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Preface

The work that is presented in this thesis, is situated in the field of finite
geometry. One of the major topics in finite geometry is the study of point-
line geometries, also called rank 2 geometries. Several interesting classes
of rank 2 geometries have been studied in the past half century, includ-
ing generalized polygons, partial geometries and, more recently, semipartial
geometries and (0, α)-geometries (see De Clerck and Van Maldeghem [31] for
a good overview). Classical problems in this area are the construction of
new geometries, and the characterization of the known ones by some of their
properties.

Points and lines of a rank 2 geometry are abstract objects. They are
points and lines for no other reason but that we call them so. Therefore
it is interesting to consider geometries whose points and lines are not just
abstract objects, but really points and lines. But what are “real” points and
“real” lines? In the context of finite geometry, the most natural choice is
to consider points and lines of a projective or affine space over a finite field.
A rank 2 geometry whose points and lines are points and lines of a finite
projective or affine space R is said to be laxly embedded in R. It is said to
be fully embedded in R if furthermore every point of R which is on a line of
the geometry, is itself a point of the geometry. A rank 2 geometry which is
fully embedded in R is also called projective when R is a projective space,
and affine when R is an affine space.

For various classes of point-line geometries, the geometries that are fully
embedded in a finite projective or affine space, are classified. For example,
generalized quadrangles and partial geometries fully embedded in PG(n, q)
and AG(n, q) are classified (see Buekenhout and Lefèvre [15] for the classi-
fication of projective generalized quadrangles, De Clerck and Thas [29] for
the classification of projective partial geometries, and Thas [78] for the clas-
sification of affine generalized quadrangles and partial geometries). Also,
the semipartial geometries and (0, α)-geometries, α > 1, fully embedded
in PG(n, q), q > 2, are classified (see De Clerck and Thas [30] and Thas,
Debroey and De Clerck [81]), except the (0, α)-geometries fully embedded in

9



10 Preface

PG(3, q). In this thesis, we investigate (0, α)-geometries fully embedded in
PG(3, q), and semipartial geometries and (0, α)-geometries fully embedded
in AG(n, q). For reasons explained in Sections 1.4.3 and 1.4.7, we will always
assume that α > 1.

In Chapter 1, we introduce the basic concepts and definitions. We give an
overview of the known results about projective and affine generalized quad-
rangles, partial geometries, semipartial geometries and (0, α)-geometries.
Also, we give the construction of some geometries that will be relevant later
on.

Chapter 2 is about (0, α)-geometries fully embedded in PG(3, q). The
Plücker correspondence is used to transform the line set of such a geometry
into a set of points on the Klein quadric Q+(5, q). It can be shown that (0, α)-
geometries fully embedded in PG(3, q) and (0, α)-sets on Q+(5, q), i. e., sets of
points sharing either 0 or α points with every line of Q+(5, q), are equivalent.
We construct new (0, α)-sets on Q+(5, q), q = 2h, and hence new (0, α)-
geometries fully embedded in PG(3, q), q = 2h.

In Chapter 3, we investigate sets of q2 ovals in PG(2, q), q = 2h, which
have a common nucleus and are such that any two ovals have exactly one
point in common. These sets are called planar oval sets. We show that every
planar oval set which satisfies a certain condition, consists of the orbit of
an oval under the group of all elations of PG(2, q) with center the nucleus
of that oval. This result will be used in Chapter 5 for the classification of
(0, 2)-geometries fully embedded in AG(3, q), q = 2h.

In Chapters 4, 5 and 6, we obtain a complete classification of semipartial
geometries and (0, α)-geometries, α > 1, fully embedded in AG(n, q), that
are not linear representations. De Clerck and Delanote [27] have shown that
if an affine semipartial geometry or (0, α)-geometry, α > 1, is not a linear
representation, then q = 2h and α = 2. There is no complete classification
yet of linear representations of semipartial geometries, α > 1. This problem
is solved only in small dimensions: the case AG(3, q) is handled by Debroey
and Thas [40], and the case AG(4, q) by De Winter [38].

In Chapter 4, we explain the general method that we will use. It relies on
the fact that, roughly speaking, the intersection of an affine (0, α)-geometry
with an affine subspace is always the disjoint union of affine (0, α)-geometries.
We give an overview of all the known results about affine semipartial geome-
tries and (0, α)-geometries, including our own results (see also [26]). We
construct two new infinite classes of affine (0, 2)-geometries. We end this
chapter with a detailed study of each of the known affine semipartial geome-
tries and (0, α)-geometries.

In Chapter 5, we classify all (0, α)-geometries, α > 1, fully embedded in
AG(3, q), that are not linear representations. As we already mentioned, we
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may assume that q = 2h and α = 2. The main result of Chapter 3 on planar
oval sets is used here to complete the classification.

The results of Chapter 5 enable us to classify in Chapter 6 all (0, α)-
geometries, α > 1, fully embedded in AG(n, q), n ≥ 4, that are not linear
representations. Again we may assume that q = 2h and α = 2.

Chapter 7 gives an overview of the main results of the thesis.
Finally, in Appendix A, we study the (0, 2)-geometry I(n, q, e) fully em-

bedded in AG(n, q), q = 2h. This geometry was constructed in Chapter 4,
where we already deduced some of its properties. However, further study
is required for a good understanding of the geometry I(n, q, e). Firstly, we
give an explicit description of the point set of I(n, q, e), and we describe the
intersection with affine lines. Next, we consider a natural partition in two
parts of the point and line sets of I(n, q, e), and we study these two parts.
Finally, we obtain some isomorphisms of the geometry I(n, q, e).

This thesis wouldn’t be complete without a word of thanks to the people
who supported me throughout the past few years. First of all, I am much
indebted to my supervisors, Prof. Dr. F. De Clerck and Prof. Dr. J. A. Thas
for their excellent guidance. They gave me interesting problems to work on
and good ideas how to solve them and, perhaps equally important, they also
motivated and encouraged me. It was a pleasure and a privilege to work with
them. I would like to thank the other members of the jury, Dr. H. Cuypers,
Prof. Dr. J. W. P. Hirschfeld, Prof. Dr. L. Storme, Prof. Dr. J. Van der
Jeugt and Prof. Dr. H. Van Maldeghem. Also, I would like to thank my
colleagues, especially Tom, for making time and helping out with practical
problems.

I am very grateful to ”Bijzonder Onderzoeksfonds” at Ghent University
for giving me the opportunity to do the research that led to this thesis.

On a personal level I would like to thank my family and friends. In
the first place my parents, who gave me every opportunity in life and who
are always there for me. Special thanks also to Chris and Greet for all the
pleasant moments and for the support in difficult times. And finally, thanks
to my girlfriend Inge for cheering me up from time to time and making me
happy every day.

Nikias De Feyter
December 2004





Chapter 1

Introduction

1.1 Graphs

1.1.1 Definitions

A graph Γ is a pair (V,E) consisting of a set of vertices V and a set of edges
E. Edges are unordered pairs of vertices. For our purposes the vertex set
V will always be finite, every edge will consist of a pair of distinct vertices,
and no two distinct edges consist of the same pair of vertices. Two vertices
x and y are called adjacent vertices or neighbors if the pair {x, y} is an edge,
and we write x ∼ y. The complement of a graph Γ = (V,E) is the graph
Γ = (V,E) where E =

(
V
2

)
\ E. The graph Γ is called a complete graph if

any two distinct vertices of Γ are adjacent, and it is called a void graph if no
two vertices of Γ are adjacent.

A clique of a graph Γ is a set of vertices of Γ such that any two of them
are adjacent. A coclique of a graph Γ is a set of vertices of Γ such that no
two of them are adjacent. The subgraph of a graph Γ = (V,E) induced on
a subset V ′ ⊆ V is the graph Γ′ = (V ′, E ′) where E ′ is the set of all edges
{x, y} ∈ E such that x, y ∈ V ′.

A path in a graph Γ is an ordered set (x0, x1, . . . , xn) of mutually distinct
vertices of Γ such that any two consecutive vertices are adjacent. We say
that this path has length n, and that it is a path between the vertices x0

and xn. A graph Γ = (V,E) is said to be connected if there is at least one
path between any two vertices. If Γ is not connected then it is easily seen
that there exists a unique partition V = V1 ∪ V2 ∪ . . . ∪ Vk such that Vi 6= ∅,
i = 1, . . . , k, every edge is contained in some Vi and for every i = 1, . . . , k the
subgraph Γi of Γ induced on Vi is connected. The subgraphs Γi are called
the connected components of Γ. If for some i = 1, . . . , k the set Vi consists of
a single vertex x, then x is said to be an isolated vertex.

13



14 1. Introduction

An important notion in graph theory is the distance between two vertices
x and y of a connected graph Γ. This is the length of the shortest path in
Γ between x and y. A vertex is also said to be at distance 0 from itself.
Notice that there is not necessarily a unique shortest path between x and y.
The diameter of a connected graph Γ is the maximal distance between two
vertices in Γ. If Γ is a graph of diameter d, then for every i = 0, . . . , d and for
every vertex x of Γ we define Γi(x) to be the set of vertices of Γ at distance
i from x. The set Γ1(x) is also denoted by x⊥.

The adjacency matrix of a graph Γ with v vertices is the v × v-matrix A
indexed by the vertices of Γ such that the entry axy = 1 if x ∼ y and axy = 0
otherwise.

1.1.2 Strongly regular graphs

A graph Γ is regular of degree or valency k if every vertex of Γ has exactly
k neighbors. A regular graph with v vertices and valency k is edge-regular
with parameters (v, k, λ) if any two adjacent vertices have exactly λ common
neighbors. An edge-regular graph Γ with parameters (v, k, λ) is strongly reg-
ular with parameters (v, k, λ, µ) if any two nonadjacent vertices have exactly
µ common neighbors. We then say that Γ is an srg(v, k, λ, µ). To exclude
trivial cases we will always assume that 0 < µ < k.

In the following theorem some necessary conditions on the parameters of
a strongly regular graph are stated. The proofs can be found in [7, 19, 84].

Theorem 1.1.1 If Γ is an srg(v, k, λ,µ), then the following holds:

1. k(k − λ− 1) = µ(v − k − 1).

2. Γ is an srg(v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).

3. If A is the adjacency matrix of Γ, then

AJ = kJ, A2 + (µ− λ)A+ (µ− k)I = µJ,

and A has three eigenvalues k, r, l where

r =
λ− µ+

√
(λ− µ)2 + 4(k − µ)

2
, l =

λ− µ−
√

(λ− µ)2 + 4(k − µ)

2
.

Note that r > 0 and l < 0. The multiplicities of the eigenvalues k, r, l
are 1, f, g respectively, where

f =
−k(l + 1)(k − l)

(k + rl)(r − l)
, g =

k(r + 1)(k − r)

(k + rl)(r − l)
.

Clearly f and g must be integers.
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4. The eigenvalues r and l are both integers, except for one family of
graphs, the conference graphs, which are srg(2k + 1, k, k

2
− 1, k

2
). For a

conference graph the number of vertices can be written as a sum of two
squares, and the eigenvalues are −1+

√
v

2
and −1−

√
v

2
.

5. The two Krein conditions:

• (r + 1)(k + r + 2rl) ≤ (k + r)(l + 1)2,

• (l + 1)(k + l + 2rl) ≤ (k + l)(r + 1)2.

6. The two absolute bounds:

• v ≤ 1
2
f(f + 3), and if there is no equality in the first Krein condi-

tion then v ≤ 1
2
f(f + 1);

• v ≤ 1
2
g(g + 3), and if there is no equality in the second Krein

condition then v ≤ 1
2
g(g + 1).

7. The claw bound. If µ 6= l2 and µ 6= l(l+1), then 2(r+1) ≤ l(l+1)(µ+1).

8. The Hoffman bound.

• If C is a clique of Γ, then |C| ≤ 1 − k
l
, with equality if and only

if every vertex x 6∈ C has the same number of neighbors (namely
µ
−l) in C.

• If C is a coclique of Γ, then |C| ≤ v(1 − k
l
)−1, with equality if

and only if every vertex x 6∈ C has the same number of neighbors
(namely −l) in C.

Notwithstanding the severe necessary conditions of Theorem 1.1.1 a lot
of examples of strongly regular graphs are known, see for example [8, 55].

1.2 Incidence structures

An incidence structure S is a triple (P ,B, I) consisting of a set of points P ,
a set of blocks B, such that P ∪ B 6= ∅, and a symmetric incidence relation
I ⊆ (P × B) ∪ (B × P). For our purposes the sets P and B will be finite. If
for a point p and a block B we have that (p,B) ∈ I, then we say that p and
B are incident, that p is on B, that B passes through or contains p, and we
write p IB or p ∈ B. A flag of S is just an incident pair {p,B} with p ∈ P,
B ∈ B. A pair {p,B} with p ∈ P , B ∈ B, and p not incident with B, is
called an anti-flag . The dual of an incidence structure S = (P ,B, I) is the
incidence structure SD = (PD,BD, ID) with PD = B, BD = P , ID = I.
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Let S = (P ,B, I) be an incidence structure and let X ⊆ P ∪ B. Then
we define the sub incidence structure of S induced on the set X to be S ′ =
(P ′,B′, I′) where P ′ = P ∩X, B′ = B∩X and I′ = I∩ ((P ′×B′)∪ (B′×P ′)).
The incidence graph I(S) of an incidence structure S is the graph with vertex
set P ∪B, two vertices being adjacent if they are incident in S. We say that
S is connected if the incidence graph I(S) is connected, and we define the
connected components of S to be the sub incidence structures of S induced on
the vertex sets of the connected components of I(S). If S has a connected
component consisting of a single point, then we call this point an isolated
point .

An isomorphism from an incidence structure S = (P ,B, I) to an incidence
structure S ′ = (P ′,B′, I′) is a bijection ϕ : P∪B → P ′∪B′ mapping points to
points and blocks to blocks in such a way that incidence is preserved. If there
exists an isomorphism from S to S ′ we say that S and S ′ are isomorphic and
we write S ∼= S ′.

A partial linear space is an incidence structure S = (P ,B, I) such that
any point is on at least 2 blocks, any block contains at least 2 points, and
two distinct blocks intersect in at most one point. In this case we call the
elements of B lines. If two (not necessarily distinct) points p, q are on a
common line then they are called collinear and we write p ∼ q. The set of
points collinear with a given point p is denoted p⊥. Note that every point is
collinear with itself, whereas in the context of graphs a vertex is not adjacent
to itself. However the same notation is used for collinearity and adjacency.
If two (not necessarily distinct) lines L,M contain a common point then
they are called concurrent or intersecting lines and we write L ∼ M . The
collinearity graph or point graph Γ(S) of a partial linear space S = (P ,B, I)
is the graph with vertex set P , two vertices being adjacent if they are distinct
and collinear. The line graph or block graph of S is the graph with vertex
set B, two vertices being adjacent if they are distinct and concurrent.

A partial linear space S is said to have an order (s, t) where s, t ≥ 1 if
every line contains precisely s+1 points and if every point of S is on precisely
t+1 lines. For every anti-flag {p, L} of a partial linear space S the incidence
number α(p, L) is the number of lines through p which intersect L.

A linear space is a partial linear space S such that any two distinct points
are on a unique common line. If every line of the linear space S contains a
constant number k of points, then S is called a 2− (v, k, 1) design, where v
is the number of points of S.
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1.2.1 (α, β)-geometries and partial geometries

An incidence structure S is an (α, β)-geometry if it is a connected partial
linear space of order (s, t) such that for every anti-flag of S the incidence
number is either α or β.

An (α, β)-geometry S with α = 1 and β = s + 1 is also called a polar
space (for an introduction to polar spaces, see [18]).

An (α, β)-geometry S with α = β is called a partial geometry with pa-
rameters s, t and α. We say that S is a pg(s, t, α). Partial geometries were
introduced by Bose [6]. It is easy to see that the point graph Γ(S) of a
pg(s, t, α) S is an

srg((s+ 1)
(st+ α)

α
, s(t+ 1), s− 1 + t(α− 1), α(t+ 1)).

Notice that the definition of a partial geometry is self-dual, hence the dual
of a pg(s, t, α) is a pg(t, s, α). The partial geometries can be divided into the
following four (non disjoint) classes.

1. The partial geometries with α = 1 are called generalized quadrangles .
In section 1.3.3 we give a brief introduction to generalized quadrangles.
For more information we refer to the standard work [66].

2. The partial geometries with α = s + 1, or dually α = t + 1, are the
2− (v, s+ 1, 1) designs and their duals. See for example [4, 5].

3. The partial geometries with α = s or dually α = t. The partial geome-
tries with α = t are the (Bruck) nets of order s + 1 and degree t + 1,
which were introduced by Bruck [12].

4. The partial geometries with 1 < α < min(s, t) are called proper partial
geometries. For an overview of the known proper partial geometries
see [31] and [24].

1.2.2 (0, α)-geometries

A (0, α)-geometry (α ≥ 1) is an (α, β)-geometry with β = 0. In other
words, an incidence structure S is a (0, α)-geometry (α ≥ 1) if it satisfies the
following conditions.

(zag1) S is a connected partial linear space of order (s, t).

(zag2) Every anti-flag of S has incidence number 0 or α.
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This definition is self-dual, so the dual of a (0, α)-geometry will again be a
(0, α)-geometry. The conditions (zag1) and (zag2) are not entirely indepen-
dent. Consider the following condition.

(zag1’) S is a connected incidence structure such that any two distinct lines
intersect in at most one point, there is a point on at least two lines and
a line containing at least two points.

The following lemma shows that if α > 1 we may replace (zag1) by the
weaker condition (zag1’).

Lemma 1.2.1 Let S = (P ,B, I) be an incidence structure satisfying (zag1’)
and (zag2). If α > 1, then S has an order (s, t) with s, t ≥ 1, so S is a
(0, α)-geometry.

Proof. Suppose that α > 1. Consider two distinct points p1 and p2 on a
line L. Let s+ 1 be the number of points on L and let ti + 1 be the number
of lines through pi, i = 1, 2. The number of points collinear to both p1 and
p2 is s−1+ t1(α−1) since by (zag2) there are α points on every line through
p1, different from L, which are collinear to p2. Since we can interchange p1

and p2 in this reasoning we get that s − 1 + t1(α − 1) = s − 1 + t2(α − 1).
Hence t1 = t2 since α > 1, and by connectedness we have that the number
of lines through a point is constant. Dually the number of points on a line
is constant, so S has an order, say (s, t). Then s, t ≥ 1 since there is a point
on at least two lines and a line containing at least two points. 2

Lemma 1.2.1 illustrates that (0, 1)-geometries are quite different from
(0, α)-geometries with α > 1. Hence it is natural to treat (0, 1)-geometries
separately from (0, α)-geometries with α > 1.

1.2.3 Copolar and cotriangular spaces

The (0, α)-geometries with α = s, s > 1, are the indecomposable (that is,
connected) copolar spaces of order at least 2, which do not consist of a single
line [48]. If p and r are noncollinear points of the copolar space S = (P ,B, I)
then we write p ≈ r if p⊥ \ {p} = r⊥ \ {r}. Clearly ≈ is an equivalence
relation. We call an indecomposable copolar space reduced if all its ≈-classes
have size 1.

Copolar spaces were studied by Hall [48]. In particular the reduced copo-
lar spaces of order at least 2 were classified. The case s = 2 was first solved
by Seidel [72] and by Shult [73]. A copolar space of order s = 2 is also called
a cotriangular space.
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1.2.4 Semipartial geometries

The point graph Γ(S) of a (0, α)-geometry S = (P ,B, I) is an edge-regular
graph with parameters (v, s(t+1), s−1+t(α−1)), where v = | P | . By duality
the block graph of S is an edge-regular graph with parameters (b, t(s + 1),
t − 1 + s(α − 1)), where b = | B | . However the point graph Γ(S) of S is
not necessarily a strongly regular graph. If this is the case then we say that
S is a semipartial geometry . So an incidence structure S is a semipartial
geometry if it satisfies the following properties.

(spg1) S is a partial linear space of order (s, t).

(spg2) Every anti-flag of S has incidence number 0 or α.

(spg3) For every two noncollinear points p1, p2 there are precisely µ > 0
points collinear to both p1 and p2.

Semipartial geometries were introduced by Debroey and Thas [41]. See [31]
and [24] for a list of the known semipartial geometries. We call s, t, α
and µ the parameters of the semipartial geometry and we say that S is an
spg(s, t, α, µ). The point graph of an spg(s, t, α, µ) is an

srg(1 +
(t+ 1)s(µ+ t(s− α+ 1))

µ
, s(t+ 1), s− 1 + t(α− 1), µ).

We call an spg(s, t, α, µ) a proper semipartial geometry if µ < (t+ 1)α, that
is, if it is not a partial geometry. Notice that the definition of a semipartial
geometry is not self-dual. It was proven by Debroey [39] that the dual of a
semipartial geometry is again a semipartial geometry if and only if either it
is a partial geometry or s = t.

A semipartial geometry spg(s, t, 1, µ) is called a partial quadrangle and
is denoted by PQ(s, t, µ). Partial quadrangles were introduced by Cameron
[17]. A partial quadrangle is called proper if it is not a generalized quadrangle.

1.3 Projective geometry

We assume that the reader is familiar with the basic notions of a projective
geometry PG(n, q) of dimension n over a finite field GF(q). We will some-
times identify a subspace of PG(n, q) with the set of points it contains. For
example if K is a set of points of PG(n, q) and U a subspace, then we will
write K ∩ U for the set of points of K lying in U .

We will often denote a point of PG(n, q) by a vector which generates this
point. If a basis is chosen in PG(n, q), then the coordinates with respect
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to this basis will be denoted by (X0, . . . , Xn). Let U be an m-dimensional
subspace of PG(n, q), and let A be a matrix whose rows are the coordinate
vectors (with respect to the chosen basis in PG(n, q)) of a basis of U . We
say that the coordinates Xi0 , . . . , Xim , with 0 ≤ i0 < i1 < . . . < im ≤ n,
coordinatize the subspace U if the submatrix A′ of A formed by columns
i0, . . . , im of A is nonsingular. If this is so, then the map

ψ : U → PG(m, q)

(x0, . . . , xn) 7→ (xi0 , . . . , xim)

is a collineation from U to PG(m, q).
When we discuss the affine space AG(n, q), then PG(n, q) denotes the

projective completion of AG(n, q), and Π∞ denotes the subspace at infinity
of AG(n, q). Sometimes subspaces of AG(n, q) will be treated as subspaces of
PG(n, q). For example we will say that two parallel lines of AG(n, q) intersect
in a point of Π∞.

1.3.1 Polarities, quadrics and hermitian varieties

In this section we recall some facts and results about polarities, quadrics and
hermitian varieties that we need in the thesis. For more information we refer
to the standard works [50, 51, 54].

Polarities

A polarity β of PG(n, q), n ≥ 1, is an anti-automorphism such that β2 is the
identity. With respect to an arbitrary basis of PG(n, q), a polarity β can be
represented by a pair (A, θ), where θ is an involutory automorphism of GF(q),
and A is a nonsingular (n+1)×(n+1)-matrix over GF(q) such that A′ = ±A
if θ = 1, and A′θ = A if θ 6= 1 = θ2 (here A′ stands for the transposed matrix
of A); a point p with coordinate vector x = (x0 . . . xn) is then mapped by β
to the hyperplane with coordinate vector Ax′θ. Conversely, every such pair
(A, θ) represents a polarity β of PG(n, q).

A square matrix A is called skew-symmetric if A′ = −A and all diagonal
entries of A are equal to zero. A skew-symmetric m × m-matrix is always
singular if m is odd. Therefore, we have the following possibilities for the
pair (A, θ), representing a polarity β with respect to a basis of PG(n, q).

1. n is odd, θ = 1, and A is skew-symmetric. Then β is said to be a
symplectic polarity.

2. q is odd, θ = 1, and A′ = A. Then β is said to be an orthogonal
polarity.
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3. q is even, θ = 1, A′ = A, and A is not skew-symmetric (that is, not all
diagonal entries of A are equal to zero). Then β is said to be a pseudo
polarity.

4. θ 6= 1 = θ2, and A′θ = A. Then β is said to be a hermitian polarity.

One verifies that all four types of polarities do occur, and that the type of a
polarity is independent of the chosen basis of PG(n, q).

A subspace U of PG(n, q) is called totally isotropic with respect to a po-
larity β if U is contained in Uβ. Let β be a polarity of PG(n, q), represented,
with respect to a certain basis, by the pair (A, θ). Let A = (aij)0≤i,j≤n.

1. If β is a symplectic polarity, then every point of PG(n, q) is totally
isotropic.

2. If β is an orthogonal polarity, then a point is totally isotropic if and
only if its coordinates satisfy

∑n
i=0 aiiX

2
i + 2

∑
i<j aijXiXj = 0.

3. If β is a pseudo polarity, then the totally isotropic points are all the
points of the hyperplane U : a

1/2
00 X0 + . . .+ a

1/2
nn Xn = 0.

4. If β is a hermitian polarity, then a point is totally isotropic if and only
if its coordinates satisfy

∑n
i,j=0 aijXiX

θ
j = 0.

Choose a basis in PG(n, q). Then a polarity is determined by a pair (A, θ).
One may modify the definition of a polarity so that also singular matrices
A are allowed. In this case we say that the polarity is singular. The set
of points having no image with respect to a singular polarity β of PG(n, q)
forms an r-dimensional subspace called the vertex of β. For n ≥ r + 2, the
projection of β from the vertex on an (n − r − 1)-dimensional subspace U
skew to the vertex is always a nonsingular polarity of U .

Quadrics

A quadric Qn of PG(n, q), n ≥ 1, is the set of points of PG(n, q) whose
coordinates satisfy a homogeneous quadratic equation over GF(q),

n∑
i≤j=0

aijXiXj = 0,

such that not all aij are zero. A quadric Q2 in PG(2, q) is also called a conic.
The intersection of a quadric Qn with a subspace of dimension at least 1 of
PG(n, q) is always a quadric in this subspace. Any line of PG(n, q) intersects
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a quadric Qn in 0, 1, 2 or q+ 1 points. A line containing 0 or 2 points of Qn

is called an external or a secant line respectively; the other lines are called
tangent lines . A quadric Qn is said to be singular if there is a point p ∈ Qn

such that every line through p is a tangent line; the point p is then called a
singular point . If Qn is singular then its singular points constitute a subspace
πr of dimension r, and for n ≥ r + 2, Qn is a cone πrQn−r−1 with vertex πr
and base a nonsingular quadric Qn−r−1 in an (n−r−1)-dimensional subspace
skew to πr.

A generator of a quadric Qn is a subspace of maximal dimension con-
tained in Qn. The projective index of Qn is the dimension of a generator. In
PG(2n, q) any two nonsingular quadrics are projectively equivalent. A non-
singular quadric Q2n in PG(2n, q) is called a nonsingular parabolic quadric
and is also denoted by Q(2n, q). The projective index of Q(2n, q) is n−1. In
PG(2n+ 1, q) there are two types of nonsingular quadrics. A quadric of the
first type has projective index n, is called a nonsingular hyperbolic quadric
and is also denoted by Q+(2n+ 1, q). A quadric of the second type has pro-
jective index n−1, is called a nonsingular elliptic quadric and is also denoted
by Q−(2n + 1, q). The numbers of points of nonsingular quadrics are listed
below.

|Q(2n, q) | =
q2n − 1

q − 1
,

|Q+(2n+ 1, q) | =
(qn + 1)(qn+1 − 1)

q − 1
,

|Q−(2n+ 1, q) | =
(qn − 1)(qn+1 + 1)

q − 1
.

Consider the following relation γ on the set of generators of a nonsingular
hyperbolic quadric Q+(2n+1, q) in PG(2n+1, q). If U1 and U2 are generators
of Q+(2n+ 1, q), then (U1, U2) ∈ γ if the dimension of U1 ∩ U2 has the same
parity as n, the projective index of Q+(2n + 1, q). The relation γ is an
equivalence relation, and it has precisely two equivalence classes.

Let Qn be a nonsingular quadric in PG(n, q), and let p be a point of
Qn. Then there is a unique hyperplane Tp(Qn) containing p such that the
set of tangent lines through p is exactly the set of lines through p contained
in Tp(Qn). We call Tp(Qn) the tangent hyperplane at p. For n ≥ 3, the
intersection of Qn with Tp(Qn) is a cone pQn−2, where Qn−2 is a nonsingular
quadric of the same type as Qn.

With a nonsingular quadric Qn in PG(n, q), q odd, one can associate in
a natural way an orthogonal polarity β such that Qn is the set of totally
isotropic points with respect to β. A point p ∈ Qn is mapped by β to the
tangent hyperplane Tp(Qn).
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Let Q2n be a nonsingular parabolic quadric in PG(2n, q), q even. Then
there is a unique point p 6∈ Q2n such that every line through p is a tangent
line to Q2n. We call this point the nucleus of Q2n. Let p′ be a point not on
Q2n and different from the nucleus p, and let p′′ be the unique point of Q2n

on the line pp′. Then p′ ∈ Tp′′(Q2n), and the set of tangent lines through p′

is exactly the set of lines through p′ contained in Tp′′(Q2n).
Let Q2n+1 be a nonsingular elliptic or hyperbolic quadric in PG(2n+1, q),

q even, and let p be a point not on Q2n+1. Then there is a unique hyperplane
Up(Q2n+1) containing p such that the set of tangent lines through p is exactly
the set of lines through p contained in Up(Q2n+1). The hyperplane Up(Q2n+1)
intersects Q2n+1 in a nonsingular parabolic quadric Q2n of which p is the
nucleus. With Q2n+1 one can associate in a natural way a symplectic polarity
β. A point p ∈ Q2n+1 is mapped by β to the hyperplane Tp(Q2n+1), and a
point p 6∈ Q2n+1 is mapped by β to the hyperplane Up(Q2n+1). A line of
PG(2n + 1, q) is totally isotropic with respect to β if and only if it is a
tangent line of Q2n+1.

Hermitian varieties

A hermitian variety Hn of PG(n, q2), n ≥ 1, is a set of points whose coordi-
nates satisfy an equation over GF(q2) of the form

n∑
i,j=0

aijXiX
q
j = 0,

such that not all aij are zero and aqij = aji for all 0 ≤ i, j ≤ n. Any line
intersects a hermitian variety Hn in 1, q + 1 or q2 + 1 points. The lines
intersecting Hn in q + 1 points are called secant lines, the other lines are
called tangent lines.

Hermitian varieties and quadrics have many similar properties. Singular-
ity is defined in the same way as for quadrics. The set of singular points of a
hermitian variety Hn forms a subspace πr of PG(n, q2) of dimension r, and if
Hn is singular and n ≥ r+2, then Hn is a cone πrHn−r−1 with vertex πr and
base a nonsingular hermitian variety Hn−r−1 in an (n − r − 1)-dimensional
subspace skew to πr. Any two nonsingular hermitian varieties in PG(n, q2)
are projectively equivalent. A nonsingular hermitian variety in PG(n, q2) is
denoted by H(n, q2). The projective index (which is defined in the same way
as for quadrics) of H(2n, q2) is n−1, and the projective index of H(2n+1, q2)
is n. The number of points of a nonsingular hermitian variety is given by the



24 1. Introduction

following expressions.

|H(2n, q2) | =
(q2n+1 + 1)(q2n − 1)

q2 − 1

|H(2n+ 1, q2) | =
(q2n+2 − 1)(q2n+1 + 1)

q2 − 1
.

Like for quadrics, the tangent lines through a point p ∈ H(n, q2) lie in a
hyperplane Tp(H(n, q2)), called the tangent hyperplane at p. With a nonsin-
gular hermitian variety H(n, q2) one can associate a hermitian polarity such
that the set of totally isotropic points is H(n, q2) and such that any point
p ∈ H(n, q2) is mapped to Tp(H(n, q2)).

A nonsingular hermitian variety H(2, q2) is also called a hermitian curve.
It is a set of q3 + 1 points in PG(2, q2) such that every line intersects it in
1 or q + 1 points. A set of q3 + 1 points of PG(2, q2) with this property is
called a unital . Examples of unitals which are not hermitian curves are the
so-called Buekenhout-Metz unitals [14, 62].

1.3.2 The Plücker correspondence

The well-known Plücker correspondence establishes a link between the pro-
jective geometry PG(3, q) and the nonsingular hyperbolic quadric Q+(5, q)
in PG(5, q), which is commonly referred to as the Klein quadric. It goes as
follows. Choose a basis in PG(3, q). A line L of PG(3, q), which is determined
by two of its points p1(x0, x1, x2, x3) and p2(y0, y1, y2, y3), p1 6= p2, is said to
have Plücker coordinates L(l01, l02, l03, l23, l31, l12), where

lij =

∣∣∣∣ xi xj
yi yj

∣∣∣∣ , 0 ≤ i, j ≤ 3.

Let L be the line set of PG(3, q). Then

κ : L → PG(5, q),

L(l01, l02, l03, l23, l31, l12) 7→ p(l01, l02, l03, l23, l31, l12),

is an injective map, and the image of κ is the point set of the Klein quadric

Q+(5, q) : X0X3 +X1X4 +X2X5 = 0.

The map κ is called the Plücker correspondence. We list here some of its
properties; for more information, see Section 15.4 in [51]. Recall that with
the Klein quadric Q+(5, q), we can associate in a natural way a nonsingular
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polarity β of PG(5, q). If q is even, then β is a symplectic polarity; if q is
odd, then β is an orthogonal polarity.

Two distinct lines L1 and L2 of PG(3, q) are concurrent if and only if the
line of PG(5, q) joining the points Lκ1 and Lκ2 is contained in Q+(5, q).

The set of lines through a given point p of PG(3, q) is mapped by κ to
the set of points of a generator of Q+(5, q). Recall that the generators of
Q+(5, q) are planes. The set of lines contained in a given plane π of PG(3, q)
is mapped by κ to the set of points of a generator of Q+(5, q). In this manner,
κ induces a bijection of the set of points and planes of PG(3, q) onto the set
of generators of Q+(5, q). Moreover, if Π1 is the set of generators of Q+(5, q)
which correspond to points of PG(3, q), and Π2 is the set of generators of
Q+(5, q) which correspond to planes of PG(3, q), then Π1 and Π2 are precisely
the two equivalence classes of the equivalence relation γ, defined in Section
1.3.1, on the set of generators of Q+(5, q).

From now on, we regard the Plücker correspondence κ as a symmetrized
bijection between the set of points, lines and planes of PG(3, q), and the
set of points and generators of Q+(5, q). Incidence of points and lines, and
of lines and planes of PG(3, q), is naturally preserved by κ. A point and a
plane of PG(3, q) are incident if and only if the corresponding generators of
Q+(5, q) intersect in a line.

A pencil of lines in PG(3, q), that is, the set of q + 1 lines contained in a
given plane π and through a given point p ∈ π of PG(3, q), corresponds via κ
to the set of points on a line of PG(5, q), contained in Q+(5, q). The Plücker
correspondence induces a bijection from the set of pencils of PG(3, q) to the
set of lines of PG(5, q), contained in Q+(5, q).

A regulus in PG(3, q), that is, the set of q + 1 lines intersecting three
mutually skew lines of PG(3, q), corresponds via κ to the set of points of a
nondegenerate conic on Q+(5, q). If the regulus R1 of PG(3, q) corresponds
to the nondegenerate conic C1 = Q+(5, q) ∩ π, with π a plane of PG(5, q),
then the opposite regulus R2 of R1, that is, the set of q + 1 lines intersecting
each line of R1, corresponds to the set of points of the nondegenerate conic
C2 = Q+(5, q) ∩ πβ.

The set of lines which are totally isotropic with respect to a symplectic
polarity of PG(3, q), corresponds via κ to the set of points of Q+(5, q) in a
hyperplane of PG(5, q), not tangent to Q+(5, q).

Next, we describe some properties of the Klein quadric Q+(5, q), q = 2h.
Since q is even, the polarity β of PG(5, q), associated with Q+(5, q), is a
symplectic polarity.

Let V be a 3-space of PG(5, q), and let L be the line V β. Then L is skew
to V if and only if the quadric Q+(5, q) ∩ V is nonsingular, if and only if
L is an external line or a secant to Q+(5, q). Moreover, Q+(5, q) ∩ V is a
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nonsingular elliptic quadric if and only if L is an external line of Q+(5, q),
and Q+(5, q) ∩ V is a nonsingular hyperbolic quadric if and only if L is a
secant line of Q+(5, q).

Assume that L is skew to V , and that E = Q+(5, q)∩ V is a nonsingular
elliptic quadric. Then Q+(5, q) ∩ L = ∅. Let p be a point of L. Then
pβ = 〈p, V 〉, and Q+(5, q)∩pβ is a nonsingular parabolic quadric with nucleus
p. So the set of tangent lines of Q+(5, q) through p is precisely the set of
lines of PG(5, q) through p which intersect V .

Let p be a point of V , and let π be the plane 〈p, L〉. If p ∈ E, then
Q+(5, q) ∩ π is the point p. If p 6∈ E, then Q+(5, q) ∩ π is a nondegenerate
conic with nucleus p.

Let M be a line of V . Then the 3-space W = 〈L,M〉 intersects Q+(5, q) in
a nonsingular elliptic quadric, respectively a nonsingular hyperbolic quadric,
or a quadratic cone, if and only if M is a secant line, respectively an external
line, or a tangent line, of E.

1.3.3 Generalized quadrangles

As we have seen already in Section 1.2.1, an incidence structure S is called a
generalized quadrangle if S is a partial linear space of order (s, t), such that
for every anti-flag {p, L} of S, α(p, L) = 1. If s = t, then S is said to have
order s. For an extensive treatment of finite generalized quadrangles, see
[66].

A set of points O of a generalized quadrangle S is called an ovoid of S
if every line of S contains exactly one point of O. Dually, a set of lines S of
a generalized quadrangle S is called a spread of S if every point of S is on
exactly one line of S.

Of special interest in the context of this thesis are the so-called classi-
cal generalized quadrangles . These are generalized quadrangles which are
associated with a quadric, a hermitian variety or a symplectic polarity of a
projective space.

Let Qn be a nonsingular quadric of projective index 1 in PG(n, q). Then
S = (P ,B, I), where P is the set of points of Qn, B is the set of generators
of Qn, and I is the natural incidence, is a generalized quadrangle. The
nonsingular quadrics of projective index 1 are the following.

1. n = 3 and Q3 = Q+(3, q). Then S is a generalized quadrangle of order
(q, 1), and is denoted by Q(3, q).

2. n = 4 and Q4 = Q(4, q). Then S is a generalized quadrangle of order
q, and is denoted by Q(4, q).
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3. n = 5 and Q5 = Q−(5, q). Then S is a generalized quadrangle of order
(q, q2), and is denoted by Q(5, q).

LetHn be a nonsingular hermitian variety in PG(n, q2) of projective index
1. Then S = (P ,B, I), where P is the set of points of Hn, B is the set of
generators of Hn, and I is the natural incidence, is a generalized quadrangle.
The nonsingular hermitian varieties of projective index 1 are the following.

1. n = 3 and H3 = H(3, q). Then S is a generalized quadrangle of order
(q2, q), and is denoted by H(3, q2).

2. n = 4 and H4 = H(4, q). Then S is a generalized quadrangle of order
(q2, q3), and is denoted by H(4, q2).

Let β be a symplectic polarity of PG(3, q). Let W(q) = (P ,B, I), where P
is the point set of PG(3, q), B is the set of totally isotropic lines with respect
to β, and I is the natural incidence. Then W(q) is a generalized quadrangle
of order q.

The isomorphisms between classical generalized quadrangles are the fol-
lowing. For all prime powers q, W(q) ∼= Q(4, q)D and Q(5, q) ∼= H(3, q2)

D
.

Furthermore, W(q) ∼= Q(4, q) if and only if q is even.

1.3.4 Arcs and caps

A k-arc in PG(n, q) is a set of k points of PG(n, q), not contained in a hy-
perplane of PG(n, q), with at most n points in every hyperplane of PG(n, q).
The size of the largest k-arc in PG(n, q) is denoted by m(n, q). For a survey
of k-arcs we refer to Chapter 21 of [51] and Chapter 27 of [54].

A k-cap in PG(n, q) is a set of k points of PG(n, q) such that no three
are collinear. A k-cap is called complete or maximal if it is not contained in
a larger cap. A line is called external , tangent or secant with respect to a
cap if it contains respectively 0, 1, 2 points of the cap.

The size of the largest cap in PG(n, q) is denoted by m2(n, q). This
number m2(n, q) is known for only a few values of (n, q). It is known that
m2(2, q) = q+1 if q is odd and m2(2, q) = q+2 if q is even, m2(3, q) = q2 +1
if q > 2, m2(n, 2) = 2n for all n ≥ 2, m2(4, 3) = 20 and m2(5, 3) = 56.

1.3.5 Ovals and hyperovals

The maximum size m2(2, q) of a cap in PG(2, q), equals q+ 1 if q is odd and
q + 2 if q is even. In a projective plane PG(2, q), a cap of size q + 1 is called
an oval . Caps of size q + 2 in PG(2, q) only exist when q is even, and they
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are called hyperovals . For a recent survey of the theory of (hyper)ovals, see
[9] or [20, 21].

The classical example of an oval is a nondegenerate conic. Segre [67, 68]
proved that in PG(2, q), q odd, every oval is a conic.

In PG(2, q), q even, several projectively distinct examples of ovals and
hyperovals are known. It is easy to prove that in PG(2, q), q even, every oval
has a unique nucleus , this is a point not on the oval such that every line
through it is tangent to the oval. Hence every oval in PG(2, q), q even, is
contained in a unique hyperoval. Conversely, every hyperoval contains q + 2
ovals which may well be projectively distinct. A hyperoval which contains a
conic is called a regular hyperoval .

Let H be a hyperoval in PG(2, q), q = 2h. Then we can coordinatize
in such a way that H contains the points with coordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1) and (1, 1, 1). Consequently we may write H as

H = {(1, t, f(t)) | t ∈ GF(q)} ∪ {(0, 0, 1), (0, 1, 0)},

where f is a permutation of GF(q) fixing 0 and 1. The permutation f may
be written in a unique way as a polynomial over GF(q) of degree at most
q − 1. Any polynomial of degree at most q − 1 that arises as above from
a hyperoval is called an o-polynomial. Notice that projectively equivalent
hyperovals can be represented by different o-polynomials. For example each
of f(t) = t2, f(t) =

√
t, f(t) = tq−2 is an o-polynomial that correspond to the

regular hyperoval. Another o-polynomial is f(t) = t2
i
, where i is an integer

such that gcd(i, h) = 1. The corresponding hyperovals are called translation
hyperovals and they are not regular provided i 6= 1, h− 1.

The following result, due to Payne, will be used in Section 5.2.

Theorem 1.3.1 (Payne [65]) If f is an additive o-polynomial over GF(2h),
then f(t) = t2

i
where i is an integer such that gcd(i, h) = 1.

Remark

Throughout this thesis all maps are written in exponential notation. How-
ever we make an exception when it comes to o-polynomials, since they are
traditionally written as functions.

1.3.6 Ovoids

The maximum size m2(3, q) of a cap in PG(3, q), q > 2, is q2+1. A cap of size
q2 + 1 in PG(3, q), q > 2, is called an ovoid . For q = 2 we have m2(3, 2) = 8.
An ovoid of PG(3, 2) is a set of five points, no four of which are coplanar.
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The classical example of an ovoid in PG(3, q) is a nonsingular elliptic quadric
Q−(3, q). For a recent survey of the theory of ovoids in PG(3, q), see [9].

It can be shown that every plane of PG(3, q) intersects an ovoid in either
a single point or an oval. Barlotti [3] and Panella [63] proved independently
that, when q is odd, every ovoid is a nonsingular elliptic quadric.

If q is even, the situation is different. Tits [82] found an example of an
ovoid in PG(3, q), q = 22e+1, e ≥ 1, which is not an elliptic quadric (for q = 8
it was discovered earlier by Segre [69]). As the Suzuki simple group Sz(q)
acts in a natural way on this ovoid, it is called the Suzuki-Tits ovoid. The
Suzuki-Tits ovoid is the only known ovoid which is not an elliptic quadric.
With respect to a basis of PG(3, 22e+1), it has the following canonical form:

{(1, xy + xσ+2 + yσ, x, y) |x, y ∈ GF(q)} ∪ {(0, 1, 0, 0)},

where σ : x 7→ x2e+1
.

Brown [10] proved that, if an ovoid of PG(3, q), q even, intersects one
plane in a conic, then it is a nonsingular elliptic quadric.

Let O be an ovoid of PG(3, q), q even. Let S = (P ,B, I), where P is the
point set of PG(3, q), B is the set of tangent lines to O, and I is the natural
incidence. Then S is the generalized quadrangle W(q), and O is an ovoid of
S. Conversely, Thas [76] proved that every ovoid of W(q), q even, is an ovoid
of PG(3, q). Hence, when q is even, there is a one-to-one correspondence
between ovoids of PG(3, q) and ovoids of W(q), and, since W(q) ∼= Q(4, q),
also between ovoids of PG(3, q) and ovoids of Q(4, q).

1.3.7 Maximal arcs

A {k; d}-arc in PG(2, q) is a set of k > 0 points such that the maximum
number of points of this set on a line is d. A {k; 2}-arc in PG(2, q) is then
plainly a k-arc in PG(2, q). Standard counting arguments show that for a
{k; d}-arc in PG(2, q) we have k ≤ qd − q + d and that in case of equality
d = q+1 or d divides q. A {qd− q+d; d}-arc in PG(2, q) is called a maximal
arc of degree d. Every line intersects a maximal arc of degree d in either 0
or d points. The set of lines not intersecting a maximal arc of degree d, with
d 6= q + 1, is a maximal arc of degree q/d in the dual plane of PG(2, q). A
maximal arc is called nontrivial if 1 < d < q. Hyperovals are maximal arcs
of degree 2.

Theorem 1.3.2 (Ball, Blokhuis, Mazzocca [2]) In PG(2, q), q odd, non-
trivial maximal arcs do not exist.
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Theorem 1.3.3 (Denniston [44]) Let x2+bx+1 be an irreducible quadratic
form over GF(q), q = 2h, and let Cλ, λ ∈ GF(q) ∪ {∞}, be the conic in
PG(2, q) with equation X2

0 + bX0X1 +X2
1 + λX2

2 = 0. Let H be a subgroup
of order d = 2m of the additive group of GF(q). Then the set K = ∪λ∈HCλ is
a maximal arc of degree d in PG(2, q).

The maximal arcs arising in Theorem 1.3.3 are called Denniston maxi-
mal arcs or maximal arcs of Denniston type. Maximal arcs that are not of
Denniston type were constructed by Thas [77, 79], by Mathon [60] and by
Hamilton and Mathon [49].

Let K be the Denniston type maximal arc of degree d = 2m, which arises
from a subgroup H of order d of the additive group of GF(q), q = 2h. Since,
for every d′ | d, the group H has a subgroup H ′ of order d′, K contains a
Denniston type maximal arc K′ of degree d′ for every divisor d′ of d.

1.3.8 Sets of type (1, m, q + 1) in PG(n, q)

A set of type (t1, . . . , tm) with respect to a set X of lines of PG(n, q), with
n ≥ 1, is a set K of points of PG(n, q) such that every line of X intersects K
in ti points for some i ∈ {1, . . . ,m}. A set of type (t1, . . . , tm) in PG(n, q) is
a set of type (t1, . . . , tm) with respect to the set of all lines of PG(n, q). If k
is the number of points of a set of type (t1, . . . , tm) in PG(n, q), then this set
is also called a k-set of type (t1, . . . , tm) in PG(n, q).

Of special interest are sets of type (1,m, q + 1) in PG(n, q). A set K of
type (1,m, q+1) is called singular if there is a singular point , that is, a point
p of K such that every line through p contains either 1 or q + 1 points of K.

Tallini Scafati [75] characterizes, for q > 4, the nonsingular hermitian
varieties as the nonsingular sets of type (1,m, q + 1) in PG(n, q). However
an arithmetical error invalidates the conclusion if q is even and m = 1

2
q + 1.

Hirschfeld and Thas [53, 52] provide a counterexample in this case and give
a complete classification of sets of type (1,m, q + 1) in PG(n, q).

The counterexample is the following. Let Qn+1 be a nonsingular quadric
in PG(n+1, q), n ≥ 1, q even, and let r be a point not on Qn+1 and different
from its nucleus if n + 1 is even. Let Rn be the projection of Qn+1 from r
onto a hyperplane PG(n, q) of PG(n + 1, q), not containing r. Then Rn is
a nonsingular set of type (1, 1

2
q + 1, q + 1) in PG(n, q). If n + 1 is odd and

Qn+1 = Q+(n+ 1, q) is a hyperbolic quadric, we write Rn = R+
n . If n+ 1 is

odd and Qn+1 = Q−(n+ 1, q) is an elliptic quadric, we write Rn = R−
n .

Notice that every setRn contains a hyperplane. Indeed, the set of tangent
lines of Qn+1 through r is the set of lines through r which lie in a hyper-
plane of PG(n+ 1, q) containing r. This hyperplane intersects PG(n, q) in a
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hyperplane which is hence completely contained in Rn.
The number of points of the set Rn is as follows.

|R+
2n | =

1

2
qn(qn + 1) +

q2n − 1

q − 1
,

|R−
2n | =

1

2
qn(qn − 1) +

q2n − 1

q − 1
,

|R2n+1 | =
1

2
q2n+1 +

q2n+1 − 1

q − 1
.

We mention here only the following special cases of the classification of
Hirschfeld and Thas.

Theorem 1.3.4 (Hirschfeld, Thas [52, 53], Glynn [46]) If K is a non-
singular set of type (1, 1

2
q + 1, q + 1) in PG(n, q) with n ≥ 3 and q = 2h,

h > 2, then K = Rn. For q = 4 the same conclusion holds if there is no
plane intersecting K in a unital or a Baer subplane.

The proof of the case n = 3 in Theorem 1.3.4 was completed by Glynn
[46].

Theorem 1.3.5 (Hirschfeld, Thas [52, 53], Glynn [46]) If K is a non-
singular set of type (1,m, q + 1) in PG(3, q), q > 2, which contains a plane,
then one of the following holds.

1. m = 2 and K is the union of a plane with a point not on that plane.

2. m = q and K is the complement of a point.

3. q = 2h, m = 1
2
q + 1, and K = R3.

1.4 Projective and affine incidence structures

Let R be a projective or affine space. An incidence structure S = (P ,B, I)
is said to be laxly embedded in R if P is a subset of the point set of R, if
B is a subset of the line set of R, if for every pair (p, L) ∈ P × B we have
that (p, L) ∈ I if and only if p and L are incident in R, and if P is not
contained in a hyperplane of R. If furthermore for every line L of S we have
that every point of R incident with L is a point of S, then S is said to be
fully embedded in R. An incidence structure fully embedded in a projective
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space will be called projective, and an incidence structure fully embedded in
an affine space will be called affine.

Two incidence structures S and S ′ fully embedded in a projective or
affine space R are called projectively or affinely equivalent if there exists a
collineation of R which induces an isomorphism from S to S ′. In this case we
write S ' S ′. We recall that the notation for isomorphic incidence structures
S and S ′ is S ∼= S ′. Note that if S ' S ′, then S ∼= S ′, but not vice versa.
Indeed, two projective or affine incidence structures may well be isomorphic
without being projectively or affinely equivalent.

An important question in finite geometry is which incidence structures
can be fully embedded in projective or affine spaces, and how these embed-
dings look. This question has been answered for various classes of incidence
structures. In the following sections we will give an overview of these re-
sults, as well as the constructions of those examples that are relevant for
the rest of the thesis. To summarize we can say that the embedding prob-
lem is solved for projective and affine generalized quadrangles, for projective
and affine partial geometries, for projective semipartial geometries and, with
some exceptions, for projective (0, α)-geometries.

1.4.1 Projective GQ and (dual) partial quadrangles

Theorem 1.4.1 (Buekenhout, Lefèvre [15]) If S is a projective gener-
alized quadrangle, then S is projectively equivalent to one of the classical
generalized quadrangles W(q), Q(3, q), Q(4, q), Q(5, q), H(3, q2) or H(4, q2).

About projective partial quadrangles and dual partial quadrangles, not
so much is known. No example is known to us of a projective proper par-
tial quadrangle. An example of a dual partial quadrangle fully embedded
in PG(3, q2) is H(3, q2)

∗
[28] which is obtained by deleting from the classical

generalized quadrangle H(3, q2) a line L, the points on L and all lines con-
current with L. The geometry H(3, q2)

∗
is the dual of a PQ(q− 1, q2, q2− q).

De Clerck, Durante and Thas [28] prove that if S is the dual of a PQ(t, q, µ)
and fully embedded in PG(3, q), then µ ≤ q − q

t+1
and if equality holds then

q is a square and S ' H(3, q)∗.
Recently a new example of a partial quadrangle PQ(1

2
(q−1), q2, 1

2
(q−1)2),

with q any odd prime power, was found by Cossidente and Penttila [23]. It
arises from a hemisystem of the classical generalized quadrangle H(3, q2). A
hemisystem of H(3, q2) is a set of lines of H(3, q2) such that any point of
H(3, q2) is contained in exactly 1

2
(q + 1) lines of that set. Hemisystems were

introduced by Segre [71], and it was proven by Thas [80] that the incidence
structure with as points the points of H(3, q2) and as lines the lines of a
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hemisystem of H(3, q2) is the dual of a PQ(1
2
(q− 1), q2, 1

2
(q− 1)2). Now since

the generalized quadrangle H(3, q2) is fully embedded in PG(3, q2), so is this
dual partial quadrangle.

1.4.2 Projective partial geometries

Projective partial geometries were completely classified by De Clerck and
Thas [29]. The examples are the following. Notice that none of them is a
proper partial geometry.

1. The design of all points and all lines of PG(n, q), n ≥ 2, is a pg(q,
(qn−q)/(q−1), q+1) (or, equivalently, a 2−((qn+1−1)/(q−1), q+1, 1)
design) fully embedded in PG(n, q).

2. Let B be a set of lines in PG(2, q), q even, which forms a maximal arc
of degree d ≥ 2 in the dual plane of PG(2, q). Let P be the set of
points of PG(2, q) on the lines of B and let I be the natural incidence.
Then S = (P ,B, I) is a pg(q, d − 1, d) (or, equivalently, the dual of a
2 − (qd − q + d, d, 1) design) fully embedded in PG(2, q). We call S a
dual maximal arc in PG(2, q).

3. The incidence structure Hn
q formed by the points and lines of PG(n, q),

n ≥ 2, having an empty intersection with a given (n − 2)-dimensional
subspace of PG(n, q) is a pg(q, qn−1−1, q) (or, equivalently, the dual of
a net of order qn−1 and degree q + 1) fully embedded in PG(n, q) [29].

Theorem 1.4.2 (De Clerck, Thas [29]) If S is a partial geometry fully
embedded in PG(n, q) then S is a generalized quadrangle or S is one of the
examples in the list above.

1.4.3 Projective (dual) semipartial geometries and
(0, α)-geometries

The projective (dual) semipartial geometries with α > 1 and the projective
(0, α)-geometries with α > 1 were almost completely classified by Debroey,
De Clerck and Thas [30, 81]. The cases that are not solved are the semipar-
tial geometries fully embedded in PG(n, 2) and the (0, α)-geometries fully
embedded in PG(3, q) and in PG(n, 2).

