw1w2w3(δ+ δ) = vF(εw1,εw2w3), for all w3 ∈ W.

We now distinguish two cases. First, assume that δ + δ = 0. It then

follows, by (Q12), that all elements of V and W have order at most 2. Since

Ω is normal, there exists a w ∈ W such that εw1w2 = εw. By the previous

paragraph, F(εw1,εw2w) = 0, and hence, by Lemma 2.7.22 and Lemma

2.7.40(i), F(vw1w2, vw) = F(vw1, vw2w) = F(εw1,εw2w)v = 0 as well. By

Lemma 2.7.15, it follows that

δ(vw1w2 + vw) = δ · vw1w2 + δ · vw + F(vw1w2, vw)

= δ ·εw1w2 · v + δ ·εw · v

= δ ·εw · v + δ ·εw · v

= 0 ,

which implies that vw1w2 + vw = 0, hence vw1w2 = vw ∈ vW, which is

what we had to show.

Now, assume that δ+ δ 6= 0. Then we set w3 = (δ+ δ)−1 in the identity

vw1w2w3(δ+ δ) = vF(εw1,εw2w3), which yields

vw1w2 = vF(εw1,εw2(δ+ δ)−1) ∈ vW ,

which proves the lemma in this case as well.

Lemma 2.7.46. Let w ∈ W and k ∈ K be such that vk = vw for some v ∈ V∗.
Then k = w.

Proof. We will show that uk = uw for all u ∈ V. We distinguish two cases.

First, assume that u ∈ vK. Since vK = vW by Lemma 2.7.45, there

exists a z ∈ W such that u = vz. Then uk = vzk = vkz = vwz = vzw =
uw, since K is abelian.

Now, assume that u 6∈ vK. By Lemma 2.7.45, there exists a w2 ∈ W
such that uk = uw2, and there exists a w3 ∈ W such that (v + u)k =
(v + u)w3. We have to show that w = w2. We have that vw3 + uw3 =
(v + u)w3 = (v + u)k = vk + uk = vw + uw2, from which it follows that
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u(w3−w2) = v(w−w3). Since u 6∈ vK, this can only occur if w3 −w2 = 0,

and then w− w3 = 0 as well. Hence w = w3 = w2, which is what we had

to show.

Remark 2.7.47. It follows from this lemma that if k1, k2 ∈ K are such that

vk1 = vk2 for some v ∈ V∗, then k1 = k2, since, by Lemma 2.7.45, there

exists a w ∈ W such that vk1 = vw = vk2.

Theorem 2.7.48. K+,• is a commutative field.

Proof. We have already shown in Lemma 2.7.44 that K is a commutative

ring. It only remains to show that every element of K∗ is invertible. Let k be

an arbitrary non-zero element of K. Since Ω is normal, εk = εw for some

w ∈ W; hence by Lemma 2.7.46, k = w. It follows that k is invertible with

inverse k−1 = w−1, since w •w−1 = w−1 • w = δ.

By Lemma 2.7.46, (K, +) ∼= W as additive groups. We will denote the

isomorphism by square brackets, that is, for every t ∈ K, we will denote

the corresponding element of W by [t]. Since K is a commutative field, V is

a (left) vector space over K, with scalar multiplication given by tv := v[t],
for all t ∈ K and all v ∈ V. From now on, we will denote the multiplicative

identity of K by 1 in place of δ. Then δ = [1] ∈ W. If there is no danger of

confusion, we will also write st in place of s • t for s, t ∈ K, and t2 in place

of t • t for t ∈ K.

Definition 2.7.49. We define a map q from V to K by setting [q(v)] = δv =
[1]v for all v ∈ V. Furthermore, we define a map f from V × V to K by

setting [ f (v1, v2)] = F(v1, v2) for all v1, v2 ∈ V.

Lemma 2.7.50. For all v ∈ V, all w ∈W and all t ∈ K, we have that

(i) vw = vw ;

(ii) tv = tv .

Proof. We first show (i). If v ∈ εW, then vw ∈ εW as well, and it follows

from Theorem 2.7.19 and Lemma 2.7.44 that vw = vw = vw (remember

that σ = 1). If v 6∈ εW = εK, then we have already shown this in Theorem

2.7.43.

Identity (ii) now follows by substituting [t] for w in (i).

Lemma 2.7.51. For all v ∈ V and all t ∈ K, we have that [t]v = [tq(v)].

Proof. Let w := [t] ∈ W. We have to show that wv = w • δv. By (Q16) and

Lemma 2.7.50(i), v−1 ·wv = vw = vw. On the other hand, v−1 · (w • δv) =
v−1 · δv · w = vw, again by (Q16). Hence v−1 · wv = v−1 · (w • δv), which

implies by Lemma 2.7.46 that wv = w • δv.
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Lemma 2.7.52. For all u, v ∈ V and all t ∈ K, we have that

πu(tv) = tπu(v) .

Proof. Let w := [t] ∈ W. If we substitute u for v and v(δu)−1 for c in

(Q25), then we get that πu(v)w = πu

(
v(δu)−1(wu)

)
, and hence, by Lemma

2.7.50(i) and Lemma 2.7.51, that

tπu(v) = πu(v)w

= πu(v(δu)−1(wu))

= πu(v · [q(u)−1] · [tq(u)])

= πu(tq(u)q(u)−1v)

= πu(tv) ,

which is what we had to show.

Theorem 2.7.53. q is an anisotropic quadratic form from V to K with corre-

sponding bilinear form f .

Proof. Let v ∈ V and t ∈ K be arbitrary, and let w := [t] ∈ W. Then, by

(Q26),

[q(tv)] = [q(vw)] = δ · vw = δ ·εw · v = δv ·εw .

By Lemma 2.7.46, it follows from Lemma 2.7.38 that w •w • z = z ·εw for

all z ∈W. Hence

[q(tv)] = δv ·εw = w • w • δv = [t] • [t] • [q(v)] = [t2q(v)] .

Next, it follows from (Q11) that for all u, v ∈ V, [q(u + v)] = δ(u + v) =
δu + δv + F(u, v) = [q(u)] + [q(v)] + [ f (u, v)] = [q(u) + q(v) + f (u, v)].
We now show that f is bilinear over K. Let u, v ∈ V∗ and t ∈ K be arbitrary.

By Lemma 2.7.52, we have that πu(tv) = tπu(v). By the definition of πu,

this yields

tv− u−1F(u, tv) = tv− tu−1F(u, v) .

By Lemma 2.7.50(ii), it follows that u−1F(u, tv) = tu−1F(u, v), hence

u−1 · [ f (u, tv)] = u−1 · [ f (u, v)] · [t] = u−1 · [t f (u, v)] .

By Lemma 2.7.46, this implies that f (u, tv) = t f (u, v). Since f is symmet-

ric, it follows from this that f is bilinear over K.

Finally, q is anisotropic, since q(v) = 0 implies that δv = 0 and hence

v = 0.
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Lemma 2.7.54. For all u, v ∈ V, we have q(v) = q(v) and f (u, v) = f (u, v).

Proof. We have that

q(v) = q( f (ε, v)ε− v)

= q( f (ε, v)ε) + q(v)− f ( f (ε, v)ε, v)

= f (ε, v)2q(ε) + q(v)− f (ε, v) f (ε, v)

= q(v) ,

and hence

f (u, v) = q(u + v)− q(u)− q(v)

= q(u + v)− q(u)− q(v)

= f (u, v)

as well.

Theorem 2.7.55. (V, W,τV ,τW ,ε, δ) ∼= ΩQ(K, V, q).

Proof. Observe that q(ε) = 1, since [q(ε)] = δε = δ = [1].
Let φ be the isomorphism from [V] to V which maps [v] to v for all

v ∈ V, and let ψ be the isomorphism from [K] to W which maps [t] to [t]
for all t ∈ W. Then φ([ε]) = ε and ψ([1]) = [1] = δ. Furthermore,

φ([v][t]) = φ([tv]) = tv = v[t] = φ([v])ψ([t]) , and

ψ([t][v]) = ψ([tq(v)]) = [tq(v)] = [t]v = ψ([t])φ([v]) ,

for all t ∈ K and all v ∈ V. Hence (φ,ψ) is an isomorphism fromΩQ(K, V, q)
to (V, W,τV ,τW ,ε, δ).

This completes the proof of Theorem 2.7.7.

2.7.3 Quadrangular Systems of Indifferent Type

Our goal in this section is to classify the quadrangular systems which are

indifferent.

Let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system which is indiffer-

ent. Then F ≡ 0 and H ≡ 0. By Lemma 2.7.11, all elements of V and W
have order 1 or 2, and for all v ∈ V, we have v = v. Furthermore, we have

πv(c) = c for all v, c ∈ V.

Lemma 2.7.56. K is abelian, i.e. vk1k2 = vk2k1 for all v ∈ V and all

k1, k2 ∈ K.
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Proof. By Lemma 2.7.36, we have that πv(vk) = vkσ and hence vk = vkσ

for all v ∈ V and all k ∈ K. It follows that vk1k2 = v(k1 • k2) = v(k1 • k2)σ =
v(kσ2 • kσ1 ) = vkσ2 kσ1 = vk2k1 for all v ∈ V and all k1, k2 ∈ K.

Lemma 2.7.57. For all v ∈ V and all k ∈ K, we have that vkk = v · δ(εk).

Proof. It already follows from Lemma 2.7.39 that vmm = v · δ(εm) for all

m ∈ M. Now suppose that vk1k1 = v · δ(εk1) and vk2k2 = v · δ(εk2) for

some k1, k2 ∈ K. We will show that v(k1 + k2)(k1 + k2) = v · δ(ε(k1 + k2)),
which will prove the lemma.

By (Q11), (Q12) and Lemma 2.7.56, we have that

v(k1 + k2)(k1 + k2) = vk1k1 + vk2k2 + vk1k2 + vk2k1

= v · δ(εk1) + v · δ(εk2) + vk1k2 + vk1k2

= v · (δ(εk1) + δ(εk2))

= v · δ(εk1 +εk2)

= v · δ(ε(k1 + k2)) ,

and we are done.

Lemma 2.7.58. For all v ∈ V and all k ∈ K, we have that δ · vk = δ ·εk · v.

Proof. In Lemma 2.7.15, we have already shown this for all k ∈ M. Now

suppose that δ · vk1 = δ ·εk1 · v and δ · vk2 = δ ·εk2 · v for some k1, k2 ∈ K.

We will then show that δ · v(k1 + k2) = δ ·ε(k1 + k2) · v, which will prove

the lemma.

By (Q11), we have that

δ · v(k1 + k2) = δ · (vk1 + vk2)

= δ · vk1 + δ · vk2

= δ ·εk1 · v + δ ·εk2 · v

= δ · (εk1 +εk2) · v

= δ ·ε(k1 + k2) · v ,

and we are done.

Theorem 2.7.59. K+,• is a commutative field of characteristic 2 with multi-

plicative identity δ.

Proof. We have already shown in Lemma 2.7.56 that K+,• is a commutative

ring. Let k ∈ K be arbitrary. If δ(εk) = 0, then it would follow from Lemma

2.7.58 that vk = 0 for all v ∈ V and thus k = 0. Hence δ(εk) is invertible for
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all k 6= 0, and it then follows from Lemma 2.7.57 that vkk(δ(εk))−1 = v for

all v ∈ V. This implies that k is invertible with inverse k−1 := k • (δ(εk))−1.

Furthermore, for all v ∈ V and all k ∈ K, we have that v(k + k) =
vk + vk = 0, hence k + k = 0, so char(K) = 2.

Lemma 2.7.60. If vk1 = vk2 for some v ∈ V∗ and some k1, k2 ∈ K, then

k1 = k2.

Proof. If vk1 = vk2 for some v ∈ V∗ and some k1, k2 ∈ K, then v(k1 + k2) =
0. If we would have that k1 6= k2, then k1 + k2 would be invertible, and it

would then follow that v = v(k1 + k2)(k1 + k2)−1 = 0, a clear contradiction.

Hence k1 = k2.

Theorem 2.7.61. (K, W, δV) is an indifferent set. Moreover, δv • w = wv
and w •w • δv = δ · vw for all v ∈ V and all w ∈W.

Proof. It is obvious that W is a subgroup of (K, +). Since δv1 + δv2 =
δ(v1 + v2) by (Q11), δV is a subgroup of (K, +) as well. Furthermore, both

W and δV contain the multiplicative identity δ.

By (Q25), ε · δv · w = ε · wv for all v ∈ V and all w ∈ W. It follows by

Lemma 2.7.60 that δv • w = wv, and hence δV •W ⊆W.

By (Q26), we have that δ · vw = δ · εw · v = δv · εw, for all v ∈ V
and all w ∈ W. By Lemma 2.7.60, it follows from Lemma 2.7.38 that

w •w • z = z ·εw for all z ∈W. Hence δv ·εw = w •w • δv. It follows that

w • w • δv = δ · vw, and hence W2 • δV ⊆ δV.

Finally, it follows from the definition of K that K is generated by W as a

ring. This shows that (K, W, δV) is an indifferent set.

Theorem 2.7.62. (V, W,τV ,τW ,ε, δ) ∼= ΩD(K, W, δV).

Proof. First, we observe that v is uniquely determined by δv, since δ(v1 + v2)
= δv1 + δv2 by (Q11).

Let φ be the isomorphism from [δV] to V which maps [δv] to v for all

v ∈ V, and let ψ be the isomorphism from [W] to W which maps [w] to w
for all w ∈ W. Then φ([δ]) = φ([δε]) = ε and ψ([δ]) = δ. Furthermore, it

follows from Theorem 2.7.61 that

φ([δv][w]) = φ([w2 • δv]) = φ([δ · vw]) = vw = φ([δv])ψ([w]) , and

ψ([w][δv]) = ψ([δv • w]) = ψ([wv]) = wv = ψ([w])φ([δv]) ,

for all v ∈ V and all w ∈ W. Hence (φ,ψ) is an isomorphism from

ΩD(K, W, δV) to (V, W,τV ,τW ,ε, δ).

This completes the proof of Theorem 2.7.8, and thereby the classifica-

tion of all reduced quadrangular systems.
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2.7.4 Quadrangular Systems of Pseudo-quadratic Form

Type, Part I

Let Ω = (V, W,τV ,τW ,ε, δ) be a wide quadrangular system which is the

extension of a reduced quadrangular system Λ of proper involutory type,

i.e. Λ = (V, Rad(H),τV ,τW ,ε, δ) ∼= ΩI(K, K0 ,σ) with K = 〈K0〉 andσ 6= 1,

where τV and τW are as in Remark 2.7.3. In particular, V = [K].

Definition 2.7.63. Let Y := Rad(H). Note that Y is a normal subgroup

of W since Y ⊆ Z(W) by (Q8); let W̃ := W/Y. Let ι be the canonical

surjection from W to W̃. We will also write w̃ in place of ι(w), for all

w ∈W. Then w̃1 = w̃2 if and only if w1 � w2 ∈ Y.

By (Q8) and (Q7), [w1, w2] ∈ Im(F) ⊆ Y, hence W̃ is abelian; we will

use the additive notations + and − for W̃. We can define a map τ̃W from

W̃ ×V to W̃, which we will denote by · or by juxtaposition, by setting

τ̃W(w̃, v) := w̃ · v := w̃v

for all v ∈ V and all w ∈ W. This is well defined: let w̃1 = w̃2, then

w1 � w2 ∈ Y, and hence w1v � w2v = (w1 � w2)v ∈ Y since Y · V = Y; it

then follows that w̃1v = w̃2v.

Remark 2.7.64. If s ∈ K0, then the notation [s] is ambiguous. If we want

to make clear whether we mean [s] ∈ V or [s] ∈ W, we will write [s]
V

and

[s]
W

, respectively. Note that [s]
W
∈ Y for all s ∈ K0, and that ε[s]

W
= [s]

V
for

all s ∈ K0.

Theorem 2.7.65. W̃ is a right vector space over K, with scalar multiplication

given by w̃t := w̃ · [t], for all t ∈ K and all w̃ ∈ W̃.

Proof. We have that

(w̃1 + w̃2)t = (w̃1 + w̃2) · [t] = ι
(
(w1 + w2) · [t]

)

= ι(w1 · [t]) + ι(w2 · [t]) = w̃1 · [t] + w̃2 · [t] = w̃1t + w̃2t

for all t ∈ K and all w1, w2 ∈ W. By (Q11) and (Q7),

w̃(t1 + t2) = w̃ · [t1 + t2] = w̃ · ([t1] + [t2]) = ι(w · ([t1] + [t2]))

= ι(w · [t1] � w · [t2] � F([t2]w, [t1]))

= ι(w · [t1]) + ι(w · [t2]) = w̃ · [t1] + w̃ · [t2] = w̃t1 + w̃t2

for all t1, t2 ∈ K and all w ∈W.
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It only remains to show that w̃(t1t2) = (w̃t1)t2 for all t1, t2 ∈ K and

all w ∈ W. (The other axioms for a vector space are obvious.) We thus

have to check that ι(w · [t1t2]) = ι(w · [t1] · [t2]). Since K = 〈K0〉, it suffices

to show this for t1 ∈ K0; the result for t1 = s1 . . . sn with s1, . . . , sn ∈ K0

will then follow by induction on n, and since we have already shown that

w̃ · [t3 + t4] = w̃ · [t3] + w̃ · [t4] for all t3, t4 ∈ K, the result then follows for

all t1 ∈ K.

By Remark 2.7.64, (Q26) and the definition of ΩI(K, K0 ,σ), we have

that

w · [s]
V
· [t] = w ·ε[s]

W
· [t]

= w · [t][s]
W

= w · [st]
V

and hence ι(w · [s]
V
· [t]) = ι(w · [st]

V
) for all s ∈ K0 and all t ∈ K, which is

what we had to show.

Definition 2.7.66. Let π be the map from W̃ to V/[K0]V which maps w̃ to

εw (mod [K0]V). This map is well defined: let w1, w2 ∈ W be such that

w̃1 = w̃2. Then w1 � w2 ∈ Y, hence

εw1 −εw2 = ε((w1 � w2) � w2)−εw2

= ε(w1 � w2) +εw2 −εw2

= ε(w1 � w2) ∈ εY = ε[K0]W = [K0]V

by (Q12).

Lemma 2.7.67. For all w̃ ∈ W̃, we have that π(w̃) = 0 if and only if w̃ = 0.

Proof. Let w ∈ W be such that π(w̃) = 0. Then εw ∈ [K0]V , say εw = [s]
V

with s ∈ K0. By 2.2.13(ii), ε(�[s]
W
) = −ε[s]

W
since [s]

W
∈ Y. It follows

that ε(w � [s]
W
) = εw +ε(�[s]

W
) = εw−ε[s]

W
= εw− [s]

V
= 0, and hence

w = [s]
W
∈ Y. It follows that w̃ = 0.

Definition 2.7.68. Let h be the map from W̃× W̃ to K, defined by the iden-

tity [h(w̃1, w̃2)] := H(w1, w2) for all w̃1, w̃2 ∈ W̃. Since W̃ = W/ Rad(H),
the map h is well defined.

Lemma 2.7.69. For all v ∈ V, all w ∈ W and all y1, . . . , yn ∈ Y, we have

that vwy1 . . . yn = vy1 . . . ynw.
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Proof. We will first prove the lemma for n = 1. Let v ∈ V, w ∈ W and

y ∈ Y. We may assume that w 6= 0. Observe that Πw(y) = y since

y ∈ Rad(H). It follows from (Q23) that vy = −v(�w)yκ(w), and hence,

by (Q18), vy(�w) = v(�w)y. Substituting �w for w now yields the result

for n = 1.

We advance to general n by induction. Let v ∈ V, let w ∈ W and let

y1, . . . , yn ∈ Y, and suppose that vwy1 . . . yn−1 = vy1 . . . yn−1w. Then

vwy1 . . . yn = vy1 . . . yn−1w · yn

= vy1 . . . yn−1ynw ,

where we have used the lemma for n = 1 in the last equality. This com-

pletes the proof of this lemma.

Lemma 2.7.70. For all w ∈ W and all y1, . . . , yn ∈ Y, we have that

εwy1 . . . yn = εyn . . . y1w .

In particular, we have that [s]
V
w = εw[s]

W
for all w ∈ W and all s ∈ K0.

Proof. By Theorem 2.7.19, εy1 . . . yn = εyn . . . y1. The first result follows

by substituting ε for v in Lemma 2.7.69.

In the particular case n = 1 and y1 = [s]
W
, we get that εw[s]

W
=

ε[s]
W

w = [s]
V
w.

Theorem 2.7.71. The map h is a skew-hermitian form over K with respect to

σ.

Proof. Since H(w1, w2) = −H(w2, w1) for all w1, w2 ∈ W by (Q22), and

since [t] = [tσ ] for all t ∈ K, it follows that h(w̃1, w̃2) = −h(w̃2, w̃1)σ , for all

w̃1, w̃2 ∈ W̃.

By (Q22), (Q12) and Lemma 2.7.70,

H(w1 · [s]V , w2) = −H(w2, w1 · [s]V)

= −[s]
V
· (w1 � w2) + [s]

V
· w1 + [s]

V
· w2

= −ε(w1 � w2)[s]W +εw1[s]W +εw2[s]W

= −H(w2, w1) · [s]W
= H(w1, w2) · [s]W ,

for all w1, w2 ∈ W and all s ∈ K0. Hence

[h(w̃1s, w̃2)] = [h(w̃1, w̃2)] · [s]W = [sh(w̃1, w̃2)] ,
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from which it follows that h(w̃1s, w̃2) = sh(w̃1, w̃2) for all w1, w2 ∈ W and

all s ∈ K0. Since K = 〈K0〉 and since h is additive in both variables, it

follows from this that h(w̃1t, w̃2) = tσh(w̃1, w̃2) for all w1, w2 ∈ W and all

t ∈ K.

Finally,

h(w̃1, w̃2t) = −h(w̃2t, w̃1)
σ = −(tσh(w̃2 , w̃1))

σ

= −h(w̃2, w̃1)
σ t = h(w̃1 , w̃2)t

for all w1, w2 ∈ W and all t ∈ K. This shows that h is a skew-hermitian

form over K with respect to σ.

Definition 2.7.72. For all t ∈ K, let kt be the homomorphism from V to

itself which maps [t′] to [tt′] for all [t′] ∈ [K] = V. We denote the action

of kt by right juxtaposition, i.e. [t′]kt = [tt′] for all t, t′ ∈ K. In particular,

we can identify ks and [s]
W

for all s ∈ K0. Moreover, we set kσt := ktσ for

all t ∈ K. Note that the set {kt | t ∈ K} coincides with the set K that

we defined in the beginning of section 2.7.1. In particular, we can apply

the lemmas and theorems of that section on the sub-quadrangular system

Λ = (V, Y,τV ,τW ,ε, δ).

Lemma 2.7.73. For all w ∈W and all t1, t2 ∈ K, we have that

εk1wkσ2 +εk2wkσ1 = εF([t2]w, [t1]) + H(w[t2], w[t1]) ,

where k1 := kt1
and k2 := kt2

.

Proof. By Lemma 2.7.22 and the definition of the map v 7→ v, we have that

εF([t2]w, [t1]) = εF(εk2w,εk1)

= εF(εk2wkσ1 ,ε)

= εk2wkσ1 +εk2wkσ1 ,

and by Theorem 2.7.71 and 2.2.13(ii), we have that

H(w[t2], w[t1]) = [h(w̃t2, w̃t1)]

= [tσ2 h(w̃, w̃t1)]

= [h(w̃, w̃t1)]k
σ
2

= H(w, w[t1])kσ2
= [t1](�w)kσ2 + [t1]wkσ2
= εk1(�w)kσ2 +εk1wkσ2 .
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It only remains to show that εk2wkσ1 = −εk1(�w)kσ2 . By Lemma 2.7.70, we

have that εkσt w = εwkt for all w ∈ W and all t ∈ K. By (Q16) with ε in

place of v and Lemma 2.7.18 with ε(�w) in place of v, it follows that

εk2wkσ1 = εwkσ2 kσ1

= −ε(�w)kσ2 kσ1

= −ε(�w)kσ1 kσ2
= −εk1(�w)kσ2 ,

which completes the proof of this lemma.

Theorem 2.7.74. For all w ∈W and all t ∈ K, we have that

ε · w[t] = εktwkσt .

Proof. First assume that t = s1 . . . sn with s1, . . . , sn ∈ K0. For all i ∈
{1, . . . , n}, let yi := [si]W ∈ Y. Then we have to show thatε ·w(εy1 . . . yn) =
εy1 . . . ynwyn . . . y1 for all w ∈ W. By (Q16), Lemma 2.7.27 and Lemma

2.7.70,

εy1 . . . ynw = −(εy1 . . . yn)−1(�w ·εy1 . . . yn)

= −εy−1
n . . . y−1

1 (�w ·εy1 . . . yn)

= −ε(�w ·εy1 . . . yn)y−1
1 . . . y−1

n

= ε(w ·εy1 . . . yn)y−1
1 . . . y−1

n ,

from which it follows that ε(w ·εy1 . . . yn) = εy1 . . . ynwyn . . . y1.

Now suppose that ε · w[t1] = εk1wkσ1 and ε · w[t2] = εk2wkσ2 for some

t1, t2 ∈ K, where where k1 := kt1
and k2 := kt2

. We will show that

ε · w[t1 + t2] = ε(k1 + k2)w(k1 + k2)
σ ,

which will prove the theorem for all t ∈ K, since K = 〈K0〉.
By (Q11), (Q12) with v = ε, (Q7) and Lemma 2.7.73, we have that

ε · w[t1 + t2] = ε · w([t1] + [t2])

= ε · (w[t1] � w[t2] � F([t2]w, t1))

= ε · w[t1] +ε · w[t2] +εF([t2]w, t1) + H(w[t2], w[t1])

= εk1wkσ1 +εk2wkσ2 +εk1wkσ2 +εk2wkσ1
= ε(k1 + k2)w(k1 + k2)

σ ,

which completes the proof of this theorem.
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Lemma 2.7.75. Let w ∈ W and t ∈ K be arbitrary. Let x ∈ K be such that

εw = [x]. Then [t]w = [xt], and εktwkσt = [tσxt].

Proof. By Lemma 2.7.70, we have that

[t]w = εktw = εwkσt = [xσ ]kσt = [tσxσ ] = [xt] ;

it then follows that

εktwkσt = [xt]kσt = [tσxt] ,

and we are done.

Definition 2.7.76. For all w̃ ∈ W̃, let p(w̃) be any element t ∈ K such that

[t] is contained in the coset π(w̃) ∈ V/[K0]V . Hence p is a map from W̃ to

K such that [p(w̃)] ≡ εw (mod [K0]V).

Theorem 2.7.77. (K, K0 ,σ , W̃ , p) is an anisotropic pseudo-quadratic space

with corresponding skew-hermitian form h.

Proof. It only remains to show that p is a pseudo-quadratic form. All equiv-

alences will be modulo [K0]V . By (Q12), we have that

[p(w̃1 + w̃2)] ≡ [p(w̃2 + w̃1)]

≡ ε(w2 � w1)

≡ εw2 +εw1 + H(w1, w2)

≡ [p(w̃1)] + [p(w̃2)] + [h(w̃1, w̃2)]

for all w1, w2 ∈W, which shows the first property.

Next, let w be an arbitrary element of W, and let x ∈ K be such that

εw = [x]. Then [p(w̃)] ≡ [x], and hence [tσ p(w̃)t] ≡ [tσxt] as well, since

tσK0t ⊆ K0. It follows from Theorem 2.7.74 and Lemma 2.7.75 that

[p(w̃t)] ≡ ε · w[t] ≡ εktwkσt ≡ [tσxt] ≡ [tσ p(w̃)t] ,

which shows the second property.

Finally, if [p(w̃)] ≡ 0 for some w̃ ∈ W̃, then π(w̃) = 0 and hence w̃ = 0
by Lemma 2.7.67.

Lemma 2.7.78. Let the group T be as in section 2.6.4. For each element

(a, x) ∈ T, there is a unique element w ∈ W such that w ∈ a and εw = [x].
If we denote this element by χ(a, x), then χ is an isomorphism from T to W.
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Proof. Let (a, x) ∈ T be arbitrary. Choose an arbitrary element z ∈ a.

Then a = z̃, and εz ≡ [x] (mod [K0]V) by the definition of T. Hence

εz− [x] ∈ [K0]V = εY, say εz− [x] = εy with y ∈ Y. Set w = z � y, then

w̃ = z̃ = a, and εw = ε(z � y) = εz− εy = [x] by (Q12) and 2.2.13(ii).

This shows the existence of w.

Now suppose that w1, w2 ∈ W are such that w̃1 = w̃2 and εw1 = εw2.

Then w1 � w2 ∈ Y, and hence, by (Q12),

0 = εw1 −εw2

= ε((w1 � w2) � w2)−εw2

= ε(w1 � w2) +εw2 −εw2

= ε(w1 � w2) ,

from which it follows that w1 = w2.

Hence χ : T → W is a well defined map, which is bijective, with the

inverse map given by χ−1(w) = (w̃, x) ∈ T, where [x] = εw. In order to

show that χ is an isomorphism, it now suffices to show that χ−1(w1 � w2) =
χ−1(w1) � χ−1(w2). Let x1, x2 ∈ K be such that [x1] = εw1 and [x2] = εw2.

Then ε(w1 � w2) = εw1 +εw2 + H(w2, w1) = [x1] + [x2] + [h(w̃2, w̃1)], and

hence

χ−1(w1 � w2) = (w̃1 + w̃2, x1 + x2 + h(w̃2, w̃1))

= (w̃1, x1) � (w̃2, x2)

= χ−1(w1) � χ−1(w2) ,

which completes the proof of this lemma.

