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Hooggeleerde heer, ik heb deze proef zelf genomen en ook zelf de metingen verricht. Ik ben op een nacht
naar een graanmolen geslopen met een graankorrel in de hand. Die graankorrel heb ik op de onderste
molensteen gelegd. Toen heb ik met een zware takel de tweede molensteen op de graankorrel laten zakken,
zodat ik een stenen sandwich had verkregen: twee molenstenen met een graankorrel ertussen. Nu heeft een
graankorrel de merkwaardige eigenschap dat zodra hij tussen twee stenen wordt geklemd hij de neiging
krijgt om de losliggende steen, en dat is altijd de bovenste, in beweging te willen brengen. De graankorrel
wil zich wentelen, hij wil als het ware gemalen worden. Meel! wil hij worden. Maar dat gaat zomaar niet.
Daartoe moet hij zich verschrikkelijk inspannen om één van die stenen, de bovenste, te laten draaien. Maar
op de lange duur heeft de korrel zich al een paar centimeter voortgewenteld. En dan gaat het proces steeds
sneller en alléén maar door de wil en de macht van de graankorrel moet de bovenliggende molensteen de
zware molenas in beweging brengen en door diezelfde wil worden de raderen in de kop van de molen in
beweging gebracht, de as die naar buiten steekt en de wieken die eraan bevestigd zijn. Zo maken molens
evenals ventilators wind. Met dit verschil dat de laatste op elektriciteit lopen en de eerste gewoon op
graankorrels. U kunt zeker wel begrijpen hoe hard het gaat waaien als je een paar duizend korrels tegelijk
gebruikt ? ... Mijne heren ... de enige die bij de proef aanwezig was, ben ik en toen de graankorrel meel was
geworden hield het op met waaien. Het zal u niet eenvoudig vallen om mij snel en afdoend tegenbewijs voor
mijn stelling te leveren. Per slot ben ik deskundig, ik ben expert, ik heb er jaren over nagedacht.

(Biesheuvel, In de bovenkooi)





Chapter 1

Uw schip was niet bestemd door de heer van wouden en wateren
om begerige bedriegers en koophandelaars over de zee te
brengen. Mijn zusters woonden in de stammen die geveld werden
om het schip te bouwen. Zij allen zingen. Hoor!

(Slauerhof, Het lente-eiland)

Introduction

1.1. Graphs, eigenvalues and applications

A graph essentially is a (simple) mathematical model of a network of, for example cities,
computers, atoms, etc., but also of more abstract (mathematical) objects. Graphs are
applied in numerous fields, like chemistry, management science, electrical engineering,
architecture and computer science. Roughly speaking, a graph is a set of vertices
representing the nodes of the network (in the examples these are the cities, computers or
atoms), and between any two vertices there is what we call an edge, or not, representing
whether there is a road between the cities, whether the computers are linked, or there are
bonds between the atoms. These edges may have weights, representing distances,
capacities, forces, and they can be directed (one-way traffic). Although the model is
simple, that is, to the extend that we cannot see from a graph what kind of network it
represents, the theory behind is very rich and diverse.

There is a large variety of problems in graph theory, for example the famous traveling
salesman problem, the problem of finding a shortest tour through the graph visiting every
vertex. For small graphs this problem may seem easy, but as the number of vertices
increases, the problem can get very hard. The name of the problem indicates where the
initial problem came from, but it is interesting to see that the problem is applied in quite
different areas, for example in the design of very large scale integrated circuits (VLSI).
Another kind of problem is the connectivity problem: how many edges can be deleted
from the graph (due to road blocks, communication breakdowns) such that we can still get
from any vertex to any other vertex by walking through the graph.

In this thesis we study special classes of graphs, which have a lot of structure. In the
eye of the mathematical beholder graphs with much structure and symmetry are the most
beautiful graphs. Important classes of beautiful graphs comprise the strongly regular
graphs, and more general, distance-regular graphs or graphs in association schemes. The
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graphs of Plato’ s regular solids may be considered as ancient examples: the tetrahedron,
the octahedron, the cube, the icosahedron and the dodecahedron. Association schemes also
occur in other fields of mathematics and their applications, like in the theory of coding of
messages, to encounter errors during transmission or storage (on a CD for example), or to
encrypt secret messages (like PIN-codes). Association schemes originally come from the
design of statistical experiments, and they are also important in finite group theory.

Especially in the theory of graphs with much symmetry, but certainly also in other
parts of graph theory, the use of (linear) algebra has proven to be very powerful.
Depending on the specific problems and personal favor, graph theorists use different kinds
of matrices to represent a graph, the most popular ones being the (0, 1)-adjacency matrix
and the Laplace matrix. Often, the algebraic properties of the matrix are used as a bridge
between different kinds of structural properties of the graph. The relation between the
structural (combinatorial, topological) properties of the graph and the algebraic ones of the
corresponding matrix is therefore a very interesting one. Sometimes the theory even goes
further, for example, in theoretical chemistry, where the eigenvalues of the matrix of the
graph corresponding to a hydrocarbon molecule are used to predict its stability.

Some examples of basic questions in algebraic graph theory are: can we see from the
spectrum of the matrix whether a graph is regular (is every vertex the endpoint of a
constant number of edges), or connected (can we get from any vertex to any other vertex),
or bipartite (is it possible to split the vertices into two parts such that all edges go from
one part to the other)? The answer depends on the specific matrix we used. Both
adjacency and Laplace spectrum indicate whether a graph is regular, however, the
adjacency spectrum recognizes bipartiteness, but not connectivity. For the Laplace
spectrum it’ s just the other way around: it recognizes connectivity, but not bipartiteness.

A graph determines its spectrum, but certainly not the other way around. Thus it makes
sense to investigate what structural properties can be derived from the eigenvalues, or
more general, from some properties of the eigenvalues.

For example, is it possible to completely determine a graph from its adjacency
spectrum {[6]1, [2]6, [−2]9}? The answer is no, there are two different graphs with this
spectrum, but they have similar combinatorial properties.

Other questions relate to the smallest adjacency eigenvalue of a graph. For example,
there is a large class of graphs with all adjacency eigenvalues at least −2, the generalized
line graphs. But there are more such graphs, and they have been characterized by means
of so-called root lattices by Cameron, Goethals, Seidel and Shult [25]. Other type of
results are bounds on special substructures in a graph in terms of (some of) the
eigenvalues, like Hoffman’s coclique bound.

Also if we wish to find graphs with special structural properties, it may be useful to
first translate the properties into spectral properties, before trying our luck. For example,
suppose we want to find all regular graphs for which any two vertices have precisely one
common neighbour (that is, a vertex that is on edges with both these vertices). The
Friendship theorem states that the only graph with this property is the triangle, and its
proof relies on a simple algebraic property.
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Of course, there are many more (type of) results in the field of spectral graph theory,
and we refer the interested reader to the book by Cvetković, Doob and Sachs [33], for
example.

1.2. Graphs with few eigenvalues - A summary

In general, most of the eigenvalues of a graph are distinct, but when many eigenvalues
coincide, then it appears that we are in a very special case. If all eigenvalues are the same,
then we must have an empty graph (a graph without edges). If we have only two
eigenvalues, then essentially we must have a complete graph (a graph with edges between
any two vertices). Here we study graphs with few distinct eigenvalues, where most of the
times few means three or four. These graphs may be seen as algebraic generalizations of
so-called strongly regular graphs. Strongly regular graphs (cf. [16, 95]) are defined in
terms of combinatorial properties, but they have an easy algebraic characterization:
roughly speaking they are the regular graphs with three (adjacency or Laplace)
eigenvalues. By dropping regularity, and considering graphs with three adjacency
eigenvalues, and graphs with three Laplace eigenvalues, we obtain two very natural
generalizations. Seidel (cf. [94]) did a similar thing for the Seidel spectrum, and found
graphs which are closely related to the combinatorial structures called regular two-graphs.
Little is known about nonregular graphs with three adjacency eigenvalues. There are only
two papers on the subject, by Bridges and Mena [10], and Muzychuk and Klin [85]. It
turns out that things can get rather complicated, and there are many open questions. We
shall have a closer look at the ones with least eigenvalue −2. Nonregular graphs with three
Laplace eigenvalues seem to be unexplored (apart from geodetic graphs with diameter two,
but these were not recognized as such), which may be surprising, as we find a rather easy
combinatorial characterization of such graphs.

The fundamental problem of graphs with few (adjacency) eigenvalues has been raised
by Doob [45]. In his view few is at most five, and he characterized a family of regular
graphs with five eigenvalues related to Steiner triple systems. However, it seems too
complex to study regular graphs with five eigenvalues in general. Doob [46] also studied
regular graphs with four eigenvalues, the least one of which is −2. In the general case of
four eigenvalues we derive some nice properties, like walk-regularity, but there is no easy
combinatorial characterization, like in the case of three eigenvalues. Still we find many
constructions.

Association schemes (cf. [3, 12, 15, 52]) form a combinatorial generalization of
strongly regular graphs, and the next stage of investigation after strongly regular graphs
would be to consider three-class association schemes. In such schemes all graphs are
regular with at most four eigenvalues, so we can apply the results on such graphs. In this
way we achieve more than by just applying the general theory of association schemes, and
we find two rather surprising characterization theorems. The literature on three-class
association schemes mainly consists of results on special constructions, and results on the
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special case of distance-regular graphs with diameter three. General results on three-class
association schemes can be found in the early paper by Mathon [79], who gives many
examples, and the thesis of Chang [26], although he restricts to the imprimitive case.

In the final chapter of this thesis we obtain bounds on the diameter of graphs and on
the size of special subsets in graphs. The case of sharp bounds is investigated, and here
distance-regular graphs and three-class association schemes show up. All bounds build on
an interlacing tool and finding suitable polynomials. The diameter bounds are applied to
error-correcting codes.

Appended to this thesis are lists of parameter sets for graphs with three Laplace
eigenvalues, regular graphs with four eigenvalues, and three-class association schemes (on
a bounded number of vertices). By combined efforts Spence and the author were able to
find all graphs for almost all feasible parameter sets of regular graphs with four
eigenvalues and at most 30 vertices, using both theoretical and computer results.

Parts of the results in this thesis have appeared elsewhere. The results on graphs with
three Laplace eigenvalues in [38], regular graphs with four eigenvalues in [34] and [40],
three-class association schemes in [35] and [39], bounds on the diameter in [37] and
bounds on special subsets in [36].

1.3. Graphs, combinatorics and algebra - Preliminaries

In this section we give some preliminaries. Most of them are well-known results. For
results on the spectra of graphswe refer to the books by Cvetković, Doob and Sachs [33]
and by Cvetković, Doob, Gutman and Torgašev [32], for interlacing to the thesis [57] or
paper [58] by Haemers, for strongly regular graphsto the papers by Brouwer and Van
Lint [16] and Seidel [95], for association schemesand distance-regular graphsto the
books by Bannai and Ito [3], Brouwer, Cohen and Neumaier [12], and Godsil [52], for
designs to the book by Beth, Jungnickel and Lenz [4], for codes to the book by
MacWilliams and Sloane [77], and for switchingto the paper by Seidel [94].

1.3.1. Graphs

A graph G is a set V of so-called verticeswith a subset E of the pairs of vertices, called
the edges(throughout this thesis a graph is undirected, without loops and multiple edges,
unless indicated otherwise). We say two vertices x and y are adjacentif the pair {x, y} is
an edge. Such vertices are also called neighboursof each other. We say the graph is
completeif any two vertices are adjacent, and emptyif no two vertices are adjacent. The
complement Gof a graph G is the graph on the same vertices, but with complementary
edge set, that is, two vertices are adjacent in G if they are not adjacent in G. We can
make nice pictures of graphs by drawing the vertices as dots (which we shall not label),
and drawing edges as lines (or curves) between the vertices.
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Two graphs are called isomorphic if there is a bijection between the respective vertex
sets preserving edges (in Dutch: the graphs can be drawn in the same way, possibly after
moving the vertices around). For example, the two graphs of Figure 1.3.1 are isomorphic.
If two graphs are isomorphic, then we shall (in general) not distinguish between them, or
even call them the same. An automorphismof a graph is a bijection from the vertex set to
itself preserving edges. The set of automorphisms of a graph, with the composition
operator, forms a group, called the automorphism group.

Figure 1.3.1. The 5-cycle (pentagon) and its complement

If X is a subset of V, then the induced subgraph of G on X is the graph with vertex set X,
and with edges those of G that are contained in X. A coclique is an induced empty
subgraph, and a clique is an induced complete subgraph. A graph is called bipartite if the
vertices can be partitioned into two induced cocliques.

A walk of length l between two vertices x, y is a sequence of (not necessarily distinct)
vertices x = x0, x1,..., xl = y, such that for any i the vertices xi and xi + 1 are adjacent. If all
vertices are distinct then the walk is also called a path. If there is a path between any two
vertices of the graph, then the graph is called connected. If not, then the graph has more
than one (connected) components. The distancebetween two vertices is the length of the
shortest path between these vertices. The maximal distance taken over all pairs of vertices
is called the diameterof the graph.

The degree(or valency) of a vertex is its number of neighbours. If all vertices have the
same degree then the graph is called regular.

1.3.2. Spectra of graphs

The adjacency matrix Aof a graph is the matrix with rows and columns indexed by the
vertices, with Axy = 1 if x and y are adjacent, and Axy = 0 otherwise. The adjacency
spectrumof G is the spectrum of A, that is, its multiset of eigenvalues. A number λ is
called an eigenvalueof a matrix M if there is a nonzero vector u such that Mu = λu. The
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vector u is called an eigenvector. As the adjacency matrix is symmetric, the (adjacency)
spectrum of a graph consists of real numbers. Moreover, for a connected graph, the
adjacency matrix is nonnegative and irreducible, so the Perron-Frobenius theorem applies.
This implies that the graph has a largest eigenvalue of multiplicity one, with a positive
eigenvector, called Perron-Frobenius eigenvector. The largest eigenvalue can be seen as
some "weighed average" of vertex degrees, and we have the following.

LEMMA 1.3.1. Let G be a graph with largest eigenvalueλ0, and denote by kmax and kave the
largest and average vertex degree, respectively. Then kave ≤ λ0 with equality if and only if
G is regular. Moreover, λ0 ≤ kmax, and if G is connected, then we have equality if and only
if G is regular.

Throughout this thesis we shall denote by the spectrum of a{[λ0]
m0, [λ1]

m1,..., [λr]
mr}

matrix with r + 1 distinct eigenvalues λ i with multiplicities mi. If the matrix is the
adjacency matrix of a connected graph, then λ0 denotes the largest eigenvalue, and has
multiplicity m0 = 1. By I, J and O we denote an identity matrix, a matrix consisting of
ones, and a matrix consisting of zeros, respectively. By 1 and 0 we denote an all-one
vector, and a zero vector, respectively. Besides the ordinary matrix multiplication we shall
use two other matrix products. The product denotes entrywise (Hadamard, Schur)
multiplication, i.e. (A B)ij = AijBij. The Kronecker product⊗ is defined by

=





















A11B A12B A1mB

A21B A22B A2mB

An1B An2B AnmB

.A⊗ B

The spectrum of a graph contains a lot of information on the graph, but in general the
spectrum does not determine the graph (up to isomorphism). For example, we can see
from the spectrum whether the graph is regular, or bipartite. In this introduction we shall
only mention a few relations between the spectrum of a graph and its structural properties.
For many more we refer to [32, 33], for example.

An important property of the adjacency matrix A is that Al
ij counts the number of paths

of length l from i to j. It is this property that relates many algebraic and combinatorial
properties of graphs. For example, A2

ii equals the degree di of vertex i, so that the number
of edges of the graph equals

1
2-

1
2-

1
2-

i

di = Trace(A2 ) =
i

miλ i
2 .
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(Here we used the so-called Handshaking lemma: the sum of all vertex degrees equals
twice the number of edges.) By counting the number of edges, we also derive the average
vertex degree, so by Lemma 1.3.1 we find the following spectral characterization of
regularity.

LEMMA 1.3.2. Let G be a graph on v vertices, with eigenvaluesλ i and multiplicities mi,

with largest eigenvalueλ0, then with equality if and only if G is regular.∑
i

miλ i
2 ≤ vλ0

The Laplace matrix Qof a graph is defined by Q = D − A, where D is the diagonal matrix
of vertex degrees, and A is the adjacency matrix. The Laplace matrix is positive
semidefinite, and has row sums zero, so it has a zero eigenvalue. Moreover, the
multiplicity of the zero eigenvalue equals the number of connected components of the
graph. Also here we have a characterization of regularity.

LEMMA 1.3.3. Let G be a graph on v vertices, with Laplace eigenvaluesθi and

multiplicities mi, then v mi(θi
2 − θi) ≥ ( miθi)

2 with equality if and only if G is regular.∑
i

∑
i

Proof. Suppose G has vertex degrees di and average degree kave. From the trace of the

Laplace matrix Q it follows that di = miθi. From the trace of Q2 we derive that∑
i

∑
i

(di
2 + di) = miθi

2. Thus it follows that 0 ≤ v (di − kave)
2 = v mi(θi

2 − θi) − ( miθi)
2,∑

i
∑
i

∑
i

∑
i

∑
i

which proves the statement.

For regular graphs, say of degree k, we have that D = kI, so the adjacency eigenvalues λ i

and the Laplace eigenvalues θi are related by θi = k − λ i. In general, however, the two
spectra behave different. For example, we mentioned that the multiplicity of the zero
Laplace eigenvalue indicates whether the graph is connected, but in general we cannot see

Figure 1.3.2. A connected and a disconnected graph with the same adjacency spectrum
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from the adjacency spectrum whether a graph is connected. The graphs in Figure 1.3.2 (a
standard example) have the same adjacency spectrum, but one is connected, while the
other is not. On the other hand, we cannot see from the Laplace spectrum whether a graph
is bipartite, while we can from the adjacency spectrum: a graph is bipartite if and only if
its adjacency spectrum is symmetric around zero. (The graphs in Figure 1.3.2 have
spectrum {[2]1, [0]3, [−2]1}, and indeed, they are both bipartite.) The graphs in Figure
1.3.3 however have the same Laplace spectrum, and only one is bipartite.

Figure 1.3.3. A bipartite and a nonbipartite graph with the same Laplace spectrum

The two spectra also have properties in common, like the following diameter bound.

LEMMA 1.3.4. Let G be a connected graph with r+ 1 distinct (adjacency or Laplace)
eigenvalues. Then G has diameter at most r.

As a consequence we find that the connected graphs with two eigenvalues are complete
graphs. Note that if a graph has only one (adjacency or Laplace) eigenvalue, then this
eigenvalue must be zero, and so the graph must be empty.

Both the adjacency and the Laplace eigenvalues are algebraic integers, as they are the
roots of the respective characteristic polynomials, which are monic with integral
coefficients. Here we shall state some more basic properties of the eigenvalues, using
some elementary lemmas about polynomials with rational or integral coefficients (for
example see [51]). By ZZ[x] and Ql [x] we denote the rings of polynomials over the integers
and rationals, respectively.

LEMMA 1.3.5. If a monic polynomial p∈ ZZ[x] has a monic divisor q∈ Ql [x], then also
q ∈ ZZ[x].

LEMMA 1.3.6. Let p ∈ Ql [x]. If and only if a+ √b, with a, b ∈ Ql , is an irrational root of
p, then so is a− √b, with the same multiplicity.



1.3. Graphs, combinatorics and algebra - Preliminaries 9

Applying these lemmas we now obtain the following results.

COROLLARY 1.3.7. Every rational eigenvalue of a graph is integral.

COROLLARY 1.3.8. Let G be a graph. If and only if12-(a + √b) is an irrational eigenvalue of
G, for some a, b ∈ Ql , then so is1

2-(a − √b), with the same multiplicity, and a, b ∈ ZZ.

The minimal polynomial mof the adjacency matrix A of a graph is the unique monic
polynomial m(x) = xr + 1 + mr x

r + ... + m0 of minimal degree such that m(A) = O. Similarly
the minimal polynomial for the Laplace matrix is defined.

LEMMA 1.3.9. The minimal polynomial m of a graph has integral coefficients.

Proof. The following short argument was pointed out by Rowlinson [private
communication]. The equation m(A) = O can be seen as a system of v2 (if v is the size of
A) linear equations in the unknowns mi, with integral coefficients. Since the system has a
unique solution, this solution must be rational. (The solution can be found by Gaussian
elimination, and during this algorithm all entries of the system remain rational.) So the
minimal polynomial has rational coefficients, and since it divides the characteristic
polynomial, we find m ∈ ZZ[x].

1.3.3. Interlacing

A sequence of real numbers b1 ≥ b2 ≥ ... ≥ bm is said to interlace another sequence of real
numbers a1 ≥ a2 ≥ ... ≥ an, n > m, if ai ≥ bi ≥ an − m+ i for i = 1,..., m. The interlacing is
called tight if there is an integer k, 0 ≤ k ≤ m, such that ai = bi for i = 1,..., k, and
an − m+ i = bi for i = k + 1,..., m.

An interesting property of symmetric matrices is that the eigenvalues of any principal
submatrix interlace the eigenvalues of the whole matrix. When applied to graphs, we find
that the adjacency eigenvalues of an induced subgraph interlace the adjacency eigenvalues
of the whole graph. Interlacing of eigenvalues also occurs when we partition a matrix
symmetrically and take the quotient matrix. This matrix is the matrix of average row sums
of the blocks of the partitioned matrix. The eigenvalues of the quotient matrix interlace the
eigenvalues of the original matrix. Moreover, if the interlacing is tight, then the matrix
partition is regular (also called equitable), that is, in every block of the partitioned matrix
the row sums are constant. This eigenvalue technique is used often, and turns out to be
quite handy. For the proofs and many applications we refer to [57, 58]. Let’ s illustrate the
technique by deriving Hoffman’s coclique bound. Consider a regular graph G on v vertices
of degree k with smallest eigenvalue λmin, with a coclique of size α(G). Partition the
vertices of the graph into two parts: the coclique and the remaining vertices. Now partition
the adjacency matrix A symmetrically according to the vertex partition. Then
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A =













O A12

AT
12 A22

with quotient matrix

B =













0 k

k α(G)
v − α(G)

k − k
α(G)

v − α(G)

,

with eigenvalues k and −kα(G)/(v − α(G)). Since the eigenvalues of B interlace the
eigenvalues of A, we find that −kα(G)/(v − α(G)) ≥ λmin, from which the bound
α(G) ≤ vλmin/(λmin − k) follows. Cocliques meeting this so-called Hoffman bound are called
Hoffman cocliques. Consequently for such cocliques we find that the interlacing of the
eigenvalues of B and A is tight, and so the corresponding vertex partition is regular. So we
find that any vertex outside a Hoffman coclique is adjacent to kα(G)/(v − α(G)) vertices
of that coclique.

1.3.4. Graphs with least eigenvalue −2

Graphs with least (adjacency) eigenvalue −2 have been extensively studied. The
characterization of Cameron, Goethals, Seidel and Shult [25] is of major importance in
studying such graphs. If A is the adjacency matrix of such a graph, then A + 2I is positive
semidefinite, and thus it is the Gram matrix of a set of vectors in n, i.e. A + 2I = NTN,
where the columns of N are the vectors representingthe graph. These vectors must have
length √2, and mutual inner products 1 or 0, so the vectors must have mutual angles 60°
or 90°.

Examples are line graphs, cocktail party graphs and their common generalization, the
generalized line graphs. If H is a graph, then the line graph L(H) of H is obtained by
taking the edges of H as vertices, any two of them being adjacent if the corresponding
edges of H have a vertex of H in common. If N is the vertex-edge incidence matrix, that
is, the matrix with rows indexed by the vertices of H and columns indexed by the edges of
H, where Nxe = 1 if x ∈ e, and 0 otherwise, then A + 2I = NTN, where A is the adjacency
matrix of L(H). A cocktail party graph CP(n) is the complement of the disjoint union of n
edges. A generalized line graph L(H; a1,..., am), where H is a graph on m vertices and ai

are nonnegative integers, is obtained by taking the line graph L(H) of H and cocktail party
graphs CP(ai) and adding edges between any vertex of CP(ai) and any vertex of L(H)
corresponding to an edge of H containing i.

Using the characterization of all irreducible root lattices, it is found that any connected
graph with least eigenvalue −2 is represented by vectors in Dn or by vectors in E8 (cf.
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[25]). Furthermore, the graphs represented by vectors in Dn are precisely the generalized
line graphs. The indices here denote the dimension of the space in which the graph is
represented. Some of the graphs which are represented by vectors in E8 may also be
represented in the subsystems E6 or E7 of E8. An example of a graph represented by
vectors in E6 is the Petersen graph.

Figure 1.3.4. The Petersen graph and its line graph

1.3.5. Strongly regular graphs

A graph G is called strongly regular with parameters (v, k, λ, µ) if it has v vertices, is
regular of degree k (with 0 < k < v − 1), any two adjacent vertices have λ common
neighbours and any two nonadjacent vertices have µ common neighbours. A connected
strongly regular graph has three distinct (adjacency and Laplace) eigenvalues. In fact, any
connected regular graph with three distinct (adjacency or Laplace) eigenvalues is strongly
regular. Moreover, the eigenvalues determine the parameters, and the other way around.
Note that the complement of a strongly regular graph is also strongly regular. We already
saw some examples: the 5-cycle, the Petersen graph and the cocktail party graphs.
Strongly regular graphs are very well investigated (cf. [16, 95]), and in this thesis we shall
deviate from the concept of strongly regular graphs in a few different directions. In that
way, strongly regular graphs play an important role in this thesis. They are often building
blocks for the graphs that we are interested in. As such, we shall give the definitions of
some important strongly regular graphs.

The triangular graph T(n) is the line graph of the complete graph Kn, so we can
represent the vertices by the unordered pairs {i, j}, i, j = 1,..., n, with two pairs adjacent if
they intersect. The Petersen graphis the complement of T(5). The triangular graph T(n) is
determined by its parameters (and spectrum) if n ≠ 8. For n = 8, there are three other
graphs with the same parameters, the so-called Chang graphs.

The lattice graph L2(n) is the line graph of the complete bipartite graph Kn, n, i.e. the
vertices are the ordered pairs (i, j), i, j = 1,..., n, with two pairs adjacent if they coincide
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in one of the coordinates. The lattice graph L2(n) is determined by its spectrum unless
n = 4. It that case there also is the Shrikhande graph. The Latin square graphs Lm(n) are
generalizations of the lattice graphs, and are constructed from mutually orthogonal Latin
squares. Our definition uses the equivalent concept of orthogonal arrays. An orthogonal
array is an m × n2 matrix (array) M with entries in {1,..., n} such that for any two rows
a, b we have that {(Mai, Mbi) i = 1,..., n2} = {(i, j) i, j = 1,..., n}. A graph Lm(n) has
vertices 1, 2,..., n2, and two vertices x, y are adjacent if Mix = Miy for some i. This graph is
strongly regular with spectrum .{[mn− m]1, [n − m]m(n−1), [−m](n−1)(n−m+1)}

For completeness, here we shall give some results on the numbers of nonisomorphic
strongly regular graphs with parameters (v, k, λ, µ) on v ≤ 40 vertices, as they appear in
the Appendix A.2. The 15 graphs with parameters (25, 12, 5, 6) and 10 graphs with
parameters (26, 10, 3, 4) were found by Paulus [87]. An exhaustive computer search by
Arlazarov, Lehman and Rosenfeld [1] showed that these are all the graphs with these
parameters. In the same paper 41 graphs with parameters (29, 14, 6, 7) were found by an
incomplete search (see also [19]). Independent exhaustive searches by Bussemaker and
Spence (cf. [101]) showed that these are all. Bussemaker, Mathon and Seidel [19] also
give 82 graphs with parameters (37, 18, 8, 9). According to Spence [101] there exist at
least 3854 graphs with parameters (35, 16, 6, 8), 32548 graphs with parameters
(36, 15, 6, 6) and 180 graphs with parameters (36, 14, 4, 6). Spence [97] also gives 27
graphs with parameters (40, 12, 2, 4). For other parameter sets occuring in Appendix A.2
we refer to [16].

1.3.6. Association schemes

Let V be a finite set of vertices. A symmetric relationon V is the same as a graph, if we
allow loops (that is, edges between a vertex and itself). A d-class association schemeon V
consists of a set of d + 1 symmetric relations {R0, R1,..., Rd} on V, with identity (trivial)
relation R0 = {(x, x) x ∈ V}, such that any pair of vertices is in precisely one relation.
Furthermore, there are intersection numbers pij

k such that for any (x, y) ∈ Rk, the number
of vertices z such that (x, z) ∈ Ri and (z, y) ∈ Rj equals pij

k. If a pair of vertices is in
relation Ri, then these vertices are called i-th associates. If the union of some relations is a
nontrivial equivalence relation, then the scheme is called imprimitive, otherwise it is called
primitive. By historical reasons the relations are called as such, but as the nontrivial
relations are just ordinary graphs (these relations form a partition of the edge set of the
complete graph), we shall both use the terminology of graphs and relations. For example,
a 2-class association scheme is the same as a pair of complementary strongly regular
graphs. In Figure 1.3.5 the three graphs of a 3-class association scheme are drawn.

Association schemes were introduced by Bose and Shimamoto [9]. Delsarte [42]
applied association schemes to coding theory, and he used a slightly more general
definition by not requiring symmetry for the relations, but for the total set of relations and
for the intersection numbers. To study permutation groups, Higman (cf. [65]) introduced
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the even more general coherent configurations, for which the identity relation may be the
union of some relations. In coherent configurations for which the identity relation is not
one of its relations we must have at least 5 classes (6 relations).

Figure 1.3.5. Three graphs forming a 3-class association scheme

There is a strong connection with group theory in the following way. If G is a permutation
group acting on a vertex set V, then the orbitals, that is, the orbits of the action of G on
V 2, form a coherent configuration. If G acts generously transitive, that is, for any two
vertices there is a group element interchanging them, then we get an association scheme.
If so, then we say the scheme is in the group case.

As general references for association schemes we use [3, 12, 15, 52].

1.3.6.1. The Bose-Mesner algebra

The nontrivial relations can be considered as graphs, which in our case are undirected.
One immediately sees that the respective graphs are regular with degree ni = pii

0. For the
corresponding adjacency matrices Ai the axioms of the scheme are equivalent to

d

i =0

Ai = J, A0 = I , Ai = Ai
T , Ai Aj =

d

k=0

p k
i j Ak .

It follows that the adjacency matrices generate a (d + 1)-dimensional commutative algebra
A of symmetric matrices. This algebra was first studied by Bose and Mesner [8] and is
called the Bose-Mesner algebraof the scheme. The corresponding algebra of a coherent
configuration is called a coherent algebra, or by some authors a cellular algebra or
cellular ring (with identity) (cf. [48]).

A very important property of the Bose-Mesner algebra is that it is not only closed
under ordinary (matrix) multiplication, but also under entrywise (Hadamard, Schur)
multiplication . In fact, any vector space of symmetric matrices that contains the identity
matrix I and the all-one matrix J, and that is closed under ordinary and entrywise
multiplication is the Bose-Mesner algebra of an association scheme (cf. [12, Thm. 2.6.1]).
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1.3.6.2. The spectrum of an association scheme

Since the adjacency matrices of the scheme commute, they can be diagonalized
simultaneously, that is, the whole space can be written as a direct sum of common
eigenspaces. In fact, A has a unique basis of minimal idempotents Ei, i = 0,..., d. These are
matrices such that

Ei Ej = δij Ei , and
d

i =0

Ei = I .

(The idempotents are projections on the eigenspaces.) Without loss of generality we may
take E0 = v−1J. Now let P and Q be matrices such that

Aj =
d

i =0

Pij Ei and Ej = 1

v

d

i =0

Qij Ai .

Thus PQ = QP = vI. It also follows that AjEi = PijEi, so Pij is an eigenvalue of Aj with
multiplicity mi = rank(Ei). The matrices P and Q are called the eigenmatricesof the
association scheme. The first row and column of these matrices are always given by
Pi0 = Qi0 = 1, P0i = ni and Q0i = mi. Furthermore P and Q are related by miPij = njQji. Other
important properties of the eigenmatrices are given by the orthogonality relations

d

i =0

mi Pij Pik = vnjδjk and
d

i =0

ni Qij Qik = vmjδjk .

The intersection matrices Li defined by (Li)kj = pij
k also have eigenvalues Pji. In fact, the

columns of Q are eigenvectors of Li. Moreover, the algebra generated by the intersection
matrices is isomorphic to the Bose-Mesner algebra.