Projective (0, 1)-geometries were not studied in [30, 81] because the em-
bedding in PG(n, q) does not induce much structure on a (0, 1)-geometry.
For instance if a plane π of PG(n, q) contains two intersecting lines of a
(0, 1)-geometry S fully embedded in PG(n, q), then π may contain a priori
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any number γ ∈ {2, . . . , q + 1} of lines of S centered in a point. Thus we
obtain far less information than in the case α > 1, as we will see in Lemma
1.4.7.

The following list contains the examples of projective (0, α)-geometries
with α > 1 that appear in [81]. In Chapter 2 we construct new examples of
(0, α)-geometries with α > 1 fully embedded in PG(3, 2h).

1. Let X be a set with m ≥ 4 elements, U2 = {T ⊂ X‖ |T | = 2},
U3 = {T ⊂ X‖ |T | = 3} and I symmetric inclusion. Then U2,3(m) =
(U2, U3, I) is a cotriangular space with t = m − 3. Note that U2,3(m)
is also an spg(2,m − 3, 2, 4). For some values of m and n the geom-
etry U2,3(m) can be fully embedded in PG(n, 2). Examples such that
(m,n) ∈ {(5, 3), (7, 4), (9, 5)} are described in [81], and examples with
m ∈ {n+ 2, n+ 3} are described in [57].

2. Let A be a skew-symmetric (n+1)× (n+1)-matrix over GF(q), n ≥ 2.
Then the rank of A is even; let rankA = 2k, with k > 0. Let β be the
(possibly singular) symplectic polarity of PG(n, q) defined by A, and let
U be the vertex of β. Let P be the set of points of PG(n, q) not in U , let
B be the set of lines of PG(n, q) which are disjoint from U and which
are not totally isotropic with respect to β, and let I be the natural
incidence. Then W (n, 2k, q) = (P ,B, I) is a copolar space of order
(q, qn−1 − 1) (so a (0, α)-geometry with s = α = q and t = qn−1 − 1),
fully embedded in PG(n, q) [30].

If k = 1 then W (n, 2, q) ' Hn
q . If n is odd and 2k = n + 1 then

the symplectic polarity β is nonsingular. In this case the geometry
W (n, n+ 1, q) is an spg(q, qn−1−1, q, qn−1(q−1)) and is shortly denoted
by W (n, q) [41]. In all other cases W (n, 2k, q) is not a semipartial
geometry.

3. Let Qn be a (possibly singular) quadric in PG(n, 2). Let B be the set
of external lines of Qn, let P be the set of points of PG(n, 2) on the
elements of B, and let I be the natural incidence. Then S = (P ,B, I)
is a cotriangular space fully embedded in PG(n, 2) unless Qn consists
of one or two hyperplanes, or n = 3 and Q3 = Q+(3, 2), or n ≥ 4 and
Qn is a cone with vertex an (n− 4)-dimensional subspace U and base
a quadric Q+(3, 2) in a 3-space skew to U (in the last two cases the
geometry is not connected) [30].

If n = 2d − 1 and Q2d−1 = Q±(2d − 1, 2) then S is a semipartial
geometry spg(2, 22d−3 − ε2d−2 − 1, 2, 22d−3 − ε2d−1), where ε is 1 or −1



1.4. Projective and affine incidence structures 35

according as Q2d−1 is hyperbolic or elliptic. This semipartial geometry
is denoted by NQ±(2d− 1, 2).

If n = 2d and Q2d = Q(2d, 2) then S is a semipartial geometry, denoted
by NQ(2d, 2), isomorphic to W (2d− 1, 2).

In all other cases S is not a semipartial geometry.

4. Consider the nonsingular hyperbolic quadric Q+(3, q) in PG(3, q), where
q = 2h and h > 1. Then the same construction as in example 3 yields
a (0, α)-geometry NQ+(3, q) fully embedded in PG(3, q) with s = q,
α = 1

2
q and t = 1

2
q2 − 1

2
q − 1. This geometry is never a semipartial

geometry [30].

Proposition 1.4.3 If S is a (0, α)-geometry fully embedded in PG(2, q),
then either S is the design of all points and all lines of PG(2, q) or S is
a dual maximal arc.

Proof. Since any two lines of PG(2, q) intersect, S is a dual design and
hence a partial geometry. Now we can apply Theorem 1.4.2. 2

Theorem 1.4.4 (Debroey, De Clerck, Thas [81]) If S is a (0, α)-geom-
etry with α > 1 fully embedded in PG(n, q), n ≥ 4, q > 2, then we have one
of the following cases.

1. S is the design of all points and all lines of PG(n, q).

2. S ' W (n, 2k, q).

There is no complete classification of (0, 2)-geometries fully embedded in
PG(n, 2), but partial results are obtained in [81]. There is also no complete
classification of (0, α)-geometries with α > 1 fully embedded in PG(3, q).
Partial results are obtained in [30] and in Section 26.8 of [54], and we will
state them below. In the case of semipartial geometries however, there is
also a complete classification of full embeddings in PG(3, q).

Theorem 1.4.5 (Debroey, De Clerck, Thas [81]) If S is a proper semi-
partial geometry with α > 1, fully embedded in PG(n, q), n ≥ 3, q > 2, then
n is odd and S ' W (n, q).

Theorem 1.4.6 (De Clerck, Thas [30]) If S is a proper dual semipartial
geometry with α > 1, fully embedded in PG(n, q), n ≥ 3, then n = 3, q = 2
and S ' NQ−(3, 2).
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Before we come to the results on (0, α)-geometries fully embedded in
PG(3, q), we need the following lemma.

Lemma 1.4.7 (De Clerck, Thas [30]) Let S be a (0, α)-geometry, α > 1,
fully embedded in PG(n, q), n ≥ 3, and let π be a plane of PG(n, q). Let Xπ be
the set of points and lines of S contained in π and let Sπ be the sub incidence
structure of S induced on Xπ. Then the plane π is of one of the following
three types.

Type (a). Sπ consists of a pg(q, α − 1, α) (that is, a dual maximal arc of
degree α) and possibly some isolated points.

Type (b). Sπ consists of exactly one line and possibly some isolated points.

Type (c). Sπ only consists of some isolated points.

Let S = (P ,B, I) be a (0, α)-geometry, α > 1, of order (q, t) fully em-
bedded in PG(3, q), and let π be a plane of type (a) containing m isolated
points. Then, since every line of S is either contained in π or intersects π in
a point of Sπ,

| B | = (qα− q + α)
q + 1

α
(t+ 1− α) + qα− q + α+m(t+ 1).

Since this holds for every plane of type (a), it follows that every plane of type
(a) contains the same number m of isolated points.

Theorem 1.4.8 (De Clerck, Thas [30]) Let S be a (0, α)-geometry with
α > 1, fully embedded in PG(3, q). If m = 0, then one of the following holds.

1. S is the design of all points and all lines in PG(3, q).

2. S ' H3
q .

3. q = 2 and S ' NQ−(3, 2).

Theorem 1.4.9 (De Clerck, Thas [30]) Let S be a (0, α)-geometry with
α > 1, fully embedded in PG(3, q). If m 6= 0 then there is no plane of type
(b).

Theorem 1.4.10 (Hirschfeld, Thas [54], Theorem 26.8.6) Let S be a
(0, α)-geometry with α > 1, fully embedded in PG(3, q). If m = 1, then one
of the following holds.

1. α = q and S ' W (3, q).

2. q = 2h, α = q/2 and S ' NQ+(3, q).

Theorem 1.4.11 (Hirschfeld, Thas [54], Theorem 26.8.7) If S is a
(0, α)-geometry with α > 1, fully embedded in PG(3, q), then m 6= 2.
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1.4.4 Linear representations

An important class of affine incidence structures is formed by the linear
representations . Consider the affine space AG(n, q). We recall that Π∞
denotes the space at infinity of AG(n, q). Let K∞ be a set of points of
Π∞. Then the linear representation of the set K∞ is the incidence structure
T ∗n−1(K∞) = (P ,B, I) where P is the set of all points of AG(n, q), B is the set
of all affine lines which intersect Π∞ in a point of K∞, and I is the natural
incidence. One can prove the following proposition (see, for example, [64],
Section 2.3).

Proposition 1.4.12 A linear representation T ∗n−1(K∞) is connected if and
only if the set K∞ spans Π∞.

It is easy to see that for an anti-flag {p, L} of T ∗n−1(K∞) the incidence
number α(p, L) = k − 1, where k is the number of points of K∞ on the line
at infinity of the plane 〈p, L〉.

Theorem 1.4.13 (Delsarte [43]) The point graph of a linear representa-
tion T ∗n−1(K∞) is strongly regular if and only if the set K∞ has two intersec-
tion numbers with respect to hyperplanes of Π∞.

1.4.5 Affine GQ and (dual) partial quadrangles

The affine generalized quadrangles were completely classified by Thas [78].
Apart from some trivial examples, there are three infinite classes of general-
ized quadrangles fully embedded in AG(3, q) and five sporadic examples of
affine generalized quadrangles.

There is no complete classification of affine partial quadrangles or affine
dual partial quadrangles. Debroey and Thas [40] proved that no nontrivial
proper partial quadrangles can be fully embedded in AG(2, q) or AG(3, q).
The affine partial quadrangles that are linear representations are almost com-
pletely classified by Calderbank [16] (see also [31] for a good overview of this
and related results). The only infinite class of linear representations that are
partial quadrangles is T ∗3 (O∞) with O∞ an ovoid.

The following is an example of an affine partial quadrangle that is not a
linear representation. Consider the affine space AG(5, q) and its projective
completion PG(5, q). Consider the classical generalized quadrangle Q(5, q)
fully embedded in PG(5, q), in such a way that Π∞ is a tangent hyperplane
to the nonsingular elliptic quadric Q−(5, q). Then the incidence structure
of points and lines of Q(5, q), not contained in Π∞, is a partial quadrangle
PQ(q − 1, q2, q2 − q) fully embedded in AG(5, q).
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De Clerck and Delanote [27] proved that an affine dual partial quadrangle
can’t be a linear representation.

1.4.6 Affine partial geometries

The affine partial geometries were completely classified by Thas [78]. Exam-
ples are the following.

1. The design of all points and all lines of AG(n, q) is a pg(q − 1,
(qn − q)/(q − 1), q) (or, equivalently, a 2 − (qn, q, 1)-design) fully em-
bedded in AG(n, q).

2. Let P be a set of t + 2 points of AG(n, 2) not in a hyperplane (so
t ∈ {n− 1, . . . , 2n− 2}), and let B be the set of all pairs of points of P .
Then (P ,B,∈) is a pg(1, t, 2) (or, equivalently, a 2− (t+2, 2, 1) design)
fully embedded in AG(n, 2).

3. If P is the set of all points of AG(2, q), B is the union of α + 1 ≥ 2
parallel classes of lines of AG(2, q) and I is the natural incidence, then
S = (P ,B, I) is a pg(q − 1, α, α) (or, equivalently, a net of order q and
degree α + 1) fully embedded in AG(2, q). We say that S is a planar
net.

4. Let B be a set of 2h + 1 lines in AG(2, 2h) such that B ∪ {Π∞} forms
a hyperoval in the dual of the plane PG(2, 2h). Then S = (P ,B, I)
where P is the set of points of AG(2, 2h) on the lines of B and I is the
natural incidence, is a pg(2h − 1, 1, 2) (or, equivalently, the dual of a
2− (q+ 1, 2, 1) design) fully embedded in AG(2, 2h). We call S a dual
oval.

5. Consider AG(n, q). Let K∞ be the complement of a hyperplane in Π∞.
Then T ∗n−1(K∞) is a pg(q−1, qn−1−1, q−1) (or, equivalently, the dual
of a net of order qn−1 and degree q) fully embedded in AG(n, q).

6. Consider AG(3, q). Let M∞ be a maximal arc of degree d ≥ 2 in Π∞.
Then T ∗2 (M∞) is a pg(q − 1, (q + 1)(d − 1), d − 1) fully embedded in
AG(3, q) [77]. It is a proper partial geometry when M∞ is a nontrivial
maximal arc, so in this case q = 2h.

Theorem 1.4.14 (Thas [78]) If S is a partial geometry fully embedded in
AG(n, q), then it is a generalized quadrangle or it occurs in the list above. In
particular if n = 2 and q > 2 we have one of the following cases.
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1. S is the design of all points and all lines of AG(2, q).

2. S is a planar net.

3. q = 2h and S is a dual oval.

1.4.7 Affine (dual) semipartial geometries and (0, α)-
geometries

In this section we mention some results about affine (dual) semipartial
geometries and (0, α)-geometries with α > 1. However the most recent re-
sults in this area are discussed in Chapter 4, where we also summarize our
own results in this area.

Affine (0, 1)-geometries are not studied for the same reason why projective
(0, 1)-geometries are not studied: because the embedding in AG(n, q) does
not induce much structure on a (0, 1)-geometry. For instance, if a plane π of
AG(n, q) contains two intersecting lines of a (0, 1)-geometry S fully embedded
in AG(n, q), then π may contain a priori any number γ ∈ {2, . . . , q + 1} of
lines of S centered in a point. Thus we obtain far less information than in
the case α > 1, as we will see in Lemma 4.1.3.

For the sake of completeness, we give the explicit conditions for a linear
representation to be a (0, α)-geometry or a semipartial geometry.

Proposition 1.4.15 Consider AG(n, q), and let K∞ be a set of points in
Π∞. Then T ∗n−1(K∞) is a (0, α)-geometry if and only if K∞ spans Π∞ and
K∞ is a set of type (0, 1, α + 1) in Π∞. If T ∗n−1(K∞) is a (0, α)-geometry,
then the following are equivalent.

1. T ∗n−1(K∞) is a semipartial geometry spg(q − 1, | K∞ | − 1, α, µ).

2. Every point of Π∞, not in K∞, is on precisely µ/(α(α+1)) lines which
intersect K∞ in α+ 1 points.

3. The set K∞ has two intersection numbers with respect to hyperplanes
of Π∞.

Proof. By Theorem 1.4.13, the point graph of T ∗n−1(K∞) is strongly regular
if and only the set K∞ has two intersection numbers with respect to hyper-
planes of Π∞. The rest of the proof is straightforward. 2

The following list contains all the known examples of proper semipartial
geometries with α > 1 fully embedded in AG(n, q).
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1. Consider AG(3, q2), and let U∞ be a unital in Π∞. Then T ∗2 (U∞) is an
spg(q2 − 1, q3, q, q2(q2 − 1)) fully embedded in AG(3, q2) [41].

2. Consider AG(n, q2), and let B∞ be the point set of a Baer subspace of
Π∞. Then T ∗n−1(B∞) is an spg(q2− 1, (qn− q)/(q− 1), q, q(q+ 1)) fully
embedded in AG(n, q2) [41, 31].

3. Consider AG(4, 2h) and consider the set R−
4 in PG(4, 2h) (see section

1.3.8) in such a way that Π∞ is the unique hyperplane of PG(4, 2h)
completely contained in R−

4 . Let P be the set of affine points of
R−

4 , let B be the set of affine lines completely contained in R−
4 , and

let I be the natural incidence. Then TQ(4, 2h) = (P ,B, I) is an
spg(2h − 1, 22h, 2, 2h+1(2h − 1)) fully embedded in AG(4, 2h) [53].

Debroey and Thas [40] classified the semipartial geometries fully embed-
ded in AG(2, q) and AG(3, q).

Theorem 1.4.16 (Debroey, Thas [40]) If S is a proper semipartial geom-
etry with α > 1 fully embedded in AG(n, q) where n ≤ 3, then we have one
of the following cases.

1. n = 3, q is a square and S ' T ∗2 (U∞) with U∞ a unital of Π∞.

2. n = 3, q is a square and S ' T ∗2 (B∞) with B∞ a Baer subplane of Π∞.

The following theorem characterizes TQ(4, q) by its parameters and its
full embedding in AG(4, q).

Theorem 1.4.17 (Brown, De Clerck, Delanote [11]) If S is a semipar-
tial geometry spg(q−1, q2, 2, 2q(q−1)) fully embedded in AG(4, q), then q = 2h

and S ' TQ(4, q).

The full embedding in AG(n, q) of dual semipartial geometries with α > 1
is solved by the following theorem.

Theorem 1.4.18 (De Clerck, Delanote [27]) If S is a dual semipartial
geometry with α > 1 fully embedded in AG(n, q), then S is a partial geometry.

We conclude this section with some examples of affine (0, α)-geometries.

1. Consider AG(n, q) and a set K∞ of type (0, 1, k) in Π∞, with | K∞ | > 1
and k > 1, which spans Π∞. Then T ∗n−1(K∞) is a (0, α)-geometry with
s = q − 1, t = | K∞ | − 1 and α = k − 1, fully embedded in AG(n, q).
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An example of a set of type (0, 1, k) in PG(n, q) is the point set of a
projective subspace PG(n, q′) of PG(n, q), where GF(q′) is a subfield of
GF(q). Here k = q′ + 1. One can also construct sets of type (0, 1, k)
in the following ways. If K is a set of type (0, 1, k) in PG(n, q) and
PG(n, q) is embedded in PG(n, qm), then K is a set of type (0, 1, k) in
PG(n, qm). If K is a set of type (0, 1, k) in PG(n, q), n ≥ 2, and p 6∈ K
is a point such that every plane through p contains at most k points of
K, then the projection of K from p onto a hyperplane PG(n− 1, q) of
PG(n, q), not containing p, yields a set of type (0, 1, k) in PG(n−1, q).

2. Consider AG(3, 2h) and consider the set R3 in PG(3, 2h) (see Section
1.3.8) in such a way that Π∞ is the unique hyperplane of PG(3, 2h)
completely contained in R3. Let P be the set of affine points of R3,
let B be the set of affine lines completely contained in R3, and let I be
the natural incidence. Then HT = (P ,B, I) is a (0, α)-geometry with
s = q − 1, t = q and α = 2, fully embedded in AG(3, 2h) [53]. This
geometry is not a semipartial geometry.





Chapter 2

On (0, α)-geometries fully
embedded in PG(3, q) and
(0, α)-sets on the Klein quadric

Theorem 1.4.4 classifies all (0, α)-geometries, α > 1, fully embedded in
PG(n, q), n ≥ 4, q > 2. In this chapter, we consider (0, α)-geometries,
α > 1, fully embedded in PG(3, q). In Section 2.2, the Plücker correspon-
dence is used to transform the line set of a (0, α)-geometry, α > 1, fully
embedded in PG(3, q), q > 2, into a set of points on the Klein quadric,
a so-called (0, α)-set. In Section 2.3, we discuss the link between caps and
(0, 2)-sets on the Klein quadric. Next, in Section 2.4, we give the explicit con-
struction of some caps on the Klein quadric Q+(5, q), q even, which are due
to Ebert, Metsch and Szőnyi [45]. De Clerck and Durante (private communi-
cation) observed that these caps yield previously unknown (0, 2)-geometries
fully embedded in PG(3, q), q even. In Section 2.5, we investigate the struc-
ture of the caps of Ebert, Metsch and Szőnyi. Finally, in Section 2.6, we
show that, by slightly modifying the construction, sets of points on the Klein
quadric may be found which correspond to new (0, α)-geometries, α > 1,
fully embedded in PG(3, q), q even.

The results of this chapter are joint work with De Clerck and Durante,
and are published in [25].

2.1 Preliminaries

Let S = (P ,B, I) be a (0, α)-geometry, α > 1, fully embedded in PG(3, q),
and let π be a plane of PG(3, q). By Lemma 1.4.7, π is of one of the following
types.

43
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Type (a). Sπ consists of a pg(q, α − 1, α) (that is, a dual maximal arc of
degree α) and possibly some isolated points.

Type (b). Sπ consists of exactly one line and possibly some isolated points.

Type (c). Sπ only consists of some isolated points.

In Section 1.4.3, it was shown that every plane of type (a) contains a constant
number m of isolated points.

Proposition 2.1.1 (De Clerck, Thas [30]) Let S be a (0, α)-geometry,
α > 1, fully embedded in PG(3, 2). Then either α = 3 and S is the de-
sign of all points and all lines of PG(3, 2), or α = 2 and S ' W (3, 2),
S ' H3

2 or S ' NQ−(3, 2).

By Proposition 2.1.1, we may assume from now on that q > 2. The
following result is an immediate consequence of Theorems 1.4.8 and 1.4.9,
due to De Clerck and Thas [30].

Theorem 2.1.2 Let B be a nonempty set of lines of lines of PG(3, q), q > 2.
Let S = (P ,B, I), where P is the set of all points of PG(3, q) on the lines of
B, and I is the natural incidence. Then S is a (0, α)-geometry, α > 1, fully
embedded in PG(3, q) if and only if every pencil of PG(3, q) contains either
0 or α lines of B. Hence there are no planes of type (b).

Proof. Suppose that S is a (0, α)-geometry, α > 1, fully embedded in
PG(3, q). Then either m 6= 0, in which case Theorem 1.4.9 states that there
are no planes of type (b), or m = 0, in which case Theorem 1.4.8 applies and
either S is the design of all points and lines of PG(3, q), or S ' H3

q . So, in
any case, there are no planes of type (b). It follows that every plane is of
type (a) or (c), hence every pencil of PG(3, q) contains either 0 or α lines of
B.

Suppose that every pencil of PG(3, q) contains either 0 or α > 1 lines of
B. Let {p, L} be an anti-flag of S. Let π be the plane 〈p, L〉. Since the pencil
of lines of PG(3, q) through p, contained in π, contains either 0 or α lines of
B, α(p, L) is either 0 or α. So S satisfies property (zag2) (see Section 1.2.2).

Let p1 and p2 be noncollinear points of S. Let L = 〈p1, p2〉, let π be a
plane not containing p1 or p2, and let p = L ∩ π. Every pencil of PG(3, q)
contains either 0 or α lines of B, so the lines of S through pi intersect π in a
maximal arc Mi of degree α, i = 1, 2. Since p 6∈ Mi, there are q + 1 − q/α
lines of π through p which intersect Mi in α points, i = 1, 2. Since α > 1,
there is a line L′ ⊆ π through p which intersects M1 and M2 in α points.
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Hence the plane π′ = 〈L,L′〉 contains α lines of S through pi, i = 1, 2. So
there is a point of S collinear to both p1 and p2. Hence S is connected, so S
satisfies property (zag1’). By Lemma 1.2.1, S is a (0, α)-geometry. Clearly,
S is fully embedded in PG(3, q). 2

Let S be a (0, α)-geometry, α > 1, fully embedded in PG(3, q), q > 2.
Since every plane π of type (a) contains a constant number m of isolated
points, the number d of points of π which do not belong to S, is also a
constant. In fact d = q(q + 1 − α)/α − m. The number d is called the
deficiency of the (0, α)-geometry S.

Proposition 2.1.3 Let S = (P ,B, I) be a (0, α)-geometry, α > 1, fully
embedded in PG(3, q), q > 2. Then the order of S is (q, (q + 1)(α − 1)),
| P | = (q + 1)(q2 + 1− d), | B | = (qα− q + α)(q2 + 1− d), and the number
of planes of type (a) is (q + 1)(q2 + 1− d).

Proof. By Theorem 2.1.2, every pencil of PG(3, q) contains either 0 or α
lines of S. Hence the lines of S through a point p of S intersect a plane,
not containing p, in a maximal arc of degree α. Hence the order of S is
(q, (q + 1)(α− 1)).

Consider a line L of S. Every plane through L is of type (a) and contains
m = q(q + 1 − α)/α − d isolated points. Hence | P | = (q + 1)(q2 + 1 − d).
Counting the flags of S yields | B | = (qα− q+α)(q2 + 1− d). Counting the
number of pairs (L, π), where π is a plane of type (a) and L a line of S in π,
yields the number of planes of type (a). 2

2.2 The Plücker correspondence

Let B be a set of lines of PG(3, q), and let K be the image of B under the
Plücker correspondence κ. The set of pencils of PG(3, q) corresponds via κ to
the set of lines of PG(5, q) which are contained in the Klein quadric Q+(5, q).
Hence every pencil of PG(3, q) contains either 0 or α (1 ≤ α ≤ q+1) lines of
B if and only if K is a set of type (0, α) with respect to the lines of PG(5, q)
which are contained in Q+(5, q). A set of points on the Klein quadric Q+(5, q)
which has the latter property is called a (0, α)-set on Q+(5, q). By Theorem
2.1.2, the following objects are equivalent whenever q > 2 and α > 1.

1. A (0, α)-geometry fully embedded in PG(3, q).

2. A set B of lines of PG(3, q) such that every pencil of PG(3, q) contains
either 0 or α lines of B.
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3. A (0, α)-set on the Klein quadric Q+(5, q).

Let K be a (0, α)-set, α > 1, on the Klein quadric Q+(5, q), q > 2, and let
S be the corresponding (0, α)-geometry fully embedded in PG(3, q). Then
the deficiency d of S is also called the deficiency of the (0, α)-set K. By
Proposition 2.1.3, | K | = (qα− q + α)(q2 + 1− d).

The following list contains the examples of (0, α)-geometries S, α > 1,
fully embedded in PG(3, q), q > 2, that appear in [81]. For every example,
we describe the corresponding (0, α)-set K on the Klein quadric.

1. S is the design of all points and all lines of PG(3, q). Here α = q + 1,
d = 0, and K is the set of all points of Q+(5, q).

2. S = W (3, q). Here α = q, and d = 0. The line set of S consists of
the lines which are not totally isotropic with respect to a symplectic
polarity ϕ of PG(3, q). The set of totally isotropic lines with respect
to ϕ corresponds to the set of points of Q+(5, q) in a hyperplane U of
PG(5, q), which is not tangent to Q+(5, q). Hence K is the set of points
of Q+(5, q), not in U .

3. S = H3
q . Here α = q, and d = 1. The line set of S consists of the lines

which are skew to a line L of PG(3, q). The set of lines of PG(3, q)
which are not skew to L, corresponds via κ to the set of points of
Q+(5, q) which are collinear to the point p = Lκ. A point of Q+(5, q) is
collinear to p if and only if it is in the tangent hyperplane U to Q+(5, q)
at p. Hence K is the set of points of Q+(5, q), not in U .

4. S = NQ+(3, 2h). Here q = 2h, α = q/2, and d = q + 1. The line set
of S consists of the lines which are skew to a nonsingular hyperbolic
quadric Q+(3, q) in PG(3, q). Let R1 and R2 be the reguli of Q+(3, q).
Then Ri corresponds via κ to a nondegenerate conic Ci = Q+(5, q)∩πi,
πi a plane of PG(5, q), i = 1, 2. A line of PG(3, q) belongs to S if and
only if it is skew to all lines of R1. So K is the set of points of Q+(5, q)
which are not collinear to any point of C1.

It was conjectured in [30] that the design of all points and all lines of
PG(3, q), H3

q , W (3, q) and NQ+(3, q) are the only (0, α)-geometries, α > 1,
fully embedded in PG(3, q), q > 2. This conjecture is false as will be clear
from Sections 2.4 and 2.6. However, when one assumes additionally that
m ≤ 2, then Theorems 1.4.8, 1.4.10 and 1.4.11 prove the conjecture. Also,
the conjecture is valid if we restrict ourselves to the q odd case. We state
this result in terms of (0, α)-sets on the Klein quadric.
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Theorem 2.2.1 Let K be a (0, α)-set, α > 1, on the Klein quadric Q+(5, q),
q odd. Then one of the following possibilities occurs.

1. α = q + 1 and K is the set of all points of Q+(5, q).

2. α = q and K is the set of points of Q+(5, q), not in a given hyperplane
of PG(5, q).

Proof. Let π be a generator of Q+(5, q) such that M = K∩π is not empty.
Since every line of π intersects M in either 0 or α points, M is a maximal
arc of degree α in the plane π. By Theorem 1.3.2, α is either q or q + 1.

If α = q + 1, then clearly K is the set of all points of Q+(5, q). Assume
that α = q, and let S = (P ,B, I) be the (0, q)-geometry fully embedded in
PG(3, q) which corresponds to K. Then m + d = 1, so either m = 0 and
d = 1, or m = 1 and d = 0. If m = 0, then, by Theorem 1.4.8, S ' H3

q . If

m = 1, then, by Theorem 1.4.10, S ' W (3, q). 2

Note that when α = q in Theorem 2.2.1, though we did not use it, the
classification of copolar spaces by Hall [48] applies.

The second part of the proof of Theorem 2.2.1 is also valid for q even. So
the conclusion of Theorem 2.2.1 holds, when, instead of assuming that q is
odd, one assumes that α ≥ q.

2.3 Caps and (0, 2)-sets on the Klein quadric

Since it is very hard to find in general the exact value of m2(n, q), the size of
the largest cap in PG(n, q), and to construct caps of this size, it is interesting
to investigate and construct caps that are contained in certain varieties, such
as quadrics. For example, caps embedded in the Klein quadric Q+(5, q) have
been studied by various authors.

Since the intersection of a capK in Q+(5, q) with a generator π of Q+(5, q),
is a cap in the projective plane π, | K ∩ π | ≤ m2(2, q). An easy counting ar-
gument shows that | K | ≤ m2(2, q)(q

2+1). So, if q is odd, the (theoretically)
maximum size of K is (q + 1)(q2 + 1), and if q is even, it is (q + 2)(q2 + 1).

In the q odd case, Glynn [47] constructs an example of a cap in Q+(5, q)
which has the maximum size (q+1)(q2 +1). It is the intersection of Q+(5, q)
with a singular quadric with vertex a line L and base a nonsingular el-
liptic quadric in a 3-space skew to L. In [74], Storme proves that every
(q+ 1)(q2 +1)-cap in Q+(5, q), with q odd and sufficiently large, is the inter-
section of Q+(5, q) with another quadric. Metsch [61] shows that every cap
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of size k > q3 + q2 + 2 in Q+(5, q), with q odd and sufficiently large, can be
extended to a (q + 1)(q2 + 1)-cap in Q+(5, q).

When q is even, a cap in Q+(5, q) of the maximum size (q + 2)(q2 + 1)
is only known to exist for q = 2 (it is the complement in Q+(5, 2) of a
hyperplane which is not tangent to Q+(5, 2)).

Proposition 2.3.1 Let K be a set of points on Q+(5, q), q = 2h. Then K
is a cap of size (q + 2)(q2 + 1) if and only if K is a (0, 2)-set on Q+(5, q) of
deficiency 0.

Proof. Suppose that K is a cap of size (q+2)(q2 +1). Since every generator
of Q+(5, q) contains at most m2(2, q) = q + 2 points of K, a simple counting
argument shows that every generator of Q+(5, q) contains q + 2 points of
K. In other words, for every generator π of Q+(5, q), Q+(5, q) ∩ π is a
hyperoval. So, every line on Q+(5, q) intersects K in either 0 or 2 points.
Since | K | = (q + 2)(q2 + 1), d = 0.

Clearly, if K is a (0, 2)-set on Q+(5, q) of deficiency 0, then K is a cap of
size (q + 2)(q2 + 1). 2

The largest known cap in Q+(5, q), q even and q > 2, is a cap of size
q3 + 2q2 + 1 = (q + 2)(q2 + 1) − q − 1, constructed by Ebert, Metsch and
Szőnyi [45]. We give the construction in Section 2.4. This cap is maximal in
Q+(5, q), that is, it cannot be extended by adding a point of Q+(5, q).

In [45], it is shown that a cap of size k > (q+2)(q2+1)−q−1 in Q+(5, q),
q even, can always be extended to a cap of size (q + 2)(q2 + 1) in Q+(5, q).
Furthermore, the structure of maximal caps of size (q+ 2)(q2 + 1)− q− 1 on
Q+(5, q), q even, is investigated in [45]. The main result may be translated
as follows in terms of (0, 2)-sets on Q+(5, q).

Theorem 2.3.2 (Ebert, Metsch, Szőnyi [45]) Let K be a maximal cap
of size (q + 2)(q2 + 1) − q − 1 on Q+(5, q), q even. Then there is a point
p ∈ K which is not collinear to any other point of K. The set K \ {p} is a
(0, 2)-set of deficiency 1 on Q+(5, q).

The converse to Theorem 2.3.2 is much easier to prove.

Theorem 2.3.3 Let K be a (0, 2)-set of deficiency 1 on Q+(5, q), q = 2h,
h > 1. Then there is a point p ∈ K such that K ∪ {p} is a maximal cap of
size (q + 2)(q2 + 1)− q − 1 on Q+(5, q).

Proof. Let S be the (0, 2)-geometry fully embedded in PG(3, q), corre-
sponding to K. By Proposition 2.1.3, there are precisely q + 1 points of
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PG(3, q) which do not belong to S, and precisely q + 1 planes of PG(3, q)
which are of type (c). Since d = 1, any plane which contains at least 2 points
not belonging to S, is a plane of type (c). It follows that the q+1 points not
belonging to S lie on a line L of PG(3, q) and that the q + 1 planes of type
(c) are exactly the planes containing L.

Clearly no line of S is concurrent with L. Hence K ∪ {p}, where p is the
point of Q+(5, q) which corresponds to L, is a cap of size

q2(q + 2) + 1 = (q + 2)(q2 + 1)− q − 1

on Q+(5, q).
Suppose that there is a point p′ ∈ Q+(5, q)\(K∪{p}) such that K∪{p, p′}

is a cap. Let L′ be the line of PG(3, q) which corresponds to p′. Let r be
a point of S on L′. Then the lines of S through r intersect a plane π not
containing r in a hyperoval H. Since L′ is not a line of S, r′ = L′ ∩ π 6∈ H.
Let M be a line of π through r′ which intersects H in 2 points. Then the
pencil of lines through r in the plane 〈L′,M〉 contains L′ and 2 lines of S.
But this contradicts the fact that K∪{p, p′} is a cap. So K∪{p} is a maximal
cap of Q+(5, q). 2

2.4 A construction of caps on the Klein quad-

ric

In this section, we give a construction of caps on the Klein quadric, due to
Ebert, Metsch and Szőnyi [45].

Consider the Klein quadric Q+(5, q) in PG(5, q), q = 2h. Since q is even,
the polarity β which is associated with Q+(5, q), is a symplectic polarity. Let
V be a 3-space of PG(5, q), such that E = Q+(5, q) ∩ V is a nonsingular
elliptic quadric. Let L be the line V β. Then L is an external line of Q+(5, q).

Let O be an ovoid of V which has the same set of tangent lines as the
elliptic quadric E. For every point p ∈ O \E, the plane π = 〈p, L〉 intersects
Q+(5, q) in a nondegenerate conic with nucleus p, whereas, for every point
p ∈ O ∩ E, the plane π intersects Q+(5, q) in the point p only. Let

K =
⋃

p∈O\E

(Q+(5, q) ∩ π) ∪ (E \O),

and let K′ = K ∪ (E ∩ O). Then K′ is the intersection of Q+(5, q) with the
cone with vertex L and base E ∪ O, and K is the intersection of Q+(5, q)
with the cone with vertex L and base the symmetric difference E 4O.
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L

p

K

O

Q+(5, q) ∩ π
Q+(5, q)

E
V

π

E \O

Figure 2.1: Construction of the (0, 2)-sets Ed and Tq±√2q+1.

It is shown in [45] that K′ is a maximal cap of size q2 +1+(q+1) |O \E |
on the Klein quadric. The fact that K is a (0, 2)-set on the Klein quadric,
was observed by De Clerck and Durante (private communication).

Theorem 2.4.1 The set K is a (0, 2)-set of deficiency d = |E ∩O | on the
Klein quadric.

Proof. Let M be a line of PG(5, q) which is contained in the Klein quadric
Q+(5, q). Since L is an external line to Q+(5, q), L and M are skew. Since
E = Q+(5, q) ∩ V is an elliptic quadric, there are two possibilities: either M
is skew to V , or M intersects V in a point of E.

Assume that M and V are skew. Let p be a point of M , let π = 〈p, L〉,
and let p′ = π ∩ V . Suppose that p′ ∈ E. Then π intersects Q+(5, q) only
in p′, a contradiction since p ∈ Q+(5, q) ∩ π. So p′ 6∈ E, and Q+(5, q) ∩ π is
a nondegenerate conic with nucleus p′. From the definition of K, it follows
that p ∈ K if and only if p′ ∈ O \ E.

Let M ′ be the projection of the line M from L onto V . Then M ′ is an
external line to E, and the number of points of K on M equals the number
of points of O \ E on M ′. Since M ′ is not a tangent line to E, it is not a
tangent line to O. So | (O \ E) ∩ M ′ | = |O ∩ M ′ | ∈ {0, 2}. Hence M
contains either 0 or 2 points of K.

Assume that M intersects V in the point r. As in the previous case, for
every point p 6= r of M , the projection p′ of p from L onto V is a point, not
on E, and p ∈ K if and only if p′ ∈ O \ E. Again, let M ′ be the projection
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of the line M from L onto V . Then M ′ is a tangent line to E at the point r;
the number of points of M \ {r}, which belong to K, equals the number of
points of M ′ \ {r}, which are on O \ E.

Since the line M ′ is tangent to E, it is tangent to O. Let r′ be the point
O ∩M ′. Assume that r ∈ E ∩ O. Then r 6∈ K. Also, r′ = r 6∈ O \ E, so
(O \ E) ∩ (M ′ \ {r}) = ∅. Hence M does not contain any points of K.

Assume that r ∈ E \ O. Then r ∈ K. Also, r 6= r′ and r′ ∈ O \ E, so
(O \ E) ∩ (M ′ \ {r}) = {r′}. Hence M contains exactly 2 points of K.

We conclude that K is a (0, 2)-set on the Klein quadric. Since

| K | = |E \O | + (q + 1) |O \ E |
= |O \ E | + (q + 1) |O \ E |
= (q + 2)(q2 + 1− |E ∩O | ),

K has deficiency d = |E ∩O | . 2

The question remains which deficiencies can occur. Suppose that O is a
nonsingular elliptic quadric in V which has the same set of tangent lines as
E. Then, by Bruen and Hirschfeld [13], either E and O intersect in a unique
point p, and they have a common tangent plane at p, or E and O intersect
in q+1 points which form a nondegenerate conic in a plane of V (Types 1(i)
and 3(g)(ii) in Table 2 of [13]). We will denote the corresponding (0, 2)-set
K by E1 if |E ∩O | = 1 and by Eq+1 if |E ∩O | = q + 1.

Suppose that q = 22e+1, and that O is a Suzuki-Tits ovoid in V , which
has the same set of tangent lines as E. Then, by Bagchi and Sastry [1], E
and O intersect in q ±

√
2q + 1 points, and both intersection sizes do occur.

(For an alternative proof, see De Smet and Van Maldeghem [37].) We will
denote the corresponding (0, 2)-set K by Tq−√2q+1 if |E ∩O | = q−

√
2q+ 1

and by Tq+√2q+1 if |E ∩O | = q +
√

2q + 1.

2.5 Unions of elliptic quadrics

Consider a (0, 2)-set K ∈ {E1, Eq+1} in Q+(5, q), q = 2h. Let U be a hyper-
plane containing V , and let p = U ∩ L, where L = V β. Then U intersects
Q+(5, q) in a nonsingular parabolic quadric Q(4, q) with nucleus p. Since
K is the intersection of Q+(5, q) with the cone with vertex L and base the
symmetric difference E 4 O, K ∩ U is the intersection of Q(4, q) with the
cone with vertex p and base E 4O.

The projection of Q(4, q) from p onto V yields an isomorphism from the
classical generalized quadrangle Q(4, q) to the classical generalized quadran-
gle W(q), which consists of the points of V and the lines of V that are tangent
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to E. This isomorphism induces a bijection from the set of ovoids of Q(4, q)
to the set of ovoids of W(q). Since the ovoid O has the same set of tangent
lines as E, it is an ovoid of the generalized quadrangle W(q). Hence O is the
projection from p onto V of an ovoid O of Q(4, q). So K∩U is the symmetric
difference E4O. Since O is a nonsingular elliptic quadric in V , O is a non-
singular elliptic quadric in a 3-space V ⊆ U , that is, O = Q+(5, q) ∩ V . Let
π be the plane V ∩V . Then we may also write K∩U = Q(4, q)∩ (V ∪V )\π.

From the definition of E1 and Eq+1, it follows that there is exactly one
plane π ⊆ V such that π ∩ Q(4, q) = E ∩ O. Indeed, if K = E1, then E and
O intersect in exactly one point and π is the unique tangent plane in V to E
at this point. If K = Eq+1, then E and O intersect in a nondegenerate conic
and π is the ambient plane of this conic. We prove that π = π. Since O is
the projection of O from p on V , E ∩ O = E ∩ O. Since O = V ∩ Q(4, q),
π ∩Q(4, q) = V ∩ V ∩Q(4, q) = V ∩O = E ∩O = E ∩O. So π is a plane in
V such that π ∩Q(4, q) = E ∩O. This means that π = π.

So K ∩ U is the symmetric difference of elliptic quadrics E and O on
Q(4, q), with ambient 3-spaces V and V , intersecting in the plane π. Since
this holds for all hyperplanes U containing V , we conclude that there exist
3-spaces V0 = V, V1, . . . , Vq+1, mutually intersecting in the plane π, such that
each intersects Q+(5, q) in an elliptic quadric and such that

K = Q+(5, q) ∩ (V0 ∪ V1 ∪ . . . ∪ Vq+1) \ π.

What remains to be verified is the position of the 3-spaces Vi. Consider a
plane π′ spanned by L and a point r ∈ O \ E. One verifies in the respective
cases K = E1 and K = Eq+1 that π ∩O = π ∩E = E ∩O, so r 6∈ π. Hence π′

is skew to π. We determine the points of intersection of Vi, i = 0, . . . , q + 1,
with π′. Clearly V0 ∩ π′ = V ∩ π′ = r. Let i ∈ {1, . . . , q + 1} and let pi ∈ L
be such that Vi ⊆ 〈pi, V 〉. Let ri be the unique point of Q+(5, q) on the line
〈pi, r〉. Since r ∈ O \E, ri is a point of K, and hence of Vi. But also ri ∈ π′,
so Vi∩π′ = ri. Repeating this reasoning for all points pi on L, we see that the
3-spaces Vi, i = 1, . . . , q + 1, intersect π′ in the points of the nondegenerate
conic C ′ = π′∩Q+(5, q), and that V intersects π′ in the point r, which is the
nucleus of the conic C ′. We have now proven the following theorem which
completely determines the structure of the (0, 2)-sets E1 and Eq+1.

Theorem 2.5.1 Let K ∈ {E1, Eq+1} and let π be the unique plane in V such
that π ∩Q+(5, q) = E ∩O. Then

K = (E ∪O1 ∪ . . . ∪Oq+1) \ π,

where Oi, 1 ≤ i ≤ q + 1, is a nonsingular elliptic quadric on Q+(5, q) such
that its ambient 3-space Vi intersects V in the plane π. In particular the
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3-spaces V1, . . . , Vq+1 intersect each plane π′ = 〈r, L〉, with r ∈ O \ E, in the
points of the nondegenerate conic C ′ = π′ ∩ Q+(5, q), while V intersects π′

in the nucleus r of the conic C ′.

Remark

We can apply the same reasoning to the (0, 2)-sets Tq±√2q+1. Let p1, . . . , pq+1

be the points of L. For every point pi ∈ L, let Si ∼= Q(4, q) be the clas-
sical generalized quadrangle formed by the points and lines of the quadric
Q+(5, q) ∩ 〈pi, V 〉. Then Tq±√2q+1 can be written as

(E ∪O1 ∪ . . . Oq+1) \ (E ∩O),

where Oi is a Suzuki-Tits ovoid of Si, i = 1, . . . , q + 1, such that O is the
projection of Oi from pi on V . However, this was already shown by Cossidente
[22].

2.6 A new construction

The following construction is inspired by Theorem 2.5.1. Let π be a plane of
PG(5, q), q = 2h, which does not contain any line contained in Q+(5, q), and
let π′ be a plane skew to π. Let D denote the set of points p ∈ π′ such that
the 3-space V = 〈p, π〉 intersects Q+(5, q) in a nonsingular elliptic quadric.
Assume that A is a maximal arc of degree α > 1 in π′ such that A ⊆ D.
Then we define

Mα(A) =
⋃
p∈A

(Q+(5, q) ∩ V ) \ π.

In other words, Mα(A) is the intersection of Q+(5, q) with the cone with
vertex π and base A, minus the points of Q+(5, q) in π.

Theorem 2.6.1 The set Mα(A) is a (0, α)-set on Q+(5, q) of deficiency
d = |Q+(5, q) ∩ π | .

Proof. Let L be a line of PG(5, q) which is contained in Q+(5, q). Since π
does not contain any lines of Q+(5, q), there are two possibilities.

Firstly, suppose that L intersects the plane π in a point. Then the 3-
space V = 〈L, π〉 contains a line of Q+(5, q). Hence Q+(5, q) ∩ V is not a
nonsingular elliptic quadric. So the point p = V ∩ π′ is not in D, and hence
not in A. This means that there are no points of Mα(A) in V and hence
also none on L.
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(Q+(5, q) ∩ V ) \ π

V
pπ′

π

A

D

Mα(A)

Q+(5, q)

Figure 2.2: Construction of the (0, α)-set Mα(A).

Secondly, suppose that L is skew to π. A point p ∈ L is in Mα(A) if and
only if V = 〈p, π〉 intersects π′ in a point of A, if and only if the projection
of p from π onto π′ is a point of A. So, if L′ is the projection of L from π
onto π′, then |Mα(A) ∩ L | = |A ∩ L′ | ∈ {0, α}. So every line on Q+(5, q)
intersects Mα(A) in 0 or α points.

From the construction, it follows that

|Mα(A) | = |A | (q2 + 1− |Q+(5, q) ∩ π | )
= (qα+ q − α)(q2 + 1− |Q+(5, q) ∩ π | ).

Hence Mα(A) has deficiency d = |Q+(5, q) ∩ π | . 2

Since the plane π does not contain any line of Q+(5, q), there are two
possibilities: either Q+(5, q) ∩ π is a single point or it is a nondegenerate
conic. In the former case the (0, α)-set has deficiency 1 and it is denoted by
Mα

1 (A). In the latter case the (0, α)-set has deficiency q+1 and it is denoted
by Mα

q+1(A).
Assume that the plane π intersects the Klein quadric Q+(5, q) in a single

point p. Let V be a 3-space containing π, such that Q+(5, q) ∩ V is not a
nonsingular elliptic quadric. Then Q+(5, q) ∩ V is a nonsingular hyperbolic
quadric, a quadratic cone or the union of two distinct planes. Since π inter-
sects Q+(5, q) in the point p only, it is immediately clear that Q+(5, q)∩V is
a quadratic cone with vertex p. Hence V is contained in the tangent hyper-
plane pβ to Q+(5, q) at p. Conversely, if V ⊇ π is a 3-space contained in pβ,
then Q+(5, q)∩V is a quadratic cone with vertex p. We conclude that the set
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D of points p′ ∈ π′ such that V = 〈p′, π〉 intersects Q+(5, q) in a nonsingular
elliptic quadric, is the set of points of π′ which are not on the line π′ ∩ pβ.
Clearly, in this case, the set D contains a maximal arc A of degree α for
every α ∈ {2, 22, . . . , 2h−1}.

Assume that the plane π intersects the Klein quadric Q+(5, q) in a nonde-
generate conic C. Then the plane πβ also intersects Q+(5, q) in a nondegen-
erate conic C ′. Furthermore, β induces an anti-automorphism between the
projective plane πβ and the projective plane having as points the 3-spaces
through π and as lines the hyperplanes through π. This anti-automorphism
is such that a 3-space containing π intersects Q+(5, q) in a nonsingular ellip-
tic quadric if and only if the corresponding line of πβ is external to the conic
C ′. Hence the set D in the plane π′ is the dual of the set of external lines
to a nondegenerate conic. It follows that D is a Denniston type maximal arc
of degree q/2, and hence that D contains a maximal arc A of degree α for
every α ∈ {2, 22, . . . , 2h−1}. We have proven the following theorem.

Theorem 2.6.2 There exists a (0, α)-set Mα
d (A) on Q+(5, q), q = 2h, of

deficiency d ∈ {1, q + 1} for all α ∈ {2, 22, . . . , 2h−1}.

Corollary 2.6.3 There exist (0, α)-geometries fully embedded in PG(3, q),
q = 2h, of deficiency d ∈ {1, q + 1} for all α ∈ {2, 22, . . . , 2h−1}.

By Theorem 2.5.1, the (0, 2)-set Ed, d = 1, q + 1, is of the form M2
d(H),

with H a regular hyperoval.
LetK be the (0, q/2)-set corresponding to the (0, q/2)-geometry NQ+(3, q),

q even. As we have shown in Section 2.2, there is a plane π of PG(5, q) which
intersects Q+(5, q) in a nondegenerate conic C, such that K is the set of
points of Q+(5, q) which are collinear to none of the points on C. So a point
p of Q+(5, q) is in K if and only if p 6∈ π and the 3-space V = 〈p, π〉 intersects

Q+(5, q) in a nondegenerate elliptic quadric. Hence K = Mq/2
q+1(A), with

A = D.
We conclude this chapter with a list of all the known distinct examples of

(0, α)-sets K in Q+(5, q), α > 1, q > 2. In this list d denotes the deficiency
of the (0, α)-set K, and S denotes the corresponding (0, α)-geometry fully
embedded in PG(3, q).

1. α = q + 1, d = 0, K is the set of all points of Q+(5, q), and S is the
design of all points and all lines of PG(3, q).

2. α = q, d = 0, K is the complement in Q+(5, q) of a hyperplane which
is not tangent to Q+(5, q), and S = W (3, q).
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3. α = q, d = 1, K is the complement in Q+(5, q) of a hyperplane which
is tangent to Q+(5, q), and S = H3

q .

4. q = 2h, α ∈ {2, 22, . . . , 2h−1}, d ∈ {1, q + 1} and K = Mα
d (A).

5. q = 22e+1, α = 2, d = q ±
√

2q + 1, and K = Tq±√2q+1.



Chapter 3

Planar oval sets in
Desarguesian planes of even
order

In this chapter, we provide a characterization of certain sets of ovals in
PG(2, q), called planar oval sets. We will need this result in our study
of affine semipartial geometries and (0, α)-geometries, in Chapters 4–6. In
particular, planar oval sets play a crucial role in the classification of (0, 2)-
geometries of order (q − 1, q) fully embedded in AG(3, q), q = 2h, such that
there are no planar nets (see Section 5.3.3).

A planar oval set in PG(2, q), q = 2h, is a set Ω of q2 ovals in PG(2, q)
with common nucleus n, such that the incidence structure π(Ω) having as
points the points of PG(2, q), as lines the elements of Ω and the lines of
PG(2, q) through n, and as incidence the natural one, is a projective plane of
order q. Equivalently, a set Ω of q2 ovals in PG(2, q) with common nucleus n
is a planar oval set if and only if any two elements of Ω intersect in exactly
one point. We say that n is the nucleus of the planar oval set Ω.

A planar oval set Ω in PG(2, q) is called Desarguesian if π(Ω) is a Desar-
guesian projective plane, and it is called a regular Desarguesian planar oval
set if furthermore there exists a collineation from PG(2, q) to π(Ω) which
fixes every line through the nucleus of Ω.

In Section 3.1, we will construct a regular Desarguesian planar oval set
Ω(O) in PG(2, q) starting from an arbitrary oval O of PG(2, q). In Section
3.4, we will show that every regular Desarguesian planar oval set is of type
Ω(O).

The results of this chapter are published in [35]. We remark that through-
out this chapter q = 2h, unless it is explicitly mentioned otherwise.
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3.1 The planar oval set Ω(O)

For any point p of PG(2, q) let Persp(p) be the group of perspectivities of
PG(2, q) with center p, and by El(p) the group of elations of PG(2, q) with
center p. The group El(p) is an elementary abelian group of order q2 acting
sharply transitively on the set of all lines of PG(2, q) missing p.

Let O be an oval of PG(2, q) with nucleus n, and let

Ω(O) = {Oe | e ∈ El(n)}.

Since the nucleus n of the oval O is fixed by every elation e ∈ El(n), n is
the nucleus of every oval Oe ∈ Ω(O). So a line through n intersects every
element of Ω(O) in exactly one point. Let O1 and O2 be two distinct elements
of Ω(O). Then there exists a nontrivial elation e ∈ El(n) such that Oe

1 = O2.
Let L be the axis of e. Then L intersects Oj in exactly one point pj, j = 1, 2.
Since e fixes every point of L and maps O1 to O2, p1 = p2. Suppose that
there is a point p ∈ O1 ∩ O2 which is not on the axis L. Let M = 〈n, p〉.
Then p is the unique point of O1 ∩M and of O2 ∩M . Since e fixes M and
maps O1 to O2, p

e = p. But then e is the identity, a contradiction. So any
two elements of Ω(O) intersect in exactly one point. Hence Ω(O) is a planar
oval set with nucleus n.

We define a map ξ, which maps points of PG(2, q) to points of π(Ω(O)),
and lines of PG(2, q) to lines of π(Ω(O)). Let L be a line of PG(2, q) which
does not contain n. Then for every line M of PG(2, q) not through n, there
is exactly one element e of El(n), such that M e = L. Let M ξ = Oe. For
every line N of PG(2, q) through n, let N ξ = N . Let nξ = n. For every
point p of PG(2, q) different from n, let pξ = M ξ ∩ 〈n, p〉, where M is a line
of PG(2, q) which contains p but not n. This definition does not depend
on the chosen line M . Indeed, let M1 and M2 be distinct lines of PG(2, q)
which contain p but not n, and let ej be the unique element of El(n) such
that M

ej

j = L, j = 1, 2. Let p′ = L ∩ 〈n, p〉 and let p′′ = O ∩ 〈n, p〉. Then

pe1 = pe2 = p′, so e1e
−1
2 ∈ El(n) is such that pe1e

−1
2 = p. Hence the line 〈n, p〉

is the axis of e1e
−1
2 , and so e1 and e2 have the same action on the line 〈n, p〉.

This means that p′′e1 = p′′e2 . But since p′′ is the unique point of O on the
line 〈n, p〉, p′′ej is the unique point of M ξ

j on the line 〈n, p〉, j = 1, 2. Hence

M ξ
1 ∩ 〈n, p〉 = M ξ

2 ∩ 〈n, p〉. So ξ is well-defined.
We prove that ξ is a collineation from PG(2, q) to π(Ω(O)). From the

definition of ξ it follows that if {p,M} is a flag of PG(2, q) then {pξ,M ξ} is
a flag of π(Ω(O)). Clearly ξ induces a bijection from the line set of PG(2, q)
to the line set of π(Ω(O)). We show that ξ induces a bijection from the point
set of PG(2, q) to the point set of π(Ω(O)). Clearly a point p 6= n is mapped
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by ξ to a point on the line 〈n, p〉. Suppose that two distinct points p1 and p2

such that n 6= p1, p2 and n ∈ 〈p1, p2〉, have the same image under ξ. Let Mj

be a line of PG(2, q) which contains pj but not n, j = 1, 2. Then M1 6= M2,

so M1 ∩M2 is a point p. Now p, pj ∈ Mj, so pξ, pξj ∈ M ξ
j , j = 1, 2. Since

p, pj and n are not collinear, pξ 6= pξj , j = 1, 2. So M ξ
1 and M ξ

2 share two

distinct points, namely pξ and pξ1 = pξ2. Since any two distinct elements of
Ω(O) intersect in exactly one point, M ξ

1 = M ξ
2 . This implies that M1 = M2,

a contradiction. So ξ induces a bijection from the point set of PG(2, q) to
the point set of π(Ω(O)). Hence ξ is a collineation from PG(2, q) to π(Ω(O))
which fixes every line of PG(2, q) through n. It follows that Ω(O) is a regular
Desarguesian planar oval set.