Theorem 2.7.79. (V, W,τV ,τW ,ε, δ) ∼= ΩP(K, K0 ,σ , W̃ , p).

Proof. Let φ be the isomorphism from [K] to V which maps [t] to [t] for all

t ∈ K, and let ψ be the isomorphism from [T] to W which maps [a, x] to

χ(a, x) for all (a, x) ∈ T. Then φ([1]) = [1] = ε and ψ([0, 1]) = δ since

δ ∈ Y (hence δ̃ = 0) and εδ = [1].
Now, let t ∈ K and (a, x) ∈ T be arbitrary. Let w = ψ([a, x]) = χ(a, x),

then a = w̃ and εw = [x]. By Lemma 2.7.75, [xt] = [t]w, hence

φ([t][a, x]) = φ([xt]) = [xt] = [t]w = φ([t])ψ([a, x]) , and

ψ([a, x][t]) = ψ([at, tσxt]) = w[t] = ψ([a, x])φ([t]) ,

since w̃[t] = w̃t = at and ε · w[t] = [tσxt] by Theorem 2.7.74 and Lemma

2.7.75. This shows that (φ,ψ) is an isomorphism from ΩP(K, K0 ,σ , W̃ , p)
to (V, W,τV ,τW ,ε, δ).

This completes the proof of Theorem 2.7.9.
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2.7.5 Quadrangular Systems of Type F4

Let Ω = (V, W,τV ,τW ,ε, δ) be a wide quadrangular system which is the

extension of a reduced quadrangular system Λ of quadratic form type, i.e.

Λ = (V, Rad(H),τV ,τW ,ε, δ) ∼= ΩQ(K, V0, q), where τV and τW are as in

Remark 2.7.3.

Our goal in this section is to classify these quadrangular systems in the

case that Rad(F) 6= 0. So assume that Rad(F) 6= 0. It then follows from

(Q10) that ε ∈ Rad(F). Note that v = v for all v ∈ V by Lemma 2.7.11.

Remark 2.7.80. We will identify V and V0 in the sequel if there is no danger

of confusion, which will allow us to use notations like tv with t ∈ K and

v ∈ V.

Observe that the axiom system is very symmetrical now (see section

2.8.3). In particular, every identity will have a “dual identity”, which is

obtained by switching the roles of V and W.

Lemma 2.7.81. For all v, v1, v2 ∈ V and all w, w1, w2 ∈W, we have that

(i) F(v1w, v2) = F(v1, v2w) ;

(ii) H(w1v, w2) = H(w1, w2v) .

Proof. Since both V and W are abelian, it follows from (Q21) and (Q11)

that F(v1w, v2) = w(v2 + v1) + wv2 + wv1 = w(v1 + v2) + wv1 + wv2 =
F(v2w, v1) = F(v1, v2w), which proves (i). Similarly, (ii) follows from (Q22)

and (Q12). (Identity (ii) is the “dual” of identity (i).)

Definition 2.7.82. Let R := Rad(F). Then ε ∈ R, and R 6= V since F 6≡ 0.

Moreover, let L := q(R) ⊆ K.

Lemma 2.7.83. Σ := (R, W,τV ,τW ,ε, δ) is a quadrangular system with

FΣ ≡ 0 and HΣ 6≡ 0; see Remark 2.7.3.

Proof. First of all, we observe that R = Rad(F) is a subgroup of V, since

F is additive in both variables. We have that Im(FΣ) = F(R, R) = 0, and

Im(HΣ) = H(W, W) = Im(H) 6= 0. It now only remains to show that

τV(R×W) ⊆ R, H(W, W) ⊆ R and (R∗)−1 ⊆ R.

If v ∈ R, then F(v, V) = 0, hence F(vw, V) = F(v, Vw) ⊆ F(v, V) = 0
as well for all w ∈W, by Lemma 2.7.81(i). Hence τV(R×W) = R ·W ⊆ R.

Since W is abelian, it follows from (Q8) that H(W, W) ⊆ Rad(F) = R.

Finally, if v ∈ R∗, then F(v−1, V) = F(v, V)v−1 = 0 by (Q17), and hence

v−1 ∈ R. Thus Σ := (R, W,τV ,τW ,ε, δ) is a quadrangular system.
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By Theorem 2.7.13, Σ∗ = (W, R,τW ,τV , δ,ε) is a reduced quadrangular

system. Suppose that Σ∗ were of involutory type, say Σ∗ ∼= QI(J, J0,σ)
for some involutory set (J, J0 ,σ). Then δ ∈ Rad(H) would imply that

0 = FΣ∗([1], [a]) = [a + aσ ] and hence a + aσ = 0 for all a ∈ J, from which it

would follow that FΣ∗([a], [b]) = [(aσb) + (aσb)σ ] = 0 for all a, b ∈ J. Hence

HΣ ≡ FΣ∗ = 0, a contradiction.

It follows that Σ∗ must be of quadratic form type. In particular, R has

the structure of a field, W is a (right) vector space over R, and the map

p : W → R : w 7→ εw is a quadratic form. If we denote the multiplication

in R by •, then we have that w(r1 • r2) = (wr1)r2 for all w ∈ W and all

r1, r2 ∈ R.

Lemma 2.7.84. L is a subfield of K, with K2 ⊆ L ⊆ K. Moreover, q is a field

isomorphism from R to L.

Proof. We will first prove that q is an isomorphism (both additive and multi-

plicative) from R to L. Since L = q(R), q is surjective. For all r1, r2 ∈ R, we

have that [q(r1 + r2)] = δ(r1 + r2) = δr1 + δr2 = [q(r1) + q(r2)], by (Q11);

hence q is additive. In particular, if q(r1) = q(r2), then q(r1 + r2) = 0 and

hence r1 = r2, since q is anisotropic. Hence q is injective. Furthermore, for

all r1, r2 ∈ R, we have that [q(r1 • r2)] = δ(r1 • r2) = (δr1)r2 = [q(r1)]r2 =
[q(r1)q(r2)] by Lemma 2.7.51, hence q is multiplicative.

It follows that L = q(R) is a commutative field which is isomorphic

to R. Finally, for all t ∈ K, we have that q(tε) = t2q(ε) = t2, hence

K2 ⊆ q(R) = L since tε ∈ Rad(F).

Definition 2.7.85. For all s ∈ L, we let [s] := q−1(s) ∈ V. If we want to

make clear whether we mean [s] ∈ V or [s] ∈W, we will write [s]
V

and [s]
W

,

respectively. By Lemma 2.7.84, we can consider W as a (left) vector space

over L via the scalar multiplication sw := w[s] for all w ∈ W and all s ∈ L.

Definition 2.7.86. Let q̂ be the map from W to L given by q̂(w) := q(p(w)) =
q(εw) for all w ∈ W, and let f̂ be the map from W ×W to L given by

f̂ (w1, w2) := q(H(w1, w2)) for all w1, w2 ∈ W. In particular, εw = [q̂(w)]
V

and H(w1, w2) = [ f̂ (w1, w2)]V for all w, w1, w2 ∈ W.

Lemma 2.7.87. q̂ is a quadratic form from W to L with corresponding bilin-

ear form f̂ .

Proof. Since p is a quadratic form from W to R with corresponding bilinear

form H, it follows by Lemma 2.7.84 that q̂ = q ◦ p is a quadratic form from

W to L with corresponding bilinear form f̂ = q ◦ H.
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Remark 2.7.88. For s ∈ L and t ∈ K, we will write q[s] and q̂[t] in place of

q([s]) and q̂([t]), respectively.

Lemma 2.7.89. For all v, v1, v2 ∈ V and all w, w1, w2 ∈W, we have that

(i) F(v1, v2) = 0 =⇒ wv1v2 = wv2v1 ;

(ii) H(w1, w2) = 0 =⇒ vw1w2 = vw2w1 .

Proof. Observe that (Q23) can be rewritten as “vΠw(z) = vwzw−1”, and

that (Q24) can be rewritten as “wπv(c) = wvcv−1” since πv(ε) = ε.

Let v1, v2 ∈ V be such that F(v1, v2) = 0, and assume that v1 6= 0.

Then πv1
(v2) = v2. It then follows from (Q24) that wv2 = wv1v2v−1

1 for all

w ∈ W, hence (i). Identity (ii) is the dual of (i).

In particular, s(wv) = wv[s] = w[s]v = (sw)v and t(vw) = vw[t] =
v[t]w = (tv)w for all v ∈ V, w ∈ W, s ∈ L and t ∈ K. It follows that the

notations swv and tvw are unambiguous.

Lemma 2.7.90. For all v ∈ V∗ and all w ∈W∗, we have that

(i) v−1 = q(v)−1v ;

(ii) w−1 = q̂(w)−1w .

Proof. If we substitute δ for w in (Q16), then we get that v = v−1 · δv =
v−1[q(v)]

W
= q(v)v−1, which proves (i). Similarly for (ii).

Lemma 2.7.91. For all v ∈ V∗, w ∈W∗, t ∈ K and s ∈ L, we have that

(i) w · tv = q̂[t]wv ;

(ii) v · sw = q[s]vw ;

(iii) wv = q̂[q(v)]wv−1 ;

(iv) vw = q[q̂(w)]vw−1 .

Proof. We only prove (i) and (iii). By (Q26),

w · tv = w · v[t] = w ·ε[t] · v = w · [q̂[t]]
V
· v = q̂[t]wv ,

which proves (i). It now follows from Lemma 2.7.90(i) and (i) that wv =
w · q(v)v−1 = q̂[q(v)]wv−1, which proves (iii).

Lemma 2.7.92. For all v, c ∈ V, w, z ∈ W, we have that

(i) wvcv = w( f (v, c)v + q(v)c) ;

(ii) vwzw = v( f̂ (w, z)w + q̂(w)z) .
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Proof. We only prove (i). We may assume that v 6= 0. By (Q24) and by

Lemma 2.7.90(i),

wvcv−1 = wπv(c) = w(c + f (v, c)v−1) = w(c + f (v, c)q(v)−1v) .

It follows by Lemma 2.7.91(iii) and Lemma 2.7.91(i) that

wvcv = q̂[q(v)]wvcv−1 = q̂[q(v)]w(c + f (v, c)q(v)−1v)

= w(q(v)c + f (v, c)v) ,

which is what we had to show.

Lemma 2.7.93. For all v, c ∈ V, w, z ∈W, we have that

(i) wvc + wcv = q̂[ f (v, c)]w + [ f (v, c) f (vw, c)] ;

(ii) vwz + vzw = q[ f̂ (w, z)]v + [ f̂ (w, z) f̂ (wv, z)] .

Proof. Again, we only prove (i). We may assume that v 6= 0. By (Q24),

Lemma 2.7.91(i) and Lemma 2.7.90(i),

wvcv−1 = wπv(c)

= w(c + f (v, c)v−1)

= wc + w · f (v, c)v−1 + F( f (v, c)v−1 , cw)

= wc + q̂[ f (v, c)]wv−1 + [ f ( f (v, c)q(v)−1v, cw)] ,

and hence, by Lemma 2.7.51,

wvc = wcv + q̂[ f (v, c)]w + [ f (v, c)q(v)−1 f (v, cw)]v

= wcv + q̂[ f (v, c)]w + [ f (v, c) f (v, cw)]

= wcv + q̂[ f (v, c)]w + [ f (v, c) f (vw, c)] ,

which is what we had to show.

Lemma 2.7.94. For all v ∈ V, c ∈ V∗, w ∈W and z ∈W∗, we have that

(i) z · vz = q̂(z)zv ;

(ii) c · wc = q(c)cw ;

(iii) f̂ (z, w · vz)z−1 = f̂ (zv, w)z ;

(iv) f (c, v · wc)c−1 = f (cw, v)c .

Proof. We will only prove (i) and (iii). First of all, observe that it follows

from (Q12) that H(w, wv) = 0 for all v ∈ V and all w ∈ W. In particular,

Πz(z · εz) = z · εz and Πz(z · vz) = z · vz. It thus follows from (Q26) that
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z · vz = z · εz · v = q̂(z)zv, which shows (i). By Lemma 2.7.81(ii) and

Lemma 2.7.90(ii), it now follows that

f̂ (z, w · vz)z−1 = f̂ (z · vz, w)q̂(z)−1z

= f̂ (q̂(z)zv, w)q̂(z)−1z

= f̂ (zv, w)z ,

which shows (iii).

Lemma 2.7.95. For all v ∈ V and all w ∈W, we have that

(i) [q̂(wv)] = q(v)[q̂(w)] ;

(ii) [q(vw)] = q̂(w)[q(v)] .

Proof. We will only prove (i). We may again assume that v 6= 0. Since

ε ∈ Rad(F), it follows by Lemma 2.7.81(i) that F(v,εc) = F(vc,ε) = 0
and hence πv(εc) = εc for all c ∈ V. If we set c = ε in (Q25), we thus

get that ε · δv · w = ε · wv, and hence [q̂(wv)] = ε · wv = ε · δv · w =
ε[q(v)]w = q(v)εw = q(v)[q̂(w)].

Lemma 2.7.96. For all v, c ∈ V and all w, z ∈W, we have that

(i) w · vz + q̂(z)wv = f̂ (w, zv)z + f̂ (w, z)zv ;

(ii) v · wc + q(c)vw = f (v, cw)c + f (v, c)cw .

Proof. We will only prove (i). We may assume that z 6= 0. By (Q26), we

have that

w ·εz · v + z−1H(z, w ·εz) · v = w · vz + z−1H(z, w · vz) ,

hence

q̂(z)wv + f̂ (z, w ·εz)z−1v = w · vz + f̂ (z, w · vz)z−1 ,

and it follows from Lemma 2.7.94(iii) that

q̂(z)wv + f̂ (z, w)zv = w · vz + f̂ (zv, w)z ,

which is what we had to show.

At this point, we will break the symmetry. We cannot avoid this, since L
is a subfield of K, but not vice versa.

Lemma 2.7.97. For all t ∈ K and all s ∈ L, we have that

(i) s[t] = [st] ;

(ii) t[s] = [t2s] .
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Proof. By Lemma 2.7.51, we have that s[t] = [t][s] = [tq[s]]. Since [s] =
q−1(s) by definition, it follows that s[t] = [st]. On the other hand, t[s] =
tq−1(s) = q−1(t2s) = [t2s].

Now choose fixed arbitrary elements ξ ∈ W \Y and d ∈ V \ R.

Theorem 2.7.98. There exists an element e ∈ V such that f (d, e) = 1 and

f (d, eξ) = 0. Moreover, f (dξ , eξ) = q̂(ξ) ∈ L \ K2.

Proof. We will first show the last statement. So let a, b ∈ V be arbitrary

elements such that f (a, b) = 1. Then, by Lemma 2.7.81(i) and Lemma

2.7.91(iv), we have that

f (aξ , bξ) = f (a, bξξ) = f (a, q[q̂(ξ)]b) = q[q̂(ξ)] f (a, b) = q[q̂(ξ)] = q̂(ξ)

(note that [s] = q−1(s) for all s ∈ L by definition). Let α := q̂(ξ). Suppose

that α ∈ K2, say α = t2 for some t ∈ K. Then q(tε) = t2 = α = q̂(ξ) =
q(εξ), hence ε[t] = tε = εξ . Since [t] ∈ Y, this implies that ε(ξ + [t]) =
εξ + ε[t] = 0, and hence ξ = [t] ∈ Y, which contradicts the choice of ξ .

Hence α 6∈ K2.

Since d 6∈ R = Rad(F), there exist an elements u ∈ V such that

F(d, u) 6= 0. Let v := f (d, u)−1u, then

f (d, v) = f (d, f (d, u)−1u)

= f (d, u)−1 f (d, u)

= 1 .

In particular, f (dξ , vξ) = q̂(ξ) = α. Since α 6∈ K2, we also have that

α−1 f (d, vξ)2 6= 1. Now let

e :=
(
1 +α−1 f (d, vξ)2

)−1(
v +α−1 f (d, vξ)vξ

)
.

Then, by Lemma 2.7.81(i),

f (d, e) =
(
1 +α−1 f (d, vξ)2

)−1
f (d, v +α−1 f (d, vξ)vξ)

=
(
1 +α−1 f (d, vξ)2

)−1(
f (d, v) +α−1 f (d, vξ) f (d, vξ)

)

=
(
1 +α−1 f (d, vξ)2

)−1(
1 +α−1 f (d, vξ)2

)

= 1 ,

and

f (d, eξ) =
(
1 +α−1 f (d, vξ)2

)−1
f (d, vξ +α−1 f (d, vξ)vξξ)

=
(
1 +α−1 f (d, vξ)2

)−1(
f (d, vξ) +α−1 f (d, vξ) f (d, vξξ)

)

=
(
1 +α−1 f (d, vξ)2

)−1(
f (d, vξ) +α−1 f (d, vξ)α

)

= 0 ,
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which shows that e fulfills the required properties.

From now on, let e ∈ V be as in Theorem 2.7.98, and letα := f (dξ , eξ) =
q̂(ξ). By Theorem 2.7.98, α ∈ L \ K2.

Theorem 2.7.99. Let B := 〈d, e, dξ , eξ〉. Then dimK B = 4 and B ∩ R = 0.

Proof. Let v = t1d + t2e + t3dξ + t4eξ with t1, t2, t3, t4 ∈ K be an arbi-

trary element of B. Suppose that v ∈ R = Rad(F) = Rad( f ). Then

f (v, d) = f (v, e) = f (v, dξ) = f (v, eξ) = 0. Observe that f (d, d) =
f (d, dξ) = f (e, e) = f (e, eξ) = f (dξ , dξ) = f (eξ , eξ) = 0 by (Q11), and

that f (d, eξ) = f (e, dξ) = 0 by Theorem 2.7.98 and Lemma 2.7.81(i).

Moreover, we have that f (d, e) = 1 and f (dξ , eξ) = α 6= 0. It now follows

from f (v, d) = 0 that t2 = 0, from f (v, e) = 0 that t1 = 0, from f (v, dξ) = 0
that t4 = 0 and from f (v, eξ) = 0 that t3 = 0. Hence v = 0. This shows

that B∩ R = 0.

Since 0 ∈ R, the previous paragraph also shows that it follows from v =
0 that t1 = t2 = t3 = t4 = 0, hence d, e, dξ and eξ are linearly independent.

It follows that dimK B = 4.

Theorem 2.7.100. B⊥ = R, where B⊥ := {v ∈ V | f (v, B) = 0}.

Proof. It is obvious that R ⊆ B⊥. So let g be an arbitrary element of B⊥.

Then f (g, d) = f (g, e) = f (g, dξ) = f (g, eξ) = 0. If we substitute ξ for z,

ξde for w and g for v in Lemma 2.7.96(i), then we get that

ξde · gξ + q̂(ξ)ξdeg = f̂ (ξde,ξg)ξ + f̂ (ξde,ξ)ξg .

Since f (e, gξ) = 0 and f (d, gξ) = 0, it follows from Lemma 2.7.89(i) that

ξde · gξ = ξd · gξ · e = ξ · gξ · d · e, and hence ξde · gξ = q̂(ξ)ξgde by

Lemma 2.7.94(i). On the other hand, since f (e, g) = 0 and f (d, g) = 0, it

follows from Lemma 2.7.89(i) that q̂(ξ)ξdeg = q̂(ξ)ξdge = q̂(ξ)ξgde.
Hence ξde · gξ = q̂(ξ)ξdeg, and therefore f̂ (ξde,ξg)ξ = f̂ (ξde,ξ)ξg.

By Lemma 2.7.81(i) and (Q11), we have that

[ f̂ (ξde,ξ)] = [ f̂ (ξd,ξe)]

= [q̂(ξd +ξe)] + [q̂(ξd)] + [q̂(ξe)]

= [q̂(ξ(d + e))] + [q̂(ξd)] + [q̂(ξe)]

since F(dξ , e) = 0. It follows from Lemma 2.7.95(i) that

[ f̂ (ξde,ξ)] = q(d + e)[q̂(ξ)] + q(d)[q̂(ξ)] + q(e)[q̂(ξ)]

=
(
q(d + e) + q(d) + q(e)

)
[α]

= f (d, e)[α]

= [α] ,
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and hence f̂ (ξde,ξ) = α 6= 0. It follows that ξg = α−1 f̂ (ξde,ξg)ξ = ξr
with r = [α−1 f̂ (ξde,ξg)] ∈ R. Since ξ(g + r) = ξg +ξr = 0 by (Q11), we

conclude that g = r ∈ R, which completes the proof of this theorem.

Since dimK B = 4 is finite by Theorem 2.7.99, we have V = B + B⊥.

Since B ∩ R = 0 by Theorem 2.7.99 and B⊥ = R by Theorem 2.7.100,

it follows that V has a decomposition V = B ⊕ R. In particular, every

complement of R in V has dimension 4 over K. By symmetry, it also follows

that every complement of Y in W has dimension 4 over L.

Let β := q(d)−1. Then β ∈ K \ L, since β ∈ L would imply that q(d) =
β−1 = q[β−1] and hence d = [β−1] ∈ [L] = R = Rad( f ), which contradicts

the fact that f (d, e) = 1.

Theorem 2.7.101. Let A := 〈ξ ,ξed−1,ξd−1,β2ξe〉. Then W = A⊕Y.

Proof. Let w = s1ξ + s2ξed−1 + s3ξd−1 + s4β
2ξe with s1, s2, s3, s4 ∈ L be an

arbitrary element of A. Suppose that w ∈ Y = Rad(H) = Rad( f̂ ). Observe

that q̂[q(d)] = q(ε[q(d)]) = q(q(d)ε) = q(d)2 = β−2 and hence, by Lemma

2.7.91(iii), f̂ (ξed−1,ξ) = f̂ (ξe,ξd−1) = q̂[q(d)]−1 f̂ (ξe,ξd) = αβ2 6= 0.

By (Q12), f̂ (ξ ,ξ) = f̂ (ξd−1,ξ) = f̂ (ξe,ξ) = 0. It thus follows from

f̂ (w,ξ) = 0 that f̂ (s2ξed−1,ξ) = 0 and hence s2 = 0. We now have that

w = s1ξ + s3ξd−1 + s4β
2ξe.

Since f̂ (ξ ,ξe) = f̂ (ξe,ξe) = 0 and f̂ (ξd−1,ξe) = αβ2 6= 0, it follows

from f̂ (w,ξe) = 0 that s3 = 0, and hence w = s1ξ + s4β
2ξe.

Since f̂ (ξ ,ξd−1) = 0 and f̂ (ξe,ξd−1) = αβ2 6= 0, it now follows from

f̂ (w,ξd−1) = 0 that s4 = 0. Hence w = s1ξ .

Finally, it follows from f̂ (w,ξed−1) = 0 that f̂ (s1ξ ,ξed−1) = s1αβ
2 = 0

and hence s1 = 0.

So we have shown that w ∈ Y implies w = 0, and at the same time,

we have shown that ξ , ξed−1, ξd−1 and β2ξe are linearly independent.

Hence dimL A = 4 and A ∩ Y = 0, from which it follows that A is con-

tained in a complement of Y in W. Since every complement of Y in W
is 4-dimensional, this implies that A itself is a complement of Y, that is,

W = A⊕Y.

Let E be the splitting field of the polynomial φ(x) ≡ q(d)x2 + x + q(e)
over K.

Lemma 2.7.102. E/K is a separable quadratic extension.

Proof. Suppose that t ∈ K would be a root of φ. Then

q(td + e) = q(td) + f (td, e) + q(e) = t2q(d) + t f (d, e) + q(e) = φ(t) ,
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since f (d, e) = 1, hence q(td + e) = 0. Since q is anisotropic, this implies

that td + e = 0, which contradicts the fact that d and e are linearly inde-

pendent. Henceφ has no roots in K, so E/K is a quadratic extension. Since

the coefficient of x of φ is non-zero, the two roots of φ are distinct, hence

the extension is separable.

Letω ∈ E \ K be one of the roots of φ. Let D := E2L = L(ω2). Then D
is the splitting field of the polynomial φ′(x) ≡ q(d)2x2 + x + q(e)2 over L.

For both extensions E/K and D/L, we will denote the norm by N and the

non-trivial element of the Galois group by x 7→ x.

We can consider E as a 2-dimensional vector space over K, and D as a

2-dimensional vector space over L. Let B0 := E⊕ E, and let A0 := D⊕ D.

Then B0 is a 4-dimensional vector space over K, and A0 is a 4-dimensional

vector space over L. We can identify B and A with B0 and A0, respectively,

by the following relations.

t1d + t2e + t3dξ + t4eξ ←→ (t1 + t2ω, t3 + t4ω)

s1ξ + s2ξed−1 + s3ξd−1 + s4β
2ξe ←→ (s1 + s2ω

2, s3 + s4ω
2)

Since R = [L] and Y = [K], we have actually identified V and W with

B0 ⊕ L and A0 ⊕ K, respectively:

t1d + t2e + t3dξ + t4eξ + [s] ←→ (t1 + t2ω, t3 + t4ω, s)

s1ξ + s2ξed−1 + s3ξd−1 + s4β
2ξe + [t] ←→ (s1 + s2ω

2, s3 + s4ω
2, t)

For all (b, s) ∈ B0 ⊕ L and all (a, t) ∈ A0 ⊕ K, we will denote the corre-

sponding elements of V and W by [b, s] and [a, t], respectively.

We can now describe the quadratic forms q and q̂ on B0⊕ L and A0⊕K,

respectively, via this identification.

Theorem 2.7.103. For all u, v ∈ E, s ∈ L, x, y ∈ D and t ∈ K, we have that

(i) q[u, v, s] = β−1(N(u) +αN(v)) + s ;

(ii) q̂[x, y, t] = α(N(x) +β2N(y)) + t2 .

Proof. Let u = t1 + t2ω and v = t3 + t4ω be arbitrary elements of E, and

let s be an arbitrary element of L. Then we have that

q[u, v, s] = q[t1 + t2ω, t3 + t4ω, s]

= q(t1d + t2e + t3dξ + t4eξ + [s])

= q(t1d + t2e) + q(t3dξ + t4eξ) + q[s] ,



110 2. Quadrangular Systems

since f (t1d + t2e, t3dξ + t4eξ) = 0 and [s] ∈ Rad( f ). By Lemma 2.7.95(ii)

and Lemma 2.7.97(i), [q(vξ)] = α[q(v)] = [αq(v)], and hence q(vξ) =
αq(v) for all v ∈ V. It follows that

q[u, v, s] = q(t1d + t2e) +αq(t3d + t4e) + q[s]

= q(t1d) + f (t1d, t2e) + q(t2e)

+α(q(t3d) + f (t3d, t4e) + q(t4e)) + q[s]

= t2
1q(d) + t1t2 + t2

2q(e) +α(t2
3q(d) + t3t4 + t2

4q(e)) + s

= q(d)N(t1 + t2ω) +αq(d)N(t3 + t4ω) + s

= β−1(N(u) +αN(v)) + s ,

which proves (i). Similarly, let x = s1 + s2ω
2 and y = s3 + s4ω

2 be arbitrary

elements of D, and let t be an arbitrary element of K. Then we have that

q̂[x, y, t] = q̂[s1 + s2ω
2, s3 + s4ω

2, t]

= q̂(s1ξ + s2ξed−1 + s3ξd−1 + s4β
2ξe + [t]) .

Note that f̂ (ξed−1,ξd−1) = f̂ (ξe,ξd−1d−1) = q̂[q(d)]−1 f̂ (ξe,ξ) = 0 by

Lemma 2.7.91(iii), hence f̂ (s1ξ + s2ξed−1, s3ξd−1 + s4β
2ξe) = 0. Since

[t] ∈ Rad( f̂ ), it thus follows that

q̂[x, y, t] = q̂(s1ξ + s2ξed−1) + q̂(s3ξd−1 + s4β
2ξe) + q̂[t]

= q̂(s1ξ) + f̂ (s1ξ , s2ξed−1) + q̂(s2ξed−1)

+ q̂(s3ξd−1) + f̂ (s3ξd−1, s4β
2ξe) + q̂(s4β

2ξe) + q̂[t]

= s2
1q̂(ξ) + s1s2 f̂ (ξ ,ξed−1) + s2

2q̂(ξed−1)

+ s2
3q̂(ξd−1) + s3s4β

2 f̂ (ξ ,ξed−1) + s2
4β

4q̂(ξe) + q̂[t] .

By Lemma 2.7.95(i) and Lemma 2.7.97(ii),

[q̂(wv)] = q(v)[q̂(w)] = [q(v)2q̂(w)] ,

and hence q̂(wv) = q(v)2q̂(w) for all v ∈ V and all w ∈W. Remember that

f̂ (ξ ,ξed−1) = αβ2 and that q(d−1) = q(d)−1 = β. Since q̂[t] = q(ε[t]) =
q(tε) = t2, it thus follows that

q̂[x, y, t] = s2
1α+ s1s2αβ

2 + s2
2q(e)2q(d)−2α

+ s2
3q(d)−2α+ s3s4β

2αβ2 + s2
4β

4q(e)2α+ t2

= α(s2
1 + s1s2q(d)−2 + s2

2q(e)2q(d)−2

+β2(s2
3 + s3s4q(d)−2 + s2

4q(e)2q(d)−2)) + t2

= α(N(s1 + s2ω
2) +β2N(s3 + s4ω

2)) + t2

= α(N(x) +β2N(y)) + t2 ,
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which proves (ii).