An association scheme is called self-dual if P = Q for some ordering of the
idempotents.

A scheme is said to be generatedby one of its relations Ri (or the corresponding graph)
if this relation determines the other relations (immediately from the definitions of the
scheme). In terms of the adjacency matrix Ai, this means that the powers of Ai, and J span
the Bose-Mesner algebra. It easily follows that, if the corresponding graph is connected,
then it generates the whole scheme if and only if it has d + 1 distinct eigenvalues. For
example, a distance-regular graph generates the whole scheme.
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1.3.6.3. The Krein parameters

As the Bose-Mesner algebra is closed under entrywise multiplication, we can write

Ei Ej = 1

v

d

k=0

q k
i j Ek

for some real numbers qij
k, called the Krein parametersor dual intersection numbers. We

can compute these parameters from the eigenvalues of the scheme by the equation

q k
i j =

mi mj

v

d

l =0

Pil Pjl Pkl

n 2
l

.

The so-called Krein conditions, proven by Scott, state that the Krein parameters are
nonnegative. Another restriction related to the Krein parameters is the so-called absolute
bound, which states that for all i, j

q k
i j ≠0

mk ≤






mi mj if i ≠ j ,

mi(mi + 1) if i = j .1
2-

1.3.6.4. Distance-regular graphs

A distance-regular graphis a connected graph for which the distance relations (i.e. a pair
of vertices is in Ri if their distance in the graph is i) form an association scheme. They
were introduced by Biggs [6], and are widely investigated. As general reference we use
[12]. A distance-regular graph with diameter two is a connected strongly regular graph and
vice versa. Examples of distance-regular graphs with diameter three were already given by
the line graph of the Petersen graph and the 6-cycle in Figures 1.3.4 and 1.3.5,
respectively.

It is well known that an imprimitive distance-regular graph is bipartite or antipodal.
Antipodal means that the union of the distance d relation and the trivial relation is an
equivalence relation.

The property that one of the relations of a d-class association scheme forms a distance-
regular graph with diameter d is equivalent to the scheme being P-polynomial, that is, the
relations can be ordered such that the adjacency matrix Ai of relation Ri is a polynomial of
degree i in A1, for every i. In turn, this is equivalent to the conditions p1

i
i
+1 > 0 and p1 i

k = 0
for k > i + 1, i = 0,..., d − 1. For a 3-class association scheme the conditions are
equivalent to p11

3 = 0, p11
2 > 0 and p12

3 > 0 for some ordering of the relations.
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Dually we say that the scheme is Q-polynomial if the idempotents can be ordered such
that the idempotent Ei is a polynomial of degree i in E1 with respect to entrywise
multiplication, for every i. Equivalent conditions are that q1

i
i
+1 > 0 and q1 i

k = 0 for k > i + 1,
i = 0,..., d − 1. In the case of a 3-class association scheme these conditions are equivalent
to q11

3 = 0, q11
2 > 0 and q12

3 > 0 for some ordering of the idempotents. (Here we say that the
scheme has Q-polynomial ordering 123.)

1.3.7. Designs and codes

A t-(v, k, λ) designis a set of v points and a set of k-subsets of points, called blocks, such
that any t-subset of points is contained in precisely λ blocks. In such a design the number
of blocks equals b = λ(v

t)/(
k
t), and every point is in a constant number of blocks, called the

replication number r= λ(v
t

−
−

1
1)/(

k
t

−
−

1
1). The incidence matrix Nis the matrix with rows

indexed by the points and columns indexed by the blocks such that Nxb = 1 if x ∈ b (the
point and block are called incident), and 0 otherwise. For a 2-design we have that
NNT = rI + λ(J − I). A symmetricdesign is a 2-design with as many blocks as points. For
such a design k = r, and NTN = kI + λ(J − I). A (finite) projective planeof order n is a
2-(n2 + n + 1, n + 1, 1) design. An affine planeof order n is a 2-(n2, n, 1) design. Here
the blocks are also called lines. The projective geometry PG(n, q) consists of all subspaces
of the (n + 1)-dimensional vector space GF(q)n + 1 over the finite field GF(q) of q elements.
A projective point is a subspace of dimension one (a line through the origin in the
vectorspace). The (projective) points and lines in PG(2, q) form a projective plane, called
the Desarguesian plane. The Fano planeis the (Desarguesian) projective plane of order 2.
The incidence graphof a design is the bipartite graph with vertices the points and blocks
of the design, where a point and a block are adjacent if and only if they are incident. A
general reference for designs is [4].

A code C of length n is a subset of Qn, where Q is some set, called the alphabet. If
Q = {0, 1} then the code is called binary. The (Hamming) distance between two
codewords (elements of C) is the number of coordinates in which they differ. The weight
of a codeword is the number of nonzero coordinates. The minimum distanceof a code is
the minimum Hamming distance between any two distinct codewords. The code is called
e-error-correcting if the minimum distance is at least 2e + 1. The covering radiusof a
code is the minimal number ρ such that any element of Qn has Hamming distance at most
ρ from some codeword.

If Q is a field (or a ring), so that Qn is a vector space (a module), then the code is
called linear if it is a linear subspace of Qn. The dimensionof the code is the dimension
as a subspace. An [n, k, d] code denotes a code of length n, dimension k and minimum
distance d. The dual code C ⊥ of a code C consists of the words in Qn that are orthogonal
to all codewords of C. If C is linear with dimension k, then C ⊥ is linear with dimension
n − k. A general reference for codes is [77].
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1.3.8. Switching and the Seidel spectrum

Let G be a graph, and partition the vertices into two parts. (Seidel) Switching Gaccording
to this partition means that we change the graph by interchanging the edges and nonedges
between the two parts. If A is the adjacency matrix of G which is partitioned according to
the vertex partition as

A =













A11 A12

A T
12 A22

,

then the adjacency matrix A′ of the switched graph equals

A′ =













A11 J − A12

J − A T
12 A22

.

If the partition is regular, then

spectrum A′ = spectrum A ∪ spectrum B′ spectrum B,

where B and B′ are the quotient matrices of A and A′, respectively, according to the vertex
partition.

A more natural matrix to study graphs and switching is the Seidel matrix. This matrix S
is defined by S = J − I − 2A, where A is the adjacency matrix. For k-regular graphs on v
vertices the Seidel eigenvalues ρi and the adjacency eigenvalues λ i are related by
ρ0 = v − 1 − 2k, ρi = −1 − 2λ i, i ≠ 0. For nonregular graphs, like with the Laplace matrix,
the two spectra behave different. An interesting property of the Seidel matrix is that
switching does not change the Seidel spectrum. As switching defines an equivalence
relation on graphs, it seems interesting to study switching classes of graphs. In Figure
1.3.6 a switching class of graphs is drawn.

1.3.9. A touch of flavour - Graphs with few Seidel eigenvalues

Rewriting the definition of the Seidel matrix gives Sxy = −1 if x and y are adjacent, Sxy = 1
if x and y are not adjacent, and zero diagonal. It follows that any graph on more than one
vertex has at least two distinct Seidel eigenvalues. The empty and the complete graph have
two distinct eigenvalues, but there is more. As a generalization of strongly regular graphs
and conference matrices, Seidel (cf. [94]) introduced the so-called strong graphs. These
are nonempty, noncomplete graphs whose Seidel matrix S satisfies the equation
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(S − ρ1I)(S − ρ2I) = (v − 1 + ρ1ρ2)J,

for some ρ1, ρ2, and where v is the number of vertices. If v − 1 + ρ1ρ2 ≠ 0, then it follows
that S and J commute, and so they can be diagonalized simultaneously, and so the all-one
vector is also an eigenvector of S, implying that the graph is regular, and so it follows that
it is strongly regular. So if a strong graph is nonregular, then v − 1 + ρ1ρ2 = 0, and so it
has two distinct Seidel eigenvalues. On the other hand, any graph with two distinct Seidel
eigenvalues ρ1, ρ2 satisfies the equation (S − ρ1I)(S − ρ2I) = O, and by checking the
diagonal it follows that v − 1 + ρ1ρ2 = 0, so we have a strong graph, unless the graph is
empty or complete.

In order to give a combinatorial characterization of strong graphs, we define p(x, y) as
the number of neighbours of x which are not neighbours of y. Now a nonempty,
noncomplete graph is strong if and only if the numbers p(x, y) + p(y, x) only depend on
whether x and y are adjacent or not. This follows from checking the quadratic equation for
S, and moreover, it follows that for a strong graph we have

p(x, y) + p(y, x) = −1
2-(ρ1 − 1)(ρ2 − 1) if x and y are adjacent, and

p(x, y) + p(y, x) = −1
2-(ρ1 + 1)(ρ2 + 1) if x and y are not adjacent.

There are many examples of nonregular strong graphs, and we can find them in the
switching classes of so-called regular two-graphs, as these are precisely the switching
classes consisting of strong graphs with two Seidel eigenvalues (cf. [94]).

Figure 1.3.6. A switching class of strong graphs with Seidel eigenvalues ±√5



Chapter 2

Ik ben met m’n voeten eerst geboren. M’n hoofd kwam er pas
later uit! ’t Zou mij trouwens verbazen dat m’n hoofd en m’n
voeten van dezelfde vader zijn ... want ze lijken absoluut niet op
elkaar!

(Kamagurka, Bezige Bert)

Graphs with three eigenvalues

In this chapter we have a look at the graphs that are generalizations of strongly regular
graphs by dropping regularity. More precisely, we have a look at graphs with three distinct
eigenvalues, for the adjacency and Laplace spectrum. Seidel (cf. [94]) already did a
similar thing for the Seidel spectrum by introducing strong graphs, which turned out to
have an easy combinatorial characterization, as we saw in Section 1.3.9.

When looking from the point of view of the adjacency spectrum, the combinatorial
simplicity seems to disappear with the regularity. This all lies in the algebraic consequence
that the all-one vector is no longer an eigenvector. This is what makes the adjacency
matrix less appropriate for studying nonregular graphs. Here we should keep in mind that
algebra and spectral techniques are tools in graph theory, although they have become
subjects of their own. Still the fundamental question of few eigenvalues is interesting.

An alternative for studying (nonregular) graphs is the Laplace matrix. Roughly
speaking, dropping regularity has no algebraic consequences. This enables us to show that
graphs with three Laplace eigenvalues have an easy combinatorial characterization.

2.1. The adjacency spectrum

Connected graphs with only two distinct eigenvalues are easily proven to be complete
graphs. Therefore the first nontrivial case consists of graphs with three distinct
eigenvalues, with the regular ones being precisely the strongly regular graphs. A large
family of (in general) nonregular examples is given by the complete bipartite graphs Km, n

with spectrum {[√mn]1, [0]m+ n − 2, [−√mn]1}. Other examples were found by Bridges and
Mena [10] and Muzychuk and Klin [85], most of them being cones. A coneover a graph
H is obtained by adding a vertex to H that is adjacent to all vertices of H. The cone can
be obtained by switching an extra vertex in (see Figure 1.3.6 for the cone over the
5-cycle). If H is a strongly regular graph on v vertices, with degree k and smallest
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eigenvalue s, then it follows from Section 1.3.8 that the cone over H is a graph with three
eigenvalues if and only if s(k − s) = −v (cf. [85]). This condition is satisfied by infinitely
many strongly regular graphs, which implies that there are infinitely many cones with
three eigenvalues. A small example is given by the cone over the Petersen graph, with
spectrum {[5]1, [1]5, [−2]5} (see Figure 2.1.1). Bridges and Mena [10] obtained results on
cones with distinct eigenvalues λ0, λ1 and −λ1. They proved that such graphs are cones
over strongly regular (v, k, λ, λ) graphs with three possible exceptions (for the
parameters). For two of the exceptions an example is given, the third exception is open.

Figure 2.1.1. The cone over the Petersen graph

We know of four examples which are not cones that can be constructed by switching in a
strongly regular graph. For example, switching in T(9) with respect to the set of vertices
{{1, i} i = 2,..., 9} (a 9-clique), gives a graph with spectrum {[21]1, [5]7, [−2]28} (cf.
[85]). Similarly, switching with respect to an 8-clique in the strongly regular graph that is
obtained from a polarity in Higman’s symmetric 2-(176, 50, 14) design gives a nonregular
graph with three eigenvalues, and so does switching with respect to three disjoint 6-cliques
in the strongly regular Zara graph with parameters (126, 45, 12, 18). A more complicated
example is constructed by Martin [private communication]. Take the strongly regular
(105, 72, 51, 45) graph on the flags (incident point-line pairs) of PG(2, 4), where two
distinct flags (p1, l1) and (p2, l2) are adjacent if p1 = p2 or l1 = l2 or (p1 ∉ l2 and p2 ∉ l1).
Now switching with respect to a set of 21 flags with the property that every point and
every line is in precisely one flag (such a set exists by elementary combinatorial theory
since it corresponds to a perfect matching in the incidence graph of PG(2, 4)) yields a
nonregular graph with spectrum {[60]1, [9]21, [−3]83}.

A new family of nonregular graphs with three eigenvalues, which are not cones, is
constructed from symmetric 2-(q3 − q + 1, q2, q) designs, which exist if q is a prime
power and q − 1 is the order of a projective plane (cf. [4]). Take the incidence graph of
such a design and add edges between all blocks. The resulting graph has spectrum
{[q3]1, [q − 1](q − 1)q(q + 1), [−q](q − 1)q(q + 1) + 1}. The smallest example is derived from the
complement of the Fano plane, and we find a graph with spectrum {[8]1, [1]6, [−2]7}. The
next case comes from 2-(25, 9, 3) designs. Denniston [43] found that there are exactly 78
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such designs, and so there are at least 78 graphs with spectrum {[27]1, [2]24, [−3]25}.

Figure 2.1.2. The graph derived from the complement of the Fano plane

Bridges and Mena [10] also mention a graph on 22 vertices with spectrum
{[14]1, [2]7, [−2]14}, which is not a cone. Muzychuk and Klin [85] descibed this graph in a
way, similar to our construction: take the incidence graph of the unique quasi-symmetric
2-(8, 4, 3) design, and add an edge between two blocks if they intersect (in two points).

2.1.1. Nonintegral eigenvalues

For all known nonregular examples, except for the complete bipartite ones, all eigenvalues
are integral. We shall prove that the only graphs with three eigenvalues for which the
largest eigenvalue is not integral, are the complete bipartite graphs.

PROPOSITION 2.1.1. Let G be a connected graph with three distinct eigenvalues of which
the largest is not an integer. Then G is a complete bipartite graph.

Proof. Suppose G has v vertices, adjacency matrix A with largest eigenvalue λ0 and
remaining eigenvalues λ1 and λ2. Since λ0 is simple and not integral, it follows that at
least one of these remaining eigenvalues is also simple and nonintegral. If we have only
three vertices, then there is only one connected, noncomplete graph: K1, 2. So we may
assume to have more than three vertices. In this case the remaining eigenvalue is of course
not simple, and it follows that λ0 and say λ2 are of the form 1

2-(a ± √b), with a, b integral,
and then λ1 is integral. Moreover, since λ2 ≥ −λ0, we must have a ≥ 0. Since the
adjacency matrix of G has zero trace, it follows that a + (v − 2)λ1 = 0, so a is a multiple
of v − 2, and λ1 ≤ 0.

If a = λ1 = 0, then G is bipartite. But G has diameter (at most) two, and so G must be
a complete bipartite graph. If λ1 = −1, then a = v − 2, and it follows that −1 is the
smallest eigenvalue of G, otherwise we would have λ0 > v − 1, which is a contradiction.
But then A + I is a positive semidefinite matrix of rank two, and we would have that G is
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the disjoint union of two cliques, which is again a contradiction. If λ1 = −2, then
a = 2(v − 2), and it follows that −2 is the smallest eigenvalue of G. Now A + 2I is
positive semidefinite of rank two, which cannot be the case. For the remaining case we
have λ1 ≤ −3, and then a ≥ 3(v − 2). From λ0 ≤ v − 1, we now find that we can have at
most three vertices, and so the proof is finished.

So if we have a graph with three eigenvalues, which is not a complete bipartite graph,
then we know that its largest eigenvalue is integral. The remaining two eigenvalues,
however, can still be nonintegral, with many of the strongly regular conference graphs as
examples. The following proposition reflects what is known as the "half-case" for strongly
regular graphs.

PROPOSITION 2.1.2. Let G be a connected graph on v vertices with three eigenvalues
λ0 > λ1 > λ2, which is not a complete bipartite graph. If not all eigenvalues are integral,
then v is odd andλ0 = 1

2-(v − 1), λ1, 2 = −1
2- ± 1

2-√b, for some b≡ 1 (mod 4), b ≤ v, with
equality if and only if G is strongly regular. Moreover, if v ≡ 1 (mod 4) then all vertex
degrees are even, and if v≡ 3 (mod 4) then b≡ 1 (mod 8).

Proof. According to the previous proposition λ0 is integral, so λ1 and λ2 must be of the
form 1

2-(a ± √b), with a, b integral, with the same multiplicity 1
2-(v − 1). Since the adjacency

matrix has zero trace, we have λ0 + 1
2-a(v − 1) = 0. Since 0 < λ0 < v − 1, and a is integral,

we must have λ0 = 1
2-(v − 1), a = −1. Now λ1λ2 is integral, and it follows that

b ≡ 1 (mod 4). Moreover, by Lemma 1.3.1 or Lemma 1.3.2 we have that the average
vertex degree kave = (λ0

2 + 1
2-(v − 1)(λ1

2 + λ2
2))/v = 1

2-λ0(v + b)/v is at most λ0, with equality
if and only if G is strongly regular. This inequality reduces to b ≤ v.

From the equation (A − λ0I)(A − λ1I)(A − λ2I) = O, we find that

A3 = 1
2-(v − 3)A2 + (1

2-(v − 1) + 1
4-(b − 1))A − 1

8-(v − 1)(b − 1)I.

The diagonal element of this matrix corresponding to vertex x counts twice the number of
triangles ∆x through x. Thus we find that

∆x = 1
4-(v − 3)dx − 1

16−(v − 1)(b − 1),

where dx is the vertex degree of x. Since ∆x is integral we find that if v ≡ 1 (mod 4), then
dx must be even, for every vertex x. If v ≡ 3 (mod 4), then we must have b ≡ 1 (mod 8).

Of course, also if the eigenvalues are integral, we find restrictions for the degrees from the
expression for ∆x.
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COROLLARY 2.1.3. Let G be a graph with three integral eigenvalues. If all three
eigenvalues are odd, then all vertex degrees are odd. If one of them is odd and two are
even, then all vertex degrees are even.

Returning to the graphs of Proposition 2.1.2, we should mention that although we do not
know any nonregular example, we might consider the cone over the Petersen graph (with
v = 11, b = 9) as one.

2.1.2. The Perron-Frobenius eigenvector

An important property of connected graphs with three eigenvalues is that
(A − λ1I)(A − λ2I) is a rank one matrix. It follows that we can write

(A − λ1I)(A − λ2I) = ααT, with Aα = λ0α.

Moreover, from the Perron-Frobenius theorem it follows that (the Perron-Frobenius
eigenvector) α is a positive eigenvector, that is, all its components are positive. From the
quadratic equation we derive that

di = −λ1λ2 + α i
2 is the degree of vertex i,

λ ij = λ1 + λ2 + α iα j is the number of common neighbours of i and j, if they are
adjacent,

µij = α iα j is the number of common neighbours of i and j, if they are
not adjacent.

If we assume G not to be complete bipartite, so that λ1 + λ2 and λ1λ2 are integral, it
follows that α iα j is an integer for all i and j. We immediately see that this imposes strong
restrictions for the possible degrees that can occur. We also see that if the graph is regular,
then we have a strongly regular graph.

Now suppose that G has only two vertex degrees (which is the case in most known
nonregular examples), say k1 and k2, with respective α1 and α2. Now fix a vertex x of
degree k1. Let k11 and k12 be the numbers of vertices of degree k1 and k2, respectively, that
are adjacent to x. Then it follows that k11 + k12 = k1 and since Aα = λ0α, it follows that
k11α1 + k12α2 = λ0α1. These two equations uniquely determine k11 and k12, and the solution
is independent of the chosen vertex x of degree k1. It follows that the partition of the
vertices according to their degrees is regular, which is a very strong restriction for the
parameters.

If we assume that G is a cone, say over H, then we can prove that we have at most
three distinct degrees. Indeed, take a vertex with degree k1 = v − 1, and suppose we have
another vertex of degree di. Now the common neighbours of these vertices are all
neighbours of the latter except the first vertex. So di − 1 = λ1i = α1α i + λ1 + λ2. But also
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di = −λ1λ2 + α i
2, and so we get a quadratic equation for di, and so di can take at most two

values. If di takes only one value, then we easily see that H must be strongly regular. If
we have precisely two other degrees, say k2, k3, with respective α2, α3, then it follows
from the quadratic equation that α1 = α2 + α3. Here it also follows quite easily that the
partition of the vertices according to their degrees is regular. Bridges and Mena [10] used
this to show that there are only three parameter sets for cones with eigenvalues λ0, ±λ1

over a nonregular graph.

2.1.3. Graphs with least eigenvalue −2

The results from Section 2.1.1 imply that the only connected graphs with three
eigenvalues, all greater than −2 are the complete bipartite graphs K1, 2 and K1, 3 and graphs
from Proposition 2.1.2 with b = 5. However, here we can only have the strongly regular
5-cycle C5, which is the unique graph with spectrum {[2]1, [−1

2- + 1
2-√5]2, [−1

2- − 1
2-√5]2}.

PROPOSITION 2.1.4. If G is a connected graph with three distinct eigenvalues, all greater
than −2, then G is either K1, 2, K1, 3, or C5.

Proof. By the previous remarks, besides K1, 2 and K1, 3 we only have to check spectra from
Proposition 2.1.2 with b = 5. First suppose v > 9 (Note that v ≡ 1 (mod 4)). Then for the
average vertex degree we have kave < 1

2-(v − 1). Since the vertex degrees must be even,
there must be a vertex x of degree dx ≤ 1

2-(v − 1) − 2. If dx > 2, then for the number of
triangles ∆x through x we have

∆x = 1
4-(v − 3)(dx − 1) − 1

2- > 1
4-(v − 5)(dx − 1) ≥

2

dx
,

which is a contradiction. Also if dx = 2, then ∆x = 1
4-(v − 5) > 2, a contradiction. The case

v = 9 can be excluded by the following arguments, using the Perron-Frobenius eigenvector
α. Here it follows that there must be a vertex x of degree 2, and so with αx = 1. Now α is
an integral vector, implying that the vertex degrees can only take values 2, 5, 10,... But the
vertex degrees must be even, and at most 8, so it follows that the graph is regular, which
is a contradiction.

Now it would be interesting to know all graphs with three eigenvalues, all of which are at
least −2. By the characterization of Cameron, Goethals, Seidel and Shult [25], it follows
that such a graph is a generalized line graph or can be represented by roots in the lattice
E8.

THEOREM 2.1.4. If G is a connected graph with three distinct eigenvalues, all at least −2,
then G is isomorphic to one of K1, 2, K1, 3, K1, 4, C5, L2(n), n ≥ 2, T(n), n ≥ 4, or CP(n),
n ≥ 2, or G is represented by a subset of E8.
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Proof. First, suppose that G is a connected line graph, not C5 or K1, 2, of some graph H,
and G has three eigenvalues, say λ0 > λ1 > λ2 = −2. Here we may assume that H is
connected. Then the adjacency matrix A of G can be written as A = NTN − 2I, where N is
the vertex-edge incidence matrix of H. Now NNT = D + B, where D is the diagonal matrix
of vertex degrees in H, and B is the adjacency matrix of H. It follows that D + B has
eigenvalues λ0 + 2, λ1 + 2, and possibly 0. Suppose 0 is an eigenvalue with eigenvector u.
Then NTu = 0. This implies that if i and j are adjacent in H, then ui = −uj. So H is
bipartite. Moreover, since D + B has three distinct eigenvalues, it follows that H has
diameter at most two (the diameter is also smaller than the number of distinct eigenvalues
of D + B), so H must be a complete bipartite graph Km, n. Since the line graph of a
nonregular complete bipartite graph has four distinct eigenvalues (unless m or n equals
one, then we get a complete graph, see Chapter 3), H must be the complete bipartite graph
Kn, n, n ≥ 2, with the lattice graph L2(n) as line graph. Now suppose that 0 is not an
eigenvalue. Then D + B has only two distinct eigenvalues, and it follows that H is a
complete graph Kn, with the triangular graph T(n) as line graph.

Next, we assume that G is a generalized line graph L(H; a1,..., am) (where m is the
number of vertices of H), which is not a line graph, so at least one of the ai is nonzero.

Now G can be represented in n, where n = m + ai, as follows. Take∑
i

{ei, j i = 1,..., m, j = 0,..., ai} as orthonormal basis of n, then we represent the vertices of
G by the vectors ei, 0 + ej, 0 for all edges {i, j} in H, and the vectors ei, 0 + ei, j and ei, 0 − ei, j

for all i = 1,..., m, j = 1,..., ai, any two of them being adjacent if and only if they have
inner product one. In matrix form, if N is the generalized (0, ±1)-incidence matrix, that is,
with rows representing the basis of n, and columns representing the vertices of G, then
A = NTN − 2I is the adjacency matrix of G. Now suppose that G has distinct eigenvalues
λ0 > λ1 > λ2 = −2, then NNT has eigenvalues λ0 + 2, λ1 + 2, and possibly 0. Suppose we
have an eigenvalue 0, say with eigenvector u. Then NTu = 0, so if i and j are adjacent in
H, then ui, 0 = −uj, 0. For i with ai nonzero, we have that ui, 0 = −ui, j, and ui, 0 = ui, j for
j = 1,..., ai. So ui, j = 0, and since we may assume H to be connected, it follows that u = 0,
so 0 is not an eigenvalue of NNT. Now let us have a closer look at this matrix. After
rearrangement of the rows of N, it follows that

NNT =










D + B O

O 2 I
,

where D is the diagonal matrix with entries Dii = di + 2ai, where di is the vertex degree of
i in H, and B is the adjacency matrix of H. Thus it follows that λ1 = 0 and that D + B has
distinct eigenvalues λ0 + 2 (with multiplicity one) and (possibly) 2. If H is a graph on one
vertex, then there are no further restrictions, and G then is a cocktail party graph CP(n).
Otherwise, H is a complete graph (since the diameter is one), and since D + B − 2I is a
rank one matrix, it follows that D = 3I. Since ai is nonzero for some i, it now follows that



26 Graphs with three eigenvalues

di = ai = 1 for all i. But then H is a single edge, and G is K1, 4.

The strongly regular graphs with all eigenvalues at least −2 have already been classified
by Seidel (cf. [25]). Besides the 5-cycle, the lattice graphs, the triangular graphs and the
cocktail party graphs, there are the Petersen graph, the complement of the Clebsch graph,
the Shrikhande graph, the complement of the Schläfli graph, and the three Chang graphs.

In the beginning of this section, we already saw some nonregular graphs with three
eigenvalues, all of which are at least −2. Besides these, we also mention the cones over
the lattice graph L2(4), the Shrikhande graph, the triangular graph T(8) and the three
Chang graphs. We should mention that a graph that is represented by a subset of E8 has at
most 36 vertices and vertex degrees at most 28, thus there are finitely many (see [20]).
Both bounds are tight for the example (see the beginning of this section) obtained by
switching in T(9).

Now let’ s have a look at the graphs that are represented by roots in E8 (and which are
not generalized line graphs). First we shall find the ones that have a representation in the
subsystem E6.

PROPOSITION 2.1.5. The only connected graphs with three eigenvalues that are represented
by roots in E6, and which are not generalized line graphs are the Petersen graph, the cone
over the Petersen graph and the complement of the Clebsch graph.

Proof. For graphs represented by roots in E6 the multiplicity of the eigenvalue −2 is v − 6,
where v is the number of vertices. Consequently such graphs have spectrum
{[2(v − 6) − 5λ1]

1, [λ1]
5, [−2]v − 6}, and we also may assume that λ1 ≥ 1 (a connected graph

with exactly one positive eigenvalue must be a complete multipartite graph).

Using the inequality miλ i
2 = vkave ≤ vλ0 (Lemma 1.3.2), we find that we must have∑

i
λ1 = 1 or λ1 = 2, and we find possible spectra {[8]1, [2]5, [−2]9}, {[10]1, [2]5, [−2]10},
{[3]1, [1]5, [−2]4}, {[5]1, [1]5, [−2]5}, {[7]1, [1]5, [−2]6}, {[9]1, [1]5, [−2]7} and
{[11]1, [1]5, [−2]8}. The first three of these spectra imply regularity (by Lemma 1.3.2), and
it is well known that there are unique graphs with such spectra: the triangular graph T(6),
the complement of the Clebsch graph, and the Petersen graph, respectively.

The graphs with one of the remaining spectra are sure to be nonregular, and by using
the Perron-Frobenius eigenvector, the vertex degrees in such graphs are either 3, 6 and 11,
or 4 and 10. Now it immediately follows that a graph with spectrum {[11]1, [1]5, [−2]8}
does not exist, since here we would have λ0 ≥ kmax, which would imply regularity by
Lemma 1.3.1. If only two vertex degrees occur, then we know that the partition according
to the vertex degrees is regular. For degrees 4 and 10, we find, by checking the
parameters, that this can only occur for a graph with spectrum {[5]1, [1]5, [−2]5}, with one
vertex of degree 10 and ten vertices of degree 4. Here it follows that we must have the
cone over the Petersen graph. Moreover, a graph with this spectrum cannot have vertex
degrees 3 and 6 (no regular partition), thus the cone over the Petersen graph is the unique
graph with spectrum {[5]1, [1]5, [−2]5}.
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For a graph with spectrum {[7]1, [1]5, [−2]6} and ni vertices of degree i, we find no

solutions to the requirements n3 + n6 + n11 = 12, 3n3 + 6n6 + 11n11 = 78 (= miλ i
2),∑

i
n11 = 0 or n11 = 1 (if n11 ≥ 1 then we have a cone), so such a graph cannot exist. For a
graph with spectrum {[9]1, [1]5, [−2]7} we find that we must have n3 = 3, n6 = 1 and
n11 = 9, but it is easily seen that this is impossible, so such a graph cannot exist.

Next, let’ s have a look at the graphs that are represented by roots in E7.

PROPOSITION 2.1.6. The only connected graphs with three eigenvalues that are represented
by roots in E7, and which are not generalized line graphs or represented by roots in E6

are the graph derived from the complement of the Fano plane(see Figure2.1.2), the
Shrikhande graph, the cone over the Shrikhande graph, the cone over the lattice graph
L2(4), and the complement of the Schläfli graph.

Proof. For such graphs the multiplicity of the eigenvalue −2 is v − 7. Consequently they
have spectrum {[2(v − 7) − 6λ1]

1, [λ1]
6, [−2]v − 7}, and also here we may assume that

λ1 ≥ 1.

Using the inequality miλ i
2 = vkave ≤ vλ0, we find that we must have λ1 = 1, 2, 3 or 4.∑

i
For λ1 = 4, we find possible spectra {[16]1, [4]6, [−2]20} and {[18]1, [4]6, [−2]21}, which
both imply regularity. A graph with the latter spectrum does not exist, and there is a
unique graph with the first spectrum: the complement of the Schläfli graph.

If λ1 = 3, we find possible spectra {[10]1, [3]6, [−2]14}, {[12]1, [3]6, [−2]15},
{[14]1, [3]6, [−2]16}, {[16]1, [3]6, [−2]17} and {[18]1, [3]6, [−2]18}, and the first and last
imply regularity. It is well known that there is no graph with the last spectrum, and a
unique graph with the first spectrum: T(7). By using the Perron-Frobenius eigenvector, and
the fact that by Corollary 2.1.3 all vertex degrees must be even, we find that in a graph
with one of the remaining three spectra, the vertex degrees are either 10 and 22, or 8 and
14. In any case the partition according to the vertex degrees must be regular, which gives
a contradiction for any of the three spectra.

Also if λ1 = 1, the vertex degrees must be even, and here we find possible spectra
{[4]1, [1]6, [−2]5}, {[6]1, [1]6, [−2]6}, {[8]1, [1]6, [−2]7}, {[10]1, [1]6, [−2]8} and
{[12]1, [1]6, [−2]9}, all of which imply nonregularity. Here we find that the possible vertex
degrees are 4 and 10, and thus we always have a regular partition. The only spectrum
which survives the constraints is {[8]1, [1]6, [−2]7}, and we find that we must have seven
vertices of degree 4 and seven vertices of degree 10. Moreover, the vertices of degree 4
induce a coclique, and the vertices of degree 10 induce a clique. Since any two vertices of
degree 4 have two common neighbours (this follows from the Perron-Frobenius
eigenvector), the edges between the vertices of degree 4 and the vertices of degree 10
form the incidence of the complement of the Fano plane. So here we find the graph of
Figure 2.1.2, which is now proven to be the unique graph with spectrum {[8]1, [1]6, [−2]7}.