3.2 Regular Desarguesian planar oval sets

Let Ω be a planar oval set in PG(2, q) with nucleus n. Let V denote the set
of collineations from PG(2, q) to π(Ω) which fix every line through n. By
definition V 6= ∅ if and only if Ω is a regular Desarguesian planar oval set.
Since the point set of PG(2, q) coincides with the point set of π(Ω), every
element of V induces a permutation on this set. For every ξ ∈ V , let Fix(ξ)
denote the set of points of PG(2, q), different from n, which are fixed by ξ.

Lemma 3.2.1 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n. Then |V | = q2(q − 1) and for any ξ ∈ V , V = Persp(n) ξ.

Proof. Let ξ ∈ V . A collineation ξ′ from PG(2, q) to π(Ω) is in V if and
only if ξ′ξ−1 is a collineation of PG(2, q) fixing every line through n. Hence
V = Persp(n) ξ. It follows that |V | = |Persp(n) | = q2(q − 1). 2

Lemma 3.2.2 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n. For any three points p1, p2, p3 of PG(2, q) such that no three
of n, p1, p2, p3 are collinear in PG(2, q) or in π(Ω), there is exactly one ξ ∈ V
such that p1, p2, p3 ∈ Fix(ξ).

Proof. Let p1, p2, p3 be points of PG(2, q) such that no three of n, p1, p2, p3

are collinear in PG(2, q) or in π(Ω). Let ξ1 ∈ V . Since n, p1 and p2 are not

collinear, there exists an elation e ∈ El(n) such that pej = p
ξ−1
1
j , j = 1, 2.

From Lemma 3.2.1 we know that V = Persp(n) ξ1, so ξ2 = eξ1 ∈ V and ξ2
fixes p1 and p2.
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Let L be the line of PG(2, q) through p1 and p2. Then by assumption L

does not contain p3. Suppose that p
ξ−1
2

3 ∈ L. Then p1, p2 and p3 are contained
in Lξ2 , a contradiction since we assumed that p1, p2 and p3 are not collinear

in π(Ω). Since p3, p
ξ−1
2

3 6∈ L, there is a homology h ∈ Persp(n) with axis L

which maps p3 to p
ξ−1
2

3 . Let ξ = hξ2. Then ξ ∈ Persp(n) ξ2 = V and ξ fixes
p1, p2 and p3.

Suppose that ξ′ ∈ V fixes the points p1, p2 and p3. By Lemma 3.2.1,
V = Persp(n) ξ, so ξ′ξ−1 is a perspectivity of PG(2, q) with center n which
fixes p1, p2 and p3. Since no three of n, p1, p2 and p3 are collinear, it follows
that ξ′ξ−1 is the identity. So there is exactly one ξ ∈ V which fixes p1, p2 and
p3. 2

Lemma 3.2.3 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n. Let L be a line of PG(2, q) through n, and let ξ1, ξ2 ∈ V ,
ξ1 6= ξ2. If ξ1ξ

−1
2 ∈ El(n), then the sets Fix(ξ1)∩L and Fix(ξ2)∩L are either

disjoint or equal. If ξ1ξ
−1
2 ∈ Persp(n) \ El(n), then the sets Fix(ξ1) ∩ L and

Fix(ξ2) ∩ L have at most one point in common.

Proof. By Lemma 3.2.1, V = Persp(n) ξ2, so g = ξ1ξ
−1
2 ∈ Persp(n).

Assume that g ∈ El(n) and suppose that Fix(ξ1) ∩ L and Fix(ξ2) ∩ L have
a point p in common. Then g is an elation of PG(2, q) with center n which
fixes p, so the line L is the axis of g. This implies that ξ1 and ξ2 have the
same action on L, so Fix(ξ1) ∩ L = Fix(ξ2) ∩ L.

Now assume that g ∈ Persp(n) \El(n), and suppose that Fix(ξ1)∩L and
Fix(ξ2) ∩ L have two points p1 and p2 in common. Then g is a perspectivity
with center n which fixes p1 6= n and p2 6= n, so the line L through p1 and
p2 is the axis of g. But L contains n, a contradiction since we assumed that
g was not an elation. So Fix(ξ1)∩L and Fix(ξ2)∩L have at most one point
in common. 2

3.3 (q + i)-sets of type (0, 2, i) in PG(2, q)

Korchmáros and Mazzocca [56] studied (q+i)-sets of type (0, 2, i) in PG(2, q),
i 6= 0, 2. Note that a (q + i)-set of type (0, 2, i) is an oval when i = 1, a
hyperoval when i = 2, and the symmetric difference of two lines when i = q.
Korchmáros and Mazzocca showed that, if 2 < i < q, then such a set K can
exist only when q = 2h and i divides q. Furthermore, it was shown that
through every point of K there is exactly one i-secant, and that in general all
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i-secants are concurrent at a point called the i-nucleus of K. Exceptions can
only occur when i = 2m and there exist integers b and c ≥ 3 such that both
h = (b + 1)c and m = bc + 1. Examples of (2h + 2m)-sets of type (0, 2, 2m)
in PG(2, 2h) were constructed by Korchmáros and Mazzocca [56] when m is
a proper divisor of h.

Lemma 3.3.1 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n, and let ξ ∈ V . Then the set Fix(ξ) is either empty or it is a
(q + i)-set of type (0, 2, i) with i-nucleus n, for some i | q.

Proof. Let L be a line of PG(2, q) not through n and let p be a point
of L. Since ξ fixes the line 〈n, p〉, the point p is mapped by ξ to the point
〈n, p〉 ∩ Lξ. Hence Fix(ξ) ∩ L = L ∩ Lξ. Since Lξ is an oval with nucleus n
and since n 6∈ L, Fix(ξ) ∩ L consists of either 0 or 2 points. So any line of
PG(2, q) not through n contains either 0 or 2 points of Fix(ξ).

Suppose that Fix(ξ) 6= ∅, and let i ∈ Z be such that |Fix(ξ) | = q + i.
Let L be a line of PG(2, q) through n which contains at least one point p of
Fix(ξ). Then by the preceding paragraph every line of PG(2, q) through p
but not through n contains exactly two points of Fix(ξ). Hence there are ex-
actly q points of Fix(ξ) not on L. So there are exactly i points of Fix(ξ) on L.
It follows that every line of PG(2, q) through n contains either 0 or i points
of Fix(ξ). So Fix(ξ) is a (q+i)-set of type (0, 2, i) with i-nucleus n, and i | q. 2

Lemma 3.3.2 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n, and let ξ ∈ V . Then there exists an i | q such that for every
ξ′ ∈ El(n) ξ, the set Fix(ξ′) is either empty or is a (q + i)-set of type (0, 2, i)
with i-nucleus n. If i 6= 1, then i ≥ q2/3. The number of elements ξ′ ∈ El(n) ξ
such that Fix(ξ′) 6= ∅, equals q2(q + 1)/(q + i).

Proof. Let ξ1, ξ2 ∈ El(n) ξ and suppose that Fix(ξ1) and Fix(ξ2) are not
empty. By Lemma 3.3.1, Fix(ξj) is a (q + ij)-set of type (0, 2, ij) with ij-
nucleus n for some ij | q, j = 1, 2. Let p1 ∈ Fix(ξ1) and p2 ∈ Fix(ξ2) be such
that L1 = 〈n, p1〉 is different from L2 = 〈n, p2〉, and let e be the elation with

center n and axis L1 which maps p2 to p
ξ−1
1

2 . Then

ξ3 = eξ1 ∈ El(n) ξ1 = El(n) ξ = El(n) ξ2

and ξ3 fixes p1 and p2. By Lemma 3.3.1, Fix(ξ3) is a (q + i)-set of type
(0, 2, i) with i-nucleus n for some i | q. Since Fix(ξj)∩Lj is not disjoint from
Fix(ξ3)∩Lj, Lemma 3.2.3 implies that Fix(ξj)∩Lj = Fix(ξ3)∩Lj, j = 1, 2.
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Hence i1 = i2 = i. So there exists an i | q such that for every ξ′ ∈ El(n) ξ the
set Fix(ξ′) is either empty or is a (q+ i)-set of type (0, 2, i) with i-nucleus n.

For every line L through n, we define the following set SL.

SL = {A 6= ∅ | ∃ ξ′ ∈ El(n) ξ : Fix(ξ′) ∩ L = A}.

From the preceding paragraph it follows that every A ∈ SL has size i. By
Lemma 3.2.3, if A,B ∈ SL and A 6= B, then A is disjoint from B. Let p be a
point of L different from n, and let e ∈ El(n) be such that pe = pξ

−1
. Then

ξ′ = eξ ∈ El(n) ξ and ξ′ fixes p, so there is an element A = Fix(ξ′) ∩ L ∈ SL
which contains p. Now it is clear that SL forms a partition of the set L \ {n}
into sets of size i.

Let S =
⋃
SL, for all lines L through n. We count the number of ordered

pairs (A, ξ′) such that A ∈ S, ξ′ ∈ El(n) ξ and A ⊆ Fix(ξ′). Let x denote the
number of elements ξ′ ∈ El(n) ξ such that Fix(ξ′) is not empty. If Fix(ξ′) 6= ∅,
then Fix(ξ′) is a (q + i)-set of type (0, 2, i) with i-nucleus n, so the number
of i-secants of Fix(ξ′) is (q/i) + 1. Hence the number of ordered pairs (A, ξ′)
equals x((q/i) + 1). On the other hand, since for every line L through n, SL
forms a partition of L\{n}, the number of elements A of S is q(q+1)/i. Let
A ∈ S, and let L be the line through n which contains the points of A. Then
by definition of SL, there is an element ξ′ ∈ El(n) ξ such that Fix(ξ′)∩L = A.
Let ξ′′ ∈ El(n) ξ. Then A ⊆ Fix(ξ′′) if and only if ξ′′ξ′−1 fixes every point
of A. Since Fix(ξ′′) is either the empty set or a (q + i)-set of type (0, 2, i),
A ⊆ Fix(ξ′′) if and only if Fix(ξ′′) ∩ L = A. Since ξ′′ξ′−1 ∈ El(n), ξ′′ξ′−1

fixes every point of A if and only if L is the axis of ξ′′ξ′−1. We conclude that
the number of elements ξ′′ ∈ El(n) ξ such that Fix(ξ′′) ∩ L = A equals the
number of elations of PG(2, q) with center n and axis L, namely q. Hence
x((q/i) + 1) = q2(q + 1)/i. So the number x of elements ξ′ ∈ El(n) ξ such
that Fix(ξ′) 6= ∅ equals q2(q + 1)/(q + i).

Since x is an integer, q + i | q2(q + 1). Let q = 2h and i = 2h−m. Then
2h+2h−m | 22h(2h+1), so 2m+1 | 2h+m(2h+1). If i 6= q, then 2m+1 is odd, so
2m+1 | 2h+1. Let l ∈ N and R ∈ {0, 1, . . . ,m−1} be such that h = ml+R.
Then since 2m + 1 divides 2h + 1 = (2m + 1− 1)l2R + 1, 2m + 1 | (−1)l2R + 1.
As 0 ≤ R < m this is impossible if l is even. Hence l is odd and R = 0,
so h = ml with l odd. In particular, if i 6= 1, or, equivalently, h 6= m, then
m ≤ h/3, so i ≥ q2/3. 2

We introduce some new notation. Let Ω be a regular Desarguesian planar
oval set in PG(2, q) with nucleus n. By Lemma 3.2.1, V = Persp(n) ξ for
any ξ ∈ V . So V can be partitioned into q − 1 sets V1, V2, . . . , Vq−1 of size q2

such that for any j ∈ {1, 2, . . . , q − 1} and for any ξ1, ξ2 ∈ Vj, ξ1ξ−1
2 ∈ El(n).
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Lemma 3.3.2 states that for every j ∈ {1, 2, . . . , q− 1}, there is an ij | q such
that for every ξ ∈ Vj the set Fix(ξ) is either the empty set or a (q+ ij)-set of
type (0, 2, ij) with ij-nucleus n. For every j ∈ {1, 2, . . . , q − 1} and for every
line L through n we define a set SjL as follows.

SjL = {A 6= ∅ | ∃ ξ ∈ Vj : Fix(ξ) ∩ L = A}.

In the proof of Lemma 3.3.2 we showed that SjL forms a partition of L \ {n}
into sets of size ij. For any j ∈ {1, 2, . . . , q − 1} let Sj denote the union of
all sets SjL, L a line through n.

Lemma 3.3.3 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n. Then

q−1∑
j=1

ij = 2q − 2.

Proof. Let X be the set of ordered sets (p1, p2, p3, ξ) where p1, p2 and p3 are
points of PG(2, q) such that no three of n, p1, p2, p3 are collinear in PG(2, q)
or in π(Ω), and where ξ ∈ V fixes the points p1, p2 and p3. Lemma 3.2.2
states that, given three such points p1, p2 and p3, there is exactly one ξ ∈ V
which fixes these three points. Hence |X | = q3(q2 − 1)(q − 2).

Let j ∈ {1, . . . , q − 1} and let ξ ∈ Vj be such that Fix(ξ) 6= ∅. We show
that any three points p1, p2, p3 ∈ Fix(ξ) such that the lines 〈n, p1〉, 〈n, p2〉,
〈n, p3〉 are distinct, are not collinear in PG(2, q) or in π(Ω). Let p1, p2, p3 be
such points. Clearly, since Fix(ξ) is a (q + ij)-set of type (0, 2, ij) with ij-
nucleus n, the points p1, p2 and p3 are not collinear in PG(2, q). Let L denote
the set of lines of PG(2, q) not through n and let V −1 = {ξ′−1 | ξ′ ∈ V }. Then
L is a regular Desarguesian planar oval set in π(Ω) and V −1 is the set of all
collineations from π(Ω) to PG(2, q) which fix every line through n. Since
ξ−1 ∈ V −1, Lemma 3.3.1 implies that the set Fix(ξ−1), which contains p1, p2

and p3, is a (q+ i)-set of type (0, 2, i) of the plane π(Ω), with i-nucleus n, for
some i | q. So p1, p2 and p3 are not collinear in π(Ω). It follows that, given a
ξ ∈ Vj such that Fix(ξ) 6= ∅, there are exactly q(q2−i2j) sets (p1, p2, p3, ξ) ∈ X.
By Lemma 3.3.2, there are q2(q + 1)/(q + ij) elements ξ ∈ Vj such that
Fix(ξ) 6= ∅. Hence

q−1∑
j=1

q3(q + 1)(q − ij) = q3(q2 − 1)(q − 2).

The lemma follows. 2
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Theorem 3.3.4 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n. Then there is an l ∈ {1, 2, . . . , q − 1} such that il = q and
ij = 1 for every j ∈ {1, 2, . . . , q − 1} \ {l}.

Proof. By Lemma 3.3.3,
∑q−1

j=1 = 2q − 2, so there is at least one l ∈
{1, 2, . . . , q − 1} such that il > 1. By Lemma 3.3.2, il ≥ q2/3. Let j ∈
{1, 2, . . . , q − 1} \ {l}, let L be a line of PG(2, q) through n and let A ∈ SjL
and B ∈ SlL. Then there exist elements ξ ∈ Vj and ξ′ ∈ Vl such that
A = Fix(ξ) ∩ L and B = Fix(ξ′) ∩ L. Since j 6= l, ξξ′−1 ∈ Persp(n) \ El(n)
so by Lemma 3.2.3, A and B have at most one point in common.

Let x be the number of ordered triples (p,A,B) such that A ∈ SjL, B ∈ SlL
and p ∈ A ∩ B. Since both SjL and SlL partition the point set L \ {n}, for a
given p ∈ L \ {n}, there is exactly one A ∈ SjL, respectively B ∈ SlL, such
that p ∈ A, respectively p ∈ B. So x = q. On the other hand, any two sets
A ∈ SjL and B ∈ SlL intersect in at most one point p, so x ≤ (q/ij)(q/il).
Hence ij ≤ q/il ≤ q1/3. Now Lemma 3.3.2 implies that ij = 1. So for every
j ∈ {1, 2, . . . , q − 1} \ {l}, ij = 1. By Lemma 3.3.3, il = q. 2

Remark

A Laguerre plane is a quadruple (P,L, C, I), where P is a set whose elements
are called points, L is a set whose elements are called lines, C is a set whose
elements are called circles, I ⊆ (P × (L∪ C))∪ ((L∪ C)×P) is a symmetric
incidence relation, such that the following axioms are satisfied.

(lp1) Any point is on exactly one line.

(lp2) Any three points, no two of which are on a line, are on a unique circle.

(lp3) Each circle intersects each line in exactly one point.

(lp4) There are at least two circles and each circle contains at least 3 points.

(lp5) If C is a circle, and p and r are points not on a common line, such
that p ∈ C and r 6∈ C, then there is a unique circle D through r which
is tangent to C at p.

Laguerre planes and the related inversive planes and Minkowski planes are
treated in [42]. An example of a Laguerre plane is the following. Consider in
PG(3, q), q not necessarily even, a cone Q with vertex a point p and base an
oval O in a plane not containing p. Let P be the set of points on the cone
Q different from the vertex p, let L be the set of lines on Q, let C be the set
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of ovals obtained by intersecting Q with a plane of PG(3, q) not containing
p, and let I be the natural incidence. Then L(Q) = (P,L, C, I) is a Laguerre
plane. Any Laguerre plane which is isomorphic to this example is called
embeddable.

Let Ω be a regular Desarguesian planar oval set in PG(2, q) with nucleus
n. Assume, as we may by Theorem 3.3.4, that i1 = q. Let P denote the set
of points of PG(2, q) different from n, let L denote the set of lines of PG(2, q)
through n, let C = C1 ∪ C2 ∪ C3, where C1 is the set of lines of PG(2, q) not
through n, C2 = Ω and

C3 = {Fix(ξ) | ξ ∈ Vj, 2 ≤ j ≤ q − 1},

and let I be the natural incidence. Then Lemma 3.2.2 and Theorem 3.3.4
imply that L(Ω) = (P,L, C, I) is a Laguerre plane.

3.4 Classification of regular Desarguesian pla-

nar oval sets

Theorem 3.4.1 Let Ω be a regular Desarguesian planar oval set in PG(2, q)
with nucleus n, and let O ∈ Ω. Then Ω = Ω(O).

Proof. Let Ω∗ = Ω(O). Since n is the nucleus of the oval O, n is the nucleus
of the planar oval set Ω∗. We adopt here the notation of Sections 3.2 and 3.3
for Ω, and also for Ω∗. If confusion is possible, we add a star to the notation
related to Ω∗. For example, V is the set of all collineations from PG(2, q)
to π(Ω) which fix every line through n, and V ∗ is the set of all collineations
from PG(2, q) to π(Ω∗) which fix every line through n.

As a consequence of Theorem 3.3.4, we may assume without loss of gen-
erality that i1 = i∗1 = q. So for every ξ ∈ V1, respectively ξ∗ ∈ V ∗

1 , Fix(ξ),
respectively Fix(ξ∗), is either the empty set or a (2q)-set of type (0, 2, q) with
q-nucleus n, that is, the symmetric difference of the point sets of two lines of
PG(2, q) which intersect in the point n. We prove that for any two distinct
lines L and M of PG(2, q) which intersect in n, there is an element ξ ∈ V1,
respectively ξ∗ ∈ V ∗

1 , such that Fix(ξ), respectively Fix(ξ∗), is the symmetric
difference L4M . We give the proof for Ω, the proof for Ω∗ is analogous.
Let L and M be lines of PG(2, q) such that L ∩M = n, let p ∈ L \ {n}
and let r ∈ M \ {n}. Let ξ′ ∈ V1. Then there exists an elation e ∈ El(n)
such that pe = pξ

′−1
and re = rξ

′−1
. Now since ξ = eξ′ ∈ V1, Fix(ξ) is either

the empty set or a (2q)-set of type (0, 2, q). Since ξ fixes the points p and r,
Fix(ξ) = L4M .
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Let L and L′ be two lines of PG(2, q) which intersect in the point n, and
let ξ ∈ V1, respectively ξ∗ ∈ V ∗

1 , be such that Fix(ξ) = L4 L′, respectively
Fix(ξ∗) = L4 L′. Let p = O ∩ L, let p′ = O ∩ L′ and let M = 〈p, p′〉. Since
ξ, respectively ξ∗, fixes p and p′, M ξ, respectively M ξ∗ , is an element of Ω,
respectively Ω∗, which contains the points p and p′. Hence M ξ = M ξ∗ = O.
Let L′′ be a line of PG(2, q) through n, distinct from L and L′, and let
p′′ = O ∩ L′′ and r = M ∩ L′′. Then since M ξ = M ξ∗ = O and since ξ and
ξ∗ fix the line L′′, rξ = rξ

∗
= p′′. Let e ∈ El(n) be the elation with axis L

which maps p′′ to r. Then ξ′ = eξ ∈ V1, respectively ξ′∗ = eξ∗ ∈ V ∗
1 , fixes p′′

and every point of L, hence Fix(ξ′) = Fix(ξ′∗) = L4 L′′. So ξ′ and ξ′∗ have
the same action on L′′, and hence so do ξ = e−1ξ′ and ξ∗ = e−1ξ′∗. But this
holds for any line L′′ of PG(2, q) through n, distinct from L and L′. Hence
ξ = ξ∗. Since ξ is a collineation from PG(2, q) to π(Ω), and since ξ∗ = ξ is a
collineation from PG(2, q) to π(Ω∗), Ω = Ω∗ = Ω(O). 2

Remark

Let O be an oval of PG(2, q) with nucleus n, and let Ω = Ω(O). We prove
that the Laguerre plane L(Ω(O)), constructed in Section 3.3, is embeddable.

We coordinatize the plane PG(2, q) in such a way that n(1, 0, 0) and that
O contains the points (0, 1, 0), (0, 0, 1) and (1, 1, 1). Let f : GF(q) → GF(q)
be such that O = {(t, f(t), 1) | t ∈ GF(q)} ∪ {(0, 1, 0)}. Then f(0) = 0,
f(1) = 1, and f is an o-polynomial.

Let L : X2 = 0, let L′ : X1 = 0 and let L′′ : X1 = yX2 for some
y ∈ GF(q) \ {0}. Define ξ, p, p′, p′′, r, M , e in the same way as in the
proof of Theorem 3.4.1. Then p(0, 1, 0), p′(0, 0, 1), p′′(f−1(y), y, 1), r(0, y, 1),
M : X0 = 0, and the matrix of the elation e with respect to the chosen basis
is  1 0 f−1(y)

0 1 0
0 0 1

 .

It follows from the proof of Theorem 3.4.1 that ξ and e−1 have the same
action on L′′. Since q is even, e−1 = e. So for every point p(x, y, 1) ∈ L′′,
pξ(x + f−1(y), y, 1). This holds for every x ∈ GF(q) and, since L′′ is an
arbitrary line through n, distinct from L and L′, it also holds for every
y ∈ GF(q)\{0}. Every point on L and L′ is fixed by ξ, so we have determined
explicitly the action of ξ on every point of PG(2, q), with respect to the chosen
basis.

Consider the Laguerre plane L(Ω(O)) = (P,L, C, I), where C = C1∪C2∪C3,
and let C ∈ C3. Then, by definition of C3, there is an element ξ′ ∈ V \V1 such
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that Fix(ξ′) = C. By Lemma 3.2.1, V = Persp(n) ξ, so since V1 = El(n) ξ
and ξ′ ∈ V \ V1, there is a nontrivial homology h of PG(2, q) with center n
such that ξ′ = hξ. The matrix of h with respect to the chosen basis is 1 a b

0 c 0
0 0 c

 ,

for some a, b, c ∈ GF(q) with c 6= 0, 1. One verifies that

C = {(b+ ay + cf−1(y), (1 + c)y, 1 + c) | y ∈ GF(q)} ∪ {(a, 1 + c, 0)}.

Clearly C is the image of the oval O under the homology h′ ∈ Persp(n) which
has the following matrix with respect to the chosen basis. c a b

0 1 + c 0
0 0 1 + c

 .

We conclude that C3 is the set of all ovals of PG(2, q) which are the image of
O under a nontrivial homology of PG(2, q) with center n. So C is the union
of the set of lines of PG(2, q) not through n, with the set of ovals of PG(2, q)
which are the images of O under all perspectivities of PG(2, q) with center
n.

Embed PG(2, q) as a plane in PG(3, q) and consider the cone Q with
vertex a point p not in PG(2, q) and base the oval O. Let r be a point of
〈p, n〉 \ {p, n}. Then the projection of the set of circles of the Laguerre plane
L(Q) from r on PG(2, q) is exactly the union of the set of lines of PG(2, q)
not through n with the set of all ovals of PG(2, q) which are the image of O
under a perspectivity of PG(2, q) with center n. So this projection induces an
isomorphism from the Laguerre plane L(Q) to the Laguerre plane L(Ω(O)).
Hence L(Ω(O)) is embeddable.





Chapter 4

Affine semipartial geometries
and (0, α)-geometries

In this chapter we start with the study of affine semipartial geometries and
(0, α)-geometries. Firstly we discuss the methods that we will use and we
explain why it is necessary to study affine (0, α)-geometries in order to get
results about affine semipartial geometries. Next we construct some new
geometries and prove that they are affine (0, α)-geometries which are not lin-
ear representations. A survey of recent results follows, including a summary
of the results that we obtain in Chapters 5 and 6. Our main result in this
area is the classification of affine semipartial geometries and (0, α)-geometries
with α > 1 which are not linear representations. We end this chapter with a
detailed study of the different affine (0, α)-geometries.

The construction of the geometry A(O∞) is published in [36], and the
construction of the geometry I(n, q, e) is published in [33].

4.1 General method

One of the main goals of this thesis is to improve the results in Section 1.4.7 on
affine semipartial geometries. Affine semipartial geometries are only classified
when they are fully embedded in AG(2, q) or AG(3, q) (see Theorem 1.4.16).
We would like to obtain results for semipartial geometries fully embedded in
an affine space AG(n, q) of arbitrary dimension. A possible method to prove
such results is to use induction on the dimension of the affine space. In this
context the following lemma about affine (0, α)-geometries with α > 1 is very
interesting.

If S is a (0, α)-geometry fully embedded in AG(n, q), and if U is a subspace
of AG(n, q) then we denote by XU the set of points and lines of S contained

69
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in U and by SU the sub incidence structure of S induced on XU .

Lemma 4.1.1 Let S be a (0, α)-geometry with α > 1 fully embedded in
AG(n, q), n ≥ 3, and let U be a proper subspace of AG(n, q) of dimension at
least 2. Then every connected component S ′ of SU that contains two inter-
secting lines is a (0, α)-geometry fully embedded in a subspace of U .

Proof. Let {p, L} be an anti-flag of S ′. Then p and L lie in U , so the plane
〈p, L〉 ⊆ U . Hence every line of S through p intersecting L lies in U and so is
a line of S ′. It follows that S ′ satisfies (zag2) since S satisfies (zag2) (see Sec-
tion 1.2.2). Also S ′ satisfies (zag1’). By Lemma 1.2.1 S ′ is a (0, α)-geometry.
Since S is fully embedded in AG(n, q) every point of AG(n, q) on a line L of
S ′ is a point of S and since L ⊆ U also of S ′. So S ′ is fully embedded in a
subspace of U . 2

Lemma 4.1.1 provides a powerful tool for investigating affine (0, α)-geom-
etries with α > 1. To illustrate this, let n be a positive integer and assume
that the (0, α)-geometries with α > 1 fully embedded in AG(m, q) are classi-
fied for all m < n. Then if S is a (0, α)-geometry with α > 1 fully embedded
in AG(n, q), we can take any proper subspace U of AG(n, q) and consider
the connected components of SU . By Lemma 4.1.1 every connected compo-
nent of SU which contains two intersecting lines is a (0, α)-geometry with
α > 1, fully embedded in some AG(m, q) with m < n. But by assumption
these (0, α)-geometries are classified! Clearly in this way we get a lot of
information about the (0, α)-geometry S.

So we will investigate affine (0, α)-geometries with α > 1 by looking at
the full embeddings in AG(2, q) first. When we are done with these, we will
look at full embeddings in AG(3, q). After that we will look at AG(4, q), and
so on. At a certain point it will be possible to formulate proofs for general
affine spaces AG(n, q) by means of an induction argument on the dimension
n of the affine space.

Note that a similar strategy for investigating affine semipartial geometries
with α > 1 will not work because the analogue of Lemma 4.1.1 for semipartial
geometries does not hold. The problem here is that a connected component of
SU does not necessarily satisfy (spg3) (see Section 1.2.4). So we cannot study
affine semipartial geometries as such by using induction on the dimension of
the affine space. Instead we must study affine (0, α)-geometries, and as a
consequence we will get results about affine semipartial geometries.

The first step, namely the classification of (0, α)-geometries fully embed-
ded in AG(2, q), is easy.
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Proposition 4.1.2 If S is a (0, α)-geometry fully embedded in AG(2, q) then
S is a partial geometry. In particular S is a planar net or S is a dual oval
and q = 2h.

Proof. Let {p, L} be an anti-flag of S and suppose that α(p, L) = 0. Then
at most one line of S passes through p, namely the line parallel to L. But p
must be on at least two lines of S, contradiction. So α(p, L) = α for every
anti-flag of S, and S is a partial geometry. We can now apply Theorem
1.4.14. 2

Now we can apply the classification for AG(2, q) to (0, α)-geometries fully
embedded in AG(n, q), n ≥ 3.

Lemma 4.1.3 Let S be a (0, α)-geometry with α > 1 fully embedded in
AG(n, q), n ≥ 3, and let π be a plane of AG(n, q). Then π is of one of the
following four types.

Type I. π does not contain any line of S.

Type II. π contains a number of parallel lines of S and possibly some iso-
lated points.

Type III. Sπ is a planar net of order q and degree α+ 1.

Type IV. Sπ consists of a pg(q − 1, 1, 2) (that is, a dual oval with nucleus
the line at infinity; here necessarily q = 2h and α = 2) and possibly
some isolated points.

Proof. This is an immediate corollary to Lemma 4.1.1 and Proposition
4.1.2. 2

Notice that if π is a plane of type IV, then Sπ has exactly one line in
every parallel class of lines and through a point of Sπ there are either 0 or 2
lines of Sπ. If π is a plane of type III then there are exactly α+ 1 lines of Sπ
through every point of Sπ.

Let S be an affine incidence structure. Then for every point p of S let
θp denote the set of points at infinity of the lines of S containing p. The
following lemma is a consequence of Lemma 4.1.1.

Lemma 4.1.4 Let S be a (0, α)-geometry with α > 1, fully embedded in
AG(n, q). Then for every point p of S, the set θp spans Π∞.
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Proof. Let (q− 1, t) denote the order of S. Suppose that there is a point p
of S such that θp does not span Π∞. Then there is a proper subspace U∞ of
Π∞ which contains θp. Let U = 〈p, U∞〉, and let S ′ be the connected com-
ponent of SU containing p. By Lemma 4.1.1 S ′ is a (0, α)-geometry. Since
all the lines of S through p are lines of S ′, the order of S ′ is (q − 1, t). But
this implies that for every point p′ of S ′, every line of S through p′ is in S ′.
Hence, since S is connected, S = S ′. But this contradicts the fact that S is
not contained in a proper subspace of AG(n, q). 2

4.2 Some new examples of affine (0, α)-geom-

etries

4.2.1 The (0, 2)-geometry A(O∞)

Consider AG(3, 2h). As usual Π∞ denotes the plane at infinity. Let O∞
be an oval of Π∞ with nucleus n∞. Choose a basis such that Π∞ : X3 =
0, n∞(1, 0, 0, 0) and (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0) ∈ O∞. Let f be the
o-polynomial such that

O∞ = {(ρ, f(ρ), 1, 0) | ρ ∈ GF(2h)} ∪ {(0, 1, 0, 0)}.

For every affine point p(x, y, z, 1), consider the oval

Op
∞ = {(y + zf(ρ) + ρ, f(ρ), 1, 0) | ρ ∈ GF(2h)} ∪ {(z, 1, 0, 0)}.

Note that if p and r are affine points then Op
∞ = Or

∞ if and only if n∞, p
and r are collinear. Hence the set Ω∞ of all ovals Op

∞ contains exactly 22h

elements. Note also that the set Ω∞ is the orbit of the oval O∞ under the
group of elations of Π∞ with center n∞. Hence every element of Ω∞ is an
oval with nucleus n∞, and any two elements of Ω∞ intersect in exactly one
point.

For an affine point p let Lp be the set of lines through p and the points of
Op
∞. Let S = (P ,B, I) where P is the point set of AG(3, 2h), B =

⋃
p∈P Lp,

and I is the natural incidence.

Theorem 4.2.1 Every connected component of S is a (0, α)-geometry with
s = 2h − 1, t = 2h and α = 2, fully embedded in AG(3, 2h).

Proof. Let p(x, y, z, 1) be a point of S. Then the elements of Lp are lines
of S through p. We prove that every line of S through p is in the set Lp.
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Π∞

n∞

Π∞

r

p p

r

Lp

n∞

Op
∞

Or
∞Op

∞ = Or
∞

Figure 4.1: Construction of the (0, 2)-geometry A(O∞).

Suppose that L is a line of S through p. Then there is a point r(x′, y′, z′, 1)
on L such that L ∈ Lr. We may assume that r 6= p. Let p∞ = L ∩ Π∞;
then p∞(x + x′, y + y′, z + z′, 0). Now L ∈ Lr implies p∞ ∈ Or

∞. If z′ = z
then p∞(x + x′, y + y′, 0, 0) and so p∞ must be the point with coordinates
(z′, 1, 0, 0). But since z′ = z, p∞(z′, 1, 0, 0) ∈ Op

∞. So L ∈ Lp. If z′ 6= z then
p∞ ∈ Or

∞ implies

p∞(x+ x′, y + y′, z + z′, 0) = (y′ + z′f(ρ) + ρ, f(ρ), 1, 0)

for some ρ ∈ GF(2h). Hence f(ρ) = (y + y′)/(z + z′) and

(x+ x′)/(z + z′) = y′ + z′(y + y′)/(z + z′) + f−1((y + y′)/(z + z′)).

But since
y′ + z′(y + y′)/(z + z′) = y + z(y + y′)/(z + z′)

it follows that

p∞(y+ z(y+y′)/(z+ z′)+f−1((y+y′)/(z+ z′)), (y+y′)/(z+ z′), 1, 0) ∈ Op
∞.

So L ∈ Lp.
It follows that through every point of S there are 2h + 1 lines of S. So

S is a partial linear space of order (2h − 1, 2h) fully embedded in AG(3, 2h).
Hence every connected component of S satisfies (zag1) (see Section 1.2.2).

We prove that an affine plane containing the point n∞, contains no two
intersecting lines of S, and that an affine plane not containing n∞, contains
no two parallel lines of S. Suppose that π is a plane containing n∞ and two
lines L and M of S which intersect in an affine point p. By the preceding
paragraphs L,M ∈ Lp. Hence the line L∞ = π ∩ Π∞ contains two points of
Op
∞. But L∞ contains n∞, the nucleus of the oval Op

∞, a contradiction.



74 4. Affine semipartial geometries and (0, α)-geometries

Now suppose that π is a plane not through the point n∞ which contains
two parallel lines L and M of S. Let p(x, y, z, 1), respectively p′(x′, y′, z′, 1),
be a point of S on L, respectively M . Since n∞ 6∈ π, n∞, p and p′ are
not collinear. Hence the ovals Op

∞ and Op′
∞ intersect in a unique point p∞.

Looking at the explicit forms of the ovals Op
∞ and Op′

∞ we see that p∞ has
coordinates (z, 1, 0, 0) if z = z′ and

(y + z(y + y′)/(z + z′) + f−1((y + y′)/(z + z′)), (y + y′)/(z + z′), 1, 0)

if z 6= z′. In both cases one verifies that n∞, p, p′ and p∞ are coplanar.
Let r∞ be the point at infinity of the parallel lines L and M . Since L is a

line of S and p ∈ L, r∞ ∈ Op
∞. Since M is a line of S and p′ ∈M , r∞ ∈ Op′

∞.
So r∞ ∈ Op

∞ ∩ Op′
∞. But p∞ is the unique point of Op

∞ ∩ Op′
∞, so r∞ = p∞.

So n∞, p and M = 〈p′, r∞〉 = 〈p′, p∞〉 are coplanar. But then n∞ ∈ π, a
contradiction.

Let {p, L} be an anti-flag of S. There are two possibilities. The first is
that the plane π = 〈p, L〉 contains the point n∞. Then no two lines of S in
π intersect, and the incidence number α(p, L) = 0.

The second possibility is that n∞ 6∈ π. Then the line L∞ = π ∩ Π∞ does
not contain n∞, so L∞ contains 0 or 2 points of Op

∞. Hence there are 0 or
2 lines of Lp in π. Since no two lines of S in π are parallel, α(p, L) equals
either 0 or 2. We conclude that S satisfies (zag2) with α = 2 (see Section
1.2.2). 2

Theorem 4.2.2 If O∞ is a conic then S consists of two connected compo-
nents S1 and S2 such that S1 ' S2 ' HT. If O∞ is not a conic then S is
connected.

Proof. Suppose that S is disconnected. We prove that S has exactly two
connected components S1 and S2, that S1 ' S2 ' HT and that O∞ is a
conic. Let S ′ be a connected component of S, and let L be a line of S ′. From
Theorem 4.2.1 it follows that S ′ is a (0, 2)-geometry of order (2h − 1, 2h).
Counting the flags {p,M} of S ′ such that p 6∈ L and such that M intersects
L in an affine point we get that there are at least 22h−1(2h − 1) points of S ′
not on L. Since S has 23h points and every connected component of S has
at least 22h−1(2h−1)+2h points, it follows that S has exactly two connected
components S1 and S2.

We prove that the point sets of S1 and S2 are sets of type (0, 2h−1, 2h)
with respect to affine lines. If L is a line of S then L contains either 0 or
2h points of Si, i = 1, 2. Let L be an affine line intersecting Π∞ in n∞. For
any two affine points p, p′ ∈ L we have Op

∞ = Op′
∞. So the sets Lp and Lp′ of
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affine points on the lines of Lp and Lp′ are disjoint for any two affine points
p, p′ ∈ L. Since each of the sets Lp, p ∈ L, contains 22h points, these sets
form a partition of the point set of S. So the point set of Si, i = 1, 2, is a
union of sets Lp, p ∈ L. Hence the number of points of Si, i = 1, 2, is a
multiple of 22h. Since each Si, i = 1, 2, has at least 22h−1(2h− 1)+2h points,
we conclude that Si, i = 1, 2, has exactly 23h−1 points and that L contains
2h−1 points of each Si, i = 1, 2.

Let L be an affine line which is not a line of S and which does not intersect
Π∞ in n∞. Let M be an affine line through n∞ which intersects L in the
affine point p, let π = 〈L,M〉 and let L∞ = π ∩ Π∞. Then n∞ ∈ L∞, so
L∞ ∩ Op

∞ consists of a single point p∞. Now for every affine point p′ ∈ M
we have Op′

∞ = Op
∞, so L∞ ∩ Op′

∞ = p∞. Hence Sπ consists of 2h parallel
lines intersecting Π∞ in p∞. These lines intersect L and M in affine points
since L,M 6∈ B. Hence from the fact that M contains 2h−1 points of each Si,
i = 1, 2, it follows that L contains 2h−1 points of each Si, i = 1, 2.

So the point sets of Si, i = 1, 2, are sets of type (0, 2h−1, 2h) with respect
to affine lines. Hence the set Ti which is the union of the point set of Si with
Π∞ is a set of type (1, 2h−1+1, 2h+1) in PG(3, 2h), i = 1, 2. Since every affine
line that is not a line of S intersects Ti in 2h−1 + 1 points, Ti is nonsingular,
i = 1, 2. Now from Theorem 1.3.4 it follows that Ti is projectively equivalent
to R3, i = 1, 2. Hence S1 ' S2 ' HT. It is easy to see that in HT the set of
lines through a given point forms a quadratic cone. Hence O∞ is a conic.

We conclude that if S is disconnected then O∞ is a conic, and S has
exactly two connected components S1 and S2 which are both projectively
equivalent to HT. It remains to be proven that if O∞ is a conic then S is
indeed disconnected.

Let O∞ be a conic:

O∞ = {(ρ, ρ2, 1, 0) | ρ ∈ GF(2h)} ∪ {(0, 1, 0, 0)}.

Let p(x, y, z, 1) and p′(x′, y′, z′, 1) be distinct collinear points of S, and let
p∞ = 〈p, p′〉 ∩ Π∞. Then p∞(x+ x′, y + y′, z + z′, 0) is on the conic

Op
∞ = {(y + zρ2 + ρ, ρ2, 1, 0) | ρ ∈ GF(2h)} ∪ {(z, 1, 0, 0)}.

If z 6= z′ then

p∞(x+ x′, y + y′, z + z′, 0) = (y + zρ2 + ρ, ρ2, 1, 0)

for some ρ ∈ GF(2h). So ρ2 = (y + y′)/(z + z′) and

x+ x′

z + z′
= y + z

y + y′

z + z′
+

(
y + y′

z + z′

)1/2

.
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This is equivalent to

x+ yz + x′ + y′z′ = (y + y′)(z + z′) + ((y + y′)(z + z′))
1/2
.

Hence Tr(x+yz) = Tr(x′+y′z′). If z = z′ then y 6= y′ and (x+x′)/(y+y′) = z,
so x+ yz = x′ + y′z = x′ + y′z′. So here also Tr(x+ yz) = Tr(x′ + y′z′). We
conclude that if p(x, y, z, 1) and p′(x′, y′, z′, 1) are distinct affine points such
that Tr(x + yz) 6= Tr(x′ + y′z′), then there is no path from p to p′ in the
point graph of S. Hence S is disconnected. 2

We let A(O∞) denote any connected component of S. There is no con-
fusion possible since when O∞ is a conic the two connected components of
S are affinely equivalent. So for any oval O∞ the geometry A(O∞) is a
(0, 2)-geometry with s = 2h − 1 and t = 2h fully embedded in AG(3, 2h).

4.2.2 The (0, 2)-geometry I(n, q, e)

Let U be a hyperplane of AG(n, 2h), n ≥ 3. Choose a basis such that
Π∞ : Xn = 0 and U : Xn−1 = 0. Let e ∈ {1, 2, . . . , h − 1} be such that
gcd(e, h) = 1, and let ϕ be the collineation of PG(n, 2h) such that

ϕ : p(x0, x1, . . . , xn−1, xn) 7→ pϕ(x2e

0 , x
2e

1 , . . . , x
2e

n , x
2e

n−1).

Put U∞ = U ∩ Π∞ and let K∞ be the set of points of U∞ fixed by ϕ. Then

K∞ = {(ε0, . . . , εn−2, 0, 0) 6= (0, . . . , 0) | εi ∈ GF(2), 0 ≤ i ≤ n− 2},

so K∞ is the point set of a projective geometry PG(n− 2, 2) ⊆ U∞. Let

B1 = {L ⊆ U‖L 6⊆ Π∞, L ∩ Π∞ ∈ K∞},

and let
B2 = {〈p, pϕ〉‖p ∈ U \ Π∞}.

Let I(n, 2h, e) = (P ,B1 ∪ B2, I), where P is the set of affine points on the
lines of B1 ∪ B2, and I is the natural incidence.

Theorem 4.2.3 The geometry I(n, 2h, e) is a (0, α)-geometry with parame-
ters s = 2h − 1, t = 2n−1 − 1 and α = 2, fully embedded in AG(n, 2h).

Proof. Put S = I(n, 2h, e). Since K∞ spans U∞, the geometry SU , which
is the linear representation in the affine space U of the set K∞, is connected.
Since every point of S is collinear with at least one point of SU , S is connected.
So S satisfies (zag1’) (see Section 1.2.2).
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Figure 4.2: Construction of the (0, 2)-geometry I(n, q, e).

Let π be a plane containing two lines L and M of S intersecting in an
affine point p. We prove that if π ⊆ U then π is a plane of type III containing
3 parallel classes of lines, and that if π 6⊆ U then π is a plane of type IV.

Let L∞ = π ∩ Π∞. If π ⊆ U , then the points at infinity of L and M are
in K∞, so L∞ contains 3 points of K∞. It follows that π is a plane of type
III containing 3 parallel classes of lines.

Now suppose that π 6⊆ U . Then at least one of the lines L and M
is in B2, so π intersects U in an affine line N . Let L∞ = π ∩ Π∞ and
p∞ = N ∩ L∞ = π ∩ U∞. First we prove that Nϕ = L∞.

If N 6= L,M , then L,M ∈ B2, so L, respectively M , intersects U in an
affine point r, respectively r′, and Π∞ in the point rϕ, respectively r′ϕ. Since
N = 〈r, r′〉 and L∞ = 〈rϕ, r′ϕ〉, we have Nϕ = L∞. If N ∈ {L,M}, say
N = L, then L ∈ B1 so p∞ ∈ K∞ and hence pϕ∞ = p∞. Also M ∈ B2, so
since M ∩ U = p, M ∩ Π∞ = pϕ. It follows that

Nϕ = Lϕ = 〈p, p∞〉ϕ = 〈pϕ, p∞〉 = L∞.

So in any case Nϕ = L∞. Now pϕ∞ = (N ∩ U∞)ϕ = L∞ ∩ U∞ = p∞,
implying that p∞ ∈ K∞. So N ∈ B1. For every affine point r ∈ N , rϕ ∈ L∞
and hence 〈r, rϕ〉 ⊆ π is in B2. So π contains 2h + 1 lines of S. We prove
that these lines form a dual oval with nucleus L∞.
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Since p∞ ∈ K∞, p∞ has coordinates (ε0, . . . , εn−2, 0, 0), with εi ∈ GF(2),
0 ≤ i ≤ n− 2. Let i ∈ {0, . . . , n− 2} be such that εi = 1. Then the point of
intersection r of the line N with the hyperplane with equation Xi = 0 is an
affine point. It has coordinates

r(x0, . . . , xi−1, 0, xi+1, . . . , xn−2, 0, 1).

Then
rϕ(x2e

0 , . . . , x
2e

i−1, 0, x
2e

i+1, . . . , x
2e

n−2, 0, 1).

We can coordinatize the plane π by the coordinates Xi, Xn−1, Xn. In this
coordinate system p∞(1, 0, 0), r(0, 0, 1), rϕ(0, 1, 0), N [0, 1, 0] and L∞[0, 0, 1].
The lines of S in the plane π are the line N and the lines 〈r′, r′ϕ〉, for all
affine points r′ ∈ N . The affine points r′ ∈ N have coordinates

(x0 + xε0, . . . , xi−1 + xεi−1, x, xi+1 + xεi+1, . . . , xn−2 + xεn−2, 0, 1)

with x ∈ GF(2h). In the new coordinate system, r′(x, 0, 1), r′ϕ(x2e
, 1, 0) and

〈r′, r′ϕ〉 = [1, x2e
, x]. So the lines of S in π have coordinates [0, 1, 0] and

[1, x2e
, x], x ∈ GF(2h). Clearly they form a translation oval in the dual plane

of π, with nucleus L∞[0, 0, 1]. So π is a plane of type IV.
Since every plane containing two intersecting lines of S is a plane of type

III with 3 parallel classes of lines or a plane of type IV, we have property
(zag2) (see Section 1.2.2) with α = 2. By Lemma 1.2.1 S is a (0, 2)-geometry.
The order of S is (2h − 1, 2n−1 − 1) since through an affine point of U there
are | K∞ | = 2n−1 − 1 lines of B1 and one line of B2. 2

4.3 Survey of recent results

A first and important result on affine (0, α)-geometries with α > 1 is the
following theorem.

Theorem 4.3.1 (De Clerck, Delanote [27]) If S is a (0, α)-geometry,
α > 1, fully embedded in AG(n, q) and if there are no planes of type IV,
then S ' T ∗n−1(K∞) is a linear representation of a set K∞ in Π∞. Also, if
q is odd or α > 2, then the same conclusions hold without restriction on the
types of planes.

As a consequence of Theorem 4.3.1 we are now left with two distinct
problems.
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Problem 1. Classify all linear representations of (0, α)-geometries, α > 1.
Equivalently, classify all sets of type (0, 1, k) with k > 2 in PG(n, q).

Problem 2. Classify all (0, 2)-geometries fully embedded in AG(n, 2h) which
have at least one plane of type IV.

There is no hope of solving Problem 1 in its full extent. However the
following partial solution is known.

Theorem 4.3.2 (Ueberberg [83]) Let K be a set of type (0, 1, k) in
PG(n, q), n ≥ 2, not contained in a hyperplane. If k ≥ √

q + 1 then one
of the following possibilities occurs.

1. n = 2 and K is a maximal arc.

2. n = 2, q is a square and K is a unital.

3. q is a square and K is the point set of a Baer subspace.

4. K is the complement of a hyperplane of PG(n, q).

5. K is the point set of PG(n, q).

Instead of restricting the value of k in Problem 1, one can also consider
the restriction of Problem 1 to semipartial geometries.

Problem 1’. Classify all linear representations of semipartial geometries
with α > 1. Equivalently, classify all sets of type (0, 1, k) with k > 2
in PG(n, q) which have two sizes of intersection with respect to hyper-
planes of PG(n, q).

Problem 1’ has only been solved for small dimensions. In the case of
linear representations of semipartial geometries in AG(2, q) and AG(3, q) the
solution is given by Theorem 1.4.16. The case of AG(4, q) was solved recently
by De Winter.

Theorem 4.3.3 (De Winter [38]) If a linear representation T ∗3 (K∞) in
AG(4, q) is a proper semipartial geometry with α > 1, then q is a square and
K∞ is the point set of a Baer subspace of Π∞.

Problem 2 is the subject of Chapters 5 and 6 of this thesis. Note that
most of the known (0, α)-geometries with α > 1, which are fully embedded
in AG(n, q) have α = 2 and have planes of type IV. Using the method of
induction on the dimension of the affine space described in Section 4.1, we
solve Problem 2 completely.
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Theorem 4.3.4 If S is a (0, 2)-geometry fully embedded in AG(n, q), q = 2h,
such that there is at least one plane of type IV, then one of the following cases
holds.

1. q = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2 and S is a dual oval.

3. n = 3 and S ' A(O∞).

4. n = 4 and S ' TQ(4, q).

5. n ≥ 3 and S ' I(n, q, e).

The case q = 2 in Theorem 4.3.4 is trivial.

Proposition 4.3.5 Let S be a (0, 2)-geometry fully embedded in AG(n, 2).
Then S is a 2− (t+ 2, 2, 1) design.

Proof. The order of S is (1, t), and by connectedness any two points of S
are forced to be collinear. So S is a 2− (t+ 2, 2, 1) design. 2

The most difficult part of the proof of Theorem 4.3.4 is when n = 3. This
case is solved in Chapter 5. The general case n ≥ 4 of Theorem 4.3.4 is
solved in Chapter 6.

Theorem 4.3.4 has some interesting corollaries.

Corollary 4.3.6 If S is a (0, α)-geometry with α > 1, fully embedded in
AG(n, q), then one of the following possibilities holds.

1. q = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h and S is a dual oval.

3. n = 3, q = 2h and S ' A(O∞).

4. n = 4, q = 2h and S ' TQ(4, q).

5. n ≥ 3, q = 2h and S ' I(n, q, e).

6. n ≥ 2 and S ' T ∗n−1(K∞), with K∞ a set of type (0, 1, α + 1) in Π∞
which spans Π∞.

Proof. This follows immediately from Theorems 4.3.1 and 4.3.4. 2
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Corollary 4.3.7 If S is a semipartial geometry with α > 1, fully embedded
in AG(n, q), then one of the following possibilities occurs.

1. q = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h and S is a dual oval.

3. n = 4, q = 2h and S ' TQ(4, q).

4. n ≥ 2 and S ' T ∗n−1(K∞), with K∞ a set of type (0, 1, α + 1) in
Π∞ which spans Π∞ and has two intersection numbers with respect to
hyperplanes of Π∞.

Proof. This follows immediately from Theorem 1.4.13 and Corollary 4.3.6.
2

Corollary 4.3.8 If S is a proper semipartial geometry with α > 1, fully
embedded in AG(n, q), n ≤ 4, then one of the following possibilities occurs.

1. n = 3, q is a square and S ' T ∗2 (U∞), with U∞ a unital of Π∞.

2. n = 4, q = 2h and S ' TQ(4, q).

3. n ∈ {3, 4}, q is a square and S ' T ∗n−1(B∞), with B∞ a Baer subspace
of Π∞.

Proof. This follows from Theorems 1.4.16, 4.3.3 and Corollary 4.3.7. 2

Due to the recent progress regarding Problem 1’, made by De Winter [38],
we conjecture that Corollary 4.3.8 is true for all values of n.

4.4 A combinatorial study of the affine (0, α)-

geometries

The purpose of this section is to gain insight in the structure of the known
affine (0, α)-geometries. Also we deduce some properties that we will need
in later chapters. Firstly we introduce some new terminology.

Let S be a (0, α)-geometry with α > 1, fully embedded in AG(n, q),
n ≥ 4, and let U be an m-space of AG(n, q) with 3 ≤ m ≤ n − 1. Then U
can be of the following four types.
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Type A. Only defined for m = 3 or 4. If m = 3 then SU contains a
connected component S ′ ' A(O∞). If m = 4 then SU contains a
connected component S ′ ' TQ(4, q).

Type B. SU contains a connected component S ′ ' I(m, q, e).

Type C. SU is a connected linear representation.

Type D. Every connected component of SU is contained in a proper sub-
space of U .

Note that at this stage we cannot say that every m-space U with m ≥ 3
is of type A, B, C or D. However we can prove that if U is of one type, then
U is not of any other type. Indeed, if U is of type C or D then obviously
U can not be of any other type. Suppose that U is at the same time of
type A and type B. Then m equals 3 or 4 and SU contains two connected
components S1 and S2 such that S2 ' I(m, q, e) and S1 ' A(O∞) if m = 3
or S1 ' TQ(4, q) if m = 4. From the construction of I(n, q, e) it follows that
there is an (m − 1)-space V ⊆ U completely contained in the point set of
S2. Now since S1 and S2 are two distinct connected components, their point
sets must be disjoint, so S1 does not contain any point of V . But V is a
hyperplane of the affine space U . It follows from the construction of A(O∞)
and TQ(4, q) that this is impossible. So if U is of type A, B, C or D then it
is not of any other type.

4.4.1 The (0, 2)-geometry HT

Consider the (0, 2)-geometry HT fully embedded in AG(3, q), q = 2h, con-
structed in Section 1.4.7. We proved in Theorem 4.2.2 that HT ' A(O∞)
with O∞ a conic. So we refer to section 4.4.2 for some properties of HT.

4.4.2 The (0, 2)-geometry A(O∞)

Consider the geometry A(O∞) fully embedded in AG(3, q), q = 2h, con-
structed in Section 4.2.1. We call the point n∞ the hole of the geometry
A(O∞). Notice that from the construction of A(O∞) it follows that none of
the affine lines through the hole n∞ is a line of A(O∞).