For all a ∈ A0 and all b ∈ B0, we let q1(b) := q[b, 0] and q2(a) := q̂[a, 0].
Denote the corresponding bilinear forms by f1 and f2, respectively. We now

define maps Υ̃, ν̃, Θ̃ and ψ̃ from A0 × B0 to A0, K, B0 and L, respectively,

by setting

[a, 0][b, 0] = [Υ̃(a, b), ν̃(a, b)] ,

[b, 0][a, 0] = [Θ̃(a, b), ψ̃(a, b)] ,

for all a ∈ A0 and all b ∈ B0. We will show that these maps coincide with

the maps Υ, ν, Θ and ψ defined on page 69.

Lemma 2.7.104. Υ̃ ≡ Υ.

Proof. All the equivalences in the proof of this lemma are modulo Y. Let

a1 := ξ , b1 := d ,

a2 := ξed−1 , b2 := e ,

a3 := ξd−1 , b3 := dξ ,

a4 := β2ξe , b4 := eξ ,

and let ai j := aib j for all i, j ∈ {1, 2, 3, 4}. We first observe that ξde +ξed ≡
f (d, e)2ξ ≡ ξ and that ξd−1e + ξed−1 ≡ f (d−1, e)2ξ ≡ β2ξ by Lemma

2.7.93(i). Then

a11 ≡ ξ · d ≡ β
−2a3 ;

a12 ≡ ξ · e ≡ β
−2a4 ;

a13 ≡ ξ · dξ ≡ αξd ≡ αβ−2a3 ;

a14 ≡ ξ · eξ ≡ αξe ≡ αβ−2a4 ;

a21 ≡ ξed−1 · d ≡ ξe ≡ β−2a4 ;

a22 ≡ ξed−1 · e ≡ (ξd−1e +β2ξ) · e ≡ q(e)2a3 + a4 ;

a23 ≡ ξed−1 · dξ ≡ ξe · dξ · d−1 ≡ ξ · dξ · ed−1 ≡ αξded−1

≡ α(ξ +ξed)d−1 ≡ αa3 +αβ−2a4 ;

a24 ≡ ξed−1 · eξ ≡ ξe · eξ · d−1 ≡ ξ · eξ · ed−1 ≡ αξeed−1 ≡ αq(e)2a3;

a31 ≡ ξd−1 · d ≡ a1 ;

a32 ≡ ξd−1 · e ≡ β2ξ +ξed−1 ≡ β2a1 + a2 ;

a33 ≡ ξd−1 · dξ ≡ ξ · dξ · d−1 ≡ αξdd−1 ≡ αa1 ;

a34 ≡ ξd−1 · eξ ≡ ξ · eξ · d−1 ≡ αξed−1 ≡ αa2 ;
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a41 ≡ β
2ξe · d ≡ q(d)2β2ξed−1 ≡ a2 ;

a42 ≡ β
2ξe · e ≡ β2q(e)2a1 ;

a43 ≡ β
2ξe · dξ ≡ β2ξ · dξ · e ≡ β2αξde ≡ αβ2(ξ +ξed) ≡ αβ2a1 +αa2 ;

a44 ≡ β
2ξe · eξ ≡ β2ξ · eξ · e ≡ β2αξee ≡ αβ2q(e)2a1 .

Hence

Υ̃
(
(1, 0), (1, 0)

)
= (0,β−2) ; Υ̃

(
(0, 1), (1, 0)

)
= (1, 0) ;

Υ̃
(
(1, 0), (ω, 0)

)
= (0,β−2ω2) ; Υ̃

(
(0, 1), (ω, 0)

)
= (β2 +ω2, 0) ;

Υ̃
(
(1, 0), (0, 1)

)
= (0,αβ−2) ; Υ̃

(
(0, 1), (0, 1)

)
= (α, 0) ;

Υ̃
(
(1, 0), (0,ω)

)
= (0,αβ−2ω2) ; Υ̃

(
(0, 1), (0,ω)

)
= (αω2, 0) ;

Υ̃
(
(ω2, 0), (1, 0)

)
= (0,β−2ω2) ; Υ̃

(
(0,ω2), (1, 0)

)
= (ω2, 0) ;

Υ̃
(
(ω2, 0), (ω, 0)

)
= (0, q(e)2 +ω2) ; Υ̃

(
(0,ω2), (ω, 0)

)
= (β2q(e)2, 0) ;

Υ̃
(
(ω2, 0), (0, 1)

)
= (0,α +αβ−2ω2) ; Υ̃

(
(0,ω2), (0, 1)

)
= (αβ2 +αω2, 0) ;

Υ̃
(
(ω2, 0), (0,ω)

)
= (0,αq(e)2) ; Υ̃

(
(0,ω2), (0,ω)

)
= (αβ2q(e)2, 0) .

Sinceω2 = βω+βq(e)2 andω =ω+β, it is now straightforward to check

that Υ̃ coincides with the map Υ defined on page 69 on the set

{(1, 0), (ω2 , 0), (0, 1), (0,ω2)} × {(1, 0), (ω, 0), (0, 1), (0,ω)} .

By (Q3) and (Q11), the map Υ̃ is additive in both variables. Since (sw)v =
s(wv) for all s ∈ L, v ∈ V and w ∈ W, it follows that Υ̃(sa, b) = sΥ̃(a, b)
for all s ∈ L, a ∈ A0 and b ∈ B0. By Lemma 2.7.91(i), we have that

w(tv) = q̂[t]wv = t2wv for all t ∈ K, v ∈ V and w ∈ W, and hence

Υ̃(a, tb) = t2Υ̃(a, b) for all t ∈ K, a ∈ A0 and b ∈ B0. Since the same

properties hold for Υ, and since A0 = 〈(1, 0), (ω2 , 0), (0, 1), (0,ω2)〉 and

B0 = 〈(1, 0), (ω, 0), (0, 1), (0,ω)〉, it thus follows that Υ̃ ≡ Υ.

Lemma 2.7.105. For all a ∈ A0 and all b, b′ ∈ B0, we have that

(i) q2(Υ̃(a, b)) = q1(b)2q2(a) + ν̃(a, b)2 ;

(ii) ν̃(a, b + b′) = ν̃(a, b) + ν̃(a, b′) + f1(Θ̃(a, b), b′) ;

(iii) q1(Θ̃(a, b)) = q2(a)q1(b) + ψ̃(a, b) .

Proof. By Lemma 2.7.95(i) and Lemma 2.7.97(ii), [q̂(wv)] = q(v)[q̂(w)] =
[q(v)2q̂(w)], and hence q̂(wv) = q(v)2q̂(w) for all v ∈ V and all w ∈ W. If

we choose v = [b, 0] and w = [a, 0], then we get that

q̂[Υ̃(a, b), ν̃(a, b)] = q[b, 0]2q̂[a, 0] .
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Hence q2(Υ̃(a, b)) + ν̃(a, b)2 = q1(b)2q2(a), which proves (i).

Similarly, it follows from Lemma 2.7.95(ii) and Lemma 2.7.97(i) that

q(vw) = q̂(w)q(v) for all v ∈ V and all w ∈W. It follows that

q(Θ̃(a, b), ψ̃(a, b)) = q̂[a, 0]q[b, 0] .

Hence q1(Θ̃(a, b)) + ψ̃(a, b) = q2(a)q1(b), which proves (iii).

Finally, it follows from (Q11) that

[a, 0] · [b + b′, 0] = [a, 0] · [b, 0] + [a, 0] · [b′, 0] + F([b, 0] · [a, 0], [b′, 0]) .

Projecting this identity on Y = [0, K] yields

ν(a, b + b′) = ν(a, b) + ν(a, b′) + f ([Θ̃(a, b), ψ̃(a, b)], [b′, 0])

= ν(a, b) + ν(a, b′) + f1(Θ̃(a, b), b′) ,

which proves (ii).

Theorem 2.7.106. Υ̃ ≡ Υ, ν̃ ≡ ν, Θ̃ ≡ Θ and ψ̃ ≡ ψ.

Proof. We have already shown in Lemma 2.7.104 that Υ̃ ≡ Υ. It then fol-

lows from Lemma 2.7.105(i) and Theorem 2.6.10(xii) that ν̃ ≡ ν. Hence,

by Lemma 2.7.105(ii) and Theorem 2.6.10(i), we have that

f1(Θ̃(a, b)−Θ(a, b), b′) = 0

for all a ∈ A0 and all b, b′ ∈ B0, from which it follows that

Θ̃(a, b)−Θ(a, b) ∈ Rad( f1)

for all a ∈ A0 and all b ∈ B0. Since B ∩ Rad( f ) = B ∩ R = 0 by Theorem

2.7.99, we have that B0 ∩ Rad( f1) = 0 as well, and hence Θ̃ ≡ Θ. It then

follows from Lemma 2.7.105(iii) and Theorem 2.6.10(xi) that ψ̃ ≡ ψ.

Theorem 2.7.107. (V, W,τV ,τW ,ε, δ) ∼= ΩF(K, V0 , q).

Proof. First of all, observe that q is indeed a quadratic form of type F4, since

its regular component q1 has a norm splitting

q1(u, v) = β−1N(u) +β−1αN(v) ,

and the product of its coefficients is β−1 ·β−1α = β−2α, which is an element

of L.

Let φ be the isomorphism from [V0] = [B0 ⊕ L] to V which maps [b, s]
to [b, s] for all b ∈ B0 and all s ∈ L, and let ψ be the isomorphism from
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[W0] = [A0⊕ K] to W which maps [a, t] to [a, t] for all a ∈ A0 and all t ∈ K.

Then φ([0, 1]) = [0, 1] = [1]
V

= ε and ψ([0, 1]) = [0, 1] = [1]
W

= δ.

Since φ and ψ are identity maps, it now only remains to show that it

follows from the relations

[a, 0][b, 0] = [Υ̃(a, b), ν̃(a, b)] ,

[b, 0][a, 0] = [Θ̃(a, b), ψ̃(a, b)] ,

for all a ∈ A0 and all b ∈ B0 that

[a, t][b, s] = [Υ̃(a, b) + sa, ν̃(a, b) + q[b, s]t] ,

[b, s][a, t] = [Θ̃(a, b) + tb, ψ̃(a, b) + q̂[a, t]s] ,

for all a ∈ A0 and all b ∈ B0. We will only show the first identity, the second

one being completely similar. Since [0, s] ∈ Rad(F), it follows from (Q11)

and Lemma 2.7.51 that

[a, t][b, s] = [a, 0][b, s] + [0, t][b, s]

= [a, 0][b, 0] + [a, 0][0, s] + [0, t][b, s]

= [Υ̃(a, b), ν̃(a, b)] + [sa, 0] + [0, tq[b, s]]

= [Υ̃(a, b) + sa, ν̃(a, b) + q[b, s]t] .

Since φ and ψ are identity maps, it is now obvious that φ([b, s][a, t]) =
φ([b, s])ψ([a, t]) and ψ([a, t][b, s]) = ψ([a, t])φ([b, s]) for all (a, t) ∈ W0

and all (b, s) ∈ V0; hence (φ,ψ) is an isomorphism from ΩF(K, V0 , q) to

(V, W,τV ,τW ,ε, δ).

2.7.6 Quadrangular Systems of Pseudo-quadratic Form

Type, Part II

In this section, we continue to assume that Ω = (V, W,τV ,τW ,ε, δ) is

a wide quadrangular system which is the extension of a quadrangular

system Λ of quadratic form type, i.e. Λ = (V, Rad(H),τV ,τW ,ε, δ) ∼=
ΩQ(K, V0 , q), where τV and τW are as in Remark 2.7.3.

Our goal in this and the next section is to classify these quadrangular

systems if Rad(F) = 0. So assume that Rad(F) = 0. We continue to

identify V and V0 if there is no danger of confusion.

Lemma 2.7.108. For all v ∈ V, all w ∈ W and all t ∈ K, we have that

(tv)w = t(vw). It follows that the notation tvw is unambiguous.
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Proof. If we substitute [t] for z, v for v and �w for w in (Q23), then we get,

since Πw([t]) = [t], that

tv = −(t · vw)κ(�w) ,

and hence, by Lemma 2.7.50(ii), that

tv = −(t · vw)κ(�w) .

It follows that

tv · w = −(t · vw)κ(�w) · w ,

and hence, by (Q18), that tv ·w = t · vw, which is what we had to show.

Definition 2.7.109. If char(K) 6= 2, let ζ := ε/2. If char(K) = 2, define

S1 := {v ∈ V | F(ε, v) 6= 0} and S2 := {εw | w ∈ W}. If S1 ∩ S2 6= ∅,
choose a fixed element z ∈ S1 ∩ S2; if S1 ∩ S2 = ∅, choose a fixed element

z ∈ S1. Observe that S1 6= ∅ since ε 6∈ Rad(F). In both cases, we let

ζ := f (ε, z)−1z.

It follows that f (ε,ζ) = 1, independent of the characteristic.

Remark 2.7.110. This somewhat strange definition will become clear in

section 2.7.7.

Definition 2.7.111. An element w ∈ W is called ζ-orthogonal if and only

if f (ζ ,εw) = 0.

Lemma 2.7.112. Each coset of Y in W contains a unique ζ-orthogonal ele-

ment.

Proof. Consider an arbitrary coset w � Y of Y in W (where w ∈ W). An

arbitrary element of this coset, say w � [t] with t ∈ K, is ζ-orthogonal if and

only if f (ζ ,ε(w � [t])) = 0. By (Q12), f (ζ ,ε(w � [t])) = f (ζ ,εw +ε[t]) =
f (ζ ,εw) + f (ζ , tε) = f (ζ ,εw) + t, hence w � [t] is ζ-orthogonal if and only

if t = − f (ζ ,εw).

Since Y = Rad(H) is a normal subgroup of W, we can define the quo-

tient group X := W/Y. Since [W, W]� ≤ Y, the group X is abelian. We

will use the additive notations + and − for X.

Definition 2.7.113. We now define a map ρ : X → W as follows. For

each element w � Y ∈ X, we define ρ(w � Y) to be the unique element

w � y ∈ w � Y ⊆W which is ζ-orthogonal; see Lemma 2.7.112. Moreover,

for all x ∈ X and all t ∈ K, we let (x, t) := ρ(x) � [t] ∈ W. Note that

ρ(x) ∈ x for all x ∈ X, and hence (x, t) ∈ x for all x ∈ X and all t ∈ K as

well.
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Lemma 2.7.114. For all w ∈ W, there exist unique elements x ∈ X and

t ∈ K such that w = (x, t).

Proof. Let w ∈ W be arbitrary. Let x := w � Y ∈ X, and let

y := �ρ(x) � w ∈ �(w � Y) � w = �Y � w � w = Y .

Hence y = [t] for some t ∈ K, and we thus have that (x, t) = ρ(x) � [t] =
ρ(x) � y = w.

Now suppose that (x1, t1) = (x2, t2) for some x1, x2 ∈ X and some

t1, t2 ∈ K. Since (x1, t1) ∈ x1 and (x2, t2) ∈ x2, it follows that the cosets x1

and x2 have an element in common, and hence they are equal, i.e. x1 = x2.

It then follows from (x1, t1) = (x2, t2) that t1 = t2 as well.

Definition 2.7.115. We define a map G : X × X →W by setting

G(a, b) := �ρ(a + b) � ρ(a) � ρ(b)

for all a, b ∈ X. Note that a and b are cosets of Y in W. It follows that

G(a, b) ∈ −(a + b)+ a + b = Y. Hence we can define a map g : X×X → K
by setting G(a, b) = [g(a, b)] for all a, b ∈ X.

Lemma 2.7.116. (a, t) � (b, s) = (a + b, t + s + g(a, b)) for all a, b ∈ X and

all t, s ∈ K.

Proof. Since Y ⊆ Z(W) by (Q8), we have that

(a, t) � (b, s) = ρ(a) � [t] � ρ(b) � [s]

= ρ(a) � ρ(b) � [t + s]

= ρ(a + b) � [g(a, b)] � [t + s]

= (a + b, g(a, b) + t + s) ,

which is what we had to show.

Definition 2.7.117. We define a map θ from X ×V to V, a map π from X
to V and a map h from X× X to V by setting

θ(a, v) := v · (a, 0) ,

π(a) := θ(a,ε) = ε · (a, 0) ,

h(a, b) := H
(
(a, 0), (b, 0)

)
,

for all a, b ∈ X and all v ∈ V.
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By definition, (a, 0) is ζ-orthogonal for all a ∈ X, hence f (π(a),ζ) =
f (ε · (a, 0),ζ) = 0 for all a ∈ X. Furthermore, it follows from (Q12) that

v · (a, t) = v · (a, 0) + v · [t] = θ(a, v) + tv for all v ∈ V, all a ∈ X and all

t ∈ K.

Definition 2.7.118. We define a map (a, v) 7→ av from X × V to X and a

mapϕ from X ×V to K by the relation

(a, 0) · v = (av,ϕ(a, v)) .

Since we did not define a multiplication yet between elements of X and

elements of V, this will not cause confusion.

Note that it follows from (a, 0) ·ε = (a, 0) that aε = a and ϕ(a,ε) = 0
for all a ∈ X. Furthermore, we have that (a, t) · v = (av, tq(v) +ϕ(a, v))
by Lemma 2.7.51, and that H

(
(a, t), (b, s)

)
= h(a, b), for all a, b ∈ X, all

v ∈ V and all t, s ∈ K.

Lemma 2.7.119. For all a ∈ X, we have that

g(a,−a) = g(−a, a) = f (π(a),ε) = f (π(−a),ε) .

Proof. Let w := (a, 0) ∈ W. Then w is ζ-orthogonal. By 2.2.13(i), we have

that w(−ε) = [ f (εw,ε)] � w. By (Q6), f (ε · w(−ε),ζ) = f (εw,ζ) = 0,

and hence w(−ε) is ζ-orthogonal as well. It follows that w(−ε) = (b, 0)
for some b ∈ X. Since [ f (εw,ε)] ∈ Y, we now have that b = w(−ε) � Y =
[ f (εw,ε)] � w � Y = �w � Y = −a. It follows by Lemma 2.7.116 that

[ f (π(a),ε)] = [ f (εw,ε)]

= w(−ε) � w

= (−a, 0) � (a, 0)

= (−a + a, 0 + 0 + g(−a, a))

= [g(−a, a)] .

Hence f (π(a),ε) = g(−a, a), and since it follows from (Q6) that

f (π(−a),ε) = f (ε · (−a, 0),ε)

= f (ε · (a, 0)(−ε),ε)

= f (ε · (a, 0),ε)

= f (π(a),ε) ,

we conclude that g(a,−a) = g(−a, a) = f (π(a),ε) = f (π(−a),ε).



118 2. Quadrangular Systems

Definition 2.7.120. We define a map (t, a) 7→ ta from K×X to X by setting

ta := a · tε for all t ∈ K and all a ∈ X. We will prove later on (see Theorem

2.7.123) that this makes X into a vector space over K.

Lemma 2.7.121. For all a ∈ X and all t ∈ K, we have that ϕ(a, tε) = 0 .

Moreover, for all a ∈ X, all v ∈ V and all t ∈ K, we have that

(i) ta · v = a · tv = t · av ;

(ii) ϕ(ta, v) =ϕ(a, tv) = t2ϕ(a, v) .

Proof. Let w := (a, 0) ∈ W and let y := [t] ∈ Y. Since Π�y(z) = z for all

z ∈ W, it follows from (Q26) that w ·εy · v = w · vy, for all v ∈ V. It thus

follows from (Q11) that

F(ε · w(εy),ζ) = �w ·εy ·ε� w ·εy ·ζ � w ·εy · (ζ +ε)

= �w ·εy � w ·ζy � w · (ζ +ε)y

= F(εy · w,ζy)

= F(tεw, tζ)

= [t2 f (εw,ζ)]

= 0 ,

since w is ζ-orthogonal. It follows that w ·εy is ζ-orthogonal as well. Since

w ·εy = w · tε = (a, 0) · tε = (a · tε,ϕ(a, tε)) ,

it follows thatϕ(a, tε) = 0.

It now follows from w ·εy · v = w · vy that (a · tε, 0) · v = (a, 0) · tv for

all v ∈ V, and hence

(ta · v,ϕ(ta, v)) = (ta, 0) · v = (a · tε, 0) · v = (a, 0) · tv = (a · tv,ϕ(a, tv))

for all v ∈ V. This implies that ta · v = a · tv andϕ(ta, v) =ϕ(a, tv).
Now observe that πtε(c) = πε(c) = −c, for all c ∈ V. If we substitute

tε for v and v for c in (Q24), we thus get that wv = w · tε · v · (tε)−1, and

hence

(a, 0) · v · tε = (a, 0) · tε · v .

It follows that

(av,ϕ(a, v)) · tε = (ta, 0) · v ,

and finally, since q(tε) = t2, that

(t · av, t2ϕ(a, v)) = (ta · v,ϕ(ta, v)) ,

and we are done.
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Lemma 2.7.122. The map (a, v) 7→ av is additive in both variables. More-

over, the following hold for all a, b ∈ X and all u, v ∈ V:

(i) ϕ(a + b, v) + g(a, b)q(v) =ϕ(a, v) +ϕ(b, v) + g(av, bv) ;

(ii) ϕ(a, u + v) =ϕ(a, u) +ϕ(a, v) + g(av, au) + f (θ(a, u), v) .

Proof. It follows from (Q3) that
(
(a, 0) � (b, 0)

)
v = (a, 0) · v � (b, 0) · v ,

and hence, by Lemma 2.7.116, that

(a + b, g(a, b)) · v = (av,ϕ(a, v)) � (bv,ϕ(b, v)) ,

from which it follows that

(
(a + b)v, g(a, b)q(v) +ϕ(a + b, v)

)

=
(
av + bv,ϕ(a, v) +ϕ(b, v) + g(av, bv)

)
.

So we have shown that (a + b)v = av + bv and that (i) holds.

On the other hand, it follows from (Q11) that

(a, 0) · (u + v) = (a, 0) · (v + u) = (a, 0) · v � (a, 0) · u � F(u · (a, 0), v) ,

and hence
(
a(u + v),ϕ(a, u + v)

)

= (av,ϕ(a, v)) � (au,ϕ(a, u)) � [ f (θ(a, u), v)]

=
(
av + au,ϕ(a, v) +ϕ(a, u) + g(av, au) + f (θ(a, u), v)

)
.

So we have shown that a(u + v) = au + av and that (ii) holds.

Theorem 2.7.123. X0 is a vector space over K, with the scalar multiplication

given by the map (t, a) 7→ ta = a · tε.

Proof. First of all, we have that 1a = a · ε = a for all a ∈ X. By Lemma

2.7.122, the two distributivity laws hold, since

t(a + b) = (a + b) · tε = a · tε+ b · tε = ta + tb

for all t ∈ K and all a, b ∈ X, and

(s + t)a = a · (s + t)ε = a · (sε+ tε) = a · sε+ a · tε = sa + ta

for all s, t ∈ K and all a ∈ X. Finally, it follows from Lemma 2.7.121(i) that

st · a = ts · a = a · (ts)ε = a · t(sε) = ta · sε = s · ta

for all s, t ∈ K and all a ∈ X.
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Lemma 2.7.124. For all a, b ∈ X, all u, v ∈ V and all t ∈ K, we have that

(i) θ(ta, v) = t2θ(a, v) ;

(ii) θ(a, tv) = tθ(a, v) ;

(iii) θ(a + b, v) + g(a, b)v = θ(a, v) +θ(b, v) + h(b, av) ;

(iv) θ(a, u + v) = θ(a, u) +θ(a, v) .

Proof. Let w := (a, 0) ∈ W. Note that πtε(c) = πε(c) = −c, for all c ∈ V. It

thus follows by substituting tε for v and v for c in (Q25) that v · δ(tε) · w =
v · w(tε). Hence

θ(ta, v) = v · (ta, 0) = v · w(tε) = v · δ(tε) · w

= v · [q(tε)] ·w = t2vw = t2v · (a, 0) = t2θ(a, v) ,

which proves (i). Since t · vw = tv · w, we have that tθ(a, v) = θ(a, tv),
which proves (ii).

It follows from (Q12) that

θ(a + b, v) + g(a, b)v = v · (a + b, g(a, b))

= v ·
(
(a, 0) � (b, 0)

)

= v · (a, 0) + v · (b, 0) + H
(
(b, 0), (a, 0) · v

)

= θ(a, v) +θ(b, v) + H
(
(b, 0), (av,ϕ(a, v))

)

= θ(a, v) +θ(b, v) + h(b, av) ,

which shows (iii). Finally, it follows from (Q4) that

θ(a, u + v) = (u + v) · (a, 0)

= u · (a, 0) + v · (a, 0)

= θ(a, u) +θ(a, v) ,

which proves (iv).

Lemma 2.7.125. For all a, b ∈ X and all t ∈ K, we have that h(ta, b) =
h(a, tb) = th(a, b).

Proof. If we substitute tε for v in Lemma 2.7.124(iii), then we get, by

Lemma 2.7.124(ii), that

h(b, a · tε) = θ(a + b, tε) + g(a, b)tε−θ(a, tε)−θ(b, tε)

= tθ(a + b,ε) + tg(a, b)ε− tθ(a,ε)− tθ(b,ε)

= th(b, a) ,
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hence h(b, ta) = th(b, a). It follows by (Q22) and Lemma 2.7.50(ii) that

h(ta, b) = −h(b, ta) = −th(b, a) = −th(b, a) = th(a, b)

as well, and we are done.

Lemma 2.7.126. For all a, b ∈ X, we have that

f (h(a, b),ε) = g(b, a)− g(a, b) .

Proof. If we set v = ε, w1 = (b, 0) and w2 = (a, 0) in (Q8), then we get

that

�(b, 0) � (a, 0) � (b, 0) � (a, 0) = [ f (h(a, b),ε)] .

Since

�(b, 0) � (a, 0) � (b, 0) � (a, 0) = �
(
(a, 0) � (b, 0)

)
�

(
(b, 0) � (a, 0)

)

= �(a + b, g(a, b)) � (a + b, g(b, a))

= (0,−g(a, b) + g(b, a)) ,

it follows that f (h(a, b),ε) = −g(a, b) + g(b, a).

Lemma 2.7.127. For all a, b ∈ X and all v ∈ V, we have that

f (h(a, b), v) = f (h(av, b),ε) = f (h(a, bv),ε) .

Proof. It follows from (Q8) that

F(H(w2, w1), v) = [w1, w2v]� = F(H(w2v, w1),ε)

for all w1, w2 ∈ W. If we choose w2 = (a, 0) and w1 = (b, 0), then we get

that f (h(a, b), v) = f (h(av, b),ε). It then follows from Lemma 2.7.54 that

f
(
h(a, b), v

)
= f

(
h(a, b), v

)
= − f

(
h(b, a), v

)

= − f
(
h(bv, a),ε

)
= − f

(
h(bv, a),ε

)

= f
(
h(a, bv),ε

)

as well.

Lemma 2.7.128. We have that avv = q(v)a and auv + avu = f (u, v)a for

all a ∈ X and all u, v ∈ V.
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Proof. Let w := (a, 0) ∈ W. It then follows from (Q15) that avv−1 =
a. Since q(v)v−1 = v, it follows from Lemma 2.7.121(i) that q(v)a =
q(v)avv−1 = av · q(v)v−1 = avv. It then follows that

f (u, v)a = q(u + v)a− q(u)a− q(v)a

= a(u + v)(u + v)− auu− avv

= auv + avu

as well.

We have now come to a point which is very similar to Chapter 26 in

[52]. For some of the remaining identities, we will thus simply refer to the

appropriate place in [52]. Note that [52] uses δ where we use ζ.

Lemma 2.7.129. For all a, b ∈ X, we have that g(a, b) = f (h(b, a),ζ).

Proof. See [52, (26.20)].

Since h is bilinear over K, it follows from Lemma 2.7.129 that g is bilinear

over K.

Lemma 2.7.130. For all a, b ∈ X and all v ∈ V, we have that

h(a, bv) − h(b, av) = f (h(a, b),ε)v .

Proof. See [52, (26.23)].

Lemma 2.7.131. If char(K) 6= 2, then ϕ ≡ 0, and for all a ∈ X and all

v ∈ V, we have that

(i) g(a, a) = 0 ;

(ii) θ(a, v) = 1
2
h(a, av) .

Proof. See [52, (26.24)].

Note that it follows from Lemma 2.7.131(i) and the fact that g is bilinear

over K that g is skew-symmetric if char(K) 6= 2.

Lemma 2.7.132. If char(K) = 2, then

(i) h(a, av) = g(a, a)v = f (ε, π(a))v ;

(ii) f (θ(a, v), v) = g(av, av) = g(a, a)q(v) = f (ε, π(a))q(v) ;

(iii) f (θ(a, u), v) = f (θ(a, v), u) + f (ε, π(a)) f (u, v) ;

for all a ∈ X and all u, v ∈ V.
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Proof. See [52, (26.25)].

Lemma 2.7.133. For all a ∈ X and all u, v ∈ V, we have that

(i) f (θ(a, v), v) = f (ε, π(a))q(v) ;

(ii) f (θ(a, v), u) + f (θ(a, u), v) = f (ε, π(a)) f (u, v) .

Proof. See [52, (26.26)].

Lemma 2.7.134. For all a ∈ X, all u ∈ V and all v ∈ V∗, we have that

θ(av−1, u) +ϕ(a, v−1)u = q(v)−1θ(a, u)− f (u, v′)θ(a, v−1)

− f (θ(a, u), v)q(v)−1v′ + f (θ(a, v−1), v) f (u, v′)v′ ,

where v′ = v−1 = q(v)−1v.

Proof. Let w := (a, 0) ∈ W, and let c := q(v)−1πv(u) ∈ V. Since δv =
[q(v)], it follows by substituting u for c in (Q25) and by Lemma 2.7.52 that

πv(u · wv) = q(v)πv(u) · w .