In the remaining case λ1 = 2, we find possible spectra {[6]1, [2]6, [−2]9}, which is
realized only by the lattice graph L2(4) and the Shrikhande graph, {[8]1, [2]6, [−2]10},



28 Graphs with three eigenvalues

{[10]1, [2]6, [−2]11}, {[12]1, [2]6, [−2]12}, {[14]1, [2]6, [−2]13} and {[16]1, [2]6, [−2]14}. The
last spectrum implies regularity, but no such strongly regular graph exists. In the other
four possibilities we must have vertex degrees either 5, 8 and 13, or 6 and 12, or 7 and
16. First suppose that we have vertex degrees 5, 8 and 13. Consider a graph with spectrum
{[8]1, [2]6, [−2]10}, and n5, n8 and n13 vertices of degrees 5, 8 and 13, respectively. From
the equations n5 + n8 + n13 = 17, 5n5 + 8n8 + 13n13 = 128, we find either n5 = 11, n8 = 1,
n13 = 5 or n5 = 6, n8 = 9, n13 = 2. In the first case, consider a vertex of degree 5, and let
k5, i be the number of vertices of degree i adjacent to this vertex. Then from the equations
k5, 5 + k5, 8 + k5, 13 = 5 and k5, 5 + 2k5, 8 + 3k5, 13 = 8 (which follows from the Perron-
Frobenius eigenvector) we find that k5, 8 = 1, so every vertex of degree 5 is adjacent to the
unique vertex of degree 8, but there are 11 vertices of degree 5, which is a contradiction.
So we are in the second case. Let ki, j be the number of vertices of degree j adjacent to a
vertex of degree i. Here it follows that we must have k13, 5 = 3, k13, 8 = 9 and k13, 13 = 1. So
the two vertices of degree 13 have all vertices of degree 8 as (common) neighbours. But it
follows from the Perron-Frobenius eigenvector that two vertices of degree 13 have
precisely nine common neighbours, so it follows that every vertex of degree 5 is adjacent
to precisely one of the vertices of degree 13, i.e. k5, 13 = 1. Now it follows that every
vertex of degree 5 is adjacent to one vertex of degree 8 (k5, 8 = 1), while every vertex of
degree 8 is adjacent to two vertices of degree 5 (k8, 5 = 2), which is a contradiction.

Now suppose we have a graph with spectrum {[10]1, [2]6, [−2]11} and vertex degrees 5,
8 and 13. Then we must have either n5 = 7, n8 = 2, n13 = 9 or n5 = 2, n8 = 10, n13 = 6. In
the first case it follows that k5, 8 = 1 and k8, 5 = 2, which is a contradiction. In the second
case, consider the two vertices of degree 5. They have a unique common neighbour x,
which must have degree 8, as a vertex of degree 13 can have at most one neighbour of
degree 5. Besides the vertices of degree 5, x now can only have neighbours of degree 13.
Now take a vertex of degree 13 which is not adjacent to any of the vertices of degree 5
(these exist since a vertex of degree 5 has at most one neighbour of degree 13). This
vertex has four neighbours of degree 13, so it has four common neighbours with x, which
is a contradiction, since it follows from the Perron-Frobenius eigenvector that they should
have six common neighbours.

For a graph with spectrum {[12]1, [2]6, [−2]12} and vertex degrees 5, 8 and 13 we find
n5 = 2, n8 = 3 and n13 = 14. Here it follows that k8, 5 = 0, while k5, 8 ≥ 1, giving a
contradiction. Finally, a graph with spectrum {[14]1, [2]6, [−2]13} cannot have vertex
degrees 5, 8 and 13, since then we would have λ0 > kmax, which contradicts Lemma 1.3.1.
So for none of the spectra we can have a graph with vertex degrees 5, 8 and 13.

In the remaining two cases for the vertex degrees we must have regular partitions,
which can only occur for {[8]1, [2]6, [−2]10}, with one vertex of degree 16 and sixteen
vertices of degree 7, and we find that in this case we must have the cone over the lattice
graph L2(4) or the cone over the Shrikhande graph. So we found all graphs with three
eigenvalues that are represented by roots in E7.

For the graphs represented by roots in E8, there are too many possibilities to do by hand.
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Using the inequalities miλ i
2 ≤ vλ0 and v ≤ 36, we find possible spectra∑

i

{[2(v − 8) − 7λ1]
1, [λ1]

7, [−2]v − 8} with λ1 = 1 and v = 13,..., 19, λ1 = 2 and v = 18,..., 25,
λ1 = 3 and v = 23,..., 30, λ1 = 4 and v = 28,..., 36, or λ1 = 5 and v = 34,..., 36. The only
spectra corresponding to regular graphs are {[12]1, [4]7, [−2]20}, for which there are the
triangular graph T(8) and the three Chang graphs, and {[28]1, [4]7, [−2]28}, for which no
graph exists. The problem for the nonregular cases is that as the number of vertices
increases, also the number of possible degrees increases. It is still possible to prove that no
graph in the cases with at most twenty vertices exists, but (most of) the other cases are
left (to a computer search?).

2.1.4. The small cases

As it turns out, we have found all nonregular graphs with three eigenvalues and at most
twenty vertices. Of course, the regular ones are also known. The arguments we use in the
next proposition are the same as those in the proofs of Propositions 2.1.5 and 2.1.6.

PROPOSITION 2.1.7. The only connected nonregular graphs with three eigenvalues and at
most twenty vertices, which are not complete bipartite are the cone over the Petersen
graph, the graph derived from the complement of the Fano plane(see Figure2.1.2), the
cone over the Shrikhande graph and the cone over the lattice graph L2(4).

Proof. Let’ s see which cases are left to check. For the cases with nonintegral eigenvalues,
it follows from Proposition 2.1.2 that the only possible spectra are
{[8]1, [−1

2- + 1
2-√13]8, [−1

2- − 1
2-√13]8} and {[9]1, [−1

2- + 1
2-√17]9, [−1

2- − 1
2-√17]9}. Suppose we have

a graph with the first spectrum. By Proposition 2.1.2, all vertex degrees must be even, and
by use of the Perron-Frobenius eigenvector it then follows that the only possible vertex
degrees are 4 and 12. But, if ni denotes the number of vertices of degree i, then the
equations n4 + n12 = 17, 4n4 + 12n12 = 120 have no integral solution, so we have a
contradiction. A graph with the latter spectrum must have vertex degrees either 5, 8 and
13, or 6 and 12, or 7 and 16. In the last two cases the partition according to the vertex
degrees must be regular, which gives a contradiction. So we must have vertex degrees 5, 8
and 13, and either n5 = 0, n8 = 17, n13 = 2, or n5 = 5, n8 = 9, n13 = 5, or n5 = 10, n8 = 1,
n13 = 8. In the first case, however, we have a regular partition, which cannot be the case.
The last case can also be excluded, since every vertex of degree 5 must be adjacent to an
even number of vertices of degree 8, and the unique vertex of degree 8 must be adjacent
to three vertices of degree 5. In the remaining case, every vertex of degree 13 has at least
two neighbours of degree 5. Since every vertex of degree 5 has at most two neighbours of
degree 13, it follows that every vertex of degree 5 has precisely two neighbours of degree
13, and thus also three neighbours of degree 5. But two adjacent vertices of degree 5 have
no common neighbours, and a vertex of degree 5 and a vertex of degree 13 which are
adjacent must have two common neighbours, which gives a contradiction. Hence, also a
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graph with the second spectrum does not exist.
So we are left with integral spectra. First, consider the spectra with least eigenvalue

λ2 < −2. Here we find, by using the inequality miλ i
2 < vλ0 of Lemma 1.3.2, that the only∑

i
possible spectra with at most twenty vertices are {[8]1, [1]10, [−3]6}, {[7]1, [1]11, [−3]6},
{[11]1, [1]10, [−3]7}, {[6]1, [1]12, [−3]6}, {[10]1, [1]11, [−3]7}, {[5]1, [1]13, [−3]6},
{[9]1, [1]12, [−3]7} and {[13]1, [1]11, [−3]8}, so all spectra have λ1 = 1 and λ2 = −3. As a
consequence, the vertex degrees occuring in graphs with these spectra are either 4, 7, 12
and 19, or 5 and 11, or 6 and 15. Moreover, as λ1 + λ2 = −2, any two adjacent vertices of
degree 4 have −1 common neighbours, hence the vertices of degree 4 form a coclique.
First, consider the graphs on an odd number of vertices. In these cases not all vertex
degrees can be odd (the Handshaking lemma), so degrees 5 and 11 cannot occur. Degrees
6 and 15 easily give contradictions in each of the cases, so we must have degrees 4, 7 and
12. Consider a graph with spectrum {[8]1, [1]10, [−3]6} on 17 vertices. From the fact that
no vertex of degree 4 has a neighbour of degree 4, it follows (use the Perron-Frobenius
eigenvector) that also no vertex of degree 4 has a neighbour of degree 12. This implies
that every vertex of degree 12 has only neighbours of degree 12. Since there is at least
one vertex of degree 12, it follows that the graph is disconnected, which is a contradiction.
For spectrum {[6]1, [1]12, [−3]6} with 19 vertices, the fact that no vertex of degree 4 has a
neighbour of degree 4 implies that such a vertex should have −2 neighbours of degree 12.
So there cannot be a vertex of degree 4. But then λ0 < kmin, which contradicts Lemma
1.3.1. For spectrum {[10]1, [1]11, [−3]7} we find that we have three vertices of degree 4.
Any vertex of degree 4 must have two neighbours of degree 7, while every vertex of
degree 7 has no neighbours of degree 4, which gives a contradiction. Next, consider the
graphs on an even number of vertices. In these cases, λ0 is odd, so by Corollary 2.1.3 all
vertex degrees must be odd. Thus we have vertex degrees 7 and 19 or 5 and 11. In the
first case, it follows that we have (twenty vertices) a cone over a strongly regular graph on
19 vertices with degree 6, but such a graph does not exist. The latter case easily gives
contradictions from the parameters for all the possible spectra.

Next, we have to check the graphs with λ2 = −2, and so, by the previous section, what
remains to be checked are the spectra {[2v − 23]1, [1]7, [−2]v − 8} for v = 13,..., 19, and
spectra {[2v − 30]1, [2]7, [−2]v − 8} for v = 18,..., 20. For graphs with one of the spectra
with λ1 = 1, we find possible degrees either 3, 6, 11 and 18 or 4 and 10, or 5 and 14. Of
course a graph with spectrum {[3]1, [1]7, [−2]5} cannot exist, since λ0 is too small. The
last two cases for the vertex degrees imply regular partitions, which give contradictions in
all cases. Now suppose we have a graph with spectrum {[15]1, [1]7, [−2]11}, on 19
vertices. Such a graph must have a vertex of degree 18, otherwise by Lemma 1.3.1 λ0 is
too large. Thus we have a cone, but this also leads to a contradiction. For the remaining
spectra we must have degrees 3, 6 and 11. However, there are no graphs with spectra
{[11]1, [1]7, [−2]9} and {[13]1, [1]7, [−2]10}, again since λ0 is too large. So suppose we
have a graph with spectrum {[5]1, [1]7, [−2]6}. Such a graph must have n3 = 11, n6 = 2 and
n11 = 1. But now it follows that the vertex of degree 11 is adjacent to four vertices of
degree 6, which gives a contradiction. Suppose we have a graph with spectrum
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{[7]1, [1]7, [−2]7}. Here it follows that (using that there is at least one vertex of degree 11)
n3 = 7, n6 = 5 and n11 = 3. Let ki, j be the number of neighbours of degree j of some vertex
of degree i . Then from the equations k11, 3 + k11, 6 + k11, 11 = 11 and
k11, 3 + 2k11, 6 + 3k11, 11 = 3λ0, we find that k11, 6 + 2k11, 11 = 10, which gives a contradiction,
since k11, 6 ≤ 5 and k11, 11 ≤ 2. Finally, suppose we have a graph with spectrum
{[9]1, [1]7, [−2]8}. Then either n3 = 7, n6 = 0 and n11 = 9, or n3 = 2, n6 = 8 and n11 = 6. In
the first case we have a regular partition, which gives a contradiction. In the latter case it
follows that every vertex of degree 3 is adjacent to three vertices of degree 11, and since
the two vertices of degree 3 must have one common neighbour, there is a vertex of degree
11 which is adjacent to two vertices of degree 3. But then this vertex must also be
adjacent to seven vertices of degree 11, which cannot be the case.

Finally, we are left with the spectra with λ1 = 2 and λ2 = −2. Here we can have vertex
degrees 5, 8 and 13, or 6 and 12, or 7 and 16. Suppose we have a graph with spectrum
{[6]1, [2]7, [−2]10}. Here we have vertex degrees 5, 8 and 13, otherwise λ0 ≤ kmin. It
follows that n5 = 15, n8 = 2 and n13 = 1. However, this vertex of degree 13 must now be
adjacent to five vertices of degree 8, which is a contradiction. So suppose we have a graph
with spectrum {[8]1, [2]7, [−2]11}. Here the regular partitions for degrees 6 and 12, or 7
and 16 give contradictions, so we must have degrees 5, 8 and 13, and then either n5 = 12,
n8 = 3 and n13 = 4, or n5 = 7, n8 = 11 and n13 = 1. But we must also have
k13, 8 + 2k13, 13 = 11, which gives a contradiction in the first case. In the second case it
follows that the vertex of degree 13 is adjacent to all vertices of degree 8 and to two
vertices of degree 5. Such a vertex x of degree 5 must then also be adjacent to one vertex
of degree 8 and three vertices of degree 5. But x and the vertex of degree 13 must have
three common neighbours, which gives a contradiction. Finally, suppose we have a graph
with spectrum {[10]1, [2]7, [−2]12}. Here degrees 6 and 12, and also 7 and 16 cannot
occur. So also here we must have vertex degrees 5, 8 and 13. Now either n5 = 8, n8 = 4
and n13 = 8, or n5 = 3, n8 = 12 and n13 = 5. In the latter case it follows that every vertex of
degree 13 has nine neighbours of degree 8, so there are 45 edges between vertices of
degree 8 and vertices of degree 13. On the other hand, every vertex of degree 8 has at
least four neighbours of degree 13, which gives at least 48 edges. So we are in the first
case. Here every vertex of degree 13 must have three neighbours of degree 5, while every
vertex of degree 5 has at most two neighbours of degree 13. But the number of vertices of
degree 5 is the same as the number of vertices of degree 13, so we are finished.

2.2. The Laplace spectrum - Graphs with constant µ and µ

As we have seen, the Laplace matrix of a graph is defined as the matrix Q = D − A,
where D is the diagonal matrix of vertex degrees, and A is the adjacency matrix. This
matrix is positive semidefinite, and the all-one vector is an eigenvector with eigenvalue 0.
Connected graphs with two distinct Laplace eigenvalues are complete graphs, so the next
step would be to consider connected graphs with three distinct Laplace eigenvalues.
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However, it will be more convenient to consider graphs with two restricted Laplace
eigenvalues. The restricted eigenvaluesare those that have an eigenvector orthogonal to
the all-one vector. The restricted multiplicity of an eigenvalue is the dimension of the
eigenspace orthogonal to the all-one vector. Now the graphs with two restricted Laplace
eigenvalues are precisely the connected graphs with three distinct Laplace eigenvalues and
the disconnected graphs with two distinct Laplace eigenvalues.

It turns out that in such graphs only two vertex degrees can occur. Moreover, we shall
prove that a graph has two restricted Laplace eigenvalues if and only if it has constant µ
and µ. We say that a noncomplete graph G has constant µ = µ(G) if any two vertices that
are not adjacent have µ common neighbours. A graph G has constant µ and µ if G has
constant µ = µ(G), and its complement G has constant µ = µ(G). An example is given in
Figure 2.2.1.

Graphs with constant µ and µ form a common generalization of two known families of
graphs. The regular ones are precisely the strongly regular graphs and for µ = 1 we have
the (nontrivial) geodetic graphs of diameter two.

Some similarities with so-called neighbourhood-regular or Γ∆-regular graphs (see
[54, 75]) occur. These graphs can be defined as graphs G with constant λ and λ, that is, in
G any two adjacent vertices have λ common neighbours, and in G any two adjacent
vertices have λ common neighbours. Here also only two vertex degrees can occur, but
there is no easy algebraic characterization.

Using the results from the next section, we generated feasible parameter sets of graphs
with three Laplace eigenvalues and at most 40 vertices (see Appendix A.2).

Figure 2.2.1. A graph with constant µ = 1 and µ = 2 and its complement

2.2.1. The number of common neighbours and vertex degrees

In this section we shall derive some basic properties of graphs with two restricted Laplace
eigenvalues. We start with a combinatorial characterization.
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THEOREM 2.2.1. Let G be a graph on v vertices. Then G has two distinct restricted
Laplace eigenvaluesθ1 and θ2 if and only if G has constant µ and µ. If so then only two
vertex degrees k1 and k2 can occur, and θ1 + θ2 = k1 + k2 + 1 = µ + v − µ and
θ1θ2 = k1k2 + µ = µv.

Proof. Let G have Laplace matrix Q = D − A. Suppose that G has two distinct restricted
Laplace eigenvalues θ1 and θ2. Then (Q − θ1I)(Q − θ2I) has spectrum {[θ1θ2]

1, [0]v − 1} and
row sums θ1θ2, so it follows that (Q − θ1I)(Q − θ2I) = (θ1θ2/v)J. If x is not adjacent to y,
so Qxy = 0 then Q2

xy = θ1θ2/v, and so µ = θ1θ2/v is constant. Since the complement of G
has distinct restricted Laplace eigenvalues v − θ1 and v − θ2 (it has Laplace matrix
vI − J − Q), it follows that µ = (v − θ1)(v − θ2)/v is also constant.

Now suppose that µ and µ are constant. If x and y are adjacent then (vI − J − Q)2
xy = µ,

so µ = (v2I + vJ + Q2 − 2vJ − 2vQ)xy = Q2
xy + v, and if x and y are not adjacent, then

Q2
xy = µ. Furthermore Q2

xx = dx
2 + dx, where dx is the vertex degree of x. Now

Q2 = (µ − v)(D − Q) + µ(J − I − D + Q) + D2 + D

= (µ + v − µ)Q + D2 − (µ + v − µ − 1)D − µI + µJ.

Since Q and Q2 have row sums zero, it follows that dx
2 − dx(µ + v − µ − 1) − µ + µv = 0

for every vertex x. So Q2 − (µ + v − µ)Q + µvI = µJ. Now let θ1 and θ2 be such that
θ1 + θ2 = µ + v − µ and θ1θ2 = µv, then (Q − θ1I)(Q − θ2I) = (θ1θ2/v)J, so G has distinct
restricted Laplace eigenvalues θ1 and θ2. As a side result we obtained that all vertex
degrees dx satisfy the same quadratic equation, thus dx can only take two values k1 and k2,
and the formulas readily follow.

If the restricted Laplace eigenvalues are not integral, then they must have the same
multiplicities m1 = m2 = 1

2-(v − 1). If the Laplace eigenvalues are integral, then their
multiplicities are not necessarily fixed by v, µ and µ. For example, there are graphs on 16
vertices with constant µ = 2 and µ = 6 with Laplace spectrum {[8]m, [4]15 − m, [0]1} for
m = 5, 6, 7, 8 and 9 (see Section 5.3.3).

The following lemma implies that the numbers of vertices of the respective degrees
follow from the Laplace spectrum.

LEMMA 2.2.2. Let G be a graph on v vertices with two distinct restricted Laplace
eigenvaluesθ1 and θ2 with restricted multiplicities m1 and m2, respectively. Suppose there
are n1 vertices of degree k1 and n2 vertices of degree k2. Then m1 + m2 + 1 = n1 + n2 = v
and m1θ1 + m2θ2 = n1k1 + n2k2.

Proof. The first equation is trivial, the second follows from the trace of the Laplace
matrix.
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The number of common neighbours of two adjacent vertices is in general not constant, but
depends on the degrees of the vertices.

LEMMA 2.2.3. Let G be a graph with constant µ and µ, and vertex degrees k1 and k2.
Suppose x and y are two adjacent vertices. Then the number of common neighboursλxy of
x and y equals

λxy =







λ11 = µ − 1 + k1 − k2 if x and y both have degree k1,
λ12 = µ − 1 if x and y have distinct degrees,
λ22 = µ − 1 + k2 − k1 if x and y both have degree k2.

Proof. Suppose x and y have vertex degrees dx and dy, respectively. The number of
vertices that are not adjacent to both x and y equals µ. The number of vertices adjacent to
x but not to y equals dx − 1 − λxy, and the number of vertices adjacent to y but not to x
equals dy − 1 − λxy. Now we have that v = 2 + λxy + µ + dx − 1 − λxy + dy − 1 − λxy. Thus
λxy = µ − v + dx + dy. By using that k1 + k2 = µ + v − µ − 1, the result follows.

Both Theorem 2.2.1 and Lemma 2.2.3 imply the following.

COROLLARY 2.2.4. A graph with constant µ and µ is regular if and only if it is strongly
regular.

Observe that G is regular if and only if (µ + v − µ − 1)2 = 4µ(v − 1) or n1 = 0 or n2 = 0.
Since we can express all parameters in terms of the Laplace spectrum, it follows that it
can be recognized from the Laplace spectrum whether a graph is strongly regular or not.
Of course, this also follows from the previous and Lemma 1.3.3.

Before proving the next lemma we first look at the disconnected graphs. Since the
number of components of a graph equals the multiplicity of its Laplace eigenvalue 0, a
graph with constant µ and µ is disconnected if and only if one of its restricted Laplace
eigenvalues equals 0. Consequently this is the case if and only if µ = 0. So in a
disconnected graph G with constant µ and µ any two vertices that are not adjacent have no
common neighbours. This implies that two vertices that are not adjacent are in distinct
components of G. So G is a disjoint union of cliques. Since the only two vertex degrees
that can occur are v − µ − 1 and 0, G is a disjoint union of (v − µ)-cliques and isolated
vertices.

LEMMA 2.2.5. Let G be a graph with two restricted Laplace eigenvaluesθ1 > θ2 and
vertex degrees k1 ≥ k2. Then θ1 − 1 ≥ k1 ≥ k2 ≥ θ2, with k2 = θ2 if and only if G or G is
disconnected.

Proof. Assume that G is not regular, otherwise G is strongly regular and the result easily
follows. First, suppose that the induced graph on the vertices of degree k1 is not a
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coclique. So there are two vertices of degree k1 that are adjacent. Then the 2 × 2
submatrix of the Laplace matrix Q of G induced by these two vertices has eigenvalues
k1 ± 1, and since these interlace the eigenvalues of Q, we have that k1 + 1 ≤ θ1. Since
k1 + k2 + 1 = θ1 + θ2, then also k2 ≥ θ2.

Next, suppose that the induced graph on the vertices of degree k2 is not a clique. So
there are two vertices of degree k2 that are not adjacent. Now the 2 × 2 submatrix of Q
induced by these two vertices has two eigenvalues k2, and since these also interlace the
eigenvalues of Q, we have that k2 ≥ θ2, and then also θ1 − 1 ≥ k1.

The remaining case is that the induced graph on the vertices of degree k1 is a coclique
and the induced graph on the vertices of degree k2 is a clique. Suppose we have such a
graph. Since a vertex of degree k1 only has neighbours of degree k2, and λ12 = µ − 1, we
find that k1 = µ. Since any two vertices of degree k1 have µ common neighbours, it follows
that every vertex of degree k1 is adjacent to every vertex of degree k2, and we find that
k2 ≥ k1, which is a contradiction. So the remaining case cannot occur, and we have proven
the inequalities.

Now suppose that G or G is disconnected. Then it follows from the observations before
the lemma that k2 = θ2. On the other hand, suppose that k2 = θ2. Then it follows that
k1 = θ1 − 1 and from the equation θ1θ2 = k1k2 + µ it then follows that k2 = µ. Now take a
vertex x2 of degree k2 that is adjacent to a vertex x1 of degree k1. If there are no such
vertices then G is disconnected and we are done. It follows that every vertex that is not
adjacent to x2, is adjacent to all neighbours of x2, so also to x1. Since x1 and x2 have µ − 1
common neighbours, x1 is also adjacent to all neighbours of x2. So x1 is adjacent to all
other vertices, and so G is disconnected.

We conclude this section with so-called Bruck-Ryser conditions.

PROPOSITION 2.2.6. Let G be a graph with constant µ and µ on v vertices, with v odd, and
with restricted Laplace eigenvaluesθ1 andθ2. Then the Diophantine equation

x2 = (θ1 − θ2)
2y2 + (−1)

1
2-(v − 1)µz2

has a nontrivial integral solution(x, y, z).

Proof. Let Q be the Laplace matrix of G, then

(Q − 1
2-(θ1 + θ2)I)(Q − 1

2-(θ1 + θ2)I)
T = Q2 − (θ1 + θ2)Q + 1

4-(θ1 + θ2)
2I

= µJ + (1
4-(θ1 + θ2)

2 − θ1θ2)I = 1
4-(θ1 − θ2)

2I + µJ.

Since Q − 1
2-(θ1 + θ2)I is a rational matrix, it follows from a lemma by Bruck and Ryser

(cf. [4]) that the Diophantine equation
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x2 = 1
4-(θ1 − θ2)

2y2 + (−1)
1
2-(v − 1)µz2

has a nontrivial integral solution, which is equivalent to stating that the Diophantine
equation above has a nontrivial integral solution.

2.2.2. Cocliques

If k1 − k2 > µ − 1, then the induced graph on the set of vertices of degree k2 is a coclique,
since two adjacent vertices of degree k2 would have a negative number λ22 of common
neighbours. It turns out (see Appendix A.2) that this is the case in many examples.
Therefore we shall have a closer look at cocliques. If G is a graph, then we denote by
α(G) the maximal size of a coclique in G.

LEMMA 2.2.7. Let G be a graph on v vertices with largest Laplace eigenvalueθ1 and
smallest vertex degree k2. Thenα(G) ≤ v(θ1 − k2)/θ1.

Proof. Let C be a coclique of size α(G). Partition the vertices of G into C and the set of
vertices not in C, and partition the Laplace matrix Q of G according to this partition of the
vertices. Let B be the matrix of average row sums of the blocks of Q, then

B =













k −k

−k
α(G)

v − α(G)
k α(G)

v − α(G)

,

where k is the average degree of the vertices in C. Since B has eigenvalues 0 and
kv/(v − α(G)), and since these interlace the eigenvalues of Q, we have that
kv/(v − α(G)) ≤ θ1. The result now follows from the fact that k2 ≤ k.

Another bound is given by the multiplicities of the eigenvalues.

LEMMA 2.2.8. Let G be a connected graph with Laplace spectrum ,{[θ1]
m1, [θ2]

m2, [0]1}

whereθ1 > θ2 > 0, such that G is also connected. Thenα(G) ≤ min{m1, m2 + 1}.

Proof. Suppose C is a coclique with size greater than m1. Consider the submatrix of the
Laplace matrix Q induced by the vertices of C. This matrix only has eigenvalues k1 and k2,
and since these interlace the eigenvalues of Q, we find that k2 ≤ θ2. This is in
contradiction with Lemma 2.2.5, since G and G are connected. If C is a coclique of size
greater than m2 + 1, we find by interlacing that k1 ≥ θ1, which is again a contradiction.

As remarked before, if G is a graph with constant µ and µ with λ22 < 0, then the vertices
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of degree k2 form a coclique. If this is the case, then n2 ≤ m2, and we know the adjacency
spectrum of the induced graph on the vertices of degree k1.

PROPOSITION 2.2.9. Let G be a connected graph with Laplace spectrum

, whereθ1 > θ2 > 0, such that G is also connected. Suppose that the n2{[θ1]
m1, [θ2]

m2, [0]1}

vertices of degree k2 induce a coclique, then n2 ≤ m2, and the n1 vertices of degree k1

induce a graph with adjacency spectrum ,{[λ1]
1, [k1 − θ2]

m2 −n2, [λ2]
1, [−1]n2 −1, [k1 − θ1]

m1 −n2}

where λ1 and λ2 are determined by the equationsλ1 + λ2 = k1 − 1 and
λ1

2 + λ2
2 = n1k1 − n2k2 − (m2 − n2)(k1 − θ2)

2 − (n2 − 1) − (m1 − n2)(k1 − θ1)
2.

Proof. The adjacency matrix A1 of the graph induced by the vertices of degree k1 is a
submatrix of the matrix k1I − Q, where Q is the Laplace matrix of G. From interlacing it
follows that A1 has second largest eigenvalue k1 − θ2 with multiplicity at least m2 − n2 and
smallest eigenvalue k1 − θ1 with multiplicity at least m1 − n2. Note that so far we didn’ t
use that the vertices of degree k2 induce a coclique. Now let

A =










A1 NT

N O

be the adjacency matrix of G, where the partition is induced by the degrees of the vertices.
Two vertices of degrees k2 have µ common neighbours, so NNT = k2I + µ(J − I). A vertex
of degree k2 and a vertex of degree k1 have µ − 1 or µ common neighbours, depending on
whether they are adjacent or not, so NA1 = µJ − N. Let {vi i = 0,..., n2 − 1} be an
orthonormal set of eigenvectors of NNT, with v0 the constant vector, then
NNTvi = (k2 − µ)vi, i = 1,..., n2 − 1. Now

A1(N
Tvi) = (NA1)

Tvi = (µJ − N)Tvi = −NTvi, i = 1,..., n2 − 1.

Since k2 > µ (otherwise G or G is disconnected), it follows that A1 has −1 as an eigenvalue
with multiplicity at least n2 − 1.

By Lemma 2.2.8 we have n2 ≤ m2 + 1. Suppose that n2 = m2 + 1. Then n1 = m1 and it

follows that A1 has spectrum for some λ1. Since A1 has zero{[λ1]
1, [−1]n2 −1, [k1 − θ1]

m1 −n2}

trace, and using Lemma 2.2.5, we have λ1 = n2 − 1 + (m1 − n2)(θ1 − k1) > n1 − 1, which is
a contradiction. Hence n2 ≤ m2. Now let λ1 ≥ λ2 be the remaining two eigenvalues of A1.
These eigenvalues (i.e., the equations in the statement) follow from the trace of A1 and the
trace of A1

2. Since λ1 ≤ k1 (interlacing), it follows that λ2 ≥ −1.

If the vertices of degree k2 form a coclique, then Lemma 2.2.7 implies that

n2 ≤ v(θ1 − k2)/θ1.
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If this bound is tight, then it follows from tight interlacing that the partition of the vertices
into vertices of degree k1 and vertices of degree k2 is regular. So N is the incidence matrix
of a 2-(n2, κ, µ) design, where κ = n2k2/n1. Furthermore, the adjacency matrix of the
induced graph G1 on the vertices of degree k1 has spectrum

,{[k1 − κ]1, [k1 − θ2]
m2 +1−n2, [−1]n2 −1, [k1 − θ1]

m1 −n2}

so G1 is a regular graph with at most four eigenvalues. It follows from the multiplicities
that θ1 and θ2 must be integral. In this way it can be proven that there is no graph on 25
vertices with constant µ = 2 and µ = 12, with 10 vertices of degree 6. These 10 vertices
induce a coclique for which the bound is tight. The induced graph on the remaining 15
vertices has spectrum {[4]1, [3]3, [−1]9, [−2]2}, but such a graph cannot exist, which
follows from results in the next chapter (Section 3.3.5).

Examples for which the bound is tight are obtained by taking an affine plane for the
design and a disjoint union of cliques for G1. This is family b of the next section. Another
example is constructed from a polarity with q√q + 1 absolute points in PG(2, q) where q
is the square of a prime power (cf. Section 2.2.4). In Section 2.2.5 we find a large family
of graphs for which the bound of Lemma 2.2.8 is tight.

Also if λ22 = 0, so that the vertices of degree k2 do not necessarily form a coclique, we
find a bound on the number of vertices n2 of degree k2.

LEMMA 2.2.10. If k1 − k2 ≥ µ − 1, then n2 ≤ v − µ.