Lemma 4.4.1 If O∞ is a conic then the point set of the geometry A(O∞)
is a set of type (0, 1

2
q, q) of size 1

2
q3. If O∞ is an oval which is not a conic

then the point set of A(O∞) is the set of all affine points.
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Proof. This follows immediately from the construction of A(O∞) and The-
orem 4.2.2. 2

Lemma 4.4.2 The geometry A(O∞) has no planar nets.

Proof. In the proof of Theorem 4.2.1 it was shown that a plane of AG(3, q)
containing the hole n∞ does not contain two intersecting lines of A(O∞),
and that a plane of AG(3, q) not containing the hole does not contain two
parallel lines of S. Hence there are no planes of type III. 2

Lemma 4.4.3 Every line L of A(O∞) is contained in one plane of type II
and q planes of type IV.

Proof. Let S = A(O∞). From Lemmas 4.1.3 and 4.4.2 it follows that every
plane containing two intersecting lines of S is of type IV. Let L be a line of
S and p an affine point of L. A plane π ⊇ L is of type IV if and only if Sπ
contains two lines through p, so if and only if the line L∞ = π∩Π∞ is secant
to Op

∞. But L∞ contains p∞ = L ∩ Π∞ ∈ Op
∞, so only if L∞ contains the

hole n∞, L∞ is not secant to Op
∞. So there are q planes of type IV through

L and one of type II. 2

Lemma 4.4.4 The set of planes of type II of A(O∞) is exactly the set of
planes of AG(3, q) containing the hole n∞. Every plane of type II contains
exactly k lines of A(O∞), but no isolated points, with k = 1

2
q when O∞ is

a conic and k = q otherwise. Every point of Π∞ different from the hole n∞
occurs exactly once as the point at infinity of the k lines of A(O∞) in a plane
of type II.

Proof. Let S = A(O∞). In the proof of Theorem 4.2.1 it was shown that
a plane of AG(3, q) containing the hole n∞ does not contain two intersecting
lines of A(O∞). Let π be a plane containing n∞, let L∞ = π ∩ Π∞, and
suppose that p is a point of S in π. Then L∞ contains the nucleus n∞ of Op

∞,
so there is exactly one line in Sπ through p, and there are no isolated points
in Sπ. Since no two lines of Sπ intersect, Sπ consists of a number k of parallel
lines. Hence a line L ⊆ π through the hole n∞ contains exactly k points of
S. But in the proof of Theorem 4.2.2 it was shown that a line through n∞
contains 1

2
q points of S if O∞ is a conic and q otherwise. So k = 1

2
q if O∞ is

a conic and k = q otherwise.
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k
k

k

n∞

Π∞

Figure 4.3: A parallel class of planes containing the hole of the geometry
A(O∞).

Suppose that there is a plane π of type II which does not contain the hole
n∞. Let L be a line of Sπ and let π′ = 〈n∞, L〉. Then π′ is of type II. But
then L is contained in two planes of type II, a contradiction to Lemma 4.4.3.
So the planes of type II are exactly those containing the hole n∞.

The number of planes of type II is equal to the number of points of Π∞
different from n∞. Suppose that two planes π1 and π2 of type II contain lines
of S that are parallel. Then there are planes containing a line of Sπ1 and
a line of Sπ2 , so two parallel lines, but not containing n∞, a contradiction.
So every point of Π∞ different from n∞ occurs exactly once as the point at
infinity of the lines of S in a plane of type II. 2

Lemma 4.4.5 Consider a parallel class of planes in AG(3, q) not containing
the hole n∞ of the geometry A(O∞). If O∞ is a conic then half of the planes
in this parallel class are of type IV and contain no isolated points, and the
other half are of type I and contain 1

2
q(q − 1) points of A(O∞). If O∞ is

not a conic then every plane in the parallel class is of type IV and contains
1
2
q(q − 1) isolated points.

Proof. Let π1, . . . , πq denote the q planes of a parallel class of planes not
containing the hole n∞, and let L∞ be the line at infinity of this parallel
class. By Lemma 4.4.2 the plane πi is not of type III and by Lemma 4.4.4 πi
is not of type II, i = 1, . . . , q. So if a plane πi contains a line of A(O∞) then
it is of type IV.

Assume that O∞ is a conic. Let S = A(O∞) and let S ′ be the geometry
which is projectively equivalent to S and has as point set the complement of
the point set of S (see Theorem 4.2.2). Let p∞ ∈ L∞. Then by Lemma 4.4.4
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there are exactly 1
2
q lines of S through p∞. No two of these lines lie in the

same plane πi since then πi would be of type II or of type III. So there are at
least 1

2
q planes of type IV in the parallel class. But if πi is of type IV then

it contains a line of S through p∞. So there are exactly 1
2
q planes of type IV

in the parallel class.
In the proof of Theorem 4.2.2 it was shown that a line that is neither a

line of S nor of S ′ contains exactly 1
2
q points of both S and S ′. Suppose that

a plane πi which is of type IV with respect to S has an isolated point p of
S. Then a line L such that p ∈ L ⊆ πi is not a line of S, so it contains 0
or 1

2
q points of S. But L contains p and L intersects the dual oval of Sπi

in
1
2
q points, a contradiction. So a plane of type IV with respect to S contains

no isolated points of S. Similarly a plane πi of type IV with respect to S ′
contains no isolated points of S ′. This implies that, with respect to S, there
are 1

2
q planes of type IV in the parallel class containing no isolated points

and 1
2
q planes of type I containing 1

2
q(q − 1) isolated points.

Now assume that O∞ is not a conic. Let S = A(O∞) and let p∞ ∈ L∞.
Then by Lemma 4.4.4 there are exactly q lines of S through p∞. No two of
these lines lie in the same plane πi. So every plane in the parallel class is
of type IV. Since every affine point is a point of S, every plane πi contains
1
2
q(q − 1) isolated points. 2

4.4.3 The semipartial geometry TQ(4, q)

Consider the geometry TQ(4, q) fully embedded in AG(4, q), q = 2h, con-
structed in Section 1.4.7. The point set of TQ(4, q) is the set R−

4 \ Π∞. In
this section PG(4, q) will be embedded as a hyperplane in PG(5, q), r will
denote a point of PG(5, q) not in PG(4, q) and Q−(5, q) will denote a nonsin-
gular elliptic quadric in PG(5, q) such that the projection of Q−(5, q) from
r on PG(4, q) is R−

4 . The hyperplane at infinity Π∞ of AG(4, q) is then the
intersection of PG(4, q) with the hyperplane Ur(Q

−(5, q)) = rβ, where β is
the symplectic polarity associated with Q−(5, q) (see section 1.3.1). Recall
that the set of lines through r in rβ is exactly the set of lines through r that
are tangent to Q−(5, q), and that rβ ∩ Q−(5, q) is a nonsingular parabolic
quadric with nucleus r.

Lemma 4.4.6 The point set of the geometry TQ(4, q) is a set of type
(0, 1

2
q, q) of size 1

2
q2(q2 − 1).

Proof. This follows immediately from the construction of TQ(4, q). 2



86 4. Affine semipartial geometries and (0, α)-geometries

Lemma 4.4.7 Consider S = TQ(4, q) and let U be a hyperplane of AG(4, q).
Then either U is of type A and SU ' HT, or U is of type D and SU consists
of 1

2
q(q − 1) parallel lines.

Proof. Let V be the hyperplane of PG(5, q) spanned by U and r. There
are two possibilities for the quadric Q4 = V ∩Q−(5, q). The first is that Q4

is a nonsingular parabolic quadric in V . Since V 6= rβ, r is not the nucleus
of Q4, and so SU ' HT. The second possibility is that Q4 is a cone with
vertex a point p ∈ rβ and base a nonsingular elliptic quadric in a 3-space not
containing p. In this case p is projected from r on a point p∞ of Π∞, and
SU consists of the projection from r on AG(4, q) of the q(q − 1) lines of Q4

that are not in rβ. This projection yields 1
2
q(q − 1) lines of AG(4, q) which

intersect Π∞ in the point p∞. 2

Lemma 4.4.8 Consider S = TQ(4, q) and let π be a plane of AG(4, q).
Then π is of type I and it contains 1

2
q(q − 1) points of TQ(4, q), or π is of

type II and it contains 1
2
q lines of TQ(4, q) and no isolated points, or π is of

type IV and it contains no isolated points.
The number of hyperplanes of type A through π is q−1, q or q+1 according

to π being of type I, of type II or of type IV.

Proof. By Lemma 4.4.7 every hyperplane through π is of type A or of type
D. Since S has order (q− 1, q2), π is contained in a hyperplane U of type A.
By Lemma 4.4.7 SU is connected and SU ' HT. Now since HT ' A(O∞)
with O∞ a conic, the first part of the lemma follows from Lemmas 4.4.2,
4.4.4 and 4.4.5.

The second part of the lemma follows from the first part and from Lemma
4.4.7 by counting the total number of lines of S through a point of Sπ. 2

Lemma 4.4.9 Consider S = TQ(4, q) and let U1, . . . , Uq be a parallel class
of hyperplanes of AG(4, q). Then there is one hyperplane, say U1, which is
of type D. Let n∞ be the point at infinity of the lines of TQ(4, q) in U1. For
every i = 2, . . . , q the hyperplane Ui is of type A and n∞ is the hole of SUi

.

Proof. Let π∞ be the plane at infinity of the parallel class {U1, . . . , Uq}. Let
W = 〈r, π∞〉 and for every i = 1, . . . , q, let Vi = 〈r, Ui〉. Since r ⊆ W ⊆ rβ,
and since rβ ∩ Q−(5, q) is a nonsingular parabolic quadric with nucleus r,
W ∩Q−(5, q) is a cone C with vertex a point p and base a nonsingular conic
in a plane not containing p.
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Consider the q + 1 hyperplanes of PG(5, q) through W : rβ, V1, . . . , Vq.
Exactly one of them, namely the tangent hyperplane Tp(Q

−(5, q)) = pβ at
p, intersects Q−(5, q) in a cone with vertex p and base a nonsingular ellip-
tic quadric in a 3-space not containing p. The other hyperplanes intersect
Q−(5, q) in nonsingular parabolic quadrics. Clearly pβ 6= rβ, so without loss
of generality we may put V1 = pβ. Hence U1 is of type D, and the lines of S
in U1 intersect Π∞ in the point n∞ = 〈p, r〉 ∩ PG(4, q).

The hyperplane Vi, i ∈ {2, . . . , q}, intersects Q−(5, q) in a nonsingular
parabolic quadric Q4, so Ui is of type A. The lines on Q4 that contain the
point p are the lines of the cone C = W ∩Q−(5, q). So SUi

has no lines which
intersect Π∞ in the point n∞, that is, n∞ is the hole of SUi

. 2

4.4.4 The (0, 2)-geometry I(n, q, e)

Consider the (0, 2)-geometry I(n, q, e) fully embedded in AG(n, q), with
q = 2h and e ∈ {1, . . . , h − 1} such that gcd(e, h) = 1, which was con-
structed in Section 4.2.2. We recall that in the construction, the hyperplane
U plays a special role.

Lemma 4.4.10 A plane π containing two intersecting lines of I(n, q, e) is
of type III if π ⊆ U and of type IV if π 6⊆ U , in which case π ∩U is a line of
I(n, q, e).

Proof. This was shown in the proof of Theorem 4.2.3. 2

Proposition 4.4.11 There is exactly one hyperplane of type C (respectively
of type III if n = 3), namely U . There are no lines of I(n, q, e) parallel to
U except those in U . Through every affine point of U there is exactly one
line of I(n, q, e) which is not contained in U . Through every point of Π∞ not
in U∞ there is exactly one line of I(n, q, e). Hence no two lines of I(n, q, e)
which are not contained in U are parallel.

Proof. The first statement is a consequence of Lemma 4.4.10, the rest
follows immediately from the construction of I(n, q, e). 2

Proposition 4.4.12 The number of points of the geometry I(n, q, e) is
(1

2
q)n−1(q + 2n−1 − 1), and the number of lines is qn−2(q + 2n−1 − 1).
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Proof. From the construction of I(n, q, e) it follows that the number of
lines is | B1 | + | B2 | = qn−2(2n−1 − 1) + qn−1. Counting the number of flags
of I(n, q, e) yields the number of points. 2

Lemma 4.4.13 A subspace V∞ ⊆ U∞ is fixed by ϕ if and only if the set
V∞ ∩ K∞ spans V∞.

Proof. If V∞ ∩ K∞ spans V∞, then clearly V ϕ
∞ = V∞. Now suppose that ϕ

fixes a j-dimensional subspace V∞ of U∞. Without loss of generality we may
assume that V∞ can be coordinatized by the coordinates X0, . . . , Xj. This
means that there exist homogeneous linear functions

fi : GF(q)j+1 → GF(q), i = j + 1, . . . , n− 2,

such that every point p∞ of V∞ has coordinates

p∞(x0, . . . , xj, fj+1(x0, . . . , xj), . . . , fn−2(x0, . . . , xj), 0, 0).

Let p∞(ε0, . . . , εj, fj+1(ε0, . . . , εj), . . . , fn−2(ε0, . . . , εj), 0, 0) ∈ V∞, with
ε0, . . . , εj ∈ GF(2). Then

pϕ∞(ε0, . . . , εj, fj+1(ε0, . . . , εj)
2e

, . . . , fn−2(ε0, . . . , εj)
2e

, 0, 0).

However, since pϕ∞ ∈ V ϕ
∞ = V∞,

pϕ∞(ε0, . . . , εj, fj+1(ε0, . . . , εj), . . . , fn−2(ε0, . . . , εj), 0, 0).

So for i = j + 1, . . . , n− 2, fi(ε0, . . . , εj)
2e

= fi(ε0, . . . , εj). Hence pϕ∞ = p∞.
It follows that 〈V∞ ∩ K∞〉 = V∞. 2

In the following theorem V is an m-dimensional subspace of AG(n, q),
V ′ = V ∩ U , V∞ = V ∩ Π∞, V ′

∞ = V ∩ U∞ and X ′
∞ = 〈V ′

∞ ∩ K∞〉. Also
W∞ = V ′ϕ ∩ V∞, W ′ = Wϕ−1

∞ and W ′
∞ = W ′ ∩ W∞. Let l denote the

dimension of X ′
∞. Note that X ′

∞ ⊆ W ′
∞. Indeed, let p∞ ∈ V ′

∞ ∩ K∞. Then
pϕ∞ = p∞. Since p∞ ∈ V ′, pϕ∞ = p∞ ∈ V ′ϕ. Since p∞ ∈ V∞, p∞ ∈ W∞. Hence
pϕ

−1

∞ = p∞ ∈ W ′. So p∞ ∈ W ′
∞. It follows that V ′

∞ ∩ K∞ ⊆ W ′
∞. Hence

X ′
∞ ⊆ W ′

∞. See also Figure 4.4.

Theorem 4.4.14 Let S = I(n, q, e), and let V be an m-dimensional sub-
space of AG(n, q), n ≥ 3, 2 ≤ m ≤ n − 1. Then we have the following
possibilities for V .
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1. V ⊆ U. Then SV is the linear representation in V of the set V ′
∞ ∩K∞.

If X ′
∞ = V ′

∞ then SV is connected, so V is of type C (respectively of
type III if m = 2), and if X ′

∞ 6= V ′
∞ then V is of type D (respectively

of type I or II if m = 2).

2. V 6⊆ U and V is parallel to U . Then V is of type D (respectively of
type I if m = 2) and SV does not contain any lines.

3. V is not parallel to U . Then we have the following possibilities.

(a) W∞ ⊆ U∞. Then V is of type D (respectively of type I or II if
m = 2). More specifically SV consists of the linear representation
in V ′ of V ′

∞ ∩ K∞ and possibly some isolated points in V \ V ′.

(b) W∞ 6⊆ U∞ and V ′ϕ = V∞. Then V is of type B (respectively
of type IV if m = 2) and every line of SV is contained in the
connected component S ′ ' I(m, q, e) (respectively in the dual oval
of SV if m = 2).

(c) W∞ 6⊆ U∞ and V ′ϕ 6= V∞. Then V is of type D (respectively of
type I or II if m = 2). We have the following cases.

i. l = −1. Then the connected components of SV are the lines
〈p, pϕ〉, for all affine points p ∈ W ′, and possibly some isolated
points.

ii. l = 0. Then the connected components of SV are dual ovals
in the planes 〈L,Lϕ〉, for all affine lines L ⊆ W ′ intersecting
Π∞ in the point X ′

∞, the affine lines L ⊆ V ′ \W ′ intersecting
Π∞ in the point X ′

∞, and possibly some isolated points.

iii. l ≥ 1. Then for every subspace X ′ ⊆ W ′ which intersects
Π∞ in X ′

∞ there is a connected component S ′ of SV in X =
〈X ′, X ′ϕ〉 such that S ′ ' I(l + 2, q, e). For every subspace
X ′ ⊆ V ′ \W ′ which intersects Π∞ in X ′

∞ there is a connected
component S ′ of SV which is the linear representation in X ′

of the set V ′
∞ ∩ K∞. The other connected components of SV

are, possibly, some isolated points.

Proof.

1. V ⊆ U. In this case the theorem holds since U is a hyperplane of type
C (respectively of type III if n = 3).

2. V 6⊆ U and V is parallel to U . In this case the theorem holds since by
Lemma 4.4.11 every line of I(n, q, e) parallel to U is contained in U .
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Figure 4.4: The intersection of the geometry I(n, q, e) with affine subspaces.

3. V is not parallel to U . Then dimV ′ = dimV ′ϕ = dimV∞ = m − 1
and dimV ′

∞ = m − 2. Note that V ′ϕ ⊆ Π∞ since Uϕ = Π∞. Suppose
that L is a line of B2 in V . If p = L ∩ U , then pϕ = L ∩ Π∞. Since
p ∈ V ∩ U = V ′, pϕ ∈ V ′ϕ. But L ⊆ V , so pϕ ∈ V∞. Hence pϕ ∈ W∞,
and p ∈ W ′. Conversely if p is an affine point of W ′ then pϕ ∈ W∞ and
the line 〈p, pϕ〉 is a line of B2 in V . So the lines of B2 in V are exactly
the lines 〈p, pϕ〉, where p is an affine point of W ′.

(a) W∞ ⊆ U∞. In this case W ′ ⊆ U∞, so there are no lines of B2 in V .
Hence SV consists of the linear representation in V ′ of V ′

∞ ∩ K∞
and possibly some isolated points in V \ V ′. So every connected
component containing a line lies in a subspace of V ′. It follows
that V is of type D (respectively of type I or II if m = 2).

(b) W∞ 6⊆ U∞ and V ′ϕ = V∞. In this caseW∞ = V∞ andW ′ = V ′. So
the lines of B2 in V are all lines 〈p, pϕ〉, where p is an affine point
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of V ′. Since V ′
∞ = V ′ ∩U∞, V ′ϕ

∞ = V ′ϕ ∩Uϕ
∞ = V∞ ∩U∞ = V ′

∞, so
by Lemma 4.4.13, 〈V ′

∞ ∩ K∞〉 = V ′
∞. Hence X ′

∞ = V ′
∞.

Without loss of generality we may assume that V is coordinatized
by the coordinates X0, . . . , Xm−2, Xn−1, Xn. Let

ψ : V → PG(m, q)

(x0, . . . , xn) 7→ (x0, . . . , xm−2, xn−1, xn).

Then ψ is a collineation. A line

〈p(x0, . . . , xn−2, 0, 1), pϕ(x2e

0 , . . . , x
2e

n−2, 1, 0)〉

of B2 in V is mapped by ψ to the line

〈(x0, . . . , xm−2, 0, 1), (x2e

0 , . . . , x
2e

m−2, 1, 0)〉

of AG(m, q). Since 〈V ′
∞ ∩ K∞〉 = V ′

∞ and since X0, . . . , Xm−2,
Xn−1, Xn coordinatize V , the points of K∞ in V ′

∞ are the points
p∞(ε0, . . . , εn−2, 0, 0), where ε0, . . . , εm−2 are arbitrary in GF(2)
(but not all zero) and εm−1, . . . , εn−2 ∈ GF(2) depend on ε0, . . . ,
εm−2. So the points of K∞ in V ′

∞ are mapped by ψ to the points
(ε0, . . . , εm−2, 0, 0) where ε0, . . . , εm−2 are arbitrary in GF(2) (but
not all zero). Now it is clear that the lines of SV are mapped by
ψ to the lines of I(m, q, e) (respectively to the lines of a dual oval
if m = 2).

(c) W∞ 6⊆ U∞ and V ′ϕ 6= V∞. Suppose first that l = −1. Then
V ′
∞ ∩ K∞ = ∅, so there are no lines of B1 in V . Suppose that two

lines L1 and L2 of B2 in V intersect. Then by Lemma 4.4.10, the
plane π = 〈L1, L2〉 is of type IV and intersects U in a line of S.
But SV does not contain any lines of B1, a contradiction. So the
connected components of SV are the lines 〈p, pϕ〉 for p ∈ W ′ and
some isolated points.

Now suppose that l ≥ 0. Then 〈V ′
∞ ∩ K∞〉 is not empty. Let

X ′ ⊆ W ′ be an (l+1)-dimensional subspace not contained in Π∞,
such that X ′ ∩ Π∞ = X ′

∞, let X∞ = X ′ϕ and let X = 〈X ′, X∞〉.
By Lemma 4.4.13, X ′ϕ

∞ = X ′
∞, so X ′ ∩X∞ = X ′

∞. Hence X is an
(l+2)-dimensional subspace of AG(n, q) which falls under case 3b,
so X is of type B (respectively of type IV if l = 0) and every line
of SX is contained in the connected component S ′ ' I(l + 2, q, e)
(respectively in the dual oval S ′ of SX if l = 0).

We prove that S ′ is a connected component of SV . Suppose that
this is not so. Then there is a line L 6⊆ X of SV which intersects
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X in a point p of S ′. Let L′ be a line of B2 in S ′ through p. Since
L′ 6⊆ U , the plane π = 〈L,L′〉 6⊆ U , so by Lemma 4.4.10, π is a
plane of type IV and the line M = π∩U is in B1. Since π∩X = L′,
M 6⊆ X. Since π is of type IV, M intersects L′ and so also X in
an affine point r. Now since M is a line of B1 in V and M 6⊆ X,
the point p∞ = M ∩ Π∞ is a point of K∞ in V ′

∞ but not in X ′
∞.

But this contradicts X ′
∞ = 〈V ′

∞ ∩ K∞〉.
We conclude that for every subspace X ′ ⊆ W ′ of dimension l+ 1,
which intersects Π∞ in the l-space X ′

∞, there is a connected com-
ponent S ′ of SV in X = 〈X ′, X ′ϕ〉 such that S ′ ' I(l + 2, q, e)
(respectively such that S ′ is a dual oval if l = 0).

Let L denote a line of B2 in V . Then p = L ∩ V ′ ∈ W ′ and
L ∩ V∞ = pϕ ∈ W∞. Let X ′ = 〈p,X ′

∞〉. Then X ′ ⊆ W ′ and
L ⊆ X = 〈X ′, X ′ϕ〉, so L is contained in the connected component
S ′ of SX with S ′ ' I(l + 2, q, e) (respectively with S ′ is a dual
oval if l = 0).

The remaining connected components of SV are either isolated
points or they are contained in V ′. Since SV ′ is the linear repre-
sentation of the set V ′

∞ ∩ K∞, the rest of the theorem follows. 2

Corollary 4.4.15 Consider I(n, q, e), n ≥ 4, and let V ′ be an (n − 2)-
dimensional subspace of type C (respectively of type III if n = 4). Then
there is exactly one hyperplane V of type B which contains V ′. Furthermore,
SV is connected, so V does not contain any isolated points.

Proof. By Theorem 4.4.14, V ′ ⊆ U , and V ′
∞ = V ′∩U∞ is such that V ′

∞∩K∞
spans V ′

∞. Now Lemma 4.4.13 implies that V ′
∞ is fixed by ϕ. So V ′

∞ ⊆ V ′ϕ

and hence V = 〈V ′, V ′ϕ〉 is a hyperplane. It follows from Theorem 4.4.14 that
V is a hyperplane of type B. Since there is exactly one line of B2 through
every affine point of V ′, V is the only hyperplane of type B containing V ′.

Let S ′ be the connected component of SV which is projectively equivalent
to I(n−1, q, e). By Theorem 4.4.14, the other (if any) connected components
of SV are isolated points.

Let m denote the number of isolated points of SV . We count the number
x of flags {p, L}, where p is a point of SV , not in V ′, and L is a line of S,
not contained in V , and, since p 6∈ V ′, not contained in U . Through every
isolated point of SV pass 2n−1 lines of S, none of which are contained in V .
Through every point of S ′ pass 2n−1 lines of S, 2n−2 of which are contained
in V . By Proposition 4.4.12, the number of points of S ′, not in V ′, equals
(1

2
q)n−2(q − 1). Hence x = qn−2(q − 1) + 2n−1m.
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On the other hand the number of lines of S which are contained in neither
V nor U equals qn−1−qn−2. Hence x ≤ qn−2(q−1). We conclude that m = 0,
so SV is connected. 2

Corollary 4.4.16 Consider I(3, q, e), and let π be a plane which intersects
U in an affine line L, which is not a line of I(3, q, e). Then π is of type II
and it contains exactly one line of I(3, q, e).

Proof. We use the notation of Theorem 4.4.14, with π = V . So V ′ = L,
and V ′

∞ is the point L∩U∞. Now V ′
∞ 6∈ K∞ since L is not a line of I(3, q, e).

Hence V ′
∞ 6∈ V ′ϕ, and so V ′ϕ 6= V∞. The lines V ′ϕ and V∞ are in the plane

Π∞, so W∞ is a point. Since V∞ ∩ U∞ = V ′
∞ and V ′

∞ 6∈ V ′ϕ, W∞ 6∈ U∞. So
W ′ is an affine point of V ′, and by Theorem 4.4.14, π is a plane of type II
containing exactly one line, namely the line 〈W ′,W∞〉. 2

Lemma 4.4.17 Let S = I(n, q, e), let p be a point of S not contained in
U , and let T = p⊥ ∩ U . Then T ∪ K∞ is the point set of a projective space
PG(n− 1, 2).

Proof. Since the order of S is (q − 1, 2n−1 − 1), | T | = 2n−1.
Suppose that three distinct points r1, r2, r3 of T are collinear. Then the

lines 〈p, ri〉, i = 1, 2, 3, are coplanar. Necessarily, the plane containing them
is of type III. But this contradicts Lemma 4.4.10. So no three distinct points
of T are collinear.

Let r1, r2 denote two distinct points of T . By definition of T , the line
Li = 〈p, ri〉 is a line of S, i = 1, 2. Hence α(r1, L2) > 0. Since S is a (0, 2)-
geometry, α(r1, L2) = 2, so there is a line L 6= L1 of S through r1 which
intersects L2 in an affine point. By Proposition 4.4.11, L1 is the only line of
S through r1 which is not contained in U . Hence L ⊆ U . But L intersects
L2, so L = 〈r1, r2〉. Now since L is a line of S, L = 〈r1, r2〉 intersects Π∞ in
a point of K∞. This holds for any two distinct points r1, r2 ∈ T .

Let r1, r2 be two distinct points of T . Then the point p∞ = 〈r1, r2〉 ∩Π∞
is a point of K∞. Hence we can choose a new basis in PG(n, q), such that,
with respect to this basis,

K∞ = {(ε0, . . . , εn−2, 0, 0) 6= (0, . . . , 0) | εi ∈ GF(2), 0 ≤ i ≤ n− 2},

p∞(0, . . . , 0, 1, 0, 0), r1(0, . . . , 0, 1, 0) and r2(0, . . . , 0, 1, 1, 0).
Let r ∈ T \{r1, r2}. Then r, r1, r2 are not collinear. Let pi∞ = 〈r, ri〉∩Π∞,

i = 1, 2. Then pi∞ ∈ K∞, i = 1, 2, and p∞, p1
∞, p2

∞ are collinear. So, with
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respect to the chosen basis, p1
∞(ε0, . . . , εn−2, 0, 0), where εi ∈ GF(2), 0 ≤ i ≤

n − 2 and (ε0, . . . , εn−3) 6= (0, . . . , 0), and p2
∞(ε0, . . . , εn−2 + 1, 0, 0). Hence

r(ε0, . . . , εn−2, 1, 0).
With respect to the chosen basis, let

K = {(ε0, . . . , εn−1, 0) 6= (0, . . . , 0) | εi ∈ GF(2), 0 ≤ i ≤ n− 1}.

Then K is the point set of a projective space PG(n− 1, 2), and T ∪K∞ ⊆ K.
Since | T ∪ K∞ | = | K | , T ∪ K∞ = K. 2

We have deduced all the properties of the geometry I(n, q, e) that are
needed in Chapters 5, 6. However, it is our opinion that further study is
required to fully understand the geometry I(n, q, e). Therefore, we have
added Appendix A.



Chapter 5

Classification of
(0, 2)-geometries fully
embedded in AG(3, 2h)

The aim of this chapter is to classify all (0, 2)-geometries which are fully
embedded in AG(3, 2h) and which have a plane of type IV. Note that the
(0, 2)-geometries fully embedded in AG(3, 2h), which do not have a plane of
type IV, are already classified by Theorem 4.3.1. By Proposition, 4.3.5 we
may assume that h > 1.

In Section 5.2, the classification is achieved under the additional assump-
tion that there is at least one planar net. The remaining case, namely that
there are no planar nets, is the subject of Section 5.3; a complete classifi-
cation is again achieved. In Section 5.3.2, it is shown that the order of a
(0, 2)-geometry which is fully embedded in AG(3, 2h), such that there is a
plane of type IV but no planar nets, is (2h− 1, 2h). Finally, in Section 5.3.3,
the (0, 2)-geometries of order (2h − 1, 2h) fully embedded in AG(3, 2h), such
that there is a plane of type IV but no planar nets, are classified.

The results of Section 5.2 are published in [33]. The results of Section 5.3
are published in [32, 36].

5.1 Preliminaries

Let S be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h. In Lemma
4.1.3 it was shown that a plane π of AG(3, q) is of one of the following four
types.

Type I. π does not contain any line of S.

95
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Type II. π contains a number of parallel lines of S and possibly some iso-
lated points.

Type III. Sπ is a planar net of order q and degree 3.

Type IV. Sπ consists of a pg(q − 1, 1, 2) (that is, a dual oval with nucleus
the line at infinity) and possibly some isolated points.

Note that a plane of AG(3, q) which contains two intersecting lines of S is
necessarily a plane of type III or IV, and that a plane of AG(3, q) which
contains two parallel lines of S is necessarily a plane of type II or III.

Assume that π is a plane of type IV. Then Sπ has q+1 lines, one in each
parallel class of lines of π. Let S ′ be the connected component of Sπ which
is a dual oval. Then S ′ contains 1

2
q(q + 1) points, and through each point of

S ′ there are two lines of S ′. Each affine line of π which is not a line of S ′
contains exactly 1

2
q points of S ′, and so at least 1

2
q points of Sπ.

Assume that π is a plane of type III. Then Sπ has 3q lines, namely the
lines of three parallel classes of lines in π. Every affine point of π is a point
of Sπ.

A point p∞ of Π∞ is called a hole if there are no lines of S which intersect
Π∞ in the point p∞. For every plane π of AG(3, q) we let P∞(π) denote the
set of points at infinity of all the lines of Sπ. So if π is a plane of type I,
respectively type II, type III or type IV, then P∞(π) consists of 0, respectively
1, 3 or q + 1 points. If π is a plane of type IV and L∞ = π ∩ Π∞ we shall
abuse notation and write P∞(π) = L∞.

Let L∞ be a line of Π∞ and let p∞ be a point on L∞. Then p∞ is a hole
if and only if p∞ 6∈ P∞(π) for every affine plane π intersecting Π∞ in the line
L∞.

In this chapter we will make frequent use of the following argument. Let
π and π′ be parallel planes of AG(3, q). Let (q − 1, t) be the order of S. If
p is a point of Sπ, respectively Sπ′ , on exactly i lines of Sπ, respectively Sπ′ ,
with 0 ≤ i ≤ 3, then there are exactly t + 1 − i lines of S which intersect
π, respectively π′, in the point p. Let mi, respectively m′

i, be the number of
points of Sπ, respectively Sπ′ , that are on exactly i lines of Sπ, respectively
Sπ′ , for 0 ≤ i ≤ 3. Since the number of lines of S which intersect π in an
affine point must be equal to the number of lines of S which intersect π′ in
an affine point, we get that

3∑
i=0

mi(t+ 1− i) =
3∑
i=0

m′
i(t+ 1− i).



5.2. Classification in case there is a planar net 97

5.2 Classification in case there is a planar net

Lemma 5.2.1 Let S be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h,
h > 1. If p is a point of S not in a plane π of type III, then the number of
lines of S through p which intersect π in an affine point is even.

Proof. This follows easily from the fact that Sπ contains a complete parallel
class of lines of π, and that S is a (0, 2)-geometry. 2

Lemma 5.2.2 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded in
AG(3, q), q = 2h, h > 1. If t is even, then any plane parallel to but different
from a plane of type III is either a plane of type II without isolated points or
a plane of type III. If t is odd, then any plane parallel to but different from a
plane of type III is either a plane of type I or a plane of type IV.

Proof. Assume that π is a plane of type III. Then by Lemma 5.2.1 the
parity of the number of lines of S through a point p of S and parallel to π is
constant for all points p 6∈ π of S. The lemma follows. 2

Theorem 5.2.3 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there is a plane of type IV and a planar
net. Then t is odd.

Proof. Suppose that t is even. We show that every plane which is par-
allel to a plane of type III, is itself of type III. From this we will deduce a
contradiction.

Let π be a plane of type III, and let π′ be a plane parallel to π. Suppose
that π′ is not of type III. Then by Lemma 5.2.2, π′ is a plane of type II and
π′ does not contain any isolated point. Let Θ denote the number of lines
of Sπ′ . Counting the number of lines of S intersecting both π and π′ in an
affine point yields q2(t− 2) = qΘt. Hence t | 2q.

Let P∞(π) = {x∞, y∞, z∞} and P∞(π′) = {u∞}. Without loss of general-
ity, we may assume that x∞ 6= u∞ 6= y∞. Suppose that L is a line of S such
that L ∩ Π∞ = x∞ and L 6⊆ π. Let p be an affine point of L. By Lemma
4.1.4, θp spans Π∞, so there is a line M of S through p intersecting π in an
affine point. Let π′′ = 〈L,M〉. Then the line π ∩ π′′ is a line of S since it
intersects Π∞ in x∞. Now Sπ′′ contains two intersecting lines as well as two
parallel lines, so π′′ is a plane of type III. Hence every line in π′′ intersecting
Π∞ in x∞ is a line of S. So also the line π′ ∩ π′′ is a line of S. But this



98 5. Classification of (0, 2)-geometries in AG(3, 2h)

contradicts P∞(π′) = {u∞}. So every line of S through x∞ is contained in
the plane π. Analogously, every line of S through y∞ is contained in π.

Let p be an affine point of π and let L = 〈p, x∞〉. Since every line of
S which is parallel to L, is contained in π, π is the only plane of type III
through L. Hence the number of planes of type IV through L equals the
number of lines of S through p not contained in π, namely t − 2. It follows
that t− 2 ≤ q. Since q > 2, t < 2q. Since t | 2q, t ≤ q. This means that there
is a plane π′′ of type II which contains L. Clearly P∞(π′′) = {x∞}. Since
every line of S parallel to L is contained in π, S ′′π contains only one line. Let
π′′′ be a plane parallel to π′′ and suppose that π′′′ is of type IV. Let π(4) be
a plane parallel to π. Then either π(4) is of type III or π(4) is of type II, π(4)

contains no isolated points and P∞(π(4)) 6= {x∞}. In any case the numbers
of points of S on the lines π′′ ∩ π(4) and π′′′ ∩ π(4) are equal. Hence Sπ′′ and
Sπ′′′ have the same number of points, say m. Now counting the number of
lines of S intersecting both π′′ and π′′′ in affine points yields

qt+ (m− q)(t+ 1) =
1

2
q(q + 1)(t− 1) + (m− 1

2
q(q + 1))(t+ 1).

A contradiction follows. So π′′′ is not of type IV. Since the line π ∩ π′′′ is a
line of S through x∞ and since every line of S through x∞ is contained in
π, π′′′ is not of type III. Hence π′′′ is a plane of type II and P∞(π′′′) = {x∞}.
Since this holds for every plane π′′′ parallel to π′′, the line L∞ = π′′ ∩ Π∞
contains only one point which is not a hole, namely x∞.

Let M = 〈p, y∞〉. By Lemma 4.1.4, θp spans Π∞, so there is a line N of
S which intersects π in p. Let π′′′ = 〈M,N〉 and let M∞ = π′′′ ∩ Π∞. Since
every line of S parallel to M is contained in π, π′′′ is not of type III. However
S ′′′π contains two intersecting lines, so π′′′ is a plane of type IV. Hence M∞
does not contain any hole. But M∞ intersects L∞ in a point different from
x∞. So M∞ contains a hole, a contradiction. So every plane parallel to a
plane of type III, is of type III.

Let L∞ be the line at infinity of a plane of type III. Let V be the parallel
class of planes which intersect Π∞ in L∞. Then every plane of V is of type
III. We prove that for any two planes π, π′ ∈ V , P∞(π) = P∞(π′).

Let p∞ ∈ L∞ and suppose that there are affine planes π, π′ ∈ V such
that p∞ ∈ P∞(π) ∩ P∞(π′). Let L be a line of S which intersects π in an
affine point, and let π′′ = 〈p∞, L〉. Then Sπ′′ contains two intersecting lines,
namely L and π∩π′′, as well as two parallel lines, namely π∩π′′ and π′∩π′′.
So π′′ is of type III and p∞ ∈ P∞(π′′). Hence every plane π′′′ ∈ V contains
a line of S through p∞, namely π′′ ∩ π′′′. So p∞ ∈ P∞(π′′′) for every plane
π′′′ ∈ V .
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Since 3q > q + 1 there exist two distinct planes π1, π2 ∈ V such that
P∞(π1) ∩ P∞(π2) 6= ∅. Let p1

∞ ∈ P∞(π1) ∩ P∞(π2). Then p1
∞ ∈ P∞(π) for

every plane π ∈ V . Similarly since 2q > q there exist two planes π3, π4 ∈ V
such that (P∞(π3)∩P∞(π4))\{p1

∞} 6= ∅. Let p2
∞ ∈ (P∞(π3)∩P∞(π4))\{p1

∞}.
Then p2

∞ ∈ P∞(π) for every plane π ∈ V . Finally since q > q − 1 there exist
two planes π5, π6 ∈ V such that P∞(π5) = P∞(π6). Let p3

∞ be the unique
point of P∞(π5) \ {p1

∞, p
2
∞}. Then p3

∞ ∈ P∞(π) for every plane π ∈ V . Hence
for every plane π ∈ V , P∞(π) = {p1

∞, p
2
∞, p

3
∞}. As a consequence every point

of L∞ except p1
∞, p

2
∞ and p3

∞ is a hole, and every affine line which intersects
Π∞ in pi∞, 1 ≤ i ≤ 3, is a line of S.

Let π be a plane of type IV. Then the line M∞ = π ∩ Π∞ contains no
holes, so it intersects L∞ in p1

∞, p
2
∞ or p3

∞. But then π contains q parallel
lines of S, which is impossible. We conclude that t is odd. 2

Theorem 5.2.4 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there is a plane of type IV and a planar
net. Then t = 3, there is a unique plane π of type III, and every plane parallel
to but different from π is of type I.

Proof. It follows from Theorem 5.2.3 that t is odd. Let π be a plane of
type III. Suppose that a plane π′ parallel to π is of type IV. Let p∞ ∈ P∞(π)
and let L be the unique line of Sπ′ which intersects Π∞ in p∞. Any plane
containing L and different from π′ contains two parallel lines of S, namely
L and π ∩ π′, so is of type II or III. Let p be an affine point of L. Then the
number of planes of type III containing L equals half the number of lines of
S through p which are not contained in π′, so 1

2
(t − 1). Since by Lemma

4.1.4, θp spans Π∞, there is at least one line of S through p not contained in
π′, so at least one plane of type III containing L. Suppose there is exactly
one plane π′′ of type III containing L. Then t = 3. Consider an affine point
p′ on the line π ∩ π′′. Then there are at least 5 lines of S through p′, a
contradiction. So there are at least two planes π′′ and π′′′ of type III which
contain L. Since L is a line of S, p∞ ∈ P∞(π′′) ∩ P∞(π′′′). Hence a plane
π(4) parallel to π but different from π and π′ contains two parallel lines of S,
namely π′′ ∩ π(4) and π′′′ ∩ π(4). But this implies that π(4) is of type II or III,
a contradiction with Lemma 5.2.2. So no plane parallel to a plane of type
III, is of type IV. By Lemma 5.2.2 every plane parallel to a plane of type III,
is of type I.

Consider again a plane π of type III, let P∞(π) = {x∞, y∞, z∞} and let
L∞ = π ∩Π∞. Since every plane parallel to π is of type I, there are no lines
of S which are parallel to π except those contained in π. So every point of



100 5. Classification of (0, 2)-geometries in AG(3, 2h)

L∞ except x∞, y∞, z∞ is a hole. Let M∞ be a line of Π∞ which intersects
L∞ in the point x∞, and let V be the parallel class of planes of AG(3, q)
which intersect Π∞ in M∞. For every plane π′ ∈ V , the line π ∩ π′ intersects
Π∞ in x∞, so it is a line of S. Hence x∞ ∈ P∞(π′) for every plane π′ ∈ V .
Since every line of S which intersects Π∞ in x∞ is contained in π, a plane
π′ ∈ V cannot be of type III. So a plane π′ ∈ V is of type II or IV. Suppose
that every plane of V is of type II. Then every point of M∞ except x∞ is a
hole. Let L be a line of S which intersects π in an affine point p, and let
π′ = 〈y∞, L〉. Then π′ contains two intersecting lines of S, namely L and
〈p, y∞〉, so π′ is of type III or IV. But π′ cannot be of type III, otherwise
there would be lines of S parallel to but not contained in π. So π′ is of type
IV and hence the line N∞ = π′ ∩ Π∞ does not contain any holes. But the
point M∞ ∩ N∞ is different from x∞, so it is a hole, contradiction. Hence
there is at least one plane of type IV in V , and the line M∞ does not contain
any holes. As a consequence no point of Π∞ not on L∞ is a hole.

Let π′ be a plane of type III and let M∞ = π′ ∩ Π∞. Since every plane
parallel to π′ is of type I, the line M∞ contains q − 2 holes. But since q ≥ 4
and since no point of Π∞ not on L∞ is a hole, this implies that M∞ = L∞.
So π and π′ are parallel and by Lemma 5.2.2, π′ = π. So π is the only plane
of type III.

Finally, let L be a line of S which intersects π in an affine point. The
planes through L and x∞, y∞ and z∞ are planes of type IV since they contain
two intersecting lines of S and since π is the only plane of type III. Let π′ be
a plane containing L, different from these three planes. Then π′ intersects
L∞ in a hole, so π′ is not of type IV. It follows that π is of type II. Hence
through every affine point of L there are exactly four lines of S, so t = 3. 2

Theorem 5.2.5 Let S be a (0, 2)-geometry fully embedded in AG(3, q),
q = 2h, h > 1, such that there is a plane of type IV and a planar net.
Then S ' I(3, q, e) for some e such that gcd(e, h) = 1.

Proof. By Theorem 5.2.4, we know that the order of S is (q − 1, 3),
and there is exactly one plane π0 of type III. Let L∞ = π0 ∩ Π∞ and let
P∞(π0) = {x∞, y∞, z∞}. Let L be a line of S in π0. Then through every
affine point of L there is exactly one line of S not contained in π0. Since
every plane different from π0 which contains two intersecting lines of S is of
type IV, there is exactly one plane of type IV which contains L.

Let L1, respectively L2, be an affine line of π0 which intersects Π∞ in x∞,
respectively y∞. Let π1, respectively π2, denote the unique plane of type IV
which contains L1, respectively L2. Let p0 = L1 ∩ L2. Since t = 3 there is a
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Figure 5.1: Characterization of the geometry I(3, q, e).

unique line L0 of S through p0 which is not contained in π0. Necessarily, L0

is the unique line of S in π1, respectively π2, which passes through p0 but is
not contained in π0. So L0 = π1 ∩ π2.

Let M1 be a line of Sπ1 , different from L0 and L1, and let π3 = 〈z∞,M1〉.
Since π3 does not contain any of the points x∞, y∞, p0 and L0 ∩ π∞, no
four planes of {π0, π1, π2, π3, π∞} have a point in common. Hence we can
choose a basis in PG(3, q) such that π0 : X2 = 0, π1 : X0 = 0, π2 :
X1 = 0, π3 : X0 + X1 + X2 + X3 = 0 and π∞ : X3 = 0. It follows that
x∞(0, 1, 0, 0), y∞(1, 0, 0, 0), z∞(1, 1, 0, 0) and p0(0, 0, 0, 1), and that L0 : X0 =
X1 = 0, L1 : X0 = X2 = 0, L2 : X1 = X2 = 0, L∞ : X2 = X3 = 0 and
M1 : X0 = X1 + X2 + X3 = 0. Let f be the permutation of GF(q) such
that the set of lines of Sπ1 other than L1 is the set of lines having equa-
tions X0 = X1 + f(ρ)X2 + ρX3 = 0, for all ρ ∈ GF(q). This is indeed a
permutation of GF(q) since the lines of Sπ1 form a dual oval with nucleus
the line at infinity of π0. Furthermore, the lines L0 : X0 = X1 = 0 and
M1 : X0 = X1 +X2 +X3 = 0 are lines of S in π0, so f(0) = 0 and f(1) = 1.
This means that f is an o-polynomial.

Let a, b ∈ GF(q) \ {0} such that a 6= b, and let p be the point of π0

having coordinates p(a, b, 0, 1). Let py∞1 = 〈p, y∞〉 ∩ L1, p
z∞
1 = 〈p, z∞〉 ∩ L1,
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px∞2 = 〈p, x∞〉 ∩ L2 and pz∞2 = 〈p, z∞〉 ∩ L2. Finally let Ly∞1 , respectively
Lz∞1 , Lx∞2 , Lz∞2 , be the unique line of S through py∞1 , respectively pz∞1 , px∞2 , pz∞2 ,
which is not contained in π0. With respect to the chosen basis, py∞1 (0, b, 0, 1),
pz∞1 (0, a + b, 0, 1), px∞2 (a, 0, 0, 1) and pz∞2 (a + b, 0, 0, 1). Furthermore since
Ly∞1 and Lz∞1 are lines of S in π1,

Ly∞1 : X0 = X1 + f(b)X2 + bX3 = 0,

Lz∞1 : X0 = X1 + f(a+ b)X2 + (a+ b)X3 = 0.

Consider the anti-flag {pz∞2 , Lz∞1 } of S. The line 〈p, z∞〉 is a line of S
through pz∞2 which intersects Lz∞1 , so α(pz∞2 , Lz∞1 ) = 2. The other line of
S through pz∞2 which intersects Lz∞1 is not contained in π0, so this line is
necessarily Lz∞2 . But since π2 is the unique plane of type IV through L2,
Lz∞2 ⊆ π2. Hence Lz∞2 contains the point Lz∞1 ∩ π2, which has coordinates
(0, 0, a+ b, f(a+ b)). This means that the line Lz∞2 has equation

Lz∞2 : X1 = X0 + f(a+ b)X2 + (a+ b)X3 = 0.

Let r = 〈px∞2 , z∞〉 ∩ L1 and let M be the unique line of S through r not
contained in π0. Then r(0, a, 0, 1) and M : X0 = X1 + f(a)X2 + aX3 = 0.
Consider the anti-flag {px∞2 ,M} of S. Then by arguments similar to those
used above, Lx∞2 contains the point M ∩ π2. Hence

Lx∞2 : X1 = X0 + f(a)X2 + aX3 = 0.

Let L denote the unique line of S through p not contained in π0. Consider
the anti-flag {p, Ly∞1 }, respectively {p, Lz∞1 }, {p, Lx∞2 }, {p, Lz∞2 } of S. The
line 〈p, y∞〉, respectively 〈p, z∞〉, 〈p, x∞〉, 〈p, z∞〉, is a line of S through p
intersecting Ly∞1 , respectively Lz∞1 , Lx∞2 , Lz∞2 . This means that α(p, Ly∞1 ) = 2,
respectively α(p, Lz∞1 ) = α(p, Lx∞2 ) = α(p, Lz∞2 ) = 2. The other line of S
through p which intersects Ly∞1 , respectively Lz∞1 , Lx∞2 , Lz∞2 , is not contained
in π0, so this line is necessarily L. We conclude that L contains the points
p1 = Ly∞1 ∩ Lz∞1 having coordinates

p1(0, bf(a+ b) + f(b)(a+ b), a, f(b) + f(a+ b))

and p2 = Lx∞2 ∩ Lz∞2 having coordinates

p2(af(a+ b) + f(a)(a+ b), 0, b, f(a) + f(a+ b)).

So the points p, p1 and p2 are collinear. One can verify using the coordinates
of p, p1 and p2 that this implies that f(a + b) = f(a) + f(b). It follows
that f(a + b) = f(a) + f(b) for every a, b ∈ GF(q) \ {0} such that a 6= b.
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Trivially, this also holds if ab = 0 or if a = b. So f : GF(q) → GF(q) is
an additive o-polynomial. Now by Theorem 1.3.1, there is an integer e such
that gcd(e, h) = 1 and f(x) = x2e

for every x ∈ GF(q).
Let ϕ be the collineation of PG(3, q) which maps a point p(x0, x1, x2, x3)

to the point pϕ(x2e

0 , x
2e

1 , x
2e

3 , x
2e

2 ). Let K∞ be the set of points of L∞ = π0∩π∞
which are fixed by ϕ. Then since gcd(e, h) = 1, K∞ = {x∞, y∞, z∞}.

Let p(a, b, 0, 1) be an arbitrary affine point of π0. Then there are four
lines of S through p, namely the lines through p and an element of K∞, and
a line L which is not contained in π0. If a = 0 or ab(a + b) 6= 0 then we
already know the line L from the preceding paragraphs, and it turns out that
L ∩ Π∞ = pϕ(a2e

, b2
e
, 1, 0). If a 6= 0 and b(a + b) = 0 then using arguments

similar to those used above one can also verify that L∩Π∞ = pϕ(a2e
, b2

e
, 1, 0).

Now it is clear that S ' I(3, q, e). 2

5.3 Classification in case there are no planar

nets

In this section we classify all (0, 2)-geometries fully embedded in AG(3, q),
q = 2h, such that there is a plane of type IV and there are no planar nets. In
Section 5.3.1 we start off with some definitions and useful lemmas. Next,
in Section 5.3.2, we prove that if the order of such a (0, 2)-geometry is
(q − 1, t), then necessarily t = q. Finally, in Section 5.3.3, we classify the
(0, 2)-geometries of order (q − 1, q) fully embedded in AG(3, q), q = 2h, such
that there is a plane of type IV and there are no planar nets.

5.3.1 Definitions and basic lemmas

Let S = (P ,B, I) be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h,
such that there are no planar nets. Then every plane containing two in-
tersecting lines of S is a plane of type IV, and every plane containing two
parallel lines of S is a plane of type II. Since any two intersecting lines of S
are contained in a plane of type IV, we do not need to assume that there is
a plane of type IV, this is automatically so. Let (q − 1, t) be the order of S.
Let L be a line of S, and let p be an affine point on L. Then the number of
lines of S through p, different from L, equals the number of planes of type
IV which contain L. So there are t planes of type IV which contain L and
q + 1− t of type II.

We introduce some notation. For every point p∞ ∈ Π∞ let k(p∞) denote
the number of lines of S which intersect Π∞ in the point p∞. So a point
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p∞ ∈ Π∞ is a hole if and only if k(p∞) = 0. Let kmin be the minimal value
of k(p∞) for all points p∞ ∈ Π∞ that are not holes.

For every line L∞ ⊆ Π∞ let l(L∞) denote the number of planes of type
IV which intersect Π∞ in the line L∞. Let lmin be the minimal value of l(L∞)
for all lines L∞ ⊆ Π∞ such that l(L∞) > 0.

Let P0 denote the set of holes, let P IV denote the set of points of Π∞
that are not holes, and let Pmin denote the set of points p∞ ∈ Π∞ such that
k(p∞) = kmin. Let B0 denote the set of lines of Π∞ containing at least one
hole, and let B IV denote the set of lines of Π∞ which do not contain any hole.
Finally, let Π IV denote the set of planes of type IV.

We prove that a line L∞ ⊆ Π∞ is in B IV if and only if l(L∞) > 0. Suppose
that for a line L∞ ⊆ Π∞, l(L∞) > 0. So there is a plane π of type IV such
that π ∩ Π∞ = L∞. Then P∞(π) = L∞, so L∞ does not contain any hole.
Hence L∞ ∈ B IV. Suppose on the other hand that for a line L∞ ⊆ Π∞,
l(L∞) = 0. Let V be the parallel class of planes which intersect Π∞ in the
line L∞. Then every plane π ∈ V is of type I or II. So for every plane π ∈ V
the set P∞(π) contains at most one point. Since there are q planes in the set
V and q+1 points on the line L∞, there is at least one point p∞ ∈ L∞ which
does not occur in any set P∞(π), π ∈ V . Hence p∞ is a hole, and L∞ 6∈ B IV.

Proposition 5.3.1 Let S = (P ,B, I) be a (0, 2)-geometry of order (q − 1, t)
fully embedded in AG(3, q), q = 2h, h > 1, such that there are no planar
nets. Then 2 ≤ t ≤ q.

Proof. Let L be a line of S. Then the number of planes of type IV which
contain L is exactly t, so t ≤ q + 1. Suppose that t < 2. Then the lines of S
through an affine point p of L do not span AG(3, q). But by Lemma 4.1.4,
θp spans Π∞, a contradiction. So 2 ≤ t ≤ q + 1.

Suppose that t = q+ 1. Then every line of S is contained in q+ 1 planes
of type IV. As a consequence there are no planes of type II and hence no
two lines of S are parallel. So | B | ≤ q2 + q + 1. Let π be a plane of type
IV, and let S ′ be the connected component of Sπ which is a dual oval. Then
the number of lines of S which intersect π in a point of S ′ is 1

2
q2(q + 1). So

q2 + q + 1 ≤ |B | ≤ 1
2
q2(q + 1), a contradiction since q ≥ 4. 2

Lemma 5.3.2 Let S be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h,
h > 1, such that there are no planar nets. Let L∞ be a line of Π∞. Then
the minimal value of k(p∞) for all points p∞ ∈ L∞ is l(L∞), and there are
at least l(L∞) + 1 points p∞ ∈ L∞ such that k(p∞) = l(L∞).
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Proof. Let V be the parallel class of planes which intersect Π∞ in the line
L∞. Since for each point p∞ ∈ L∞, every plane of type IV in V contains
exactly one line of S which intersects Π∞ in p∞, k(p∞) ≥ l(L∞) for every
point p∞ ∈ L∞. Since there are at most q − l(L∞) planes of type II in V ,
there are at least l(L∞) + 1 points on L∞ which do not occur in any set
P∞(π), π a plane of type II in V . For such a point p∞, k(p∞) = l(L∞). 2

Lemma 5.3.3 Let S be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h,
h > 1, such that there are no planar nets. Let p∞ ∈ Pmin and let π be a plane
of type II such that P∞(π) = {p∞}. Then none of the planes parallel to π is
of type IV.