Note that πv−1(v2) = πv(v2) for all v2 ∈ V by Lemma 2.2.18(i). If we

replace v by v−1, then it follows that

πv(u · wv−1) = q(v−1)πv(u) · w ,

and hence, since q(v−1) = q(v)−1, that

u · wv−1 = πv(c · w) ,

from which it follows that

u · (av−1,ϕ(a, v−1)) = πv(θ(a, c)) ,

and therefore

θ(av−1, u) +ϕ(a, v−1)u = θ(a, c)− f (v,θ(a, c))v′ .

Since

c = q(v)−1πv(u) = q(v)−1u− q(v)−1 f (v, u)v−1 = q(v)−1u− f (u, v′)v−1 ,

it follows by Lemma 2.7.124 that

θ(av−1, u) +ϕ(a, v−1)u = q(v)−1θ(a, u)− f (u, v′)θ(a, v−1)

− q(v)−1 f (v,θ(a, u))v′ + f (v,θ(a, v−1)) f (u, v′)v′ ,

which is what we had to show.
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We now define

v∗ :=

{
0 if char(K) 6= 2

f (v,ζ)ε+ f (v,ε)ζ + v if char(K) = 2
,

for all v ∈ V.

Lemma 2.7.135. If char(K) = 2, then

(i) ϕ(a, v) = f (θ(a, v∗), v)
= f (π(a), v) f (ζ , v) + f (θ(a,ζ), v) f (ε, v) + f (ε, π(a))q(v) ;

(ii) If f (ε, v) = f (ζ , v) = 0, then π(av) = π(a)q(v) + f (π(a), v)v ;

(iii) π(aζ) = π(a)q(ζ) +θ(a,ζ) + f (ε, π(a))ζ ;

(iv) θ(av, u) = q(v)θ(a, u) + f (u, v)θ(a, v) + f (θ(a, v), u)v +ϕ(a, v)u ;

for all a ∈ X and all u, v ∈ V.

Proof. By Lemma 2.7.134, this follows from the proof of [52, (26.30)].

Lemma 2.7.136. For all v ∈ V, all w ∈ W and all a ∈ X, we have that

(i) q(vw) = q(v)q(εw) ;

(ii) q(θ(a, v)) = q(v)q(π(a)) .

Proof. Since δ · V ⊆ Rad(H), it follows by substituting δ for w and w for

z in (Q26) that δ ·εw · v = δ · vw, hence [q(εw)] · v = [q(vw)]. By Lemma

2.7.51, it follows that [q(v)q(εw)] = [q(vw)], which proves (i). Substitut-

ing (a, 0) for w in (i) now yields (ii).

Lemma 2.7.137. For all a ∈ X, we have thatϕ(a, π(a)) = 0.

Proof. By Lemma 2.7.131, we may assume that char(K) = 2. Since f (ε,ζ) =
1 = q(ε), we have that q(ε + ζ) = q(ζ). It then follows, by Lemma

2.7.124(iv) and Lemma 2.7.136(ii), that

q(π(a) +θ(a,ζ)) = q(θ(a,ε+ζ))

= q(ε+ζ)q(π(a))

= q(ζ)q(π(a))

= q(θ(a,ζ)) ,

and hence q(π(a)) = f (π(a),θ(a,ζ)). By Lemma 2.7.135(i), we now have

that

ϕ(a, π(a)) = f (π(a), π(a)) f (ζ , π(a)) + f (θ(a,ζ), π(a)) f (ε, π(a))

+ f (ε, π(a))q(π(a))

= 0 + q(π(a)) f (ε, π(a)) + f (ε, π(a))q(π(a))

= 0 ,
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which is what we had to prove.

Lemma 2.7.138. For all v ∈ V and all w ∈W∗, we have that

w · q(εw)−1ε ·εw · vw = wv .

Proof. If we substitute λ(w(−ε)) for w in (Q19), then we get that

λ(w(−ε)) · vw = wv .

If we set v = ε in this identity, then we get that λ(w(−ε)) ·εw = w, hence

λ(w(−ε)) = w · (εw)−1, and therefore

w · (εw)−1 · vw = wv .

Note that it follows by substituting [t] for z in (Q26), with t ∈ K, that

w · tε · v = w · tv. Since (εw)−1 = q(εw)−1εw, it follows from this identity

that

w · q(εw)−1ε ·εw · vw = wv ,

which is what we had to show.

Lemma 2.7.139. For all a ∈ X and all v ∈ V, we have that

(i) q(π(a))av = aπ(a)θ(a, v) ;

(ii) aπ(a)v = aθ(a, v) .

Proof. We may assume that a 6= 0. First, we substitute (a, 0) for w in Lemma

2.7.138, and we get that

(a, 0) · q(ε(a, 0))−1ε ·ε(a, 0) · v(a, 0) = (a, 0)v,

hence

(q(π(a))−1a, 0) · π(a) ·θ(a, v) = (a, 0)v.

If we calculate the X-component of both sides, then we get that

q(π(a))−1aπ(a)θ(a, v) = av,

which shows (i).

On the other hand, if we substitute (a, 1) for w in Lemma 2.7.138, then

we get that

(a, 1) · q(ε(a, 1))−1ε ·ε(a, 1) · v(a, 1) = (a, 1)v,

hence

(q(π(a) +ε)−1a, q(π(a) +ε)−2) · (π(a) +ε) · (θ(a, v) + v) = (a, 1)v.
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Again, we calculate the X-component of both sides, and we get that
(
q(π(a)) + f (π(a),ε) + q(ε)

)−1
a(π(a) +ε)(θ(a, v) + v) = av ,

from which it follows that

aπ(a)θ(a, v) + aθ(a, v) + aπ(a)v + av = q(π(a))av + f (π(a),ε)av + av .

Since f (π(a),ε)av = aπ(a)v + aπ(a)v by Lemma 2.7.128, it follows by (i)

that

aθ(a, v) = aπ(a)v ,

which proves (ii).

Lemma 2.7.140. If |K| > 2, then

cθ(a, v)− cπ(a)v = ah(a, c)v − ah(a, cv)

for all a, c ∈ X and all v ∈ V.

Proof. See [52, (26.36)].

Lemma 2.7.141. For all a ∈ X and all v ∈ V, we have that

θ(a,θ(a, v)) = θ(a, v) f (ε, π(a))− q(π(a))v .

Proof. See [52, (26.33)].

We can rephrase this identity in terms of W in place of X, which results

in a nice identity.

Lemma 2.7.142. For all v ∈ V and all w ∈W, we have that

vw(�w) = −q(εw)v .

Proof. Let w = (a, t), with a ∈ X and t ∈ K. Let Q(a) := g(a,−a) =
f (π(a),ε), and observe that 2Q(a) = 0; see Lemma 2.7.119 and Lemma

2.7.131. Note that, by Lemma 2.7.116, �w = (−a,−t + Q(a)). Hence, by

Lemma 2.7.124 and Lemma 2.7.141,

vw(�w) = v(a, t)(−a,−t + Q(a))

= (θ(a, v) + tv) · (−a,−t + Q(a))

= θ(−a,θ(a, v) + tv) + (−t + Q(a))(θ(a, v) + tv)

= θ(a,θ(a, v)) + tθ(a, v)− tθ(a, v) + Q(a)θ(a, v)− t2v + Q(a)tv

= θ(a, v)Q(a)− q(π(a))v + Q(a)θ(a, v)− t2v + Q(a)tv

= −
(
q(π(a)) + Q(a)t + t2

)
v

= −q
(
π(a) + tε

)
v

= −q(εw)v ,

and we are done.
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Lemma 2.7.143. For all v ∈ V and all w ∈W, we have that

vww = f (ε,εw)vw− q(εw)v .

Proof. By 2.2.13(i), we have that w(−ε) = F(εw,ε) � w, and hence, by

(Q6), (Q12) and Lemma 2.7.142,

vww = vw · w(−ε)

= vw · (F(εw,ε) � w)

= vw · [ f (εw,ε)] + vw(�w)

= f (εw,ε)vw− q(εw)v ,

which is what we had to show.

Definition 2.7.144. For all v ∈ V∗ and all w ∈ W∗, we let [v]w := 〈v, vw〉
be the subspace of V (over K) generated by v and vw. Note that [v]w is

2-dimensional if and only if w ∈ W \Y.

Lemma 2.7.145. For all v ∈ V∗ and all w ∈W \Y, we have [v]w ·w = [v]w,

i.e. [v]w is a 2-dimensional subspace of V which is irreducible under the action

of w.

Proof. It follows from Lemma 2.7.143 that

[v]w · w = 〈v, vw〉 · w = 〈vw, vww〉

= 〈vw, f (ε,εw)vw− q(εw)v〉 = 〈vw, v〉

since q(εw) 6= 0.

Definition 2.7.146. Let u, v ∈ V∗ and w ∈W \Y. Then u and v are called

w-orthogonal if and only if f ([u]w, [v]w) = 0.

Remark 2.7.147. It is clear that the definition of [v]w and the notion of

w-orthogonality are generalizations of the definition of [v]a and the notion

of a-orthogonality as defined in [52]. See [52, (26.37) and (26.38)].

Theorem 2.7.148. Let a ∈ X∗, and let w := (a, 0) ∈ W∗. Suppose that

f (ε, π(a)) 6= 0 if char(K) = 2. Let T be the endomorphism of V given by

T(v) := vw for all v ∈ V. Then:

(i) The endomorphism T is a norm splitting map of the quadratic space

(V, K, q) ;
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(ii) The minimal polynomial of T is

p(x) = x2 + f (ε, π(a))x + q(π(a)) .

Let E denote the splitting field of p over K, and let γ ∈ E be a root

of p. Then E/K is a separable quadratic extension and there is a scalar

multiplication from E×V to V extending the scalar multiplication from

K×V to V, such that T(v) = γv for all v ∈ V ;

(iii) Let S be a finite set of pairwise w-orthogonal elements of V∗. Then the

elements of the set S ∪ Sw are linearly independent over K; if this set

does not span V, then S can be extended to a larger set of non-zero

pairwise w-orthogonal vectors ;

(iv) Let ψ : E→ [ε]w be given by

ψ(r + tγ) := rε+ tπ(a)

for all r, t ∈ K . Then ψ is an isomorphism of vector spaces and X is a

(right) vector space over E with scalar multiplication given by

bu := bψ(u)

for all b ∈ X and all u ∈ E . If σ denotes the non-trivial element in

Gal(E/K), then ψ(uσ) = ψ(u) for all u ∈ E . If N denotes the norm of

the extension E/K, then N(u) = q(ψ(u)) for all u ∈ E .

Proof. See [52, (26.39)].

Lemma 2.7.149. Let a ∈ X∗ be arbitrary, and let w := (a, 0) ∈ W∗. Let

D := 〈ε,εw, v, vw〉 for some v ∈ V \ 〈ε,εw〉. Then dimK D = 4, and we

have that aDD ⊆ aD (but not necessarily bDD ⊆ bD for other elements

b ∈ X).

Proof. See [52, (26.41)].

Theorem 2.7.150. Let dimK V = 4. Then V can be made into a division ring

such that X is a right vector space over V with scalar multiplication given by

the map (a, v) 7→ av for all a ∈ X and all v ∈ V.

Proof. See [52, (26.42)].

It will be convenient now to set vσ := v for all v ∈ V.

Theorem 2.7.151. Suppose that dimK V ∈ {2, 4}. Then there is a multipli-

cation on V which gives V the structure of a division ring with the following

properties:
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(i) 〈ε〉 is a subfield lying in the center of V and the map t 7→ tε is an

isomorphism from K to 〈ε〉 ;

(ii) σ is an involution of V ;

(iii) X is a right vector space over V with scalar multiplication given by the

map (a, v) 7→ av ;

(iv) q(v) = vvσ = vσv ∈ 〈ε〉, and f (u, v) = uvσ + vuσ = uσv + vσu ∈ 〈ε〉
for all u, v ∈ V ;

(v) h is a skew-hermitian form on X with respect to σ ;

(vi) (V, 〈ε〉,σ) is an involutory set ;

(vii) θ(a, v) = π(a)v for all a ∈ X and all v ∈ V .

Proof. See [52, (26.43)].

Theorem 2.7.152. Suppose that dimK V ≤ 4. Then dimK V ∈ {2, 4}. Let

V be given the structure of a division ring as in Theorem 2.7.151. Then

(V, K,σ , X, π) is an anisotropic pseudo-quadratic space. Moreover, we have

that

π(av) = vσπ(a)v−ϕ(a, v)ε

for all a ∈ X and all v ∈ V.

Proof. See [52, (26.44)].

Theorem 2.7.153. Suppose that dimK V ≤ 4. Let (V, K,σ , X, π) be as in

Theorem 2.7.152. Then (V, W,τV ,τW ,ε, δ) ∼= ΩP(V, K,σ , X, π).

Proof. Let (T, �) be the group defined in section 1.9.3 applied on the pseudo-

quadratic space (V, K,σ , X, π). By the definition of the group T, we have

that π(a) − v ∈ 〈ε〉 for all (a, v) ∈ T. Let χ(a, v) be the unique element

t ∈ K such that v− π(a) = tε.

Let φ be the isomorphism from [V] to V which maps [v] to v for all

v ∈ V, and let ψ be the isomorphism from [T] to W which maps [a, v]
to (a, χ(a, v)) for all (a, v) ∈ T ⊆ X × V. Then φ([1]) = [1] = ε and

ψ([0, 1]) = (0, χ(0, 1)) = (0, 1) = δ since 1ε − π(0) = 1ε. (Remember

that we have identified K with 〈ε〉 ⊆ V by Theorem 2.7.151(i).)

Now, let v ∈ V and (a, x) ∈ T be arbitrary. By Lemma 2.7.139(ii) and

Lemma 2.7.121(i), we have that

a · xv = aπ(a)v + axv− aπ(a)v

= aθ(a, v) + a(x− π(a))v

= aθ(a, v) + a · χ(a, x)ε · v

= aθ(a, v) + χ(a, x)av

= a(θ(a, v) + χ(a, x)v) ,
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and hence, by Theorem 2.7.151(iii), it follows that

xv = θ(a, v) + χ(a, x)v = v · (a, χ(a, x)) .

By Theorem 2.7.152 and Theorem 2.7.151(i and iv), we have that

χ(av, vσxv)ε = vσxv− π(av)

= vσxv− vσπ(a)v +ϕ(a, v)ε

= vσ(x− π(a))v +ϕ(a, v)ε

= vσ · χ(a, x)ε · v +ϕ(a, v)ε

=
(
χ(a, x)q(v) +ϕ(a, v)

)
ε ,

and hence

χ(av, vσxv) = χ(a, x)q(v) +ϕ(a, v) .

It follows that

φ([v][a, x]) = φ([xv]) = xv = v · (a, χ(a, x)) = φ([v])ψ([a, x]) , and

ψ([a, x][v]) = ψ([av, vσxv]) = (av, χ(av, vσxv))

= (av, χ(a, x)q(v) +ϕ(a, v)) = (a, χ(a, x)) · v

= ψ([a, x])φ([v]) ,

for all v ∈ V and all (a, x) ∈ T. Hence (φ,ψ) is an isomorphism from

ΩP(V, K,σ , X, π) to (V, W,τV ,τW ,ε, δ).

2.7.7 Quadrangular Systems of Type E6, E7 and E8

In this section, we continue to assume that Ω = (V, W,τV ,τW ,ε, δ) is a

wide quadrangular system which is the extension of a quadrangular system

Λ of quadratic form type, such that Rad(F) = 0. It only remains to consider

the case where dimK V > 4.

Lemma 2.7.154. If char(K) = 2, then there exists an element ξ ∈ X∗ such

that π(ξ) = αζ for some α ∈ K∗.

Proof. Suppose that g(a, a) = 0 for all a ∈ X. Since g is bilinear, it would

follow that g(a, b) = g(b, a) for all a, b ∈ X, and hence, by Lemma 2.7.116,

that W is abelian. It would then follow by (Q8) that Im(H) ⊆ Rad(F).
Since Rad(F) = 0 and H 6≡ 0, this is a contradiction.

Hence there exists an element a ∈ X∗ such that g(a, a) 6= 0. Let w1 :=
(a, 0) ∈ W∗. By Lemma 2.7.119, it follows that f (ε,εw1) = f (ε, π(a)) =
g(a, a) 6= 0. Hence (see Definition 2.7.109)

S1 ∩ S2 = {v ∈ V | F(ε, v) 6= 0} ∩ {εw | w ∈W} 6= ∅ ,
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since εw1 ∈ S1 ∩ S2. By the definition of ζ, this implies that ζ = f (ε, z)−1z
for some z ∈ S1 ∩ S2. Let z = εw2 for some w2 ∈ W∗. Since f (εw2,ζ) =
f (z,ζ) = f (z, f (ε, z)−1z) = 0, w2 is ζ-orthogonal, hence w2 = (ξ , 0) for

some ξ ∈ X∗. We conclude that π(ξ) = ε(ξ , 0) = εw2 = z = f (ε, z)ζ = αζ

for α = f (ε, z) ∈ K∗.

Definition 2.7.155. If char(K) 6= 2, let ξ be an arbitrary element of X∗. If

char(K) = 2, choose ξ ∈ X∗ as in Lemma 2.7.154.

By Lemma 2.7.154 and Theorem 2.7.148, the endomorphism T of V
which maps v to v(ξ , 0) is a norm splitting map of q.

We have come to a point which is completely similar to the beginning of

Chapter 27 in [52], and the rest of the proof could literally be copied from

that chapter.

Theorem 2.7.156. The quadratic space (K, V0 , q) is of type E6, E7 or E8.

Proof. The proof is exactly as in [52, (27.17)], where we have to use

Definition 2.7.117 and 2.7.118 and Lemmas 2.7.124, 2.7.127, 2.7.128,

2.7.129, 2.7.130, 2.7.131, 2.7.132, 2.7.135, 2.7.139, 2.7.140, 2.7.141 and

2.7.149.

Theorem 2.7.157. (V, W,τV ,τW ,ε, δ) ∼= ΩE(K, V0 , q).

Proof. It follows from the proof of [52, (27.19)], using Definition 2.7.109

and 2.7.118 as well as Lemmas 2.7.124, 2.7.128, 2.7.129, 2.7.130, 2.7.131,

2.7.132, 2.7.133, 2.7.135 and 2.7.139, that the maps h, g, θ and ϕ are

exactly as in section 2.6.5.

Let φ be the map from [V0] to V which maps [v] to v for all v ∈ V, and

let ψ be the map from [S] to W which maps [a, t] to (a, t) for all (a, t) ∈ S.

Since we have seen in Definitions 2.7.117 and 2.7.118 that (a, t) · v =
(av, tq(v) +ϕ(a, v)) and v · (a, t) = θ(a, v) + tv, it is now obvious that

(φ,ψ) is an isomorphism from ΩE(K, V0 , q) to (V, W,τV ,τW ,ε, δ).

This completes the proof of Theorem 2.7.10, and thereby the proof of

the classification of quadrangular systems.

2.8 Abelian Quadrangular Systems

In this last section of this chapter, we will describe the quadrangular sys-

tems (V, W,τV ,τW ,ε, δ) where W is abelian, and we will restate the axiom

system for some specific cases.
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A quadrangular system Ω = (V, W,τV ,τW ,ε, δ) will be called abelian if

and only if W is abelian. One can check that Ω is abelian if and only if it is

of quadratic form type, of involutory type, of indifferent type or of type F4.

(Note that, if Ω is of pseudo-quadratic form type with W abelian, then Ω

is in fact reduced, and hence of one of these types.) In this case, we simply

write + and − in place of � and �, respectively, and we get the following

description.

Consider an abelian group (V, +) and an abelian group (W, +). Sup-

pose that there is a map τV from V ×W to V and a map τW from W × V
to W, both of which will be denoted by · or simply by juxtaposition, i.e.

τV(v, w) = vw = v · w and τW(w, v) = wv = w · v for all v ∈ V and all

w ∈ W. Consider a map F from V ×V to W and a map H from W ×W to

V which are additive in both variables. Suppose furthermore that there ex-

ists a fixed element ε ∈ V∗ and a fixed element δ ∈ W∗, and suppose that,

for each v ∈ V∗, there exists an element v−1 ∈ V∗, and for each w ∈ W∗,

there exists an element w−1 ∈ W∗, such that, for all w, w1, w2 ∈ W and all

v, v1, v2 ∈ V, the following axioms are satisfied.

(A1) wε = w.

(A2) vδ = v.

(A3) (w1 + w2)v = w1v + w2v.

(A4) (v1 + v2)w = v1w + v2w.

(A5) v(−w) = −vw.

(A6) w(−v) = wv.

(A7) Im(F) ⊆ Rad(H).

(A8) Im(H) ⊆ Rad(F).

(A9) δ ∈ Rad(H).

(A10) If Rad(F) 6= 0, then ε ∈ Rad(F).

(A11) w(v1 + v2) = wv1 + wv2 + F(v1w, v2).

(A12) v(w1 + w2) = vw1 + vw2 + H(w1v, w2).

(A13) (v−1)−1 = v (if v 6= 0).

(A14) (w−1)−1 = w (if w 6= 0).

(A15) wvv−1 = w (if v 6= 0).

(A16) vww−1 = v (if w 6= 0).

(A17) v−1(wv) = vw (if v 6= 0).

(A18) w−1(vw) = wv (if w 6= 0).

(A19) F(v−1
1 , v2)v1 = F(v1, v2) (if v1 6= 0).
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(A20) H(w−1
1 , w2)w1 = H(w1, w2) (if w1 6= 0).

Then (V, W,τV ,τW ,ε, δ) is an abelian quadrangular system.

2.8.1 Reduced Quadrangular Systems

If Ω = (V, W,τV ,τW ,ε, δ) is reduced or indifferent, i.e. if H ≡ 0, then Ω is

abelian, and we get the following description.

Consider an abelian group (V, +) and an abelian group (W, +). Sup-

pose that there is a map τV from V ×W to V and a map τW from W × V
to W, both of which will be denoted by · or simply by juxtaposition, i.e.

τV(v, w) = vw = v · w and τW(w, v) = wv = w · v for all v ∈ V and all

w ∈W. Consider a map F from V × V to W which is additive in both vari-

ables. Suppose furthermore that there exists a fixed element ε ∈ V∗ and a

fixed element δ ∈ W∗, and suppose that, for each v ∈ V∗, there exists an

element v−1 ∈ V∗, and for each w ∈ W∗, there exists an element w−1 ∈W∗,

such that, for all w, w1, w2 ∈ W and all v, v1, v2 ∈ V, the following axioms

are satisfied.

(R1) wε = w.

(R2) vδ = v.

(R3) (w1 + w2)v = w1v + w2v.

(R4) (v1 + v2)w = v1w + v2w.

(R5) v(−w) = −vw.

(R6) w(−v) = wv.

(R7) If Rad(F) 6= 0, then ε ∈ Rad(F).

(R8) w(v1 + v2) = wv1 + wv2 + F(v1w, v2).

(R9) v(w1 + w2) = vw1 + vw2.

(R10) (v−1)−1 = v (if v 6= 0).

(R11) (w−1)−1 = w (if w 6= 0).

(R12) wvv−1 = w (if v 6= 0).

(R13) vww−1 = v (if w 6= 0).

(R14) v−1(wv) = vw (if v 6= 0).

(R15) w−1(vw) = wv (if w 6= 0).

(R16) F(v−1
1 , v2)v1 = F(v1, v2) (if v1 6= 0).

Then (V, W,τV ,τW ,ε, δ) is a reduced or indifferent quadrangular system

(and it is reduced if and only if F 6≡ 0).
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Remark 2.8.1. As we explained in Remark 2.5.4, axiom (R7) had only

been introduced to simplify the classification result of the wide quadrangu-

lar systems. In particular, it is not needed for the reduced quadrangular

systems, and it is actually often more convenient – and perfectly allowed –

to leave it out.

2.8.2 Indifferent Quadrangular Systems

If Ω = (V, W,τV ,τW ,ε, δ) is indifferent, i.e. if F ≡ 0 and H ≡ 0, then Ω is

abelian, and we get the following description.

Consider an abelian group (V, +) and an abelian group (W, +). Sup-

pose that there is a map τV from V ×W to V and a map τW from W × V
to W, both of which will be denoted by · or simply by juxtaposition, i.e.

τV(v, w) = vw = v · w and τW(w, v) = wv = w · v for all v ∈ V and all

w ∈ W. Suppose furthermore that there exists a fixed element ε ∈ V∗ and

a fixed element δ ∈ W∗, and suppose that, for each v ∈ V∗, there exists an

element v−1 ∈ V∗, and for each w ∈W∗, there exists an element w−1 ∈W∗,

such that, for all w, w1, w2 ∈ W and all v, v1, v2 ∈ V, the following axioms

are satisfied.

(D1) wε = w.

(D2) vδ = v.

(D3) (w1 + w2)v = w1v + w2v.

(D4) (v1 + v2)w = v1w + v2w.

(D5) w(v1 + v2) = wv1 + wv2.

(D6) v(w1 + w2) = vw1 + vw2.

(D7) (v−1)−1 = v (if v 6= 0).

(D8) (w−1)−1 = w (if w 6= 0).

(D9) wvv−1 = w (if v 6= 0).

(D10) vww−1 = v (if w 6= 0).

(D11) v−1(wv) = vw (if v 6= 0).

(D12) w−1(vw) = wv (if w 6= 0).

Then (V, W,τV ,τW ,ε, δ) is an indifferent quadrangular system. (Note

that we do not have to assume a priori that all elements of V and W have

order at most 2, but that this follows from these axioms.)
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2.8.3 Radical Quadrangular Systems

An abelian quadrangular system Ω = (V, W,τV ,τW ,ε, δ) will be called rad-

ical if and only if Rad(F) 6= 0. One can check that Ω is radical if and only

if it is of quadratic form type with ε ∈ Rad( f ) (and hence char(K) = 2),

of indifferent type or of type F4. We will give two different (but equivalent)

descriptions. The first one is useful to check whether a certain system is a

radical quadrangular system; the second one is more convenient to work

with. Note that each of these descriptions is completely symmetrical.

First Description

Consider an abelian group (V, +) and an abelian group (W, +). Suppose

that there is a map τV from V ×W to V and a map τW from W × V to

W, both of which will be denoted by · or simply by juxtaposition, i.e.

τV(v, w) = vw = v · w and τW(w, v) = wv = w · v for all v ∈ V and

all w ∈W. Consider a map F from V ×V to W and a map H from W ×W
to V which are additive in both variables. Suppose furthermore that there

exists a fixed element ε ∈ V∗ and a fixed element δ ∈ W∗, and suppose

that, for each v ∈ V∗, there exists an element v−1 ∈ V∗, and for each

w ∈ W∗, there exists an element w−1 ∈W∗, such that, for all w, w1, w2 ∈W
and all v, v1 , v2 ∈ V, the following axioms are satisfied.

(F1) wε = w.

(F2) vδ = v.

(F3) (w1 + w2)v = w1v + w2v.

(F4) (v1 + v2)w = v1w + v2w.

(F5) Im(F) ⊆ Rad(H).

(F6) Im(H) ⊆ Rad(F).

(F7) δ ∈ Rad(H).

(F8) ε ∈ Rad(F).

(F9) w(v1 + v2) = wv1 + wv2 + F(v1w, v2).

(F10) v(w1 + w2) = vw1 + vw2 + H(w1v, w2).

(F11) (v−1)−1 = v (if v 6= 0).

(F12) (w−1)−1 = w (if w 6= 0).

(F13) wvv−1 = w (if v 6= 0).

(F14) vww−1 = v (if w 6= 0).

(F15) v−1(wv) = vw (if v 6= 0).
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(F16) w−1(vw) = wv (if w 6= 0).

(F17) F(v−1
1 , v2)v1 = F(v1, v2) (if v1 6= 0).

(F18) H(w−1
1 , w2)w1 = H(w1, w2) (if w1 6= 0).

Then (V, W,τV ,τW ,ε, δ) is a radical quadrangular system. It is of type

F4 if and only if F 6≡ 0 and H 6≡ 0.

Second Description

Let K and L be two commutative fields with char(K) = char(L) = 2, such

that K is a vector space over L and that L is a vector space over K. If t is

an element of the field K, then we will denote the corresponding element

of the vector space K by [t]; if s is an element of the field L, then we will

denote the corresponding element of the vector space L by [s]. Let V be

a vector space over K containing [L] as a subspace, and let W be a vector

space over L containing [K] as a subspace.

Suppose that q is an anisotropic quadratic form from V to K, with corre-

sponding bilinear form f , and that q̂ is an anisotropic quadratic form from

W to L, with corresponding bilinear form f̂ , such that [L] ⊆ Rad( f ) and

[K] ⊆ Rad( f̂ ). Let ε := [1] ∈ [L] ⊆ V and δ := [1] ∈ [K] ⊆ W. Finally,

suppose that there is a map τV from V ×W to V which is K-linear on V,

and a map τW from W ×V to W which is L-linear on W, both of which will

be denoted by · or simply by juxtaposition, i.e. τV(v, w) = vw = v · w and

τW(w, v) = wv = w · v for all v ∈ V and all w ∈W. Moreover, suppose that

the following axioms hold, for all v ∈ V, w ∈W, t ∈ K and s ∈ L.

(C1) v[t] = tv.

(C2) w[s] = sw.

(C3) v · sw = vw · sδ.

(C4) w · tv = wv · tε.

(C5) [t]v = [tq(v)].

(C6) [s]w = [sq̂(w)].

(C7) vww = v · q̂(w)δ.

(C8) wvv = w · q(v)ε.

(C9) v · wv = q(v)vw.

(C10) w · vw = q̂(w)wv.