Proof. Fix a vertex x1 of degree k1. If x1 has no neighbours of degree k2 then
n1 ≥ k1 + 1 ≥ µ + k2 ≥ µ, and so n2 ≤ v − µ. If x1 has a neighbour x2 of degree k2, then x1

and x2 cannot have a common neighbour y2 of degree k2, since otherwise x2 and y2 have a
common neighbour x1, so that 0 ≥ µ − 1 + k2 − k1 = λ22 > 0, which is a contradiction. So
all common neighbours of x1 and x2 have degree k1, so n1 ≥ λ12 + 1 = µ, and so n2 ≤ v − µ.

2.2.3. Geodetic graphs of diameter two

A geodetic graphis a graph in which any two vertices are connected by a unique shortest
path. Thus a geodetic graph of diameter two is a graph with constant µ = 1. These graphs
have been studied by several authors (cf. [12]), and it is known (see [12, Thm. 1.17.1])
that if G is a geodetic graph of diameter two, then

i. G is the cone (see Section 2.1) over a disjoint union of cliques, or
ii . G is strongly regular, or
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iii . precisely two vertex degrees k1 > k2 occur. If X1 and X2 denote the sets of vertices
with degrees k1 and k2, respectively, then X2 induces a coclique, maximal cliques
meeting both X1 and X2 have size two, and maximal cliques contained in X1 have
size k1 − k2 + 2. Moreover, v = k1k2 + 1.

If G is of type i, then G need not have constant µ. Indeed, its complement is disconnected,
so if µ is constant, then µ = 0, and it follows that G is the cone over a coclique (a disjoint
union of 1-cliques), so G is isomorphic to K1, n, n ≥ 2. If G is of type ii then clearly µ is
constant. Now suppose that G is of type iii . Since µ = 1, every edge is in a unique
maximal clique. Let x and y be two adjacent vertices, then x and y cannot both be in X2. If
one is in X1, and the other in X2, then they have no common neighbour, since maximal
cliques meeting both X1 and X2 have size two. So λ12 = 0 and then µ12 = v − k1 − k2. If
both x and y are in X1, then by the previous argument they have no common neighbours in
X2, and since every maximal clique contained in X1 has size k1 − k2 + 2, they have k1 − k2

common neighbours in X1. So λ11 = k1 − k2, and then also µ11 = v − k1 − k2. So G has
constant µ. The following four families of graphs are all known examples of type iii .

a. Take a clique and a coclique of size k1, and an extra vertex. Add k1 disjoint edges
between the clique and the coclique, and add edges between the extra vertex and every
vertex of the coclique (see also Section 2.2.5, an example is given in Figure 2.2.1).

b. Take an affine plane. Take as vertices the points and lines of the plane. A point is
adjacent to a line if it is on the line, and two lines are adjacent if they are parallel
(disjoint).

c. Take the previous example and add the parallel classes to the vertices. Add edges
between each line and the parallel class it is in, and add edges between all parallel classes.

d. Take a projective plane with a polarity σ. Take as vertices the points of the plane. Two
points x and y are adjacent if x is on the line yσ (cf. Section 2.2.4).

2.2.4. Symmetric designs with a polarity

Let D be a symmetric design. A polarity of D is a one-one correspondence σ between its
points and blocks such that for any point p and any block b we have that p ∈ b if and
only if bσ ∈ pσ. A point is called absolute(with respect to σ) if p ∈ pσ. Now D has a
polarity if and only if it has a symmetric incidence matrix A. An absolute point
corresponds to a one on the diagonal of A.

Suppose that D is a symmetric 2-(v, k, λ) design with a polarity σ. Let G = P(D) be the
graph on the points of D, where two distinct points x and y are adjacent if x ∈ yσ. Then
the only vertex degrees that can occur are k and k − 1. The number of vertices with
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degree k − 1 is the number of absolute points of σ. Let A be the corresponding symmetric
incidence matrix, then Q = kI − A is the Laplace matrix of G. Since A is a symmetric
incidence matrix of D, we find that (kI − Q)2 = A2 = AAT = (k − λ)I + λJ, so
Q2 − 2kQ + (k2 − k + λ)I = λJ. Thus Q has two distinct restricted eigenvalues
k ± √k−λ . The converse is also true.

THEOREM 2.2.11. Let G be a graph with constant µ and µ on v vertices, with vertex
degrees k and k −1. Then G comes from a symmetric2-(v, k, µ) design with a polarity.

Proof. Let G have restricted Laplace eigenvalues θ1 and θ2, then θ1 + θ2 = 2k and
µ = θ1θ2/v = k(k − 1)/(v − 1). Hence we have that Q2 − 2kQ + vµI = µJ. Now let
A = kI − Q, then A is a symmetric (0, 1)-matrix with row sums k, and
AAT = A2 = k2I − 2kQ + Q2 = (k2 − vµ)I + µJ = (k − µ)I + µJ, so A is the incidence matrix
of a symmetric 2-(v, k, µ) design with a polarity.

Since the polarities in the unique 2-(7, 3, 1), 2-(11, 5, 2) and 2-(13, 4, 1) designs are
unique, the graphs we obtain from these designs are also uniquely determined by their
parameters. For the graph from the polarity in the 2-(11, 5, 2) and its complement, see
Figure 2.2.2. The graph in Figure 2.2.1 comes from the polarity in the Fano plane.

Figure 2.2.2. A graph with constant µ = 2 and µ = 3 and its complement

In a projective plane of order n, where n is not a square, any polarity has n + 1 absolute
points. If n is a square, then the number of absolute points in a polarity lies between n + 1
and n√n + 1. The projective plane PG(2, q) admits a polarity with q + 1 absolute points
for every prime power q and a polarity with q√q + 1 absolute points for every square q of
a prime power. If a polarity in a projective plane of order n has n + 1 absolute points then
the set of absolute points forms a line if n is even, and an oval if n is odd, that is, no
three points are on one line (cf. [4, § VIII.9]). Using this, we find that there is precisely
one graph from a polarity with 5 absolute points in the projective plane of order 4, and
precisely one graph from a polarity with 6 absolute points in the projective plane of order
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5. Using the remarks in Section 2.2.2 we also find precisely one graph from a polarity
with 9 absolute points in the projective plane of order 4.

By Paley’ s construction of Hadamard matrices (cf. [4, Thm. I.9.11]) we obtain
symmetric 2-(2e(q + 1) − 1, 2e − 1(q + 1) − 1, 2e − 2(q + 1) − 1) designs with a polarity with
2e − 1(q + 1) − 1 absolute points, for every odd prime power q and every e > 0.

Furthermore, we found polarities with 0, 4, 8, 12 and 16 absolute points in a
2-(16, 6, 2) design (see Section 5.3.3), a polarity in the 2-(37, 9, 2) design from the
difference set (cf. [4, Ex. VI.4.3]) and a polarity with 16 absolute points in the
2-(40, 13, 4) design of points and planes in PG(3, 3). Spence [private communication]
found polarities with 3, 7, 11 and 15 absolute points in 2-(15, 7, 3) designs, polarities in
2-(25, 9, 3) and 2-(30, 13, 3) designs, polarities with 5, 11, 17, 23, 29 and 35 absolute
points in 2-(35, 17, 8) designs, polarities with 0, 6, 12, 18, 24, 30 and 36 absolute points
in 2-(36, 15, 6) designs and polarities with 10, 16, 22, 28, 34 and 40 absolute points in
2-(40, 13, 4) designs.

2.2.5. Other graphs from symmetric designs.

Let D be a symmetric 2-(w, k, λ) design. Fix a point x. We shall construct a graph
G = G(D) that has constant µ and µ. The vertices of G are the points and the blocks of D,
except for the point x. Between the points there are no edges. A point y and a block b will
be adjacent if and only if precisely one of x and y is incident with b. Two blocks will be
adjacent if and only if both blocks are incident with x or both blocks are not incident with
x. It is not hard to show that the resulting graph G has constant µ = k − λ and constant
µ = w − k − 1 + λ. In G the n1 = w blocks have degrees k1 = w − 1, and the n2 = w − 1
points have degrees k2 = 2(k − λ). Note that D and the complement of D give rise to the
same graph G. We have the following characterization of G(D).

THEOREM 2.2.12. Let G be a graph with constant µ and µ on 2w − 1 vertices, such that
both G and G are connected. Suppose G has w vertices of degree k1, and w − 1 vertices
of degree k2, and suppose that the vertices of degree k2 induce a coclique. Then
k1 = w − 1, k2 = 2µ, and G = G(D), where D is a symmetric 2-(w, k, k − µ) design.

Proof. Let

A =










A1 N T

N O

be the adjacency matrix of G, where the partition is induced by the degrees of the vertices.
It follows from Lemma 2.2.8 and Proposition 2.2.9 that m1 = m2 = n2, and that A1 has
spectrum {[λ1]

1, [λ2]
1, [−1]w − 2], with λ1 + λ2 = k1 − 1, and λ1 ≥ λ2 ≥ −1. On the other
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hand, it follows from the trace of A1 that λ1 + λ2 = w − 2, so that k1 = w − 1. Since
k1k2 = µ(v − 1), we then find that k2 = 2µ.

Suppose that λ2 = −1, then λ1 = w − 2 − λ2 = w − 1, so A1 = J − I. But then G is
disconnected, which is a contradiction. Now A1 + I is positive semidefinite of rank two
with diagonal 1, and so it is the Gram matrix of a set of vectors of length 1 in 2, with
mutual inner products 0 or 1. It follows that there can only be two distinct vectors, and A1

is the adjacency matrix of a disjoint union of two cliques, say of sizes k and w − k. Let
N = (N1 N2) be partitioned according to the partition of A1 into two cliques, where N1 has k
columns and N2 has w − k columns. From the equation NA1 = µJ − N we derive that
N1J = N2J = µJ, so both N1 as N2 have row sums µ. Now let

M =










1 T 0 T

J − N1 N2

,

then M is square of size w, with row sums k. Furthermore, we find that
(J − N1)(J − N1)

T + N2N2
T = (k − 2µ)J + NN T = (k − 2µ)J + (k2 − µ)I + µJ = µI + (k − µ)J,

and so we have that MM T = µI + (k − µ)J, so M is the incidence matrix of a symmetric
2-(w, k, k − µ) design D, and G = G(D).

The matrix N that appears in the proof above is the incidence matrix of a structure, that is
called a pseudo design by Marrero and Butson [78] and a "near-square" λ-linked design by
Woodall [104]. An alternative proof of Theorem 2.2.12 uses Theorem 3.4 of [78] which
states that a pseudo (w ≠ 4µ, k2 = 2µ, µ)-design comes from a symmetric design in the
way described above. The problem then is to prove the case w = 4µ, however.

For every orbit of the action of the automorphism group of the design D on its points,
we get a different graph G(D) by taking the fixed point x from that orbit. Since the trivial
2-(k1 + 1, 1, 0) (here we get family a of geodetic graphs given in Section 2.2.4), the
2-(7, 3, 1), the 2-(11, 5, 2) and the 2-(13, 4, 1) designs are unique and have an
automorphism group that acts transitively on the points, the graphs we obtain are uniquely
determined by their parameters. According to Spence [private communication], the five
2-(15, 7, 3) designs have respectively 1, 2, 3, 2 and 2 orbits, the three 2-(16, 6, 2) designs
all have a transitive automorphism group, and the six 2-(19, 9, 4) designs have
respectively 7, 5, 3, 3, 3 and 1 orbits. Thus we get precisely ten graphs on 29 vertices
with constant µ = 4 and µ = 10, three graphs on 31 vertices with constant µ = 4 and
µ = 11, and 22 graphs on 37 vertices with constant µ = 5 and µ = 13.

2.2.6. Switching in strongly regular graphs

Let G be a strongly regular graph with parameters (v = 2k + 1, k, λ, µ*). Fix a vertex x
and "switch" between the set of neighbours of x and the set of vertices (distinct from x)
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that are not neighbours of x, that is, a vertex that is adjacent to x and a vertex that is not
adjacent to x are adjacent if and only if they are not adjacent in G. All other adjacencies
remain the same (note that this is not ordinary Seidel switching). If the (adjacency)
eigenvalues of G are k, r and s, then we obtain a graph with restricted Laplace eigenvalues
2(λ + 1) − s and 2(λ + 1) − r. The graph has constant µ = k − µ* = λ + 1 and µ = µ*, and
there is one vertex of degree k and 2k vertices of degree 2(λ + 1). Almost all examples
have k = 2(λ + 1) = 2µ*, so that we get a (strongly) regular graph. The only known (to us)
examples for which k ≠ 2(λ + 1) are the triangular graph T(7) and its complement. (Note
that from one pair of complementary graphs we get another pair of complementary
graphs.) From the complement of T(7) we get a graph with constant µ = 4 and µ = 6 on
21 vertices with one vertex of degree 10 and 20 vertices of degree 8. The subgraph
induced by the neighbours of the vertex x of degree 10 is the Petersen graph.

This construction can be reversed, that is, if G is a graph on v vertices with constant µ
and µ, such that there is precisely one vertex of degree k = 1

2-(v − 1) and 2k vertices of
degree 2µ, then it must be constructed from a strongly regular graph in the above way.
Since T(7) is uniquely determined by its parameters, and it has a transitive automorphism
group it follows that there is precisely one graph with constant µ = 4 and µ = 6 on 21
vertices with one vertex of degree 10 and 20 vertices of degree 8.

Next, let G be a strongly regular graph with parameters (v* = 2k + 1, k, λ, µ*) with a
regular partition into two parts, where one part has k2 vertices and the induced graph is
regular of degree k2 − µ* − 1, and the other part has v* − k2 vertices and the induced graph
is regular of degree k − µ*. (Then k2(k − k2 + µ* + 1) = (v* − k2)µ

*.) Add an isolated vertex
to the second part and then switch (see Section 1.3.8) with respect to this partition. The
obtained graph has one vertex of degree k2 and v* vertices of degree k1 = k2 + k − 2µ*. If
the (adjacency) eigenvalues of G are k, r and s, then we obtain a graph with restricted
Laplace eigenvalues k1 − s and k1 − r, and it has constant µ = k2 − µ* and
µ = k + 1 − k2 + µ. Again, we obtain a (strongly) regular graph if k = 2µ*.

Also here the construction can be reversed. A graph on v vertices with constant µ and
µ, such that µ + µ = 1

2-v and with precisely one vertex of degree k2 must be constructed
from a strongly regular graph in the above way.

If we take T(7) and take for one part of the partition a 7-cycle or the disjoint union of
a 3-cycle and a 4-cycle, then we find that there are precisely two nonisomorphic graphs on
22 vertices with constant µ = 3 and µ = 8, with 21 vertices of degree 9 and one vertex of
degree 7. In T(7) there cannot be a regular partition with k2 = 12 (which is the other value
satisfying the quadratic equation) since this would give a graph which is the complement
of a graph with λ22 = 0 and n1 < µ, contradicting Lemma 2.2.10.

2.3. Yet another spectrum

During the investigation of graphs with least eigenvalue −2 in Section 2.1.3, we came up
with another interesting matrix related to graphs, namely the matrix NN T = D + A, where
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N is the incidence matrix, D the diagonal matrix of vertex degrees, and A the adjacency
matrix of the graph (see also [33]). A natural step would be to investigate the connected
graphs G for which this matrix has three eigenvalues. (Also here the regular ones are
precisely the strongly regular graphs, and a graph with two eigenvalues is complete). Let’ s
have a short look at these graphs. As we have seen before, we have an eigenvalue 0 if and
only if the graph is bipartite. Moreover, N TN = 2I + L(A), where L(A) is the adjacency
matrix of the line graph of G, has the same nonzero eigenvalues. So the line graph can
have two, three or four distinct (adjacency) eigenvalues. If it has two, then it is a complete
graph, and G must be K1, n for some n ≥ 2. If it has three, then it follows from the results
in Section 2.1.3 that the line graph must be one of K1, 2, C5, T(n) or L2(n), so that G (with
D + A having three eigenvalues) must be C5 or Kn, n, hence strongly regular. If the line
graph has four eigenvalues, then G is not bipartite. Using the results of Chapter 3 (see
Section 3.3.5) we find that if the line graph of G is regular, then G must be strongly
regular. So besides the graphs K1, n, n ≥ 2, the only connected nonregular graphs for which
D + A has three eigenvalues are the connected nonbipartite graphs for which the line
graph is nonregular with four (adjacency) eigenvalues. Here we shall finish our short
investigation of this spectrum, and have a look at regular graphs with four eigenvalues.



Chapter 3

A pleasant faced man steps up to greet you You have entered the Twilight Zone
He smiles and says he’ s pleased to meet you Beyond this world strange things are known
Beneath his hat the strangeness lies Use the key, unlock the door
Take it off, he’ s got three eyes See what your fate might have in store
Truth is false and logic lost Come explore your dreams’ creation
Now the fourth dimension is crossed Enter this world of imagination

(Rush, 2112)

Regular graphs with four eigenvalues

As we have seen, connected regular graphs having at most three distinct eigenvalues are
very well classified by means of combinatorial properties: they are the complete and the
strongly regular graphs. By dropping regularity in the previous chapter, we have already
seen some possible generalizations. When keeping regularity, distance-regular graphs of
diameter d (or more generally, d-class association schemes) are generalizations of
complete (d = 1) and strongly regular (d = 2) graphs from a combinatorial point of view.
The adjacency matrices of these graphs have d + 1 distinct eigenvalues, but for d > 2 the
converse is not true, in fact most regular graphs with d + 1 distinct eigenvalues are not
distance-regular with diameter d (and do not come from d-class association schemes).
When looking at the number of distinct eigenvalues, the next step after strongly regular
graphs would be to look at the regular graphs with four distinct eigenvalues. Already for
those graphs, many examples exist that are not distance-regular or from three-class
association schemes (in the next chapter we shall have a closer look to decide which ones
are). Still we can deduce some nice properties. An important observation is that regular
graphs with four eigenvalues are walk-regular, which implies rather strong conditions for
the possible spectra. Furthermore we shall give several constructions, some
characterizations, and uniqueness and nonexistence results. Many of the constructions use
strongly regular graphs. We also generate a list of feasible spectra for regular graphs with
four eigenvalues and at most 30 vertices. By combining the theoretic results with
computer results, Spence and the author were able to find all graphs for most of the
feasible spectra thus found (see Appendix A.3, for more see [40]).
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3.1. Properties of the eigenvalues

In this section we shall derive some properties of the eigenvalues of graphs with four
distinct eigenvalues. To obtain these we shall use Lemmas 1.3.5-9 about polynomials with
rational or integral coefficients (see Chapter 1).

Let G be a connected k-regular graph on v vertices with adjacency spectrum
Now Lemma 1.3.5 implies that the polynomials p and q{[k]1, [λ1]

m1, [λ2]
m2, [λ3]

m3}.

defined by

p(x) = (x − λ1)(x − λ2)(x − λ3) = m(x)
x − k

,

q(x) = (x − λ1)
m1 −1(x − λ2)

m2 −1(x − λ3)
m3 −1 = c(x)

m(x)
,

where c is the characteristic polynomial and m is the minimal polynomial, have integral
coefficients. We shall use these polynomials in the proof of the following proposition.

PROPOSITION 3.1.1. Let G be a connected k-regular graph on v vertices with spectrum
. Then (i) G has four integral eigenvalues, or (ii) G has two{[k]1, [λ1]

m1, [λ2]
m2, [λ3]

m3}

integral eigenvalues, and the other two have the same multiplicities and are of the form
1
2-(a ± √b), with a, b integral, or (iii) G has one integral eigenvalue, and
m1 = m2 = m3 = 1

3-(v − 1) and k = 1
3-(v − 1) or k = 2

3-(v − 1).

Proof. Without loss of generality we may assume m1 ≤ m2 ≤ m3. If m1 = m2 < m3, then

∈ ZZ[x], so λ3 is integral. Now it follows that(x − λ3)
m3 −m1 = q(x)/p(x)m1 −1

(x − λ1)(x − λ2) ∈ ZZ[x], so λ1 and λ2 are both integral or of the form 1
2-(a ± √b), with a, b

integral.
If m1 < m2, then ∈ ZZ[x]. Now it follows that λ2(x − λ2)

m2 −m1(x − λ3)
m3 −m1 = q(x)/p(x)m1 −1

and λ3 are both integral or of the form 1
2-(a ± √b), with a, b integral, and if λ2 and λ3 are

irrational, then m2 = m3. In both cases it follows that λ1 is integral.
So, if G has only one integral eigenvalue, then all three multiplicities must be the same.

In that case they must be equal to 1
3-(v − 1), and k + 1

3-(v − 1)(λ1 + λ2 + λ3) = Trace(A) = 0,
where A is the adjacency matrix of G. Since p ∈ ZZ[x], we have that λ1 + λ2 + λ3 is
integral, so k is a multiple of 1

3-(v − 1). Now it follows that k = 1
3-(v − 1) or k = 2

3-(v − 1).

Each of the three cases of Proposition 3.1.1 can occur. Small examples are given by the
6-cycle C6 with spectrum {[2]1, [1]2, [−1]2, [−2]1}, the complement of the union of two
5-cycles 2C5 with spectrum {[7]1, [−1

2- + 1
2-√5]4, [−1

2- − 1
2-√5]4, [−3]1}, and the 7-cycle C7 with

spectrum {[2]1, [2cos 7
2π−]2, [2cos 7

4π−]2, [2cos 7
6π−]2}.
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Another important property of connected regular graphs with four distinct eigenvalues
is that the multiplicities of the eigenvalues follow from the eigenvalues and the number of
vertices (cf. [33, p. 161]). This follows from the following three equations, which uniquely
determine m1, m2 and m3 from v, k = λ0, λ1, λ2 and λ3.

1 + m1 + m2 + m3 = v,

λ0 + m1λ1 + m2λ2 + m3λ3 = 0,

λ0
2 + m1λ1

2 + m2λ2
2 + m3λ3

2 = vk.

The second equation follows from the trace of A (the adjacency matrix of G), and the third
from the trace of A2. Note that the eigenvalues alone do not determine the multiplicities.
For example, the complement of the Cube has spectrum {[4]1, [2]1, [0]3, [−2]3}, while the
line graph of the Cube has spectrum {[4]1, [2]3, [0]3, [−2]5}. This example is the smallest
of an infinite class given by Doob [45, 46].

Using the above conditions we were able to generate all possible spectra for regular
graphs with four eigenvalues and at most 30 vertices. Different algorithms were used in
each of the three cases of Proposition 3.1.1 and they in turn were checked for some of the
feasibility conditions of Section 3.2.1.

3.2. Walk-regular graphs and feasibility conditions

A walk-regular graph is a graph G for which the number of walks of length l from a
given vertex x to itself (closed walks) is independent of the choice of x, for all l (cf. [55]).
If A is the adjacency matrix of G, then this number equals Al

xx, so G is walk-regular
whenever Al has constant diagonal for all l. Note that a walk-regular graph is regular.

If G has v vertices and is connected k-regular with four distinct eigenvalues k, λ1, λ2

and λ3, then (A − λ1I)(A − λ2I)(A − λ3I) = 1
v- (k − λ1)(k − λ2)(k − λ3)J (i.e. h(A) = J, where

h is the Hoffman polynomial (cf. [70])). Since A2, A, I, and J all have constant diagonal,
we see that Al has constant diagonal for every l. So a connected regular graph with four
distinct eigenvalues is walk-regular.

3.2.1. Feasibility conditions and feasible spectra

If G is walk-regular on v vertices with degree k and spectrum , the{[λ0]
m0, [λ1]

m1,..., [λr]
mr}

number of triangles through a given vertex x is independent of x, and equals

∆ = 1
2-A3

xx = Trace(A3)
2v

= 1
2v

r

i=0

miλi
3 .
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This expression gives a feasibility condition for the spectrum of G, since ∆ should be a
nonnegative integer. In general, it follows that

θl = 1

v

r

i=0

miλi
l

is a nonnegative integer. Since the number of closed walks of odd length l is even, θl

should be even if l is odd. For even l, we can also sharpen the condition, since then the
number of nontrivial closed walks (that is, those containing a cycle) is even. For example,
when l = 4, the number of trivial closed walks through a given vertex (i.e. passing only
one or two other vertices) equals 2k2 − k, so

Ξ =
θ4 − 2k2 + k

2

is a nonnegative integer, and it equals the number of quadrangles through a vertex. Here
we allow the quadrangles to have diagonals. When l = 6, the number of nontrivial closed
walks through a vertex equals θ6 − k(5k2 − 6k + 2), which should be even. In case we
have four distinct eigenvalues the following lemma on the number of quadrangles through
an edge will also be useful.

LEMMA 3.2.1. If G is a connected regular graph with four distinct eigenvalues, such that
the number of triangles through an edge is constant, then the number of quadrangles
through an edge is also constant.

Proof. Since G is connected and regular, say of degree k, with four distinct eigenvalues,
its adjacency matrix A satisfies the equation A3 + p2A

2 + p1A + p0I = pJ, for some p2, p1, p0

and p. Now A3
xy + p2λxy + p1 = p, for any two adjacent x, y with λxy common neighbours.

Since the number of triangles through an edge is constant, say λ, we have λxy = λ, and so
the number of walks of length three from x to y is equal to A3

xy = p − p1 − p2λ. Since
there are 2k − 1 walks which are trivial, the number of quadrangles containing edge {x, y}
equals p − p1 − p2λ − 2k + 1, which is independent of the given edge.

Note that if ξ is the (constant) number of quadrangles through an edge, and if Ξ is the
number of quadrangles through a vertex, then ξ = 2Ξ/k.

The complement of a connected regular graph with four eigenvalues is also such a
graph unless it is disconnected. In the algorithms to generate feasible spectra, we only
generated those spectra for which k ≥ v − 1 − k, thus ensuring connectivity. In the
Appendix A.3 however, we printed the complementary spectrum, unless it implied
disconnectivity.

In the algorithm to generate spectra with four integral eigenvalues we checked that θl
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was an even nonnegative integer for l = 3, 5, 7, 9 and 11 and that it was a nonnegative
integer in the cases l = 8, 10 and 12. In addition we tested to see that both θ4 − 2k2 + k
and θ6 − k(5k2 − 6k + 2) were even nonnegative integers, and that the complementary
spectrum gave rise to numbers of triangles and quadrangles through a vertex that were
also nonnegative integers. For technical reasons we checked different conditions in the
case of two integral eigenvalues, namely the conditions on θl for l = 3,..., 6 and the
complementary θl for l = 3,..., 8. Finally, in the remaining case of one integral eigenvalue
it was not necessary to implement so many conditions. Here we checked only the
conditions on θ3 and θ4. The spectra thus generated are termed feasible.

3.2.2. Simple eigenvalues

If a walk-regular graph has a simple eigenvalue λ ≠ k, then we can say more about the
structure of the graph. We shall prove that the graph admits a regular partition into halves
with degrees (1

2-(k + λ), 1
2-(k − λ)), that is, we can partition the vertices into two parts of

equal size such that every vertex has 1
2-(k + λ) neighbours in its own part and 1

2-(k − λ)
neighbours in the other part. As a consequence we obtain that k − λ is even, a condition
which was proven by Godsil and McKay [55]. This condition eliminates, for example, the
existence of a graph with spectrum {[14]1, [2]9, [−1]19, [−13]1}. We also find other
divisibility conditions.

LEMMA 3.2.2. Let B be a symmetric matrix of size v, having constant diagonal and
constant row sums t, and spectrum {[t]1, [s]1, [0]v − 2}, then v is even (unless s = 0), and
(possibly after permuting rows and columns) B can be partitioned into four equally large
parts as

B =













t + s

v
J t − s

v
J

t − s

v
J t + s

v
J

.

Proof. Consider the matrix C = B − t
v-J, then C is symmetric, has constant diagonal, say a,

row sums zero and spectrum {[s]1, [0]v − 1}. So C has rank 1. By noticing that the
determinant of all principal submatrices of size two must be zero, and using that C is
symmetric and has constant diagonal, it follows that C only has entries ± a. Since C has
row sums zero, it follows that v is even (unless s = 0) and that we can partition C into
four equally large parts as

C =










aJ −aJ

−aJ aJ
.
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Now B has nontrivial eigenvalues t and va, so s = va, and the result follows.

THEOREM 3.2.3. Let G be a connected walk-regular graph on v vertices and degree k,
having distinct eigenvalues k, λ1, λ2,..., λr, of which at least one eigenvalue unequal to k,
say λj, has multiplicity one. Then v is even and G admits a regular partition into halves
with degrees (1

2-(k + λ j),
1
2-(k − λj)). Moreover, v is a divisor of

i ≠ j

(k − λi) +
i ≠ j

(λj − λi) and
i ≠ j

(k − λi) −
i ≠ j

(λj − λi).

Proof. Let , and let B = b(A), then it follows from Lemma 3.2.2 (B hasb(x) =
i ≠ j

(x − λi)

constant diagonal since G is walk-regular) that v is even and we can partition B in four
equally large parts as

where and .B =













t + s

v
J t − s

v
J

t − s

v
J t + s

v
J

, t =
i ≠ j

(k − λi) s =
i ≠ j

(λj − λi)

Now (1, −1)T is an eigenvector of B with eigenvalue s, and since this eigenvalue is simple,
and A and B commute, it follows that (1, −1)T is also an eigenvector of A, and the
corresponding eigenvalue must then be λ j. This implies that if we partition A the same
way as we partitioned B, with

then A11 1 = A22 1 = 1
2-(k + λ j)1 and A12 1 = A12

T 1 = 1
2-(k − λ j)1.A =













A11 A12

A T
12 A22

,

Since λj must be an integer, and b(x) = m(x)/(x − k)(x − λj), where m is the minimal
polynomial of G, it follows from Lemma 1.3.5 that b has integral coefficients, and so B is
an integral matrix. But then v t + s and v t − s.

COROLLARY 3.2.4. If G is a connected walk-regular graph with degree k, and λ is a
simple eigenvalue, then k − λ is even.

As a consequence of the divisibility conditions in Theorem 3.2.3 we derive that there are
no graphs with feasible spectrum {[8]1, [2]7, [−2]9, [−4]1} (on 18 vertices), or
{[13]1, [5]1, [1]22, [−5]8} (on 32 vertices).
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3.2.3. A useful idea

Let G be a connected k-regular graph on v vertices with four eigenvalues k, λ1, λ2 and λ3,
and adjacency matrix A. The idea of Theorem 3.2.3 also turns out to be very useful when
we do not have a simple eigenvalue. The matrix C = C(λ1, λ2) defined by

C(λ1, λ2) = (A − λ1I)(A − λ2I) −
(k − λ1)(k − λ2)

v
J

is a symmetric matrix with row sums zero and one nonzero eigenvalue (λ3 − λ1)(λ3 − λ2)
with multiplicity m3 (the multiplicity of λ3 as an eigenvalue of G). Now C or −C is a
positive semidefinite matrix of rank m3, and C has constant diagonal
k + λ1λ2 − (k − λ1)(k − λ2)/v. Of course, as A2 is a matrix with nonnegative integral entries
and A is a (0, 1)-matrix, the other entries of C are very restricted. Especially when m3 is
small we get strong restrictions on the structure of G. This enables us to show uniqueness
of the graph in Proposition 3.3.5, and prove the nonexistence of graphs in a substantial
number of cases in Section 3.4. It also proved to be a powerful tool in the computer
search by Spence and the author (cf. [40]).

3.3. Examples, constructions and characterizations

3.3.1. Distance-regular graphs and association schemes

Several examples of graphs with four distinct eigenvalues can be contructed from distance-
regular graphs, or more generally, association schemes. The graphs are obtained by taking
the union of some classes (or just one class) as adjacency relation. In general, graphs from
d-class association schemes have d + 1 eigenvalues, but sometimes some eigenvalues
coincide. Many examples come from three-class association schemes (see the next
chapter), such as the Johnson scheme J(n, 3) and the Hamming scheme H(3, q). An
example coming from a five-class association scheme is obtained by taking distance 3 and
5 in the Dodecahedron as adjacency relation. The resulting graph has spectrum
{[7]1, [2]8, [−1]5, [−3]6}.

In general distance-regularity is not determined by the spectrum of the graph. Haemers
[59] proved that it is, provided that some additional conditions are satisfied. Haemers and
Spence [61] found (almost) all graphs with the spectrum of a distance-regular graph with
at most 30 vertices. Most of these graphs have four distinct eigenvalues.

In the case that we only have one integral eigenvalue, all known examples come from
pseudocyclic three-class association schemes. A large family of examples comes from the
so-called cyclotomic schemes. We can define the associated graphs Cycl(v) as follows. Let
v ≡ 1 (mod 3) be a prime power. Take as vertices the elements of the field GF(v). Two
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vertices are adjacent if their difference is a cube in the field. The smallest example is the
7-cycle C7. It is determined by its spectrum, as are Cycl(13) and Cycl(19), which can be
proven by hand.