Proof. Let L∞ = π ∩ Π∞. By Lemma 5.3.2, there exists a point r∞ ∈ L∞
such that k(r∞) = l(L∞). Since P∞(π) = {p∞}, k(p∞) > l(L∞). Since
p∞ ∈ Pmin, k(r∞) < k(p∞) implies k(r∞) = 0. So l(L∞) = 0. 2

Lemma 5.3.4 Let S be a (0, 2)-geometry fully embedded in AG(3, q), q = 2h,
h > 1, such that there are no planar nets. Then kmin = lmin.

Proof. Let L∞ ∈ B IV such that l(L∞) = lmin. By Lemma 5.3.2 there is a
point p∞ ∈ L∞ such that k(p∞) = l(L∞) = lmin. So kmin ≤ lmin.

Let p∞ ∈ Pmin, let L be a line of S such that L ∩ Π∞ = p∞, let π be
a plane of type IV containing L and let L∞ = π ∩ Π∞. By Lemma 5.3.3
there is no plane π′ of type II parallel to π such that P∞(π′) = {p∞}. Hence
l(L∞) = k(p∞) = kmin. So lmin ≤ kmin. 2

Lemma 5.3.5 Let S be a (0, 2)-geometry of order (q − 1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then there
are at least q + 1− t holes.

Proof. Let L be a line of S such that p∞ = L ∩ Π∞ ∈ Pmin, let π be a
plane of type II which contains L and let L∞ = π ∩ Π∞. By Lemma 5.3.3,
l(L∞) = 0, and by Lemma 5.3.2, there is a hole on L∞. Now since there are
q + 1− t planes of type II which contain L, the lemma follows. 2

Lemma 5.3.6 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded in
AG(3, q), q = 2h, h > 1, such that there are no planar nets. Let p∞ ∈ P IV.
The number of lines of B IV through p∞ is at least t, and if p∞ ∈ Pmin then
equality holds. We have P IV = Pmin if and only if there are exactly t lines of
B IV through every point of P IV.
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Proof. Let p∞ ∈ P IV and let L be a line of S such that L ∩ Π∞ = p∞.
Then the lines at infinity of the t planes of type IV containing L are lines
of B IV which contain p∞. Suppose that p∞ ∈ Pmin. Then by Lemma 5.3.3,
none of the planes parallel to a plane of type II which contains L, is of type
IV. Hence the lines at infinity of the q+1− t planes of type II which contain
L are in B0. So there are exactly t lines of B IV through p∞.

Now it is clear that if P IV = Pmin, then there are exactly t lines of
B IV through every point of P IV. Suppose that through every point of
P IV there are exactly t lines of B IV. Let L∞ ∈ B IV. Suppose that there
are points p∞, p

′
∞ ∈ B IV such that k(p∞) > k(p′∞). Then by Lemma

5.3.2, l(L∞) ≤ k(p′∞) < k(p∞), so there is a plane π of type II such that
π ∩ Π∞ = L∞ and P∞(π) = {p∞}. Let L be a line of Sπ. Then the lines at
infinity of the planes of type IV which contain L are t lines of B IV through
p∞, different from L∞. But this contradicts the fact that there are t lines
of B IV through p∞. So k(p∞) = k(p′∞) for all points p∞, p

′
∞ ∈ L∞, and this

holds for all lines L∞ ∈ B IV. Now it is clear that k(p∞) is constant for all
p∞ ∈ P IV, so P IV = Pmin. 2

Lemma 5.3.7 Let S = (P ,B, I) be a (0, 2)-geometry of order (q− 1, t) fully
embedded in AG(3, q), q = 2h, h > 1, such that there are no planar nets.
Then the following hold.

(t+ 1) | P | = q | B | ; (5.1)

t | B | = (q + 1) |Π IV | ; (5.2)

kmin | B IV | ≤ |Π IV | ; (5.3)

kmin | P IV | ≤ | B | ; (5.4)

t | P IV | ≤ (q + 1) | B IV | ; (5.5)

qt− q + t ≤ |B IV | ; (5.6)

(q + 1)2 − q(q + 1)2

| B IV | + q
≤ |P IV | . (5.7)

Equality holds in any of (5.4), (5.5), (5.6) or (5.7) if and only if P IV = Pmin.
If P IV = Pmin then equality holds in (5.3).

Proof. Equality (5.1) is the result of counting the flags of S. Equality (5.2)
is the result of counting the ordered pairs (L, π) where L ∈ B, π ∈ Π IV, L ⊆ π.

We count the ordered pairs (π, L∞) where π ∈ Π IV, L∞ ∈ B IV and
L∞ = π ∩ Π∞. This number equals |Π IV | since a plane π ∈ Π IV has just
one line at infinity. For every line L∞ ∈ B IV the number of planes π of type IV
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such that L∞ = π ∩Π∞ is l(L∞), and by Lemma 5.3.4, l(L∞) ≥ lmin = kmin.
Hence inequality (5.3). Suppose that P IV = Pmin. Then for every line
L∞ ∈ B IV, k(p∞) = kmin for every point p∞ ∈ L∞. Now Lemma 5.3.2
implies that l(L∞) = kmin. So kmin | B IV | = |Π IV | .

Inequality (5.4) follows from counting the ordered pairs (L, p∞) where
L ∈ B, p∞ ∈ P IV, p∞ ∈ L. Equality holds if and only if P IV = Pmin.
Inequality (5.5) follows from counting the ordered pairs (p∞, L∞) such that
p∞ ∈ P IV, L∞ ∈ B IV, p∞ ∈ L∞, using Lemma 5.3.6. Equality holds if and
only if through any point p∞ ∈ P IV there are exactly t lines of B IV. By
Lemma 5.3.6, this is the case if and only if P IV = Pmin.

Let L∞ ∈ B IV. Then by Lemma 5.3.6, through each of the q+1 points of
L∞ there are at least t lines of B IV (including L∞). This implies inequality
(5.6). If there are exactly t lines of B IV through every point of P IV then
clearly | B IV | = qt − q + t. If | B IV | = qt − q + t then for every line
L∞ ∈ B IV there holds that there are exactly t lines of B IV through every
point of L∞. So there are exactly t lines of B IV through every point of P IV.
So equality holds in (5.6) if and only if through any point p∞ ∈ P IV there
are exactly t lines of B IV. By Lemma 5.3.6, this is the case if and only if
P IV = Pmin.

Let P IV = {p1
∞, p

2
∞, . . . , p

v
∞} where v = | P IV | . For every i ∈ {1, 2, . . . , v}

let ti be the number of lines of B IV through pi∞. Counting the ordered pairs
(pi∞, L∞) where pi∞ ∈ P IV, L∞ ∈ B IV, p

i
∞ ∈ L∞ yields

v∑
i=1

ti = (q + 1) | B IV | .

Counting the ordered triples (pi∞, L∞, L
′
∞) such that L∞, L′∞ ∈ B IV and

pi∞ = L∞ ∩ L′∞ yields

v∑
i=1

ti(ti − 1) = | B IV | ( | B IV | − 1).

Let t =
∑v

i=1 ti/v. Then
∑v

i=1(ti − t)2 ≥ 0 yields

| B IV | ( | B IV | − 1) + (q + 1) | B IV | −
(q + 1)2 | B IV | 2

| P IV |
≥ 0.

From this, inequality (5.7) follows. Equality holds if and only if ti = t for
every point pi∞ ∈ P IV. Suppose that ti = t for every point pi∞ ∈ P IV. Let
pi∞ ∈ Pmin. Then by Lemma 5.3.6, ti = t. So t = t. So equality holds in
(5.7) if and only if through any point p∞ ∈ P IV there are exactly t lines of
B IV. By Lemma 5.3.6, this is the case if and only if P IV = Pmin. 2
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Figure 5.2: Elimination of the case t = 2 (Theorem 5.3.8).

5.3.2 Proof that t = q

In this section, we prove that every (0, 2)-geometry which is fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets, has order
(q − 1, t) with t = q. We do so by eliminating all other possible values of t.
By Proposition 5.3.1, 2 ≤ t ≤ q. Firstly, in Section 5.3.2.1, we eliminate the
cases t = 2 and t = q − 1. Then, in Section 5.3.2.2, some lemmas are proven
that are valid for all 2 < t < q − 1. Next, in Section 5.3.2.3, we eliminate
the case where 2 < t < q − 1 and t is odd. Finally, in Section 5.3.2.4, we
eliminate the case where 2 < t < q − 1 and t is even.

5.3.2.1 Elimination of the cases t = 2 and t = q − 1

Theorem 5.3.8 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then t 6= 2.

Proof. Suppose that t = 2. Let π be a plane of type IV, let S ′ be the
connected component of Sπ which is a dual oval and let X be point set of S ′.
Suppose that Sπ has an isolated point p. Then there is a point p0 ∈ X and a
path (p0, p1, . . . , pn = p) in the point graph of S such that for 0 ≤ i ≤ n− 1,
the line Li = 〈pi, pi+1〉 is not contained in π. So |Li ∩ X | ∈ {0, 1} for all
0 ≤ i ≤ n − 1. Since |L0 ∩ X | = 1 and |Ln−1 ∩ X | = 0 there is an
i ∈ {0, 1, . . . , n − 2} such that |Li ∩ X | = 1 and |Li+1 ∩ X | = 0. Let
r = Li ∩X and let M and N be the two lines of S ′ through r. Since r ∈ Li
and Li intersects Li+1, α(r, Li+1) = 2. But M nor N intersects Li+1 since
|Li+1 ∩ X | = 0. So there is a line L 6∈ {Li,M,N} of S through r which
intersects Li+1. But this contradicts t = 2. Hence Sπ has no isolated points.
Note that this holds for every plane π of type IV.

We prove that any two planes of type IV intersect in a line of S. Let π1, π2

be distinct planes of type IV. Note that πi does not contain any isolated
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points, so through each point of Sπi
there are 2 lines of Sπi

, i = 1, 2.
Suppose that π1 and π2 are parallel. Let p be a point of Sπ1 . Since t = 2,

there is a unique line L of S through p which is not contained in π1. Then
L intersects π2 in a point r of Sπ2 . Let M be a line of Sπ2 through r. Since
L is the only line of S through p which is not contained in π1, α(p,M) = 1,
a contradiction.

Suppose that π1 and π2 intersect in a line L which is not a line of S. Let
p be a point of Sπ1 on L. Since π2 does not contain any isolated points, p is
a point of Sπ2 . But then there are 4 lines of S through p, a contradiction.
We conclude that any two planes of type IV intersect in a line of S.

Let π be a plane of type IV. Since t = 2, every line of Sπ is contained
in exactly one plane of type IV other than π. Since every plane of type IV,
other than π, intersects π in a line of S, |Π IV | = q + 2.

Suppose that π1, π2, π3, π4 are distinct planes of type IV which have an
affine point p in common. Then all lines πi ∩ πj with 1 ≤ i < j ≤ 4 are
distinct lines of S, so there are at least 6 lines of S through p, a contra-
diction. Suppose that π1, π2, π3 are distinct planes of type IV which have a
point p∞ ∈ Π∞ in common. Then all lines πi ∩ πj with 1 ≤ i < j ≤ 3 are
distinct lines of S, so in particular Sπ1 contains two parallel lines, a contra-
diction. We conclude that the set Π IV ∪ {Π∞} is a (q + 3)-arc in the dual
space of PG(3, q). But in Chapter 21 of [51], it is proven that m(3, q), the size
of the largest k-arc in PG(3, q), is max(5, q+1). So q = 2, a contradiction. 2

Theorem 5.3.9 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then t 6= q−1.

Proof. Suppose that t = q−1. Combining inequalities (5.6) and (5.7) from
Lemma 5.3.7, we get that | P IV | ≥ q2 + q − 1 − 2/(q − 1). So since q > 2,
| P0 | ≤ 2. But Lemma 5.3.5 says | P0 | ≥ 2, so there are exactly two holes,
p1
∞ and p2

∞.
Let p∞ ∈ Π∞ be a point off the line 〈p1

∞, p
2
∞〉. Then k(p∞) 6= 0. Suppose

that k(p∞) ≥ 2, and let L1 and L2 be two lines of S which intersect Π∞ in
the point p∞. Choose i ∈ {1, 2} such that pi∞ is not contained in the line at
infinity of the plane 〈L1, L2〉. Let L∞ = 〈pi∞, p∞〉 and let V be the parallel
class of planes which intersect Π∞ in the line L∞. Since L∞ contains a hole,
l(L∞) = 0. Since there are q points of P IV on L∞, for every point r∞ of
P IV on L∞ there is exactly one plane π ∈ V such that P∞(π) = {r∞}. But
the planes πi = 〈Li, L∞〉, i = 1, 2, are in V and P∞(π1) = P∞(π2) = {p∞},
a contradiction. So k(p∞) = 1 for every point p∞ ∈ Π∞ not on the line
〈p1
∞, p

2
∞〉.
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Let L∞ be a line of Π∞ not containing p1
∞ or p2

∞. Since the minimal
value of k(p∞) for all points p∞ ∈ L∞ is 1, Lemma 5.3.2 implies that
l(L∞) = 1. For every line L∞ of Π∞ containing p1

∞ or p2
∞, l(L∞) = 0.

Hence |Π IV | = q(q − 1). It follows from inequality (5.2) of Lemma 5.3.7
that | B | = q(q + 1). Let π be a plane of type IV, and let S ′ be the con-
nected component of Sπ that is a dual oval. Then there are q + 1 lines in
S ′ and 1

2
q(q + 1)(q − 2) lines of S which intersect π in a point of S ′. So

| B | = q(q + 1) ≥ 1
2
q(q + 1)(q − 2) + q + 1. But this contradicts q > 2. 2

5.3.2.2 Some lemmas valid for all 2 < t < q − 1

Lemma 5.3.10 Let S be a (0, 2)-geometry of order (q− 1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then for any
line L∞ ⊆ Π∞, t | q l(L∞) and the number of lines of S which intersect Π∞
in a point of L∞ is equal to

| B |
q + 1

+
q l(L∞)

t
.

Furthermore,

l(L∞) ≤ q2t(t+ 1)

(q + 1)(qt− q + t)
< 2t .

Proof. Let L∞ be a line of Π∞ and let V be the parallel class of planes which
intersect Π∞ in L∞. Let X be the set of lines L of S such that L∩Π∞ ∈ L∞
and 〈L,L∞〉 is a plane of type II. We count the pairs (L, π) where L ∈ X, π
is a plane of type IV and L ⊆ π. In a plane π ∈ V of type IV there are no
lines of X. There are |Π IV | − l(L∞) planes of type IV not in V , and each of
these planes contains exactly one line which intersects Π∞ in a point of L∞.
However in this way we count l(L∞)(q + 1)(t− 1) pairs (L, π) such that the
plane 〈L,L∞〉 is a plane of type IV, so L 6∈ X. We obtain

t |X | = |Π IV | − l(L∞)(qt− q + t).

Hence the number of lines of S which intersect Π∞ in a point of L∞ is

|X | + l(L∞)(q + 1) =
| B |
q + 1

+
q l(L∞)

t
.

Here equation (5.2) of Lemma 5.3.7 was used.
Clearly | B | /(q + 1) + q l(L∞)/t is an integer. Lemma 5.3.5 implies that

B0 is not empty. Let M∞ ∈ B0. Then the number of lines of S which intersect
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Π∞ in a point of M∞ is | B | /(q + 1), so this number is an integer. Hence
also q l(L∞)/t is an integer, so t | q l(L∞).

From equations (5.1) and (5.2) of Lemma 5.3.7 and the fact that | P | ≤ q3

it follows that

|Π IV | ≤
q2t(t+ 1)

q + 1
.

On the other hand |Π IV | − l(L∞)(qt− q + t) = t |X | ≥ 0, so

l(L∞) ≤ |Π IV |
qt− q + t

≤ q2t(t+ 1)

(q + 1)(qt− q + t)
.

Suppose that

2t ≤ q2t(t+ 1)

(q + 1)(qt− q + t)
.

Then t ≤ (3q2 + 2q)/(q2 + 4q + 2) < 3, a contradiction. 2

Lemma 5.3.11 Let S be a (0, 2)-geometry of order (q− 1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then a line
L∞ ⊆ Π∞ contains at most q + 1− t holes.

Proof. Let L be a line of S such that L ∩ Π∞ 6∈ L∞, and let π be a plane
of type IV which contains L. Let M∞ = π ∩ Π∞ and let p∞ = L∞ ∩M∞.
Since π is a plane of type IV, p∞ ∈ P∞(π) and hence p∞ is not a hole. Since
there are t planes of type IV which contain L, there are at least t points on
L∞ which are not holes. 2

Lemma 5.3.12 Let S be a (0, 2)-geometry of order (q − 1, t), t < q, fully
embedded in AG(3, q), q = 2h, h > 1, such that there are no planar nets.
Then there is a plane of type II which contains exactly one line of S.

Proof. Let Θmin denote the minimal number of lines of S in a plane of
type II. Let p∞ ∈ Pmin and let L be a line of S which intersects Π∞ in p∞.
Then there are q+ 1− t planes of type II which contain L, and each of these
planes contains at least Θmin lines of S, each of which intersects Π∞ in p∞.
It follows that 1 + (q + 1− t)(Θmin − 1) ≤ kmin.

Suppose that Θmin ≥ 2. Then kmin ≥ q+2−t. Let L∞ ∈ B IV. By Lemma
5.3.4, kmin = lmin ≤ l(L∞), and by Lemma 5.3.10,

kmin ≤
q2t(t+ 1)

(q + 1)(qt− q + t)
.
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Hence (q+ 1)(q+ 2− t)(qt− q+ t) ≤ q2t(t+ 1). This inequality is quadratic
in t. It is easy to check that it is satisfied when t = 1 or t = 1

2
q + 1 but not

when t = 2 or t = 1
2
q (note that q ≥ 4). It follows that 1

2
q + 1 ≤ t ≤ q − 1.

Let L∞ be a line of Π∞ in B0, and let V be the parallel class of planes
which intersect Π∞ in the line L∞. Then l(L∞) = 0, so every plane π ∈ V
is of type I or II. By Lemma 5.3.11, the number of points of P IV on L∞ is
at least t. For every point p∞ ∈ P IV on L∞, k(p∞) > 0, so there is at least
one plane π ∈ V of type II such that P∞(π) = {p∞}. Since 2t > q, there is a
point p∞ ∈ P IV on L∞ such that there is exactly one plane π ∈ V such that
P∞(π) = {p∞}. So every line of S which intersects Π∞ in p∞ is contained in
the plane π. Let M be a line of S such that M ∩ Π∞ = p∞, and let π′ 6= π
be a plane of type II containing M (which exists since by assumption t < q).
Then π′ contains exactly one line of S, so Θmin = 1. But this contradicts the
assumption that Θmin ≥ 2. We conclude that Θmin = 1. 2

Henceforth we use the following notation. For every integer i ∈ N \ {0}
we let odd(i) denote the largest odd divisor of i.

Lemma 5.3.13 Let S be a (0, 2)-geometry of order (q−1, t), 2 < t < q, fully
embedded in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Let
π be a plane of type I or II containing Θ lines of S, and let L∞ = π ∩ Π∞.
If L∞ ∈ B IV then

Θ ≡ q + 1 (mod odd(t+ 1)).

If L∞ ∈ B0 then

Θ ≡ 1 (mod odd(t+ 1)).

As a consequence kmin ≡ 1 (mod odd(t+ 1)).

Proof. Suppose that L∞ ∈ B IV. Then l(L∞) > 0, so there is a plane π′

of type IV parallel to π. Let m, respectively m′, be the number of isolated
points of Sπ, respectively Sπ′ . Counting the number of lines of S which
intersect π and π′ in an affine point yields

Θqt+m(t+ 1) =
1

2
q(q + 1)(t− 1) +m′(t+ 1).

It follows that t+1 | 1
2
q(q+1)(t−1)−Θqt. Hence Θ ≡ q+1 (mod odd(t+1)).

Now suppose that L∞ ∈ B0. By Lemma 5.3.12, there is a plane π′ of type
II which contains exactly one line of S. Let L′∞ = π′ ∩ Π∞. Suppose that
L′∞ ∈ B IV. Then by the preceding paragraph 1 ≡ q + 1 (mod odd(t + 1)).
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Since q = 2h, odd(t+ 1) = 1, and in this case Θ ≡ 1 (mod odd(t+ 1)) holds
trivially. So we may assume that L′∞ ∈ B0. Then l(L′∞) = 0 and by Lemma
5.3.10, the number of lines of S which intersect Π∞ in a point of L′∞ equals
| B | /(q + 1). Let m′ denote the number of isolated points of Sπ′ . Then the
number of lines of S which intersect π′ in an affine point equals qt+m′(t+1).
Hence

| B | = qt+m′(t+ 1) +
| B |
q + 1

.

Similarly, if m is the number of isolated points of Sπ,

| B | = Θqt+m(t+ 1) +
| B |
q + 1

.

It follows that t+ 1 | (Θ− 1)qt, so Θ ≡ 1 (mod odd(t+ 1)).
Let p∞ ∈ Pmin, let L be a line of S such that L∩Π∞ = p∞, and let X be

the set of all lines of S, other than L, which intersect Π∞ in the point p∞. Let
π be a plane containing L. If π is of type IV then π does not contain any lines
of X. If π is of type II then by Lemma 5.3.3, the line L∞ = π ∩Π∞ is in B0.
Hence the number of lines of X in π is divisible by odd(t+ 1). So |X | ≡ 0
(mod odd(t+ 1)), and since |X | = kmin − 1, kmin ≡ 1 (mod odd(t+ 1)). 2

We now give a definition which may seem awkward, but which will prove
to be very useful. Consider a line L∞ ∈ B0 and a point p∞ of P IV on L∞,
and let V be the set of planes which intersect Π∞ in the line L∞. Then
k(p∞) > 0, so there is a plane π in V such that p∞ ∈ P∞(π). Since L∞ ∈ B0,
l(L∞) = 0. So π is necessarily a plane of type II and P∞(π) = {p∞}. It is now
clear that we can choose a set Π of planes of type II, each intersecting Π∞
in a line of B0, such that for every pair (p∞, L∞) where p∞ ∈ P IV, L∞ ∈ B0,
p∞ ∈ L∞, there is exactly one plane π ∈ Π such that π ∩ Π∞ = L∞ and
P∞(π) = {p∞}. We call the elements of Π original planes . The set of planes
of type II which intersect Π∞ in a line of B0 but which are not in the set Π,
is denoted by Π∗. Its elements are called repeated planes .

Lemma 5.3.14 Let S be a (0, 2)-geometry fully embedded in AG(3, q),
q = 2h, h > 1, such that there are no planar nets. Then

|Π∗ | + | B0 | ≤ (q + 1) | P0 | .

Proof. Let B0 = {L1
∞, L

2
∞, . . . , L

| B0 |
∞ }. For every Li∞ ∈ B0 let bi be the

number of repeated planes which intersect Π∞ in the line Li∞, and let ci be
the number of holes on Li∞.
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Let Li∞ ∈ B0. It follows from the definition of Π that the number of
points of P IV on Li∞ equals the number of original planes through Li∞. The
number of points of P IV on Li∞ equals q + 1 − ci. The number of original
planes through Li∞ is at most q− bi. So for every line Li∞ ∈ B0 we have that

bi + 1 ≤ ci. Hence
∑ | B0 |

i=1 bi + | B0 | ≤
∑ | B0 |

i=1 ci. Clearly
∑ | B0 |

i=1 bi = |Π∗ | .
Counting the number of pairs (p∞, L∞) such that L∞ ∈ B0 and p∞ is a point

of P0 on L∞ yields
∑ | B0 |

i=1 ci = (q + 1) | P0 | . The lemma follows. 2

Lemma 5.3.15 Let S be a (0, 2)-geometry fully embedded in AG(3, q),
q = 2h, h > 1, such that there are no planar nets. Let P IV = {p1

∞, p
2
∞, . . . ,

p
| P IV |
∞ }, and for every pi∞ ∈ P IV let di be the number of repeated planes π

such that P∞(π) = {pi∞}. Then

|Π∗ | =

| P IV |∑
i=1

di.

Proof. Count the number of pairs (p∞, π) such that p∞ ∈ P IV, π ∈ Π∗ and
P∞(π) = {p∞}. 2

5.3.2.3 Elimination of the case 2 < t < q − 1, t odd

Theorem 5.3.16 Let S be a (0, 2)-geometry of order (q − 1, t), t odd and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. Then t = 2j − 1 for some j ∈ {2, . . . , h − 1} and for every
line L∞ ∈ B IV, l(L∞) = t.

Proof. Let L∞ ∈ B IV. Then by Lemma 5.3.10, t | q l(L∞). Since t is odd,
t and q are relatively prime. So t | l(L∞). Since L∞ ∈ B IV, l(L∞) > 0, and
by Lemma 5.3.10, l(L∞) < 2t. So l(L∞) = t, and this holds for any line
L∞ ∈ B IV. Hence lmin = t.

By Lemma 5.3.4, kmin = lmin = t. By Lemma 5.3.13,

t ≡ 1 (mod odd(t+ 1)).

So odd(t + 1) = 1. In other words, t = 2j − 1 for some integer j. Since
2 < t < q − 1, 2 ≤ j ≤ h− 1. 2

Lemma 5.3.17 Let S be a (0, 2)-geometry of order (q − 1, t), t odd and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. Then for every point p∞ ∈ P IV, the number of lines of B IV

through p∞ equals k(p∞).
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Proof. Let a denote the number of lines of B IV through a point p∞ ∈ P IV.
Let x be the number of planes of type IV which intersect Π∞ in a line that
contains p∞. By Theorem 5.3.16, l(L∞) = t for every line L∞ ∈ B IV, so
x = at. On the other hand every line of S which intersects Π∞ in the point
p∞ is contained in t planes of type IV, so x = k(p∞)t. The lemma follows.
2

Lemma 5.3.18 Let S be a (0, 2)-geometry of order (q − 1, t), t odd and
2 < t < q − 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there
are no planar nets. For every point p∞ ∈ P IV such that k(p∞) ≤ 1

2
q− 1, the

number of repeated planes π such that P∞(π) = {p∞} is at least q + 1.

Proof. Let p∞ ∈ P IV be such that k(p∞) ≤ 1
2
q−1, and let d be the number

of repeated planes π such that P∞(π) = {p∞}.
Theorem 5.3.16 implies that lmin = t, so k(p∞) ≥ kmin = lmin = t.
By Lemma 5.3.17, the set L of lines of B0 through p∞ contains exactly

q + 1 − k(p∞) elements. Let L = {L1
∞, . . . , L

q+1−k(p∞)
∞ }, and for every line

Li∞ ∈ L let ei be the number of planes π ∈ Π∗ such that π ∩ Π∞ = Li∞ and

P∞(π) = {p∞}. Then clearly d =
∑q+1−k(p∞)

i=1 ei.
Let π be an affine plane not containing p∞, and let L∞ = π ∩ Π∞. Let

K be the set of affine points p ∈ π such that 〈p, p∞〉 is a line of S. For every
Li∞ ∈ L let pi∞ = Li∞ ∩L∞. Now for every i ∈ {1, . . . , q + 1− k(p∞)}, ei + 1
equals the number of lines in π which intersect Π∞ in the point pi∞ and which
have a nonempty intersection with the set K.

Since | K | = k(p∞) ≥ t > 2 we may choose three distinct points
p1, p2, p3 ∈ K. Let K′ = {p1, p2, p3}, and for every i ∈ {1, . . . , q + 1− k(p∞)}
let e′i + 1 be the number of lines in π which intersect Π∞ in the point pi∞
and which have a nonempty intersection with the set K′. Clearly ei ≥ e′i for
every i ∈ {1, . . . , q + 1− k(p∞)}, and since k(p∞) ≤ 1

2
q − 1,

d =

q+1−k(p∞)∑
i=1

ei ≥
1
2
q+2∑
i=1

e′i.

There are two possibilities.

1. The points p1, p2, p3 are collinear. Then e′i = 0 for at most one i ∈
{1, . . . , 1

2
q+2}, while e′i = 2 for all other i. Hence d ≥

∑ 1
2
q+2

i=1 e′i ≥ q+2.

2. The points p1, p2, p3 are not collinear. Then e′i = 1 for at most three
i ∈ {1, . . . , 1

2
q + 2}, while e′i = 2 for all other i. It follows that

d ≥
∑ 1

2
q+2

i=1 e′i ≥ q + 1.
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Li∞

K

π

ei + 1

Π∞ pi∞

L1
∞ p1

∞
p∞

Figure 5.3: Illustration of Lemma 5.3.18.

We conclude that d ≥ q + 1. 2

Let S be a (0, 2)-geometry of order (q−1, t), t odd and 2 < t < q−1, fully
embedded in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Let
L∞ ∈ B IV. By Theorem 5.3.16, l(L∞) = t, and by Lemma 5.3.10, the number
of lines of S which intersect Π∞ in a point of L∞, is | B | /(q+ 1) + q. So for
every line L∞ ∈ B IV there are t(q + 1) lines L of S such that L ∩ Π∞ ∈ L∞
and 〈L,L∞〉 is a plane of type IV, and r = | B | /(q + 1) + q − t(q + 1) lines
L of S such that L ∩ Π∞ ∈ L∞ and 〈L,L∞〉 is a plane of type II.

Let π be a plane of type IV and let m be the number of isolated points of
Sπ. Then there are | B | /(q+1)+q lines of S which are parallel to π (including
the lines of Sπ). Counting the number of lines of S which intersect π in an
affine point yields

1

2
q(q + 1)(t− 1) +m(t+ 1) = | B | −

(
| B |
q + 1

+ q

)
.

Since | B | = (q + 1)(t(q + 1) + r − q) and since m ≤ 1
2
q(q − 1),

r ≤ q − t. (5.8)

Let L∞ ∈ B IV and let {p0
∞, . . . , p

q
∞} be the point set of L∞. Then from

Lemma 5.3.17 and from the fact that every line of B IV other than L∞ inter-
sects L∞, it follows that | B IV | =

∑q
i=0(k(p

i
∞)− 1) + 1. On the other hand,
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counting the number of lines of S which intersect Π∞ in a point of L∞ yields∑q
i=0 k(p

i
∞) = | B | /(q + 1) + q = t(q + 1) + r. So | B IV | = qt − q + t + r.

Hence by (5.8),

| B IV | ≤ qt . (5.9)

Combining inequalities (5.6) and (5.7) of Lemma 5.3.7 yields

| P IV | ≥ (q + 1)
(
q + 1− q

t

)
. (5.10)

Theorem 5.3.19 A (0, 2)-geometry of order (q − 1, t), with 2 < t < q − 1
and t odd, fully embedded in AG(3, q), q = 2h, h > 1, such that there are no
planar nets, does not exist.

Proof. Suppose that there exists a (0, 2)-geometry S of order (q − 1, t),
t odd and 2 < t < q−1, fully embedded in AG(3, q), q = 2h, h > 1, such that
there are no planar nets. Note that these assumptions imply that q ≥ 8.

Let R be the set of points p∞ ∈ P IV such that k(p∞) ≥ 1
2
q. Then by

Lemmas 5.3.15 and 5.3.18,

|Π∗ | ≥ (q + 1) ( | P IV | − |R | ) . (5.11)

Let L∞ be a line of B IV and let {p0
∞, . . . , p

q
∞} be the point set of L∞. For

every 0 ≤ i ≤ q, let ki = k(pi∞) − t. By Lemma 5.3.2 and Theorem 5.3.16,
ki ≥ 0 for all 0 ≤ i ≤ q. Counting the number of lines of S which intersect
Π∞ in a point of L∞ yields

∑q
i=0 k(p

i
∞) = | B | /(q+1)+q = t(q+1)+r. Hence∑q

i=0 ki = r. A point pi∞ ∈ L∞ is an element of R if and only if ki ≥ 1
2
q − t.

So the number of points of R on L∞ is at most
∑q

i=0 ki/(
1
2
q− t) = r/(1

2
q− t).

From inequality (5.8) it follows that the number of points of R on L∞ is at
most (2q − 2t)/(q − 2t). This holds for every line L∞ ∈ B IV.

By Theorem 5.3.16, t = 2j−1 for some j ∈ {2, . . . , h−1}. Hence t ≤ 1
2
q−1

and if t < 1
2
q − 1 then t ≤ 1

4
q − 1. So there are two cases to consider.

t = 1
2
q − 1. Let x be the number of pairs (p∞, L∞) where L∞ ∈ B IV and
p∞ is a point of R on L∞. Since the number of points of R on a line
of B IV is at most (2q − 2t)/(q − 2t) = 1

2
q + 1, x ≤ (1

2
q + 1) | B IV | .

On the other hand Lemma 5.3.17 implies that the number of lines of
B IV through a point p∞ ∈ R is k(p∞) ≥ 1

2
q. So x ≥ 1

2
q |R | , and

|R | ≤ (q+2) | B IV | /q. Now from Lemma 5.3.14 and inequality (5.11)
it follows that

(q + 1)

(
| P IV | −

q + 2

q
| B IV |

)
≤ (q + 1) | P0 | − | B0 | .
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Using the fact that P0 is the complement of P IV in the point set of Π∞
and that B0 is the complement of B IV in the line set of Π∞, we get that

2(q + 1) | P IV | ≤ q(q2 + q + 1) +
q2 + 4q + 2

q
| B IV | .

Inequalities (5.9) and (5.10) yield

4(q + 1)2(q + 1− 2q

q − 2
) ≤ 2q(q2 + q + 1) + (q2 + 4q + 2)(q − 2).

Since q ≥ 8, 2q/(q−2) < 3, so q3−4q2−8q−4 ≤ 0. But this contradicts
q ≥ 8.

t ≤ 1
4
q − 1. Let x be the number of pairs (p∞, L∞) where L∞ ∈ B IV and
p∞ is a point of R on L∞. Since the number of points of R on a line
of B IV is at most (2q − 2t)/(q − 2t) < 3, x ≤ 2 | B IV | . On the other
hand Lemma 5.3.17 implies that the number of lines of B IV through a
point p∞ ∈ R is k(p∞) ≥ 1

2
q. So x ≥ 1

2
q |R | , and |R | ≤ 4 | B IV | /q.

Now from Lemma 5.3.14 and inequality (5.11) it follows that

(q + 1)

(
| P IV | −

4

q
| B IV |

)
≤ (q + 1) | P0 | − | B0 | .

Using the fact that P0 is the complement of P IV in the point set of Π∞
and that B0 is the complement of B IV in the line set of Π∞, we get that

2(q + 1) | P IV | ≤ q(q2 + q + 1) +
5q + 4

q
| B IV | .

Inequalities (5.9) and (5.10) yield

(5q + 4)t2 − (q3 + 5q2 + 5q + 2)t+ 2q(q + 1)2 ≥ 0 .

One can verify that this contradicts 3 ≤ t ≤ 1
4
q − 1 and q ≥ 8.

We conclude that there does not exist a (0, 2)-geometry of order (q − 1, t),
t odd and 2 < t < q − 1, fully embedded in AG(3, q), q = 2h, h > 1, such
that there are no planar nets. 2
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5.3.2.4 Elimination of the case 2 < t < q − 1, t even

Theorem 5.3.20 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. Then t = 2j where j ∈ {2, 3, . . . , h − 1} is such that h = jl
with l odd. For every line L∞ ∈ B IV, l(L∞) ∈ {1, t+ 2}.

Proof. By Lemma 5.3.13, kmin ≡ 1 (mod odd(t + 1)). Since t is even,
odd(t+1) = t+1. So t+1 | kmin−1. Let L∞ ∈ B IV. Then by Lemma 5.3.10,
l(L∞) < 2t. Hence kmin = lmin ≤ l(L∞) < 2t. So kmin = lmin ∈ {1, t+ 2}.

Let L1
∞ ∈ B IV and let L2

∞ ∈ B IV be such that l(L2
∞) = lmin. Let πi be a

plane of type IV which intersects Π∞ in the line Li∞, and letmi be the number
of isolated points of Sπi

, i = 1, 2. By Lemma 5.3.10, the number of lines of S
which intersect Π∞ in a point of Li∞ is equal to | B | /(q + 1) + (q l(Li∞))/t,
i = 1, 2. Since every line of S intersects πi either in an affine point or in a
point of Li∞ we have, for i = 1, 2, that

| B | =
1

2
q(q + 1)(t− 1) +mi(t+ 1) +

| B |
q + 1

+
q l(Li∞)

t
.

It follows that (m1−m2)t(t+1) = q(l(L2
∞)− l(L1

∞)), so t+1 | l(L2
∞)− l(L1

∞).
Since l(L2

∞) = lmin ∈ {1, t + 2} and since by Lemma 5.3.10, l(L1
∞) < 2t, it

follows that l(L1
∞) ∈ {1, t+2}. This conclusion holds for every line L1

∞ ∈ B IV.
Let L∞ ∈ B IV. Then by Lemma 5.3.10, t | q l(L∞). As l(L∞) ∈ {1, t+2},

t = 2j for some integer j. Since 2 < t < q − 1, j ∈ {2, . . . , h− 1}.
Let L∞ ∈ B0. Then by Lemma 5.3.13, in every plane π such that

π ∩ Π∞ = L∞ there are Θ ≡ 1 (mod t + 1) lines of S. Hence the to-
tal number of lines of S which intersect Π∞ in a point of L∞ is congruent
to q (mod t + 1). But Lemma 5.3.10 implies that this number is equal to
| B | /(q + 1), hence | B | ≡ q(q + 1) (mod t + 1). On the other hand, equa-
tion (5.1) from Lemma 5.3.7 implies that t + 1 divides | B | . It follows that
t + 1 | q(q + 1), and since t + 1 is odd, t + 1 | q + 1. So 2j + 1 | 2h + 1. Let
l ∈ N and R ∈ {0, 1, . . . , j − 1} be such that h = jl + R. Then since 2j + 1
divides 2h + 1 = (2j + 1− 1)l2R + 1, 2j + 1 | (−1)l2R + 1. As 0 ≤ R < j this
is impossible if l is even. Hence l is odd and R = 0. 2

Corollary 5.3.21 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. Let π be a plane of type I or II containing Θ lines of S, and
let L∞ = π ∩ Π∞. If L∞ ∈ B IV then Θ ≡ 0 (mod t + 1). If L∞ ∈ B0 then
Θ ≡ 1 (mod t+ 1). In particular if Θ ≥ 2 then Θ ≥ t+ 1.
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Proof. This follows immediately from Lemma 5.3.13 and the fact that
t+ 1 | q + 1, which was shown in Theorem 5.3.20. 2

Lemma 5.3.22 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q − 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there
are no planar nets. Then every line L∞ ∈ B IV contains at least q + 1− q/t
points p∞ such that k(p∞) = l(L∞).

Proof. Let L∞ ∈ B IV, and let V be the parallel class of planes which
intersect Π∞ in the line L∞. For every point p∞ ∈ L∞ let Vp∞ be the set of
planes π ∈ V of type II such that P∞(π) = {p∞}.

Let p∞ be a point of L∞ such that k(p∞) > l(L∞). Then Vp∞ 6= ∅. We
prove that |Vp∞ | ≥ t. By Theorem 5.3.20, there are two cases to consider.

l(L∞) = 1. Let π be the unique plane of type IV in V , and let L be the
unique line of Sπ such that L ∩ Π∞ = p∞. Let π′ ∈ Vp∞ , let L′ be a
line of Sπ′ , and let π′′ = 〈L,L′〉. Then π′′ is a plane of type II which
contains Θ ≥ 2 lines of S. By Corollary 5.3.21, Θ ≥ t + 1. Since
P∞(π′′) = {p∞}, for every line L′′ of Sπ′′ which is not in π, the plane
〈L′′, L∞〉 is in Vp∞ . Hence |Vp∞ | ≥ t.

l(L∞) = t + 2. Let X be the set of lines M of S such that M ∩ Π∞ = p∞
and such that 〈M,L∞〉 is a plane of type IV. Then |X | = t + 2. Let
π ∈ Vp∞ . By Corollary 5.3.21, Sπ has at least t + 1 lines. So there
is a line L of Sπ and a line M ∈ X such that the plane π′ = 〈L,M〉
contains at most one other line M ′ ∈ X. Since Sπ′ contains two parallel
lines, Sπ′ contains at least t + 1 > 3 parallel lines by Corollary 5.3.21.
So there is a line L′ of Sπ′ such that L′ 6⊆ π and L′ 6∈ X. Note that
L′ ∩ Π∞ = p∞.

Consider the planes containing L′ and a line of Sπ. Since there are at
least t+ 1 such planes and since |X | = t+ 2, there is such a plane π′′

containing at most one line of X. By Corollary 5.3.21, Sπ′′ has at least
t + 1 lines. Now for every line L′′ of Sπ′′ such that L′′ 6∈ X, the plane
〈L′′, L∞〉 ∈ Vp∞ . Since π′′ contains at most one line of X, |Vp∞ | ≥ t.

By Lemma 5.3.2, k(p∞) ≥ l(L∞) for every point p∞ ∈ L∞. For every
point p∞ ∈ L∞ such that k(p∞) > l(L∞), |Vp∞ | ≥ t. Since there are at
most q− l(L∞) planes of type II in V , there are at most (q− l(L∞))/t points
p∞ ∈ L∞ such that k(p∞) > l(L∞). Hence there are at least

q + 1− q − l(L∞)

t
≥ q + 1− q

t
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points p∞ ∈ L∞ such that k(p∞) = l(L∞). 2

Let R be the set of points p∞ ∈ P IV such that k(p∞) = t+ 2.

Lemma 5.3.23 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. If p∞ ∈ R then all lines of S which intersect Π∞ in p∞ are
coplanar and there are exactly t lines L∞ of B IV through p∞, each of them
having l(L∞) = t+ 2.

Proof. Let p∞ ∈ R and let X be the set of lines of S which intersect
Π∞ in the point p∞. Then |X | = t + 2. Suppose that not all lines of X
are coplanar. So there are lines L,L′, L′′ ∈ X which are not coplanar. By
Corollary 5.3.21, each of the planes 〈L,L′〉, 〈L′, L′′〉 and 〈L′′, L〉 contains at
least t + 1 lines of S, each of which is in the set X. But this contradicts
|X | = t+ 2. So all lines of X are coplanar.

Let L ∈ X, and let L1
∞, L

2
∞, . . . , L

t
∞ be the lines at infinity of the t

planes of type IV through L. By Theorem 5.3.20, l(Li∞) ∈ {1, t + 2} for all
i ∈ {1, 2, . . . , t}. Suppose that for some Li∞, l(Li∞) = 1. Let L′ ∈ X \ {L}.
Then the plane π = 〈L′, Li∞〉 is of type II, and since Li∞ ∈ B IV, Corollary
5.3.21 implies that Sπ has at least t+ 1 lines, all of which are in X. But also
the plane 〈L,Li∞〉 contains a line of X, namely L. This contradicts the fact
that all lines of X are coplanar. So l(Li∞) = t + 2 for all i ∈ {1, 2, . . . , t}.
This means that for every line L′ ∈ X, every plane 〈L′, Li∞〉, 1 ≤ i ≤ t, is a
plane of type IV.

Suppose that there is a line L∞ 6∈ {L1
∞, . . . , L

t
∞} of B IV through p∞. Let

π be a plane of type IV which intersects Π∞ in L∞ and let L′ be the unique
line of X in π. Then there are t + 1 planes of type IV which contain L′,
namely π and the planes 〈L′, Li∞〉, 1 ≤ i ≤ t. Clearly this is impossible. So
L1
∞, . . . , L

t
∞ are the only lines of B IV through p∞. 2

Lemma 5.3.24 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are

no planar nets. Then either R = ∅ or |R | ≥
(
t−1
t

)3
q(q + 1).

Proof. Suppose that R 6= ∅. By Lemma 5.3.23, there is a line L∞ ∈ B IV

such that l(L∞) = t + 2. Let x denote the number of triples (p∞,M∞, r∞)
such that M∞ is a line of B IV intersecting L∞ in the point p∞ ∈ R and such
that r∞ is a point of R on M∞, different from p∞.

By Lemma 5.3.22, there are at least q + 1 − q/t points p∞ of R on L∞.
By Lemma 5.3.23, through every point p∞ of R on L∞ there are exactly t−1
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lines M∞ ∈ B IV different from L∞, and each of these lines has l(M∞) = t+2.
Again by Lemma 5.3.22, there are at least q − q/t points r∞ ∈ R on M∞
different from p∞. Hence x ≥ (t− 1)(q + 1− q/t)(q − q/t).

Through a fixed point r∞ ∈ R not on L∞ there are, by Lemma 5.3.23,
exactly t lines M∞ ∈ B IV, which may or may not intersect L∞ in a point of
R. Hence x ≤ t |R | . We conclude that

|R | ≥ t− 1

t
(q + 1− q

t
)(q − q

t
) ≥

(
t− 1

t

)3

q(q + 1) .

2

Theorem 5.3.25 Let S be a (0, 2)-geometry of order (q − 1, t), t even and
2 < t < q− 1, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets. Then for every line L∞ ∈ B IV, l(L∞) = 1.

Proof. We first remark that as a consequence of Theorem 5.3.20, 4 ≤ t < 1
2
q

and h ≥ 6, so q ≥ 64.
Suppose that there is a line L∞ ∈ B IV such that l(L∞) 6= 1. By Theorem

5.3.20, l(L∞) = t + 2. Lemma 5.3.2 implies that R 6= ∅. By Lemma 5.3.24,

|R | ≥
(
t−1
t

)3
q(q + 1).

We consider again the set Π of original planes and the set Π∗ of repeated

planes. As before, let P IV = {p1
∞, p

2
∞, . . . , p

| P IV |
∞ } and for every pi∞ ∈ P IV

let di denote the number of repeated planes π such that P∞(π) = {pi∞}.
Let pi∞ ∈ R. By Lemma 5.3.23, the t + 2 lines of S which intersect Π∞

in the point pi∞ lie in a plane π, and there are exactly q + 1 − t lines of B0

through pi∞, one of which being the line at infinity L∞ of π. Let M∞ be a
line of B0 through pi∞ and different from L∞. Then there are exactly t + 1
repeated planes π′ such that π′ ∩ Π∞ = M∞ and P∞(π′) = {pi∞}. Hence
di = (t+1)(q− t), and this holds for every point pi∞ ∈ R. By Lemma 5.3.15,

|Π∗ | =

| P IV |∑
i=1

di ≥
|R |∑
i=1

di = (t+ 1)(q − t) |R | .

By Lemma 5.3.14, |Π∗ | ≤ (q + 1) | P0 | − | B0 | < (q + 1) | P0 | , so

(t+ 1)(q − t) |R | ≤ (q + 1) | P0 | .

Since P0 is the complement of P IV in the point set of Π∞ and since R ⊆ P IV,
| P0 | ≤ q2 + q + 1− |R | . Hence

|R | ≤ (q + 1)(q2 + q + 1)

(t+ 1)(q − t) + q + 1
.
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Since q ≥ 64 and 4 ≤ t < 1
2
q, (t+ 1)(q − t) ≥ 4(q + 1). Hence(

t− 1

t

)3

q(q + 1) ≤ |R | ≤ 1

5
(q2 + q + 1) .

This clearly contradicts the fact that t ≥ 4 and q ≥ 64. We conclude that
for every line L∞ ∈ B IV, l(L∞) = 1. 2

Theorem 5.3.26 A (0, 2)-geometry of order (q − 1, t), with 2 < t < q − 1
and t even, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets, does not exist.

Proof. Suppose that there exists a (0, 2)-geometry S of order (q − 1, t),
t even and 2 < t < q−1, fully embedded in AG(3, q), q = 2h, h > 1, such that
there are no planar nets. By Theorem 5.3.25 and Lemma 5.3.4, kmin = 1.
Let x be the number of pairs (p∞, L∞) such that p∞ ∈ Pmin, L∞ ∈ B IV and
p∞ ∈ L∞. By Lemma 5.3.6, x = t | Pmin | . By Lemma 5.3.22, on every line
L∞ ∈ B IV there are at least q + 1 − q/t > (t − 1)(q + 1)/t points p∞ such
that k(p∞) = l(L∞) = 1 = kmin. Hence x > t−1

t
(q + 1) | B IV | . We conclude

that

| Pmin | >
t− 1

t2
(q + 1) | B IV | .

Let π be a plane of type IV. Then there are 1
2
q(q+1)(t−1) lines of S which

intersect π in a point of the connected component of Sπ which is a dual oval.
So | B | ≥ 1

2
q(q + 1)(t − 1). Theorem 5.3.25 implies that |Π IV | = | B IV | .

Hence by equality (5.2) of Lemma 5.3.7,

| B IV | =
t

q + 1
| B | ≥ 1

2
qt(t− 1).

On the other hand Lemma 5.3.5 implies that there is at least one hole, so
| Pmin | ≤ q2 + q. Hence

t− 1

t2
(q + 1)

1

2
qt(t− 1) < q(q + 1).

So (t− 1)2 < 2t, and hence t < 3. But this contradicts t > 2.
We conclude that a (0, 2)-geometry of order (q− 1, t), with 2 < t < q− 1

and t even, fully embedded in AG(3, q), q = 2h, h > 1, such that there are
no planar nets, does not exist. 2
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5.3.2.5 Conclusion

Theorem 5.3.27 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Then t = q.

Proof. This follows immediately from Proposition 5.3.1 and Theorems
5.3.8, 5.3.9, 5.3.19 and 5.3.26. 2

5.3.3 Classification in case t = q

Theorem 5.3.28 Let S = (P ,B, I) be a (0, 2)-geometry of order (q − 1, q)
fully embedded in AG(3, q), q = 2h, h > 1, such that there are no planar
nets. Then the following properties hold.

1. There is exactly one hole, which is denoted by n∞.

2. P IV = Pmin. In other words, through every point of Π∞ different from
the hole n∞, there is a constant number kmin of lines of S. Let k = kmin.

3. Any plane through the hole n∞ is of type II and contains exactly k lines
of S and no isolated points. These are the only planes of type II.

4. k ∈ {1
2
q, q} and | P | = kq2.

5. k = 1
2
q if and only if S ' HT.

Proof. Applying t = q to inequalities (5.6) and (5.7) of Lemma 5.3.7 yields
| P IV | ≥ q(q+1), so | P0 | ≤ 1. On the other hand by Lemma 5.3.5, P0 6= ∅,
so there is exactly one hole n∞. Hence | B IV | = q2 = qt − q + t. In other
words, we have equality in (5.6) of Lemma 5.3.7. Hence P IV = Pmin.

Let L∞ be a line of Π∞ through n∞, and let V be the parallel class of
planes which intersect Π∞ in the line L∞. Since n∞ ∈ L∞, L∞ ∈ B0, so
every plane in V is of type I or II. Let p∞ be a point of P IV on L∞. Then
there is a line L of S which intersects Π∞ in the point p∞. Hence the plane
π = 〈L,L∞〉 ∈ V is a plane of type II such that P∞(π) = {p∞}. So for
every point p∞ ∈ P IV on L∞, there is at least one plane π ∈ V of type II
such that P∞(π) = {p∞}. But since P0 = {n∞}, there are q points of P IV

on L∞. Since there are only q planes in V , it follows that for every point
p∞ ∈ L∞ \ {n∞}, there is exactly one plane π ∈ V of type II such that
P∞(π) = {p∞}; moreover, π contains all k lines of S which intersect Π∞ in
p∞. Hence every plane of V is of type II. We conclude that every affine plane
containing the hole n∞ is of type II and contains k lines of S.



5.3. Classification in case there are no planar nets 125

k
k

k

n∞

π

p∞L∞

Π∞

Figure 5.4: A parallel class of planes containing the unique hole in case t = q
(Theorem 5.3.28).

Suppose that a plane π of AG(3, q) which contains the hole n∞, contains
an isolated point p. Since n∞ is a hole, the line L = 〈n∞, p〉 is not a line of
S. Also every plane through L is of type II, so contains at most one line of
S through p. But π does not contain any line of S through p, implying that
the number of lines of S through p is at most q, a contradiction.

Now suppose that there is a plane π of type II which does not contain
the hole n∞. Let L∞ = π ∩ Π∞ and let p∞ ∈ L∞ such that P∞(π) = {p∞}.
Then p∞ 6= n∞, so p∞ ∈ P IV = Pmin. By Lemma 5.3.3, none of the planes
parallel to π is of type IV. Hence L∞ ∈ B0, so L∞ contains a hole. But this
contradicts the fact that n∞ 6∈ L∞. So every plane of type II contains the
hole n∞.

Consider a parallel class of planes which intersect Π∞ in a line containing
n∞. Then every plane is of type II and contains k lines of S and no isolated
points. Hence | P | = kq2.

Let L be a line of AG(3, q). Then there is at least one plane of type II
which contains L, namely 〈n∞, L〉 if L ∩ Π∞ 6= n∞, and any plane through
L otherwise. Since every plane of type II contains k parallel lines of S and
no isolated points, L contains 0, k or q points of S. We conclude that the
set R = P ∪Π∞ is a set of type (1, k + 1, q + 1). Furthermore, L contains q
points of S if and only if L is a line of S or k = q.

Suppose that k < q, and suppose that R is a singular set of type
(1, k + 1, q + 1). Then there is a singular point p ∈ R, that is, a point
p ∈ R such that every line through p contains 1 or q + 1 points of R. If p
is an affine point, then every line L through p contains at least 2 points of
R, namely p and L ∩ Π∞, and hence L contains q + 1 points of R. So R is
the point set of PG(3, q), and | P | = kq2 = q3, a contradiction. If p ∈ Π∞,
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then since | P | = kq2, there are exactly kq affine lines through p which are
completely contained in P , and hence are lines of S. But this contradicts
the fact that k(p∞) = k for every point p∞ ∈ P IV. So R is nonsingular. By
Theorem 1.3.5, the following cases have to be considered.

1. P is a point or the complement of a point. This contradicts | P | = kq2.

2. k = 1
2
q and R = R3. Since every affine line which contains q points of

P is a line of S, it follows that S ' HT.

We conclude that k ∈ {1
2
q, q} and that if k = 1

2
q, then S ' HT. Clearly, if

S ' HT, thenR = P∪Π∞ = R3 is a set of type (1, 1
2
q+1, q+1), so k = 1

2
q. 2

For any point p∞ ∈ Π∞, let πp∞ denote the projective plane with as
points the planes of PG(3, q) through p∞ and as lines the lines of PG(3, q)
through p∞.

In AG(3, q), q = 2h, h > 1, an ordered pair (Ω∞, ψ) is called a type A
pair if Ω∞ is a planar oval set in Π∞ with nucleus a point n∞, and ψ is a
collineation from πn∞ to π(Ω∞) such that every line of Π∞ through n∞ is
fixed.

Theorem 5.3.29 Let S = (P ,B, I) be a (0, 2)-geometry of order (q − 1, q)
fully embedded in AG(3, q), q = 2h, h > 1, such that there are no planar
nets. Let n∞ be the unique hole. Then the following properties hold.

1. For every point p of S, θp is an oval in Π∞ with nucleus n∞.

2. For any two points p, p′ of S such that p, p′, n∞ are collinear, θp = θp′.

3. The set Ω∞(S) of all distinct sets θp, p ∈ P, is a planar oval set in Π∞
with nucleus n∞.

4. The pair (Ω∞(S), ψ(S)), where ψ(S) maps an affine plane π through
n∞ to the point at infinity of the k lines of Sπ, the plane Π∞ to the
point n∞, an affine line L through n∞ to the set θp ∈ Ω∞(S), with p
an affine point of L, and a line L∞ of Π∞ through n∞ to itself, is a
type A pair.