(C11) v(w1 + w2) = vw1 + vw2 + [ f̂ (w1v, w2)].

(C12) w(v1 + v2) = wv1 + wv2 + [ f (v1w, v2)].
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Then (V, W,τV ,τW ,ε, δ) is a radical quadrangular system. It is of type

F4 if and only if f 6≡ 0 and f̂ 6≡ 0.





3
Automorphisms of F4
Quadrangles

An important problem in the study of Moufang polygons is to determine the

structure of the automorphism group G modulo the subgroup G† generated

by all the root groups. In [52], this has been done for four of the six

different families of Moufang quadrangles. The two classes which have

been left open, are the cases of the exceptional quadrangles, that is, those

of type E6, E7 and E8, and those of type F4.

The goal of this chapter is to determine the quotient G/G† for the latter

case. More precisely, we will show that the automorphism group is, up to

field automorphisms, generated by the root groups. In order to obtain this

result, we will use the quadrangular systems which we have introduced in

Chapter 2. In particular, we will make use of the second description of a

quadrangular system of type F4 as given in section 2.8.3.

3.1 Main Theorem

LetΩ = (V, W,τV ,τW ,ε, δ) be an arbitrary quadrangular system of type F4,

and let Γ := Q(Ω) be the corresponding Moufang quadrangle. Let Cor(Γ)
be the full correlation group of Γ , and let G := Aut(Γ) be its subgroup of

type-preserving automorphisms. Then G is of index at most 2 in Cor(Γ).
Let G† be the subgroup of G generated by all the root groups of Γ .

Let K and L be as in section 2.6.6. In particular, L is a subfield of K. Let

Aut(K, L) denote the group of field automorphisms of K which map L to

itself. Note that it follows from the fact that char(K) = char(L) = 2 that

Aut(K, L) ∼= Aut(L, K2).
We can now state the Main Theorem of this chapter.

Main Theorem 3.1.1. G/G† is isomorphic to a subgroup of Aut(K, L).
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Remark 3.1.2. [Cor(Γ) : G] is 1 or 2, and both cases can actually occur.

By [52, (35.12)], Γ has a correlation if and only if the quadratic space

(K, V, q) is similar to (L, W, q̂) as defined on page 12. In [52, (14.25) and

(14.26)], examples are given of quadratic spaces of type F4 which do have

this property and others which do not.

3.2 Similarities

We will first translate the geometric problem of isomorphic Moufang quad-

rangles of type F4 to the algebraic problem of similar quadrangular systems

of type F4.

Definition 3.2.1. Let Ω and Ω′ be two quadrangular systems of type F4,

and write Ω := (V, W,τV ,τW ,ε, δ) and Ω′ := (V ′, W ′,τV ′ ,τW ′ ,ε
′, δ′). We

will say that (ϕ, ϕ̂) is a similarity from Ω to Ω′ if and only if ϕ and ϕ̂ are

group isomorphisms from (V, +) to (V ′, +) and from (W, +) to (W ′, +),
respectively, for which there exist constants g ∈ K′∗ and ĝ ∈ L′∗ (called the

parameters of the similarity) such that

ϕ(vw) = gϕ(v)ϕ̂(w) (3.1)

ϕ̂(wv) = ĝϕ̂(w)ϕ(v) (3.2)

for all v ∈ V and all w ∈ W. A similarity from Ω to itself will be called a

self-similarity. Moreover, if both ϕ and ϕ̂ are vector space isomorphisms,

then the self-similarity (ϕ, ϕ̂) will be called linear.

Remark 3.2.2. If (ϕ1, ϕ̂1) and (ϕ2, ϕ̂2) are two self-similarities ofΩ with pa-

rameters (g1, ĝ1) and (g2, ĝ2), respectively, then their product (ϕ1ϕ2, ϕ̂1ϕ̂2)
is again a self-similarity. If both (ϕ1, ϕ̂1) and (ϕ2, ϕ̂2) are linear, then their

product is also linear, and has parameters (g1g2, ĝ1 ĝ2).

Theorem 3.2.3. Let Ω and Ω′ be two quadrangular systems of type F4. Let

Q(Ω) and Q(Ω′) be the corresponding Moufang quadrangles with labeled

base apartments Σ = {0, . . . , 7} and Σ′ = {0′, . . . , 7′}, respectively. Let HΣ,Σ′

denote the set of isomorphisms from Q(Ω) to Q(Ω′) mapping i to i′ for all

i ∈ Σ, and let XΩ,Ω′ denote the set of similarities fromΩ toΩ′. Then there is a

natural one-to-one correspondence between HΣ,Σ′ and XΩ,Ω′ which is a group

isomorphism if Ω = Ω′ and Σ = Σ′. In particular, Q(Ω) and Q(Ω′) are

isomorphic (in the type-preserving sense) if and only if Ω and Ω′ are similar.

Proof. For every object o which we have defined for Ω, we will denote the

corresponding object in Ω′ by o
′. For example, we will use the notations

U ′i , f̂ ′, K′, and so on.
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Let U+ := 〈U1, . . . , U4〉 and U ′+ := 〈U ′1, . . . , U ′4〉, and let Y denote the

set of isomorphisms from U+ to U ′+ mapping Ui to U ′i for all i ∈ {1, . . . , 4}.
By Theorem 1.4.8, there is a natural one-to-one correspondence between

Y and HΣ,Σ′, which is a group isomorphism if Ω = Ω′ and Σ = Σ′.

A collection of group isomorphisms φi : Ui → U ′i with i ∈ {1, . . . , 4}
induces an element of Y (which we will then denote by y(φ1, . . . ,φ4)) if

and only if it preserves the commutator relations. By the relations (2.1) on

page 37, this amounts to the conditions

φ2([ f̂ (w1, w2)]) = [ f̂ ′(φ1(w1),φ3(w2))] , (3.3)

φ3([ f (v1, v2)]) = [ f ′(φ2(v1),φ4(v2))] , (3.4)

φ2(vw) = φ4(v)φ1(w) , (3.5)

φ3(wv) = φ1(w)φ4(v) , (3.6)

for all v, v1, v2 ∈ V and all w, w1 , w2 ∈W. We will first show that (3.3) and

(3.4) follow from (3.5) and (3.6). So assume that (3.5) and (3.6) hold, for

all v ∈ V and all w ∈W. Then, by (C11),

φ2([ f̂ (w1, w2)]) = φ2

(
ε(w1 + w2) +εw1 +εw2

)

= φ4(ε)φ1(w1 + w2) +φ4(ε)φ1(w1) +φ4(ε)φ1(w2)

= [ f̂ ′(φ1(w1),φ1(w2)φ4(ε))]

= [ f̂ ′(φ1(w1),φ3(w2))]

for all w1, w2 ∈W, which shows (3.3). The proof of (3.4) is similar.

Now, assume first that (ϕ, ϕ̂) ∈ XΩ,Ω′ is a similarity from Ω to Ω′, with

parameters g ∈ K∗ and ĝ ∈ L∗. Let φ1(w) := ϕ̂(w), φ2(v) := g−1ϕ(v),
φ3(w) := ĝ−1ϕ̂(w) andφ4(v) :=ϕ(v), for all v ∈ V and all w ∈W. Then it

follows immediately from (3.1) and (3.2) that (3.5) and (3.6) hold; hence

(φ1, . . . ,φ4) induce an element

y(ϕ, ϕ̂) := y(ϕ̂, g−1ϕ, ĝ−1ϕ̂,ϕ) ∈ Y . (3.7)

We have thus defined an injective map y from XΩ,Ω′ to Y. Observe that it

follows from (3.7) that y is a group homomorphism if Ω = Ω′.

It remains to show that the map y is onto. So let z ∈ Y be arbitrary, and

let φ1, . . . ,φ4 denote the restriction of z to the groups U1, . . . , U4, respec-

tively. Then (3.3) – (3.6) hold. It follows from (3.3) that φ1(Rad( f̂ )) =
Rad( f̂ ′) = [K′]; hence φ1(δ) = [g] for some g ∈ K′∗. Similarly, it follows

from (3.4) that φ4(ε) = [ĝ] for some ĝ ∈ L′∗. If we substitute δ for w in

(3.5), then we get that φ2(v) = gφ4(v) for all v ∈ V, and hence φ4(vw) =
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g−1φ4(v)φ1(w). Similarly, we have that φ1(wv) = ĝ−1φ1(w)φ4(v). There-

fore (φ4,φ1) is a similarity from Ω to Ω′ with parameters (g−1, ĝ−1), and

z = y(φ4,φ1).
We conclude that there is a natural one-to-one correspondence between

Y and XΩ,Ω′, which is a group isomorphism if Ω = Ω′ and Σ = Σ′.

Finally, it follows from Theorem 1.4.10 that there exists a type-preser-

ving isomorphism from Q(Ω) to Q(Ω′) if and only if there exists an iso-

morphism in HΣ,Σ′ from Q(Ω) to Q(Ω′). The last statement now follows

from the fact that HΣ,Σ′ 6= ∅ if and only if XΩ,Ω′ 6= ∅.

As before, let Ω = (V, W,τV ,τW ,ε, δ) be a quadrangular system of type

F4, and let H be the pointwise stabilizer of the labeled base apartment

Σ = {0, . . . , 7} of Q(Ω). Let X denote the group of self-similarities of Ω,

and let X` denote its subgroup of linear self-similarities.

Lemma 3.2.4. H ∼= X.

Proof. This follows from Theorem 3.2.3 with Ω = Ω′ and Σ = Σ′.

3.3 Multipliers of Similitudes of q

From now on, we will always assume that Ω = (V, W,τV ,τW ,ε, δ) is a

quadrangular system of type F4. The first step towards the examination of

the automorphisms is the determination of the multipliers of the similitudes

of q.

The following lemma is crucial. We use a technique similar to the one

in the proof of [52, (14.17)].

Lemma 3.3.1. Let a, d ∈ V \ [L] be arbitrary elements such that f (a, d) = 0.

Let γ := q(a)/q(d). If γ ∈ L, then γ ∈ K2 · q̂(W).

Proof. Let ξ ∈ W \ [K] be arbitrary, and let e ∈ V be as in Theorem 2.7.98.

As in section 2.7.5, we define α := q̂(ξ) ∈ L \ K2 and β := q(d)−1 ∈ K \ L.

By Theorems 2.7.99 and 2.7.100, there exist elements t1, t2, t3, t4 ∈ K and

s ∈ L such that a = t1d + t2e + t3dξ + t4eξ + [s]. Since f (d, d) = f (d, dξ) =
f (d, eξ) = 0 and f (d, e) = 1, it follows from f (a, d) = 0 that t2 = 0. Hence,

by Theorem 2.7.103(i),

γ = q(a)/q(d)

= βq(t1d + t3dξ + t4eξ + [s])

=
(
t2

1 +αN(t3 + t4ω)
)
+βs .
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Since γ ∈ L, it follows that N(t3 + t4ω) ∈ L(β). By [52, (14.9)], we know

that L(β) ∩ N(E) = K2 · N(D(β)). In particular,

N(t3 + t4ω) = λ2N(x +βy) = λ2
(

N(x) +β2N(y) +β(xȳ + x̄y)
)

for some λ ∈ K and some x, y ∈ D. Hence

γ = t2
1 +αλ2

(
N(x) +β2N(y)

)
+β

(
s + λ2(xȳ + x̄y)

)
.

Since γ ∈ L, t2
1 +αλ2

(
N(x) + β2N(y)

)
∈ L and

(
s + λ2(xȳ + x̄y)

)
∈ L,

but β 6∈ L, it follows that
(
s + λ2(xȳ + x̄y)

)
= 0, hence

γ = t2
1 +αλ2

(
N(x) +β2N(y)

)
.

If λ = 0, this implies that γ = t2
1 = t2

1q̂(δ) ∈ K2 · q̂(W) ; if λ 6= 0, it follows

that

γ = λ2 ·
(
α

(
N(x) +β2N(y)

)
+ (λ−1t1)

2
)
∈ K2 · q̂(W) .

Lemma 3.3.2. Let a, d ∈ V be arbitrary elements such that f (a, d) 6= 0. Then

there exists an element w ∈ W such that f (aw, d) = 0.

Proof. As in the previous lemma, let ξ ∈ W \ [K] be arbitrary, and let e ∈ V
be as in Theorem 2.7.98; then there exist elements t1, t2, t3, t4 ∈ K and

s ∈ L such that a = t1d + t2e + t3dξ + t4eξ + [s]. Since f (a, d) = t2, it

follows that t2 6= 0. Let w := ξ + [αt4t−1
2 ] ∈ W. Then, by (C11), dw =

dξ +αt4t−1
2 d, since [αt4t−1

2 ] ∈ Rad( f̂ ). Hence

f (aw, d) = f (dw, a) = f (dξ , a) +αt4t−1
2 f (d, a)

= t4 f (dξ , eξ) +αt4t−1
2 t2 = t4α+αt4 = 0 ,

which is what we had to show.

Theorem 3.3.3. G(q) = K2 · q̂(W) · q̂(W) \ {0} .

Proof. Let T be an arbitrary similitude of q, with multiplier λ ∈ K∗. Then

q(Tv) = λq(v) for all v ∈ V. In particular, if v ∈ Rad( f ), then we have

Tv ∈ Rad( f ) as well; hence Tε ∈ Rad( f ) = [L]. Since q(ε) = 1, it follows

that λ = q(Tε) ∈ q([L]) = L.

Again, let d ∈ V \ [L] and ξ ∈ W \ [K] be arbitrary. If f (d, Td) = 0, then

it follows from Lemma 3.3.1 that λ = q(Td)/q(d) ∈ K2 · q̂(W), and we are

done.
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So we can assume that f (d, Td) 6= 0. Then it follows from Lemma

3.3.2 that there exists an element w ∈ W such that f (dw, Td) = 0. Now

consider the maps T1 : V → V : v 7→ vw and T2 := T ◦ T−1
1 . Then T1 is

a similitude with multiplier q̂(w), since q(vw) = q̂(w)q(v) for all v ∈ V
by Lemmas 2.7.95(ii) and 2.7.97(i). It follows that T2 is a similitude as

well, with multiplier λ2 := λq̂(w)−1. Then T = T2 ◦ T1, and we have that

f (dw, T2(dw)) = f (dw, Td) = 0. By the previous paragraph with T2 in

place of T and dw in place of d, we get that λ2 ∈ K2 · q̂(W), and it finally

follows that λ = λ2q̂(w) ∈ K2 · q̂(W) · q̂(W).
On the other hand, for every t ∈ K∗ and every w1, w2 ∈W∗, we can find

a similitude with multiplier t2q̂(w1)q̂(w2), namely

Tt,w1,w2
: V → V : v 7→ tv · w1 · w2 ,

and we are done.

3.4 Action on the Root Groups

We continue to assume thatΩ is a quadrangular system of type F4. Observe

that the reflections πc and Πz as defined on page 26 are now just ordinary

reflections with respect to the quadratic forms q and q̂ as defined on page

11. In particular, we will write π̂z in place of Πz for all z ∈ W∗. The

identities (Q23) – (Q26) translate to the following properties.

Lemma 3.4.1. For all v ∈ V, c ∈ V∗, w ∈W and z ∈W∗, we have that

(i) wπc(v) = wc−1vc ;

(ii) vπ̂z(w) = vz−1wz ;

(iii) πc(vw) = q(c)−1πc(v) · wc ;

(iv) π̂z(wv) = q̂(z)−1π̂z(w) · vz .

By (1.1) on page 10, the problem of determining the quotient G/G† is

reduced to the determination of H/H†, where H is the pointwise stabilizer

of the labeled base apartment Σ = {0, . . . , 7} of Q(Ω) and H† = H ∩ G†.
By Theorem 1.4.11(i), H acts faithfully on U1 ×U4, so the whole problem

is reduced to the examination of the action of H on the root groups U1 and

U4.

Using Theorem 1.4.11(ii), we can now proceed by explicitly calculat-

ing the action of H† on U1 × U4. Very similarly as in [52, (33.11)], we

can compute the action of the elements µ
(z)
1 := µ(x1(δ))µ(x1(z)) and
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µ
(c)
4 := µ(x4(ε))µ(x4(c)) on U1 ×U4 . Note that it follows from 1.4.11(ii)

that

H† =
〈
µ

(z)
1 ,µ

(c)
4 | z ∈W, c ∈ V

〉
. (3.8)

We will only calculate the action of µ
(c)
4 , the action of µ

(z)
1 being completely

similar by the symmetric structure of the quadrangular systems of type F4.

So let c be a fixed arbitrary element of V∗. By Theorem 2.3.2, we have that

x1(w)µ
(c)
4 = x1(w)µ(x4(ε))µ(x4(c))

= x3(w)µ(x4(c)) = x1(wc−1) ;

x2(v)µ
(c)
4 = x2(v)µ(x4(ε))µ(x4(c))

= x2(v)µ(x4(c)) = x2(πc(v)) ;

x3(w)µ
(c)
4 = x3(w)µ(x4(ε))µ(x4(c))

= x1(w)µ(x4(c)) = x3(wc) ;

for all v ∈ V and all w ∈ W. Now let v ∈ V be arbitrary; by condition (M3)

of Theorem 1.4.4, U
µ

(c)
4

4 = U4, hence there exists an element u ∈ V such

that x4(v)µ
(c)
4 = x4(u). We now let µ

(c)
4 act on both sides of the commutator

relation

[x1(δ), x4(v)] = x2(v)x3(δv)

to get that

[x1(δc−1), x4(u)] = x2(πc(v))x3(δv · c) .

On the other hand,

[x1(δc−1), x4(u)] = x2(u · δc−1)x3(δc−1 · u) ,

and comparing the U2-components of both expressions yields

u · δc−1 = πc(v) .

Since u · δc−1 = q(c)−1u by (C5) and (C1), it follows that u = q(c)πc(v).

We conclude that the action of µ
(c)
4 on U1 ×U4 corresponds to the map

θc : (w, v) 7→ (wc−1, q(c)πc(v))
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from W × V to itself. Completely similarly, we obtain that the action of

µ
(z)
1 on U1 ×U4 corresponds to the map

θ̂z : (w, v) 7→ (q̂(z)π̂z(w), vz−1)

from W × V to itself. The maps θ̂z and θc can also be interpreted as self-

similarities of Ω. By (3.8) and the definition of the isomorphism y in (3.7),

we thus get that

H† ∼= X† :=
〈
θ̂z,θc | z ∈W∗, c ∈ V∗

〉
.

Note that it now follows from Lemma 3.2.4 that

H/H† ∼= X/X† . (3.9)

We will now define some useful elements in X†.

Definition 3.4.2. For all z ∈ W∗ and all c ∈ V∗, we define the self-

similarities

χ̂z := θ[q̂(z)]θ̂z and χc := θ̂[q(c)]θc .

It follows from the fact that π[s] = 1 and π̂[t] = 1 for all s ∈ L∗ and all

t ∈ K∗ that

χ̂z(v, w) = (vz, π̂z(w)) ,

χc(v, w) = (πc(v), wc) ,

for all c ∈ V∗, z ∈ W∗ and all v ∈ V, w ∈ W.

Lemma 3.4.3. For all z ∈ W∗, χ̂z is a self-similarity of Ω with parame-

ters (1, q̂(z)−1); for all c ∈ V∗, χc is a self-similarity of Ω with parameters

(q(c)−1, 1).

Proof. We will only show the second statement, the first one being com-

pletely similar. So let c ∈ V∗ be arbitrary, and let ϕ : V → V : v 7→ πc(v)
and ϕ̂ : W →W : w 7→ wc. Then, by Lemma 3.4.1(i and iii),

ϕ(vw) = πc(vw) = q(c)−1πc(v) · wc = q(c)−1ϕ(v)ϕ̂(w) ,

ϕ̂(wv) = wvc = (wc)c−1vc = wc · πc(v) = ϕ̂(w)ϕ(v) ,

for all v ∈ V and all w ∈W, and we are done.
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3.4.1 Field Automorphisms

Recall that X` is the subgroup of X consisting of the linear self-similarities,

and that Aut(K, L) is the group of field automorphisms of K which map

L to itself. We will first show that X/X` is isomorphic to a subgroup of

Aut(K, L).
So let us consider an arbitrary element η := (ϕ, ϕ̂) ∈ X, with parame-

ters (g, ĝ). Recall that

ϕ(vw) = gϕ(v)ϕ̂(w) (3.10)

ϕ̂(wv) = ĝϕ̂(w)ϕ(v) (3.11)

for all v ∈ V and all w ∈ W. If we set w = δ in (3.10), then we get that

ϕ(v) = gϕ(v)ϕ̂(δ), and hence

ϕ(v)ϕ̂(δ) = g−1ϕ(v) =ϕ(v) · [g−1] .

Since [g−1] ∈ Rad( f̂ ), it follows from (C11) that ϕ(v) · (ϕ̂(δ) + [g−1]) = 0,

and hence ϕ̂(δ) = [g−1].
If we apply ϕ̂ on (C12), then it follows from (3.11) that

ϕ̂([ f (v1w, v2)]) = ĝ[ f (ϕ(v1)ϕ̂(w),ϕ(v2))] ∈ [K]

for all v1, v2 ∈ V and all w ∈ W. Since Im( f ) = K, it now follows that

ϕ̂([K]) ⊆ [K]. We can thus define a map ρ = ρη : K → K such that

ϕ̂([t]) = [g−1ρ(t)] (3.12)

for all t ∈ K. In particular, ρ(0) = 0 and ρ(1) = 1.

If we now set w = [t] in (3.10) for some t ∈ K, then we get that

ϕ(tv) = gϕ(v)ϕ̂([t]) = gϕ(v)[g−1ρ(t)] = ρ(t)ϕ(v) (3.13)

for all v ∈ V. In particular, it follows from (3.13) that ρ is multiplicative;

hence ρ is a field automorphism of K. Similarly, there is a field automor-

phism ρ̂ = ρ̂η of L such that

ϕ̂(sw) = ρ̂(s)ϕ̂(w) (3.14)

for all s ∈ L and all w ∈W.

Now let s ∈ L and v ∈ V be arbitrary. By (3.13), we have that ϕ(sv) =
ρ(s)ϕ(v). On the other hand, it follows from Remark 2.7.97 that sv = v · sδ,
and hence, by (3.10), (3.14) and Remark 2.7.97,

ϕ(sv) =ϕ(v · sδ) = gϕ(v)ϕ̂(sδ) = gϕ(v) · ρ̂(s)ϕ̂(δ)

= gϕ(v) · ρ̂(s)[g−1] = gϕ(v) · [ρ̂(s)g−1] = ρ̂(s)ϕ(v) ,
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and it follows that ρ(s) = ρ̂(s), for all s ∈ L. Hence ρ̂ is the restriction of ρ

to L; in particular, ρ(L) = L, hence ρ ∈ Aut(K, L).
Now let Φ be the map from X to Aut(K, L) which maps every self-

similarity η = (ϕ, ϕ̂) ∈ X to the corresponding ρη ∈ Aut(K, L). Then it fol-

lows from the fact thatϕ(tv) = ρη(t)ϕ(v) for all t ∈ K and all v ∈ V that Φ

is a group homomorphism. The kernel ofΦ consists of the self-similarities η

for which the corresponding field automorphisms ρη and hence also ρ̂η are

trivial – those are precisely the linear self-similarities. Hence Ker(Φ) = X`,

and it follows that

X/X`
∼= Im(Φ) ≤ Aut(K, L) , (3.15)

which is what we wanted to show.

From now on, let us assume that η = (ϕ, ϕ̂) ∈ X`. Our goal is to show

that η ∈ X†, and we will do this in several steps. In each case, we will

multiply this given element by other elements in X† to reduce to the next

case.

3.4.2 Reduction to the Case ĝ = 1

Since η ∈ X`, the map ρ is now the identity map, so it follows from (3.12)

that

ϕ̂([t]) = [g−1t] (3.16)

for all t ∈ K. Similarly, we have that ϕ([s]) = [ĝ−1s] for all s ∈ L; in

particular,ϕ(ε) = [ĝ−1].
If we set w = δ in (3.11), we get by (C5) that ϕ̂([q(v)]) = ĝ[g−1]ϕ(v),

and hence, by (3.16) and (C5), [g−1q(v)] = ĝ[g−1q(ϕ(v))] = [ĝg−1q(ϕ(v))]
(see Remark 2.7.97). We conclude that

q(ϕ(v)) = ĝ−1q(v) (3.17)

for all v ∈ V, and hence ϕ is a similitude of q with multiplier ĝ−1. It now

follows from Theorem 3.3.3 that ĝ−1 = t2
0q̂(w1)q̂(w2) for some t0 ∈ K∗ and

some w1, w2 ∈ W∗.

By Lemma 3.4.3 and Remark 3.2.2, ζ := χ̂−1
[t0]
χ̂−1

w1
χ̂−1

w2
is a self-similar-

ity of Ω with parameters (1, t2
0q̂(w1)q̂(w2)) = (1, ĝ−1). Moreover, ζ ∈ X†.

Again by Remark 3.2.2, ηζ is a linear self-similarity with parameters (g, 1),
and η ∈ X† if and only if ηζ ∈ X†.

We have thus reduced the problem to the case where ĝ = 1, and we will

assume this from now on.
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3.4.3 Reduction to the Case ϕ = 1

By (3.17), we now have that q(ϕ(v)) = q(v) for all v ∈ V, that is, ϕ is an

isometry of q. Moreover, ϕ([s]) = [s] for all s ∈ L, that is, ϕ acts trivially

on [L]. This allows us to prove a Dieudonné-Cartan-type theorem for ϕ,

even though q is not regular and not necessarily finite dimensional. Note,

however, that q is anisotropic.

Theorem 3.4.4. ϕ is the product of at most 4 reflections in V.

Proof. The proof is completely similar to the proof in the regular anisotropic

case.

Let J denote the fixed point set ofϕ. Note that [L] ⊆ J, so by Theorems

2.7.99 and 2.7.100, J has codimension at most 4 in V. If ϕ = 1, then

we are done, so we can assume that J 6= V; choose an arbitrary element

d ∈ V \ J. Let b :=ϕ(d) + d ∈ V; then b 6= 0. Then

q(d) = q(ϕ(d)) + q(b) + f (b,ϕ(d)) ,

which implies that q(b) = f (b,ϕ(d)). Hence

πbϕ(d) =ϕ(d) + f (ϕ(d), b)q(b)−1b =ϕ(d) + b = d ,

so πbϕ fixes the element d. On the other hand, if c is an arbitrary element

of J, then

πbϕ(c) = πb(c) = c + f (c, b)q(b)−1b = c ,

since

f (c, b) = f (c,ϕ(d) + d) = f (ϕ(c),ϕ(d)) + f (c, d) = 0 .

Hence πbϕ acts trivially on 〈J, d〉, since ϕ is K-linear. Since d 6∈ J, we have

that codimK〈J, d〉 = codimK J − 1. By induction, it now follows that ϕ is

the product of at most 4 reflections.

By Theorem 3.4.4, there exist four elements c1, c2, c3, c4 ∈ V such that

ϕ = πc1
πc2
πc3
πc4

(note that πε = 1). On the other hand,

ζ ′ := χc4
χc3
χc2
χc1

: (v, w) 7→ (πc4
πc3
πc2
πc1

(v), wc1c2c3c4) .

Again, note that ζ ′ ∈ X†, and hence η ∈ X† if and only if ζ ′η ∈ X†. Since

ζ ′η : (v, w) 7→ (v, ϕ̂(w)c1c2c3c4) ,

we have reduced the problem to the case whereϕ = 1, and we will assume

this from now on.
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3.4.4 Determination of ϕ̂

Our next goal is to show that g ∈ L∗. We start with a lemma.

Lemma 3.4.5. Let ξ ∈ W \ [K] and z ∈ W be arbitrary elements such that

f̂ (ξv, z) = 0 for all v ∈ V. Then there exist an element s ∈ L and an element

t ∈ K such that z = sξ + [t].

Proof. Let d ∈ V \ [L] be arbitrary, and let e be as in Theorem 2.7.98.

By Theorem 2.7.101, z = s1ξ + s2ξed−1 + s3ξd−1 + s4β
2ξe + [t] for some

s1, s2, s3, s4 ∈ L and some t ∈ K. It follows from f̂ (ξ , z) = 0, f̂ (ξd−1, z) = 0
and f̂ (ξe, z) = 0 that s2 = 0, s4 = 0 and s3 = 0, respectively. We conclude

that z = s1ξ + [t], which is what we had to show.

We now pick up our examination of η = (1, ϕ̂) ∈ X`. Let w ∈ W \ [K]
be arbitrary, and let z := ϕ̂(w). Then it follows from (3.10) that

vw = gvz (3.18)

for all v ∈ V. If we apply q on both sides of (3.18), then it follows from

Lemmas 2.7.95(ii) and 2.7.97(i) that

q̂(w) = g2q̂(z) . (3.19)

Lemma 3.4.6. f̂ (w, z) = 0.

Proof. Let v ∈ V \ [L] be arbitrary. By Lemma 3.4.1(ii), (3.18), (3.19), (C7)

and Remark 2.7.97,

vπ̂z(w) = vz−1wz = q̂(z)−1vzwz = q̂(z)−1g−1vwwz

= q̂(z)−1g−1q̂(w)vz = q̂(z)−1g−2q̂(w)vw = vw ,

and hence, by (C11),

[ f̂ (wv, π̂z(w))] = v(w + π̂z(w)) + vw + vπ̂z(w)

= v · f̂ (w, z)q̂(z)−1z ,

which implies that v · f̂ (w, z)q̂(z)−1z ∈ [L]. Since v 6∈ [L], it follows that

f̂ (w, z) = 0.