More of the examples to come will turn out to be one of the relations in a three-class
association scheme. In this chapter, however, we shall focus on the number of distinct
eigenvalues.

3.3.2. Bipartite graphs

Examples of bipartite graphs with four distinct eigenvalues are the incidence graphs of
symmetric 2-(v, k, λ) designs. We shall denote such graphs by IG(v, k, λ). It is proven by
Cvetković, Doob and Sachs [33, p. 166] that these are the only examples, i.e. a connected
bipartite regular graph with four distinct eigenvalues must be the incidence graph of a
symmetric 2-(v, k, λ) design. Moreover, it is distance-regular and its spectrum is

{[k]1, [ k − λ ]v−1, [− k − λ ]v−1, [−k]1}.

3.3.3. The complement of the union of strongly regular graphs

Suppose G is regular with tv vertices and spectrum {[k]t, [r]tf, [s]tg}. Then G is the union
of t strongly regular graphs (all with the same spectrum and hence the same parameters),
and the complement of G is a connected regular graph with spectrum

{[tv − k − 1]1, [−s − 1]tg, [−r − 1]tf, [−k − 1]t − 1},

so it has four distinct eigenvalues (if t > 1). In general, if a connected regular graph has
four distinct eigenvalues, then its complement is also connected and regular with four
distinct eigenvalues, or it is disconnected, and then it is the union of strongly regular
graphs, all having the same spectrum.

3.3.4. Product constructions

If G is a graph with adjacency matrix A, then we denote by G⊗ Jn the graph with

adjacency matrix A⊗ Jn, and by G Jn we denote the graph with adjacency matrix

(A + I)⊗ Jn − I. If G is connected and regular, then so are G⊗ Jn and G Jn. Note that

G⊗ Jn = G Jn, where G is the complement of G. If G has v vertices and spectrum
{[k]1, [r] f, [0]m, [s]g}, where m is possibly zero, then G⊗ Jn has vn vertices and spectrum
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{[kn]1, [rn] f, [0]m + vn − v, [sn]g}.

Similarly, if G has v vertices and spectrum {[k]1, [r] f, [−1]m, [s]g}, where m is possibly

zero, then G Jn has vn vertices and spectrum

{[kn + n − 1]1, [rn + n − 1] f, [−1]m + vn − v, [sn + n − 1]g}.

So, if we have a strongly regular graph or a connected regular graph with four distinct
eigenvalues of which one is 0 or −1, then this construction produces a bigger graph with
four distinct eigenvalues. The following proposition is a characterization of C5⊗ Jn, from

which its uniqueness and the uniqueness of its complement C5 Jn follows.

Figure 3.3.1. The graphs C5⊗ J2 and C5 J2

PROPOSITION 3.3.1. Let G be a connected regular graph with four distinct eigenvalues and
adjacency matrix A. If rank(A) ≤ 5 and G has no triangles (∆ = 0), then G is isomorphic
to C5⊗ Jn for some n.

Proof. Let G have v vertices and degree k. First we shall prove that G has diameter 2.
Suppose G has diameter 3 and take two vertices x, y at distance 3. Let A be partitioned
into two parts, where one part contains y and the neighbours of x. Then

A =










Ok+1,k+1 N

N T B
.

Since rank(A) ≤ 5, it follows that rank(N) ≤ 2. Now write

N =










1
k

N1

0 N2

, and N′ =










0
k

N1

1 N2

.
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Since the all-one vector is in the column space of N (N has constant row sums k),
rank(N′) ≤ rank(N), so rank(N1) ≤ 1. But then N1 = (Jk, k − 1 O), and we have a subgraph
Kk, k, so it follows that G is disconnected, which is a contradiction. So G has diameter 2.
Next, let A be partitioned into two parts where one part contains the neighbours of x. Then

A =










Ok,k N

N T B
,

with rank(N) ≤ 2. If rank(N) = 1 then N = Jk, k, and so G is a bipartite complete graph Kk, k,
but then G only has three distinct eigenvalues. So rank(N) = 2. Now write

N =










Jn,3k−v Jn,v−2k On,v−2k

Jk−n,3k−v Ok−n,v−2k Jk−n,v−2k

,

for some n. Note that since rank(N) = 2, we have that all parts in N are nonempty. Since
G has no triangles, it follows from Lemma 3.2.1 that the number of quadrangles ξ through
an edge is constant. If we count the number of quadrangles through x (which corresponds
to one of the first 3k − v columns of N) and a vertex y which corresponds to one of the
first n rows of N (x and y are adjacent), then we see that

ξ = (n − 1)(k − 1) + (k − n)(3k − v − 1) = (k − 1)2 + (k − n)(2k − v) .

On the other hand, if we count the number of quadrangles through x and a vertex z which
corresponds to one of the last k − n rows of N, then we see that

ξ = (k − n − 1)(k − 1) + n(3k − v − 1) = (k − 1)2 + n(2k − v) .

So n = 1
2-k and since A has rank at most 5 and zero diagonal it follows that A is the

adjacency matrix of C5⊗ Jn.

COROLLARY 3.3.2. For any n, C5⊗ Jn and C5 Jn are uniquely determined by their spectra.

Next consider IG(l, l − 1, l − 2), the incidence graph of the unique (trivial)
2-(l, l − 1, l − 2) design. It can be obtained by removing a complete matching from the
complete bipartite graph Kl, l, and is the complement of the l × 2 grid.
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PROPOSITION 3.3.3. For each l and n, the graph IG(l, l − 1, l − 2) Jn is uniquely
determined by its spectrum.

Proof. Note that for l = 1 or 2, the statement is trivial. So suppose l > 2. Let G be a graph
with adjacency matrix A and spectrum

{[nl − 1]1, [2n − 1]l − 1, [−1]2nl − l − 1, [−n(l − 2) − 1]1}.

Now let B = (A − (2n − 1)I)(A + I), then we can partition A and B according to Theorem
3.2.3 such that

A =













A11 A12

A T
12 A22

and B =










n(l − 2)Jnl Onl

Onl n(l − 2)Jnl

,

where A11 and A22 have row sums n − 1 and A12 has row sums nl − n. If two vertices x
and y from the same part of the partition are adjacent, then it follows that
A2

xy = n(l − 2) + 2n − 2 = k − 1, so x and y have the same neighbours, different from x
and y themselves. Since this holds for any the n − 1 neighbours of x, which are in the

same part as x, it follows that G = H Jn, for some graph H. Since H must have the same
spectrum as IG(l, l − 1, l − 2), and this graph is uniquely determined by its spectrum, G is

isomorphic to IG(l, l − 1, l − 2) Jn.

If A is the adjacency matrix of a conference graph G, that is, a strongly regular graph
which has parameters (v = 4µ + 1, k = 2µ , µ − 1, µ) , and spectrum
{[k]1, [−1

2- + 1
2-√v]k, [−1

2- − 1
2-√v]k}, then the graph with adjacency matrix

has spectrum











A I

I J − I − A

{[k + 1]1, [k − 1]1, [−1
2- + 1

2-√v+ 4]2k, [−1
2- − 1

2-√v+ 4]2k}.

We shall call this graph the twisted double of G. We shall prove that this is the only way
to construct a graph with this spectrum.

PROPOSITION 3.3.4. Let v = 4µ + 1 and k = 2µ. Then G is a graph with spectrum
{[k + 1]1, [k − 1]1, [−1

2- + 1
2-√v+ 4]2k, [−1

2- − 1
2-√v+ 4]2k} if and only if G is the twisted

double of a conference graph on v vertices.
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Proof. Let A be the adjacency matrix of G and let B be as in the proof of Theorem 3.2.3,
then we find that

B = A2 + A − (µ + 1) I =










µJ J

J µJ
,

and that we can write A (A12 has row and column sums 1) as

A =










A11 I

I A22

, and so B =













A11
2 + A11 − µI A11 + A22 + I

A11 + A22 + I A22
2 + A22 − µI

.

This implies that A11
2 + A11 − µI = µJ and A11 + A22 + I = J, so A11 is the adjacency matrix

of a strongly regular graph with parameters (v = 4µ + 1, k = 2µ, µ − 1, µ), and A22 is the
adjacency matrix of its complement.

Since the conference graphs on 9, 13 and 17 vertices are unique, also their twisted doubles
are uniquely determined by their spectra. Since there is no conference graph on 21
vertices, there is also no graph on 42 vertices with spectrum {[11]1, [9]1, [2]20, [−3]20}. The
twisted double of the 5-cycle is the Petersen graph.

There are 15 conference graphs on 25 vertices, of which only one is isomorphic to its
complement (cf. [87]). Since complementary graphs give rise to the same twisted double,
it follows that there are precisely 8 graphs on 50 vertices with spectrum
{[13]1, [11]1, [−1

2- + 1
2-√29]24, [−1

2- − 1
2-√29]24}.

Let G and G′ be graphs with adjacency matrices A and A′, and eigenvalues λi,
i = 0, 1,..., v − 1, and λ i′, i = 0, 1,..., v′ − 1, respectively. Then the graph with adjacency
matrix A⊗ Iv′ + Iv⊗ A′ has eigenvalues λi + λ j′, i = 0, 1,..., v − 1, j = 0, 1,..., v′ − 1. We shall
denote this graph, which is sometimes called the sum [33] or the Cartesian product of G
and G′ by G⊕ G′. If G is a strongly regular graph with spectrum {[k]1, [r] f, [s]g}, and G′ is
the complete graph on m vertices, then G⊕ G′ is a graph with spectrum

{[k + m − 1]1, [k − 1]m − 1, [r + m − 1] f, [r − 1] f(m − 1), [s + m − 1]g, [s − 1]g(m − 1)}.

So we get a graph with four distinct eigenvalues if m = k − r = r − s. Examples are
G⊕ Km, where G is the complete bipartite graph Km, m or the lattice graph L2(m) and G⊕ K4,
where G is the Clebsch or the Shrikhande graph. Also Km⊕ Kn (m > n ≥ 2) is a graph with
four distinct eigenvalues: it is the same graph as the line graph of the complete bipartite
graph Km, n.
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PROPOSITION 3.3.5. The graph K3, 3⊕ K3 is uniquely determined by its spectrum.

Proof. Let G be a graph with spectrum {[5]1, [2]6, [−1]9, [−4]2} and adjacency matrix A.
Then G is a 5-regular graph on 18 vertices with one triangle through each vertex. The
matrix C = C(2, −1) = A2 − A − 2I − J, as defined in Section 3.2.3 is a positive
semidefinite integral matrix of rank two with diagonal 2. Thus C is the Gram matrix of a
set of vectors in 2 of length √2 with mutual inner products ±2, ±1 or 0.

If two vertices are adjacent and the vectors representing these vertices have inner
product −1, then they are in a triangle. This implies that any vertex is adjacent to precisely
two vertices such that their inner product is −1, and that the inner product between those
two vertices is also −1. If two vertices have inner product −2 then they are adjacent, and if
they have inner product 1 or 2 then they are not adjacent. Without loss of generality we
assume that there is a vertex represented by vector √2(1, 0)T. This vertex must be in a
triangle with vertices represented by vectors √2(−1

2-,
1
2-√3)T and √2(−1

2-, −1
2-√3)T. Furthermore it

is adjacent to three vertices represented by √2(−1, 0)T. In turn, such a vertex is in a
triangle with vertices represented by vectors √2(1

2-,
1
2-√3)T and √2(1

2-, −1
2-√3)T, and is adjacent

to three vertices represented by √2(1, 0)T.

In this way we find 18 vertices: each of the 6 mentioned vectors represents 3 vertices.

Figure 3.3.2. Vectors representing the vertices of K3, 3⊕ K3

Now, up to isomorphism, all adjacencies follow from the inner products and the fact that
every vertex is in one triangle. The graph we obtain is K3, 3⊕ K3.

3.3.5. Line graphs and other graphs with least eigenvalue −2

If G is a strongly regular graph (k ≠ 2) or a bipartite regular graph with four distinct
eigenvalues (the incidence graph of a symmetric design, cf. Section 3.3.2), then its line
graph L(G) has four distinct eigenvalues. If G is strongly regular with v vertices and
spectrum {[k]1, [r] f, [s]g}, then it follows that L(G) has 1

2-vk vertices and spectrum

{[2k − 2]1, [r + k − 2] f, [s + k − 2]g, [−2]
1
2-vk − v}.
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If G is the incidence graph of a symmetric design, with v vertices and spectrum
{[k]1, [r] f, [−r] f, [−k]1}, then L(G) has 1

2-vk vertices and spectrum

{[2k − 2]1, [r + k − 2] f, [−r + k − 2] f, [−2]
1
2-vk − v + 1}.

Also the line graph of the complete bipartite graph Km, n has four distinct eigenvalues
(if m > n ≥ 2): its spectrum is

{[m + n − 2]1, [m − 2]n − 1, [n − 2]m − 1, [−2]mn − m − n + 1}.

Now these graphs provide almost all connected regular graphs with four distinct
eigenvalues and least eigenvalue at least −2. It was proven by Doob and Cvetković [47]
that a regular connected graph with least eigenvalue greater than −2 is Kn or C2n + 1 for
some n ≥ 1. So the only one with four distinct eigenvalues is C7. Bussemaker, Cvetković
and Seidel [17] found all connected regular graphs with least eigenvalue −2, which are
neither line graphs, nor cocktail party graphs. Among them are 12 graphs with four
distinct eigenvalues.

BCS9 : one graph on 12 vertices with spectrum {[4]1, [2]3, [0]3, [−2]5},
BCS70 : one graph on 18 vertices with spectrum {[7]1, [4]2, [1]5, [−2]10},
BCS153-BCS160 : eight graphs on 24 vertices with spectrum {[10]1, [4]4, [2]3, [−2]16},
BCS179 : one graph on 18 vertices with spectrum {[10]1, [4]2, [1]4, [−2]11},
BCS183 : one graph on 24 vertices with spectrum {[14]1, [4]4, [2]2, [−2]17}.

Cocktail party graphs are strongly regular, so we are left with the line graphs. Now Doob
[46] showed that if G has four distinct eigenvalues, least eigenvalue −2, and is the line
graph of, say H, then H is a strongly regular graph, or the incidence graph of a symmetric
design, or a complete bipartite graph Km, n, with m > n ≥ 2.

Furthermore it is known (cf. [33, p. 175]) that L(Km, n) is not characterized by its
spectrum if and only if {m, n} = {6, 3} or {m, n} = {2t2 + t, 2t2 − t} and there exists a
symmetric Hadamard matrix with constant diagonal of order 4t2. In the first case there is
one graph with the same spectrum: BCS70. If G is the line graph of the incidence graph of
a symmetric 2-(v, k, λ) design, then the only possible graphs with the same spectrum are
the line graphs of the incidence graphs of other symmetric 2-(v, k, λ) designs, unless
(v, k, λ) = (4, 3, 2) (then the incidence graph of the design is the Cube). In that case there
is one exception: BCS9.

Note that the complement of a connected regular graph with least eigenvalue −2, is a
graph with second largest eigenvalue 1.



3.3. Examples, constructions and characterizations 59

3.3.6. Other graphs from strongly regular graphs

In the previous sections we already used strongly regular graphs to construct other graphs.
In this section we shall construct graphs from strongly regular graphs having certain
properties, like having large cliques or cocliques, having a spread, or a regular partition
into halves.

3.3.6.1. Hoffman cocliques and cliques

If G is a nonbipartite strongly regular graph on v vertices, with spectrum {[k]1, [r] f, [s]g},
and C is a coclique of size c meeting the Hoffman (Delsarte) bound, i.e. c = −vs/(k − s),
then the induced subgraph G C on the vertices not in C is a regular, connected graph
with spectrum

{[k + s]1, [r] f−c+1, [r + s]c−1, [s]g−c},

so it has four distinct eigenvalues if c < g. This is an easy consequence of a theorem by
Haemers and Higman [60] on strongly regular decompositions of strongly regular graphs.
By looking at the complement of the graph, a similar construction works for cliques
instead of cocliques. For example, by removing a 3-clique (a line) in the generalized
quadrangle GQ(2, 2) (the complement of T(6)) we obtain a graph with spectrum
{[5]1, [1]6, [−1]2, [−3]3}. If we remove a 6-coclique from a strongly regular graph with
parameters (26, 10, 3, 4) (these exist), then we get a graph with spectrum
{[7]1, [2]8, [−1]5, [−3]6}.

Figure 3.3.3. The graph GQ(2, 2) 3-clique



60 Regular graphs with four eigenvalues

3.3.6.2. Spreads

If G admits a spread, that is, a partition of the vertices into cliques of size 1 − k/s (i.e.,
meeting the Hoffman bound), then by removing the spread, that is, the edges in these
cliques, we obtain a graph with spectrum

{[k + k
s

]1, [r + 1]k (−s−1)/µ, [r + k
s

] f−k (−s−1)/µ, [s + 1]g }.

Here the graphs come from 3-class association schemes. For example, if we remove a
spread from the generalized quadrangle GQ(2, 4), we get a distance-regular graph with
spectrum {[8]1, [2]12, [−1]8, [−4]6}. For more on spreads in strongly regular graphs we
refer to the paper by Haemers and Tonchev [62].

3.3.6.3. Seidel switching

Let G be a strongly regular graph on v vertices admitting a regular partition into halves
with degrees (1

2-(k + s), 1
2-(k − s)), so its adjacency matrix A can be written as

A =













A11 A12

A T
12 A22

,

where all parts have the same size and A11, A22 have row sums 1
2-(k + s). When we switch

with respect to this partition we obtain a graph with spectrum

{[s + 1
2-v]1, [r] f, [s]g − 1, [k − 1

2-v]1}.

Note that we can interchange the role of r and s. It follows from Theorem 3.2.3 that this
is the only way to construct a graph with this spectrum.

THEOREM 3.3.6. If G is an (s + 1
2-v)-regular graph with four distinct eigenvalues on v

vertices and with spectrum {[s + 1
2-v]1, [r] f, [s]g − 1, [k − 1

2-v]1}, for some k, r and s, then G
can be obtained by Seidel switching in a strongly regular graph with spectrum
{[k]1, [r] f, [s]g}, admitting a regular partition into halves with degrees (1

2-(k + s), 1
2-(k − s)).

This theorem may be useful in case we want to prove uniqueness or nonexistence of
certain graphs, such as in some of the following examples, where we find some infinite
families of graphs with four distinct eigenvalues. The first two families are obtained from
the lattice graphs L2(n) for even n. Recall that the lattice graph is the graph on the n2
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ordered pairs (i, j), with i, j = 1, 2,..., n, where two vertices are adjacent if they agree in
one of the coordinates. Its spectrum is . If we take for one{[2n − 2]1, [n − 2]2n−2, [−2](n−1)2

}
part of the partition the set {(i, j) i, j = 1,..., 1

2-n} ∪ {(i, j) i, j = 1
2-n + 1,..., n}, then we

have a regular partition into halves with degrees (n − 2, n). Thus by Seidel switching we
obtain a graph with spectrum

{[1
2-n

2 − 2]1, [n − 2]2n − 2, [−2](n − 1)2 − 1, [2n − 1
2-n

2 − 2]1}.

Note that (in general) there are different ways to obtain regular partitions into halves with
these degrees, and so possibly different graphs with this spectrum.

If we take for one part of the partition the set {(i, j) i = 1,..., n, j = 1,..., 1
2-n}, then we

have a regular partition into halves with degrees (3
2-n − 2, 1

2-n). Thus we obtain a graph with
spectrum

{[1
2-n

2 + n − 2]1, [n − 2]2n − 3, [−2](n − 1)2

, [2n − 1
2-n

2 − 2]1},

so for n ≥ 6 it has four distinct eigenvalues. The following proposition proves that this
graph is uniquely determined by its spectrum.

PROPOSITION 3.3.7. For each even n ≥ 6, there is exactly one graph on n2 vertices with
spectrum {[1

2-n
2 + n − 2]1, [n − 2]2n − 3, [−2](n − 1)2

, [2n − 1
2-n

2 − 2]1}.

Proof. According to the previous theorem, a graph having the required spectrum must be
obtained by Seidel switching in a strongly regular graph with spectrum

. For n ≠ 4 the only graph with this spectrum is the lattice{[2n − 2]1, [n − 2]2n−2, [−2](n−1)2

}
graph L2(n). Furthermore, we must have a regular partition into halves with degrees
(3

2-n − 2, 1
2-n). Now there is (up to isomorphism) exactly one way to do this.

This partition can also be used for the graphs Lm(n) for "arbitrary" m. Recall that this
graph is obtained from an orthogonal array, that is, an m × n2 matrix M such that for any
two rows a, b we have that {(Mai, Mbi) i = 1,..., n2} = {(i, j) i, j = 1,..., n}. The graph
has vertices 1, 2,..., n2, and two vertices x, y are adjacent if Mix = Miy for some i. This
graph is strongly regular with spectrum . If we{[mn − m]1, [n − m]m(n−1), [−m](n−1)(n−m+1)}
now take for one part of the partition the set {i M1i = 1,..., 1

2-n}, then we have a regular
partition into halves with degrees (n − 1 + (m − 1)(1

2-n − 1), 1
2-(m − 1)n). Thus we obtain a

graph with spectrum

{[1
2-n

2 + n − m]1, [n − m]m(n − 1) − 1, [−m](n − 1)(n − m + 1), [mn − 1
2-n

2 − m]1}.

Another family of graphs can be obtained from the triangular graphs T(n), for
n ≡ 1 (mod 4). Recall that the triangular graph T(n) is the graph on the 1

2-n(n − 1)
unordered pairs taken from the n symbols 1, 2,..., n, where two pairs are adjacent if they
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have a symbol in common. Its spectrum is {[2n − 4]1, [n − 4]n − 1, [−2]
1
2-n(n − 3)}. For each

n ≡ 1 (mod 4), we now get a regular partition into halves with degrees (n − 3, n − 1) by
taking for one part the pairs {i, j}, i ≠ j with

i = 1,..., 1
4-(n − 1), j = 2,..., 1

2-(n − 1) + 1, or
i = 1

4-(n − 1) + 1,..., 1
2-(n − 1), j = 1

2-(n − 1) + 2,..., 3
4-(n − 1) + 1, or

i = 1
2-(n − 1) + 1,..., n − 1, j = 3

4-(n − 1) + 2,..., n.

For n ≡ 1 (mod 4) we thus obtain a graph with spectrum

{[1
4-n(n − 1) − 2]1, [n − 4]n − 1, [−2]

1
2-n(n − 3) − 1, [2n − 1

4-n(n − 1) − 4]1}.

Note that (in general) there are more ways to obtain such partitions, and so possibly
different graphs with this spectrum. The following lemma shows that we need the
restriction n ≡ 1 (mod 4), and gives a property of the partitions.

LEMMA 3.3.8. If the triangular graph T(n) admits a regular partition into halves V1 and
V2, with degrees (n − 3, n − 1), then n ≡ 1 (mod 4) and for each i = 1,..., n, we have that
{j ≠ i {i, j} ∈ V1} = 1

2-(n − 1).

Proof. First, note that the number of vertices 1
2-n(n − 1) should be even, so that

n ≡ 0 or 1 (mod 4). Now fix i, and let m = {j ≠ i {i, j} ∈ V1} . If {i, j} ∈ V1, then we
have

{h ≠ i, j {h, j} ∈ V1} + {h ≠ i, j {i, h} ∈ V1} = n − 3,

so {h ≠ j {h, j} ∈ V1} = n − 1 − m. If {i, j} ∈ V2, then we must have that

{h ≠ i, j {h, j} ∈ V1} + {h ≠ i, j {i, h} ∈ V1} = n − 1,

and then also {h ≠ j {h, j} ∈ V1} = n − 1 − m. Now it follows that

1
2-n(n − 1),m + (n − 1)(n − 1 − m) =

n

j=1

{h ≠ j {h, j} ∈ V1} = 2 V1 =

which implies that m = 1
2-(n − 1), hence n ≡ 1 (mod 4).

Since the triangular graph T(n) is uniquely determined by its spectrum unless n = 8,
Theorem 3.3.6 and Lemma 3.3.8 imply the following result.

PROPOSITION 3.3.9. For n ≡ 0 (mod 4), n ≠ 8, there is no graph with spectrum
{[1

4-n(n − 1) − 2]1, [n − 4]n − 1, [−2]
1
2-n(n − 3) − 1, [2n − 1

4-n(n − 1) − 4]1}.
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In the case n = 8 the considered spectrum has only three eigenvalues, and it is the
spectrum of the triangular graph T(8) and the Chang graphs. The next lemma shows that
the "other" regular partition into halves is not possible, which together with Theorem 3.3.6
proves Proposition 3.3.11.

LEMMA 3.3.10. For n ≠ 4, the triangular graph T(n) does not admit a regular partition
into halves with degrees (3

2-n − 4, 1
2-n).

Proof. Suppose we have such a partition with halves V1 and V2. Both n and 1
2-n(n − 1) are

even, so n ≡ 0 (mod 4). So we may suppose that n ≥ 8. Now fix i and let
m = {j ≠ i {i, j} ∈ V1} . Without loss of generality we may assume that m > 0. Then
we find that if {i, j} ∈ V1, then

{h ≠ j {h, j} ∈ V1} = 3
2-n − 2 − m.

If {i, j} ∈ V2, then we must have that

{h ≠ j {h, j} ∈ V1} = 1
2-n − m.

This implies that m ≤ 1
2-n unless there is no j with {i, j} ∈ V2. So m ≤ 1

2-n or m = n − 1.
Now let j be such that {i, j} ∈ V1, and m′ = {h ≠ j {h, j} ∈ V1} , then also m′ ≤ 1

2-n or
m′ = n − 1. Without loss of generality we may assume that m ≥ m′, and since
m + m′ = 3

2-n − 2, we must have m = n − 1 and m′ = 1
2-n − 1. Since m′ ≥ 3, there is an

h ≠ i, j such that {i, h} ∈ V1 and {j, h} ∈ V1. Now let m″ = {g ≠ h {h, g} ∈ V1} , then
m + m″ = 3

2-n − 2 = m′ + m″, so m = m′, which is a contradiction.

PROPOSITION 3.3.11. For n ≠ 4, there is no graph with spectrum
{[1

4-n(n − 1) + n − 4]1, [n − 4]n − 2, [−2]
1
2-n(n − 3), [2n − 1

4-n(n − 1) − 4]1}.

For all parameter sets of strongly regular graphs on at most 63 vertices, except for T(9)
and L2(6), we shall now give an example of how we can obtain a graph with four distinct
eigenvalues, using Seidel switching. The only graphs we have to consider are the strongly
regular graphs on 40 vertices with spectrum {[12]1, [2]24, [−4]15}, the Hoffman-Singleton
graph, which is the unique graph on 50 vertices with spectrum {[7]1, [2]28, [−3]21} and the
Gewirtz graph, which is the unique graph on 56 vertices with spectrum
{[10]1, [2]35, [−4]20}.

Now there is one generalized quadrangle GQ(3, 3) (the collinearity graph of which is a
strongly regular graph on 40 vertices) with a spread (cf. [89]), and by splitting it into two
equal parts, we have a regular partition into halves with degrees (7, 5). Thus we obtain a
graph with spectrum {[22]1, [2]23, [−4]15, [−8]1}. Haemers [57, ex. 6.2.2] constructed a
strongly regular graph on 40 vertices admitting a regular partition into halves with degrees
(4, 8). This yields a graph with spectrum {[16]1, [2]24, [−4]14, [−8]1}.
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Since it is possible to partition the vertices of the Hoffman-Singleton graph into two
halves such that the induced subgraphs on each of the halves is the union of five
pentagons (cf. [16]), we have a regular partition into two halves with degrees (2, 5), and
so we can construct a graph with spectrum {[22]1, [2]28, [−3]20, [−18]1}.

Since it is possible to split the Gewirtz graph into two Coxeter graphs (cf. [14]), we
have a regular partition into two halves with degrees (3, 7), and so we obtain a graph with
spectrum {[24]1, [2]35, [−4]19, [−18]1}. The Gewirtz graph also contains a regular graph on
28 vertices of degree 6 (cf. [14]), and so we have a regular partition into two halves with
degrees (6, 4). Thus we obtain a graph with spectrum {[30]1, [2]34, [−4]20, [−18]1}.

3.3.6.4. Subconstituents

Let G be a strongly regular graph with parameters (v, k, λ, µ) and spectrum
{[k]1, [r] f, [s]g}. For any vertex x, we denote by G(x) the induced subgraph on the set of
neighbours of x. By G2(x) we denote the induced subgraph on the vertices distinct from x
which are not adjacent to x. These (regular) graphs are called the subconstituents of G
with respect to x. Cameron, Goethals and Seidel [24] proved that there is a one-one
correspondence between the restricted eigenvalues ∉ {r, s} of the subconstituents of G,
such that corresponding eigenvalues have the same restricted multiplicity, and add up to
r + s. Here we call an eigenvalue restricted if it has an eigenvector orthogonal to the all-
one vector. Its restricted multiplicity is the dimension of its eigenspace which is
orthogonal to the all-one vector. If λ = 0, then G(x) is a graph without edges, and G2(x) is
a (k − µ)-regular graph with restricted eigenvalues r + s, and possibly r and s, with
multiplicities k − 1, and say mr and ms, respectively. Since µ = −(r + s), we find that
mr = f − k and ms = g − k, so G2(x) has spectrum .{[k + r + s]1, [r] f−k, [r + s]k−1, [s]g−k}
For example, the Gewirtz graph is a strongly regular graph with λ = 0 and spectrum
{[10]1, [2]35, [−4]20}, so Gewirtz2(x) is a graph with spectrum {[8]1, [2]25, [−2]9, [−4]10}.
Also the Hoffman-Singleton graph Ho-Si is a strongly regular graph with λ = 0, and its
spectrum is {[7]1, [2]28, [−3]21}, so Ho-Si2(x) is a graph with spectrum
{[6]1, [2]21, [−1]6, [−3]14}.

If λ = r and G(x) is the union of (r + 1)-cliques, so it has spectrum
{[r]k/(r + 1), [−1]rk/(r + 1)}, then G2(x) is a (k − µ)-regular graph with restricted eigenvalues
r + s + 1, and possibly r and s, with multiplicities rk/(r + 1), and say mr and ms,
respectively. Since µ = −s, we find that mr = f − k and ms = g − rk/(r + 1) − 1, so G2(x)
has spectrum . Examples of such graphs can{[k + s]1, [r] f−k, [r + s + 1]rk/(r+1), [s]g−rk/(r+1)−1}
be found when G is the graph of a generalized quadrangle.

3.3.7. Covers

In this section we shall construct n-covers of C3⊗ Jn, C3 Jn (which is isomorphic to K3n),
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C5 Jn, C6 Jn and Cube Jn, having four distinct eigenvalues. Let C be the n × n circulant
matrix defined by Cij = 1 if j = i + 1 (mod n), and Cij = 0 otherwise. Then let A and B be
the n2 × n2 matrices defined by

A =



















I I I

C C C

Cn−1 Cn−1 Cn−1

, and B =



















I C Cn−1

Cn−1 I

C

C Cn−1 I

.

Furthermore, let D = (Jn − In)⊗ In. Then the graphs with adjacency matrices

A3 =















O A A T

A T O A

A A T O

, B3 =















D A A T

A T D A

A A T D

, B5 =























D A O O A T

A T D A O O

O A T D A O

O O A T D A

A O O A T D

are n-covers of C3⊗ Jn, C3 Jn and C5 Jn, respectively. The graphs with adjacency matrices

B6 =



























D O O O A T A T

O D O A O D+ I

O O D A D+ I O

O A T A T D O O

A O D+ I O D O

A D+ I O O O D

, B8 =



































D O O O O D+ I B B

O D O O D+ I O B B

O O D O B B O D+ I

O O O D B B D+ I O

O D+ I B B D O O O

D+ I O B B O D O O

B B O D+ I O O D O

B B D+ I O O O O D

are n-covers of C6 Jn and Cube Jn, respectively.

The matrix A3 has spectrum . The crucial step to{[2n]1, [n]3n−3, [0]3(n−1)2

, [−n]3n−1}
show this is that (The multiplicities follow from the eigenvalues). ForA3(A3

2 − n2I) = 2nJ

n = 2 we get the line graph of the Cube, and for n = 3 we get a graph, which has the
same spectrum as (but is not isomorphic to) the cubic graph H(3, 3).
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Figure 3.3.4. The line graph of the Cube, a 2-cover of C3⊗ J2: three different views

The spectrum of B3 is {[3n − 1]1, [−1]3n2 − 6n + 5, [−1 + 1
2-n(1 ± √5)]3n − 3}. The crucial step

here is that For n = 2 we get the Icosahedron.(B3 + I)((B3 + I)2 − n(B3 + I) − n2I) = 5nJ.