Proof. Let p be a point of S, and let L = 〈p, n∞〉. By Theorem 5.3.28, every
plane through L contains exactly one line of S through p. Hence every line
of Π∞ through n∞ intersects the set θp in exactly one point. Furthermore,
by Theorem 5.3.28, every plane through p which does not contain the line
L is a plane of type I or IV, and hence contains 0 or 2 lines of S through
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Figure 5.5: Planar oval sets and type A pairs (Theorem 5.3.29).

p. So every line of Π∞ not through n∞ intersects θp in 0 or 2 points. Since
| θp | = q + 1, it follows that θp is an oval with nucleus n∞.

Let p, p′ be points of S such that the line L = 〈p, p′〉 intersects Π∞ in the
point n∞. Since for every plane π through L, the lines of S in π through p
and p′ are parallel, θp = θp′ .

Let p, p′ be points of S such that the line L = 〈p, p′〉 intersects Π∞ in a
point p∞ different from n∞. Let π = 〈L, n∞〉. Then π is a plane of type II, so
the line L∞ = 〈n∞, p∞〉 = π ∩Π∞ intersects the ovals θp and θp′ in the same
point, namely the point at infinity of the k lines of Sπ. Suppose that there
is a point r∞ ∈ θp ∩ θp′ which is not on L∞. Then the plane π′ = 〈L, r∞〉
contains a line of S through p, respectively p′, which intersects Π∞ in r∞.
So π′ contains two parallel lines of S, and hence it is of type II. By Theorem
5.3.28, π′ contains the hole n∞. But π′ ∩ Π∞ = 〈p∞, r∞〉, and this line does
not contain n∞, a contradiction. So θp and θp′ intersect in exactly one point.
It follows that the set Ω∞(S) consists of exactly q2 ovals with nucleus n∞,
any two of which intersect in exactly one point. Hence Ω∞(S) is a planar
oval set in Π∞ with nucleus n∞.

Let L be an affine line through n∞, and let π be an affine plane con-
taining n∞. If L ⊆ π then clearly πψ(S) ∈ Lψ(S). Assume that L 6⊆ π. Let
L∞ = π ∩ Π∞ and let π′ = 〈L,L∞〉. Since for every point p∞ ∈ L∞ \ {n∞}
there is exactly one plane π′′ such that π′′∩Π∞ = L∞ and P∞(π′′) = {p∞}, the
lines of Sπ are not parallel to the lines of Sπ′ . In other words, πψ(S) 6= π′ψ(S).
Since L ⊆ π′, π′ψ(S) ∈ Lψ(S). Since π′ψ(S) is the only point of Lψ(S) on L∞,
πψ(S) 6∈ Lψ(S). So L and π are incident in πn∞ if and only if Lψ(S) and πψ(S)

are incident in π(Ω∞(S)). It is now easily verified that any point and any
line of πn∞ are incident if and only if their images under ψ(S) are incident
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in π(Ω∞(S)). Since ψ(S) fixes every line of Π∞ through n∞, (Ω∞(S), ψ(S))
is a type A pair. 2

Lemma 5.3.30 Consider the (0, 2)-geometry S = HT = (P ,B, I), fully em-
bedded in AG(3, q), q = 2h. Consider S = (P ,B, I), the so-called complement
of S, where P is the complement of P in the point set of AG(3, q), B is the
set of all affine lines containing q points of P, and I is the natural incidence.
Then S is a (0, 2)-geometry fully embedded in AG(3, q), and it is projectively
equivalent to HT.

Proof. From the construction of HT (see Section 1.4.7) it follows that
P ∪ Π∞ is projectively equivalent to R3. Since R3 is a set of type
(1, 1

2
q + 1, q + 1), P ∪ Π∞ is also a set of type (1, 1

2
q + 1, q + 1). Since

R3 is nonsingular, so is P ∪ Π∞. By Theorem 1.3.4, P ∪ Π∞ is projectively
equivalent to R3. Hence S ' HT. 2

If S ' HT and S is the complement of S, then we also say that S and S
are complementary.

Lemma 5.3.31 Let S = (P ,B, I) ' HT and let S = (P ,B, I) be the comple-
ment of S. Then the hole of S and the hole of S coincide, Ω∞(S) = Ω∞(S)
and ψ(S) = ψ(S). Furthermore, all the conclusions of Theorems 5.3.28 and

5.3.29 apply to the (disconnected) geometry S̃ = (P̃ , B̃, Ĩ) = (P ∪ P ,B ∪ B,
I ∪ I), with k = q.

Proof. Let n∞ be the hole of S. Let L be a line of AG(3, q) through n∞,
and let π be a plane containing L. By Lemma 4.4.4, π is a plane of type
II which contains 1

2
q lines of S but no isolated points. Hence L contains

exactly 1
2
q points of S. So every affine line which intersects Π∞ in the point

n∞, contains exactly 1
2
q points of S, and hence exactly 1

2
q points of S. So

no line of S intersects Π∞ in the point n∞. Hence n∞ is the hole of S.
Let π be a plane of type II with respect to S. Then π contains 1

2
q parallel

lines of S but no isolated points of S, so it contains 1
2
q lines of S, and these

lines are parallel to the lines of S in π. Hence πψ(S) = πψ(S).
Let L be a line of AG(3, q) which intersects Π∞ in the point n∞. Since

for every plane π through L, πψ(S) = πψ(S), it follows that Lψ(S) = Lψ(S).
This shows that Ω∞(S) = Ω∞(S) and ψ(S) = ψ(S).

Consider the geometry S̃. Since the hole of the geometries S and S is n∞,
this point is the unique hole of S̃. Since through every point p∞ ∈ Π∞\{n∞}
there are exactly 1

2
q lines of S and exactly 1

2
q lines of S, there are exactly q
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lines of S̃ through every point p∞ ∈ Π∞ \ {n∞}. Since S is the complement
of S, it is immediately clear that an affine plane π is of type II with respect
to S̃ if and only if n∞ is on the line π ∩Π∞, and that in this case π contains
q parallel lines of S̃ and no isolated points. Since P is the complement of P
in the point set of AG(3, q), | P̃ | = q3. So all the conclusions of Theorem

5.3.28 apply to S̃.
For every point p of S, respectively S, S̃, let θp, respectively θp, θ̃p, denote

the set of points at infinity of the q+1 lines of S, respectively S, S̃, through
p. Let p ∈ P̃ . Then either p ∈ P or p ∈ P . Since θ̃p = θp if p ∈ P and

θ̃p = θp if p ∈ P , and since Theorem 5.3.29 applies to both S and S, θ̃p is an
oval of Π∞ with nucleus n∞.

Let p, p′ be points of S̃ such that the line L = 〈p, p′〉 intersects Π∞ in the

point n∞. Since for every plane π through L, the lines of S̃ in π through p
and p′ are parallel, θ̃p = θ̃p′ .

Now it is clear that Ω∞(S̃) = Ω∞(S) = Ω∞(S) and ψ(S̃) = ψ(S) = ψ(S),

so (Ω∞(S̃), ψ(S̃)) is a type A pair. So all the conclusions of Theorem 5.3.29

apply to S̃. 2

Let Ω∞ be a planar oval set in Π∞ with nucleus n∞. Let G be the group
of collineations of AG(3, q) which fix Ω∞. Let X be the set of collineations
ψ from πn∞ to π(Ω∞) which fix every line of Π∞ through n∞. We define
an action of G on X as follows. Let g ∈ G and ψ ∈ X. Then since g fixes
Ω∞, g fixes n∞. Hence g−1 induces a collineation of πn∞ . Since g fixes Ω∞,
g induces a collineation of π(Ω∞). Hence ψg = g−1ψg is a collineation from
πn∞ to π(Ω∞). Since ψ fixes every line of Π∞ through n∞, so does g−1ψg.
So ψg ∈ X.

Lemma 5.3.32 Let Ω∞ be a planar oval set of Π∞ with nucleus n∞. Then
G acts transitively on X.

Proof. If X = ∅, then there is nothing to prove, so assume that X is not
empty. Let ψ ∈ X. A collineation ψ′ from πn∞ to π(Ω∞) is an element of X
if and only if it fixes every line of Π∞ through n∞. This is the case if and
only if ψψ′−1 is a perspectivity of the projective plane πn∞ with center Π∞.
So |X | is equal to the number of perspectivities of πn∞ with center Π∞,
which is q2(q − 1).

Let G′ be the group of collineations of Π∞ which fix Ω∞. Since every
collineation of Π∞ can be extended to exactly q3(q−1) different collineations
of AG(3, q), the group G has order q3(q − 1) |G′ | .

Let ψ ∈ X. Suppose that a collineation g′ ∈ G′ can be extended to a
collineation g ∈ G which fixes ψ. We prove that the set V ⊆ G of collineations
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which extend g′ and which fix ψ has size q. A collineation h ∈ G is an element
of V if and only if h fixes ψ and h and g have the same action on Π∞, if
and only if f = gh−1 ∈ G fixes ψ and fixes every point of Π∞, if and only
if f = gh−1 ∈ G is a perspectivity of PG(3, q) with axis Π∞ which fixes
ψ. A perspectivity f of PG(3, q) with axis Π∞ (note that f fixes Ω∞ and
hence is in G) fixes ψ if and only if for every line L of AG(3, q) through n∞,
Lfψ = Lψf . Since f fixes Π∞ pointwise, Lψf = Lψ for every line L through
n∞. So f fixes ψ if and only if for every line L of AG(3, q) through n∞,
Lfψ = Lψ, if and only if f fixes every line of AG(3, q) through n∞. In other
words, f must be an elation with axis Π∞ and center n∞. Since there are
exactly q such elations, |V | = q. This means that there are at most q |G′ |
elements of G which fix ψ. If Gψ denotes the stabilizer of ψ in G, and ψG

denotes the orbit of ψ under G, then the orbit-stabilizer theorem yields

q3(q − 1) |G′ | = |G | = |ψG | . |Gψ | ≤ q |G′ | . |ψG | .

Hence |ψG | ≥ q2(q− 1). Since |X | = q2(q− 1), it follows that ψG = X, so
G acts transitively on X. 2

Theorem 5.3.33 Let S be a (0, 2)-geometry of order (q − 1, q), fully em-
bedded in AG(3, q), q = 2h, h > 1, such that there are no planar nets. Let
O∞ ∈ Ω∞(S). Then S ' A(O∞).

Proof. Let S1 = (P1,B1, I1) = S. Let n∞ be the unique hole of S1. Consider
the (0, 2)-geometry S2 = (P2,B2, I2) = A(O∞). By Theorem 4.2.1, S2 has
order (q − 1, q) and is fully embedded in AG(3, q). By Lemma 4.4.2, S2 has
no planar nets. Hence Theorems 5.3.28 and 5.3.29 apply to S2. By Theorem
5.3.28, S2 has a unique hole. From the construction of A(O∞) (see Section
4.2.1), it is clear that none of the affine lines through n∞, the nucleus of O∞,
is a line of A(O∞). Hence n∞ is the unique hole of S2.

We define an incidence structure S̃i = (P̃i, B̃i, Ĩi), i = 1, 2. If Si 6' HT,

then let S̃i = Si, i = 1, 2. If Si ' HT, then let S̃i = (P̃i, B̃i, Ĩi) = (Pi ∪ P i,
Bi ∪ Bi, Ii ∪ Ii), where S i = (P i,Bi, Ii) is the complement of Si, i = 1, 2.

Note that in either case, P̃i is the set of all affine points, i = 1, 2. Note also
that S̃i is not necessarily connected, so it is not necessarily a (0, 2)-geometry.
However by Lemma 5.3.31, all the conclusions of Theorems 5.3.28 and 5.3.29
apply to S̃i, with k = q, i = 1, 2.

Let ϕ be a collineation from the projective plane Π∞ to the projective
plane πn∞ which fixes every line of Π∞ through n∞. Then ϕψ(S̃i) is a

collineation from Π∞ to π(Ω∞(S̃i)) which fixes every line of Π∞ through n∞,

i = 1, 2. Hence Ω∞(S̃i) is a regular Desarguesian planar oval set, i = 1, 2.
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We have shown in the proof of Lemma 5.3.31 that Ω∞(S̃i) = Ω∞(Si) if

Si ' HT, i = 1, 2. Clearly, if Si 6' HT, then also Ω∞(S̃i) = Ω∞(Si), i = 1, 2.

Since O∞ ∈ Ω∞(Si), O∞ ∈ Ω∞(S̃i), i = 1, 2. By Theorem 3.4.1, Ω∞(S̃i) is
the set of images of O∞ under all elations of Π∞ with center n∞, i = 1, 2.
So, in particular, Ω∞(S̃1) = Ω∞(S̃2).

Let Ω∞ = Ω∞(S̃1) = Ω∞(S̃2). Let X be the set of all collineations from

πn∞ to π(Ω∞) fixing every line of Π∞ through n∞. Then ψ(S̃1), ψ(S̃2) ∈ X.
By Lemma 5.3.32, there is a collineation g of AG(3, q) which fixes Ω∞ and

which maps ψ(S̃1) to ψ(S̃2). In other words, ψ(S̃1)g = gψ(S̃2).

Let p be a point of S̃1, and let L = 〈p, n∞〉. Then, by definition of ψ(S̃1),

Lψ( eS1) is the set of points at infinity of the lines of S̃1 through p. So the lines
of S̃1 through p are mapped by g to the lines 〈pg, p∞〉, p∞ ∈ Lψ( eS1)g. Since

P̃2 is the set of all affine points, pg is a point of S̃2. The set of points at
infinity of the lines of S̃2 through pg is L′ψ( eS2), where L′ = 〈pg, n∞〉. Since

g fixes Ω∞, g fixes n∞. So L′ = Lg. So the lines of S̃2 through pg are the
lines 〈pg, p∞〉, p∞ ∈ Lgψ( eS2). Now since Lψ( eS1)g = Lgψ( eS2), the set of lines of

S̃1 through p is mapped by g to the set of lines of S̃2 through pg. Since this
is the case for every point p of S̃1, we conclude that g is a collineation of
AG(3, q) which induces an isomorphism from S̃1 to S̃2. So S̃1 ' S̃2.

If S1 6' HT then S1 = S̃1 ' S̃2, so S̃2 is connected. Hence S1 ' S̃2 = S2.
If S1 ' HT then S̃1 is disconnected, hence so is S̃2. So S2 ' HT, and here
also S1 ' S2. So in any case S1 ' S2. It follows that S ' A(O∞). 2

5.4 Conclusion

Theorem 5.4.1 Let S be a (0, 2)-geometry fully embedded in AG(3, q),
q = 2h, h > 1, such that there is at least one plane of type IV. Then one of
the following cases occurs.

1. S ' A(O∞).

2. S ' I(3, q, e).

Proof. The theorem follows immediately from Theorems 5.2.5, 5.3.27 and
5.3.33. 2

Corollary 5.4.2 Let S be a (0, α)-geometry, α > 1, fully embedded in
AG(3, q). Then one of the following cases occurs.
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1. q = 2, α = 2, and S is a 2− (t+ 2, 2, 1)-design.

2. q = 2h, α = 2, and S ' A(O∞).

3. q = 2h, α = 2, and S ' I(3, q, e).

4. S ' T ∗2 (K∞), with K∞ a set of type (0, 1, α + 1) in Π∞ which spans
Π∞.

Proof. The case q = 2 is trivial and is solved in Proposition 4.3.5. If there
are no planes of type IV, then Theorem 4.3.1 applies. If there is a plane of
type IV, then α = 2 and q = 2h, and Theorem 5.4.1 applies. 2



Chapter 6

Classification of
(0, 2)-geometries fully
embedded in AG(n, 2h)

In Chapter 5, we classified all (0, 2)-geometries which are fully embedded in
AG(3, q), q = 2h, h > 1, and which have a plane of type IV. In this chapter,
we classify, using the method described in Section 4.1, all (0, 2)-geometries
which are fully embedded in AG(n, q), n ≥ 3, q = 2h, h > 1, and which have
a plane of type IV. Thus we give the complete solution to Problem 2 (see
Section 4.3).

Note that the (0, 2)-geometries fully embedded in AG(n, q), n ≥ 3, q = 2h,
which do not have a plane of type IV, are already classified by Theorem 4.3.1.
Also, h > 1 is not really a restriction since the case h = 1 is trivial, and is
handled in Proposition 4.3.5.

We consider in this chapter two distinct cases. Firstly, in Section 6.2,
we classify the (0, 2)-geometries fully embedded in AG(n, q), n ≥ 3, q = 2h,
h > 1, such that there is a plane of type IV and a planar net. Secondly,
in Section 6.3, we classify the (0, 2)-geometries fully embedded in AG(n, q),
n ≥ 3, q = 2h, h > 1, such that there is a plane of type IV, but no planar
net.

The results of this chapter are published in [34].

6.1 Preliminaries

Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 3, and let U be
a subspace of AG(n, q) of dimension at least 2. Then P∞(U) will denote the
set of points p∞ ∈ U∞ = U ∩ Π∞ such that there is a line L of SU which

133
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intersects Π∞ in the point p∞.

Lemma 6.1.1 Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4,
q = 2h, h > 1, and let U be a subspace of AG(n, q) of dimension 3. Then U
is of exactly one of the following four types.

Type A. SU contains a connected component S ′ ' A(O∞).

Type B. SU contains a connected component S ′ ' I(3, q, e).

Type C. SU is a connected linear representation.

Type D. Every connected component of SU is contained in a plane of U .

Proof. In Section 4.4, it is proven that if U is of type A, B, C or D, then it
is not of any other type. Suppose that U is not of type D. Then SU contains
a connected component S ′ which is not contained in a plane of U . By Lemma
4.1.1, S ′ is a (0, 2)-geometry fully embedded in the 3-dimensional affine space
U . Hence Corollary 5.4.2 applies and S ′ ' A(O∞), S ′ ' I(3, q, e) or S ′ is a
linear representation. So U is of type A, B or C. 2

Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4, q = 2h,
h > 1, and let U be a proper subspace of AG(n, q) of dimension m ≥ 3. It
was proven in Section 4.4 that U is of at most one of the following four types.

Type A. m = 3 and SU contains a connected component S ′ ' A(O∞), or
m = 4 and SU contains a connected component S ′ ' TQ(4, q).

Type B. SU contains a connected component S ′ ' I(m, q, e).

Type C. SU is a connected linear representation.

Type D. Every connected component of SU is contained in a proper sub-
space of U .

Let U be a proper subspace of AG(n, q) of dimension m ≥ 3, and let S ′
be a connected component of SU which contains two intersecting lines. By
Lemma 4.1.1, S ′ is a (0, 2)-geometry fully embedded in a subspace of U . Let
V be a proper subspace of U of dimension at least 2. Consider the incidence
structures SV and S ′V . These are not necessarily the same. Indeed, a point,
respectively a line of S ′V is a point, respectively a line of SV , but not vice
versa.

This leads to the following paradoxical situation. It is possible that, if V
is a subspace of type X, V is of some other type Y with respect to S ′. For
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example, if V is a plane of type IV, but none of the lines of SV are lines of
S ′, then the plane V is of type I with respect to S ′. So, one has to keep in
mind that the type of a given subspace V depends on which sub incidence
structure of S one considers.

The following lemma gives some information about the relation between
S ′V and SV .

Lemma 6.1.2 Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4,
q = 2h, h > 1. Let U be a proper subspace of AG(n, q) of dimension at least
3, let S ′ be a connected component of SU , and let V be a proper subspace
of U of dimension at least 2. Then every connected component of S ′V is a
connected component of SV .

Proof. We recall that the connected components of an incidence structure
T are the sub incidence structures of T induced on the connected components
of the incidence graph I(T ) of T .

Let S ′′ be a connected component of S ′V , and let x be a vertex of the
incidence graph I(S ′′), that is, x is a point or a line of S ′′. Let S ′′′ be the
connected component of SV which contains x. We prove that S ′′ = S ′′′.

Let y be a vertex of I(S ′′), distinct from x. Since S ′′ is connected, there
is a path (x0 = x, x1, . . . , xk = y) in I(S ′′). Every point or line of S ′′ is a
point or line of SV , so (x0 = x, x1, . . . , xk = y) is a path in I(SV ). So y is in
the connected component S ′′′ of SV which contains x.

Let y be a vertex of I(S ′′′), distinct from x. Since S ′′′ is connected, there
is a path (x0 = x, x1, . . . , xk = y) in I(S ′′′). Every point or line of S ′′′ is
a point or line of SU , so (x0 = x, x1, . . . , xk = y) is a path in I(SU). So
xi is in the connected component S ′ of SU which contains x, i = 1, . . . , k.
Furthermore, xi is contained in V , i = 1, . . . , k, so (x0 = x, x1, . . . , xk = y)
is a path in I(S ′V ). So y is in the connected component S ′′ of S ′V which
contains x.

We conclude that the vertex sets of I(S ′′) and I(S ′′′) are the same. Since
incidence in S ′′ and S ′′′ is defined by incidence in AG(n, q), I(S ′′) = I(S ′′′).
Hence S ′′ = S ′′′. 2

6.2 Classification in case there is a planar net

Lemma 6.2.1 Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4,
q = 2h, h > 1, and suppose that U is a subspace of AG(n, q) of type C. Then
the set P∞(U) spans U∞ = U ∩ Π∞. If V ⊆ U is a subspace of dimension
m ≥ 2 then SV is a linear representation and P∞(V ) = V∞ ∩ P∞(U), where
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V∞ = V ∩Π∞. Furthermore, V is of type C (respectively of type III if m = 2)
if and only if P∞(V ) = V∞ ∩ P∞(U) spans V∞.

Proof. Since U is of type C, SU is the linear representation of the set P∞(U).
Since SU is connected, by Proposition 1.4.12, P∞(U) spans U∞. Clearly since
V ⊆ U , SV is a linear representation and P∞(V ) = V∞ ∩ P∞(U). By Propo-
sition 1.4.12, V is of type C (respectively of type III if m = 2) if and only if
P∞(V ) = V∞ ∩ P∞(U) spans V∞. 2

Theorem 6.2.2 Let S be a (0, 2)-geometry fully embedded in AG(n, q),
n ≥ 3, q = 2h, h > 1, such that there is a plane of type IV. If there is
a hyperplane of type C (respectively a plane of type III if n = 3), and a plane
of type III, then they do not intersect in an affine line.

Proof. Let n = 3. Then by Theorem 5.4.1, S ' A(O∞) or S ' I(3, q, e).
By Lemma 4.4.2, A(O∞) does not have a planar net. By Proposition 4.4.11,
I(3, q, e) has exactly one planar net. So if n = 3, the theorem holds. We use
induction on n to prove the theorem for n ≥ 4.

So, suppose that n ≥ 4, and that the theorem holds for all 3 ≤ m < n.
Suppose that there exists a hyperplane U of type C and a plane π of type
III which intersect in an affine line L.

Firstly, assume that L is a line of S. Let U ′ be a hyperplane parallel to
but different from U , and let L′ = π ∩U ′. We prove that, for every subspace
V ⊆ U of dimension m − 1 ∈ {2, . . . , n − 2}, such that L ⊆ V and V is of
type C (respectively of type III if m = 3), the (m − 1)-space V ′ which is
parallel to V and such that L′ ⊆ V ′ ⊆ U ′, is of type C (respectively of type
III if m = 3), and P∞(V ′) = P∞(V ). Let V be such a subspace.

Consider them-space U ′′ = 〈V, π〉, and consider the connected component
S ′ of SU ′′ which contains the affine points of V and of π. Then S ′ is not
contained in a proper subspace of U ′′. By Lemma 4.1.1, S ′ is a (0, 2)-geometry
fully embedded in the m-dimensional affine space U ′′. Since 3 ≤ m < n and
since S ′ has an (m − 1)-space of type C (respectively of type III if m = 3),
namely V , and a plane of type III, namely π, which intersect in an affine line,
namely L, it follows from the induction hypothesis that S ′ does not have any
planes of type IV. Now, by Theorem 4.3.1, S ′ is a linear representation, so
U ′′ is of type C.

Since U ′′ is of type C and V ′ ⊆ U ′′, SV ′ is a linear representation. Since
V, V ′ ⊆ U ′′ and V and V ′ are parallel, V ′ is of type C (respectively of type
III if m = 3), and P∞(V ′) = P∞(V ).

Since SU is a connected linear representation, and L is a line of SU , U
contains an (n− 2)-space V of type C (respectively of type III if n = 4) and
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Figure 6.1: Illustration of Theorem 6.2.2.

a plane π of type III, such that π ∩ V = L. Let V ′ be the (n − 2)-space
parallel to V such that L′ ⊆ V ′ ⊆ U ′, and let π′ be the plane parallel to π
such that L′ ⊆ π′ ⊆ U ′. Then π′ ∩ V ′ = L′, and, as we have shown above,
V ′ is of type C (respectively of type III if n = 4), and π′ is of type III.

Consider the connected component S ′ of SU ′ which contains the affine
points of V ′ and of π′. Then, by Lemma 4.1.1, S ′ is a (0, 2)-geometry fully
embedded in the (n−1)-dimensional affine space U ′. Also, S ′ has an (n−2)-
space of type C (respectively of type III if n = 4), namely V ′, and a plane of
type III, namely π′, which intersect in an affine line, namely L′. Now, by the
induction hypothesis, S ′ does not have any planes of type IV. By Theorem
4.3.1, S ′ is a linear representation, so U ′ is a hyperplane of type C.

Let p′∞ ∈ P∞(U) \ {p∞}, and let L∞ = 〈p∞, p′∞〉. Then L∞ ∩ P∞(U)
spans L∞, so by Lemma 6.2.1, the plane π = 〈L,L∞〉 is of type III, and
p∞, p

′
∞ ∈ P∞(π). As we have shown above, the plane π′, parallel to π, such

that L′ ⊆ π′ ⊆ U ′, is of type III, and P∞(π′) = P∞(π). Hence p∞, p
′
∞ ∈

P∞(π′). Since U ′ is of type C, by Lemma 6.2.1, P∞(π′) ⊆ P∞(U ′). Hence
p∞, p

′
∞ ∈ P∞(U ′). We conclude that P∞(U) ⊆ P∞(U ′). But analogously, one

proves that P∞(U ′) ⊆ P∞(U), so P∞(U ′) = P∞(U).
So every hyperplane U ′ which is parallel to U , is of type C and satisfies

P∞(U ′) = P∞(U). By assumption, there is a plane π′ of type IV. Since a
subspace of type C does not contain a plane of type IV, π′ intersects U in an
affine line L′. Since π′ is of type IV, there is exactly one line L′′ of Sπ′ which
is parallel to L′. Let U ′′ be the hyperplane parallel to U which contains L′′.
Then the point p′∞ = L′′ ∩ Π∞ is in P∞(U ′′). Hence p′∞ ∈ P∞(U ′) for every
hyperplane U ′ parallel to U . But then every line of π′ which is parallel to
L′′ is a line of S, which is impossible since π′ is a plane of type IV. So, if we
assume that L is a line of S, we obtain a contradiction.
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Secondly, assume that L is not a line of S. Let L′ be a line of SU which
intersects L in an affine point, and let W be the 3-space 〈L′, π〉. Let S ′ be
the connected component of SW which contains the affine points of π and
L′. Clearly S ′ is not contained in a plane of W . By Lemma 4.1.1 and by
Corollary 5.4.2, S ′ ' A(O∞), S ′ ' I(3, q, e) or S ′ is a linear representation.
Since S ′ contains a planar net, S ′ 6' A(O∞).

Suppose that S ′ ' I(3, q, e). By Proposition 4.4.11, π is the only plane of
type III of S ′. So the plane π′ = 〈L,L′〉 is not of type III, and since π′ ⊆ U ,
π′ is not of type IV. Since π′ contains the line L′ of S ′, π′ is of type II. Since
U is of type C, every line of π′ parallel to L′ is a line of S, and hence of S ′.
But this contradicts Proposition 4.4.11, which says that no two distinct lines
of S ′, not contained in π, are parallel.

So S ′ is a linear representation. Hence there is a plane π′′ of type III such
that L′ ⊆ π′′ ⊆ W and π′′ 6⊆ U . But now the hyperplane U of type C and
the plane π′′ of type III intersect in an affine line L′, which is a line of S.
Hence we can apply the same arguments as above to find a contradiction. 2

Theorem 6.2.3 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(n, q), n ≥ 3, q = 2h, h > 1, such that there is a plane of type IV. If
there is a hyperplane of type C (respectively a plane of type III if n = 3),
then S ' I(n, q, e).

Proof. Let n = 3. Then, by Theorem 5.4.1, S ' A(O∞) or S ' I(3, q, e).
By Lemma 4.4.2, A(O∞) does not have a planar net. So if n = 3, then the
theorem holds. We use induction on n to prove the theorem for n ≥ 4.

So, suppose that n ≥ 4, and that the theorem holds for all 3 ≤ m < n.
Suppose that there exists a hyperplane U of type C. Let (q − 1, τ) be the
order of the (0, 2)-geometry SU . In other words, |P∞(U) | = τ + 1.

Step 1: t ≤ τ + q. Let V ⊆ U be an (n− 2)-space of type C (respectively
of type III if n = 4), let p be an affine point of V , and let U ′ 6= U be a
hyperplane which contains V . Suppose that there are two distinct lines L1

and L2 of SU ′ which intersect V in the point p. Let S ′ be the connected
component of SU ′ which contains the affine points of V , of L1 and of L2.
Then S ′ is not contained in a proper subspace of U ′, so by Lemma 4.1.1, S ′
is a (0, 2)-geometry fully embedded in the (n − 1)-dimensional affine space
U ′. Since S ′ has an (n−2)-space of type C (respectively of type III if n = 4),
namely V , the induction hypothesis implies that either S ′ ' I(n − 1, q, e),
or S ′ has no planes of type IV.

Suppose that S ′ ' I(n − 1, q, e). Then, by Proposition 4.4.11, S ′ has
exactly one (n − 2)-space of type C, namely V , and through every affine



6.2. Classification in case there is a planar net 139

point of V passes exactly one line of S ′ which is not contained in V . But
L1 6⊆ V and L2 6⊆ V are distinct lines of S ′ through p, a contradiction.

So S ′ has no planes of type IV. Now, by Theorem 4.3.1, S ′ is a linear
representation. But then there is a plane of type III in U ′ which intersects
U in an affine line. This contradicts Theorem 6.2.2. We conclude that for
every hyperplane U ′ 6= U which contains V , there is at most one line L of S
such that p ∈ L ⊆ U ′ and L 6⊆ U . Hence t ≤ τ + q.

Step 2: t = τ + 1. Let p be an affine point of U . By Lemma 4.1.4, θp
spans Π∞, so there is a line L of S through p which is not contained in U .
Hence t ≥ τ + 1.

Suppose that t > τ + 1. Then there are two distinct lines L, L′ of S
through p which are not contained in U . Let M be a line of SU through p. If
M , L and L′ are coplanar, then the plane containing them is necessarily of
type III. But then there is a plane of type III which intersect U in an affine
line, a contradiction to Theorem 6.2.2. So W = 〈M,L,L′〉 is a 3-space.

Let S ′ be the connected component of SW containing p. Then the affine
points of M , L and L′ are points of S ′, so S ′ is not contained in a plane of
W . Lemma 4.1.1 and Corollary 5.4.2 imply that S ′ ' A(O∞), S ′ ' I(3, q, e)
or S ′ is a linear representation. However, if S ′ is a linear representation,
then there is a plane of type III in W which intersects U in an affine line, a
contradiction to Theorem 6.2.2.

Suppose that S ′ ' I(3, q, e). By Proposition 4.4.11, S ′ has exactly one
plane π of type III. By Theorem 6.2.2, π ⊆ U or π is parallel to but not
contained in U . Suppose that π ⊆ U . Then π is necessarily the plane
W ∩ U . Hence M ⊆ π. But now there are at least 5 lines of S ′ through p,
a contradiction since the order of I(3, q, e) is (q − 1, 3). So π is parallel to
U but not contained in it. Hence M is parallel to π but not contained in it.
However, this contradicts Proposition 4.4.11.

So S ′ ' A(O∞). Let π be the plane W ∩U . Then M ⊆ π, so π is of type
II, III or IV. Since π ⊆ U , π is not of type IV. By Lemma 4.4.2, A(O∞) does
not have a planar net, so π is not of type III. So π is of type II. Hence the
number of lines of S ′ through p which are not contained in U , equals q.

We conclude that for every line M of SU through p, W = 〈M,L,L′〉
is a 3-space, and there are exactly q lines of SW through p which are not
contained in U .

Let N be the line 〈L,L′〉 ∩ U , and let M1 and M2 be two distinct lines
of SU through p such that N,M1 and M2 are not coplanar. Let Wi be the
3-space 〈Mi, L, L

′〉, i = 1, 2. Then W1 and W2 intersect in the plane 〈L,L′〉.
Since there are exactly q lines of SWi

through p which are not contained in
U (including L and L′), i = 1, 2, the number of lines of S through p which
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are not contained in U is at least 2q − 2. Hence t ≥ τ + 2q − 2. But since
q > 2, this contradicts t ≤ τ + q. So t = τ + 1.

Step 3: τ = 2n−1 − 2 and P∞(U) is the point set of a PG(n − 2, 2).
Since t = τ + 1, through every affine point of U passes exactly one line of S
which is not contained in U .

Let V ⊆ U be an (n − 2)-space of type C, let p′ be an affine point of
V , and let L′ be the unique line of S through p′ which is not contained in
U . Let U ′ = 〈L′, V 〉 and let S ′ be the connected component of SU ′ which
contains the affine points of V and of L′. Then, by Lemma 4.1.1, S ′ is a
(0, 2)-geometry fully embedded in the (n − 1)-dimensional affine space U ′.
Since S ′ has an (n− 2)-space of type C, namely V , the induction hypothesis
implies that either S ′ has no planes of type IV, or S ′ ' I(n− 1, q, e).

Suppose that S ′ has no planes of type IV. Then by Theorem 4.3.1, S ′ is
a linear representation. But then there is a plane of type III which intersects
U in an affine line, a contradiction to Theorem 6.2.2. So S ′ ' I(n− 1, q, e).

Let L′′ be a line of SU through p′ which is not contained in V , and
let π′ = 〈L′, L′′〉. Then π′ intersects U in an affine line and contains two
intersecting lines of S. Theorem 6.2.2 implies that π′ is a plane of type IV.
Hence there exists a line L of S which intersects U in an affine point p ∈ U \V
and U ′ in an affine point r ∈ U ′ \ V , which is a point of S ′.

We recall that, for any point x of S, x⊥ denotes the set of points of S
which are collinear to x.

Let p′′ ∈ r⊥ ∩ V . Since L is a line of S through p which intersects the
line 〈p′′, r〉 of S, α(p, 〈p′′, r〉) > 0. Hence α(p, 〈p′′, r〉) = 2, so there is a line
L′′ 6= L of S through p which intersects 〈p′′, r〉. Since t = τ + 1, L is the
only line of S through p which is not contained in U . So L′′ ⊆ U . But L′′

intersects 〈p′′, r〉, hence L′′ = 〈p, p′′〉. So p′′ ∈ p⊥ ∩ V . We conclude that
r⊥ ∩ V ⊆ p⊥ ∩ V .

Let p′′ ∈ p⊥∩V . Since 〈p, p′′〉 is a line of S through p′′ which intersects the
line L of S, α(p′′, L) > 0. Hence α(p′′, L) = 2, so there is a line L′′ 6= 〈p, p′′〉
of S through p′′ which intersects L. Since L′′ 6= 〈p, p′′〉, L′′ intersects L in a
point other than p. Hence L′′ 6⊆ U . So L′′ is the unique line of S through
p′′ which is not contained in U . However, since S ′ ' I(n − 1, q, e), there is
a line of S ′ through p′′ which is not contained in U . This line must be L′′,
so L′′ ⊆ U ′. Since L ∩ U ′ = r, L′′ is the line 〈p′′, r〉. So p′′ ∈ r⊥ ∩ V . We
conclude that p⊥ ∩ V = r⊥ ∩ V .

Since U is a hyperplane of type C, P∞(U) is the set of points at infinity
of the lines of SU through p. The lines of SU through p which are parallel to
V intersect Π∞ in the points of P∞(V ). Clearly, the lines of SU through p
which are not parallel to V , intersect V in the points of p⊥ ∩ V . So P∞(U)
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is the projection from p onto Π∞ of the set

(p⊥ ∩ V ) ∪ P∞(V ) = (r⊥ ∩ V ) ∪ P∞(V ).

By Lemma 4.4.17, (r⊥ ∩ V ) ∪ P∞(V ) is the point set of a projective space
PG(n−2, 2). It follows that also P∞(U) is the point set of a projective space
PG(n− 2, 2). So τ = 2n−1 − 2.

Step 4: S ' I(n, q, e). We define V , U ′ and S ′ as in Step 3. Then
S ′ ' I(n − 1, q, e). We recall that U is a hyperplane of type C such that
P∞(U) is the point set of a projective space PG(n− 2, 2).

Let S∗ be the geometry I(n, q, e). By Proposition 4.4.11, S∗ has a unique
hyperplane U∗ of type C, and by definition of S∗, S∗U∗ is the linear repre-
sentation of the point set of a projective space PG(n − 2, 2). By Corollary
4.4.15, every (n− 2)-dimensional subspace V ∗ of U∗ of type C (respectively
of type III if n = 4), is contained in a unique hyperplane U ′∗ of type B, and
S∗U ′∗ is connected, so S∗U ′∗ ' I(n − 1, q, e). Hence we can choose a basis in
PG(n, q) such that U∗ = U , S∗U∗ = SU (then V is of type C, respectively of
type III if n = 4, with respect to S∗), and S∗U ′ = S ′.

Let p be an affine point of U , not in V . Let p1, p2 be distinct affine points
of V such that p, p1, p2 are pairwise collinear in S, and hence also in S∗. Let
Li be the unique line of S ′, and hence the unique line of S, which intersects
U in the point pi, i = 1, 2. Then since S∗U ′ = S ′, Li is also the unique line
of S∗U ′ , and hence the unique line of S∗, which intersects U in the point pi,
i = 1, 2.

Since 〈p1, p2〉 is a line of S through p1 which intersects L2, there is a
second line of S through p1 which intersects L2, and this line is necessarily
L1. So L1 and L2 intersect in an affine point r.

Let L, respectively L∗, be the unique line of S, respectively S∗, which
intersects U in the point p. Since 〈p, pi〉 is a line of S, respectively S∗,
through p which intersects Li, there is a second line of S, respectively S∗,
through p which intersects Li, and this line is necessarily L, respectively L∗,
i = 1, 2. So L, respectively L∗, intersects the lines L1 and L2. Hence L and
L∗ contain the point r, so L = L∗.

Let L∗ be a line of S∗. If L∗ ⊆ U or L∗ intersects U in an affine point,
then L∗ is a line of S. Since by Proposition 4.4.11, there are no lines of S∗
which are parallel to but not contained in U , the line set of S∗ is a subset of
the line set of S.

Let L be a line of S. If L ⊆ U or if L intersects U in an affine point,
then L is a line of S∗. Suppose that L is parallel to U but not contained in
it. Let p be an affine point of L. As a consequence of Lemma 4.1.4, there
is a line L′ of S through p which is not parallel to U . Hence L′ is a line of



142 6. Classification of (0, 2)-geometries in AG(n, 2h)

S∗, and p is a point of S∗. Now the 2n−1 lines of S∗ through p are lines of S.
Proposition 4.4.11 implies that L is not one of these lines. Hence there are
at least 2n−1 + 1 lines of S through p, a contradiction since t = 2n−1 − 1. So
every line of S is contained in U or intersects it in an affine point, and hence
is a line of S∗. We conclude that the line sets of S and S∗ are the same, so
S = S∗. It follows that S ' I(n, q, e). 2

Theorem 6.2.4 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(4, q), q = 2h, h > 1, such that there is a planar net and a plane of
type IV. Then S ' I(4, q, e).

Proof. If there is a hyperplane of type C, then Theorem 6.2.3 implies that
S ' I(4, q, e). So, suppose that there is no hyperplane of type C. We deduce
a contradiction.

Step 1: t ≤ q + 3. Let π be a plane of type III, let p be an affine point of
π and let U be a hyperplane containing π, such that there is a line L of SU
through p which is not contained in π. Let S ′ be the connected component
of SU which contains the affine points of π and L. By Lemma 4.1.1 and
Corollary 5.4.2, S ′ ' A(O∞), S ′ ' I(3, q, e), or S ′ is a linear representation.

By assumption, U is not of type C, so S ′ is not a linear representation.
By Lemma 4.4.2, A(O∞) has no planar nets, so S ′ 6' A(O∞). It follows that
S ′ ' I(3, q, e). By Proposition 4.4.11, L is the only line of S ′, and hence the
only line of SU , which contains p but is not contained in π.

So, for every hyperplane U ⊇ π, the number of lines of SU through p, not
contained in π, is at most one. Hence t ≤ q + 3.

Step 2: there are no hyperplanes of type A. Suppose that there is
a hyperplane U of type A. Let S ′ ' A(O∞) be a connected component of
SU . Suppose that there is a plane π 6⊆ U of type IV which intersects U
in a line L of S ′. Let p be an affine point of L, let π′ ⊆ U be a plane
of type IV which contains L, let U ′ = 〈π, π′〉 and let S ′′ be the connected
component of SU ′ which contains the point p. By Lemma 4.1.1 and Corollary
5.4.2, S ′′ ' A(O∞), S ′′ ' I(3, q, e), or S ′′ is a linear representation. By
assumption, U ′ is not of type C, so S ′′ is not a linear representation. So
S ′′ ' A(O∞) or S ′′ ' I(3, q, e). In any case, the number of lines of S ′′
through p is at least 4, so there is at least one line of SU ′ through p which
is not contained in U or in π. Since this holds for every plane π′ ⊆ U of
type IV containing L, and since by Lemma 4.4.3, there are q such planes π′,
we conclude that the number of lines of S through p is at least 2q + 2. But
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this contradicts t ≤ q + 3. Hence there is no plane π 6⊆ U of type IV which
intersects U in a line of S ′.

Let p be a point of S ′. Lemma 4.1.4 implies that there is a line L′ of S
which intersects U in the point p. Let L be a line of S ′ through p. By the
preceding paragraph, the plane π = 〈L,L′〉 is not of type IV. Hence π is of
type III, and it contains a line L′′ 6= L,L′ of S through p. Since this holds
for every line L of S ′ through p, there are at least 2q + 3 lines of S through
p. But this contradicts t ≤ q + 3. So there are no hyperplanes of type A.

Step 3: t is odd, t > 5 and there are two planes of type III which
intersect in an affine point. Let π be a plane of type IV, and let p be
a point of the connected component of Sπ which is a dual oval. Let L be a
line of S which intersects π in the point p, let U = 〈π, L〉, and let S ′ be the
connected component of SU which contains the point p. Then by Lemma
4.1.1 and Corollary 5.4.2, and since there are no hyperplanes of type A or
C, S ′ ' I(3, q, e). Hence there are exactly two lines of S ′ which intersect π
in the point p.

So every hyperplane through π contains either 0 or 2 lines of S which
intersect π in the point p. Hence t is odd. Since, by Lemma 4.1.4, θp spans
Π∞, there exist at least two hyperplanes U1, U2 such that there are two lines
of SUi

, i = 1, 2, which intersect π in the point p. So t ≥ 5.
Let Si ' I(3, q, e) be the connected component of SUi

which contains the
dual oval of Sπ, and let πi be the unique plane of type III of Si, i = 1, 2.
Suppose that for some i = 1, 2, πi is parallel to π or πi intersects π in an
affine line which is not a line of Sπ. Then there is a line of Sπ, so a line of Si,
which is parallel to but not contained in πi, a contradiction to Proposition
4.4.11. So πi intersects π in a line Li of Sπ, i = 1, 2.

Suppose that L1 = L2. Then the hyperplane U = 〈π1, π2〉 contains two
planes of type III which intersect in an affine line. By Theorem 6.2.2, SU does
not contain any plane of type IV. Hence, by Theorem 4.3.1, SU is a linear
representation, so U is of type C. But this contradicts our assumption that
there are no hyperplanes of type C. Hence L1 6= L2, and π1 and π2 intersect
in the affine point L1 ∩ L2.

Suppose that t = 5. Let p be a point of S. The set θp consists of six
points which, by Lemma 4.1.4, span Π∞. Let π∞ be a plane of Π∞ containing
three noncollinear points of θp. Let U = 〈p, π∞〉, and let S ′ be the connected
component of SU which contains p. Then S ′ contains three lines through p
which are not coplanar, so S ′ is not contained in a plane of U . By Lemma
4.1.1 and Corollary 5.4.2, and since there are no hyperplanes of type A or
C, S ′ ' I(3, q, e). Hence π∞ contains exactly four points of θp.
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Figure 6.2: Illustration of Step 4 of Theorem 6.2.4.

Let U be a hyperplane of type B and let S ′ be the connected component
of SU which is projectively equivalent to I(3, q, e). Let p be a point of S ′, not
in the unique planar net of S ′. Let π∞ = U ∩Π∞. Then π∞ contains exactly
four points p1, p2, p3, p4 of θp, no three of which are collinear. Let p5, p6 be the
remaining points of θp. Let i, j ∈ {1, 2, 3, 4}, i 6= j, and let πij = 〈pi, pj, p5〉.
Since πij contains three noncollinear points of θp, it contains four points of
θp. Since no three of p1, p2, p3, p4 are collinear, p6 ∈ πij. So p6 ∈ πij for all
i, j ∈ {1, 2, 3, 4}, i 6= j. This implies that p5 = p6, a contradiction. So t > 5.

Step 4: t = q + 2. Let π1 and π2 be distinct planes of type III which
intersect in an affine point p. Since t > 5, there is a line L of S through p
which is contained in neither π1 nor π2. Let U1 = 〈π1, L〉, and let S1 be the
connected component of SU1 which contains the affine points of π1 and of L.
Then by Lemma 4.1.1 and Corollary 5.4.2, and since there are no hyperplanes
of type A or C, S1 ' I(3, q, e).

Let M be the line U1 ∩ π2. Then p ∈ M . Since S1 ' I(3, q, e), L is the
only line of S1 through p which is not contained in π1. Hence M is not a
line of S1. By Proposition 4.4.11, there is exactly one line L′ of S1 which is
parallel to M . Let π be the plane 〈L′,M〉.

Let U2 be a hyperplane containing π2 such that the plane π′ = U1 ∩ U2

is distinct from π. Then M ⊆ π′. Let M ′ be the affine line π′ ∩ π1. Assume
that M ′ is not a line of S. Then M ′ is not a line of S1, so, by Corollary
4.4.16, π′ contains exactly one line N of S1. Since L′ is the unique line of S1

which is parallel to M , N intersects M in an affine point. If M ′ is a line of
S1, then N = M ′ is a line of SU2 which intersects M in an affine point.

In any case, there is a line N of SU2 which is not contained in π2 but
intersects it in an affine point. Let S2 be the connected component of SU2

which contains the affine points of π2 and of N . Then by Lemma 4.1.1
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and Corollary 5.4.2, and since there are no hyperplanes of type A or C,
S2 ' I(3, q, e). So there is a unique line of S2 through p, not contained in
π2. Since this conclusion holds for every hyperplane U2 ⊇ π2 such that the
plane π′ = U1 ∩ U2 is distinct from π, it follows that t ≥ q + 2.

Let U2 = 〈π2, π〉. Let S2 be the connected component of SU2 which
contains the affine points of π2. Suppose that S2 ' I(3, q, e). As π∩π2 = M
and M is not a line of S2, Corollary 4.4.16 implies that π contains exactly one
line N of S2. By Proposition 4.4.11, N is not parallel to π2, so N intersects
L′ in an affine point. Hence, since L′ is a line of S, L′ is a line of S2. But
by Proposition 4.4.11, there are no lines of S2 which are parallel to π2 but
not contained in it, a contradiction. So S2 6' I(3, q, e). Since there are no
hyperplanes of type A or C, S2 is the planar net Sπ2 . So every line of SU2

through p is contained in the plane π2.
It follows that t = q + 2. But this contradicts the fact that t is odd.

We conclude that there is a hyperplane of type C. Now by Theorem 6.2.3,
S ' I(4, q, e). 2

Theorem 6.2.5 Let S be a (0, 2)-geometry fully embedded in AG(n, q),
n ≥ 3, q = 2h, h > 1, such that there is a planar net and a plane of
type IV. Then S ' I(n, q, e).

Proof. By Corollary 5.4.2, the theorem holds for n = 3. By Theorem 6.2.4,
the theorem holds for n = 4. We use induction on n to prove the theorem
for n ≥ 5.

So, suppose that n ≥ 5 and that the theorem holds for all 3 ≤ m < n. If
there is a hyperplane of type C, then, by Theorem 6.2.3, S ' I(n, q, e). So
we only need to show that there is a hyperplane of type C.

Let π be a plane of type III, and let p be an affine point of π. By Lemma
4.1.4, θp spans Π∞. Hence we can choose a hyperplane U1 ⊇ π such that
the lines of SU1 through p span U1. Let S1 be the connected component
of SU1 containing p. Then S1 is not contained in a proper subspace of U1,
so by Lemma 4.1.1, S1 is a (0, 2)-geometry fully embedded in the (n − 1)-
dimensional affine space U1. Since π is a plane of type III with respect to S1,
the induction hypothesis yields that either S1 ' I(n − 1, q, e), or S1 has no
planes of type IV. Suppose the latter. Then, by Theorem 4.3.1, S1 is a linear
representation, so U1 is of type C, and we are done. So we may assume that
S1 ' I(n− 1, q, e).

Let V ⊆ U1 be the (n − 2)-space of type C of S1. By Lemma 4.4.10,
π ⊆ V , so p ∈ V . Since θp spans Π∞, there is a line L of S through p, not
contained in U1. Let U2 = 〈V, L〉, and let S2 be the connected component of
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Figure 6.3: Characterization of the geometry I(n, q, e) (Theorem 6.2.5).

SU2 which contains the affine points of V and of L. Then, similarly as for
S1, one proves that either S2 is a linear representation or S2 ' I(n− 1, q, e).
In the first case, U2 is a hyperplane of type C, and we are done. So we may
assume that S2 ' I(n− 1, q, e).

Let W ⊆ V be an (n − 3)-space of type C (respectively of type III if
n = 5). By Corollary 4.4.15, there is a unique (n− 2)-space Vi ⊆ Ui through
W such that the connected component S ′i of SVi

which contains the affine
points of W , is projectively equivalent to I(n− 2, q, e), i = 1, 2.

Let U3 = 〈V1, V2〉, and let S3 be the connected component of SU3 which
contains the points and lines of S ′1 and S ′2. Then since S ′i ' I(n − 2, q, e)
for i = 1, 2, S3 has a plane of type III and a plane of type IV. Also S3 is
not contained in a proper subspace of U3, so by Lemma 4.1.1, S3 is a (0, 2)-
geometry fully embedded in U3. Now it follows from the induction hypothesis
that S3 ' I(n− 1, q, e).

Let V3 be the (n−2)-space of type C of S3. By Lemma 4.4.10, every plane
which is of type III with respect to S3, is contained in V3. Hence W ⊆ V3.
Since U3 ∩ V = W , V3 ∩ V = W . It follows that there is a plane π′ ⊆ V3 of
type III which intersects V in an affine line. Let U = 〈V, π′〉, and let S ′ be
the connected component of SU which contains the affine points of V and of
π′. Then by Lemma 4.1.1, S ′ is a (0, 2)-geometry fully embedded in U . By
Theorem 6.2.2, S ′ does not have any plane of type IV. By Theorem 4.3.1, S ′
is a linear representation, so U is a hyperplane of type C. Hence, by Theorem
6.2.3, S ' I(n, q, e). 2
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6.3 Classification in case there are no planar

nets

In this section, we assume that S is a (0, 2)-geometry fully embedded in
AG(n, q), q = 2h, h > 1, such that there is a plane of type IV and such
that there are no planar nets. Since there are no planar nets, every plane
containing two intersecting lines of S is a plane of type IV. Hence we do not
need to assume explicitly that there is a plane of type IV.

Lemma 6.3.1 Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4,
q = 2h, h > 1, such that there are no planar nets. Then there are no 3-spaces
of type B or C, but there is always a 3-space of type A.

Let U be a 3-space, p a point of SU , and S ′ the connected component of
SU which contains p. Then there are 0, 1, 2 or q + 1 lines of SU through p.
The lines of SU through p span U if and only if their number is q+ 1, if and
only if S ′ ' A(O∞).

Proof. There are no 3-spaces of type B or C because there are no planar
nets.

If S ′ ' A(O∞), then the number of lines of SU through p is q + 1, and
these lines span U . If the lines of SU through p span U , then by Lemma 4.1.1,
S ′ is a (0, 2)-geometry fully embedded in the 3-dimensional affine space U .
Now, by Theorem 5.4.1, either S ′ ' A(O∞) or S ′ ' I(3, q, e). But since
there are no planar nets, S ′ 6' I(3, q, e), so S ′ ' A(O∞).

Suppose that there are q + 1 lines of SU through p, and that these lines
do not span U . Then they are contained in some plane π ⊆ U . But this
contradicts Lemma 4.1.3. So if there are q + 1 lines of SU through p, then
these lines span U .

Let p′ be a point of S. Since, by Lemma 4.1.4, θp′ spans Π∞, there is a
3-space U ′ such that the lines of SU ′ through p′ span U ′. Hence the connected
component of SU ′ which contains p′, is projectively equivalent to A(O∞). So
U ′ is of type A. 2

Theorem 6.3.2 Let S be a (0, 2)-geometry of order (q−1, t) fully embedded
in AG(4, q), q = 2h, h > 1, such that there are no planar nets. Then t = q2.

Proof. Let U be a hyperplane of type A, and let S ′ ' A(O∞) be a
connected component of SU . Let L be a line of S ′, and let p be an affine
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point of L. By Lemma 4.1.4, there is a line M of S which intersects U in the
point p.

Let π ⊆ U be a plane of type IV which contains L. Then U ′ = 〈π,M〉
contains 3 distinct lines of S through p. By Lemma 6.3.1, there are q + 1
lines of SU ′ through p. By Lemma 4.4.3, there are q planes π of type IV in
U which contain L. Hence the number of lines of S through p is at least
2 + q(q − 1), so t ≥ q2 − q + 1.

By Lemma 4.4.3, there is exactly one plane π′ ⊆ U through L which is
of type II. Suppose that each hyperplane U ′ 6= U which contains π′, contains
at most one line of S which intersects π′ in the point p. Then the number
of lines of S through p is at most 2q + 1. But t ≥ q2 − q + 1 and q > 2, a
contradiction. We conclude that there is a hyperplane U ′ 6= U which contains
π′, and contains two distinct lines M ′, M ′′ of S which intersect π′ in the point
p.

Consider the hyperplanes of AG(4, q) containing the plane π′′ = 〈M ′, L〉.
One of these hyperplanes is U ′, which intersects U in the plane π′; by Lemma
4.4.3, every other hyperplane intersects U in a plane of type IV. Hence, every
hyperplane which contains π′′, contains at least 3 lines of S through p. By
Lemma 6.3.1, every hyperplane which contains π′′, contains precisely q + 1
lines of S through p. Hence t = q2. 2

Lemma 6.3.3 Let S = (P ,B, I) be a (0, 2)-geometry fully embedded in
AG(4, q), q = 2h, h > 1, such that there are no planar nets. Every plane
of type IV contains 0 or 1

2
q(q − 1) isolated points. Every plane of type II

contains 1
2
q or q lines of S, but no isolated points.