Lemma 3.4.7. f̂ (wv, z) = 0 for all v ∈ V.
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Proof. By Lemma 3.4.6, π̂z(w) = w. It follows from Lemma 3.4.1(iv) that

wv + f̂ (wv, z)q̂(z)−1z = q̂(z)−1w · vz .

By (3.18), Remark 2.7.97, (3.19) and (C10),

q̂(z)−1w · vz = q̂(z)−1g−2w · vw = q̂(w)−1q̂(w)wv = wv ,

and it follows that f̂ (wv, z)q̂(z)−1z = 0, which implies that f̂ (wv, z) = 0.

By Lemma 3.4.7, we are now ready to invoke Lemma 3.4.5. It follows

that z = sw + [t] for some s ∈ L and some t ∈ K. If we plug in this

expression for z in (3.18), then we get that

vw = gv(sw + [t]) = (sg)vw + (tg)v .

But since we chose w 6∈ [K], the elements v and vw are linearly independent

(for if there were an x ∈ K such that vw = xv, then v(w + [x]) = 0 by (C11)

and hence w = [x] ∈ [K]). It thus follows that tg = 0 and sg = 1, hence s
is invertible, g = s−1 ∈ L∗, and z = g−1w.

Since w ∈ W \ [K] was arbitrary, it follows that ϕ̂(w) = g−1w for all

w ∈ W \ [K]. Moreover, since g−1 ∈ L, it follows from (3.16) and Remark

2.7.97 that ϕ̂([t]) = g−1[t] for all w = [t] ∈ [K] as well. So ϕ̂ is just scalar

multiplication by the element g−1 ∈ L∗.
It now suffices to observe that π[g−1] = 1 to conclude that η = χ[g−1].

Since χ[g−1] ∈ X†, we have shown that X` = X†.
It finally follows from (1.1), (3.9) and (3.15) that

G/G† ∼= H/H† ∼= X/X† = X/X`
∼= Im(Φ) ≤ Aut(K, L) ,

which proves the Main Theorem 3.1.1.





4
Quadratic Forms of

Type E6, E7 and E8

In Theorem 2.7.14 of Chapter 2, we have shown that a wide quadrangu-

lar system Ω contains a canonically embedded reduced sub-quadrangular

system Γ = ΓΩ. In one case, Γ is the quadrangular system determined by

an anisotropic quadratic space (K, V0 , q); this case has been examined in

Theorem 2.7.10. One of the results of this theorem says that if q is regular

and the dimension of V0 is greater than four, then q must be a quadratic

form of type Ek for k = 6, 7 or 8 as defined on page 64 and Ω is uniquely

determined by Γ and hence by q.

By the results of [43] (see the appendix of [52] for details), on the other

hand, to each anisotropic quadratic form q over a field K whose even Clif-

ford algebra has the structure given in 4.3.4 below, a K-form of a simple

algebraic group of type Ek exists whose spherical building is a wide Mou-

fang quadrangle Ω such that ΓΩ is the quadrangle determined by q. These

results imply that the only quadratic forms whose even Clifford algebras

are as in 4.3.4 are quadratic forms of type Ek (for k = 6, 7 or 8). In this

chapter, we give a direct proof of this result.

During the proof of this fact, we also obtain new general results about

low-dimensional quadratic forms.

4.1 Some Basic Properties about Even

Dimensional Quadratic Forms

We start this chapter by mentioning some basic lemmas and theorems about

even dimensional quadratic forms which we will need later on.

Lemma 4.1.1. Let E/K be a separable quadratic extension with norm N,

and let γ ∈ K∗. Then (E/K,γd̃(N)) ∼= (E/K,−γ), where d̃(q) ∈ K∗/(K∗)2
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is defined as

d̃(q) =

{
d(q) if char(K) is odd ,

1 if char(K) is even .

Proof. By Theorem 1.7.3, we have to prove that

[E/K,γd̃(N)] + [E/K,−γ] = 0 ,

which is in turn equivalent to [E/K,−γ2 d̃(N)] = 0, by Theorem 1.7.1.

By Lemma 1.7.2, this is equivalent to −d̃(N) ∈ N(E). If char(K) = 2,

then this is a trivial statement; if char(K) 6= 2, then this follows from

the fact that N (considered as a quadratic form) has a diagonalization

N ' 〈1,−d(N)〉.

Lemma 4.1.2. Let E/K be a separable quadratic extension with norm N, and

let s ∈ K∗. Then C(sN) ∼= (E/K, s).

Proof. See, for example, [52, (12.27)] for a characteristic-free proof of this

well known fact.

Lemma 4.1.3. If q and q′ are two even dimensional regular quadratic forms

over K, then c(q ⊥ q′) = c(q) + c(d̃(q)q′) in Br(K), where d̃(q) is defined as

in Lemma 4.1.1.

Proof. If char(K) 6= 2, then this can be found in [29, V.3.15]. If char(K) =
2, then the graded tensor product is the same as the ordinary tensor prod-

uct, so

C(q ⊥ q′) ∼= C(q) ⊗̂K C(q′) ∼= C(q)⊗K C(q′) ,

(see, for example, [41, 9.2.5] for a characteristic-free proof of the first

isomorphism) and hence c(q ⊥ q′) = c(q) + c(q′).

Theorem 4.1.4. (See [52, (12.28)].) Let E/K be a separable quadratic

extension with norm N, and let s1, . . . , sd ∈ K∗. Then

c(s1N ⊥ · · · ⊥ sdN) = [E/K, (−1)[d/2]s1 . . . sd] .

Proof. This follows by induction on d, using Lemmas 4.1.2, 4.1.3 and 4.1.1.

Lemma 4.1.5. If q and q′ are two even dimensional regular quadratic forms

over K, then

d(q ⊥ q′) =

{
d(q)d(q′) if char(K) 6= 2 ,

d(q) + d(q′) if char(K) = 2 .

In both cases, d(q ⊥ q′) is trivial if and only if d(q) = d(q′).
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Proof. First assume that char(K) 6= 2. If q is 2d-dimensional, then

d(q) = (−1)2d(2d−1)/2 det(q) = (−1)d det(q) ,

so d is clearly multiplicative on even dimensional quadratic forms.

If char(K) = 2, then it follows immediately from the definition that

d(q ⊥ q′) = d(q) + d(q′).

Theorem 4.1.6. (See [52, (12.43)].)

(i) Let q be a 6-dimensional regular anisotropic quadratic form over K.

If q is of type E6, then d(q) is non-trivial and c(q) = [Q] for some

quaternion algebra Q over K which, if it is a division algebra, contains

the discriminant extension of q.

(ii) Let q be an 8-dimensional regular anisotropic quadratic form over K. If
q is of type E7, then d(q) is trivial and c(q) = [D] for some quaternion

division algebra D over K.

(iii) Let q be a 12-dimensional regular anisotropic quadratic form over K. If
q is of type E8, then d(q) is trivial and c(q) = 0.

Proof. First of all, we observe that, if q is an anisotropic 2d-dimensional

quadratic form over K with a norm splitting q ' s1N ⊥ · · · ⊥ sdN, where N
is the norm of some separable quadratic extension E/K and s1, . . . , sd ∈ K∗,
then it follows from Lemma 4.1.5 that

d(q) =

{
d(N) if d is odd ,

trivial if d is even .

The statements about d(q) now follow from the fact that d(N) is non-trivial.

A straightforward application of Theorem 4.1.4 together with Lemma 1.7.2

yields the statements about c(q).

The goal of the next section is to prove the converse of this theorem.

4.2 Characterizations

Now that we have assembled the necessary tools, we can start to prove

some characterizations for even dimensional quadratic forms. We will grad-

ually increase the dimension. But first of all, we start with three lemmas

which we will make use of repeatedly.
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Lemma 4.2.1. Let E/K be a separable quadratic extension with norm N.

If (V, q) is an anisotropic regular quadratic space such that (V ⊗K E, qE) is

isotropic, then q ' sN ⊥ q′ for some s ∈ K∗ and some regular quadratic form

q′ over K.

Proof. If char(K) 6= 2, then this can be found in [41, 2.5.1]. The proof

in the case char(K) = 2 is similar, as we will show. Let E = K(α) where

α2 +α + δ = 0, with δ = d(N). Then every element w ∈ V ⊗K E can be

written (in a unique way) as w = x + yα for some x, y ∈ V. Let u, v ∈ V
(not both trivial) be such that u + vα is isotropic. Since (V, q) is anisotropic,

we must have v 6= 0. Then

0 = q(u + vα)

= q(u) +α2q(v) +α f (u, v)

= q(u) + δq(v) +α(q(v) + f (u, v)) ,

which implies that q(u) = δq(v) and f (u, v) = q(v). If we set s = q(v) ∈ K∗,
then the matrix corresponding to the restriction of q to the subspace with

ordered basis (u, v), is given by
(
δs s
0 s

)
= s

(
δ 1
0 1

)
. But this is exactly the ma-

trix representation of sN as a quadratic form; see, for example, [41, 9.4.1].

So the restriction of q to the subspace generated by u and v in V is isometric

to sN. Since 〈u, v〉 is regular, V ∼= 〈u, v〉 ⊥ 〈u, v〉⊥, and hence q ' sN ⊥ q′

for some regular quadratic form q′ over K.

Lemma 4.2.2. Let E/K be a separable quadratic extension with norm N.

If (V, q) is an anisotropic regular quadratic space such that (V ⊗K E, qE)
is hyperbolic, then q has a norm splitting q ' s1N ⊥ · · · ⊥ sdN with

s1, . . . , sn ∈ K∗.

Proof. (See [41, 2.5.11]). Since qE is isotropic, q ' s1N ⊥ q′ for some

scalar s1 ∈ K∗ and some regular quadratic form q′, by Lemma 4.2.1. Since

qE is hyperbolic, so is q′E. By induction on the dimension, we get that q has

a norm splitting q ' s1N ⊥ · · · ⊥ sdN with s1, . . . , sn ∈ K∗.

The following key lemma will allow us to decrease the dimension by

tensoring up by some quadratic extension.

Lemma 4.2.3. Let q be an even dimensional regular quadratic form over

K, with a decomposition q ' q1 ⊥ q′, where q1 is a 2-dimensional regular

quadratic form.

(i) Suppose that d(q1) is trivial. Then d(q′) = d(q) and c(q′) = c(q1) + c(q).

(ii) Suppose that d(q1) is non-trivial. Consider the discriminant extension

E/K of q1. Then d(q′E) = d(qE) and c(q′E) = c(qE).
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Proof. (i) Since d(q1) is trivial, it follows from Lemma 4.1.5 that d(q) =
d(q1 ⊥ q′) = d(q′). Since d̃(q1) = 1, Lemma 4.1.3 implies that c(q) =
c(q1 ⊥ q′) = c(q1) + c(q′). The result follows, since c(q1) is of order

at most 2 in Br(K).

(ii) Since E/K is the discriminant extension of q1, we have that d((q1)E)
is trivial. Denote the norm of E/K by N. Then q1 ' sN for some

s ∈ K∗. It follows that

c((q1)E) = [C(sN)⊗K E] = [(E/K, s)⊗K E] = 0

in Br(E) by Lemma 4.1.2 and Lemma 1.6.6(ii). It now follows from

part (i) that d(q′E) = d(qE) and c(q′E) = c((q1)E) + c(qE) = c(qE).

We can now start with some characterizations of 4-dimensional quadratic

forms.

Lemma 4.2.4. A 4-dimensional regular quadratic form q over K with trivial

discriminant has a norm splitting or is hyperbolic.

Proof. Let q ' q1 ⊥ q2, where q1 and q2 are 2-dimensional regular quadratic

forms. Since d(q1 ⊥ q2) is trivial, it follows immediately from Lemma 4.1.5

that d(q1) = d(q2). If this discriminant is trivial, then q is hyperbolic; if this

discriminant is non-trivial, then q has a norm splitting.

The following lemma is well known; see, for example, [41, 2.14.3.iii]

for a proof in odd characteristic. Our proof is characteristic-free.

Lemma 4.2.5. A 4-dimensional regular quadratic form q over K with trivial

discriminant and c(q) = 0 is hyperbolic.

Proof. Let (V, q) be the quadratic space corresponding to q. By Lemma

4.2.4, q is hyperbolic or q has a norm splitting. If q is hyperbolic, then

we are done, so we can assume that q has a norm splitting. Then there

exists a separable quadratic extension E/K with norm N and two con-

stants s1, s2 ∈ K∗ such that q ' s1N ⊥ s2N. By Theorem 4.1.4, c(q) =
[E/K,−s1s2]. Since c(q) = 0, this implies that −s1s2 ∈ N(E), by Lemma

1.7.2. So there exists a t ∈ E∗ such that s2 = −s1N(t), and hence

q ' s1N ⊥ −s1N(t)N .

The subspace consisting of the elements of V corresponding to the elements

(tx, x) ∈ E⊕ E for all x ∈ E, is 2-dimensional and totally isotropic. Thus q
is hyperbolic.
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The next lemma was first proved by Albert (see [1]), but his proof in-

volves a lot of calculation, and only works in odd characteristic. A shorter

proof in odd characteristic can be found in [41, 2.14.3.iv]. A characteristic-

free but very indirect proof can be found in [28, 16.5]. We will give a direct

characteristic-free proof.

Theorem 4.2.6. A 6-dimensional regular quadratic form q over K with trivial

discriminant and c(q) = 0 is hyperbolic.

Proof. Consider a decomposition q ' q1 ⊥ q2 ⊥ q3, where each qi is a

2-dimensional regular quadratic form. If d(q1) = d(q2) = d(q3) are all

trivial, then q is hyperbolic, and we are done. So without loss of generality,

we can assume that d(q1) is not trivial. Consider its discriminant extension

E/K with norm N. In particular, q1 ' sN for some s ∈ K∗. Let q′ = q2 ⊥ q3,

then q ' q1 ⊥ q′. We know that d(qE) is trivial and that c(qE) = 0. By

the Key Lemma 4.2.3(ii), d(q′E) = d(qE), so d(q′E) is trivial as well, and

c(q′E) = c(qE) = 0. By Lemma 4.2.5, q′E is hyperbolic.

Suppose that q′ is anisotropic. Since q′E is hyperbolic, it then follows

from Lemma 4.2.2 that q′ has a norm splitting q′ ' s2N ⊥ s3N for some

s2, s3 ∈ K∗. So q ' q1 ⊥ q′ ' sN ⊥ s2N ⊥ s3N. It follows from Lemma

4.1.5 that d(q) = d(N), but d(q) is trivial, whereas d(N) is not trivial – a

clear contradiction. So q′ has to be isotropic, hence q is isotropic as well.

Thus q has a decomposition q ' h ⊥ q̃, where h is a 2-dimensional

hyperbolic quadratic form. Since d(h) is trivial and c(h) = 0, the Key

Lemma 4.2.3(i) tells us that d(q̃) is trivial and c(q̃) = 0. Again by Lemma

4.2.5, this implies that q̃ is hyperbolic, and so q is hyperbolic as well.

Lemma 4.2.7. Let q be a 6-dimensional anisotropic regular quadratic form

over K with d(q) non-trivial. Consider the discriminant extension E/K of q.

If c(qE) = 0 in Br(E), then q has a norm splitting.

Proof. We tensor everything up by E. Then qE is a 6-dimensional regular

quadratic form with trivial discriminant (since E is exactly the discriminant

extension of q) and with c(qE) = 0. By Theorem 4.2.6, this implies that qE

is hyperbolic. Since q is anisotropic, Lemma 4.2.2 implies that q has a norm

splitting.

An odd-characteristic version of the following lemma can be found in

[41, 2.14.3.v].

Lemma 4.2.8. A 6-dimensional regular quadratic form q over K with triv-

ial discriminant and c(q) = [Q] for some quaternion algebra Q over K, is

isotropic.
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Proof. If Q is not a division algebra, then c(q) = 0, and the result follows

from Theorem 4.2.6. So we can assume that Q is a quaternion division

algebra. In particular, Q contains a subfield E such that E/K is a separable

quadratic extension; we denote its norm by N. If we tensor everything up

by this extension field E, then we get a quadratic form qE over E with trivial

discriminant and with c(qE) = [Q⊗K E] = 0 in Br(E), by Lemma 1.6.6(ii).

Again by Theorem 4.2.6, this implies that qE is hyperbolic.

Suppose that q were anisotropic. Then Lemma 4.2.2 would imply that

q has a norm splitting q ' s1N ⊥ s2N ⊥ s3N for some s1, s2, s3 ∈ K∗. By

Lemma 4.1.5, it would follow from this that d(q) = d(N), which contra-

dicts the fact that q has trivial discriminant. We conclude that q must be

isotropic.

Theorem 4.2.9. An 8-dimensional anisotropic regular quadratic form q over

K with trivial discriminant and c(q) = [Q] for some quaternion algebra Q
over K, has a norm splitting.

Proof. Consider a decomposition q ' q1 ⊥ q2 ⊥ q3 ⊥ q4, where each qi is

a 2-dimensional regular quadratic form, and set q′ = q2 ⊥ q3 ⊥ q4. Since

q is anisotropic, so is q1, hence d(q1) is non-trivial, and we can consider its

discriminant extension E/K with norm N. In particular, q1 ' s1N for some

s1 ∈ K∗.
If we tensor everything up by this extension field E, then qE still has

trivial discriminant, and c(qE) = [Q⊗K E] in Br(E). Note that Q⊗K E is

a quaternion algebra over E. It now follows from the Key Lemma 4.2.3(ii)

that d(q′E) = d(qE), so d(q′E) is trivial, and c(q′E) = c(qE) = [Q⊗K E]. Hence

we can apply Lemma 4.2.8 on q′E, and we get that q′E is isotropic. Since q′

is anisotropic, this implies by Lemma 4.2.1 that q′ ' s2N ⊥ q′′ for some

s2 ∈ K∗ and some regular 4-dimensional quadratic form q′′.
So q ' s1N ⊥ s2N ⊥ q′′. Since d(q) is trivial, Lemma 4.1.5 implies

that d(q′′) = d(s1N ⊥ s2N). Since d(s1N) = d(s2N), this same lemma also

implies that d(s1N ⊥ s2N) is trivial, and hence d(q′′) is trivial as well. Note

that q′′ is anisotropic, since q is anisotropic. So by Lemma 4.2.4, q′′ has a

norm splitting q′′ ' s3N ′ ⊥ s4N ′, where N ′ is the norm of some separable

quadratic extension E′/K, and s3, s4 ∈ K∗.
So q ' s1N ⊥ s2N ⊥ s3N ′ ⊥ s4N ′. Since d(s1N ⊥ s2N) is trivial,

Lemma 4.1.3 implies that c(q) = c(s1N ⊥ s2N) + c(s3N ′ ⊥ s4N ′). By

Theorem 4.1.4, this implies that c(q) = [E/K,−s1s2] + [E′/K,−s3s4]. But

c(q) = [Q] as well, so by Theorem 1.7.4, there exists a separable quadratic

extension Ẽ/K with norm Ñ which splits all three quaternion algebras

(E/K,−s1s2), (E′/K,−s3s4) and Q. In particular,

c((s1N ⊥ s2N)Ẽ) = [(E/K,−s1s2)⊗K Ẽ] = 0 ∈ Br(Ẽ) ,
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and of course, d((s1N ⊥ s2N)Ẽ) is trivial as well. So by Lemma 4.2.5,

(s1N ⊥ s2N)Ẽ is hyperbolic. Since s1N ⊥ s2N is anisotropic, it follows from

Lemma 4.2.2 that s1N ⊥ s2N has a norm splitting s1N ⊥ s2N ' t1Ñ ⊥ t2Ñ
for some t1, t2 ∈ K∗. A completely similar argument is true for s3N ′ ⊥ s4N ′,
hence s3N ′ ⊥ s4N ′ ' t3Ñ ⊥ t4Ñ for some t3, t4 ∈ K∗.

We conclude that q ' t1Ñ ⊥ t2Ñ ⊥ t3Ñ ⊥ t4Ñ. So q has a norm

splitting.

Theorem 4.2.10. A 10-dimensional regular quadratic form q over K with

trivial discriminant and c(q) = 0 is isotropic.

Proof. We follow a part of the proof of [41, 2.14.4], which is in odd char-

acteristic only, but which can be extended to the general case without any

significant change.

Consider a decomposition q ' q4 ⊥ q6, where q4 and q6 are regu-

lar quadratic forms of dimension 4 and 6 respectively. By Lemma 4.1.5,

d(q4) = d(q6).
First, assume that d(q4) = d(q6) is trivial. Then Lemma 4.2.4 and The-

orem 4.1.4 together imply that c(q4) = [Q] for some quaternion algebra Q
over K. Since d̃(q4) = 1, Lemma 4.1.3 implies that c(q6) = c(q4) = [Q]. By

Lemma 4.2.8, q6 is isotropic, and so is q.

So we can assume that d(q4) = d(q6) is non-trivial. Consider the dis-

criminant extension E/K of q4 (or q6) with norm N. Once again, we tensor

everything up by this extension field E, and we get that d((q4)E) = d((q6)E)
is trivial. In the same way as in the previous paragraph, we obtain that (q6)E

is isotropic.

If q6 is isotropic, then q is isotropic as well, and we are done; so we

can assume that q6 is anisotropic. Then Lemma 4.2.1 implies that q6 has

a decomposition q6 ' sN ⊥ q′ for some s ∈ K∗ and some 4-dimensional

regular quadratic form q′. Since d(q6) = d(N) = d(sN) (because N is

exactly the norm of the discriminant extension of q6), Lemma 4.1.5 implies

that d(q′) is trivial, and Lemma 4.2.4 and Theorem 4.1.4 together imply

that c(q′) = [Q′] for some quaternion algebra Q′ over K.

Now, consider a decomposition q ' q′ ⊥ q̃, where q̃ is a 6-dimensional

regular quadratic form. Since d(q) and d(q′) are both trivial, so is d(q̃), by

Lemma 4.1.5. Hence it follows from Lemma 4.1.3 that c(q̃) = c(q′) = [Q′].
Lemma 4.2.8 now implies that q̃ is isotropic, and we are done.

Theorem 4.2.11. A 12-dimensional anisotropic regular quadratic form q
over K with trivial discriminant and c(q) = 0 has a norm splitting.

Proof. Consider a decomposition q ' q2 ⊥ q10, where q2 and q10 are regu-

lar quadratic forms of dimension 2 and 10 respectively. By Lemma 4.1.5,
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d(q2) = d(q10). Since q2 is anisotropic, this discriminant is non-trivial, and

we can consider the discriminant extension E/K of q2 (or q10) with norm

N. In particular, q2 ' s1N for some s1 ∈ K∗.
Since d(q) is trivial and c(q) = 0, the Key Lemma 4.2.3(ii) implies that

d((q10)E) is trivial and c((q10)E) = 0. Theorem 4.2.10 now implies that

(q10)E is isotropic, so it follows from Lemma 4.2.1 that q10 has a decom-

position q10 ' s2N ⊥ q8, for some regular 8-dimensional quadratic form

q8.

So q ' s1N ⊥ s2N ⊥ q8. By Theorem 4.1.4, c(s1N ⊥ s2N) = [Q] for

some quaternion algebra Q. Since d̃(s1N ⊥ s2N) = 1, Lemma 4.1.3 im-

plies that c(q8) = c(s1N ⊥ s2N) = [Q]. Furthermore, it follows from

Lemma 4.1.5 that d(q8) = d(s1N ⊥ s2N), hence d(q8) is trivial. Since q
is anisotropic, so is q8, and Theorem 4.2.9 now implies that q8 has a norm

splitting q8 ' s3N ′ ⊥ s4N ′ ⊥ s5N ′ ⊥ s6N ′, where N ′ is the norm of a sepa-

rable quadratic extension E′/K and s3, s4, s5, s6 ∈ K∗.
So we already have q ' s1N ⊥ s2N ⊥ s3N ′ ⊥ s4N ′ ⊥ s5N ′ ⊥ s6N ′.

Since d(s1N ⊥ s2N) is trivial, Lemma 4.1.3 implies that

c(q) = c(s1N ⊥ s2N) + c(s3N ′ ⊥ s4N ′ ⊥ s5N ′ ⊥ s6N ′) .

By Theorem 4.1.4, this implies that c(q) = [E/K,−s1s2] + [E′/K, s3s4s5s6],
and hence (E/K,−s1s2) ∼= (E′/K, s3s4s5s6). It follows from Lemma 1.6.6(ii)

that [(E/K,−s1s2)⊗K E′] = 0 in Br(E′), and hence c((s1N ⊥ s2N)E′) = 0.

Since d((s1N ⊥ s2N)E′) is trivial as well, we have that (s1N ⊥ s2N)E′

is hyperbolic, by Lemma 4.2.5. It now follows from Lemma 4.2.2 that

s1N ⊥ s2N has a decomposition s1N ⊥ s2N ' t1N ′ ⊥ t2N ′ for some

t1, t2 ∈ K∗.
We conclude that q ' t1N ′ ⊥ t2N ′ ⊥ s3N ′ ⊥ s4N ′ ⊥ s5N ′ ⊥ s6N ′, so q

has a norm splitting.

We are now ready to prove the main theorem.

Theorem 4.2.12.

(i) Let q be a 6-dimensional regular anisotropic quadratic form over K. If
d(q) is non-trivial and c(q) = [Q] for some quaternion algebra Q over

K which, if it is a division algebra, contains the discriminant extension

of q, then q is of type E6.

(ii) Let q be an 8-dimensional regular anisotropic quadratic form over K. If
d(q) is trivial and c(q) = [D] for some quaternion division algebra D
over K, then q is of type E7.

(iii) Let q be a 12-dimensional regular anisotropic quadratic form over K. If

d(q) is trivial and c(q) = 0, then q is of type E8.
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Proof. (i) Let E/K be the discriminant extension of q. By Lemma 1.6.6(ii),

c(qE) = [Q⊗K E] = 0 in Br(E). By Lemma 4.2.7, this implies that q
has a norm splitting, i.e. q is of type E6.

(ii) By Theorem 4.2.9, q has a norm splitting q ' s1N ⊥ · · · ⊥ s4N
for some separable quadratic extension E/K with norm N and some

s1, s2, s3, s4 ∈ K∗. By Theorem 4.1.4, c(q) = [E/K, s1s2s3s4]. Since

c(q) = [D], [E/K, s1s2s3s4] 6= 0 in Br(K), and Lemma 1.7.2 now im-

plies that s1s2s3s4 6∈ N(E). Hence q is of type E7.

(iii) By Theorem 4.2.11, q has a norm splitting q ' s1N ⊥ · · · ⊥ s6N
for some separable quadratic extension E/K with norm N and some

s1, . . . , s6 ∈ K∗. By Theorem 4.1.4, c(q) = [E/K,−s1 · · · s6]. Since

c(q) = 0, Lemma 1.7.2 now implies that −s1 · · · s6 ∈ N(E). Hence q
is of type E8.

4.3 Even Clifford Algebra

We will now restate Theorems 4.1.6 and 4.2.12 in terms of the even Clif-

ford algebra of q. The following relation between the Clifford algebra C(q)
and the even Clifford algebra C0(q) is well known. One possible reference

is [20], where the whole theory is built up in a very general setup. Its

statement of this theorem [20, 11.2] uses the polynomial of special ele-

ments, but this is equivalent to our discriminant assumptions. Namely, we

can use [20, ex. 2, p. 101] to see that these assumptions correspond in the

2-dimensional case. Using an inductive argument and [20, Theorem 7.9,

p. 102], we can extend this to the general even dimensional case.

Theorem 4.3.1. Assume that q is an even dimensional regular quadratic form

over K. Then there is a finite dimensional central division algebra D over K
such that C(q) ∼= Matk(D) as K-algebras, where both dimK D and k are

powers of 2. If k > 1, set k = 2m.

(i) If the discriminant d(q) is trivial, then C0(q) ∼= Matm(D)⊕Matm(D),
and Z(C0(q)) ∼= K⊕ K.

(ii) If the discriminant d(q) is non-trivial, then we consider the discriminant

extension E/K.

(a) If E is contained in D, then C0(q) ∼= Matk(D0) for some central

division algebra D0 ⊆ D over E.

(b) If E is not contained in D, then D⊗K E is a central division algebra

over E (see Lemma 1.6.6(i)), and C0(q) ∼= Matm(D⊗K E).
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In both cases (a) and (b), Z(C0(q)) ∼= E.

Proof. See [20, 11.2].

Remark 4.3.2. A similar theorem exists for regular quadratic forms of odd

dimension. See, for example, [20, 11.1].

We continue with a lemma that allows us to drop the regularity condi-

tion, because the regularity follows from the structure of the (even) Clifford

algebra.

Lemma 4.3.3.

(i) If q1 and q2 are two anisotropic quadratic forms over K of the same

dimension and C0(q1) ∼= C0(q2), then q1 and q2 are both regular or

both non-regular.

(ii) If q1 and q2 are two anisotropic quadratic forms over K of the same

dimension and C(q1) ∼= C(q2), then q1 and q2 are both regular or both

non-regular.

Proof. Let q1 and q2 be two anisotropic quadratic forms over K of the same

dimension, and suppose that either C0(q1) ∼= C0(q2) or C(q1) ∼= C(q2) (or

both). We can assume that both q1 and q2 are quadratic forms from the

same vector space V (over K) to K. If char(K) 6= 2, then there is nothing

to prove, since all anisotropic quadratic forms are regular in this case. So

we can assume that char(K) = 2. If dimK V is odd, then there is again

nothing to prove, because a regular quadratic form in even characteristic is

always even dimensional. So we can also assume that dimK V is even.