Figure 3.3.5. The Icosahedron, a 2-cover of C3 J2: three different views

Similarly we find that B5 has spectrum {[3n − 1]1, [−1]5n2 − 10n + 5, [−1 + 1
2-n(1 ± √5)]5n − 3}, B6

has spectrum , and B8 has spectrum{[3n − 1]1, [2n − 1]4n−2, [−1]6n2 −6n+2, [−n − 1]2n−1}

.{[4n − 1]1, [2n − 1]6n−3, [−1]8n2 −8n+3, [−2n − 1]2n−1}

Figure 3.3.6. 2-covers of C5 J2, C6 J2 and Cube J2
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3.4. Nonexistence results

Let G be a k-regular graph on v vertices with ∆ triangles and Ξ quadrangles through every
vertex. Fix a vertex x, and let σi be the number of vertices y adjacent to x, such that
A2

xy = i, and let τi be the number of vertices y not adjacent to x, such that A2
xy = i. Then

counting arguments show that

We shall call this system of equations the (σ, τ)-system.

i

σi = k,
i

iσi = 2∆,
i

τi = v − k − 1,
i

iτi = k(k − 1) − 2∆, and
i

i

2
(σi + τi) = Ξ.

In the following we examine several feasible spectra and prove the nonexistence of a
graph in each case. In each of the proofs of the following propositions we assume the
existence of a graph G with the given spectrum and A will denote its adjacency matrix.

PROPOSITION 3.4.1. There are no graphs with spectrum {[7]1, [2]15, [−2]5, [−3]9},
{[6]1, [2]9, [1]9, [−3]11}, {[7]1, [2]12, [1]5, [−3]12}, {[6]1, [1 + √10]2, [−1]10, [1 − √10]2},
{[7]1, [1 + 2√3]2, [−1]11, [1 − 2√3]2} or {[8]1, [−1 + √6]7, [1]6, [−1 − √6]7}.

Proof. A graph with the first spectrum would be 7-regular on 30 vertices with ∆ = 3
triangles and Ξ = 12 quadrangles through every vertex. Using the idea of Section 3.2.3, let
C = C(2, −3) = A2 + A − 6I − 5

3-J, then −C is a positive semidefinite matrix with diagonal
2
3-. It follows that C can only have entries −2

3- and 1
3-, and so if x and y are adjacent then

A2
xy = 0 or 1, and if x and y are not adjacent then A2

xy = 1 or 2. But now the (σ, τ)-system
does not have a solution, so we have a contradiction. The other cases go similarly.

PROPOSITION 3.4.2. There are no graphs with spectrum
{[8]1, [2 + 3√2]3, [−1]20, [2 − 3√2]3} or {[9]1, [7]3, [−1]24, [−3]2}.

Proof. The first spectrum would give an 8-regular graph on 27 vertices with ∆ = 22
triangles and Ξ = 102 quadrangles through every vertex. The matrix C as defined in
Section 3.2.3 by C = C(2 + 3√2, −1) = A2 − (1 + 3√2)A − (2 + 3√2)I − (2 − √2)J, is a
positive semidefinite matrix with diagonal 4 − 2√2. It follows that if x and y are adjacent
then A2

xy = 5, 6 or 7, and if x and y are not adjacent then A2
xy = 0 or 1. Now the (σ, τ)-

system has one solution σ7 = 2, σ6 = 0, σ5 = 6, τ1 = 12, τ0 = 6. But then G = H J3, for
some graph H. It follows that H must have spectrum {[2]1, [√2]3, [−1]2, [−√2]3}, but since
such a graph does not exist, we have a contradiction. Similarly, a graph with the second

spectrum must be of the form H J2, where H has spectrum {[4]1, [3]3, [−1]9, [−2]2}, which
is impossible by the results of Section 3.3.5.

The next proposition uses the fact that the number of quadrangles through an edge is
constant (cf. Lemma 3.2.1).
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PROPOSITION 3.4.3. There are no graphs with spectrum
{[8]1, [−1 + √21]4, [0]21, [−1 − √21]4} or {[4]1, [−1

2- + 1
2-√21]4, [0]6, [−1

2- − 1
2-√21]4}.

Proof. Note that if H is a graph with the second spectrum, then H⊗ J2 is a graph with the
first spectrum. Thus it suffices to show that there is no graph with the first spectrum.
Suppose G is such a graph, then G is 8-regular on 30 vertices without triangles, such that
every vertex is in Ξ = 84 quadrangles and every edge is in ξ = 21 quadrangles.

Suppose first of all that G has diameter 2. Suppose x and z are two nonadjacent
vertices such that A2

xz = 1 and let y be their common neighbour. Now the 21 quadrangles
through {x, y} and the 21 quadrangles through {z, y} are distinct, and since there are 42
edges between G(y) {x, z} and G2(y), all these edges contain a neighbour of x or z. Then
it follows that the number of vertices at distance 2 from y is 14, and so G has diameter 3,
which is a contradiction. Thus for any two nonadjacent vertices x and z we must have
A2

xz ≥ 2. But then the (σ, τ)-system has no nonnegative integral solution. Thus G has
diameter 3.

Take a vertex x and let y be a vertex at distance 3 from x. Let A be partitioned into two
parts, where one part contains y and the neighbours of x. Then

A =










O9,9 N

N T B
.

Since rank(A) = 9, it follows that rank(N) ≤ 4. Now write

N =










1
8

N1

0 N2

, and N′ =










0
8

N1

1 N2

.

Since the all-one vector is in the column space of N (N has constant row sums 8),
rank(N′) ≤ rank(N), so rank(N1) ≤ 3. Moreover, N1 has constant row sums 7, and so it
follows that N1 is of the form

N1 =























Jm1,7− t1 − t2

Jm1, t1

Om1, t1

Jm1, t2

Om1, t2

Om1,13− t1 − t2

Jm2,7− t1 − t2

Jm2, t1

Om2, t1

Om2, t2

Jm2, t2

Om2,13− t1 − t2

Jm3,7− t1 − t2

Om3, t1

Jm3, t1

Jm3, t2

Om3, t2

Om3,13− t1 − t2

Jm4,7− t1 − t2

Om4, t1

Jm4, t1

Om4, t2

Jm4, t2

Om4,13− t1 − t2

,

with m1 + m2 + m3 + m4 = 8, and t1, t2 ≠ 0, or that N1 has at most 3 distinct rows. Suppose
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we are in the first case. If we count the number of quadrangles through x and a vertex z
which corresponds to one of the first m1 rows, then we see that

ξ = 7(m1 − 1) + (7 − t2)m2 + (7 − t1)m3 + (7 − t1 − t2)m4.

If we count the number of quadrangles through x and a vertex corresponding to one of the
m2 rows of the second block, then

ξ = 7(m2 − 1) + (7 − t2)m1 + (7 − t1)m4 + (7 − t1 − t2)m3.

From this it follows that m1 + m3 = m2 + m4 = 4 and t1 + t2 = 7. Similarly it follows that
m1 + m2 = m3 + m4 = 4, and so that m1 = m4 and m2 = m3. This implies that G3(x) has 7
vertices and that every vertex in G2(x) has 4 neighbours in G(x). From the Hoffman
polynomial it follows that if y is a vertex at distance 3 from x, then A3

xy = 16, so in turn
every vertex in G3(x) has 4 neighbours in G2(x). But then the induced subgraph on G3(x) is
4-regular on 7 vertices, and this is not possible without triangles.

Thus we are in the second case. Suppose N1 has 4 identical rows. By counting the
number of quadrangles through x and a vertex corresponding to one of these 4 rows it
follows that the other 4 rows are disjoint from the first 4. Further counting gives that the
other 4 rows must also be the same, and again we have that G3(x) has 7 vertices and that
every vertex in G2(x) has 4 neighbours in G(x), which leads to a contradiction. It follows
that we have one row occuring twice and two rows occuring three times. By counting
quadrangles through x and a vertex corresponding to one of the rows occuring twice, we
see that

ξ = 7 + 3t1 + 3t2,

for some t1, t2, and so 14 should be divisible by 3, which is a contradiction.

Next we shall prove the nonexistence of some graphs, assuming that they have an
eigenvalue with multiplicity 2.

PROPOSITION 3.4.4. There are no graphs with spectrum {[7]1, [3]6, [−1]15, [−5]2},
{[10]1, [2]3, [0]18, [−8]2}, {[10]1, [4]2, [0]18, [−6]3} or {[9]1, [4]6, [−1]21, [−6]2}.

Proof. A graph with the first spectrum is 7-regular on 24 vertices with 5 triangles through
each vertex. Let C = C(3, −1) = A2 − 2A − 3I − 4

3-J, then C is a positive semidefinite
matrix of rank two with row sums zero and diagonal 8

3-. Thus C can only have entries
−7

3-, −4
3-, −1

3-,
2
3-,

5
3- and 8

3-.
Now suppose that Cxy = −1

3- for some vertices x and y. Let z be another arbitrary vertex.
Since C has rank two it follows that the principal submatrix of C on vertices x, y and z
has zero determinant, and so either Cxz = 8

3- and Cyz = −1
3- or Cxz = −1

3- and Cyz = 8
3-. But then x
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and y cannot both have row sums zero, and it follows that C has no entries −1
3-. Similarly it

follows that C cannot have entries 5
3-, −7

3- and 2
3-. Thus C can only have entries 8

3- and −4
3-.

Now fix x. For all vertices y adjacent to x, we must have A2
xy = 2 or 6. But x has 7

neighbours, giving that x is in at least 7 triangles, which is a contradiction. The other
cases go similarly.

PROPOSITION 3.4.5. There is no graph with spectrum {[12]1, [3]2, [0]22, [−9]2}.

Proof. Here we would have a 12-regular graph on 27 vertices with ∆ = 6 triangles and
Ξ = 492 quadrangles through every vertex. The matrix C(0, −9) is positive semidefinite of
rank two with row sums zero and diagonal 8

3-. Thus C can only have entries −7
3-, −4

3-, −1
3-,

2
3-,

5
3-

and 8
3-.

Now suppose that Cxy = −1
3- for some vertices x and y. Let z be another arbitrary vertex.

Since C has rank two it follows that the principal submatrix of C on vertices x, y and z
has zero determinant, and so either Cxz = 8

3- and Cyz = −1
3- or Cxz = −1

3- and Cyz = 8
3-. But then x

and y cannot both have row sums zero. Thus C has no entries −1
3-. This implies that if x

and y are adjacent then A2
xy ≠ 0, and since there are only 6 triangles through every vertex,

it follows that A2
xy = 1 (σ1 = 12), and so Cxy = 2

3-. Again, let z be another vertex, then it
follows that Cxz = 2

3-,
8
3- or −7

3-. Now it follows that if x and z are not adjacent, then A2
xz = 7,

10 or 12. But then the (σ, τ)-system has no integral solution, giving a contradiction.

PROPOSITION 3.4.6. There are no graphs with spectrum {[9]1, [3]8, [−1]19, [−7]2} or
{[10]1, [5]2, [0]18, [−5]4}.

Proof. A graph with the first spectrum would be 9-regular on 30 vertices with ∆ = 4
triangles and Ξ = 124 quadrangles through every vertex. Take C(3, −1), which is a
positive semidefinite integral matrix of rank two with diagonal 4. Thus C can only have
entries −4, −3, ..., 3 and 4. Note that since there are 4 triangles through a vertex, it follows
that if x and y are adjacent then A2

xy ≤ 4.
Now suppose that Cxy = 0 for some vertices x and y. Let z be another arbitrary vertex.

Since C has rank two it follows that the principal submatrix of C on vertices x, y and z
has zero determinant, and so Cxz = 0 or ±4. This implies that if x and z are adjacent then
A2

xz = 0 or 4, and if x and z are not adjacent then A2
xz = 2 or 6. But then the (σ, τ)-system

has no solution, so C has no entries 0. Similarly we can show that C has no entries ±1 and
±3. Thus C only has entries ±2 and ±4. This implies that if x and y are adjacent then
A2

xy = 0 or 2, and if x and y are not adjacent, then A2
xy = 0, 4 or 6. The (σ, τ)-system now

has one solution σ0 = 5, σ2 = 4, τ0 = 6, τ4 = 10, τ6 = 4. Now it is not hard to show that a
graph with these parameters does not exist. The other spectrum is even easier, since here
none of the (σ, τ)-systems has a solution.

PROPOSITION 3.4.7. There is no graph with spectrum
{[13]1, [3 + 2√10]2, [−1]25, [3 − 2√10]2}.
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Proof. Such a graph is 13-regular on 30 vertices with ∆ = 62 triangles and Ξ = 570
quadrangles through every vertex. Take the matrix C(3 + 2√10, −1), so
C = A2 − (2 + 2√10)A − (3 + 2√10)I − 7

15−(10 − 2√10)J, which is a positive semidefinite
matrix of rank two with diagonal 8

15−(10 − 2√10). From this it follows that if Axy = 1 then
A2

xy = 9, 10, 11 or 12, and if Axy = 0 then A2
xy = 0, 1, 2 or 3. For a nonnegative integral

solution of the (σ, τ)-system we have σ9 ≥ 6 and σ12 ≤ 2. Now fix a vertex x, and let y
and z be two vertices with A2

xy = A2
xz = 9, then Cxy = Cxz = 8

15−(10 − 2√10) − 3. Since the
principal submatrix on the vertices x, y and z has zero determinant, it follows that
Cyz = 8

15−(10 − 2√10), so A2
yz = 12. For fixed y we have at least 5 choices for z left (σ9 ≥ 6),

so for y we have σ12 ≥ 5, which is a contradiction.

We finish by giving a case where we use the same technique as in the uniqueness proof of
the graph K3, 3⊕ K3.

PROPOSITION 3.4.8. There is no graph with spectrum {[6]1, [3]5, [−1]13, [−4]2}.

Proof. Here we have a 6-regular graph on 21 vertices with ∆ = 5 triangles and Ξ = 20
quadrangles through every vertex. Here we take the matrix C(3, −1), then C is a positive
semidefinite integral matrix of rank two with row sums zero and diagonal 2. Thus C is the
Gram matrix of a set of vectors in 2 of length √2 with mutual inner products ±2, ±1 or 0.
Note that not both 0 and ±1 can occur as inner product, since then also inner products that
are not allowed occur.

Suppose that inner product 0 occurs. Without loss of generality we assume that there is
a vertex represented by vector √2(1, 0)T. The only vectors that can occur now are
±√2(1, 0)T and ±√2(0, 1)T. Since C has row sums zero, it follows that the number of
vertices represented by √2(1, 0)T equals the number of vertices represented by −√2(1, 0)T,
and the number of vertices represented by √2(0, 1)T equals the number of vertices
represented by −√2(0, 1)T. But the number of vertices is odd, which is a contradiction.

It follows that if x and y are adjacent then A2
xy = 1, 2, 4 or 5 and if x and y are not

adjacent then A2
xy = 0, 2 or 3. Now we have the (σ, τ)-system

σ1 + σ2 + σ4 + σ5 = k = 6,
σ1 + 2σ2 + 4σ4 + 5σ5 = 2∆ = 10,

τ0 + τ2 + τ3 = v − k − 1 = 14,
2τ2 + 3τ3 = k(k − 1) − 2∆ = 20,

σ2 + 6σ4 + 10σ5 + τ2 + 3τ3 = Ξ = 20,

which has three solutions: i. σ5 = 1, σ4 = 0, σ2 = 0, σ1 = 5, τ3 = 0, τ2 = 10, τ0 = 4.
ii. σ5 = 0, σ4 = 1, σ2 = 1, σ1 = 4, τ3 = 2, τ2 = 7, τ0 = 5.
iii. σ5 = 0, σ4 = 0, σ2 = 4, σ1 = 2, τ3 = 4, τ2 = 4, τ0 = 6.

By looking at our vector representation we see that if there is a vertex for which we are in
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case ii, then there are vertices (those represented by vectors opposite to the vector
representing our original vertex) for which the (σ, τ)-system does not hold. Similarly, if
there is a vertex for which we are in case iii, then there must be vertices for which we are
in case i.

Thus we may assume that there is a vertex x for which we are in case i. Let y be the
vertex adjacent to x with A2

xy = 5, then the other neighbours of x and y are the same, say
1, 2, 3, 4 and 5. Now A2

xi = 1 for i = 1,..., 5, so Cxi = −2, and i and j are not adjacent, for
all i, j = 1,..., 5. From the principal submatrix of C on vertices x, i and j it follows that
Cij = 2, but then A2

ij = 3, so besides x and y, i and j only have one common neighbour.
This implies that we can identify the 10 vertices z not adjacent to x such that A2

xz = 2 with
the pairs {i, j}, i, j = 1,..., 5, i ≠ j, in such a way that i and j are adjacent to {i, j}. From
the principal submatrix of C on vertices x, i, {j, k}, with i ≠ j, k, it follows that
Ci {j, k} = −1, and so A2

i {j, k} = 0. This implies that the subgraph on the pairs {i, j},
i, j = 1,..., 5 is empty, so that all 10 pairs must be adjacent to the remaining four vertices,
which is a contradiction. Thus we may conclude that there is no graph with the given
spectrum.



Chapter 4

Tegenslag is nodig, je wordt er sterker van
Gebruik het als een voordeel, geloof me dat het kan
Want er komen nieuwe kansen, grijp ernaar als je ze ziet
En hou je ogen open, en vergeet het niet
We hebben altijd nog elkaar

(Tröckener Kecks, Met hart en ziel)

Three-class association schemes

A large class of graphs with few eigenvalues comes from association schemes with few
classes (see Section 1.3.6). The special case of two-class association schemes is widely
investigated (cf. [16, 95]), as these are equivalent to strongly regular graphs. Also the case
of three-class association schemes is very special: there is more than just applying the
general theory. However, there are not many papers about three-class association schemes
in general. There is the early paper by Mathon [79], who gives many examples, and the
recent thesis of Chang [26], who restricts to the imprimitive case. The special case of
distance-regular graphs with diameter three has been paid more attention, and for more
results on such graphs we refer to [12].

We shall discuss three-class association schemes, mainly starting from regular graphs
with four eigenvalues, since for most of the (interesting) schemes indeed at least one of
the relations is such a graph. However, most graphs with four eigenvalues cannot be a
relation in a three-class association scheme, and we shall characterize the ones that are, in
two different ways. We shall give several constructions, and obtain necessary conditions
for existence. At the end of this chapter we shall classify the three-class association
schemes into three classes, one which may be considered as degenerate, one in which all
three relations are strongly regular, and one in which at least one of the relations is a
graph with four distinct eigenvalues. This classification is used to generate all feasible
parameter sets of (nondegenerate) three-class association schemes on at most 100 vertices,
which are listed in Appendix A.4.

4.1. Examples

The d-class Hamming scheme H(d, q) is defined on the ordered d-tuples on q symbols
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(words of length d over an alphabet with q letters), where two tuples are in relation Ri if
they differ in i coordinates. The 2-class Hamming scheme H(2, q) consists of the Lattice
graph L2(q) and its complement. The 3-class Hamming scheme is also known as the cubic
scheme, as it was introduced by Raghavarao and Chandrasekhararao [92]. The Hamming
scheme is characterized by its parameters unless q = 4, and then we also have the Doob
schemes. For d = 3 there is one Doob scheme (cf. [12]).

The d-class Johnson scheme J(n, d) is defined on the d-subsets of an n-set. Two
d-subsets are in relation Ri if they intersect in d − i elements. The 2-class Johnson scheme
J(n, 2) consists of the triangular graph T(n) and its complement. The 3-class version is
also known as the tetrahedral scheme, and was first found as a generalization of the
triangular graph by John [73]. The Johnson scheme is characterized by its parameters
unless d = 2 and n = 8 (cf. [12]).

The rectangular scheme R(m, n), introduced by Vartak [103], has as vertices the
ordered pairs (i, j), with i = 1,..., m, and j = 1,..., n. For two distinct pairs we can have the
following three situations. They agree in the first coordinate, or in the second coordinate,
or in neither coordinate, and the relations are defined accordingly. Note that the graph of
the third relation is the complement of the line graph of the complete bipartite graph Km, n.
The scheme is characterized by its parameters.

The Hamming scheme, the Johnson scheme and the rectangular scheme are all in the
group case. Only the rectangular scheme does not define a distance-regular graph (unless
m or n equals 2). There are many more examples of distance-regular graphs with diameter
three. Here we shall mainly focus on 3-class association schemes that are not such graphs,
although, of course, the general results do apply. For more examples and specific results
on distance-regular graphs we refer to [12]. The antipodal distance-regular graphs with
diameter three form a special class, as they are antipodal covers of the complete graph.
For more on such graphs, see [13, 21, 53, 74].

4.1.1. The disjoint union of strongly regular graphs

Take the disjoint union of, say n, strongly regular graphs, all with the same parameters
(v*, k*, λ*, µ*) and spectrum {[k*]1, [r] f, [s]g}. Then this graph generates a 3-class
association scheme (the other relations are given by the disjoint union of the complements
of the strongly regular graphs, and the complete n-partite graph). It has eigenmatrix

P =



















1 k v − 1 − k (n − 1)v

1 k v − 1 − k −v

1 r −1 − r 0

1 s −1 − s 0

,

with multiplicities 1, n − 1, nf and ng, respectively, and reduced intersection matrices (that
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is, we delete the first row and column, as they can be considered trivial)















λ k − 1 − λ 0

µ k − µ 0

0 0 k

,















k − 1 − λ v − 2k + λ 0

k − µ v − 2k − 2 + µ 0

0 0 v − 1 − k

,















0 0 (n − 1)v

0 0 (n − 1)v

k v − 1 − k (n − 2)v

.

Conversely, any association scheme with such parameters must be obtained in the
described way. Therefore we may consider this case as degenerate, and it suffices to refer
to the extensive literature (for example [16, 95]) on strongly regular graphs. The same
remarks hold for the next construction.

4.1.2. A product construction from strongly regular graphs

If G is a strongly regular (v*, k*, λ*, µ*) graph with spectrum {[k*]1, [r] f, [s]g}, then, for
any natural number n, the graph G⊗ Jn (see Chapter 3) generates an imprimitive 3-class
association scheme (here the other relations are G⊗ Jn and a disjoint union of n-cliques).
The scheme has eigenmatrix

P =



















1 nk n − 1 n(v − 1 − k )

1 nr n − 1 n(−1 − r)

1 0 −1 0

1 ns n − 1 n(−1 − s)

,

with multiplicities 1, f, (n − 1)v* and g, respectively, and reduced intersection matrices















nλ n − 1 n(k − 1 − λ )

nk 0 0

nµ 0 n(k − µ )

,















n − 1 0 0

0 n − 2 0

0 0 n − 1

,















n(k − 1 − λ ) 0 n(v − 2k + λ )

0 0 n(v − 1 − k )

n(k − µ ) n − 1 n(v − 2k − 2 + µ )

.

It is easy to show that any 3-class association scheme with p11
2 = n1 must be of this form.

4.1.3. Pseudocyclic schemes

A d-class association scheme is called pseudocyclic if all the nontrivial eigenvalues have
the same multiplicities m. In this case we also have all degrees equal to m.

If v is a prime power, and v ≡ 1 (mod 3), we can define the 3-class cyclotomic
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association scheme Cycl(v) as follows. Let α be a primitive element of the finite field
GF(v). As vertices we take the elements of GF(v). Two vertices will be i-th associates if
their difference equals α3t + i for some t (or, if the discrete logarithm (base α) of their
difference is congruent to i modulo 3), for i = 1, 2, 3.

A similar construction gives pseudocyclic d-class association schemes. Such schemes
are used by Mathon [79] to construct antipodal distance-regular graphs with diameter
three. The resulting graph has d(v + 1) vertices and we shall denote it by d(P + 1) if P is
the original scheme. For d = 2, we get the so-called Taylor graphs (cf. [12]).

If v is not a prime power, then only three pseudocyclic 3-class association schemes are
known. On 28 vertices Mathon [79] found one, and Hollmann [72] proved that there are
precisely two. Furthermore Hollmann [71] found one on 496 vertices.

4.1.4. The block scheme of designs

A quasi-symmetric design is a design in which the intersections of two blocks take two
sizes x and y. The graph on the blocks of such a design with edges between blocks that
intersect in x points is strongly regular, i.e. we have a two-class association scheme.

Now consider a block design with the property that the intersections of two blocks take
three sizes. Then possibly the structure on the blocks with relations according to the
intersection numbers is a 3-class association scheme. Delsarte [42] proved that if the
design is a 4-design then we have a 3-class association scheme. Hobart [67] found several
examples in her search for the more general coherent configurations of type (2, 2; 4). She
mentions the Witt designs 4-(11, 5, 1) and 5-(24, 8, 1) and their residuals, and the
inversive planes of even order, that is, the 3-(22i + 1, 2i + 1, 1) designs. Of course, in any
3-design with λ = 1 the blocks can intersect only in 0, 1 or 2 points, but the corresponding
relations do not always form a 3-class association scheme.

Hobart and Bridges [68] also constructed a unique 2-(15, 5, 4) design with block
intersections 0, 1 and 2, and it defines the distance-regular graph that is also obtained as
the second subconstituent in the Hoffman-Singleton graph (see Section 4.3.1).

Beker and Haemers [5] proved that if one of the intersection numbers of a 2-(v, k, λ)
design equals k − r + λ, where r = λ(v − 1)/(k − 1) is the replication number of the
design, and there are two other intersection numbers, then we have an imprimitive 3-class
association scheme, that is generated by G⊗ Jn for some strongly regular graph G (see
Section 4.1.2).

4.1.5. Distance schemes and coset schemes of codes

Let C be a linear code with e + 1 nonzero weights wi. Take as vertices the codewords and
let a pair of codewords be in relation Ri if their distance is wi. It is a consequence of a
result by Delsarte [42] (cf. [22]) that if the dual code C ⊥ is e-error-correcting, then these
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relations form an (e + 1)-class association scheme. This scheme is called the distance
scheme of the code. Moreover, it has a dual scheme, called the coset scheme which is
defined on the cosets of C ⊥ . Two cosets x + C ⊥ and y + C ⊥ are in relation Ri

* if the
minimum weight in the coset (x − y) + C ⊥ equals i. Relation R1

* is the coset graph of C ⊥ ,
and is distance-regular.

A small example of a code with three nonzero weights is the binary zero-sum code of
length 6, consisting of all 32 words of even weight. Its dual code consist of the zero word
and the all-one word and certainly can correct 2 errors. Therefore we have two dual
3-class association schemes on 32 vertices. The graph (in the distance scheme) defined by
distance two in the code is a Taylor graph. The coset graph is the incidence graph of a
symmetric 2-(16, 6, 2) design. Larger examples are given by the (duals of the) binary
Golay code [23, 12, 7] and its punctured [22, 12, 6] code and doubly punctured [21, 12, 5]
code. For all three codes the dual codes have nonzero weights 8, 12 and 16, so these
define 3-class association schemes on 211, 210 and 29 vertices, respectively. Also the
Kasami codes (which are binary BCH codes with minimum distance 5) give rise to 3-class
association schemes (cf. [22]).

4.1.6. Quadrics in projective geometries

Let Q be a nondegenerate quadric in PG(3, q) with q odd (i.e. the set of isotropic points
of the corresponding quadratic form Q). Let V be the set of projective points x such that
Q(x) is a nonzero square. Two distinct vertices are related according as the line through
these points is a hyperbolic line (a secant, i.e. intersecting Q in two points), an elliptic line
(a passant, i.e. disjoint from Q) or a tangent (i.e. intersecting Q in one point). These
relations form a 3-class association scheme (cf. [12]). The number of vertices equals
q(q2 − ε)/2, where ε = 1 if Q is hyperbolic and ε = −1 if Q is elliptic.

For q even, and n ≥ 3, let Q be a nondegenerate quadric in PG(n, q). Now let V be the
set of nonisotropic points (i.e. the points not on Q) distinct from the nucleus (for n odd
there is no nucleus, for n even this is the unique point u such that Q(u + v) = Q(u) + Q(v)
for all v). The relations as defined above now form a 3-class association scheme (cf. [12]).

4.1.7. Merging classes

Sometimes we obtain a new association scheme by merging classes in a given association
scheme. Merging means that a new relation is obtained as the union of some original
relations, and then we say that the corresponding classes are merged. For example, take
the 3-class association scheme with vertex set

V = {(x1,{{x2, x3, x4}, {x5, x6, x7}}) {xi, i = 1,..., 7} = {1,..., 7}}.
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Two vertices (x1,{{x2, x3, x4}, {x5, x6, x7}}) and (y1,{{y2, y3, y4}, {y5, y6, y7}}) are first
associates if x1 = y1. If x1 ≠ y1, then without loss of generality we may assume that
x1 ∈ {y2, y3, y4} and y1 ∈ {x2, x3, x4}. Now the vertices are second associates if
{x2, x3, x4} ∩ {y2, y3, y4} = ∅ , otherwise they are third associates. This scheme was
obtained by merging two classes in the 4-class association scheme that arose while letting
the symmetric group S7 act on V 2.

On the other hand, it can occur that merging two classes in a 3-class association
scheme gives a 2-class association scheme. Of course, this occurs precisely if the
remaining relation defines a strongly regular graph. If all three relations of a 3-class
association scheme define strongly regular graphs, then we are in a very special situation.
It means that by any merging we always get a new association scheme. After [56] we call
schemes with this property amorphic. The amorphic 3-class association schemes are
precisely the 3-class association schemes that are not generated by one of their relations.

4.2. Amorphic three-class association schemes

In the special case that all three relations are strongly regular graphs, we show that the
parameters of the graphs are either all of Latin square type, or all of negative Latin square
type. The proof is due to D.G. Higman [66]. The same results can be found in [56], where
also all such schemes on at most 25 vertices can be found.

THEOREM 4.2.1. If all three relations of a 3-class association scheme are strongly regular
graphs, then they either have parameters (n2, li(n − 1), n − 2 + (li − 1)(li − 2), li(li − 1)),
i = 1, 2, 3 or (n2, li(n + 1), −n − 2 + (li + 1)(li + 2), li(li + 1)), i = 1, 2, 3.

Proof. Suppose Ri is a strongly regular graph with degree ni and eigenvalues ni, ri and si

(we do not assume ri > si). Without loss of generality we may take

P =



















1 n1 n2 n3

1 r1 s2 s3

1 s1 r2 s3

1 s1 s2 r3

.

Since PQ = vI, we see that 1 + r1 + s2 + s3 = 1 + s1 + r2 + s3 = 1 + s1 + s2 + r3 = 0, and
so

r1 − s1 = r2 − s2 = r3 − s3.

Furthermore, from the orthogonality relations we derive that
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s1

n1

=
s2

n2

=
s3

n3

,

and we find that P2 = vI, so P = Q, and so the scheme is self-dual. Now set u = ri − si,
then we find from the orthogonality relation

0 = 1 +
r1s1

n1

+
r2s2

n2

+
s3

2

n3

= 1 +
s1

n1

(u − 1) , so
n1

s1

= 1 − u .

Furthermore, we have that

detP = det



















v n1 n2 n3

0 r1 s2 s3

0 s1 r2 s3

0 s1 s2 r3

= det



















v n1 n2 n3

0 u −u 0

0 0 u −u

0 s1 s2 r3

= vu2(s1 + s2 + r3) = −vu2 ,

but on the other hand, P2 = vI, so (detP)2 = v4, and we find that v = u2. This proves that
the parameters of the relations are either all of Latin square type
(n2, li(n − 1), n − 2 + (li − 1)(li − 2), li(li − 1)) if n = u > 0 or all of negative Latin square
type (n2, li(n + 1), −n − 2 + (li + 1)(li + 2), li(li + 1)) if n = −u > 0.

A large family of examples is given by the Latin square schemes Li, j(n). Suppose we have
m − 2 mutually orthogonal Latin squares, or equivalently an orthogonal array OA(n, m).
Recall that this is an m × n2 matrix M such that for any two rows a, b we have that
{(Mai, Mbi) i = 1,..., n2} = {(i, j) i, j = 1,..., n}. Now take as vertices 1,..., n2. Let I1 and
I2 be two disjoint nonempty subsets of {1,..., m} of sizes i and j, respectively. Now two
distinct vertices v and w are l-th associates if Mrv = Mrw for some r ∈ Il, for l = 1, 2,
otherwise they are third associates.