Proof. Let π be a plane of type IV. Suppose that Sπ has an isolated point
p1. Let p2 be a point of the connected component of Sπ which is a dual oval.
By Lemma 6.3.1, for every hyperplane U ⊇ π, the number of lines of SU
through p2 which are not contained in π, is at most q−1. Since, by Theorem
6.3.2, the number of lines of S through p2 is equal to q2 +1, every hyperplane
U ⊇ π contains exactly q + 1 lines of S through p2.

Suppose that in every hyperplane U ⊇ π, there are at most 2 lines of
S through p1. Then, by Theorem 6.3.2, q2 + 1 ≤ 2(q + 1), a contradiction
since q > 2. So there is a hyperplane U ⊇ π which contains at least 3 lines
of S through p1. By Lemma 6.3.1, the number of lines of SU through p1 is
q + 1. As we have shown, the number of lines of SU through p2 is q + 1. By
Lemma 6.3.1, the connected component Si of SU which contains the point pi
is projectively equivalent to A(Oi

∞), i = 1, 2.
Suppose that S1 = S2 ' A(O∞), O∞ a conic. By Lemma 4.4.5, every

plane of type IV of A(O∞), O∞ a conic, does not contain any isolated points.
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But π is a plane of type IV with respect to S1 and it contains an isolated
point of S1, a contradiction. So if S1 = S2, then S1 ' A(O∞), O∞ not a
conic. In this case every affine point of U is a point of S1, so π contains
1
2
q(q − 1) isolated points.

Suppose that S1 6= S2. From the construction of A(O∞) it follows that if
O∞ is not a conic, then every point of AG(3, q) is a point of A(O∞), and if
O∞ is a conic, then exactly half the points of AG(3, q) are points of A(O∞).
Hence S1 ' S2 ' A(O∞), O∞ a conic, and S1 and S2 are complementary.
Hence every affine point of U is a point of either S1 or S2, so π contains
1
2
q(q − 1) isolated points. We conclude that every plane of type IV contains

0 or 1
2
q(q − 1) isolated points.

Let π be a plane of type II. Let L1 be a line of Sπ, and let p1 be an affine
point of L1. As a consequence of Lemma 6.3.1 and Theorem 6.3.2, there are
at least q hyperplanes U ⊇ π which contain q + 1 lines of S through p1.

Suppose that π contains an isolated point p2. As a consequence of Lemma
6.3.1 and Theorem 6.3.2, there are at least 2 hyperplanes U ⊇ π which
contain q + 1 lines of S through p2. So there is a hyperplane U ⊇ π which
contains q+1 lines of S through pi, i = 1, 2. By Lemma 6.3.1, the connected
component Si of SU which contains pi, is projectively equivalent to A(Oi

∞),
i = 1, 2.

Suppose that S1 6= S2. Then, analogously as above, S1 ' S2 ' A(O∞),
O∞ a conic, and S1 and S2 are complementary. Hence a plane of U is of type
II with respect to S1 if and only if it is of type II with respect to S2. Since
the plane π is of type II and contains the line L1 of S1, it is of type II with
respect to S1. Hence π is of type II with respect to S2. By Lemma 4.4.4, π
does not contain any isolated points of S2. However p2 is an isolated point
of S2 in π, a contradiction.

Hence S1 = S2. Since the plane π is of type II and contains the line
L1 of S1, it is of type II with respect to S1. By Lemma 4.4.4, π does not
contain any isolated points of S1. However p2 is an isolated point of S1 in π,
a contradiction. So π does not contain any isolated points.

Let U ⊇ π be a hyperplane such that the connected component S1 of
SU which contains the point p1, is projectively equivalent to A(O∞). Since
π is a plane of type II and contains the line L1 of S1, it is of type II with
respect to S1. Hence the hole n∞ of S1 lies on the line L∞ = π ∩ Π∞. By
Lemma 4.4.5, for every line L′∞ of the plane π∞ = U ∩ Π∞ which does not
contain n∞, there is a plane π′ ⊆ U of type IV such that π′ ∩ Π∞ = L′∞.
Hence there is a plane π′ ⊆ U of type IV which intersects π in an affine line
L, L not a line of S. Since π does not contain any isolated points, the num-
ber of lines of Sπ equals the number of points of S on L. Since π′ contains
0 or 1

2
q(q−1) isolated points, the number of points of S on L equals 1

2
q or q. 2
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Let S be a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 4, q = 2h,
h > 1, and let U be a 3-space of type A. We say that U is of type A1 if
SU is connected and SU ' HT = A(O∞), O∞ a conic, and we say that U is
of type A2 if either SU is connected and SU ' A(O∞), O∞ not a conic, or
SU consists of two connected components which are projectively equivalent
to HT = A(O∞), O∞ a conic, and which are complementary (see Lemma
5.3.30). Note that a hyperplane of type A is not necessarily of type A1 or
A2.

Theorem 6.3.4 Let S = (P ,B, I) be a (0, 2)-geometry fully embedded in
AG(4, q), where q = 2h, h > 1, such that there are no planar nets. Then
S ' TQ(4, q).

Proof. Let U be a hyperplane of type A, let S ′ ' A(O∞) be a connected
component of SU , and let n∞ be the hole of S ′. Let p be a point of SU , and
let π be a plane of U containing the line L = 〈p, n∞〉. Then, by Lemma 4.4.4,
π is of type II with respect to S ′. Hence π is a plane of type II. By Lemma
6.3.3, π does not contain any isolated points. Hence there is a line L′ of Sπ
through p. Note that L′ 6= L since L′ is parallel to the lines of S ′ in π, and
no line of S ′ intersects Π∞ in the hole n∞ of S ′. So, in every plane π ⊆ U
through the line L lies a line of SU , distinct from L, which contains p. Hence
there are q + 1 lines of SU through p, for every point p of SU . By Lemma
6.3.1, every point p of SU is contained in a connected component S ′′ of SU
which is projectively equivalent to A(O∞). So U is of type A1 or A2. We
conclude that every hyperplane of type A is of type A1 or A2.

Let π be a plane of type IV. Let p be a point of the connected component
of Sπ which is a dual oval. As a consequence of Lemma 6.3.1 and Theorem
6.3.2, every hyperplane U ⊇ π contains q + 1 lines of S through p, so every
hyperplane U ⊇ π is of type A, and hence of type A1 or A2.

Suppose that π contains an isolated point p′. Let U be a hyperplane
containing π. Since π contains an isolated point and since, by Lemma 4.4.5,
every plane of type IV of A(O∞), O∞ a conic, does not contain any isolated
points, U is not of type A1. Hence U is of type A2. So there are q + 1 lines
of SU through p′, none of which lie in π. This holds for every hyperplane
U ⊇ π, so there are (q+1)2 lines of S through p, a contradiction to Theorem
6.3.2. We conclude that π does not contain any isolated points. Note that π
is an arbitrary plane of type IV.

Since π does not contain any isolated points, none of the hyperplanes
containing π is of type A2. Hence every hyperplane containing π is of type
A1. It follows that | P | = 1

2
q2(q2 − 1).
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Any line L of AG(4, q) which contains a point of S, lies in a plane of
type II or IV. By Lemma 6.3.3, L contains 1

2
q or q points of S. So the set

R = P ∪ Π∞ is a set of type (1, 1
2
q + 1, q + 1) in PG(4, q).

Suppose that R is singular. Then there is a singular point p ∈ R, that is,
a point p ∈ R such that every line of PG(4, q) contains either 1 or q+1 points
of R. Let π be a plane of type IV which does not contain the point p. As
we have shown, every hyperplane through π is of type A1, so, in particular,
the hyperplane U = 〈π, p〉 is of type A1. Since p is a singular point of R, p
is a singular point of the intersection of R with U . Since U is of type A1,
SU ' HT, so the intersection of R with U is projectively equivalent to the
set R3. But R3 is a nonsingular set of type (1, 1

2
q, q + 1), a contradiction.

So R is a nonsingular set of type (1, 1
2
q + 1, q + 1) in PG(4, q). Since R

contains every point of the hyperplane Π∞ of PG(4, q), there is no plane π
of PG(4, q) which intersects R in a unital or a Baer subplane. By Theorem
1.3.4, R = R−

4 or R = R+
4 . Since | P | = 1

2
q2(q2 − 1), R = R−

4 . This means
that P is the point set of the semipartial geometry TQ(4, q).

Let L be a line of S. Then every affine point of L is a point of P , so L is
a line of TQ(4, q). So the line set of S is a subset of the line set of TQ(4, q).
Since S and TQ(4, q) have the same point set and the same order, they have
equally many lines. Hence the line sets of S and TQ(4, q) are the same, and
so S = TQ(4, q). 2

Lemma 6.3.5 Assume that S is a (0, 2)-geometry fully embedded in
AG(n, q), n ≥ 5, q = 2h, h > 1, such that there are no planar nets. Then
there are no 4-spaces of type B or C, but there is always a 4-space of type
A.

Let U be a 4-space, p a point of SU , and S ′ the connected component of
SU which contains p. Then there are 0, 1, 2, q+1 or q2+1 lines of SU through
p. The lines of SU through p span U if and only if their number is q2 + 1, if
and only if S ′ ' TQ(4, q).

Proof. There are no 4-spaces of type B or C because there are no planar
nets.

If S ′ ' TQ(4, q), then the number of lines of SU through p is q2 + 1, and
they span U . If the lines of SU through p span U , then by Lemma 4.1.1, S ′
is a (0, 2)-geometry fully embedded in the 4-dimensional affine space U . By
Theorem 6.3.4, S ′ ' TQ(4, q).

Suppose that there are q2 + 1 lines of SU through p, and that these lines
do not span U . Then they are contained in some 3-space V ⊆ U . But this
contradicts Lemma 6.3.1. So if there are q2 + 1 lines of SU through p, then
these lines span U .
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Let p′ be a point of S. Since, by Lemma 4.1.4, θp′ spans Π∞, there is
a 4-space U ′ such that the lines of SU ′ through p′ span U ′. Hence the con-
nected component S ′′ of SU ′ which contains p′, is projectively equivalent to
TQ(4, q). So U ′ is of type A. 2

Lemma 6.3.6 Assume that S is a (0, 2)-geometry of order (q − 1, t) fully
embedded in AG(5, q), q = 2h, h > 1, such that there are no planar nets. Let
U be a hyperplane of type A. Then there is exactly one connected component
of SU which is projectively equivalent to TQ(4, q).

Proof. Suppose that there are two distinct connected components S1 and
S2 of SU which are projectively equivalent to TQ(4, q). Let Pi be the point
set of Si, i = 1, 2. Then Pi is a 1

2
q2(q2 − 1)-set of type (0, 1

2
q, q) in U ,

i = 1, 2. Hence the set R, which is the complement of P1 ∪ P2 in the set
of affine points of U , is a q2-set of type (0, 1

2
q, q) in U . Let p ∈ R. Then

every line of U through p contains at least 1
2
q − 1 points of R \ {p}. Hence

q2 = |R | ≥ 1 + (q3 + q2 + q + 1)(1
2
q − 1), a contradiction. 2

Theorem 6.3.7 Assume that S is a (0, 2)-geometry of order (q − 1, t) fully
embedded in AG(5, q), q = 2h, h > 1, such that there are no planar nets.
Then t = q3.

Proof. Let U be a hyperplane of type A, let S ′ be the connected component
of SU which is projectively equivalent to TQ(4, q), and let π be a plane of
type IV with respect to S ′. Let p be a point of the connected component of
Sπ which is a dual oval. Then, as a consequence of Lemma 4.1.4, there is a
line L of S which intersects U in the point p. Let V = 〈π, L〉. Then the lines
of SV through p span V , so, by Lemma 6.3.1, their number is q + 1.

By Lemma 4.4.8, every 3-space W ⊆ U which contains π, is of type
A with respect to S ′. Let U ′ be a hyperplane which contains V , and let
W = U ′ ∩ U . Then since π ⊆ W , W is of type A with respect to S ′, and so
the lines of SW through p span W . It follows that the lines of SU ′ through p
span U ′. By Lemma 6.3.5, there are q2 + 1 lines of SU ′ through p, q + 1 of
which lie in V . Since U ′ was an arbitrary hyperplane containing V , it follows
that the total number of lines of S through p is q3 + 1. So t = q3. 2

Assume that S is a (0, 2)-geometry fully embedded in AG(n, q), n ≥ 5,
q = 2h, h > 1, such that there are no planar nets. Let U be a 4-space of
type A, and let S ′ be the connected component of SU which is projectively
equivalent to TQ(4, q). We say that U is of type A1 if SU = S ′.
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Theorem 6.3.8 There does not exist a (0, 2)-geometry fully embedded in
AG(5, q), q = 2h, h > 1, such that there are no planar nets.

Proof. Assume that S = (P ,B, I) is a (0, 2)-geometry of order (q − 1, t)
fully embedded in AG(5, q), q = 2h, h > 1, such that there are no planar
nets. Then, by Theorem 6.3.7, t = q3.

Let V be a 3-space of type A, and let S ′ be a connected component of
SV which is projectively equivalent to A(O∞). Let p1 be a point of S ′. Then
there are q+1 lines of SV through p1. By Lemma 6.3.5, for every hyperplane
U ⊇ V , the number of lines of SU which intersect V in the point p is at most
q2 − q. Since the total number of lines of S through p is q3 + 1, for every
hyperplane U ⊇ V , the number of lines of SU through p1 is q2 + 1.

Let U be a hyperplane containing V , and let S1 be the connected compo-
nent of SU which contains the point p1. By Lemma 6.3.5, S1 ' TQ(4, q). By
Lemma 4.4.7, (S1)V is connected and (S1)V ' HT. By Lemma 6.1.2, (S1)V
is a connected component of SV . Since S ′ is also a connected component of
SV , and (S1)V and S ′ have the point p1 in common, S ′ = (S1)V ' HT.

Suppose that SV 6= S ′. So there is a point p2 of SV which is not a point
of S ′. Suppose that, for every hyperplane U ⊇ V , the number of lines of SU
through p2 is at most q + 1. Then t+ 1 = q3 + 1 ≤ (q + 1)2, a contradiction.
So there is a hyperplane U ⊇ V which contains strictly more than q+1 lines
of S through p2. By Lemma 6.3.5, the connected component S2 of SU which
contains p2 is projectively equivalent to TQ(4, q).

As we have shown, if S1 is the connected component of SU which contains
the point p1, then S1 ' TQ(4, q) and (S1)V = S ′ ' HT. By Lemma 6.3.6,
S1 = S2. Since p2 is a point of S2 = S1, and since (S1)V = S ′, p2 is a point
of S ′, a contradiction. We conclude that SV = S ′. Since S ′ ' HT, V is of
type A1. So every 3-space which is of type A, is of type A1.

Let U be a hyperplane of type A, and let S ′ be the connected component
of SU which is projectively equivalent to TQ(4, q). Suppose that SU 6= S ′.
Then there is a point p of SU which is not a point of S ′. Let π be a plane of U
through p. By Lemma 4.4.8, there is a 3-space V ⊆ U through π which is of
type A with respect to S ′. By Lemma 4.4.7, S ′V is connected and projectively
equivalent to HT.

Since V is of type A, V is of type A1. By Lemma 6.1.2, S ′V is a connected
component of SV . Since V is of type A1, SV = S ′V . Since p is a point of
SV , p is a point of S ′V . So p is a point of S ′, a contradiction. It follows that
SU = S ′, so U is of type A1. So every hyperplane of type A is of type A1.

Let V be a 3-space of type A. Then V is of type A1. As we have shown,
every hyperplane U ⊇ V is of type A, and hence of type A1. It follows that
| P | = 1

2
q2(q3 − q − 1).
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Let L be a line of AG(5, q) which is not a line of S, but which contains
a point p of S. Let V be a 3-space which contains the line L. Suppose that
every hyperplane through V contains at most q + 1 lines of S through p.
Then t + 1 = q3 + 1 ≤ (q + 1)2, a contradiction. So there is a hyperplane
U ⊇ V which contains strictly more than q + 1 lines of S through p. By
Lemma 6.3.5, U is of type A, and hence of type A1. Since the point set of
TQ(4, q) is a set of type (0, 1

2
q, q), L contains 1

2
q or q points of S.

So the set R = P ∪ Π∞ is a set of type (1, 1
2
q + 1, q + 1) in PG(5, q).

Suppose that R is singular. Then there is a singular point p ∈ R, that is, a
point p ∈ R such that every line of PG(5, q) contains either 1 or q+ 1 points
of R. Let V be a 3-space of type A which does not contain the point p. As
we have shown, every hyperplane through V is of type A1, so, in particular,
the hyperplane U = 〈V, p〉 is of type A1. Since p is a singular point of R, p
is a singular point of the intersection of R with U . Since U is of type A1,
SU ' TQ(4, q), so the intersection of R with U is projectively equivalent
to the set R−

4 . But R−
4 is a nonsingular set of type (1, 1

2
q + 1, q + 1), a

contradiction.
So R is a nonsingular set of type (1, 1

2
q + 1, q + 1) in PG(5, q). Since R

contains every point of the hyperplane Π∞ of PG(5, q), there is no plane π
of PG(5, q) which intersects R in a unital or a Baer subplane. By Theorem
1.3.4, R = R5. But this contradicts | P | = 1

2
q2(q3 − q − 1).

We conclude that there does not exist a (0, 2)-geometry fully embedded
in AG(5, q), q = 2h, h > 1, such that there are no planar nets. 2

Theorem 6.3.9 There does not exist a (0, 2)-geometry fully embedded in
AG(n, q), n ≥ 6, q = 2h, h > 1, such that there are no planar nets.

Proof. Assume that S = (P ,B, I) is a (0, 2)-geometry fully embedded in
AG(n, q), n ≥ 6, q = 2h, h > 1, such that there are no planar nets. Let p be
a point of S. By Lemma 4.1.4, θp spans Π∞. Hence there exists a 5-space
U which contains p, such that the lines of SU through p span U . Let S ′ be
the connected component of SU which contains the point p. Then S ′ is not
contained in a proper subspace of U . By Lemma 4.1.1, S ′ is a (0, 2)-geometry
fully embedded in the 5-dimensional affine space U . By Theorem 6.3.8, S ′
has a planar net. But then S has a planar net, a contradiction. 2
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6.4 Conclusion

Theorem 6.4.1 Let S be a (0, 2)-geometry fully embedded in AG(n, q),
n ≥ 4, q = 2h, h > 1, such that there is at least one plane of type IV.
Then one of the following cases occurs.

1. n = 4 and S ' TQ(4, q).

2. S ' I(n, q, e).

Proof. This follows immediately from Theorems 6.2.5, 6.3.4 and 6.3.9. 2

Corollary 6.4.2 Let S be a (0, α)-geometry, α > 1, fully embedded in
AG(n, q), n ≥ 4. Then one of the following cases occurs.

1. q = 2, α = 2, and S is a 2− (t+ 2, 2, 1)-design.

2. n = 4, q = 2h, α = 2, and S ' TQ(4, q).

3. q = 2h, α = 2, and S ' I(n, q, e).

4. S ' T ∗n−1(K∞), with K∞ a set of type (0, 1, α + 1) in Π∞ which spans
Π∞.

Proof. The case q = 2 is trivial and is solved in Proposition 4.3.5. If there
are no planes of type IV, then Theorem 4.3.1 applies. If there is a plane of
type IV, then α = 2 and q = 2h, and Theorem 6.4.1 applies. 2





Chapter 7

Overview

7.1 Construction of (0, α)-geometries fully

embedded in PG(3, q), and the Klein

quadric

In Chapter 2, we studied (0, α)-geometries, α > 1, fully embedded in PG(3, q),
q > 2. Recall that the (0, α)-geometries, α > 1, fully embedded in PG(n, q),
n ≥ 4, q > 2, were classified by Debroey, De Clerck and Thas [81] (see
Theorem 1.4.4).

The Plücker correspondence is used to transform the line set of a (0, α)-
geometry, α > 1, fully embedded in PG(3, q), into a set of points on the
Klein quadric Q+(5, q). By De Clerck and Thas [30], this set is a (0, α)-set
on Q+(5, q), that is, every line of Q+(5, q) intersects it in either 0 or α points.
Conversely, when α > 1 and q > 2, every (0, α)-set on Q+(5, q) corresponds
to the line set of a (0, α)-geometry fully embedded in PG(3, q) (see Sections
2.1, 2.2).

In Theorem 2.5.1, we prove that the (0, 2)-set Ed with d ∈ {1, q + 1} (see
Section 2.4) on the Klein quadric Q+(5, q), q = 2h, is essentially the union
of q + 2 nonsingular elliptic quadrics Q−(3, q) on Q+(5, q), whose ambient
3-spaces contain a common plane π and intersect a plane skew to π in the
points of a regular hyperoval.

Next, in Section 2.6, we construct a particular set of pointsMα
d (A) on the

Klein quadric Q+(5, q), q = 2h. Essentially, Mα
d (A) is the union of qα−q+α

nonsingular elliptic quadrics Q−(3, q) on Q+(5, q), whose ambient 3-spaces
share a plane π which contains d points but no lines of Q+(5, q), and intersect
a plane π′ skew to π in the points of a maximal arc A of degree α. In Theorem
2.6.1, we show that Mα

d (A) is a (0, α)-set on Q+(5, q) of deficiency d. Except

157



158 7. Overview

for a few cases, the set Mα
d (A) is a new example of a (0, α)-set on Q+(5, q).

In Theorem 2.6.2, we show that there exist (0, α)-setsMα
d (A) on Q+(5, q),

q = 2h, for every d ∈ {1, q + 1} and α ∈ {2, 22, . . . , 2h−1}. This implies
that there exist (0, α)-geometries of deficiency d, fully embedded in PG(3, q),
q = 2h, for every d ∈ {1, q + 1} and α ∈ {2, 22, . . . , 2h−1}. Again, except
for a few cases, these geometries are new examples of (0, α)-geometries fully
embedded in PG(3, q). However, none of them is a semipartial geometry.

The (0, α)-sets Mα
d (A) which are not new, are the following. By Theorem

2.5.1, the (0, 2)-set Ed, d ∈ {1, q+1}, is of the form M2
d(H), with H a regular

hyperoval. In Section 2.6, we show that the (0, q/2)-set corresponding to the

(0, q/2)-geometry NQ+(3, q), q = 2h, is of the form Mq/2
q+1(A). Hence, the list

of all the known distinct examples of (0, α)-sets K in Q+(5, q), α > 1, q > 2,
looks as follows. In this list d denotes the deficiency of the (0, α)-set K, and
S denotes the corresponding (0, α)-geometry fully embedded in PG(3, q).

1. α = q + 1, d = 0, K is the set of all points of Q+(5, q), and S is the
design of all points and all lines of PG(3, q).

2. α = q, d = 0, K is the complement in Q+(5, q) of a hyperplane which
is not tangent to Q+(5, q), and S = W (3, q).

3. α = q, d = 1, K is the complement in Q+(5, q) of a hyperplane which
is tangent to Q+(5, q), and S = H3

q .

4. q = 2h, α ∈ {2, 22, . . . , 2h−1}, d ∈ {1, q + 1} and K = Mα
d (A).

5. q = 22e+1, α = 2, d = q ±
√

2q + 1, and K = Tq±√2q+1.

7.2 Planar oval sets in PG(2, q), q even

Let O be an oval of PG(2, q), q even, with nucleus n. Let El(n) be the group
of all elations of PG(2, q) with center n. In Section 3.1, we show that the set
Ω(O) = {Oe | e ∈ El(n)} is a regular Desarguesian planar oval set in PG(2, q)
with nucleus n.

The main result of Chapter 3 is Theorem 3.4.1. It says that, if Ω is a
regular Desarguesian planar oval set in PG(2, q), q even, and O ∈ Ω, then
Ω = Ω(O).

The motivation for introducing planar oval sets is their use in the study
of affine (0, α)-geometries. Theorem 3.4.1 is crucial in the classification of
(0, 2)-geometries of order (q− 1, q), fully embedded in AG(3, q), q = 2h, such
that there are no planar nets (see Section 5.3.3).
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7.3 Affine semipartial geometries and (0, α)-

geometries

Chapters 4 to 6 are devoted to the study of affine semipartial geometries
and (0, α)-geometries, α > 1. In Section 4.1, we explain why we study affine
(0, α)-geometries rather than affine semipartial geometries. As a consequence
of Theorem 4.3.1, which is due to De Clerck and Delanote [27], and states
that affine (0, α)-geometries which have no planes of type IV are linear rep-
resentations, we may restrict our attention to (0, α)-geometries, α > 1, fully
embedded in AG(n, q), which have at least one plane of type IV. Hence α = 2
and q = 2h.

In Section 4.2, we construct two new examples of affine (0, 2)-geometries
which have planes of type IV. Firstly, the geometry A(O∞) is a (0, 2)-
geometry of order (q − 1, q), fully embedded in AG(3, q), q = 2h. The
construction starts from an oval O∞ in Π∞. If the oval O∞ is a conic,
then A(O∞) is the geometry HT (see Section 1.4.7). Otherwise A(O∞) is a
(0, 2)-geometry, fully embedded in AG(3, q), which was not known before. In
both cases, there are no planar nets, and the geometry is not a semipartial
geometry.

Secondly, the geometry I(n, q, e) is a (0, 2)-geometry of order (q − 1,
2n−1 − 1), fully embedded in AG(n, q), n ≥ 3, q = 2h. This geometry has
planar nets as well as planes of type IV. It is an example of an affine (0, 2)-
geometry which was not known before. However, it is never a semipartial
geometry.

In Chapter 5, we classify all (0, 2)-geometries fully embedded in AG(3, q),
q = 2h, h > 1, which have a plane of type IV (see Theorem 5.4.1). In Chapter
6, we classify all (0, 2)-geometries fully embedded in AG(n, q), n ≥ 4, q = 2h,
h > 1, which have a plane of type IV (see Theorem 6.4.1). Together with
Proposition 4.3.5, which deals with the trivial case q = 2, these results classify
all affine (0, 2)-geometries which have at least one plane of type IV.

Theorem 7.3.1 If S is a (0, 2)-geometry fully embedded in AG(n, q), q = 2h,
such that there is at least one plane of type IV, then one of the following cases
holds.

1. q = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2 and S is a dual oval.

3. n = 3 and S ' A(O∞).

4. n = 4 and S ' TQ(4, q).
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5. n ≥ 3 and S ' I(n, q, e).

Theorems 4.3.1 and 7.3.1 give an almost complete classification of affine
(0, α)-geometries, α > 1.

Theorem 7.3.2 If S is a (0, α)-geometry, α > 1, fully embedded in AG(n, q),
then one of the following possibilities occurs.

1. q = 2, α = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h, α = 2 and S is a dual oval.

3. n = 3, q = 2h, α = 2 and S ' A(O∞).

4. n = 4, q = 2h, α = 2 and S ' TQ(4, q).

5. n ≥ 3, q = 2h, α = 2 and S ' I(n, q, e).

6. n ≥ 2 and S ' T ∗n−1(K∞), with K∞ a set of type (0, 1, α + 1) in Π∞
which spans Π∞.

Theorem 7.3.2 is probably the best result possible for affine (0, α)-geom-
etries, α > 1, since a complete classification of sets of type (0, 1, α + 1) in
PG(n, q) seems hopeless. For a partial classification of sets of type (0, 1, α+1)
in PG(n, q), due to Ueberberg [83], see Theorem 4.3.2.

Theorem 7.3.1 yields the complete classification of affine semipartial geome-
tries with α = 2, which have at least one plane of type IV.

Theorem 7.3.3 If S is a semipartial geometry with α = 2, fully embedded
in AG(n, q), q = 2h, such that there is at least one plane of type IV, then one
of the following possibilities occurs.

1. q = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2 and S is a dual oval.

3. n = 4 and S ' TQ(4, q).

Theorems 4.3.1 and 7.3.3 yield the following result.

Theorem 7.3.4 If S is a semipartial geometry, α > 1, fully embedded in
AG(n, q), then one of the following cases holds.

1. q = 2, α = 2 and S is a 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h, α = 2 and S is a dual oval.
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3. n = 4, q = 2h, α = 2 and S ' TQ(4, q).

4. n ≥ 2 and S ' T ∗n−1(K∞), with K∞ a set of type (0, 1, α + 1) in Π∞,
which has two intersection numbers with respect to hyperplanes of Π∞.

Using Theorem 1.4.16, due to Debroey and Thas [40], and Theorem 4.3.3,
due to De Winter [38], we obtain the classification of proper semipartial
geometries with α > 1, fully embedded in AG(n, q), n ≤ 4.

Theorem 7.3.5 If S is a proper semipartial geometry with α > 1, fully
embedded in AG(n, q), n ≤ 4, then one of the following cases holds.

1. n = 3, q is a square and S ' T ∗2 (U∞), with U∞ a unital of Π∞.

2. n = 4, q = 2h and S ' TQ(4, q).

3. n ∈ {3, 4}, q is a square and S ' T ∗n−1(B∞), with B∞ a Baer subspace
of Π∞.

The classification of linear representations of proper semipartial geome-
tries, α > 1, in AG(n, q), n ≥ 5, is still an open problem. The only known
example is T ∗n−1(B∞), with B∞ the point set of a Baer subspace of Π∞. Due
to the recent progress regarding this problem, made by De Winter [38], we
conjecture that T ∗n−1(B∞) is in fact the only example.





Appendix A

The geometry I(n, q, e)

The geometry I(n, q, e) is a new example of a (0, 2)-geometry fully embedded
in AG(n, q), n ≥ 3, q = 2h. In Section 4.2.2, we gave the construction of
I(n, q, e) and we proved that it is a (0, 2)-geometry of order (q− 1, 2n−1− 1),
fully embedded in AG(n, q). In Section 4.4.4, we deduced some properties
of I(n, q, e). The focus was mainly on the incidence structure SV , where
S = I(n, q, e) and V is a subspace of AG(n, q). However, we think that, for
a good understanding of the geometry I(n, q, e), further study is required.

In Section A.1, we study the point set of I(n, q, e). We give the ex-
plicit description of this set, and we determine the intersection with lines
of AG(n, q). In Section A.2, we show that the geometry I(n, q, e) actually
consists of two parts, and we determine their structure. In Section A.3, we
use this information to obtain some isomorphisms of the geometry I(n, q, e).

A.1 The point set of I(n, q, e)

Consider the geometry S = I(n, 2h, e) fully embedded in AG(n, 2h), n ≥ 3.
We adopt here the notations and the coordinatization of PG(n, 2h), used in
Section 4.2.2. So S = (P ,B1 ∪ B2, I). Let P ′ = P \ U and let R = P ∪ Π∞.

Since e and h are relatively prime, so are 2e − 1 and 2h − 1. Hence the
map σ′ : z 7→ z2e−1 is a permutation of GF(2h). Let σ denote the inverse of
σ′.

Theorem A.1.1 A point p(x0, . . . , xn−1, 1) of AG(n, 2h), not in U , is in P ′

if and only if Tr(xix
σ
n−1) = 0, for all 0 ≤ i ≤ n− 2.

Proof. Let p(x0, . . . , xn−1, 1) be a point of AG(n, 2h), not in U . Then
xn−1 6= 0. The point p is in P ′ if and only if it is on a line of B2, if and only
if there is an affine point r(y0, . . . , yn−2, 0, 1) ∈ U , such that the points p, r
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and rϕ(y2e

0 , . . . , y
2e

n−2, 1, 0) are collinear. Hence, p ∈ P ′ if and only if for every
0 ≤ i ≤ n− 2, there is an yi ∈ GF(2h) such that xi + yi = xn−1y

2e

i . It follows
that p ∈ P ′ if and only if, for every 0 ≤ i ≤ n − 2, there is a solution to
the equation Fi(X) = X2e

+ X + xix
σ
n−1 = 0. Since e and h are relatively

prime, Fi(X) = 0 has a solution if and only if Tr(xix
σ
n−1) = 0 (see Liang [58]

or Segre [70]). 2

The additive group of GF(2h) is an elementary abelian group of order
2h, so it can be seen as a vector space V (h, 2) of dimension h over the field
GF(2). Let S be the set of additive subgroups of index 2 in GF(2h), and
let S be the set of complements in GF(2h) of the elements of S. Then
clearly |S | = |S | = 2h − 1. The elements of S are the hyperplanes of
V (h, 2), and the elements of S the complements of these hyperplanes; in other
words, the elements of S∪S are the hyperplanes of the affine space AG(h, 2)
corresponding to V (h, 2), where the elements of S are those containing the
element 0.

Let C0 = {z ∈ GF(2h) |Tr(z) = 0} and let C1 = {z ∈ GF(2h) |Tr(z) = 1}.
Then C0 ∈ S and C1 ∈ S. For every z ∈ GF(2h) \ {0}, z C0 ∈ S. For every
z, z′ ∈ GF(2h) \ {0}, z C0 = z′ C0 if and only if z = z′ (see Theorem 2.24
of Lidl and Niederreiter [59]). Hence S = {z C0 | z ∈ GF(2h) \ {0}} and
S = {z C1 | z ∈ GF(2h) \ {0}}.

Lemma A.1.2 Let 2 ≤ m ≤ h and let z1, . . . , zm ∈ GF(2h) \ {0}. Then

|
m⋂
i=1

zi C0 | ∈ {2h−m, 2h−m+1, . . . , 2h−1},

and each of these possibilities occurs for some choice of z1, . . . , zm.
Let 2 ≤ m ≤ h and, for 1 ≤ i ≤ m, let zi ∈ GF(2h)\{0} and Ci ∈ {C0, C1}.

Then

|
m⋂
i=1

zi Ci | ∈ {0, 2h−m, 2h−m+1, . . . , 2h−1},

and each of these possibilities occurs for some choice of zi, Ci, 1 ≤ i ≤ m.

Proof. For every 1 ≤ i ≤ m, zi C0 is a hyperplane of the affine space
AG(h, 2) which contains the element 0. Hence

⋂m
i=1 zi C0 is a subspace of

AG(h, 2) of dimension at least h−m which contains the element 0. It follows
that

|
m⋂
i=1

zi C0 | ∈ {2h−m, 2h−m+1, . . . , 2h−1}.
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Let 1 ≤ m′ ≤ m. Since m′ ≤ h, and since S = {z C0 | z ∈ GF(q) \ {0}},
the elements z1, . . . , zm may be chosen such that z1 C0, . . . , zm′ C0 are linearly
independent and zm′ = . . . = zm. Then

⋂m
i=1 zi C0 is a subspace of AG(h, 2)

of dimension h −m′, so |
⋂m
i=1 zi C0 | = 2h−m

′
. This proves the first part of

the lemma.
We now prove the second part. For every 1 ≤ i ≤ m, zi Ci is a hyperplane

of the affine space AG(h, 2). Hence either
⋂m
i=1 zi Ci is empty, or it is a

subspace of AG(h, 2) of dimension at least h−m. So

|
m⋂
i=1

zi Ci | ∈ {0, 2h−m, 2h−m+1, . . . , 2h−1}.

The first part of the lemma shows that each of the possibilities 2h−m,
2h−m+1, . . . , 2h−1 does occur. Choose zi, Ci, 1 ≤ i ≤ m such that z1 = . . . =
zm = 1, C1 = C0 and C2 = . . . = Cm = C1. Then

⋂m
i=1 zi Ci = C0 ∩ C1 = ∅.

This proves the second part of the lemma. 2

Theorem A.1.3 Consider the geometry I(n, 2h, e) fully embedded in
AG(n, 2h), n ≥ 3. Let L be a line of AG(n, 2h) which is parallel to but
not contained in U . If h ≥ n− 1, then

|L ∩ P | ∈ {0, 2h−n+1, 2h−n+2, . . . , 2h−1}.

If h ≤ n− 1, then
|L ∩ P | ∈ {0, 1, 2, . . . , 2h−1}.

In either case, each of the possibilities occurs for some line L.

Proof. Let p be an affine point of L and let p∞ = L ∩ Π∞. Since p 6∈ U ,
it has coordinates p(x0, . . . , xn−1, 1), with xn−1 6= 0. Since L is parallel to
U , the point r is in U∞ and has coordinates r(y0, . . . , yn−2, 0, 0). The affine
points of L are the points pρ(x0 +ρy0, . . . , xn−2 +ρyn−2, xn−1, 1), ρ ∈ GF(2h).

Since L does not contain any affine points of U , a point pρ ∈ L is in P if
and only if it is in P ′. By Theorem A.1.1, a point pρ ∈ L is in P ′ if and only
if Tr((xi + ρyi)x

σ
n−1) = 0 for all 0 ≤ i ≤ n− 2. For all 0 ≤ i ≤ n− 2, let

Di = {ρ ∈ GF(2h) |Tr((xi + ρyi)x
σ
n−1) = 0}.

Then |L ∩ P | = |
⋂n−2
i=0 Di | . Let zi = yix

σ
n−1 and let εi = Tr(xix

σ
n−1). If

zi = 0 and εi = 0, then Di = GF(2h). If zi = 0 and εi = 1, then Di = ∅. If
zi 6= 0, then Di = z−1

i Cεi
.
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Since xn−1 6= 0 and not all yi are zero, not all zi are zero. Hence
|
⋂n−2
i=0 Di | ≤ 2h−1. Let m = min(h, n− 1). By Lemma A.1.2,

|L ∩ P | = |
n−2⋂
i=0

Di | ∈ {0, 2h−m, 2h−m+1, . . . , 2h−1}.

Each of these possibilities does occur since the elements z0, . . . , zn−2 can take
any value in GF(2h) \ {0}, depending on the choice of the line L. 2

Theorem A.1.4 Consider the geometry I(n, 2h, e) fully embedded in
AG(n, 2h), n ≥ 3. Let L be a line of AG(n, 2h) which intersects U in an
affine point. If h ≥ n− 1, then

|L ∩ P | ∈ {2h−n+1, 2h−n+2, . . . , 2h}.

If h ≤ n− 1, then
|L ∩ P | ∈ {1, 2, . . . , 2h}.

In either case, each of the possibilities does occur, and |L ∩ P | = 2h if and
only if L is a line of I(n, 2h, e).

Proof. Let p = L∩U and let p∞ = L∩Π∞. Then the points p and p∞ have
coordinates p(x0, . . . , xn−2, 0, 1) and p∞(y0, . . . , yn−2, 1, 0). The affine points
of L are the points pρ(x0 + ρy0, . . . , xn−2 + ρyn−2, ρ, 1), ρ ∈ GF(2h).

By Theorem A.1.1, a point pρ ∈ L \ {p} is in P ′ if and only if
Tr((xi + ρyi)ρ

σ) = 0 for all 0 ≤ i ≤ n − 2. The point p = p0 is in P
and Tr((xi + ρyi)ρ

σ) = 0 holds for ρ = 0. Hence a point pρ ∈ L is in P if and
only if Tr((xi + ρyi)ρ

σ) = 0. For all 0 ≤ i ≤ n− 2,

Tr((xi + ρyi)ρ
σ) = Tr(xiρ

σ) + Tr(yiρ
1+σ)

= Tr(x2e

i (ρσ)2e−1+1) + Tr(yiρ
1+σ)

= Tr((x2e

i + yi)ρ
1+σ).

Since for every z ∈ GF(2h), z1+σ = (zσ)2e
, the map η : z 7→ z1+σ is a

permutation of GF(2h). For every 0 ≤ i ≤ n− 2, let

Di = {ρ ∈ GF(2h) |Tr((x2e

i + yi)ρ
η) = 0}

and let
D′
i = {ρ ∈ GF(2h) |Tr((x2e

i + yi)ρ = 0}.
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Then |L ∩ P | = |
⋂n−2
i=0 Di | . Since η is a permutation of GF(2h), | Di | =

| D′
i | for all 0 ≤ i ≤ n− 2. Hence

|L ∩ P | = |
n−2⋂
i=0

D′
i | .

Let zi = x2e

i +yi for 0 ≤ i ≤ n−2. If zi = 0, then D′
i = GF(2h). If zi 6= 0,

then D′
i = z−1

i C0. So |L∩P | = 2h if and only if zi = 0 for all 0 ≤ i ≤ n− 2,
if and only if L ∈ B2. Let m = min(h, n− 1). If not all zi are zero, then by
Lemma A.1.2,

|L ∩ P | = |
n−2⋂
i=0

D′
i | ∈ {2h−m, 2h−m+1, . . . , 2h−1}.

Each of these possibilities does occur since the elements z0, . . . , zn−2 can take
any value in GF(2h) \ {0}, depending on the choice of the line L. 2

Theorem A.1.5 Consider the geometry I(n, 2h, e) fully embedded in
AG(n, 2h), n ≥ 3. If h ≥ n − 1, then the set R = P ∪ Π∞ is a set of
type

(1, 2h−n+1 + 1, 2h−n+2 + 1, . . . , 2h + 1)

in PG(n, 2h). If h ≤ n− 1, then R is a set of type

(1, 2, 3, 5, 9, . . . , 2h + 1)

in PG(n, 2h). A line L of PG(n, 2h) is contained in R if and only if L ⊆ U ,
L ⊆ Π∞ or L ∈ B2.

Proof. This follows immediately from Theorems A.1.3 and A.1.4. 2

A.2 The geometry I ′(n, q, e)

The line set of the geometry S = I(n, 2h, e) is defined as the union of two
sets B1 and B2. So it is natural to consider the sub incidence structures of
S, induced on the line sets B1 and B2. Let P1 be the set of affine points of
the hyperplane U , and let P2 be the complement of P1 in the point set P of
I(n, 2h, e). Let Si = (Pi,Bi, Ii), where Ii is the natural incidence, i = 1, 2.
Note that P1 is the set of all affine points on the lines of B1, but P2 is not
the set of all affine points on the lines of B2. Indeed, if L is a line of B2,
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then L intersects U in an affine point which is the only affine point of L not
in P2. Hence the geometry S2, which is also denoted by I ′(n, 2h, e), is laxly
embedded in AG(n, 2h).

Recall that T ∗n−1(K∞) denotes the linear representation in AG(n, q) of
a set of points K∞ in the hyperplane Π∞ at infinity of AG(n, q). In this
section however, we use the notation T ∗n−1,q(K∞). If K∞ is the point set of a
projective space PG(n− 1, q′), q′ | q, then we also write T ∗n−1,q(PG(n− 1, q′)).

Proposition A.2.1 S1 = T ∗
n−2,2h(PG(n− 2, 2)).

Proof. This follows immediately from the construction of I(n, 2h, e). 2

Consider an affine space AG(n, qm) and the point set K∞ of a projective
space PG(n−1, q) in Π∞. We assume here and in the rest of this chapter that
the set K∞ spans Π∞, i. e., the points of the projective space PG(n−1, q) are
all the points of Π∞ whose coordinates are in the subfield GF(q) of GF(qm),
with respect to a proper basis of PG(n, qm). We define an incidence structure
T ◦n−1,qm(PG(n− 1, q)) as follows. The points of T ◦n−1,qm(PG(n− 1, q)) are the
points of AG(n, qm), the lines are the sets K of affine points such that K∪K∞
is the point set of a projective space PG(n, q) in PG(n, qm), and incidence is
defined by inclusion.

Clearly if p and p′ are distinct affine points such that the line 〈p, p′〉
intersects Π∞ in a point p∞ 6∈ K∞, then p and p′ are not collinear in
T ◦n−1,qm(PG(n− 1, q)). Assume that p∞ ∈ K∞. Choose a basis in PG(n, qm)
such that Π∞ : X0 = 0,

K∞ = {(0, a1, . . . , an) 6= (0, . . . , 0) | ai ∈ GF(q), 1 ≤ i ≤ n},

p∞(0, 1, 0, . . . , 0), p(1, 0, . . . , 0) and p′(1, 1, 0, . . . , 0). Then

K = {(1, a1, . . . , an) | ai ∈ GF(q), 1 ≤ i ≤ n}

is a line of T ◦n−1,qm(PG(n − 1, q)) containing p and p′. Moreover, K is the
only line of T ◦n−1,qm(PG(n− 1, q)) containing p and p′. Indeed, suppose that
K′ is a line containing p and p′. Then K′∪K∞ is the point set of a projective
space PG(n, q) in PG(n, qm). Hence for every two distinct points r∞, r

′
∞ in

K∞\{p∞} such that p∞, r∞, r
′
∞ are collinear, the point p′′ = 〈p, r∞〉∩〈p′, r′∞〉

is a point of K′. But p′′ is also in K. It follows that K′ = K.
We conclude that T ◦n−1,qm(PG(n−1, q)) is a partial linear space, and that

two distinct affine points are collinear if and only if the line which joins them
intersects Π∞ in a point of K∞.
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Lemma A.2.2 The geometry T ◦n−1,qm(PG(n− 1, q)) is a partial linear space
of order (qn − 1, (qm − 1)/(q − 1) − 1) which has qmn points and
q(m−1)n(qm − 1)/(q − 1) lines.

Proof. Let K be a line of T ◦n−1,qm(PG(n− 1, q)). Then K∪K∞ is the point
set of a projective space PG(n, q) in PG(n, qm). So K is the point set of an
affine space AG(n, q) in AG(n, qm). Hence K contains qn points.

Choose a point p of T ◦n−1,qm(PG(n − 1, q)), and let p∞ ∈ K∞. We count
the pairs (p′,K) such that K is a line of T ◦n−1,qm(PG(n − 1, q)) through p,
and p′ is a point of K on the line L = 〈p, p∞〉, distinct from p. As we
have shown, for every affine point p′ on L, distinct from p, there is exactly
one line K of T ◦n−1,qm(PG(n − 1, q)) which contains p and p′. Let K be a
line of T ◦n−1,qm(PG(n − 1, q)) containing p. Since the line L contains the
points p, p∞ ∈ K ∪ K∞, it contains q + 1 points of K ∪ K∞. Hence there
are q − 1 points p′ of K on L, distinct from p. It follows that the number
of lines of T ◦n−1,qm(PG(n − 1, q)) through p is equal to (qm − 1)/(q − 1). So
T ◦n−1,qm(PG(n− 1, q)) has order (qn − 1, (qm − 1)/(q − 1)− 1).

Clearly T ◦n−1,qm(PG(n − 1, q)) has qmn points. Counting the number of
flags of T ◦n−1,qm(PG(n− 1, q)) yields the number of lines. 2

Theorem A.2.3 I ′(n, 2h, e) ∼= T ◦
n−2,2h(PG(n− 2, 2))D for all n ≥ 3.

Proof. Consider the geometry I(n, 2h, e) and the set K∞, which is the point
set of a projective space PG(n − 2, 2) in U∞. Let T ◦

n−2,2h(PG(n − 2, 2)) be
the geometry defined in U by K∞.

We define a map χ on the set of points and lines of I ′(n, 2h, e). For
every line L ∈ B2, let Lχ be the affine point L ∩ U . Then Lχ is a point
of T ◦

n−2,2h(PG(n − 2, 2)). For every point p ∈ P2, let pχ be the set p⊥ ∩ U ,

where p⊥ denotes the set of points of I(n, 2h, e) which are collinear to p. By
Lemma 4.4.17, pχ ∪K∞ is the point set of a projective space PG(n− 1, 2) in
U which contains K∞. So pχ is a line of T ◦

n−2,2h(PG(n − 2, 2)). Note that a

point p and a line L of I ′(n, 2h, e) are incident if and only if pχ and Lχ are
incident in T ◦

n−2,2h(PG(n− 2, 2)).
We prove that χ is injective. By Proposition 4.4.11, no two lines of

I ′(n, 2h, e) intersect U in the same point. Suppose that p and p′ are points of
I ′(n, 2h, e) such that pχ = p′χ. Let r, r′ be distinct points of pχ = p′χ, and let
L, respectively L′, be the unique line of B2 through r, respectively r′. Then
p and p′ are both on the lines L and L′. Hence L and L′ intersect, and p = p′

is the point of intersection. So χ is injective.
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By Proposition 4.4.12 and Lemma A.2.2, the number of points of
I ′(n, 2h, e) equals the number of lines of T ◦

n−2,2h(PG(n− 2, 2)), and the num-

ber of lines of I ′(n, 2h, e) equals the number of points of T ◦
n−2,2h(PG(n−2, 2)).

It follows that χ is a bijection from P2 ∪ B2 to the set of points and lines of
T ◦
n−2,2h(PG(n−2, 2)). Since χ preserves incidence, χ is an isomorphism from

I ′(n, 2h, e) to the dual of T ◦
n−2,2h(PG(n− 2, 2)). 2

Theorem A.2.4 Let n ≥ 3 and e1, e2 ∈ {1, . . . h − 1} such that e1 6= e2
and gcd(e1, h) = gcd(e2, h) = 1. Then I ′(n, 2h, e1) ∼= I ′(n, 2h, e2), but
I ′(n, 2h, e1) 6' I ′(n, 2h, e2).

Proof. By Theorem A.2.3, I ′(n, 2h, e1) ∼= I ′(n, 2h, e2).
We may assume that I ′(n, 2h, e1) and I ′(n, 2h, e2) are fully embedded in

the same affine space AG(n, 2h), and have the same U and K∞.
It follows from the proof of Theorem 4.2.3 that any plane πi of AG(n, 2h)

which contains two intersecting lines of I ′(n, 2h, ei), i = 1, 2, is of type IV
with respect to I(n, 2h, ei), and intersects the hyperplane U in an affine line.
Moreover, the number of lines of I ′(n, 2h, ei) in πi is 2h, and the points in
the dual plane πDi of πi which correspond to these lines, have coordinates
(1, x2ei , x), x ∈ GF(2h), with respect to a proper basis of πDi . With respect
to the same basis, the point of πDi which corresponds to the line πi ∩ U ,
respectively the line πi ∩ Π∞, has coordinates (0, 1, 0), respectively (0, 0, 1).

Suppose that I ′(n, 2h, e1) ' I ′(n, 2h, e2). Then there is a collineation ζ of
AG(n, 2h) which maps the lines of I ′(n, 2h, e1) onto the lines of I ′(n, 2h, e2).
Let π1 be a plane which contains two intersecting lines of I ′(n, 2h, e1). Then
the plane π2 = πζ1 contains two intersecting lines of I ′(n, 2h, e2). Let Si be
the set of lines of I ′(n, 2h, ei) in πi, let Li = πi ∩ U and let Li∞ = πi ∩ Π∞,
i = 1, 2. Then Sζ1 = S2 since πζ1 = π2. Since the hyperplanes U and Π∞ are
fixed by ζ, Lζ1 = L2 and (L1

∞)ζ = L2
∞. Now the preceding paragraph implies

that there is a collineation ζ ′ of PG(2, 2h) which fixes the points (0, 1, 0) and
(0, 0, 1) and maps the set of points S ′1 = {p(1, x2e1 , x) |x ∈ GF(2h)} to the
set of points S ′2 = {p(1, x2e2 , x) |x ∈ GF(2h)}. Let A and θ : x 7→ x2f

be the
matrix and field automorphism representing ζ ′. Since the points (0, 1, 0) and
(0, 0, 1) are fixed,

A =

 1 0 0
a b 0
c 0 d

 .

Since S ′1
ζ′ = S ′2,

F (x) = bx2e1+f

+ d2e2x2e2+f

+ c2
e2 + a = 0, ∀x ∈ GF(2h).
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Hence F (X) is the zero polynomial. Since A is nonsingular, b and d are
nonzero. Hence e1 = e2, a contradiction. So I ′(n, 2h, e1) 6' I ′(n, 2h, e2). 2

The next theorem is not new, special cases of it can be found on various
places in the literature. It can be proven using Segre varieties (see for example
[54], Chapter 25). However, for the sake of completeness and clarity, we give
here a complete proof using coordinates.

Theorem A.2.5 T ◦n−1,qm(PG(n − 1, q)) ∼= T ∗m−1,qn(PG(m − 1, q)) for all
m,n ≥ 2.

Proof. Let Π′
∞ be the hyperplane at infinity of AG(n, qm) and let K′

∞ be
the point set of the projective space PG(n − 1, q) in Π′

∞. Choose a basis in
PG(n, qm) such that Π′

∞ : X0 = 0 and

K′
∞ = {(0, a1, . . . , an) 6= (0, . . . , 0) | ai ∈ GF(q), 1 ≤ i ≤ n}.

Let Π∞ be the hyperplane at infinity of AG(m, qn) and let K∞ be the
point set of the projective space PG(m − 1, q) in Π∞. Choose a basis in
PG(m, qn) such that Π∞ : X0 = 0 and

K∞ = {(0, a1, . . . , am) 6= (0, . . . , 0) | ai ∈ GF(q), 1 ≤ i ≤ m}.

The field GF(qm), respectively GF(qn), is an m-dimensional, respectively
n-dimensional, vector space over GF(q), and choose a basis in this vector
space containing the element 1. With respect to this basis, an element z
of GF(qm), respectively of GF(qn), has coordinates (a1, . . . , am), respectively
(a1, . . . , an), while an element a of GF(q) has coordinates (a, 0, . . . , 0).

Now we can express the coordinates of a point p′ of PG(n, qm), respec-
tively a point p of PG(m, qn), with respect to the chosen basis in GF(qm), re-
spectively GF(qn). For example, if p′, respectively p, is a point of AG(n, qm),
respectively AG(m, qn), then

p′


1

(a′11, . . . , a
′
1m)

(a′21, . . . , a
′
2m)

...
(a′n1, . . . , a

′
nm)

 and p


1

(a11, . . . , a1n)
(a21, . . . , a2n)

...
(am1, . . . , amn)

 ,

where a′ij, aji ∈ GF(q), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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We define a bijection ψ from the point set of AG(m, qn) to the point set
of AG(n, qm) as follows.

ψ : p


1

(a11, . . . , a1n)
(a21, . . . , a2n)

...
(am1, . . . , amn)

 7→ pψ


1

(a11, . . . , am1)
(a12, . . . , am2)

...
(a1n, . . . , amn)

 .

We prove that ψ induces an isomorphism from T ∗m−1,qn(PG(m − 1, q)) to
T ◦n−1,qm(PG(n− 1, q)).

Clearly ψ is a bijection from the point set of T ∗m−1,qn(PG(m − 1, q))
to the point set of T ◦n−1,qm(PG(n − 1, q)). Let L be an arbitrary line of
T ∗m−1,qn(PG(m− 1, q)), let p ∈ L and let p∞ = L ∩ Π∞. Let the coordinates
of p and p∞ be p(1, x1, . . . , xm) and p∞(0, b1, . . . , bm), or, with respect to the
chosen basis in GF(qn),

p


1

(a11, . . . , a1n)
(a21, . . . , a2n)

...
(am1, . . . , amn)

 and p∞


0

(b1, 0, . . . , 0)
(b2, 0, . . . , 0)

...
(bm, 0, . . . , 0)

 .

A general affine point r ∈ L has coordinates (1, x1 + ρb1, . . . , xm + ρbm),
ρ ∈ GF(qn). If ρ has coordinates (ρ1, . . . , ρn) with respect to the chosen
basis in GF(qn), then we may write the coordinates of r as follows.

r


1

(a11 + ρ1b1, . . . , a1n + ρnb1)
(a21 + ρ1b2, . . . , a2n + ρnb2)

...
(am1 + ρ1bm, . . . , amn + ρnbm)

 .