Suppose that q1 is regular and that q2 is non-regular. By the structure

Theorem 4.3.1, we know that Z(C(q1)) = K, and either Z(C0(q1)) ∼= K⊕K
or Z(C0(q1)) ∼= E where E/K is a separable quadratic extension (an algebra

which is either isomorphic to K⊕ K or isomorphic to a separable quadratic

extension field of K is also called an étale quadratic extension of K). In both

cases, Z(C0(q1)) does not contain an element z such that z 6∈ K but z2 ∈ K.

Let R be the (non-trivial) radical of (V, q2). Then V has a decompo-

sition V = R ⊕W, and (W, q2|W) is a regular quadratic form. To avoid

confusion, we will denote the image of an element v ∈ V under the natural

embedding of V in C(V, q2) as ṽ. For all r ∈ R = Rad(V, q2) and all v ∈ V,

we have that q2(r + v) = q2(r) + q2(v), and hence (r̃ + ṽ)2 = r̃2 + ṽ2. It

follows that r̃ṽ = ṽr̃, so R̃ ⊆ Z(C(V, q2)). Since a regular quadratic form

in even characteristic is always even dimensional, dimK W is even, and

hence dimK R ≥ 2. So we can choose two linearly independent elements

u, v ∈ R. It follows from Theorem 1.8.3 that ũ and ṽ are linearly indepen-

dent in C(V, q2) as well. Hence dimK R̃ ≥ 2, and since R̃ ⊆ Z(C(V, q2)), it
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follows that dimK Z(C(q2)) ≥ 2, whereas dimK Z(C(q1)) = 1. So Z(C(q1))
and Z(C(q2)) cannot be isomorphic.

On the other hand, it also follows from the fact that ũ and ṽ are linearly

independent in C(V, q2) that ũṽ 6∈ K. But ũ and ṽ commute, so (ũṽ)2 =
ũ2ṽ2 = q(u)q(v) · 1 ∈ K. Thus Z(C0(q2)) contains an element z = ũṽ such

that z 6∈ K but z2 ∈ K. We conclude that Z(C0(q1)) and Z(C0(q2)) are not

isomorphic either, and we are done.

We can now restate the main theorem.

Theorem 4.3.4.

(i) Let q be a 6-dimensional anisotropic quadratic form over K. Then the

following are equivalent.

(a) q is of type E6.

(b) C0(q) ∼= Mat4(E) for some quadratic extension E/K.

(c) q is regular, d(q) is non-trivial and c(q) = [Q] for some quaternion

algebra Q over K which, if it is a division algebra, contains the

discriminant extension of q.

(ii) Let q be an 8-dimensional anisotropic quadratic form over K. Then the

following are equivalent.

(a) q is of type E7.

(b) C0(q) ∼= Mat4(D)⊕Mat4(D) for some quaternion division alge-

bra D over K.

(c) q is regular, d(q) is trivial and c(q) = [D] for some quaternion

division algebra D over K.

(iii) Let q be a 12-dimensional anisotropic quadratic form over K. Then the

following are equivalent.

(a) q is of type E8.

(b) C0(q) ∼= Mat32(K)⊕Mat32(K).
(c) q is regular, d(q) is trivial and c(q) = 0.

Proof. In each case, we have proved in Theorem 4.1.6 that (a) implies (c)

and in Theorem 4.2.12 that (c) implies (a). It remains to show that (b) and

(c) are equivalent.

We start by proving that (b) implies (c). First of all, observe that, in

all cases, it follows from Lemma 4.3.3(i) that q is a regular quadratic form.

In each case, we will reconstruct d(q) and c(q) from C0(q), using Theorem

4.3.1. By this theorem, we have C(q) ∼= Matk(A), where A is a central

division algebra over K.
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(i) Since C0(q) is simple, we are in case (ii) of Theorem 4.3.1. In particu-

lar, d(q) is non-trivial, and we can consider the discriminant extension

Ẽ/K.

If we are in case (a), then Ẽ is contained in A, and C0(q) ∼= Matk(D0)
for some central division algebra D0 ⊆ A over Ẽ. Since C0(q) ∼=
Mat4(E), this implies that k = 4, so C(q) ∼= Mat4(A). By Theorem

1.8.3, dimK A = 4, so A is a quaternion division algebra. We con-

clude that c(q) = [A], where A is a quaternion division algebra over

K which contains the discriminant extension of q.

If we are in case (b), then C0(q) ∼= Matk/2(A⊗K Ẽ), and A⊗K Ẽ is a

division algebra. Since C0(q) ∼= Mat4(E), this implies that k = 8, so

C(q) ∼= Mat8(A), and Theorem 1.8.3 yields immediately that A ∼= K.

We conclude that c(q) = 0 in this case.

(ii) Since C0(q) is not simple, we are in case (i) of Theorem 4.3.1. In

particular, d(q) is trivial, and A ∼= D, so C(q) ∼= Mat8(D) and hence

c(q) = [D].

(iii) Since C0(q) is not simple, we are in case (i) of Theorem 4.3.1. In

particular, d(q) is trivial, and A ∼= K, so C(q) ∼= Mat64(K) and hence

c(q) = 0.

We finish by proving that (c) implies (b).

(i) Since d(q) is non-trivial, we can consider the discriminant extension

E/K of q. By Theorem 1.8.3, C(q) ∼= Mat4(Q). If Q is not a division

algebra, i.e. if Q ∼= Mat2(K), then C(q) ∼= Mat8(K), and it follows

from case (ii.b) of Theorem 4.3.1 that C0(q) ∼= Mat4(E). If Q is

a division algebra which contains E, then it follows from case (ii.a)

of Theorem 4.3.1 that C0(q) ∼= Mat4(D0), for some central division

algebra D0 ⊆ D over E. By counting dimensions using Theorem

1.8.5, we see that dimE D0 = 1, hence D0
∼= E.

(ii) By Theorem 1.8.3, C(q) ∼= Mat8(D). It follows from case (i) of The-

orem 4.3.1 that C0(q) ∼= Mat4(D)⊕Mat4(D).

(iii) By Theorem 1.8.3, C(q) ∼= Mat64(K). It follows from case (i) of

Theorem 4.3.1 that C0(q) ∼= Mat32(K)⊕Mat32(K).

Remark 4.3.5. In a completely similar way as in Theorem 4.3.4(ii), one can

prove that the following are equivalent for an 8-dimensional anisotropic

quadratic form q over K:
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(a) q is similar to the norm form of an octonion division algebra.

(b) C0(q) ∼= Mat8(K)⊕Mat8(K).

(c) q is regular, d(q) is trivial and c(q) = 0.

One should be aware of the following equivalences:

q is similar to the norm form of an octonion division algebra.

⇐⇒ q is anisotropic and q ' α((N −βN)− γ(N −βN)) for some sepa-

rable quadratic extension E/K with norm N and some α,β,γ ∈ K∗;
see, for example, [52, (9.8) and (9.3)].

⇐⇒ q is anisotropic and q ' s1N ⊥ s2N ⊥ s3N ⊥ s4N for some separable

quadratic extension E/K with norm N and some s1, s2, s3, s4 ∈ K∗

with s1s2s3s4 ∈ N(E).

Note that this is also equivalent to the statement that “q is similar to an

anisotropic 3-fold Pfister form” (in all characteristics). The result 4.3.5 was

known before; see, for example, [41, 2.14.4] for a proof in odd character-

istic.



A About the LATEX Code

Just in case you are curious about how this thesis was typeset, I include the

main LATEX file (phd.tex) and the LATEX style file (tomphd.sty) which I have

made for this purpose.

A.1 phd.tex

In fact, there is nothing special about this main LATEX file. The preamble is

kept as short as possible: it imports only one package (tomphd.sty), and it

defines a couple of new commands and operators which are used through-

out this thesis. (We omitted most of the operators in this listing.) The

file counters.tex is explained in section A.3. Then each of the chapters is

included. There is only one curiosity, namely that the inclusion of the glos-

sary file phd.gdx which is automatically generated by the \makeglossary

command in combination with the bash script below (A.4), has some trou-

ble with the ‘@’ character. Therefore, the commands \makeatletter and

\makeatother had to be included.

%

% This is phd.tex, the main LaTeX file for this thesis.

% By TDM

%

\mag=850

\documentclass[a4paper, 11pt, twoside, openright]{book}

\raggedbottom

\usepackage{tomphd}

\addtolength{\oddsidemargin}{27.6mm}

\makeindex

\makeglossary

\newcommand{\inc}{\mathbf{I}}

\newcommand{\cP}{\mathcal{P}}

\newcommand{\cL}{\mathcal{L}}
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\newcommand{\bJ}{\textbf{J}}

\newcommand{\bH}{\textbf{H}}

\newcommand{\dual}{\mathrm{D}}

\newcommand{\into}{\hookrightarrow}

\DeclareMathOperator{\Aut}{Aut}

[...]

\DeclareMathOperator{\Rad}{Rad}

\newcommand{\pfrac}[2]{\genfrac{(}{)}{}{}{{#1}}{{#2}}}

\newcommand{\bpfrac}[2]{\genfrac{\lbrack}{)}{}{}{{#1}}{{#2}}}

\include{counters} % Create some new some counters for the axiom systems

\begin{document}

\selectlanguage{english}

\hyphenation{Mou-fang}

\frontmatter

\include{Frontpage}

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{Preface}

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{Introduction}

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\addcontentsline{toc}{chapterlike}{Contents}

{\footnotesize\tableofcontents}

\mainmatter

\include{Chapter1} % --> Preliminaries

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{Chapter2} % --> Quadrangular Systems

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{Chapter3} % --> Automorphisms of F4-quadrangles

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{Chapter4} % --> Quadratic forms of type E6, E7 and E8

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\appendix

\include{AppendixA} % --> About the LaTeX code

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\include{AppendixB} % --> Nederlandstalige samenvatting

\pagestyle{empty}\cleardoublepage\pagestyle{fancy}

\addcontentsline{toc}{chapterlike}{Bibliography}

\include{Bibliography}

\addcontentsline{toc}{chapterlike}{Index}

\footnotesize

\printindex

\renewcommand{\indexname}{{List of Notations}}

\addcontentsline{toc}{chapterlike}{List of Notations}

\makeatletter

\input{phd.gdx}

\makeatother

\end{document}
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A.2 tomphd.sty

The style file tomphd.sty is somewhat more complicated. First of all, it

includes a bunch of packages. The commands \defin and \notat write

out the main argument in the text and add it to the Index or to the List

of Notations, respectively. If a second (optional) argument is given, then

this argument is added to the list instead of the main argument which is

shown in the text. Then a couple of standard environments are defined.

The \bysame command is used in the Bibliography.

The “Very Fancy Headings” section which follows, makes use of the

fancyhdr and the pstricks and pst-node packages to produce the head-

ings on top of each page. The \gradline command, which makes use

of the pst-grad package, produces the fancy line on each chapter page;

the \gradindexline command does the same for the index at the end.

The following paragraph redefines the \itemize command to decrease the

amount of space between subsequent items (which is quite large by de-

fault). Then the Table of Contents is attacked. It adds a horizontal line

before and after each chapter entry – I had quite some trouble to make the

distance independent of the “depth” of the letters (in the sense that a ‘g’ is

deep and an ‘a’ is not); this was solved by using a so-called strut, i.e. a line

of width zero. Also note the one-liner to adjust the alignment for the page

numbers above 100.

Finally, the “Nicer Chapter Headings” part is responsible for the be-

ginning of each Chapter. Then all the section commands are redefined; the

only change compared to the original definitions are the \boldmath com-

mands which I have added to make sure that the titles look nicer if there is

some math within the title.

%

% This is tomphd.sty, the LaTeX style file for this thesis.

% By TDM

%

\ifx\pdfoutput\undefined

\usepackage[dvips]{graphicx}

\else

\usepackage[pdftex]{graphicx}

\fi

\usepackage[english,dutch]{babel}

\usepackage{ifthen}

\usepackage{amsmath}

\usepackage{amssymb}

\usepackage{amsthm}

\usepackage{fancyhdr}

\usepackage{color}

\usepackage{makeidx}

\usepackage{hyphenat}

\usepackage{mathpple} % Math Palatino

\usepackage{charter} % Text Charter
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\renewcommand{\sfdefault}{pag} % Use a nicer font for the headers

\usepackage{pstricks}

\usepackage{pst-grad}

\usepackage{pst-node}

\newcommand{\defin}[2][]{%

\ifthenelse{\equal{#1}{}}

{{\em{#2}\index{#2}}}%

{{\em{#2}\index{#1}}}%

}

\newcommand{\notat}[2][]{%

\ifthenelse{\equal{#1}{}}

{{#2}\glossary{$#2$}}%

{{#2}\glossary{$#1$}}%

}

\newcommand{\glossaryentry}[2]{\item {#1}, {#2}}

\newtheorem{theorem}{Theorem}[section]

\newtheorem{maintheorem}[theorem]{Main Theorem}

\newtheorem{lemma}[theorem]{Lemma}

\newtheorem{stelling}[theorem]{Stelling}

\theoremstyle{definition}

\newtheorem{definition}[theorem]{Definition}

\newtheorem{definitie}[theorem]{Definitie}

\theoremstyle{remark}

\newtheorem{remark}[theorem]{Remark}

\newtheorem{impremark}[theorem]{Important Remark}

\newtheorem{opmerking}[theorem]{Opmerking}

\def\bysame{\leavevmode\hbox to3em{\hrulefill}\thinspace}

%

% Very Fancy Headings ;-)

% By TDM

%

\pagestyle{fancy}

\setlength{\headheight}{23.03pt}

\renewcommand{\chaptermark}[1]{\markboth{\sf\thechapter.\ #1}{}}

\renewcommand{\sectionmark}[1]{\markright{\sf\thesection.\ #1}{}}

\ifx\pdfoutput\undefined

\newcommand{\whitebox}[1]{\psframebox[linewidth=.3pt]{#1}}

\newcommand{\blackbox}[1]{\psframebox[fillstyle=solid, fillcolor=black, %

linewidth=.3pt]{{\textcolor{white}{#1}}}}

\else

\newcommand{\whitebox}[1]{\fbox{#1}}

\newcommand{\blackbox}[1]{\fbox{#1}}

\fi

\fancyhf{}

\fancyhead[el]{\Rnode{Pl}{\blackbox{\sf\thepage\rule[-0.55ex]{0pt}{2.25ex}}}}

\fancyhead[or]{\psset{linewidth=.3pt}\Rnode{Pr}{\blackbox{\sf\thepage%

\rule[-0.55ex]{0pt}{2.25ex}}}\ncline{Tr}{Pr}}

% The chapter on the even (=left) pages; the section on the odd (=right) pages.

\fancyhead[ec]{\fancyplain{}{\psset{linewidth=.3pt}\Rnode{Tl}{\whitebox{\ %

\nouppercase{\sf\leftmark}\ \rule[-0.6ex]{0pt}{2.5ex}}}}\ncline{Pl}{Tl}}

\fancyhead[oc]{\fancyplain{}{\Rnode{Tr}{\whitebox{\rule[-0.6ex]{0pt}{2.5ex}\ %

\nouppercase{\sf\rightmark}\ }}}}

\renewcommand{\headrulewidth}{0pt} % Get rid of the line.
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\fancypagestyle{plain}{% % This is for the chapter pages.

\fancyhf{} % No headers or footers ...

\renewcommand{\headrulewidth}{0pt} % ... and get rid of the line.

}

%

% A cool "fading out" line on each chapter page

% By TDM

%

\newcommand{\gradline}{%

\psset{linecolor=white, linewidth=0pt, fillstyle=gradient, %

gradbegin=white, gradend=darkgray, gradmidpoint=0}

\pspicture(0,0)(14,.1)

\psframe[gradangle=90](0,0)(14,.05)

\endpspicture

}

\newcommand{\gradindexline}[1]{%

\psset{linecolor=white, linewidth=0pt, fillstyle=gradient, %

gradbegin=white, gradend=darkgray, gradmidpoint=0}

\begin{pspicture}(0,-.3)(6,.4)

\rput[l](0,0){#1}

\psframe[gradangle=90](.8,-.1)(6,-.05)

\end{pspicture}

}

\makeatletter

% This command usually means that something freaky is going to happen... ;-)

%

% Smaller separation between items

% Inspired by "tweaklist.sty"

%

\renewcommand{\itemize}{%

\ifnum \@itemdepth >\thr@@\@toodeep\else

\advance\@itemdepth\@ne

\edef\@itemitem{labelitem\romannumeral\the\@itemdepth}%

\expandafter

\list

\csname\@itemitem\endcsname

{\def\makelabel##1{\hss\llap{##1}}%

\topsep=.8ex\itemsep=-.2ex}%

\fi%

}

%

% Lines under and above Chapters in the TOC

% By TDM

%

\newcommand*\l@chapterlike[2]{%

\ifnum \c@tocdepth >\m@ne

\addpenalty{-\@highpenalty}%

\vskip 1.6em \@plus\p@

\setlength\@tempdima{1.5em}%

\begingroup

\parindent \z@ \rightskip \@pnumwidth

\parfillskip -\@pnumwidth

\leavevmode \boldmath\bfseries
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\advance\leftskip\@tempdima

\hskip -\leftskip

\ #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par

\penalty\@highpenalty

\endgroup

\fi%

}

\renewcommand*\l@chapter[2]{%

\ifnum \c@tocdepth >\m@ne

\addpenalty{-\@highpenalty}%

\vskip 1.4em \@plus\p@

\setlength\@tempdima{1.5em}%

\hrule

\vskip 0.5em \@plus\p@

\begingroup

\parindent \z@ \rightskip \@pnumwidth

\parfillskip -\@pnumwidth

\leavevmode \boldmath\bfseries

\advance\leftskip\@tempdima

\hskip -\leftskip

\ #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth%

{\hss \rule[-0.5ex]{0pt}{2ex} #2}\par % Note the strut!

\penalty\@highpenalty

\endgroup

\vskip 0.4em \@plus\p@

\hrule

\vskip 0.5em \@plus\p@

\fi}

\renewcommand\@pnumwidth{1.75em} % Better right alignment in the TOC (>100 pages).

%

% Nicer Chapter headings

% By TDM

%

\definecolor{gray}{rgb}{.5, .5, .5}

\font\veryhuge=pbkd8r at 100pt

\def\@makechapterhead#1{%

\vspace*{10\p@}%

{\parindent \z@ \raggedright \normalfont

\ifnum \c@secnumdepth >\m@ne

\if@mainmatter

\begin{minipage}[b]{3cm}

{\veryhuge\textcolor{gray}{\thechapter}}

\end{minipage}

\fi

\fi

\begin{minipage}[b]{9cm}

\Huge\bfseries \boldmath \nohyphens{#1}\par\nobreak

\vspace{0\p@}

\end{minipage}

\vskip 30\p@

\gradline

\vskip 50\p@

}%

}
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%

% Make sure that mathematics are in bold in all title headings

% By TDM

%

\renewcommand\section{\@startsection {section}{1}{\z@}%

{-3.5ex \@plus -1ex \@minus -.2ex}%

{2.3ex \@plus.2ex}%

{\boldmath\normalfont\Large\bfseries}}

\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%

{-3.25ex\@plus -1ex \@minus -.2ex}%

{1.5ex \@plus .2ex}%

{\boldmath\normalfont\large\bfseries}}

\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%

{-3.25ex\@plus -1ex \@minus -.2ex}%

{1.5ex \@plus .2ex}%

{\boldmath\normalfont\normalsize\bfseries}}

\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%

{3.25ex \@plus1ex \@minus.2ex}%

{-1em}%

{\boldmath\normalfont\normalsize\bfseries}}

\renewcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}%

{3.25ex \@plus1ex \@minus .2ex}%

{-1em}%

{\boldmath\normalfont\normalsize\bfseries}}

\makeatother

A.3 counters.tex

Now for the counters. The following lump of code creates a Q-counter,
and defines the commands \Qitem (which takes a label as an optional ar-
gument) and \Qref (which refers to such a label). For example, the code

\begin{itemize}

\Qitem

This is a Q-item.

\Qitem[second]

This is a second Q-item.

\end{itemize}

then produces

(Q27) This is a Q-item.

(Q28) This is a second Q-item.

and the command \Qref{second} now produces (Q28). The counters.tex

file simply contains this code together with completely similar code for the

letters A, R, D, F and C :

\newcounter{Q}

\newcommand{\Qitem}[1][]{%

\ifthenelse{\equal{#1}{}}

{\item[(${\bf Q}_{\refstepcounter{Q}\theQ}$)]}

{\item[(${\bf Q}_{\refstepcounter{Q}\label{qitem:#1}\theQ}$)]}

}

\newcommand{\Qref}[1]{(${\bf Q}_{\ref{qitem:#1}}$)}
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A.4 Producing the Index and the List of

Notations

In order to produce the Index table and the List of Notations, the following

bash script was used.

#!/bin/bash

latex phd.tex

makeindex -s phd.ist phd

echo "\begin{theindex}" > phd.gdx

echo >> phd.gdx

cat phd.glo >> phd.gdx

echo >> phd.gdx

echo "\end{theindex}" >> phd.gdx

latex phd.tex

The file phd.ist contains the information to generate the big capital letters

and the lines in the Index, and reads as follows.

headings_flag 1

heading_prefix "\n{\\LARGE\\sffamily\\bfseries\\gradindexline{"

heading_suffix "}}\n"

And that’s it!



B
Nederlandstalige

Samenvatting

B.1 Inleiding

Het begrip “veralgemeende veelhoek” vinden we voor het eerst terug in

een erg korte appendix van een lang en moeilijk – en intussen beroemd

geworden – artikel, Tits 1959 [42]. In dit artikel heeft Jacques Tits de

enkelvoudige groepen van type 3D4 ontdekt door de trialiteiten van een

D4-meetkunde te klassificeren die minstens één absoluut punt hebben. De

methode die hij hiervoor gebruikte, was hoofdzakelijk meetkundig van in-

slag, en het is dan ook niet verwonderlijk dat de corresponderende meet-

kundes hier een belangrijke rol in speelden. Dit was het ontstaan van de

veralgemeende zeshoeken. Natuurlijk is 1959 slechts een officiële ‘geboor-

tedatum’, want veralgemeende vierhoeken werden al langer bestudeerd,

zij het dan als bijvoorbeeld kwadrieken van Witt index 2 of als rechtensys-

temen corresponderend met symplectische polariteiten in een driedimen-

sionale projectieve ruimte over een veld. Ook veralgemeende driehoeken

waren al lang bekend, want dit zijn precies de projectieve vlakken. Maar

het idee om echt meetkundes zoals veralgemeende veelhoeken op zichzelf

te gaan bestuderen, komt van Tits.

Tegelijk vormen de veralgemeende veelhoeken ook een zeer specifieke

klasse van gebouwen, met name de sferische gebouwen van rang 2. De sfe-

rische gebouwen van rang tenminste 3 zijn reeds in 1974 door Tits volledig

geklassificeerd in [44]. Daarin wordt bewezen dat elk irreduciebel sferisch

gebouw van rang ≥ 3 geassocieerd is met een algebräısche enkelvoudige

groep, een klassieke groep of een gemixte groep van type F4.

Daarentegen kan men niet verwachten dat de sferische gebouwen van

rang 2 (dus de veralgemeende veelhoeken) volledig te klassificeren zijn.

Immers, er bestaan vrije constructies van veralgemeende n-hoeken (zie
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bijvoorbeeld Tits [47]), wat meestal een klassificatie onmogelijk maakt;

ook merken we op dat de projectieve vlakken, die een deelklasse vormen

van de veralgemeende veelhoeken, zelfs in het eindige geval nog niet ge-

klassificeerd zijn. Bijgevolg is men op zoek gegaan naar een bijkomende

voorwaarde onder dewelke de klassificatie toch mogelijk zou zijn. De zo-

genaamde Moufang-voorwaarde bleek in een aantal opzichten de geschikte

keuze.

Ten eerste is het zo dat de veralgemeende veelhoeken die ook sferische

gebouwen zijn geassocieerd met een klassieke of met een enkelvoudige

algebräısche groep, allen voldoen aan de Moufang voorwaarde.

Ten tweede vormen de Moufang veelhoeken een heel natuurlijke uit-

breiding van de Moufang vlakken, die al een hele tijd tevoren werden be-

studeerd door Ruth Moufang (zie [33]); de benaming “Moufang vlak” is

afkomstig van G. Pickert [38].

Ten derde is de Moufang voorwaarde ook een lichtjes verzwakte vorm

van de zogenaamde Steinberg relaties (zie [51]).

Het vermoeden dat de veralgemeende veelhoeken die aan de Moufang

voorwaarde voldoen (die we kortweg Moufang veelhoeken noemen) kun-

nen geklassificeerd worden, werd voor het eerst geopperd door Tits in [44],

en kwam al heel wat systematischer naar voor in [45]. Tits had echter één

bepaalde klasse over het hoofd gezien, met name de Moufang vierhoe-

ken van type F4. De klassificatie van de Moufang achthoeken, en het feit

dat Moufang n-hoeken enkel bestaan voor n ∈ {3, 4, 6, 8}, werd bewezen

in [46], [48], [49] en [54]. Zoals Tits reeds van in het begin had vastge-

steld, volgt de klassificatie van de eindige Moufang veelhoeken gemakkelijk

uit het werk van P. Fong en G. Seitz [18, 19] ten gevolge van hun klassifi-

catie van de eindige “gespleten BN-paren” van rang 2.

In 1996 hebben Jacques Tits en Richard Weiss samen de volledige klas-

sificatie van de Moufang veelhoeken aangevat, op een manier die volledig

elementair is, en die geen enkel verband vertoont met de methode van

Fong en Seitz. Deze klassificatie is intussen voltooid, en is verschenen in de

vorm van een boek “Moufang Polygons” [52]. Verrassend genoeg heeft R.

Weiss tijdens deze klassificatie een nieuwe klasse van Moufang vierhoeken

ontdekt, die dan een korte tijd later door Bernhard Mühlherr en Hendrik

Van Maldeghem zijn herkend in het gebouw van type F4 (zie [34]).

Voor n ∈ {3, 6, 8} is het bewijs mooi onderverdeeld in twee delen,

met name (A) het aantonen dat een Moufang n-hoek kan beschreven wor-

den door een welbepaalde algebräısche structuur, en (B) het klassificeren

van deze algebräısche structuur. Meer bepaald heeft R. Moufang in 1933
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reeds bewezen, zij het onder een ietwat andere gedaante1, dat alle Mou-

fang driehoeken geparametrizeerd kunnen worden door een alternatieve

delingsring, een begrip dat door M. Zorn2 werd ingevoerd in [55]. Deze

alternatieve delingsringen zijn in 1951 geklassificeerd door R. Bruck en E.

Kleinfeld; zie [10]. De Moufang zeshoeken kunnen alle beschreven wor-

den door een unitale kwadratische Jordan delingsalgebra van graad 3, ook

gekend onder de naam anisotrope kubische normstructuur; zie [45]. Deze

structuren zijn in hun volledige algemeenheid geklassificeerd in 1986 door

H. Petersson en M. Racine [36, 37]; hun bewijs is verdergebouwd op vroe-

ger werk van A. Albert [2], F.D. Jacobson en N. Jacobson [23], N. Jacobson

[24, 25] en K. McCrimmon [31, 32]. De Moufang achthoeken tenslotte

kunnen beschreven worden door een zogenaamd octagonaal systeem, zo-

als is aangetoond door J. Tits in 1983 (zie [49]); aangezien deze systemen

een heel eenvoudige beschrijving hebben, is er in dit geval geen nood aan

een (B)-gedeelte.

De klassificatie van de Moufang vierhoeken (n = 4) in [52] is niet

op deze manier georganiseerd, bij gebrek aan een algemene algebräısche

structuur om deze te beschrijven. In plaats daarvan worden deze vierhoe-

ken beschreven door zes verschillende parametersystemen, en zelfs dan is

het onderscheid tussen de delen (A) en (B) niet aanwezig in de twee ge-

vallen die tot de exceptionele vierhoeken leiden.

Het tweede hoofdstuk van deze thesis, dat tevens ook het beredeel van

dit werk uitmaakt, heeft dan ook als doel om een dergelijke overkoepe-

lende algebräısche structuur te presenteren. Deze “quadrangulaire syste-

men”, zoals we deze noemen, scheppen een nieuw licht op deze vierhoe-

ken, en brengen structuur in deze vierhoeken naar boven die zonder deze

systemen moeilijk te zien is. Zo hebben we deze structuren bijvoorbeeld

met succes gebruikt om een belangrijke vraag op te lossen over de auto-

morfismengroep van de exceptionele Moufang vierhoeken van type F4, die

in [52] werd opengelaten; zie hoofdstuk 3. Bovendien is het mogelijk om

deze structuren volledig te klassificeren zonder daarbij gebruik te maken

van de Moufang vierhoeken waaruit deze ontstaan zijn. Op die manier

hebben we tegelijk een nieuw bewijs geleverd voor de klassificatie van de

Moufang vierhoeken dat wel degelijk bestaat uit de gedeelten (A) en (B).

In het laatste hoofdstuk bekijken we de exceptionele Moufang vierhoe-

ken van type E6, E7 en E8 vanuit een ander standpunt. Het is reeds duide-

lijk vanuit de constructie dat de even Clifford algebra van de kwadratische

vorm die deze vierhoeken bepaalt, een belangrijke rol speelt in het “be-

1Zie de lange voetnoot op pagina 176 in [52].
2Jawel, die van dat Lemma.
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grijpen” van de structuur van deze vierhoeken. We trekken dit nog verder

door, door aan te tonen dat dergelijke kwadratische vormen volledig ge-

karakteriseerd worden door de structuur van deze even Clifford algebra

alleen.