Many constructions for OA(n, m) are known (cf. [11]). For n a prime power, there are
constructions of OA(n, m) for every m ≤ n + 1, its maximal value. For n = 6, we have
m ≤ 3 (Euler’ s famous 36 officers problem), and for n = 10, currently only constructions
for m ≤ 4 are known. For n ≠ 4, a Latin square scheme L1, 2(n) is equivalent to the
algebraic structure called a loop (cf. [90]). Two Latin square schemes are isomorphic if
and only if the corresponding loops are isotopic (cf. [26]). From [90] we find that there
are 22 nonisomorphic L1, 2(6) and 563 nonisomorphic L1, 2(7).

The smallest examples of "schemes of negative Latin square type" are given by the
cyclotomic scheme Cycl(16) on 16 vertices (see Section 4.1.3 for a definition), and
another scheme with the same parameters (cf. [56]). Here all three relations are Clebsch
graphs. The second feasible parameter set of negative Latin square type is on 49 vertices.



80 Three-class association schemes

Here all relations are strongly regular (49, 16, 3, 6) graphs, but such a graph does not
exist, according to Bussemaker, Haemers, Mathon and Wilbrink [18]. Van Lint and
Schrijver [76] found several strongly regular graphs of negative Latin square type by
merging classes in the 8-class cyclotomic scheme on 81 vertices. In fact, in this way you
can get amorphic 3-class association schemes of negative Latin square type. We find a
scheme with degrees 30, 30 and 20, and at least two nonisomorphic schemes with degrees
40, 20 and 20.

4.3. Regular graphs with four eigenvalues

A graph G which is one of the relations, say R1, of a 3-class association scheme is regular
with at most four distinct eigenvalues. Any two adjacent vertices have a constant number
λ = p11

1 of common neighbours, and any two nonadjacent vertices have µ = p11
3 or µ′ = p11

2

common neighbours. If µ = µ′, then G is strongly regular, so it has at most three distinct
eigenvalues (possibly it is disconnected). If µ ≠ µ′, then R1 generates the scheme, as the
other two relations are determined by the number of common neighbours. Then G must
have four distinct eigenvalues or be the disjoint union of some strongly regular graphs. If
G is a connected regular graph with four distinct eigenvalues, then the following theorem
provides us with a handy tool to check whether it is one of the relations of a 3-class
association scheme.

THEOREM 4.3.1. Let G be a connected regular graph with four distinct eigenvalues. Then
G is one of the relations of a 3-class association scheme if and only if any two adjacent
vertices have a constant number of common neighbours, and the number of common
neighbours of any two nonadjacent vertices takes precisely two values.

Proof. Suppose that G is regular of degree k, any two adjacent vertices in G have λ
common neighbours, and that any two nonadjacent vertices have either µ or µ′ common
neighbours. Note that these requirements must necessarily hold in order for G to be one of
the relations of a 3-class association scheme, and that µ ≠ µ′, otherwise G is strongly
regular, and so it has only three distinct eigenvalues.

Now let G have adjacency matrix A. To prove sufficiency we shall show that the
adjacency algebra A = 〈 A2, A, I, J 〉 , which is closed under ordinary matrix multiplication
is also closed under entrywise multiplication . Since M J = M for any matrix M, and any
matrix M ∈ A has constant diagonal, so that M I ∈ A, we only need to show that A A,
A2 A and A2 A2 are in A. Now A A = A, A2 A = λA, and

A2 A2 = k2I + λ2A + ((µ + µ′)A2 − µµ′J) (J − I − A)

= (µ + µ′)A2 + (λ2 − λ(µ + µ′) + µµ′)A + (k2 − k(µ + µ′) + µµ′)I − µµ′J.
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So A is also closed under entrywise multiplication, and so G is one of the relations of a
3-class association scheme.

If µ or µ′ equals 0, then it follows that G is distance-regular with diameter three. We shall
use the characterization of Theorem 4.3.1 in the following examples.

4.3.1. The second subconstituent of a strongly regular graph

The second subconstituent of a graph with respect to some vertex x is the induced graph
on the vertices distinct from x, and that are not adjacent to x. For some strongly regular
graphs the second subconstituent generates a 3-class association scheme.

Suppose G is a strongly regular graph without triangles (λ = 0), with spectrum
{[k]1, [r] f, [s]g}. Then the second subconstituent G2(x) of G is a regular graph with
spectrum {[k + r + s]1, [r] f − k, [r + s]k − 1, [s]g − k} (see Chapter 3), so in general it is a
connected regular graph with four distinct eigenvalues without triangles. So if the number
of common neighbours of two nonadjacent vertices can take at most two values, then we
have a 3-class association scheme. This is certainly the case if G is a strongly regular
(v, k, 0, µ) graph with µ = 1 or 2, as we shall see.

If µ = 1 then it follows that in G2(x) two nonadjacent vertices can have either 0 or 1
common neighbours. For k > 2 the graph G2(x) has four distinct eigenvalues, so then it
follows that this graph is distance-regular with diameter three. The distance three relation
R3 is the disjoint union of k cliques of size k − 1, which easily follows by computing the
eigenvalues of A3 = J + (k − 2)I − A − A2, where A is the adjacency matrix of G2(x). On
the other hand, it follows that any distance-regular graph with such parameters can be
constructed in this way, that is, given such a distance-regular graph, we can, using the
structure of R3, construct a strongly regular (v, k, 0, 1) graph that has the distance-regular
graph as second subconstituent (Take such a distance-regular graph, and order the cliques
of the distance three relation. Extend the distance-regular graph with vertices ∞ and
i = 1,..., k, and with edges {∞, i} and {i, y}, y is a vertex of the i-th clique, i = 1,..., k,
then we get a strongly regular (1 + k2, k, 0, 1) graph). In fact, it now follows from a result
by Haemers [59, Cor. 5.4] that any graph with the same spectrum must be constructed in
this way. The result by Haemers can also be shown using Corollary 4.3.7, which we shall
prove later (see also [39]).

It is well known (cf. [95]) that strongly regular graphs with parameters (v, k, 0, 1) can
only exist for k = 2, 3, 7 or 57. For the first three cases there are unique graphs: the
5-cycle C5, the Petersen graph and the Hoffman-Singleton graph. The case k = 57 is still
undecided. The second subconstituent of the Petersen graph is the 6-cycle C6. The more
interesting case is the second subconstituent Ho-Si2(x) of the Hoffman-Singleton graph. It
is uniquely determined by its spectrum, which now follows from the uniqueness of the
Hoffman-Singleton graph and the fact that its automorphism group acts transitively on its
vertices.
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If µ = 2, then in G2(x) two nonadjacent vertices can have either 1 or 2 common
neighbours (They have at least one common neighbour, since in G they cannot have two
common neighbours that are both neighbours of x, as these two vertices then would have
three common neighbours). For k > 5 the graph G2(x) has four distinct eigenvalues, so
then we have a 3-class association scheme. Here we find for relation R3 (two vertices are
third associates if they have one common neighbour in G2(x)) that
A3 = 2J + (k − 4)I − A − A2 with spectrum {[2k − 4]1, [k − 4]k − 1, [−2]

1
2-k(k − 3)}, which is the

spectrum of the triangular graph T(k). Using this it is also possible to prove that any
association scheme with these parameters must be constructed as we did. Consider the
graph of the first relation of an association scheme with such parameters. It has degree
k − 2, no triangles, and any two nonadjacent vertices have either 1 or 2 common
neighbours (corresponding to relations R3 and R2, respectively). Now the third relation has
the spectrum of the triangular graph T(k), and since this graph is uniquely determined by
its spectrum (unless k = 8, but then there is no feasible parameter set: from the integrality
of the multiplicities it follows that k − 1 is a square), it follows that we can rename the
vertices by the pairs {i, j}, i, j = 1,..., k, such that two vertices are not adjacent and have
one common neighbour if and only if the corresponding pairs intersect. Now we extend
the graph with vertices ∞ and i = 1,..., k, and with edges {∞, i} and {i, {i, j}},
i, j = 1,..., k. Then it follows that this graph is strongly regular with parameters
(1 + 1

2-k(k + 1), k, 0, 2). To show this, we have to check that i and {j, h} with i ≠ j, h have
two common neighbours. By considering the original association scheme, we see that the
number of vertices that are third associates with {i, j} and first associates with {j, h}
equals p31

3 = 2. But such vertices are of the form {i, g}, which proves that µ = 2. Thus we
have proven the following proposition.

PROPOSITION 4.3.2. Let G be a strongly regular graph without triangles, and with µ = 1
or 2, and degree k, with k > 2 if µ = 1, and k > 5 if µ = 2. Then the second subconstituent
of G with respect to any vertex generates a 3-class association scheme. Conversely, any
scheme with the same parameters can be constructed in this way from a strongly regular
graph.

If µ = 2, then the only known example for G with k > 5 is the Gewirtz graph, and since
this graph is uniquely determined by its parameters, and it has a transitive automorphism
group, the association scheme generated by its second subconstituent Gewirtz2(x) is
uniquely determined by its parameters.

Payne [88] found that the second subconstituent of the collinearity graph of a
generalized quadrangle with respect to a quasiregular point generates a 3-class association
scheme (or a strongly regular graph). Together with Hobart [69] he found conditions to
embed the association scheme back in a generalized quadrangle. Note that the second
subconstituent of a generalized quadrangle with respect to a point p is a regular graph with
at most four distinct eigenvalues (see Chapter 3). Furthermore any two adjacent vertices
have a constant number of common neighbours. The quasiregularity of the point p now
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implies that the number of common neighbours of two nonadjacent vertices can take only
two values.

4.3.2. Hoffman cocliques in strongly regular graphs

Let G be a k-regular graph on v vertices with smallest eigenvalue λmin. Recall that a
Hoffman coclique in G is a coclique whose size meets the Hoffman (upper) bound
c = vλmin/(λmin − k). If C is a Hoffman coclique then every vertex not in C is adjacent to
−λmin vertices of C. If G is a strongly regular graph with parameters (v, k, λ, µ) and
smallest eigenvalue s, then the adjacencies between C and its complement forms the
incidence relation of a 2-(c, −s, µ) design D (which may be degenerate). Furthermore, the
induced graph on the complement of C is a regular graph with at most four distinct
eigenvalues (see Chapter 3). A necessary condition for this graph to be one of the relations
of a 3-class association scheme is that the design D has at most three distinct block
intersection numbers. If it forms a 3-class association scheme then it is the block scheme
of D (see Section 4.1.4).

An example is given by an ovoid in the generalized quadrangle GQ(4, 4). An ovoid is
a Hoffman coclique in the collinearity graph of the generalized quadrangle. Here the
corresponding design is an inversive plane, and the induced graph on the complement of
the ovoid is the distance three graph of the distance-regular Doro graph.

4.3.3. A characterization in terms of the spectrum

Now suppose that G is a connected regular graph with spectrum
that is one of the relations of a 3-class association scheme. The{[k]1, [λ1]

m1, [λ2]
m2, [λ3]

m3}

degree k = n1 is its largest eigenvalue, and also λ can be expressed in terms of the
spectrum of the graph, since for a connected regular graph with four distinct eigenvalues
the number of triangles through a vertex equals ∆ = Trace(A3)/2v, and so

λ = 2∆
k

= Trace(A3)
vk

= 1
vk

3

i=0

miλi
3 .

In general, µ and µ′ do not follow from the spectrum of G. For example, GQ(2, 4) spread
and H(3, 3)3 have the same spectrum, and are both graphs from association schemes, but
they have distinct parameters (in fact, the first one is a distance-regular graph and the
other is not). But in many cases the parameters of the scheme do follow from the
spectrum, as they form the only nonnegative integral solution of the following system of
equations.

If for every vertex x, the number of nonadjacent vertices that have µ′ common
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neighbours with x equals n2, and n3 is the number of nonadjacent vertices that have µ
common neighbours with x, then by easy counting arguments we have that the parameters
satisfy the following equations.

n2 + n3 = v − 1 − k ,
n2 µ ′ + n3 µ = k(k − 1 − λ) ,

n2
µ ′

2
+ n3

µ

2
= Ξ − k λ

2
,

where

1
2-Ξ = ( 1

v

3

i=0

miλi
4 − 2k2 + k)

is the number of quadrangles through a vertex. Since the number of triangles through an
edge is constant, also the number of quadrangles through an edge is constant and equals
ξ = 2Ξ/k. It follows that given the spectrum ∑ of the graph and one extra parameter (for
example µ), we can compute all other parameters of the association scheme. For n3 this
gives

n3 = h (Σ , µ) = v − 1 − k − ((v − 1 − k)µ − k(k − 1 − λ))2

kξ − kλ2 + k(k − 1) + (v − 1 − k)µ2 − 2µk(k − 1 − λ)
.

The next theorem characterizes the regular graphs with four eigenvalues that generate a
3-class association scheme, as those graphs for which this number n3 is precisely what it
should be. We shall use the following lemma, but first we define some vertex partitions.
The neighbourhood partition of a vertex x is the partition of the vertices into three sets.
The first set contains x, the second the neighbours of x, and the third the remaining
vertices. The µ-partition of a vertex x is a refinement of the neighbourhood partition. The
third part (the nonneighbours of x) is further partitioned into the ones that do not have µ
common neighbours with x, and the ones that do have µ common neighbours with x.

LEMMA 4.3.3. Let G be a connected regular graph on v vertices with eigenvalues
k > λ1 > ... > λr. Let B be the quotient matrix with respect to the neighbourhood partition
of an arbitrary vertex x. Suppose B has eigenvalues k ≥ µ1 ≥ µ2. If for every vertex x one
of the equalities λ1 = µ1 and λr = µ2 holds, then G is strongly regular.

Proof. Let G have adjacency matrix A. Fix an arbitrary vertex x and suppose one of the
equalities holds, say µi is also an eigenvalue of A. Let V be the 3-dimensional subspace of

v of vectors that are constant over the parts of the neighbourhood partition of x. Then A
has an eigenvector u = (u0, u1,..., u1, u2,..., u2)

T with eigenvalue µi in V (cf.
[58, Thm. 2.1.ii] or [12, Thm. 3.3.1.ii]). Also the all-one vector 1 is an eigenvector (with
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eigenvalue k) of A in V. Furthermore A(1, 0,..., 0)T = (0, 1,..., 1, 0,..., 0)T ∈ V. Since u, 1
and (1, 0,..., 0)T are linearly independent vectors in V (otherwise u1 = u2, and applying A
gives u0 = u2, which gives a contradiction), we have that AV ⊆ V. So we have three
linearly independent eigenvectors of A in V, and it follows that the neighbourhood
partition of x is regular. So the number of common neighbours of x and a vertex y
adjacent to x is independent of y. This holds for every x and since G is connected, it
follows that this number is also independent of x, and so for every vertex the
neighbourhood partition is regular with the same quotient matrix, proving that G is
strongly regular.

THEOREM 4.3.4. Let G be a connected regular graph on v vertices with four distinct
eigenvalues, say with spectrum ∑ = . Let p be the polynomial{[k]1, [λ1]

m1, [λ2]
m2, [λ3]

m3}
given by p(x) = (x − λ1)(x − λ2)(x − λ3) = x3 + p2x

2 + p1x + p0 and let λ be given by
λ = (k3 + m1λ1

3 + m2λ2
3 + m3λ3

3)/vk. Then G is one of the relations of a 3-class association
scheme if and only if there is an integer µ such that for every vertex x the number of
nonadjacent vertices n3, that have µ common neighbours with x equals

g (Σ , µ) = v − 1 − k −
k(k − 1 − λ − v−1−k

k
µ)2

(k − λ)(λ + p2) − k − p1 + p0 − 2µ(k − 1 − λ) + v−1−k

k
µ2

.

Proof. Suppose that G is one of the relations of a 3-class association scheme. Consider the
quotient matrix C with respect to the µ-partition of some arbitrary vertex x. Then C is an
intersection matrix, and

C =



















0 k 0 0

1 λ k − 1 − λ − d d

0 c k − c − b b

0 µ k − µ − a a

,

for some a, b, c and d. The number of common neighbours of two adjacent vertices equals
λ = Trace(A3)/vk. Note that c ≠ µ, otherwise G would be strongly regular and hence have
only three distinct eigenvalues. Since C has eigenvalues k, λ1, λ2 and λ3, it follows that the
characteristic polynomial of C equals
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(x − k)p(x) = det(xI − C ) = det



















x x − k 0 0

−1 x − k −(k − 1 − λ − d) −d

0 x − k x − (k − c − b) −b

0 x − k −(k − µ − a) x − a

=

(x − k)(x3 + (b + c − λ − a)x2 + (λa − ca − bλ − k + c + µb − µd + dc)x + ka − ca − bk + µb).

From this it follows that

(k − λ)(λ + p2) − k − p1 + p0 = (k − 1 − λ)c + d(µ − c).

Since (v − 1 − k − n3)c = k(k − 1 − λ − d) and n3µ = kd, we derive that

(v − 1 − k)c + n3(µ − c) = k(k − 1 − λ) and v−1−k

k
µc + d(µ − c) = µ(k − 1 − λ).

Combining the last equation with the equation that we derived from the characteristic
polynomial, we obtain

c =
(k − λ)(λ + p2) − k − p1 + p0 − µ(k − 1 − λ)

k − 1 − λ − v−1−k

k
µ

,

and so

n3 = k(k − 1 − λ) − (v − 1 − k)c
µ − c

= v − 1 − k − k(k − 1 − λ) − (v − 1 − k)µ
c − µ

= g(Σ , µ).

Suppose now that n3 = g(∑, µ) for every vertex x. Note that g(∑, µ) < v − 1 − k, otherwise
G would be strongly regular. Let c be as given above (so that, by the definition of g(∑, µ)
it implicitly follows that µ ≠ c), and let a, b and d be given by

a = ((λ − c + p2)(k − µ) + p0)/(µ − c),
b = a + λ − c + p2 and
d = ((k − λ)(λ + p2) − k − p1 + p0 − (k − 1 − λ)c)/(µ − c).

Then the matrix C as given above has eigenvalues k, λ1, λ2 and λ3 (again, this follows by
inspecting the characteristic polynomial).

First suppose that g(∑, µ) > 0. We shall prove that the quotient matrix B with respect to
the µ-partition of x equals C, thus proving that the partition is regular. Without loss of
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generality we assume that k > λ1 > λ2 > λ3. Suppose that B has eigenvalues
k ≥ µ1 ≥ µ2 ≥ µ3. Since the eigenvalues of B interlace the eigenvalues of the adjacency
matrix A of G, it follows that λ1 ≥ µ1 and µ3 ≥ λ3. Since G is a connected regular graph
with four distinct eigenvalues, the number of triangles through x equals ∆ = 1

2-kλ, so that
B22 = λ. Furthermore

B24 = g(Σ , µ)µ
k

= µ
k

k(k−1−λ)−(v−1−k)c
µ−c

= µ
k

d
(k−1−λ)−(v−1−k)c

(k−λ)(λ+p2)−k−p1 +p0 −(k−1−λ)c
= d,

and consequently B23 = k − 1 − λ − d, and

B32 = k(k − 1 − λ − d)
v − 1 − k − g(Σ , µ)

=
k(k − 1 − λ − g(Σ , µ)µ

k
)

v − 1 − k − g(Σ , µ)
= c.

So B = C + E, where E equals

E =



















0 0 0 0

0 0 0 0

0 0 ε −ε
0 0 −δ δ

for some ε and δ. To use inequalities for eigenvalues we want symmetric matrices.
Therefore we multiply B, C and E from the left by K

1
2- and from the right by K −1

2-, where
K = diag(1, k, v − 1 − k − g(∑, µ), g(∑, µ)), to get B̃, C̃ and Ẽ, respectively. Now the
eigenvalues have not changed and B̃ is symmetric, but to show that C̃ (and consequently
Ẽ) is symmetric, we have to prove that g(∑, µ)(k − a − µ) = (v − 1 − k − g(∑, µ))b. This
follows since

(g(∑, µ)(k − a − µ) − (v − 1 − k − g(∑, µ))b)(c − µ) =

(v − 1 − k)(k − a − µ)(c − µ) − (v − 1 − k − g(∑, µ))(k − a − µ + b)(c − µ) =

(v − 1 − k)((λ − µ + p2)(k − µ) + p0) − (k − µ + λ − c + p2)(k(k − 1 − λ) − (v − 1 − k)µ) =

(v − 1 − k)(λk + p2k + p0) − k(k − 1 − λ)(k + λ + p2) − cµ(v −1− k) + k(k −1− λ)(µ + c) =

(v − 1 − k)(λk + p2k + p0) − k(k − 1 − λ)(k + λ + p2) + k((k − λ)(λ + p2) − k − p1 + p0) =

v(λk + p2k + p0) − (k3 + p2k
2 + p1k + p0) = 0.
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The last equation follows by taking the trace of the equation p(A) = p(k)/vJ, where A is
the adjacency matrix of G, and J is the all-one matrix.

Let w0 = K
1
2-(1, 1, 1, 1)T, then it is an eigenvector of both B̃ and C̃ with eigenvalue k.

Let wi be an eigenvector of C̃ with eigenvalue λi, i = 1, 2, 3, such that {w0, w1, w2, w3} is
orthogonal. Let vi = K −1

2-wi, then vi is eigenvector of C with eigenvalue λi, i = 0, 1, 2, 3.
Now we shall prove that Ẽ = O or, equivalently, that ε = 0. Suppose that ε > 0. Now Ẽ is
positive semidefinite, and so

µ1 ≥
w T

1 B̃w1

w T
1 w1

= λ1 +
w T

1 Ẽw1

w T
1 w1

≥ λ1 ,

and since λ1 ≥ µ1 it follows that µ1 = λ1 and Ẽw1 = 0. Then also Ev1 = 0, and so v13 = v14.
Using that v1 is eigenvector of C with eigenvalue λ1, we find that v1 = 0, which is a
contradiction. Similarly we find that v3 = 0 by assuming that ε < 0. So ε = 0 and B = C.
Thus the µ-partition of x is regular, and since this holds for every vertex, we find that G is
one of the relations of a 3-class association scheme.

Next suppose that g(∑, µ) = 0. We shall show that this case cannot occur, which
finishes the proof. Again, consider the matrix C as given above. From the equation
g(∑, µ)(k − a − µ) = (v − 1 − k − g(∑, µ))b it follows that b = 0. Furthermore, also
d = g(∑, µ)µ/k = 0. Let B be the quotient matrix with respect to the neighbourhood
partition of an arbitrary vertex x, then

B =















0 k 0

1 λ k − 1 − λ
0 c k − c

.

Let B have eigenvalues k, µ1 and µ2, then on one hand the eigenvalues of C are k, µ1, µ2

and a, and on the other hand they are k, λ1, λ2 and λ3. Now it follows by Lemma 4.3.3
that G is strongly regular, which is a contradiction with the fact that G has four distinct
eigenvalues.

Obviously, for regular graphs with four eigenvalues that generate a 3-class association
scheme, we have that h(∑, µ) = g(∑, µ), since they both equal n3. However, the equality
holds for any feasible spectrum ∑ of a regular graph with four eigenvalues and any µ. This
can be proven in a straightforward way from the equations

λk + p2k + p0 = (k3 + p2k
2 + p1k + p0)/v, and
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1

v

3

i=0

miλi
4 + p2λk + p1k = (k4 + p2k

3 + p1k
2 + p0k)/v ,

which follow by taking traces of the equations p(A) = p(k)/vJ and Ap(A) = kp(k)/vJ,
respectively.

For µ = 0, in which case we have a distance-regular graph, the characterization was
already obtained by Haemers and the author [39]. Together with the previous remarks this
gives the following.

COROLLARY 4.3.5. Let G be a connected regular graph with four distinct eigenvalues, with
k, λ and ξ (as functions of the spectrum) as before. Then G is a distance-regular graph
(with diameter three) if and only if for every vertex the number of vertices k2 at distance
two equals

k2 = k(k − 1 − λ)2

ξ − λ2 + k − 1
.

This settles a question by Haemers [59] on the characterization of distance-regular graphs
with diameter three.

If we have a 3-class association scheme, then g(∑, µ) must be a nonnegative integer.
On the other hand, if we have any graph with spectrum ∑ and a µ such that g(∑, µ) is a
nonnegative integer, then for any vertex, we can bound the number of nonadjacent vertices
that have µ common neighbours with this vertex.

PROPOSITION 4.3.6. With the hypothesis of the previous theorem, if g(∑, µ) is a
nonnegative integer, then n3 ≤ g(∑, µ).

Proof. Suppose for some vertex x we have n3 > g(∑, µ). Consider the µ-partition of x and
change this partition by moving n3 − g(∑, µ) vertices from the set of vertices not adjacent
to x and having µ common neighbours with x to the set of vertices not adjacent to x and
not having µ common neighbours with x. By repeating the second part of the proof of
Theorem 4.3.4, we find that the partition is regular, which is a contradiction.

In the special case that H has the same spectrum as one of the relations of a 3-class
association scheme, this gives the following.
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COROLLARY 4.3.7. Let G be a connected regular graph with four distinct eigenvalues that
is one of the relations of a 3-class association scheme. Suppose that for some integer µ the
number of vertices nonadjacent to some vertex x, having µ common neighbours with x
equals n3 > 0. If H is a graph with the same spectrum as G, then for any vertex x in H,
the number of vertices that are not adjacent to x and have µ common neighbours with x is
at most n3, with equality for every vertex if and only if H is one of the relations of a
3-class association scheme with the same parameters as the scheme of G.

4.3.4. Hoffman colorings and systems of linked symmetric designs

Let G be a k-regular graph on v vertices with smallest eigenvalue λmin. A Hoffman
coloring in G is a partition of the vertices into Hoffman cocliques, that is, cocliques
meeting the Hoffman (upper) bound c = vλmin/(λmin − k). Recall that if C is a Hoffman
coclique, then every vertex not in C is adjacent to −λmin vertices of C. A spread in G is a
partition of the vertices into Hoffman cliques, which is equivalent to a Hoffman coloring
in the complement of G. A regular coloring of a graph is a partition of the vertices into
cocliques of equal size, say c, such that for some l, every vertex outside a coclique C of
the coloring is adjacent to precisely l vertices of C. So regular colorings are
generalizations of Hoffman colorings. A graph with a regular coloring is regular, with
degree k = l(v/c − 1), and it also follows that it has an eigenvalue λ = −l. Now we find
that c = vλ/(λ − k), similar to the size of a coclique in a Hoffman coloring. In the
following we shall say that the regular coloring corresponds to eigenvalue λ.

Suppose G has a regular coloring. Then we define relations R1 by adjacency in G, R2

by nonadjacency in G and being in distinct cocliques of the coloring, and R3 by being
distinct, nonadjacent in G and being in the same coclique of the coloring. It is easy to see
that these relations form a 3-class association scheme if G is strongly regular (cf. [62]). A
lot of Hoffman colorings exist in the triangular graphs T(n), for even n, as these (the
schemes) are equivalent to one-factorizations of Kn. For n = 4 and 6, the one-factorizations
of Kn are unique, there are 6 nonisomorphic ones for n = 8, and 396 for n = 10 (cf. [83]).
Dinitz, Garnick and McKay [44] found that there are 526,915,620 nonisomorphic one-
factorizations of K12, and they estimated these numbers for n = 14, 16 and 18.

If the relations as defined above form an association scheme, then G can have at most
four distinct eigenvalues. However, this is not sufficient, as the graph L2(3)⊗ J2 with
spectrum {[8]1, [2]4, [0]9, [−4]4} has a Hoffman coloring, i.e., 3 disjoint cocliques of size
6, but the corresponding relations do not form an association scheme. It turns out that here
the multiplicity of the eigenvalue λ3 = −4 is too large. In fact, if the relations do form an
association scheme, and we assume that the regular coloring corresponds to the eigenvalue
λ3, then it has eigenmatrix
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P =





















1 k v − k − c c − 1

1 λ1 −λ1 −1

1 λ2 −λ2 −1

1 λ3 −λ3 − c c − 1

,

with multiplicities 1, m1, m2 and m3, respectively. Now it easily follows that c(m3 + 1) = v,
so that m3 = −k/λ3. On the other hand, this additional condition on the spectrum is
sufficient.

THEOREM 4.3.8. Let G be a connected k-regular graph on v vertices with four distinct
eigenvalues. If G has a regular coloring corresponding to eigenvalue, say, λ3, which has
multiplicity m3 ≤ −k/λ3, then the corresponding relations form an association scheme.

Proof. Let A1 be the adjacency matrix of G (and R1), and A3 the adjacency matrix
corresponding to the regular coloring (R3), so A3 = Ic⊗ Jv/c − I, where c is the size of the
cocliques. Since any vertex outside a coclique C of the coloring is adjacent to −λ3 vertices
of C, it follows that A1(A3 + I) = −λ3(J − (A3 + I)), and so A1A3 ∈ 〈 I, J, A1, A3 〉 .

Let λ1 and λ2 be the remaining two eigenvalues of G, and let B = (A1 − λ1I)(A1 − λ2I),
then the nonzero eigenvalues of B are (k − λ1)(k − λ2) with multiplicity 1, and
(λ3 − λ1)(λ3 − λ2) with multiplicity m3. If we let E0 = v−1J, and E3 = c−1(A3 + I) − v−1J,
then

BE0 = (k − λ1)(k − λ2)E0 and BE3 = (λ3 − λ1)(λ3 − λ2)E3.

By use of rank(E0) = 1, rank(E3) = v/c − 1 ≥ m3, E0
2 = E0, E3

2 = E3, and E0E3 = O, it
follows that B − (k − λ1)(k − λ2)E0 − (λ3 − λ1)(λ3 − λ2)E3 = O, as all its eigenvalues are
zero. So A1

2 ∈ 〈 I, J, A1, A3 〉 , and it follows that this algebra is closed under
multiplication. Hence we have an association scheme.

A system of l linked symmetric 2-(v, k, λ) designs is a collection of sets Vi, i = 1,..., l + 1
and an incidence relation between each pair of sets forming a symmetric 2-(v, k, λ) design,
such that for any i, j, h the number of x ∈ Vi incident with both y ∈ Vj and z ∈ Vh

depends only on whether y and z are incident or not.
Now take as vertex set the union of all Vi, and define relations by being in the same

subset Vi, being incident in the system of designs or being not incident in the system of
designs. This defines a 3-class association scheme. The association scheme of l − 1 linked
designs (note that such a system is contained in a system of l linked designs) can also be
considered as the block scheme of the 2-(v, k, lλ) design that is obtained by taking as
points the elements of the set V1 and as blocks the elements of the remaining Vi, with the
obvious incidence relation.
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The only known nontrivial systems of linked designs have parameters v = 22m,
k = 22m − 1 − 2m − 1, λ = 22m − 2 − 2m − 1, l ≤ 22m − 1 − 1, m > 1 (and their complements) (see
[23]). Mathon [80] determined all systems of linked 2-(16, 6, 2) designs.

The incidence graph of a system of linked designs is defined on the union of the sets
Vi, where adjacency is defined by incidence. If G is a graph with four distinct eigenvalues,
that is the incidence graph of a system of linked designs, then G has a regular coloring.
The following theorem characterizes these graphs.

THEOREM 4.3.9. Let G be a connected k-regular graph on v vertices with four distinct
eigenvalues. Suppose G has a regular coloring corresponding to, say, λ3, with cocliques of
size c such that the corresponding relations form an association scheme. Let m1 and m2 be
the multiplicities of the remaining two eigenvalues λ1 and λ2, respectively, then
c − 1 ≤ min{m1, m2}, with equality if and only if G is the incidence graph of a system of
linked symmetric designs.

Proof. Let h = 1, 2, and take

E = v(v − k − c)
mh

Eh + λh J = (v − k − c + λh) I + λh

v − c
k

A1 + (λh − v − k − c
c − 1

) A3 ,

then rank(E) ≤ mh + 1. Now partition E and A1 according to the regular coloring, say
E = (Eij), A1 = (Aij), i, j = 1,..., m3. Then it follows that if i ≠ j, then

Eij = λh

v − c
k

Aij , and Eii = c(v − k − c)
c − 1

I + (λh − v − k − c
c − 1

) J .