Let K′ be the image of the set of affine points of L under ψ. Then a general
point r′ ∈ K′ has coordinates

r′


1

(a11 + ρ1b1, . . . , am1 + ρ1bm)
(a12 + ρ2b1, . . . , am2 + ρ2bm)

...
(a1n + ρnb1, . . . , amn + ρnbm)

 ,
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with ρ1, . . . , ρn ∈ GF(q). For 1 ≤ i ≤ n, let x′i be the element of GF(qm)
which has coordinates (a1i, . . . , ami). Let y′ be the element of GF(qm) which
has coordinates (b1, . . . , bm). Then

K′ = {r′(1, x′1 + ρ1y
′, . . . , x′n + ρny

′) | ρ1, . . . , ρn ∈ GF(q)}.

Let K′
0 = {r′(1, ρ1, . . . , ρn) | ρ1, . . . , ρn ∈ GF(q)}. Then K′

0 is a line of
T ◦n−1,qm(PG(n− 1, q)). The collineation of PG(n, qm) with matrix

A =


1
x′1 y′

...
. . .

x′n y′


fixes every point of Π′

∞ and maps K′
0 to K′. Hence the set K′ is a line of

T ◦n−1,qm(PG(n− 1, q)).
We conclude that ψ maps every line of T ∗m−1,qn(PG(m− 1, q)) onto a line

of T ◦n−1,qm(PG(n − 1, q)). Since ψ is a bijection between the point sets of
T ∗m−1,qn(PG(m − 1, q)) and T ◦n−1,qm(PG(n − 1, q)), ψ acts injectively on the
line set of T ∗m−1,qn(PG(m − 1, q)). By Lemma A.2.2, T ∗m−1,qn(PG(m − 1, q))
and T ◦n−1,qm(PG(n − 1, q)) have the same number of lines, so ψ induces an
isomorphism from T ∗m−1,qn(PG(m− 1, q)) to T ◦n−1,qm(PG(n− 1, q)). 2

Theorem A.2.6 I ′(n, 2h, e) ∼= T ∗h−1,2n−1(PG(h− 1, 2))D for all n ≥ 3.

Proof. This follows immediately from Theorems A.2.5 and A.2.3. 2

Corollary A.2.7 The geometry I ′(3, 2h, e) is a lax embedding in PG(3, 2h)
of the dual of the semipartial geometry T ∗h−1,4(PG(h − 1, 2)), which is an

spg(3, 2h − 2, 2, 6).

Proof. By Theorem A.2.6, and since T ∗h−1,4(PG(h−1, 2)) is the semipartial
geometry T ∗h−1(B∞), with B∞ the point set of the Baer subspace PG(h−1, 2)
in the hyperplane at infinity of AG(h, 4). 2

A.3 Isomorphisms of I(n, q, e)

In the preceding section, we determined the structure of the two parts of
I(n, 2h, e), namely S1 and S2 = I ′(n, 2h, e). Here, we use these results to
obtain some isomorphisms of the geometry I(n, 2h, e).
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Consider an affine space AG(n, qm) and the point set K∞ of a projec-
tive space PG(n − 1, q) in Π∞. Then we define an incidence structure
T~
n−1,qm(PG(n− 1, q)) as follows. The points are of two types.

(1) The points of T ∗n−1,qm(PG(n− 1, q)).

(2) The lines of T ◦n−1,qm(PG(n− 1, q)).

The lines are of two types as well.

(a) The lines of T ∗n−1,qm(PG(n− 1, q)).

(b) The points of T ◦n−1,qm(PG(n− 1, q)).

Incidence between points of type (1) and lines of the type (a), and between
points of type (2) and lines of type (b), is straightforward. A point of type
(2) is never incident with a line of type (a). A point of type (1) is incident
with a line of type (b) if and only if the corresponding affine points are the
same.

In general, the geometry T~
n−1,qm(PG(n−1, q)) doesn’t even have an order.

However, it is motivated by the following theorem.

Theorem A.3.1 I(n, 2h, e) ∼= T~
n−2,2h(PG(n− 2, 2)) for all n ≥ 3.

Proof. Consider the set K∞ which is the point set of a projective space
PG(n− 2, 2) in U∞. Let T~

n−2,2h(PG(n− 2, 2)) be the geometry defined in U
by K∞.

We define a map χ′ on the set of points and lines of I(n, 2h, e). For every
point p ∈ P1, let pχ

′
be the point of type (1) of T~

n−2,2h(PG(n− 2, 2)) which

corresponds to p. For every line L ∈ B1, let Lχ
′

be the line of type (a) of
T~
n−2,2h(PG(n− 2, 2)) which corresponds to L. Consider the map χ from the

proof of Theorem A.2.3. For every point p ∈ P2, let pχ
′
be the point of type

(2) of T~
n−2,2h(PG(n− 2, 2)) which corresponds to pχ. For every line L ∈ B2,

let Lχ
′
be the line of type (b) of T~

n−2,2h(PG(n− 2, 2)) which corresponds to

Lχ. By Theorem A.2.3, χ is an isomorphism from I ′(n, 2h, e) to the dual
of T ◦

n−2,2h(PG(n − 2, 2)). Hence χ′ is an isomorphism from I(n, 2h, e) to

T~
n−2,2h(PG(n− 2, 2)). 2

Theorem A.3.2 Let n ≥ 3 and e1, e2 ∈ {1, . . . h − 1} such that e1 6= e2
and gcd(e1, h) = gcd(e2, h) = 1. Then I(n, 2h, e1) ∼= I(n, 2h, e2), but
I(n, 2h, e1) 6' I(n, 2h, e2).
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Proof. By Theorem A.3.1, I(n, 2h, e1) ∼= I(n, 2h, e2).
We may assume that I(n, 2h, e1) and I(n, 2h, e2) are fully embedded in

the same affine space AG(n, 2h), and have the same U and K∞.
Suppose that I(n, 2h, e1) ' I(n, 2h, e2). Then there is a collineation ζ of

AG(n, 2h) which maps the lines of I(n, 2h, e1) onto the lines of I(n, 2h, e2).
Clearly every planar net of I(n, 2h, e1) is mapped by ζ to a planar net of
I(n, 2h, e2). By Lemma 4.4.10, a line of I(n, 2h, ei), i = 1, 2, is contained in a
planar net if and only if it is contained in U . Hence U ζ = U , so ζ induces an
isomorphism from I ′(n, 2h, e1) to I ′(n, 2h, e2). But this contradicts Theorem
A.2.4. We conclude that I(n, 2h, e1) 6' I(n, 2h, e2). 2

Theorem A.3.3 T~
n−1,qm(PG(n − 1, q)) ∼= T~

m−1,qn(PG(m − 1, q))D for all
m,n ≥ 2.

Proof. Consider the bijection ψ from the point set of AG(m, qn) to the
point set of AG(n, qm), which was defined in Theorem A.2.5. Then ψ in-
duces an isomorphism from the geometry T~

m−1,qn(PG(m− 1, q)) to the dual
of the geometry T~

n−1,qm(PG(n− 1, q)). 2

Theorem A.3.4 I(n, 2h, e) ∼= I(h+ 1, 2n−1, e)D for all n ≥ 3, h ≥ 2.

Proof. This follows immediately from Theorems A.3.1 and A.3.3. 2

Corollary A.3.5 The geometry I(n, 2n−1, e) is self-dual for all n ≥ 3.





Bijlage B

Samenvatting

In deze samenvatting zullen we de belangrijkste resultaten kort bespreken.
We zullen echter niet alle basisdefinities herhalen, hiervoor verwijzen we naar
de Engelstalige tekst.

B.1 Inleiding

B.1.1 Incidentiestructuren

Een partieel lineaire ruimte S is een drietal (P ,B, I), bestaande uit een verza-
meling punten P , een verzameling rechten B, en een symmetrische inciden-
tierelatie I ⊆ (P × B) ∪ (B × P), zodanig dat iedere rechte tenminste twee
punten bevat, ieder punt op tenminste twee rechten ligt, en elke twee ver-
schillende rechten hoogstens één punt gemeen hebben. Een partieel lineaire
ruimte S heeft orde (s, t) als iedere rechte precies s+1 punten bevat, en ieder
punt op precies t + 1 rechten ligt. Een paar {p, L}, met p ∈ P en L ∈ B,
noemen we een vlag als p op L ligt; anders noemen we {p, L} een antivlag.
Het incidentiegetal α(p, L) van een antivlag {p, L} is het aantal rechten van
S die p bevatten en L snijden.

Een partieel lineaire ruimte S van orde (s, t) noemen we een partiële
meetkunde als iedere antivlag van S hetzelfde incidentiegetal α heeft (hier
is 0 < α ≤ min(s + 1, t + 1)). Men schrijft dan dat S een pg(s, t, α) is.
Partiële meetkunden werden door Bose [6] ingevoerd als een veralgemening
van veralgemeende vierhoeken en (duale) netten. Een veralgemeende vierhoek
kan dan ook gedefinieerd worden als een pg(s, t, 1), en een net van orde s+1
en graad t+ 1 als een pg(s, t, t).

Een samenhangende partieel lineaire ruimte S van orde (s, t) noemen we
een (0, α)-meetkunde als het incidentiegetal van elke antivlag van S gelijk
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is aan ofwel nul ofwel een constante α (0 < α ≤ min(s + 1, t + 1)). Een
semipartiële meetkunde is een (0, α)-meetkunde S van orde (s, t) zodanig
dat, voor elke twee niet-collineaire punten p en p′ van S, het aantal pun-
ten p′′ dat collineair is met zowel p als p′, gelijk is aan een constante µ
(µ > 0). Men schrijft dan dat S een spg(s, t, α, µ) is. Het puntgraaf van een
semipartiële meetkunde is een sterk regulier graaf. Semipartiële meetkun-
den werden ingevoerd door Debroey en Thas [41] als een veralgemening van
partiële meetkunden. Men kan inderdaad nagaan dat elke pg(s, t, α) een
spg(s, t, α, µ) is, met µ = (t + 1)α. Een semipartiële meetkunde die geen
partiële meetkunde is, noemen we een eigenlijke semipartiële meetkunde.

B.1.2 Enkele begrippen uit de projectieve meetkunde

De kwadriek van Klein

De niet-singuliere hyperbolische kwadriek Q+(5, q) in PG(5, q) wordt ook de
kwadriek van Klein genoemd. Deze kwadriek staat op een speciale manier in
verband met de projectieve meetkunde PG(3, q). Men kan namelijk op een
natuurlijke wijze de verzameling van rechten van PG(3, q) identificeren met
de verzameling van punten van Q+(5, q). Deze identificatie maakt gebruik
van de zogenaamde Plücker coördinaten van rechten van PG(3, q), en wordt
daarom de Plücker correspondentie genoemd. Er geldt dat twee verschillende
rechten van PG(3, q) concurrent zijn als en slechts als de corresponderende
punten van Q+(5, q) collineair zijn op de kwadriek van Klein.

Een stralenwaaier van PG(3, q) is de verzameling van q + 1 rechten die
door een gegeven punt p van PG(3, q) gaan en in een gegeven vlak π 3 p van
PG(3, q) liggen. De Plücker correspondentie bepaalt een bijectief verband
tussen de verzameling van stralenwaaiers van PG(3, q) en de verzameling
van rechten van Q+(5, q).

Verzamelingen van type (1, m, q + 1)

Een verzameling K van punten van PG(n, q) noemen we een verzameling van
type (t1, . . . , tm) als iedere rechte van PG(n, q) de verzameling K snijdt in
t1, t2, . . . of tm punten.

De verzamelingen van type (1,m, q+1) in PG(n, q) werden geclassificeerd
door Hirschfeld en Thas [53, 52]. De volgende constructie geeft een belangrijk
voorbeeld van een verzameling van type (1,m, q + 1) in PG(n, q).

Zij Qn+1 een niet-singuliere kwadriek in PG(n + 1, q), n ≥ 1, q even, en
zij r een punt van PG(n+ 1, q) dat niet op de kwadriek ligt, en verschillend
is van de kern als n+ 1 even is. Zij PG(n, q) een hypervlak van PG(n+ 1, q)
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dat r niet bevat, en zij Rn de projectie van Qn+1 vanuit r op PG(n, q).
Dan is Rn een verzameling van type (1, 1

2
q + 1, q + 1) in PG(n, q). Is n + 1

oneven, en is Qn+1 = Q+(n+1, q) een hyperbolische kwadriek, dan schrijven
we Rn = R+

n . Is n + 1 oneven, en is Qn+1 = Q−(n + 1, q) een elliptische
kwadriek, dan schrijven we Rn = R−

n .
Merk op dat de verzameling Rn steeds een hypervlak van PG(n, q) bevat.

Inderdaad, aangezien q even is, bestaat er een hypervlak U van PG(n+ 1, q)
door r, zodanig dat de verzameling van raaklijnen aan Qn+1 door r precies
de verzameling van rechten door r in U is. Bijgevolg bevat Rn alle punten
van het hypervlak U ∩ PG(n, q) van PG(n, q).

B.1.3 Projectieve en affiene incidentiestructuren

Zij R een projectieve of affiene ruimte. Een incidentiestructuur S = (P ,B, I)
is vol ingebed (of kortweg: ingebed) in R als B een verzameling van rechten
van R is, P de verzameling is van alle punten van R op de rechten van B,
I de restrictie is van de incidentie van R tot de punten en rechten van S,
en P niet bevat is in een hypervlak van R. We zeggen ook dat S een projec-
tieve of affiene incidentiestructuur is, naargelang R een projectieve of affiene
ruimte is.

Twee incidentiestructuren S en S ′ die ingebed zijn in R, worden projectief
of affien equivalent genoemd als er een collineatie van R bestaat die een
isomorfisme van S en S ′ induceert. We noteren dit als S ' S ′. De notatie
voor isomorfe incidentiestructuren is S ∼= S ′. Merk op dat uit S ' S ′ volgt
dat S ∼= S ′, maar niet omgekeerd.

Een belangrijk probleem in de eindige meetkunde is het beantwoorden
van de vraag welke incidentiestructuren ingebed kunnen worden in een pro-
jectieve of affiene ruimte, en het bepalen van de structuur van deze inbeddin-
gen. Dit probleem is reeds voor verschillende klassen van incidentiestructuren
bestudeerd.

De projectieve partiële meetkunden zijn volledig geclassificeerd. In het
geval van de projectieve veralgemeende vierhoeken werd het probleem opgelost
door Buekenhout en Lefèvre [15]. De overige projectieve partiële meetkunden
werden geclassificeerd door De Clerck en Thas [29].

De projectieve semipartiële meetkunden werden geclassificeerd door
Debroey, De Clerck en Thas [81], uitgezonderd de semipartiële meetkunden
ingebed in PG(n, 2), en de projectieve semipartiële meetkunden met α = 1
(die ook partiële vierhoeken genoemd worden). In feite is de classificatie van
projectieve semipartiële meetkunden een direct gevolg van de classificatie
door Debroey, De Clerck en Thas [30, 81] van (0, α)-meetkunden, α > 1,
ingebed in PG(n, q), n ≥ 4, q > 2.
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De affiene partiële meetkunden, inclusief affiene veralgemeende vierhoeken,
werden volledig geclassificeerd door Thas [78]. Op de affiene inbedding van
semipartiële meetkunden en (0, α)-meetkunden gaan we in Sectie B.4 dieper
in.

B.2 Constructie van (0, α)-meetkunden inge-

bed in PG(3, q), en de kwadriek van

Klein

In Hoofdstuk 2 onderzoeken we (0, α)-meetkunden ingebed in PG(3, q), aan
de hand van de Plücker correspondentie. Als belangrijkste resultaat ver-
melden we de constructie van nieuwe (0, α)-meetkunden ingebed in PG(3, q).

Zoals gezegd, hebben Debroey, De Clerck en Thas [30, 81] de (0, α)-
meetkunden, α > 1, ingebed in PG(n, q), n ≥ 4, q > 2 geclassificeerd.
Dit resultaat laat de inbedding van (0, α)-meetkunden, α > 1, in PG(3, q)
open. Toch werden in [30] sterke voorwaarden bewezen waaraan zo’n (0, α)-
meetkunde moet voldoen. In het bijzonder geldt de volgende stelling.

Stelling B.2.1 (De Clerck, Thas [30]) Zij B een verzameling van rechten
van PG(3, q), q > 2. Zij S = (P ,B, I), waarbij P de verzameling is van alle
punten van PG(3, q) die op de rechten van B liggen, en I de natuurlijke in-
cidentie. Dan is S een (0, α)-meetkunde, α > 1, ingebed in PG(3, q), als
en slechts als elke stralenwaaier van PG(3, q) ofwel 0 ofwel α rechten van B
bevat.

Gevolg B.2.2 Zij S = (P ,B, I) een (0, α)-meetkunde, α > 1, ingebed in
PG(3, q), q > 2. Dan heeft S orde (q, (q + 1)(α− 1)) en bestaat er een getal
d ∈ {0, . . . , q(q+1−α)/α}, dat we de deficiëntie van S noemen, zodanig dat
| P | = (q + 1)(q2 + 1− d) en | B | = (qα− q + α)(q2 + 1− d).

In [30, 81] vinden we de volgende voorbeelden van (0, α)-meetkunden,
α > 1, ingebed in PG(3, q), q > 2.

1. Zij S = (P ,B, I), waarbij P de verzameling is van alle punten van
PG(3, q), B de verzameling van alle rechten van PG(3, q), en I de na-
tuurlijke incidentie. Dan is S een 2− ((q4− 1)/(q− 1), q+ 1, 1) design,
en dus een (0, q + 1)-meetkunde van deficiëntie 0, ingebed in PG(3, q).

2. Zij W (3, q) = (P ,B, I), waarbij P de verzameling is van alle punten
van PG(3, q), B de verzameling van rechten die niet totaal isotroop
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zijn ten opzichte van een symplectische polariteit van PG(3, q), en I
de natuurlijke incidentie. Dan is W (3, q) een semipartiële meetkunde
spg(q, q2 − 1, q, q2(q − 1)), en dus een (0, q)-meetkunde van deficiëntie
0, ingebed in PG(3, q).

3. Zij H3
q = (P ,B, I), waarbij P de verzameling is van alle punten die

niet op een gegeven rechte L van PG(3, q) liggen, B de verzameling van
alle rechten die een lege doorsnede hebben met L, en I de natuurlijke
incidentie. Dan is H3

q een partiële meetkunde pg(q, q2 − 1, q), en dus
een (0, q)-meetkunde van deficiëntie 1, ingebed in PG(3, q).

4. Neem aan dat q even is. Zij NQ+(3, q) = (P ,B, I), waarbij P de verza-
meling is van alle punten die niet op een gegeven niet-singuliere hyper-
bolische kwadriek Q+(3, q) liggen, B de verzameling van alle rechten die
een lege intersectie hebben met Q+(3, q), en I de natuurlijke incidentie.
Dan is NQ+(3, q) een (0, q/2)-meetkunde van deficiëntie q+ 1, ingebed
in PG(3, q). Deze meetkunde is geen semipartiële meetkunde.

In [30] werd het vermoeden geuit dat er geen andere voorbeelden zijn van
(0, α)-meetkunden, α > 1, ingebed in PG(3, q), q > 2. Zoals zal blijken is
dit vermoeden niet juist. Echter, in het geval dat q oneven is, kan men wel
bewijzen dat er geen andere voorbeelden zijn. Cruciaal hierbij is het resultaat
van Ball, Blokhuis en Mazzocca [2], dat zegt dat er in PG(2, q), q oneven,
geen niet-triviale maximale bogen bestaan. Voor het vinden van nieuwe
voorbeelden van (0, α)-meetkunden, α > 1, ingebed in PG(3, q), mogen we
ons dus beperken tot het geval waarbij q even is.

Zij B een verzameling van rechten van PG(3, q) en zij K de verzameling
van punten van de Klein kwadriek die correspondeert met B. Dan bevat elke
stralenwaaier van PG(3, q) ofwel 0 ofwel α rechten van B als en slechts als elke
rechte van Q+(5, q) ofwel 0 ofwel α punten van K bevat. Een verzameling
van punten van de Klein kwadriek die de laatste eigenschap heeft, noemen
we een (0, α)-verzameling op de Klein kwadriek Q+(5, q). Wegens Stelling
B.2.1 zijn de volgende objecten equivalent wanneer q > 2 en α > 1.

1. Een (0, α)-meetkunde ingebed in PG(3, q).

2. Een (0, α)-verzameling op Q+(5, q).

Zij S een (0, α)-meetkunde, α > 1, van deficiëntie d, ingebed in PG(3, q),
q > 2, en zij K de corresponderende (0, α)-verzameling op Q+(5, q). Dan
zeggen we ook dat d de deficiëntie van K is.

Beschouw de Klein kwadriek Q+(5, q), q = 2h. Vermits q even is, kunnen
we met Q+(5, q) een symplectische polariteit β associëren. Zij V een 3-ruimte
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van PG(5, q) die Q+(5, q) snijdt in een niet-singuliere elliptische kwadriek E,
en zij L de rechte V β. Dan is L een externe rechte aan Q+(5, q).

Zij O een ovöıde van V die dezelfde verzameling van raaklijnen heeft als de
elliptische kwadriek E. Voor ieder punt p ∈ O \E snijdt het vlak π = 〈p, L〉
de Klein kwadriek in een niet-singuliere kegelsnede met kern p, en voor ieder
punt p ∈ O ∩ E snijdt het vlak π = 〈p, L〉 de Klein kwadriek enkel in het
punt p. Zij

K =
⋃

p∈O\E

(Q+(5, q) ∩ π) ∪ E \O.

Dan is K een (0, 2)-verzameling van deficiëntie |E∩O | op de Klein kwadriek
Q+(5, q). Deze constructie komt toe aan Ebert, Metsch en Szőnyi [45].

Als O een niet-singuliere elliptische kwadriek is, dan volgt uit Bruen en
Hirschfeld [13] dat er twee mogelijkheden zijn voor de onderlinge ligging van
E en O. Ofwel hebben E en O juist één punt gemeen, ofwel snijden E en O
in de q+1 punten van een niet-singuliere kegelsnede in een vlak van PG(3, q).
In het eerste geval noteren we de (0, 2)-verzameling K als E1, in het tweede
geval als Eq+1.

Als q = 22e+1 en O een Suzuki-Tits ovöıde is, dan volgt uit Bagchi en
Sastry [1] dat E en O snijden in ofwel q+

√
2q+ 1 ofwel q−

√
2q+ 1punten.

In het eerste geval noteren we de (0, 2)-verzameling K als Tq+√2q+1, in het
tweede geval als Tq−√2q+1.

We kunnen de volgende stelling bewijzen over de (0, 2)-verzamelingen Ed,
d = 1, q + 1.

Stelling B.2.3 Zij K ∈ {E1, Eq+1}, en zij π het unieke vlak van V zodanig
dat Q+(5, q) ∩ π = E ∩O. Dan geldt er dat

K = (E ∪O1 ∪ . . . ∪Oq+1) \ π,

waarbij Oi, 1 ≤ i ≤ q + 1, een niet-singuliere 3-dimensionale elliptische
kwadriek op Q+(5, q) is, zodanig dat de 3-ruimte Vi die Oi bevat, V snijdt
in het vlak π. De 3-ruimten V1, . . . , Vq+1 snijden ieder vlak π′ = 〈r, L〉, met
r ∈ O \E, in de punten van de niet-singuliere kegelsnede C ′ = Q+(5, q)∩ π′,
en V snijdt π′ in de kern r van de kegelsnede C ′.

Met andere woorden, Ed, d = 1, q + 1, kan gezien worden als de unie
van 3-dimensionale niet-singuliere elliptische kwadrieken, met weglating van
d punten. Dit leidt tot de volgende constructie.

Beschouw opnieuw de Klein kwadriek Q+(5, q), q even. Zij π een vlak
van PG(5, q) dat geen rechte van Q+(5, q) bevat. Zij π′ een vlak dat scheef
is aan π, en zij D de verzameling van punten p ∈ π′, zodanig dat de 3-
ruimte V = 〈p, π〉 de Klein kwadriek snijdt in een niet-singuliere elliptische
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kwadriek. Neem aan dat A een maximale boog is van graad α > 1 in π′,
zodanig dat A ⊆ D. Beschouw dan

Mα(A) =
⋃
p∈A

(Q+(5, q) ∩ V ) \ π.

Stelling B.2.4 De verzamelingMα(A) is een (0, α)-verzameling op Q+(5, q)
van deficiëntie d = |Q+(5, q) ∩ π | .

Vermits het vlak π geen rechten van Q+(5, q) bevat, bestaat Q+(5, q)∩ π
ofwel uit één enkel punt, ofwel uit de q + 1 punten van een niet-singuliere
kegelsnede. In het eerste geval heeft de (0, α)-verzameling deficiëntie 1 en
wordt ze genoteerd als Mα

1 (A); in het tweede geval heeft ze deficiëntie q + 1
en wordt ze genoteerd als Mα

q+1(A).
Als |Q+(5, q)∩π | = 1, dan bestaat D uit het complement van een rechte

in π′. Als |Q+(5, q) ∩ π | = q + 1, dan bestaat D uit de punten die op geen
enkele rechte van een duale niet-singuliere kegelsnede van π′ liggen. Hierdoor
kunnen we de volgende stelling bewijzen.

Stelling B.2.5 Er bestaan (0, α)-verzamelingen op Q+(5, q), q = 2h, van
deficiëntie 1 en q + 1, voor alle α ∈ {2, 22, . . . , 2h−1}.

Gevolg B.2.6 Er bestaan (0, α)-meetkunden ingebed in PG(3, q), q = 2h,
van deficiëntie 1 en q + 1, voor alle α ∈ {2, 22, . . . , 2h−1}.

Tot slot gaan we na welke van de gekende voorbeelden van (0, α)-verzame-
lingen op Q+(5, q) projectief equivalent zijn. Uit Stelling B.2.3 volgt dat
de (0, 2)-verzameling Ed, d = 1, q + 1, van de vorm M2

d(H) is, waarbij H
een reguliere hyperovaal is. Bovendien kunnen we bewijzen dat de (0, q/2)-
verzameling op Q+(5, q) die correspondeert met de (0, q/2)-meetkunde

NQ+(3, q), niets anders is dan de (0, q/2)-verzameling Mq/2
q+1(A), waarbij

A = D.
De lijst van gekende, projectief verschillende (0, α)-verzamelingen op

Q+(5, q), α > 1, q > 2, ziet er dus als volgt uit. In deze lijst is d de deficiëntie
van de (0, α)-verzameling K, en S de corresponderende (0, α)-meetkunde in-
gebed in PG(3, q).

1. α = q + 1, d = 0, en K is de verzameling van alle punten van Q+(5, q).

2. α = q, d = 0, en S = W (3, q).

3. α = q, d = 1, en S = H3
q .

4. q = 2h, α ∈ {2, 22, . . . , 2h−1}, d ∈ {1, q + 1}, en K = Mα
d (A).

5. q = 22e+1, α = 2, d = q ±
√

2q + 1, en K = Tq±√2q+1.
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B.3 Planaire ovaalverzamelingen in PG(2, q),

q even

In Hoofdstuk 3 worden bepaalde verzamelingen van ovalen in PG(2, q),
q even, onderzocht, de zogenaamde planaire ovaalverzamelingen. De resul-
taten uit dit hoofdstuk hebben we nodig in Hoofdstuk 5, bij de classificatie
van (0, 2)-meetkunden ingebed in AG(3, q).

Een planaire ovaalverzameling in PG(2, q), q = 2h, is een verzameling Ω
van q2 ovalen met gemeenschappelijke kern n, zodanig dat de incidentiestruc-
tuur π(Ω), met als punten de punten van PG(2, q), als rechten de elementen
van Ω en de rechten van PG(2, q) door n, en met de natuurlijke inciden-
tie, een projectief vlak van orde q is. Het punt n wordt ook de kern van Ω
genoemd.

Een planaire ovaalverzameling Ω wordt een reguliere Desarguesiaanse
planaire ovaalverzameling genoemd als er een collineatie van PG(2, q) naar
π(Ω) bestaat, die elke rechte door de kern n fixeert.

Zij O een ovaal van PG(2, q), q even, en zij n de kern van O. Zij El(n) de
groep van alle elaties van PG(2, q) die het punt n als centrum hebben. We
definiëren nu

Ω(O) = {Oe | e ∈ El(n)}.

Dan bewijzen we dat Ω(O) een reguliere Desarguesiaanse planaire ovaalverza-
meling met kern n in PG(2, q) is. We kunnen nu onmiddellijk het belang-
rijkste resultaat van Hoofdstuk 3 formuleren.

Stelling B.3.1 Zij Ω een reguliere Desarguesiaanse planaire ovaalverzame-
ling in PG(2, q), q even. Dan geldt voor elk element O ∈ Ω dat Ω = Ω(O).

Om Stelling B.3.1 te bewijzen, onderzoeken we de verzameling V van
collineaties van PG(2, q) naar π(Ω), die iedere rechte door de kern n van Ω
fixeren. Meer bepaald onderzoeken we voor elk element ξ ∈ V de verzame-
ling Fix(ξ), die bestaat uit de punten van PG(2, q), verschillend van n, die
gefixeerd worden door ξ. We bewijzen dat, voor alle ξ ∈ V , de verzameling
Fix(ξ) ofwel leeg is, ofwel q + i punten bevat, met i een deler van q, en een
verzameling van type (0, 2, i) is zodanig dat elke rechte die i punten van Fix(ξ)
bevat, door de kern n gaat. Vervolgens bewijzen we dat het getal i slechts
de waarden 1 en q kan aannemen. Dit wil zeggen dat, als Fix(ξ) niet ledig
is, Fix(ξ) ofwel een ovaal is met kern n, ofwel de unie van twee verschillende
rechten door n. Met behulp van dit resultaat bewijzen we Stelling B.3.1.
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B.4 Affiene semipartiële meetkunden en

(0, α)-meetkunden

Hoofdstukken 4 tot en met 6 vormen eigenlijk één geheel binnen deze the-
sis. We behandelen hierin de inbeddingen van semipartiële meetkunden en
(0, α)-meetkunden in affiene ruimten. De eigenlijke bewijzen van onze re-
sultaten bevinden zich in Hoofdstukken 5 en 6. Hoofdstuk 4 is er om de
lezer te oriënteren: we leggen uit waarom we niet enkel affiene semipartiële
meetkunden, maar in de eerste plaats affiene (0, α)-meetkunden onderzoeken;
we leggen de methode uit die we daarbij gebruiken en we plaatsen onze resul-
taten tussen aanverwante resultaten. Bovendien geven we de constructie van
twee nieuwe affiene (0, α)-meetkunden. We maken de lezer tevens vertrouwd
met alle gekende affiene (0, α)-meetkunden door elk van deze meetkunden
te onderwerpen aan een gedetailleerd onderzoek. Hierbij besteden we vooral
aandacht aan de structuur van punten en rechten van de meetkunde, die in
de verschillende deelruimten van de affiene ruimte liggen.

B.4.1 Alle voorbeelden op een rijtje

Lineaire representaties

Zij K∞ een verzameling van punten van Π∞, het hypervlak op oneindig van
een affiene ruimte AG(n, q). De lineaire representatie T ∗n−1(K∞) van de verza-
meling K∞ is de incidentiestructuur (P ,B, I), waarbij P de verzameling is
van alle punten van AG(n, q), B de verzameling van alle rechten die Π∞
snijden in een punt van K∞, en I de natuurlijke incidentie. Iedere lineaire
representatie is een partieel lineaire ruimte, ingebed in AG(n, q).

Een lineaire representatie T ∗n−1(K∞) is een (0, α)-meetkunde als en slechts
als K∞ niet bevat is in een echte deelruimte van Π∞, en K∞ een verzameling
van type (0, 1, α + 1) in Π∞ is. Daarenboven is T ∗n−1(K∞) een semipartiële
meetkunde spg(q − 1, | K∞ | − 1, α, µ) als en slechts als ieder punt van Π∞,
niet in K∞, op precies µ/(α(α + 1)) rechten ligt die α + 1 punten van K∞
bevatten, als en slechts als de verzameling K∞ twee intersectiegetallen heeft
met betrekking tot hypervlakken van Π∞ (zie Delsarte [43]).

Er zijn slechts twee voorbeelden gekend van lineaire representaties die
semipartiële meetkunden zijn met α > 1.

1. Beschouw AG(3, q2) en zij U∞ een unitaal van het vlak Π∞. Dan is
T ∗2 (U∞) een spg(q2 − 1, q3, q, q2(q2 − 1)), ingebed in AG(3, q2).

2. Beschouw AG(n, q2), n ≥ 2, en zij B∞ een Baer deelruimte van Π∞.
Dan is T ∗n−1(B∞) een spg(q2 − 1, (qn − q)/(q − 1), q, q(q + 1)), ingebed
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in AG(n, q2).

Lineaire representaties zijn reeds lang gekend en bestudeerd. De semi-
partiële meetkunden T ∗2 (U∞) en T ∗n−1(B∞) werden gëıntroduceerd door
Debroey en Thas [41].

De duale ovaal

Beschouw een verzameling B van rechten van AG(2, q), q = 2h, zodanig
dat B ∪ {Π∞} een hyperovaal vormt in het duale vlak van PG(2, q). Zij
S = (P ,B, I), waarbij P de verzameling is van alle punten van AG(2, q) op
de rechten van B, en I de natuurlijke incidentie. Dan is S een (triviale)
partiële meetkunde pg(q − 1, 1, 2), ingebed in AG(2, q). We noemen S een
duale ovaal.

HT en TQ(4, q)

Beschouw de verzameling R3 in PG(3, q), q = 2h. Dan is er een vlak van
PG(3, q) dat volledig in R3 ligt. Beschouw dit vlak als het vlak op oneindig
Π∞ van een affiene ruimte AG(3, q). Zij HT = (P ,B, I), waarbij P = R3\Π∞,
B de verzameling van rechten van AG(3, q) die volledig in R3 liggen, en I de
natuurlijke incidentie. Dan is HT een (0, 2)-meetkunde van orde (q − 1, q),
ingebed in AG(3, q). Deze meetkunde is geen semipartiële meetkunde.

Beschouw de verzamelingR−
4 in PG(4, q), q = 2h. Dan is er een hypervlak

van PG(4, q) dat volledig in R−
4 ligt. Beschouw dit hypervlak als het hyper-

vlak op oneindig Π∞ van een affiene ruimte AG(4, q). Zij TQ(4, q) = (P ,B, I),
waarbij P = R−

4 \Π∞, B de verzameling van rechten van AG(4, q) die volledig
in R−

4 liggen, en I de natuurlijke incidentie. Dan is TQ(4, q) een semipartiële
meetkunde spg(q − 1, q2, 2, 2q(q − 1)), ingebed in AG(4, q).

De meetkunden HT en TQ(4, q), ingebed in AG(4, q), werden ontdekt
door Hirschfeld en Thas [53].

A(O∞)

Beschouw AG(3, q), q = 2h. Zij O∞ een ovaal in Π∞ met kern n∞. Kies een
basis in PG(3, q) zodat Π∞ : X3 = 0, n∞(1, 0, 0, 0) en (0, 1, 0, 0), (0, 0, 1, 0),
(1, 1, 1, 0) ∈ O∞. Zij f het o-polynoom zodat

O∞ = {(ρ, f(ρ), 1, 0) | ρ ∈ GF(2h)} ∪ {(0, 1, 0, 0)}.

Beschouw voor elk affien punt p(x, y, z, 1) de ovaal

Op
∞ = {(y + zf(ρ) + ρ, f(ρ), 1, 0) | ρ ∈ GF(2h)} ∪ {(z, 1, 0, 0)},
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en zij Lp de verzameling rechten door p die Π∞ snijden in een punt van Op
∞.

Zij S = (P ,B, I), waarbij P de verzameling van alle punten van AG(3, q) is,
B =

⋃
p∈P Lp, en I de natuurlijke incidentie. Dan bewijzen we de volgende

stelling.

Stelling B.4.1 Iedere samenhangende component van S is een (0, 2)-meet-
kunde van orde (q − 1, q), ingebed in AG(3, q). Als O∞ een kegelsnede is,
dan heeft S twee samenhangende componenten S1 en S2, en geldt er dat
S1 ' S2 ' HT. Als O∞ geen kegelsnede is, dan is S samenhangend.

Als S samenhangend is, dus als O∞ geen kegelsnede is, dan definiëren
we A(O∞) = S. Als S niet samenhangend is, dus als O∞ een kegelsnede
is, dan definiëren we A(O∞) als één van beide samenhangende componenten
van S. Vermits in het laatste geval beide componenten affien equivalent zijn,
is A(O∞) goed gedefinieerd.

We concluderen dat A(O∞) een (0, 2)-meetkunde is van orde (q − 1, q),
ingebed in AG(3, q). Als O∞ een kegelsnede is, dan is A(O∞) ' HT; als
O∞ geen kegelsnede is, dan is A(O∞) een nieuw voorbeeld van een affiene
(0, α)-meetkunde. De meetkunde A(O∞) is in geen geval een semipartiële
meetkunde.

I(n, q, e)

Zij U een hypervlak van AG(n, q), n ≥ 3, q = 2h. Kies een basis in PG(n, q)
zodat Π∞ : Xn = 0 en U : Xn−1 = 0. Zij e ∈ {1, 2, . . . , h − 1} zodanig dat
gcd(e, h) = 1, en zij ϕ de collineatie van PG(n, q), zodanig dat

ϕ : p(x0, x1, . . . , xn−1, xn) 7→ pϕ(x2e

0 , x
2e

1 , . . . , x
2e

n , x
2e

n−1).

Zij U∞ = U ∩Π∞, en zij K∞ de verzameling van punten van U∞ die gefixeerd
worden door ϕ. Dan is

K∞ = {(ε0, . . . , εn−2, 0, 0) 6= (0, . . . , 0) | εi ∈ GF(2), 0 ≤ i ≤ n− 2}.

Dus K∞ is de puntenverzameling van een projectieve ruimte PG(n− 2, 2) in
U∞.

Zij
B1 = {L ⊆ U‖L 6⊆ Π∞, L ∩ Π∞ ∈ K∞},

en zij
B2 = {〈p, pϕ〉‖p ∈ U \ Π∞}.

Definieer I(n, q, e) = (P ,B1 ∪ B2, I), waarbij P de verzameling is van alle
punten van AG(n, q) op de rechten van B1 en B2, en I de natuurlijke inciden-
tie. Dan is I(n, q, e) een (0, 2)-meetkunde van orde (q− 1, 2n−1− 1), ingebed
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in AG(n, q). Deze meetkunde is eveneens een nieuw voorbeeld van een affiene
(0, α)-meetkunde. Ze is echter in geen geval een semipartiële meetkunde.

B.4.2 Methode

Een krachtige methode om affiene semipartiële meetkunden en (0, α)-meet-
kunden te onderzoeken is inductie toe te passen op de dimensie van de affiene
ruimte. Aan de basis van deze methode ligt het volgende lemma.

Lemma B.4.2 Zij S een (0, α)-meetkunde, α > 1, ingebed in AG(n, q),
n ≥ 3, en zij U een deelruimte van dimensie tenminste 2. Zij SU de sub
incidentiestructuur, gëınduceerd op de verzameling van punten en rechten
van S die in U liggen. Dan is elke samenhangende component van SU die
twee snijdende rechten bevat, een (0, α)-meetkunde ingebed in een deelruimte
van U .

Bij het onderzoeken van affiene (0, α)-meetkunden, α > 1, gaan we eerst
de inbeddingen bekijken in affiene ruimten van lage dimensie. Lemma B.4.2
laat ons dan toe om deze resultaten te gebruiken bij het onderzoeken van
inbeddingen van (0, α)-meetkunden, α > 1, in affiene ruimten van hogere
dimensie.

Merk op dat het analogon van Lemma B.4.2 voor affiene semipartiële
meetkunden niet geldig is, aangezien een samenhangende component van
SU niet noodzakelijk voldoet aan de µ-eigenschap. We kunnen dus de in-
ductiemethode op de dimensie van de affiene ruimte niet toepassen op semi-
partiële meetkunden als dusdanig. We moeten daarom affiene (0, α)-meetkun-
den, α > 1, onderzoeken, en op die manier resultaten vinden die a forteriori
gelden voor affiene semipartiële meetkunden met α > 1.

De classificatie van (0, α)-meetkunden, α > 1, ingebed in AG(2, q), is een-
voudig, en laat zich als volgt toepassen op algemene affiene (0, α)-meetkun-
den, α > 1.

Lemma B.4.3 Zij S een (0, α)-meetkunde, α > 1, ingebed in AG(n, q),
n ≥ 3, en zij π een vlak van AG(n, q). Dan is π van één van volgende types.

Type I. π bevat geen enkele rechte van S.

Type II. π bevat een aantal parallelle rechten van S en mogelijk een aantal
gëısoleerde punten.

Type III. Sπ is een net van orde q en graad α + 1 (dit noemen we een
planair net).
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Type IV. Sπ bestaat uit een pg(q − 1, 1, 2) (met andere woorden, een duale
ovaal; er geldt dan dat q = 2h en α = 2), en mogelijk een aantal
gëısoleerde punten.

B.4.3 Overzicht van de resultaten

Affiene (0, α)-meetkunden

Wat betreft affiene (0, α)-meetkunden, α > 1, was voorheen slechts het vol-
gende resultaat gekend.

Stelling B.4.4 (De Clerck, Delanote [27]) Als S een (0, α)-meetkunde
is, α > 1, ingebed in AG(n, q), en als er geen vlakken van type IV zijn, dan
is S ' T ∗n−1(K∞) een lineaire representatie van een verzameling K∞ in Π∞.
Als q oneven is, of α > 2, dan geldt dezelfde conclusie, zonder restrictie op
de types van vlakken.

Als gevolg van Stelling B.4.4 moeten we slechts de volgende twee proble-
men onderzoeken.

Probleem 1. Classificeer alle lineaire representaties van (0, α)-meetkunden,
α > 1. Gelijkwaardig hiermee, classificeer alle verzamelingen van type
(0, 1, k), k > 2, in PG(n, q).

Probleem 2. Classificeer alle (0, 2)-meetkunden ingebed in AG(n, q),
q = 2h, die tenminste één vlak van type IV hebben.

De volledige oplossing van Probleem 1 is hopeloos. We kennen echter de
volgende gedeeltelijke oplossing.

Stelling B.4.5 (Ueberberg [83]) Zij K een verzameling van type (0, 1, k)
in PG(n, q), n ≥ 2, die niet bevat is in een hypervlak. Als k ≥ √

q + 1, dan
geldt één van de volgende gevallen.

1. n = 2 en K is een maximale boog.

2. n = 2, q is een kwadraat en K is een unitaal.

3. q is een kwadraat en K is de verzameling van punten van een Baer
deelruimte.

4. K is het complement van een hypervlak van PG(n, q).

5. K is de verzameling van punten van PG(n, q).
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Probleem 2 is het onderwerp van Hoofdstukken 5 en 6. We komen tot de
volledige oplossing van dit probleem.

Stelling B.4.6 Als S een (0, 2)-meetkunde is, ingebed in AG(n, q), q = 2h,
zodat er tenminste één vlak van type IV is, dan geldt één van de volgende
gevallen.

1. q = 2 en S is een 2− (t+ 2, 2, 1)-design.

2. n = 2 en S is een duale ovaal.

3. n = 3 en S ' A(O∞).

4. n = 4 en S ' TQ(4, q).

5. n ≥ 3 en S ' I(n, q, e).

Gevolg B.4.7 Als S een (0, α)-meetkunde is, α > 1, ingebed in AG(n, q),
dan geldt één van de volgende gevallen.

1. q = 2, α = 2 en S is een 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h, α = 2 en S is een duale ovaal.

3. n = 3, q = 2h, α = 2 en S ' A(O∞).

4. n = 4, q = 2h, α = 2 en S ' TQ(4, q).

5. n ≥ 3 en q = 2h, α = 2 en S ' I(n, q, e).

6. n ≥ 2 en S ' T ∗n−1(K∞), met K∞ een verzameling van type (0, 1, α+1)
in Π∞, niet bevat een hypervlak van Π∞.

Affiene semipartiële meetkunden

De eigenlijke semipartiële meetkunden ingebed in AG(2, q) en AG(3, q) wer-
den geclassificeerd door Debroey en Thas [40]. We vermelden hier enkel het
geval waarbij α > 1.

Stelling B.4.8 (Debroey, Thas [40]) Als S een eigenlijke semipartiële
meetkunde is, α > 1, ingebed in AG(n, q), n ≤ 3, dan geldt één van de
volgende gevallen.

1. n = 3, q is een kwadraat en S ' T ∗2 (U∞), met U∞ een unitaal van Π∞.
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2. n = 3, q is een kwadraat en S ' T ∗2 (B∞), met B∞ een Baer deelvlak
van Π∞.

Stelling B.4.4 geldt a forteriori ook voor affiene semipartiële meetkun-
den met α > 1. Bijgevolg hebben we ook in dit geval twee afzonderlijke
problemen. Merk op dat we ons mogen beperken tot eigenlijke semipartiële
meetkunden, aangezien de affiene partiële meetkunden geclassificeerd werden
door Thas [78].

Probleem 1’. Classificeer alle lineaire representaties van semipartiële meet-
kunden, α > 1. Gelijkwaardig hiermee, classificeer alle verzamelin-
gen van type (0, 1, k), k > 2, in PG(n, q), die twee intersectiegetallen
hebben met betrekking tot hypervlakken.

Probleem 2’. Classificeer alle semipartiële meetkunden met α = 2, ingebed
in AG(n, q), q = 2h, die tenminste één vlak van type IV hebben.

Probleem 1’ is enkel opgelost voor kleine dimensies. De lineaire represen-
tatie van semipartiële meetkunden in AG(2, q) en AG(3, q) wordt opgelost
door Stelling B.4.8. Voor AG(4, q) wordt de oplossing gegeven door de vol-
gende stelling.

Stelling B.4.9 (De Winter [38]) Als een lineaire representatie T ∗3 (K∞) in
AG(4, q) een eigenlijke semipartiële meetkunde is met α > 1, dan is q een
kwadraat en is K∞ de verzameling van punten van een Baer deelruimte van
Π∞.

In tegenstelling tot Probleem 1, lijkt een volledige oplossing van Prob-
leem 1’ niet ondenkbaar. Op basis van de resultaten van De Winter [38],
vermoeden we dat Stelling B.4.9 ook geldt voor AG(n, q), n ≥ 5.

Wat betreft Probleem 2’, was voorheen enkel het volgende resultaat ge-
kend.

Stelling B.4.10 (Brown, De Clerck, Delanote [11]) Als S een semi-
partiële meetkunde spg(q − 1, q2, 2, 2q(q − 1)) is, ingebed in AG(4, q), dan
is q = 2h en S ' TQ(4, q).

Aangezien Stelling B.4.6 de volledige oplossing geeft van Probleem 2, is
Probleem 2’ nu a forteriori ook volledig opgelost.

Stelling B.4.11 Als S een semipartiële meetkunde is met α = 2, ingebed in
AG(n, q), q = 2h, zodat er tenminste één vlak van type IV is, dan geldt één
van de volgende gevallen.
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1. q = 2 en S is een 2− (t+ 2, 2, 1)-design.

2. n = 2 en S is een duale ovaal.

3. n = 4 en S ' TQ(4, q).

Stellingen B.4.4 en B.4.11 leiden tot het volgende resultaat.

Stelling B.4.12 Als S een semipartiële meetkunde is, α > 1, ingebed in
AG(n, q), dan geldt één van de volgende gevallen.

1. q = 2, α = 2 en S is een 2− (t+ 2, 2, 1)-design.

2. n = 2, q = 2h, α = 2 en S is een duale ovaal.

3. n = 4, q = 2h, α = 2 en S ' TQ(4, q).

4. n ≥ 2 en S ' T ∗n−1(K∞), met K∞ een verzameling van type (0, 1, α+1)
in Π∞, die twee intersectiegetallen heeft met betrekking tot hypervlakken
van Π∞.

Uit Stellingen B.4.8, B.4.9 en B.4.12 volgt nu de classificatie van eigenlijke
semipartiële meetkunden met α > 1 ingebed in AG(n, q), n ≤ 4.

Stelling B.4.13 Als S een eigenlijke semipartiële meetkunde is, α > 1, in-
gebed in AG(n, q), n ≤ 4, dan geldt één van de volgende gevallen.

1. n = 3, q is een kwadraat en S ' T ∗2 (U∞), met U∞ een unitaal van Π∞.

2. n = 4, q = 2h, α = 2 en S ' TQ(4, q).

3. n ∈ {3, 4}, q is een kwadraat en S ' T ∗2 (B∞), met B∞ een Baer deelvlak
van Π∞.

B.5 Classificatie van (0, 2)-meetkunden inge-

bed in AG(3, 2h)

In Hoofdstukken 5 en 6 geven we het bewijs van Stelling B.4.6. We veron-
derstellen hierbij dat q > 2, aangezien het geval q = 2 triviaal is. We
bewijzen Stelling B.4.6 door inductie toe te passen op de dimensie van de
affiene ruimte. Daarom moeten we eerst het bewijs geven voor de kleinste
dimensie, namelijk voor AG(3, q). Dit gebeurt in Hoofdstuk 5.
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Stelling B.5.1 Als S een (0, 2)-meetkunde is, ingebed in AG(3, q), q = 2h,
h > 1, zodat er tenminste één vlak van type IV is, dan geldt één van de
volgende gevallen.

1. S ' A(O∞).

2. S ' I(3, q, e).

Het bewijs van Stelling B.5.1 is in essentie een gevallenonderzoek op ver-
schillende niveaus. Op het bovenste niveau maken we een onderscheid tussen
de gevallen waarbij er tenminste één planair net is, dit wil zeggen, een vlak
van type III, en het geval waarbij er geen enkel planair net is.

1. In het geval er minstens één planair net is, is er geen verdere specifi-
catie nodig en komen we vrij snel tot het besluit dat S ' I(3, q, e).
We steunen hierbij op een resultaat van Payne [65], dat zegt dat elke
hyperovaal met een additief o-polynoom, een translatiehyperovaal is.

2. Het geval waarbij er geen enkel planair net is, is beduidend moeilijker.
We gaan dan ook een gevallenonderzoek doen op het tweede niveau, nu
aan de hand van de orde (q − 1, t) van S.

(a) Eerst beschouwen we het geval waarbij t 6= q. Dit deel van het
bewijs is van puur combinatorische aard. Eerst tonen we aan dat
2 < t < q − 1. Vervolgens leiden we een aantal ongelijkheden en
delingsvoorwaarden af omtrent de combinatorische structuur van
S. Dit leidt echter nog niet tot de volledige oplossing in dit geval;
hiervoor moeten we opnieuw een gevallenonderzoek doen, nu op
het derde niveau. We maken namelijk een onderscheid tussen
de gevallen waarbij t oneven is enerzijds, en waarbij t even is
anderzijds. We komen echter in beide gevallen tot een tegenstrij-
digheid. Hiermee is dit geval afgehandeld.

(b) Vervolgens beschouwen we het geval waarbij t = q. Zij P de
verzameling van punten van S. We bewijzen dat | P | = kq2, met
k ∈ {1

2
q, q}. We tonen aan dat S ' HT als k = 1

2
q. Hierbij

maken we gebruik van de classificatie van verzamelingen van type
(1, 1

2
q + 1, q) in PG(3, q) (zie Hirschfeld en Thas [53] en Glynn

[46]).

Aangezien t = q, gaan er door elk punt van S juist q+1 rechten van
S. We bewijzen dat deze rechten Π∞ steeds snijden in een ovaal,
en dat de verzameling van al deze ovalen een reguliere Desargue-
siaanse planaire ovaalverzameling in Π∞ is. Vervolgens passen



194 B. Samenvatting

we Stelling B.3.1 toe, welke ons toelaat om aan te tonen dat
S ' A(O∞). Hiermee is het bewijs van Stelling B.5.1 compleet.

B.6 Classificatie van (0, 2)-meetkunden inge-

bed in AG(n, 2h)

In Hoofdstuk 6 vervolledigen we het bewijs van Stelling B.4.6. We veron-
derstellen opnieuw dat q > 2. Aangezien het geval AG(3, q) in Hoofdstuk 5
afgehandeld is, mogen we ons beperken tot het geval AG(n, q), n ≥ 4.

Stelling B.6.1 Als S een (0, 2)-meetkunde is, ingebed in AG(n, q), n ≥ 4,
q = 2h, h > 1, zodat er tenminste één vlak van type IV is, dan geldt één van
de volgende gevallen.

1. n = 4 en S ' TQ(4, q).

2. S ' I(n, q, e).

We maken gebruik van de volgende terminologie. Zij U een m-dimensio-
nale deelruimte van AG(n, q), 3 ≤ m < n, en zij SU de sub incidentiestruc-
tuur, gëınduceerd op de verzameling van punten en rechten van S die in U
liggen. Dan kan U van één van volgende types zijn.

Type A. m = 3 en SU bevat een samenhangende component S ′ ' A(O∞),
of m = 4 en SU bevat een samenhangende component S ′ ' TQ(4, q).

Type B. SU bevat een samenhangende component S ′ ' I(m, q, e).

Type C. SU is een samenhangende lineaire representatie.

Type D. Elke samenhangende component van SU is bevat in een echte deel-
ruimte van U .

Uit Stelling B.5.1 volgt nu dat iedere 3-ruimte van type A, B, C of D is.
Dit feit wordt dikwijls gebruikt in het bewijs van Stelling B.6.1. We maken
onderscheid tussen de volgende gevallen.

1. Er is minstens één planair net. In dit geval bestaat het bewijs uit de
volgende stappen.
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(a) Eerst bewijzen we dat, als er een hypervlak van type C is (re-
spectievelijk een vlak van type III als n = 4), en een vlak van
type III, dan snijden die elkaar niet in een affiene rechte. Om dit
te bewijzen gebruiken we inductie op de dimensie van de affiene
ruimte.

(b) Vervolgens tonen we aan dat, als er een hypervlak van type C is,
dan S ' I(n, q, e). We steunen op de vorige stap, en gebruiken
een inductie-argument op de dimensie van de affiene ruimte.

(c) Tot slot bewijzen we, enkel vanuit de veronderstelling dat er een
planair net is, dat S ' I(n, q, e). Het geval n = 4 is hierbij het
moeilijkste. We steunen opnieuw op de vorige stap, en gebruiken
een inductie-argument op de dimensie van de affiene ruimte.

2. In het geval er geen planaire netten zijn, bestaat het bewijs uit de
volgende stappen.

(a) Eerst bewijzen we dat, indien n = 4, de verzameling R = P∪Π∞,
waarbij P de verzameling van punten van S is, een verzameling
van type (1, 1

2
q, q+1) in PG(4, q) is. Uit de classificatie van verza-

melingen van type (1, 1
2
q, q+1) in PG(n, q) (zie Hirschfeld en Thas

[53, 52]), volgt dan dat S ' TQ(4, q).

(b) Vervolgens tonen we aan dat, indien n = 5, de verzameling R een
verzameling van type (1, 1

2
q, q + 1) in PG(5, q) is. Hierbij maken

we gebruik van de vorige stap. Met behulp van de classificatie van
verzamelingen van type (1, 1

2
q, q+ 1) in PG(n, q) leiden we nu een

tegenstrijdigheid af.

(c) Tot slot veronderstellen we dat n ≥ 6, en gebruiken we de vorige
stap om een strijdigheid af te leiden. Hiermee is het bewijs van
Stelling B.6.1 compleet, en bijgevolg ook dat van Stelling B.4.6.
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