B.2 Quadrangulaire Systemen

Definitie B.2.1. Een veralgemeende n-hoek Γ is een samenhangend biparti-

tie-graaf met diameter n en omtrek 2n. Elk circuit van lengte 2n wordt een

appartement van Γ genoemd. Elk n-pad in Γ wordt een half appartement of

een wortel van Γ genoemd. We kunnen Γ ook als meetkunde bekijken. Een

veralgemeende n-hoek Γ is dan een incidentiemeetkunde (P ,L, I) met de

eigenschap dat Γ geen gewone k-hoeken bevat voor alle k ∈ {2, . . . , n− 1},
en zodat door elke twee elementen x, y ∈ P ∪L minstens één n-hoek gaat.

We noemen een veralgemeende n-hoek dik als elke top adjacent is met

minstens 3 andere toppen.

Definitie B.2.2. Zij Γ een veralgemeende n-hoek voor een bepaalde n ≥ 3,

en zij α = (x0, x1 , . . . , xn−1, xn) een willekeurige wortel van Γ . De ver-

zameling bestaande uit alle automorfismen van Γ die alle toppen fixeren

die adjacent zijn met minstens één element van {x1, . . . , xn−1}, vormt een

groep, die we noteren als Uα en die we de wortelgroep corresponderende

met de wortel α noemen. De groep Uα werkt semi-regulier op de verza-

meling van alle appartementen doorα. Indien deze actie ook transitief (en

dus regulier) is, zeggen we dat α een Moufang wortel is van Γ . Indien alle

wortels in Γ Moufang wortels zijn, dan noemen we Γ een Moufang veelhoek,

of we zeggen dat Γ aan de Moufang voorwaarde voldoet.

Veronderstel vanaf nu dat Γ een dikke Moufang n-hoek is voor een be-

paalde n ≥ 3. Fixeer een willekeurig appartement Σ; we zullen dit labelen

met de gehele getallen modulo 2n, dus Σ = {0, . . . , 2n − 1}, waarbij i en

i + 1 steeds adjacente toppen zijn. Voor elke wortelαi := {i, i + 1, . . . , i + n}
in Σ definiëren we nu Ui := Uαi

. Merk op dat deze wortelgroepen niet tri-

viaal zijn omdat Γ dik is. We definiëren ook nog

U[i, j] :=

{〈
Ui, Ui+1, . . . , U j

〉
als i ≤ j < i + n ;

1 anders .

De volgende verrassende stelling is van fundamenteel belang voor de klas-

sificatie van de Moufang veelhoeken.
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Stelling B.2.3. Een Moufang veelhoek is uniek bepaald door het (n + 1)-tal

(U[1,n], U1, U2, . . . , Un) .

Uiteraard zal niet elke groep U[1,n] die voortgebracht is door deelgroe-

pen U1, . . . , Un aanleiding geven tot een Moufang veelhoek. Indien dit wél

het geval is, dan wordt het (n + 1)-tal (U[1,n], U1, U2, . . . , Un) een wortel-

groepenreeks genoemd. De volgende stelling geeft de nodige en voldoende

voorwaarden waaraan zo’n (n + 1)-tal moet voldoen.

Stelling B.2.4. Veronderstel dat U[1,n] een groep is voortgebracht door niet-

triviale deelgroepen U1, . . . , Un , zodanig dat de volgende axioma’s gelden.

M1. [Ui, U j] ≤ U[i+1, j−1] voor 1 ≤ i < j ≤ n.

M2. De produktafbeelding van U1 × · · · ×Un naar U[1,n] is bijectief.

M3. Er bestaat een deelgroep Ũ0 van Aut(U[1,n−1]) zodat er voor elke an ∈ U∗n
een µ(an) ∈ Ũ∗0 ãnŨ∗0 bestaat zodat U

µ(an)
j = Un− j voor 1 ≤ j ≤ n− 1,

en zodat er voor een en ∈ U∗n bovendien geldt dat Ũ
µ(en)
j = Ũn− j voor

j = 0 en j = n.

M4. Er bestaat een deelgroep Ũn+1 van Aut(U[2,n]) zodat er voor elke a1 ∈ U∗1
een µ(a1) ∈ Ũ∗n+1ã1Ũ∗n+1 bestaat zodat U

µ(a1)
j = Un+2− j voor 2 ≤ j ≤ n,

en zodat er voor een e1 ∈ U∗1 bovendien geldt dat Ũ
µ(e1)
j = Ũn+2− j voor

j = 1 en j = n + 1.

Dan bestaat er een Moufang n-hoek die (U[1,n], U1, U2, . . . , Un) heeft als wor-

telgroepenreeks. Bovendien voldoet elke wortelgroepenreeks van een Moufang

n-hoek aan de voorwaarden (M1) – (M4).

Dankzij de voorwaarden (M1) en (M2) kunnen we nog een stap verder

gaan. We kunnen namelijk de groepen U1, . . . , Un beschrijven, en vervol-

gens de overkoepelende groep U[1,n] beschrijven door de commutatierela-

ties tussen de groepen U1, . . . , Un onderling weer te geven. Precies door

deze twee voorwaarden (M1) en (M2) zal de groepsstructuur op U[1,n]

daardoor uniek gedefinieerd zijn. Het is deze strategie die tijdens de klas-

sificatie wordt toegepast, en die ook wij zullen toepassen voor het beschrij-

ven van de Moufang vierhoeken.

Definitie B.2.5. Beschouw een abelse groep (V, +) en een al dan niet

abelse groep (W, �). Het inverse van een element w ∈ W zal worden

genoteerd als �w, en de uitdrukking w1 � (�w2) zullen we verkort weer-

geven als w1 � w2. Veronderstel dat er een afbeelding τV van V ×W naar
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V is, evenals een afbeelding τW van W × V naar W; we zullen beide af-

beeldingen noteren met · of gewoon de elementen aan elkaar schrijven,

dus τV(v, w) = vw = v · w en τW(w, v) = wv = w · v voor alle v ∈ V en

alle w ∈ W. Beschouw nu een afbeelding F van V × V naar W en een

afbeelding H van W ×W naar V, beide “bi-additief” in de betekenis dat

F(v1 + v2, v) = F(v1, v) � F(v2, v) ;

F(v, v1 + v2) = F(v, v1) � F(v, v2) ;

H(w1 � w2, w) = H(w1, w) + H(w2, w) ;

H(w, w1 � w2) = H(w, w1) + H(w, w2) ;

voor alle v, v1, v2 ∈ V en alle w, w1, w2 ∈ W. Veronderstel bovendien dat

er een vast element ε ∈ V∗ en een vast element δ ∈ W∗ bestaan, en

veronderstel dat er voor elke v ∈ V∗ een element v−1 ∈ V∗ bestaat, en

voor elke w ∈ W∗ een element κ(w) ∈ W∗ bestaat, zodanig dat voor alle

w, w1, w2 ∈ W en alle v, v1 , v2 ∈ V de volgende axioma’s voldaan zijn. We

definiëren

v := εF(ε, v)− v

Rad(F) := {v ∈ V | F(v, V) = 0}

Rad(H) := {w ∈W | H(w, W) = 0}

Im(F) := F(V, V)

Im(H) := H(W, W)

(Q1) wε = w.

(Q2) vδ = v.

(Q3) (w1 � w2)v = w1v � w2v.

(Q4) (v1 + v2)w = v1w + v2w.

(Q5) w(−ε) · v = w(−v).

(Q6) v · w(−ε) = vw.

(Q7) Im(F) ⊆ Rad(H).

(Q8) [w1, w2v]� = F(H(w2, w1), v).

(Q9) δ ∈ Rad(H).

(Q10) Als Rad(F) 6= 0, dan ε ∈ Rad(F).

(Q11) w(v1 + v2) = wv1 � wv2 � F(v2w, v1).

(Q12) v(w1 � w2) = vw1 + vw2 + H(w2, w1v).

(Q13) (v−1)−1 = v (als v 6= 0).
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(Q14) κ(�κ(�w)) = w(−ε) (als w 6= 0).

(Q15) wv · v−1 = w (als v 6= 0).

(Q16) v−1 · wv = −v(�w) (als v 6= 0).

(Q17) F(v−1
1 , v2)v1 = F(v1, v2) (als v1 6= 0).

(Q18) vκ(w) · (�w) = −v (als w 6= 0).

(Q19) w · vκ(w) = κ(w)v (als w 6= 0).

(Q20) H(κ(w1), w2)w1 = H(w1, w2) (als w1 6= 0).

Dan noemen we het systeem (V, W,τV ,τW ,ε, δ) een quadrangulair systeem.

Merk op dat we de functies F en H niet vermelden in onze notatie,

evenmin als de afbeeldingen v 7→ v−1 en w 7→ κ(w). De reden is dat deze

uniek bepaald zijn door V, W, τV , τW, ε en δ.

Opmerking B.2.6. Bij het neerschrijven van deze axioma’s hebben we de

conventie gebruikt dat de afbeeldingen die genoteerd zijn door het aan

elkaar schrijven voorrang hebben op diegene die met een ‘·’ zijn weerge-

geven. Merk echter op dat er sowieso geen gevaar voor verwarring is,

aangezien we geen vermenigvuldiging hebben gedefinieerd op V of op W;

vandaar dat we bijvoorbeeld toch dikwijls wvv−1 zullen schrijven in plaats

van wv · v−1.

De volgende twee identiteiten zijn geldig voor elk quadrangulair sys-

teem (V, W,τV ,τW ,ε, δ), voor alle v1, v2 ∈ V en alle w1, w2 ∈W.

(Q21) F(v1, v2) = F(v2, v1).

(Q22) H(w1, w2) = −H(w2, w1).

In zekere zin zeggen deze twee identiteiten dat F een symmetrische

vorm is en dat H een scheef-hermitische vorm is. Merk echter op dat V en

W in het algemeen geen vectorruimten zijn.

Bovendien zijn de volgende vier identiteiten steeds vervuld in een qua-

drangulair systeem (V, W,τV ,τW ,ε, δ), voor alle v, c ∈ V en alle w, z ∈ W.

We veralgemenen eerst het begrip “reflectie” dat we kennen in een kwadra-

tische ruimte.

πv(c) := c− vF(v−1, c) (als v 6= 0)

Πw(z) := z � w(−H(κ(w), z)) (als w 6= 0) .

Dan zal

(Q23) v · Πw(z) = −v(�w)zκ(w) (als w 6= 0).

(Q24) w · πv(ε)−1 · πv(c) = wvcv−1 (als v 6= 0).
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(Q25) πv(c · δv)w = πv(c · wv) (als v 6= 0).

(Q26) Π�z(w ·εz)v = Π�z(w · vz) (als w 6= 0).

Veronderstel nu datΩ = (V, W,τV ,τW ,ε, δ) een willekeurig quadrangu-

lair systeem is. Zij U1 en U3 twee groepen isomorf met W, en zij U2 en U4

twee groepen isomorf met V. Noteer de corresponderende isomorfismen

als

x1 : W → U1 : w 7→ x1(w) ;

x2 : V → U2 : v 7→ x2(v) ;

x3 : W → U3 : w 7→ x3(w) ;

x4 : V → U4 : v 7→ x4(v) ;

we zeggen ook dat U1 en U3 geparametrizeerd zijn door W en dat U2 en

U4 geparametrizeerd zijn door V. We definiëren nu impliciet de groep U[1,4]

door middel van de volgende commutatierelaties:

[x1(w1), x3(w2)
−1] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)
−1] = x3(F(v1, v2)) ,

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} ,

(B.1)

voor alle w, w1, w2 ∈W en alle v, v1 , v2 ∈ V.

De volgende stelling, die we bewijzen in de eerste vier secties van hoofd-

stuk 2, leert ons dat de studie van de Moufang vierhoeken equivalent is met

de studie van de quadrangulaire systemen.

Stelling B.2.7. (i) Zij Ω = (V, W,τV ,τW ,ε, δ) een willekeurig quadran-

gulair systeem, en definieer de groepen U1, . . . , U4 en U[1,4] zoals hierbo-

ven. Dan bestaat er een Moufang vierhoek Γ die (U[1,4], U1, U2, U3, U4)
heeft als wortelgroepenreeks.

(ii) Zij Γ een willekeurige Moufang vierhoek. Dan bestaat er een quadran-

gulair systeem (V, W,τV ,τW ,ε, δ) zodanig dat de groepen U1, . . . , U4

en U[1,4] zoals hierboven gedefinieerd een wortelgroepenreeks vormen

van Γ .

Zonder in detail te gaan geven we een overzicht van de zes verschillende

klassen van quadrangulaire systemen; zie sectie 2.6 voor een gedetailleerde

beschrijving.

• De quadrangulaire systemen van kwadratisch type worden gecon-

strueerd uit een willekeurige anisotrope kwadratische ruimte (K, V, q);
het corresponderend quadrangulair systeem wordt in dit geval geno-

teerd als ΩQ(K, V, q).
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• De quadrangulaire systemen van involutorisch type worden gecon-

strueerd vanuit een willekeurig involutiesysteem (K, K0 ,σ); het cor-

responderend quadrangulair systeem wordt in dit geval genoteerd als

ΩI(K, K0 ,σ).

• De quadrangulaire systemen van indifferentieel type worden gecon-

strueerd vanuit een willekeurig indifferentiesysteem (K, K0 , L0); het

corresponderend quadrangulair systeem wordt in dit geval genoteerd

als ΩD(K, K0 , L0).

• De quadrangulaire systemen van pseudokwadratisch type worden

geconstrueerd vanuit een willekeurige anisotrope pseudokwadrati-

sche ruimte (K, K0 ,σ , V, p); het corresponderend quadrangulair sys-

teem wordt in dit geval genoteerd als ΩP(K, K0 ,σ , V, p).

• De quadrangulaire systemen van type E6, E7 en E8 worden geconstru-

eerd vanuit een willekeurige anisotrope kwadratische ruimte (K, V, q)
van type E6, E7 en E8 respectievelijk; het corresponderend quadran-

gulair systeem wordt in dit geval genoteerd als ΩE(K, V, q).

• De quadrangulaire systemen van type F4 worden geconstrueerd van-

uit een willekeurige anisotrope kwadratische ruimte (K, V, q) van type

F4; het corresponderend quadrangulair systeem wordt in dit geval ge-

noteerd als ΩF(K, V, q).

In sectie 2.7 bewijzen we precies dat elk quadrangulair systeem tot (min-

stens) één van deze types behoort. We gebruiken daarbij de volgende op-

deling.

Definitie B.2.8. Een quadrangulair systeem Ω = (V, W,τV ,τW ,ε, δ) wordt

indifferentieel genoemd als F ≡ 0 en H ≡ 0, gereduceerd als F 6≡ 0 en

H ≡ 0, en wijd als F 6≡ 0 en H 6≡ 0.

Opmerking B.2.9. AlsΩ = (V, W,τV ,τW ,ε, δ) een quadrangulair systeem is

met F ≡ 0 en H 6≡ 0, dan is Ω∗ := (W, V, δ,ε) een gereduceerd quadran-

gulair systeem.

Definitie B.2.10. Zij Ω = (V, W,τV ,τW ,ε, δ) een wijd quadrangulair sys-

teem. Stel Y := Rad(H). Dan zal Γ := (V, Y,ε, δ) een gereduceerd qua-

drangulair systeem zijn. We zeggen dan dat Ω een extensie is van Γ .

Definitie B.2.11. Zij Ω = (V, W,τV ,τW ,ε, δ) een gereduceerd quadrangu-

lair systeem. Dan wordt Ω normaal genoemd als en slechts als er voor alle

elementen w1, w2, . . . , wi ∈ W een element w ∈ W bestaat zodanig dat

εw1w2 . . . wi = εw.
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Veronderstel nu datΩ = (V, W,τV ,τW ,ε, δ) een willekeurig quadrangu-

lair systeem is. De klassificatie kan onderverdeeld worden in de volgende

vijf stellingen.

Stelling B.2.12. Als Ω gereduceerd is maar niet normaal is, dan is Ω ∼=
ΩI(K, K0 ,σ) voor een zeker involutiesysteem (K, K0 ,σ) zodanig dat σ 6= 1 en

zodanig dat K voortgebracht is door K0 als een ring.

Stelling B.2.13. Als Ω normaal is, dan is Ω ∼= ΩQ(K, V0 , q) voor een zekere

anisotrope kwadratische ruimte (K, V0 , q).

Stelling B.2.14. Als Ω indifferentieel is, dan is Ω ∼= ΩD(K, K0 , L0) voor een

zeker indifferentiesysteem (K, K0 , L0).

Stelling B.2.15. Als Ω een extensie is van een gereduceerd quadrangulair

systeem Γ = ΩI(K, K0 ,σ) voor een zeker involutiesysteem (K, K0 ,σ) zoda-

nig dat σ 6= 1 en zodanig dat K voortgebracht is door K0 als een ring, dan

is Ω ∼= ΩP(K, K0 ,σ , V0, p) voor een zekere anisotrope pseudokwadratische

ruimte (K, K0 ,σ , V0, p).

Stelling B.2.16. Als Ω een extensie is van een gereduceerd quadrangulair

systeem Γ = ΩQ(K, V0, q) voor een zekere anisotrope kwadratische ruimte

(K, V0 , q), dan hebben we één van volgende gevallen:

• Er bestaat

(a) een vermenigvuldiging op V0 die van de vectorruimte V0 een K-al-

gebra maakt, zodanig dat ofwel V0 een veld is, en V0/K dan een

separabele kwadratische uitbreiding met norm q, ofwel V0 een qua-

ternionen delingsalgebra is over K met norm q ,

(b) een involutie σ van V0 (die het unieke niet-triviale element van

Gal(V0/K) is als dimK V0 = 2 en die de standaard involutie van

V0 is als dimK V0 = 4) ,

(c) een niet-triviale rechtse vectorruimte X over V0 ,

(d) een pseudokwadratische vorm π over X ,

zodanig dat (V0, K,σ , X, π) een anisotrope pseudokwadratische ruimte

is, Γ ∼= ΩI(V0, K,σ) en Ω ∼= ΩP(V0, K,σ , X, π).

• (K, V0 , q) is een kwadratische ruimte van type E6, E7 of E8, en Ω ∼=
ΩE(K, V0, q).

• (K, V0 , q) is een kwadratische ruimte van type F4, en Ω ∼= ΩF(K, V0 , q).

Hoofdstuk 2 wordt afgesloten met een herformulering van het axioma-

systeem voor het geval van abelse quadrangulaire systemen, dit zijn qua-

drangulaire systemen waarvoor niet alleen de groep V maar ook de groep

W abels is. Zie pagina’s 131 en volgende.
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B.3 Automorfismen van F4-vierhoeken

Een belangrijk probleem in de theorie van de Moufang veelhoeken is het

bepalen van de structuur van de automorfismengroep G modulo de deel-

groep G† voortgebracht door alle wortelgroepen. In [52] is dit probleem

opgelost voor vier van de zes klassen van Moufang vierhoeken. De twee

gevallen die zijn opengelaten zijn deze van de exceptionele Moufang vier-

hoeken (die van type Ek en die van type F4). De doelstelling van hoofdstuk

3 van deze thesis is dan ook om dit probleem op te lossen voor het geval

van de F4-vierhoeken. Meer bepaald tonen we aan dat de automorfismen-

groep op veldautomorfismen na volledig wordt voortgebracht door de wor-

telgroepen. Om dit resultaat te bereiken hebben we gebruik gemaakt van

de quadrangulaire systemen die we in hoofdstuk 2 hebben ingevoerd.

Veronderstel dus dat Ω = (V, W,τV ,τW ,ε, δ) een quadrangulair sys-

teem van type F4 is, geconstrueerd zoals in sectie 2.6.6 vanuit de kwadra-

tische ruimten (K, V, q) en (L, W, q̂) met L ≤ K. Zij Γ := Q(Ω) de corre-

sponderende Moufang vierhoek, en zij G := Aut(Γ) en G† de deelgroep

van G voortgebracht door alle wortelgroepen van Γ . Noteer de groep van

veldautomorfismen van K die L op zichzelf afbeelden als Aut(K, L). Dan

kunnen we het resultaat van hoofdstuk 3 als volgt neerschrijven.

Stelling B.3.1. G/G† is isomorf met een deelgroep van Aut(K, L).

De eerste stap hierin is het vertalen van het meetkundig probleem naar

een algebräısch probleem.

Definitie B.3.2. Zij Ω = (V, W,τV ,τW ,ε, δ) een willekeurig quadrangulair

systeem van type F4. We noemen het koppel (ϕ, ϕ̂) een zelfgelijkvormigheid

van Ω als ϕ en ϕ̂ groepsautomorfismen zijn van (V, +) en van (W, +),
respectievelijk, zodanig dat er constanten g ∈ K∗ en ĝ ∈ L∗ bestaan (de

parameters genoemd), zodat

ϕ(vw) = gϕ(v)ϕ̂(w)

ϕ̂(wv) = ĝϕ̂(w)ϕ(v)

voor alle v ∈ V en alle w ∈ W. Een zelfgelijkvormigheid (ϕ, ϕ̂) wordt li-

neair genoemd als en slechts als zowelϕ als ϕ̂ vectorruimte-isomorfismen

zijn. Noteer de groep van alle zelfgelijkvormigheden als X, en zijn deel-

groep van alle lineaire zelfgelijkvormigheden als X`.

Beschouw nu voor alle c ∈ V∗ de zelfgelijkvormigheid

θc : (v, w) 7→ (q(c)πc(v), wc−1) ,
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en voor alle z ∈W∗ de zelfgelijkvormigheid

θ̂z : (v, w) 7→ (vz−1, q̂(z)π̂z(w)) ,

en stel X† :=
〈
θ̂z,θc | z ∈W∗, c ∈ V∗

〉
. Dan hebben we de volgende stel-

ling.

Stelling B.3.3. G/G† ∼= X/X†.

De rest van het bewijs splitsen we op in verschillende stappen.

• Het bepalen van G(q), de groep van de multiplicatoren van de simili-

tudes van q. Er blijkt dat G(q) = K2 · q̂(W) · q̂(W) \ {0} .

• Reductie tot lineaire zelfgelijkvormigheden. Daartoe tonen we aan

dat X/X` isomorf is met een deelgroep van Aut(K, L). Er rest ons

nog aan te tonen dat X` = X†. Voor het vervolg beschouwen we

dus een willekeurige lineaire zelfgelijkvormigheid (ϕ, ϕ̂) ∈ X` met

parameters (g, ĝ).

• Reductie tot het geval ĝ = 1. Hiervoor hebben we de expliciete ge-

daante van G(q) nodig.

• Reductie tot het geval ϕ = 1. Om dit te verkrijgen bewijzen we een

stelling van het type Dieudonné-Cartan.

• Bepaling van ϕ̂. We tonen tenslotte aan dat g ∈ L∗, en we besluiten

dat daaruit volgt dat (ϕ, ϕ̂) ∈ X†.

Hiermee is het bewijs van de hoofdstelling van dit hoofdstuk voltooid.

B.4 Kwadratische vormen van type E6, E7 en E8

Uit B.2.10 zien we dat een wijd quadrangulair systeem op een kanonieke

wijze een gereduceerd sub-quadrangulair systeem Γ = ΓΩ bevat. Het geval

waarin Γ een quadrangulair systeem van kwadratisch type is, correspon-

derende met een anisotrope kwadratische ruimte (K, V0 , q), is onderzocht

in Stelling B.2.16; deze stelling leert ons ondermeer dat, als q regulier is

en dimensie groter dan 4 heeft, dan is q een kwadratische vorm van type

E6, E7 of E8, en Ω is volledig bepaald door Γ en bijgevolg door q. Ander-

zijds volgt er uit de resultaten van [43] – zie ook de appendix van [52] voor

meer details – dat, voor elke anisotrope kwadratische vorm q (over een veld

K) waarvan de structuur van de even Clifford algebra wordt gegeven door

Stelling B.4.1 hieronder, er een K-vorm van een enkelvoudige algebräısche

groep van type Ek bestaat waarvan het corresponderende sferische gebouw
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een wijde Moufang vierhoek Ω is zodanig dat ΓΩ de vierhoek is bepaald

door q. Deze resultaten impliceren samen dat de enige kwadratische vor-

men waarvan de even Clifford algebra is zoals in Stelling B.4.1 precies de

kwadratische vormen van type E6, E7 en E8 zijn. In hoofdstuk 4 geven we

een rechtstreeks bewijs van dit resultaat. Tegelijk geeft ons dit meer in-

zicht in deze kwadratische vormen, en verkrijgen we ook nieuwe algemene

resultaten over laag-dimensionale kwadratische vormen.

Zij (K, V, q) een willekeurige kwadratische vorm met V 6= 0. We note-

ren de discriminant van q als d(q), en we noteren de Clifford invariant of

de Witt invariant van q als c(q) ∈ Br(K). Voor even-dimensionale kwadra-

tische vormen hebben we dus dat c(q) = [C(q)] ∈ Br(K).
Het doel van hoofdstuk 4 is om de kwadratische vormen van type E6, E7

en E8 volledig te karakteriseren door middel van hun even Clifford algebra,

of ook nog door middel van hun discriminant en hun Clifford invariant.

Meer bepaald bewijzen we de volgende stelling.

Stelling B.4.1.

(i) Zij q een 6-dimensionale anisotrope kwadratische vorm over K. Dan zijn

de volgende uitspraken equivalent.

(a) q is van type E6.

(b) C0(q) ∼= Mat4(E) voor een zekere kwadratische uitbreiding E/K.

(c) q is regulier, d(q) is niet triviaal en c(q) = [Q] voor een zekere

quaternionen-algebra Q over K die, als het een delingsalgebra is,

de discriminantuitbreiding van q bevat.

(ii) Zij q een 8-dimensionale anisotrope kwadratische vorm over K. Dan zijn

de volgende uitspraken equivalent.

(a) q is van type E7.

(b) C0(q) ∼= Mat4(D) ⊕Mat4(D) voor een zekere quaternionen de-

lingsalgebra D over K.

(c) q is regulier, d(q) is triviaal en c(q) = [D] voor een zekere quater-

nionen delingsalgebra D over K.

(iii) Zij q een 12-dimensionale anisotrope kwadratische vorm over K. Dan

zijn de volgende uitspraken equivalent.

(a) q is van type E8.

(b) C0(q) ∼= Mat32(K)⊕Mat32(K).

(c) q is regulier, d(q) is triviaal en c(q) = 0.
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Het volgende eenvoudige lemma is essentieel in het bewijzen van deze

stelling. Het laat namelijk toe om de dimensie te verlagen door “op te

tensoren” met een kwadratische uitbreiding.

Lemma B.4.2. Zij q een willekeurige even-dimensionale reguliere kwadra-

tische vorm over K, met een decompositie q ' q1 ⊥ q′, waarbij q1 een

2-dimensionale reguliere kwadratische vorm is.

(i) Veronderstel dat de discriminant d(q1) triviaal is. Dan is d(q′) = d(q)
en c(q′) = c(q1) + c(q).

(ii) Veronderstel dat d(q1) niet triviaal is. Beschouw de discriminantuitbrei-

ding E/K van q1. Dan is d(q′E) = d(qE) en c(q′E) = c(qE).

Met behulp van dit lemma kunnen we nu de dimensie stap voor stap

verhogen, en we bewijzen achtereenvolgens de volgende uitspraken.

Stelling B.4.3.

(i) Een 4-dimensionale reguliere kwadratische vorm q over K met triviale

discriminant d(q) heeft een norm splijting of is hyperbolisch.

(ii) Een 4-dimensionale reguliere kwadratische vorm q over K met triviale

discriminant d(q) en met c(q) = 0 is hyperbolisch.

(iii) Een 6-dimensionale reguliere kwadratische vorm q over K met triviale

discriminant d(q) en met c(q) = 0 is hyperbolisch.

(iv) Zij q een 6-dimensionale anisotrope reguliere kwadratische vorm over

K met niet-triviale discriminant d(q). Beschouw de discriminantuitbrei-

ding E/K van q. Als c(qE) = 0 in Br(E), dan heeft q een norm splijting.

(v) Een 6-dimensionale reguliere kwadratische vorm q over K met triviale

discriminant d(q) en met c(q) = [Q] voor een zekere quaternionenalge-

bra Q over K, is isotroop.

(vi) Een 8-dimensionale anisotrope reguliere kwadratische vorm q over K
met triviale discriminant d(q) en met c(q) = [Q] voor een zekere qua-

ternionenalgebra Q over K, heeft een norm splijting.

(vii) Een 10-dimensionale reguliere kwadratische vorm q over K met triviale

discriminant d(q) en met c(q) = 0 is isotroop.

(viii) Een 12-dimensionale anisotrope reguliere kwadratische vorm q over K
met triviale discriminant d(q) en met c(q) = 0 heeft een norm splijting.

Merk op dat we al deze stellingen bewezen hebben voor velden van wil-

lekeurige karakteristiek. Ook hebben we bewezen dat we in de gedeelten

(b) van Stelling B.4.1 de regulariteit niet hoeven te eisen, maar dat deze
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volgt uit de structuur van de even Clifford algebra. Meer algemeen hebben

we de volgende stelling (die eigenlijk enkel betekenis heeft voor velden van

karakteristiek 2).

Stelling B.4.4.

(i) Als q1 en q2 twee anisotrope kwadratische vormen zijn van dezelfde di-

mensie, en als C0(q1) ∼= C0(q2), dan zijn q1 en q2 ofwel beide regulier,

ofwel beide singulier.

(ii) Als q1 en q2 twee anisotrope kwadratische vormen zijn van dezelfde di-

mensie, en als C(q1) ∼= C(q2), dan zijn q1 en q2 ofwel beide regulier,

ofwel beide singulier.

Voor meer details verwijzen we – hoe kan het ook anders – naar het

Engelstalige gedeelte van deze thesis.
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