Observe that it follows from m3 = −k/λ3 that m1λ1 + m2λ2 = 0, so λh ≠ 0. So Eii is
nonsingular, so c = rank(Eii) ≤ rank(E), which proves the inequality. In case of equality we
have rank(E00) = rank(E), and then it follows that Eij = Ei0E00

−1E0j. From this we derive that
Ai0Ai0

T = Ai0A0i ∈ 〈 I, J 〉 , and since Ai0 has constant row and column sums, we find that Ai0

is the incidence matrix of a symmetric design. Furthermore we find that Ai0A0j ∈ 〈 Aij, J 〉
for i ≠ j, which proves that the designs are linked (cf. [23, Thm. 2]).

For l = 1, a system of linked designs is just one design, and we get the incidence graph
and corresponding incidence scheme of a symmetric 2-(v, k, λ) design. It is bipartite
distance-regular. In fact, it is well known that any bipartite regular graph with four distinct
eigenvalues is the incidence graph of a symmetric design (see Chapter 3). This result now
also follows from Theorem 4.3.9. In order to determine all nonisomorphic schemes given a
certain parameter set of this form, we should mention that two dual (as well as
complementary) designs generate the same association scheme.

Theorem 4.3.9 is the analogue of the following theorem by Haemers and Tonchev
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[62, Thm. 5.1] (here g is the multiplicity of the smallest eigenvalue).

THEOREM 4.3.10. If G is a primitive strongly regular graph with a Hoffman coloring, then
c − 1 ≤ g − v/c + 1, with equality if and only if G is the incidence graph of a system of
linked symmetric designs.

4.4. Number theoretic conditions

Using the Hasse-Minkowski invariant of rational symmetric matrices, Bose and Connor [7]
derived number theoretic conditions for the existence of so-called regular group divisible
designs, which can be seen as extensions of the well-known Bruck-Ryser conditions for
symmetric designs. Godsil and Hensel [53] applied the results of Bose and Connor to
imprimitive distance-regular graphs with diameter three. In fact, we find that after slight
adjustments of the results of Bose and Connor, they are also applicable to imprimitive
3-class association schemes. Also in the primitive case, Hasse-Minkowski theory can be
useful, under the condition that one of the relations is a strongly regular graph, preferably
one that is determined by its spectrum. If one of the relations is a lattice graph or a
triangular graph, we can use results of Coster [30] or Coster and Haemers [31],
respectively. These results are obtained by using the Grothendieck group, a technique
similar to Hasse-Minkowski theory. The results are in a sense generalizations of [96] and
[86], respectively, which are only applicable to designs. A general reference for
applications of Hasse-Minkowski theory to designs is [91].

4.4.1 The Hilbert norm residue symbol and the Hasse-Minkowski invariant

If a and b are nonzero rational numbers, and p a prime, then the Hilbert norm residue
symbol (a, b)p is defined to be 1 if the equation

ax2 + by2 ≡ 1 (mod pr)

has a rational solution x, y, for every r, otherwise it is defined to be −1. Here p may also
be infinite.

Let A be a rational symmetric nonsingular matrix, with leading principal minor
determinant Dr of order r, and take D0 = 1. Now suppose that Dr ≠ 0 for all r. Then the
Hasse-Minkowski invariant of A is defined by

Cp(A) = (−1,−1)p

v−1

i=0

(Di+1,−Di )p
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for every prime p.
The following theorem is the basic theorem that will supply us with necessary

conditions for existence of certain 3-class association schemes. It deals with rationally
congruent matrices. Two matrices A and B are rationally congruent if there is a
nonsingular rational matrix P such that PTAP = B.

THEOREM 4.4.1 (Hasse [63]). Two rational symmetric positive definite matrices A and B of
the same size are rationally congruent if and only if the square free parts of their
determinants are the same and their Hasse-Minkowski invariants are equal for all primes
p, including the infinite prime.

Now consider an impritive 3-class association scheme, where one of the relations, say R3,
forms the disjoint union of m cliques of size n. Let A be the adjacency matrix of one of
the other (nontrivial) relations, say R1. Suppose that the graph defined by R1 has degree k,
any two adjacent vertices have λ common neighbours, any two nonadjacent vertices that
are in the same clique of relation R3 have µ common neighbours, and any two nonadjacent
vertices from distinct cliques have µ′ common neighbours. If δ = 1

2-(µ′ − λ), then A satisfies
the equation

(A + δI)2 = (k + δ2 − µ)I + µ′J + (µ − µ′)Im⊗ Jn

Since A + δI is a symmetric rational matrix, it follows that the right hand side of the
equation is rationally congruent to the identity matrix. Note that the matrix has spectrum

{[(k + δ)2]1, [(k + δ)2 − mnµ′]m − 1, [k + δ2 − µ]m(n − 1)}

Now the results of Bose and Connor generalize in an obvious way, and we obtain the
following conditions.

PROPOSITION 4.4.2. If an impritive 3-class association scheme as given above exists, then

a. if m is even, then (k + δ)2 − mnµ′ is a rational square, and if m ≡ 2 (mod 4) and n is
even then (k + δ2 − µ, −1)p = 1 for all odd primes p.

b. if m is odd, and n is even, then k + δ2 − µ is a rational square, and
((k + δ)2 − mnµ′, (−1)

1
2-(m − 1)nµ′)p = 1 for all odd primes p.

c. if m and n are both odd, then
(k + δ2 − µ, (−1)

1
2-(n − 1)n)p((k + δ)2 − mnµ′, (−1)

1
2-(m − 1)nµ′)p = 1 for all odd primes p.

Actually, we know a little bit more, if µ ≠ µ′, since then A has four distinct eigenvalues,
and then it follows that at least one of k + δ2 − µ and (k + δ)2 − mnµ′ is a rational square.
Examples of parameter sets with µ ≠ 0 that are ruled out by these conditions are
(m, n, k, λ, µ′, µ) = (10, 4, 18, 8, 8, 6), (17, 5, 32, 12, 12, 8), (22, 4, 42, 20, 20, 14).



4.5. Lists of small feasible parameter sets 95

4.5. Lists of small feasible parameter sets

In order to generate feasible parameter sets for 3-class association schemes we shall
classify them into three sets:

1. At least one of the relations is a graph with four distinct eigenvalues;
2. At least one of the relations is the disjoint union of some (connected) strongly regular

graphs having the same parameters;
3. All three relations are strongly regular graphs - The amorphic schemes.

These three cases cover all possibilities. Case 2 is degenerate (see Section 4.1.1). For the
remaining two cases we generated all feasible parameter sets on at most 100 vertices. For
Case 3 we used Theorem 4.2.1. For Case 1 we started from the algorithms of the previous
chapter to generate feasible spectra of graphs with four distinct eigenvalues, added the
parameter µ and computed all other parameters, and checked them for necessary conditions
(integrality conditions, Krein conditions, and the absolute bound).





Chapter 5

Just concentrate your whole energy into this mu, and do not
allow any discontinuation. When you enter this mu and there is
no discontinuation, your attainment will be as a candle burning
and illuminating the whole universe.

(Mumon)

Bounds on the diameter and
special subsets

In Chapter 1 we mentioned that the diameter of a connected graph is smaller than the
number of distinct eigenvalues. Chung [28] and Delorme and Solé [41] derived bounds for
the diameter of regular graphs in terms of the actual value of (some of) the eigenvalues. In
this chapter we shall derive a tool which bounds the sizes of two subsets of vertices,
which are at a given distance. The tool uses polynomials, and the bounds depend on the
values of the polynomial evaluated at the Laplace eigenvalues. We apply this tool in
Section 5.2 to derive upper bounds for the diameter of graphs. By suitable choices of the
polynomial we find all diameter bounds mentioned above, but we obtain a better bound by
using Chebyshev polynomials. The same bound was found independently by Chung, Faber
and Manteuffel [29]. We also improve the bounds of Delorme and Solé [41] for the
diameter of bipartite biregular graphs. Also Mohar [84] found diameter bounds in terms of
the Laplace eigenvalues of the graph, but his results don’ t seem to fit in our framework.
However, our bound seems to be better. We apply our bounds to the coset graphs of linear
codes to obtain an upper bound for the covering radius of a linear code.

In Section 5.3 we shall have a closer look at the polynomials that optimize the bounds.
These polynomials were also considered by Fiol, Garriga and Yebra [49] to bound the
diameter in terms of the adjacency eigenvalues. Here we shall use them to obtain an upper
bound on the number of vertices at maximal distance, and a lower bound on the number
of vertices at distance two from a given vertex, in terms of the Laplace spectrum. For
graphs with four eigenvalues we prove a more general result. Here we shall bound the
number of vertices n3 that are not adjacent to a given vertex and have a fixed number µ of
common neighbours with that vertex, in terms of the spectrum and µ, and we characterize
the case of equality. As we have seen in Chapter 4, this particular number n3 plays an
important role in a characterization of the graphs in a three-class association scheme. Our
bound is evidence for a conjecture (see Section 5.3.2) on this number.
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Another application gives bounds on the size of two equally large sets of vertices at
maximal distance, or distance at least two (i.e., with no edges in between). The latter has
applications for the bandwidth of a graph. We also give examples of graphs with few
eigenvalues for which the bound is tight.

5.1. The tool

THEOREM 5.1.1. Let G be a connected graph on v vertices with r + 1 distinct Laplace
eigenvalues 0 = θ0 < θ1 < ... < θr. Let m be a nonnegative integer and let X and Y be sets
of vertices, such that the distance between any vertex of X and any vertex of Y is at least
m + 1. If p is a polynomial of degree m such that p(0) = 1, then

X Y
(v − X )(v − Y )

≤ max
i ≠ 0

p2(θi ) .

Proof. Let G have Laplace matrix Q, then p(Q)xy = 0 for all vertices x ∈ X and y ∈ Y.
Without loss of generality we assume that the first X rows of Q correspond to the
vertices in X and the last Y rows correspond to the vertices in Y. Now consider the
matrix

M =










O p(Q)

p(Q) O
.

Note that M is symmetric, has row and column sums equal to 1, and its spectrum is
{± p(θi) i = 0, 1,..., r}, multiplicities included. Let M be partitioned symmetrically in the
following way.

M =























O O O

O O

O O

O O O

} X

} v − X

} v − Y

} Y

.

Let B be its quotient matrix, then
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B =

























0 0 1 0

0 0 1 − Y
v − X

Y
v − X

X
v − Y

1 − X
v − Y

0 0

0 1 0 0

,

with eigenvalues Sinceλ0(B) = −λ3(B) = 1, λ1(B) = −λ2(B) = X Y
(v − X )(v − Y )

.

the eigenvalues of B interlace those of M, we have that

λ1(B) ≤ λ1(M) ≤ max
i ≠ 0

p(θi ) ,

and the statement follows.

5.2. The diameter

The first application of Theorem 5.1.1 is to prove that the diameter d(G) of G is smaller
than the number of distinct Laplace eigenvalues of G. Suppose G has r + 1 distinct
Laplace eigenvalues 0 = θ0 < θ1 < ... < θr. Now let p be the polynomial given by

p(z) =
i ≠ 0

θi − z

θi

,

then p has degree r, p(0) = 1 and p(θi) = 0 for i ≠ 0. So if X and Y are sets of vertices,
such that the distance between X and Y is at least r + 1, then

X Y
(v − X )(v − Y )

≤ 0 .

which implies that any two vertices have distance smaller than r + 1, so d(G) ≤ r.
Next, suppose G is regular with degree k and adjacency eigenvalues λi = k − θi. Take

two vertices x and y at distance d(G) = m + 1, and let X = {x} and Y = {y}. By applying

Theorem 5.1.1 to the polynomial p given by we find thatp(z) = k − z

k

m



100 Bounds on the diameter and special subsets

This bound (which is only applicable to nonbipartite graphs) was found by Chung [28].

1
v − 1

≤ λ
k

m

, so d(G ) ≤ log(v − 1)

log k

λ

+ 1, where λ = max
i ≠ 0

λi .

Similarly we find the bound of Delorme and Solé [41] by taking forp(z) = k − z + t

k + t

k − z

k

m−1

arbitrary (real) t. However, we can do better, and we do not require regularity. For

example, by taking the polynomial we find the boundp(z) =
θr + θ1 − 2z

θr + θ1

m

d(G ) ≤ log(v − 1)

log
θr + θ1

θr − θ1

+ 1 .

Theorem 5.1.1 allows us to use any polynomial p of degree m such that p(0) = 1. To get
the sharpest bound possible in this way, however, we must choose p such that the right
hand side of the inequality in Theorem 5.1.1 is minimized. For m = 1, the polynomial we
just used is the best possible, but in general we can still do better by looking at the
following "relaxation" of the minimization problem, that is, minimize
max { p(z) θ1 ≤ z ≤ θr } over all polynomials p of degree m such that p(0) = 1. The
solution of this problem can be given in terms of Chebyshev polynomials (cf.
[93, Thm. 2.1, Ex. 2.5.12]). We have to take

Čm(z) =
Tm

θr + θ1 − 2z

θr − θ1

Tm

θr + θ1

θr − θ1

,

where Tm(z) = cosh(m cosh−1(z)) = 1
2-(z + √z2 − 1 )m + 1

2-(z − √z2 − 1 )m is the m-th
Chebyshev polynomial (indeed, it is a polynomial). These polynomials have the property

that and this leads to the following bound.max
z ∈ [−1,1]

Tm(z) = 1,

THEOREM 5.2.1. Let G be a connected noncomplete graph with smallest nonzero Laplace
eigenvalue θ1 and largest Laplace eigenvalue θr, then

d(G) ≤ cosh−1(v − 1)

cosh−1
θr + θ1

θr − θ1

+ 1 .
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This bound was found independently by Chung, Faber and Manteuffel [29]. In [37] we
approximated the bound by

d(G) < log2(v − 1)

log
θr + θ1

θr − θ1

+ 1 ,

which follows from 2Tm

θr + θ1

θr − θ1

=
θr + θ1

θr − θ1

m

+
θr − θ1

θr + θ1

m

>
θr + θ1

θr − θ1

m

.

As we have seen, a graph G with r + 1 distinct eigenvalues has diameter at most r.
Now what happens if the diameter is precisely r? The polynomial p of degree r − 1 which
minimizes our upper bound is determined by p(θj) = (−1) j − 1c, j = 1,..., r, where c is
chosen such that p(0) = 1. (It is easily shown that this is indeed the best polynomial we
can choose.)

PROPOSITION 5.2.2. Let G be a connected graph with r + 1 distinct Laplace eigenvalues
0 = θ0 < θ1 < ... < θr. If d(G) = r, then

v ≥ 1 +
j ≠ 0 i ≠ 0, j

θi

θj − θi

.

Proof. As suggested, we have to take

p(z) =
j ≠ 0

(−1) j − 1c j (z), where j (z) =
i ≠ 0, j

θi − z

θi − θj

, j ≠ 0 ,

and where c is such that p(0) = 1. Since the degree of p is r − 1, it follows from Theorem

5.1.1 that . Since p(0) = 1 we have that1
v − 1

≤ c

1
c

=
j ≠ 0

(−1) j − 1

i ≠ 0, j

θi

θi − θj

=
j ≠ 0 i ≠ 0, j

θi

θj − θi

,

from which the result follows.
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5.2.1. Bipartite biregular graphs

Let G be a bipartite graph with parts V1 and V2. We shall call G biregular if every vertex
in V1 has vertex degree k1 and every vertex in V2 has vertex degree k2, for some k1 and k2.
In this case we can improve the diameter bound we just found. The results will be stated
in terms of the adjacency eigenvalues, as the proofs are built on the special structure of
the adjacency matrix. However, the Laplace eigenvalues θi and the adjacency eigenvalues
λi are related by λi

2 = (k1 − θi)(k2 − θi) (more specifically, for all θi, both solutions of the
equation for λi are eigenvalues, and the other way around). Delorme and Solé [41] found a
bound for the diameter of bipartite biregular graphs. Just like them we shall distinguish
between the distance of vertices in the same part, and the distance of vertices in distinct
parts. However, these maximum distances we distinguish only differ by one. From the
following arguments, which are basically the same as those in the proof of Theorem 5.1.1,
it is easy to derive and improve the bounds of Delorme and Solé.

In this section, we let G be connected and bipartite biregular, with n1 vertices of degree
k1, and n2 vertices of degree k2, and let A be the adjacency matrix of G, with eigenvalues
λ0 > λ1 > ... > λr = −λ0. Now let m be odd, X1 a subset of V1, and Y2 a subset of V2, such
that the distance between any vertex in X1 and any vertex in Y2 is at least m + 2. Let p be
an odd polynomial of degree m, such that p(λ0) = 1. Then we can partition p(A)
symmetrically as follows.

p(A) =























O O O

O O

O O

O O O

} X1

} n1 − X1

} n2 − Y2

} Y2

.

Let B be its quotient matrix, then

B =































0 0 κ 0

0 0 κ −
Y2

n1 − X1

1
κ

Y2

n1 − X1

1
κ

X1

n2 − Y2

κ 1
κ

−
X1

n2 − Y2

κ 0 0

0 1
κ

0 0

, where κ =
k1

k2

.
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The eigenvalues of B are and since they interlace those of±1, ±
X1 Y2

(n1 − X1 )(n2 − Y2 )
,

p(A), we find that

X1 Y2

(n1 − X1 )(n2 − Y2 )
≤ max

i ≠ 0, r
p2(λi ) .

Now denote by dij(G) the maximum distance between any vertex in Vi and any vertex in
Vj, for i, j = 1 or 2. If we let m = d12(G) − 2, so m is odd, and take two vertices at
distance d12(G), and let the polynomial p be given by

p(z) =
Tm

z

λ1

Tm

λ0

λ1

,

then p is odd (Tm(z) is an even, respectively odd polynomial, if m is even, respectively
odd), and we find the following bound.

PROPOSITION 5.2.3. Let G be connected and bipartite biregular, with n1 vertices of degree
k1, and n2 vertices of degree k2, then

d12(G ) ≤
cosh−1 ( (n1 − 1)(n2 − 1) )

cosh−1
λ0

λ1

+ 2 .

Next, let m be even, j = 1 or 2, and let Xj and Yj be subsets of Vj, such that the distance
between any vertex in Xj and any vertex in Yj is at least m + 2. Let p be an even
polynomial of degree m, such that p(λ0) = 1, then there is a polynomial q of degree 1

2-m
such that p(z) = q(z2). Now we consider the matrix A2, which has row and column sums
equal to λ0

2 = k1k2, and eigenvalues λi
2. Furthermore, we can write A2 as

A2 =










M1 O

O M2

} n1

} n2

.

Note that the spectrum of A2 is the union of the spectra of M1 and M2, and both M1 and M2
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have one eigenvalue k1k2. Now consider the (multi)graph on Vj with adjacency matrix Mj,
which has Laplace eigenvalues k1k2 − λ i

2 for some of the i-s, i < r. By applying Theorem
5.1.1 to this graph and the polynomial q′(z) = q(k1k2 − z), we show that

Xj Yj

(nj − Xj )(nj − Yj )
≤ max

i ≠ 0, r
p2(λi ) ,

since the distance in this new graph (which is one of the so-called halved (multi)graphs) is
half of the original distance (in G). Now the maximal distance follows.

PROPOSITION 5.2.4. Let G be connected and bipartite biregular, with n1 vertices of degree
k1, and n2 vertices of degree k2. Let j = 1 or 2, then

djj(G ) ≤
cosh−1 (nj − 1)

cosh−1
λ0

λ1

+ 2 .

When G is bipartite and regular (so k = k1 = k2), we can combine Propositions 5.2.3 and
5.2.4.

COROLLARY 5.2.5. Let G be a connected graph on v vertices, which is bipartite and
regular with degree k, and has second largest eigenvalue λ1. Then

1
2-d(G ) ≤ cosh−1 ( v − 1)

cosh−1 k
λ1

+ 2 .

For bipartite regular graphs this bound improves the general bound of Theorem 5.2.1. For
example, suppose we have a bipartite regular graph with k = 6, and λ1 = 2 (for example,
the incidence graph of a 2-(16, 6, 2) design, which has diameter three). After rounding, the
general bound gives d(G) ≤ 4, while the bound of Corollary 5.2.5 gives d(G) ≤ 3.

5.2.2. The covering radius of error-correcting codes

In this section we give the applications of the diameter bounds to the covering radius of
error-correcting codes. If C is a code of length n over an alphabet Q of q elements, then
we can apply Theorem 5.1.1 to the Hamming graph H(n, q) to derive an upper bound for
the covering radius of C in terms of n, q and the size of C, since the code C is a subset of
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vertices in the Hamming graph, and the covering radius of C is the maximum distance of
any of the vertices to C. Unfortunately, we only derive a useless bound. For linear codes,
however, we can follow the approach of Delorme and Solé [41], and use its coset graph,
and this will turn out to be more successful. The coset graph of a code has diameter equal
to the covering radius of the code, and the eigenvalues of the graph can be expressed in
terms of the weights of the dual code (recall the duality of the distance scheme and coset
scheme of a code, cf. Section 4.1.5). In this way we can derive bounds for the covering
radius of a code, using the bounds for the diameter of the graph.

Let C be a linear code over GF(q) of length n and dimension K. Formally speaking, the
coset graph of C is a multigraph G with vertex set GF(q)n/C (the cosets of C) of size
v = qn − K. The number of edges between two cosets x + C and y + C is the number of
words of weight one in x − y + C. In this way we get a regular graph of degree
k = n(q − 1), possibly with loops (which occur whenever there is a codeword of weight
one) or multiple edges (which occur whenever there is a coset containing more than one
word of weight one; this is the case if and only if there is a codeword of weight two or
there are at least two codewords of weight one (in the latter case we have multiple
loops)). The coset graph is an ordinary graph if the minimum distance of the code is at
least three. The nice thing is that the covering radius of C is equal to the diameter of G.
Furthermore the adjacency spectrum of G is (the multiset) {n(q − 1) − qw(x) x ∈ C ⊥ }
(cf. [22]), and so G has Laplace spectrum {qw(x) x ∈ C ⊥ }, where w(x) is the weight of
x. The first observation we make is that the covering radius is not larger than the external
distance, since the latter equals the number of nonzero weights in the dual code (note that
in case of equality, we can apply Proposition 5.2.2). Application of our bounds for the
diameter of G gives the following results.

THEOREM 5.2.6. Let C be a linear code over GF(q) of length n and dimension K, and
covering radius ρ. Let ∆⊥ and δ⊥ be the maximum, respectively minimum nonzero weight
(distance) of the dual code C ⊥ . Then

ρ ≤ cosh−1 (qn−K − 1)

cosh−1 ∆⊥ + δ⊥

∆⊥ − δ⊥

+ 1 .

If the coset graph is bipartite then we can apply the improved bound of Corollary 5.2.5.
This happens precisely when q = 2 and C ⊥ contains the all-one word, or equivalently,
when C is a binary even weight code. To show this, let n be the length of the code, and λr

be the smallest adjacency eigenvalue of G. Suppose q = 2 and C ⊥ contains the all-one
word, so ∆⊥ = n, then λr = −n = −k, from which we may conclude that G is bipartite.
Conversely, if G is bipartite, then λr = −n(q − 1), so there is an x ∈ C ⊥ such that
n(q − 1) − qw(x) = −n(q − 1), which can only be the case if q = 2 and w(x) = n, so x is
the all-one word.
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THEOREM 5.2.7. Let C be a binary linear even weight code of length n and dimension K,
and covering radius ρ. Let δ⊥ be the minimum nonzero weight (distance) of the dual code
C ⊥ . Then

ρ ≤ cosh−1 (2n−K−1 − 1)

cosh−1 n

n − 2δ⊥

+ 2 .

5.3. Bounds on special subsets

Let G be a graph. Now let X be an arbitrary set of vertices, and Y be the set of vertices
that are at distance at least d from every vertex in X. When we use the polynomial Čd − 1(z)
in Theorem 5.1.1, we derive a bound on the size of Y, in terms of the extreme Laplace
eigenvalues, d, and the size of X.

PROPOSITION 5.3.1. Let G a connected noncomplete graph with smallest nonzero Laplace
eigenvalue θ1 and largest Laplace eigenvalue θr. Let X be an arbitrary set of vertices, and
Y the set of vertices at distance at least d from X, where d is a positive integer, then

Y ≤ v

1 + X
v − X

Td−1

θr + θ1

θr − θ1

2
.

Recall that to obtain the sharpest bound we have to minimize max{ p(θi) i ≠ 0} over
all polynomials p of degree m such that p(0) = 1. Chebyshev polynomials are certainly
good, but not optimal. In the paper by Fiol, Garriga and Yebra [49] the optimal
polynomials were investigated to bound the diameter of a graph in terms of its adjacency
eigenvalues. The problem of finding the optimal polynomials in fact is one from the
theory of uniform approximations of continuous functions (cf. [27, 93]).

Let S be a compact set of real numbers and let C(S) be the set of continuous functions
on S to the reals. Let f ∈ C(S), with uniform norm

f ∞ = max
z ∈ S

f (z) .

Let W be a subspace of C(S) of dimension n, then w* is called a best approximation of f in
W if
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min
w ∈ W

f − w ∞ = f −w ∞ .

The set of critical points of a function is the set E( f, S) = {z ∈ S f ∞ = f(z) }. The
sign of z ≠ 0 is defined by sgn(z) = z z −1 (sgn(0) = 0). Now we have the following
characterization of best approximations (cf. [93]).

LEMMA 5.3.2. The function w* is a best approximation of f if and only if there are distinct
points z1,..., zt ∈ E( f − w*, S), and positive numbers α1,..., α t such that for all w ∈ W

t

i =1

α i sgn( f(zi) − w (zi))w(zi) = 0 ,

where t ≤ n + 1.

After substitution of p(0) = 1 our problem is to find

min
pm ,...,p1

max
i ≠ 0

pmθi
m + ... + p1θi + 1 ,

so we want a best approximation of the function −1 on S = {θ1,..., θr} from
W = {w w(z) = pm z m + ... + p1z}, which is an m-dimensional subspace of C(S). It follows
that p is the unique optimal polynomial if and only if there are zj ∈ {θi i = 1,..., r},
j = 1,..., m + 1, such that z1 < z2 < ... < zm + 1, and p(zj) is alternating
± max{ p(θi) i ≠ 0} (cf. [93, Thm. 2.8 and 2.10]). It also follows that we must have
z1 = θ1 and zm + 1 = θr. For m = 2, where we have to find the optimal quadratic polynomial,
it is easily verified that we have to take z2 = θh, the Laplace eigenvalue closest to
1
2-(θ1 + θr). In the general case it follows (cf. [27, Thm. 7.1.6]) that there is a subset T of
{1,..., r} of size m + 1 such that the polynomial p given by

p(z) = cT
j ∈ T i ∈ T \{j}

z − θi

θj − θi

,

where cT is such that p(0) = 1, is the unique optimal polynomial. Now let Pm be the set of

polynomials of degree m such that p(0) = 1, then it follows that .cT = min
p ∈ Pm

max
i ≠ 0

p(θi)

If T ′ is an arbitrary subset of {1,..., r} of size m + 1, then

=cT ′ = min
p ∈ Pm

max
i ∈ T ′

p(θi)
j ∈ T ′ i ∈ T ′ \{j}

θi

θj − θi

−1

.
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Now it follows that and so Thus we findcT ′ ≤ cT , cT ≤ max
T ′ ⊂ {1,...,r}, T ′ =m+1

cT ′ ≤ cT .

that the required minimum equals

cT = max
T ′ ⊂ {1,...,r}, T ′ =m+1 j ∈ T ′ i ∈ T ′ \{j}

θi

θj − θi

−1

.

5.3.1. The number of vertices at maximal distance and distance two

In Section 5.2 we started by proving that if a graph has r + 1 distinct Laplace eigenvalues,
then it has diameter at most r. Using the results of the previous section we find a bound
on the number of vertices that are at maximal distance r from a fixed vertex. By Gi we
denote the distance i graph of G.

THEOREM 5.3.3. Let G be a connected graph on v vertices with r + 1 distinct Laplace
eigenvalues 0 = θ0 < θ1 < ... < θr. Let x be an arbitrary vertex, and let kr be the number of
vertices at distance r from x. Then

kr ≤
v

1 + γ2

v−1

, where γ =
j ≠ 0 i ≠ 0, j

θi

θj − θi

.

If equality holds for every vertex, then Gr is a strongly regular (v, kr, λ, λ) graph. If G is
a distance-regular graph with diameter r such that Gr is a strongly regular (v, kr, λ, λ)
graph then the bound is tight for every vertex.

Proof. Take X = {x}, and let Y be the set of vertices at distance r from x. Now take the
optimal polynomial of degree r − 1 given in the previous section, with γ = cT

−1 and
apply Theorem 5.1.1, then the bound follows. If the bound is tight, then it follows that in
the proof of Theorem 5.1.1 we have tight interlacing, and so the partition of M is regular.
Therefore

p(Q) =



















a a 1 T 0 T

a 1 S11 S12

0 S T
12 S22

} 1

} v − 1 − kr

} kr

,

where a = 1/(v − kr), is regularly partitioned with S12 and S22 having the same row sums. If
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the bound is tight for every vertex, then it follows that J − (v − kr)p(Q) is the adjacency
matrix of Gr, and that this graph is a strongly regular (v, kr, λ, λ) graph.

On the other hand, if G is a distance-regular graph with diameter r such that Gr is a
strongly regular (v, kr, λ, λ) graph then we shall show that

kr = v

1 + γ2

v−1

, where γ−1 = max
i ≠ 0

p(θi) ,

for some polynomial p of degree r − 1 such that p(0) = 1. Because of the optimality of the
bound this suffices to prove that the bound is tight for every vertex. Assume that G has
degree k, then its Laplace eigenvalues θi and its adjacency eigenvalues λi are related by
λi = k − θi. Furthermore, let A be the adjacency matrix of G, and let Ai be the adjacency
matrix of the distance i graph Gi of G. Since G is distance-regular, there is a polynomial q
of degree r − 1 such that

q(A) = (J − Ar)/(v − kr) = (Ar − 1 + ... + A + I)/(v − kr),

and then q(k) = 1. Now let p(z) = q(k − z). We have that Gr is a strongly regular
(v, kr, λ, λ) graph, and such a graph has adjacency eigenvalues kr and

. From this it follows that± kr(v − kr)/(v − 1)

max
i ≠ 0

p(θi) = max
i ≠ 0

q(λi) =
kr

(v − 1)(v − kr)
,

which proves the claim.

A side result of Theorem 5.3.3 is that if v < 1 + γ, so that kr < 1, then the diameter of G
is at most r − 1, a result we already found in Section 5.2.

Examples of graphs for which the bound is tight for every vertex are given by the
2-antipodal distance-regular graphs, with kr = 1 (Gr being a disjoint union of edges). Other
examples are given by the Odd graph on 7 points (k3 = 18) and the generalized hexagons
GH(q, q) (k3 = q5). If G is a connected regular graph with four eigenvalues then we can
prove that a tight bound for every vertex implies distance-regularity, but we shall prove
this in more generality in the next section.

The reader may have noticed that we have omitted examples of strongly regular graphs
for which the bound is tight for every vertex. By taking r = 2 in Theorem 5.3.3, we see
that the bound is tight for strongly regular (v, k, λ′ , λ′ + 2) graphs. Using Theorem 2.2.1,
it is not hard to show that for any connected graph with three Laplace eigenvalues the
bound also follows from the parameter restrictions of such a graph. However, it may be
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surprising that the bound turns out to be tight for some vertex if and only if G comes from
a polarity in a symmetric design with at least one absolute point (see Section 2.2.4). The
absolute points correspond to the vertices for which the bound is tight.

For graphs with four eigenvalues, the upper bound for k3 gives a lower bound for k2,
the number of vertices at distance 2 from x, since k2 = v − 1 − dx − k3, where dx is the
vertex degree of x. This lower bound generalizes to graphs with more than four
eigenvalues, since we can bound the number of vertices k3+ at distance at least three, using
the optimal quadratic polynomial. By G1, 2 we denote the graph on the same vertices as G,
where two vertices are adjacent if they have distance 1 or 2 in G.

THEOREM 5.3.4. Let G be a connected graph on v vertices with r + 1 ≥ 4 distinct Laplace
eigenvalues 0 = θ0 < θ1 < ... < θr, and let θh be an eigenvalue unequal to θ1 and θr, which
is closest to 1

2-(θ1 + θr). Let x be an arbitrary vertex with vertex degree dx, and let k2, x be
the number of vertices at distance 2 from x. Then

k2,x ≥ v − 1 − dx − v

1 + γ2

v−1

, where γ =
j=1,h,r i=1,h,r

i≠ j

θi

θj − θi

.

If equality holds for every vertex, then G1, 2 is a strongly regular (v, dx + k2, x, λ′ , λ′ + 2)
graph. If G is a distance-regular graph such that G1, 2 is a strongly regular
(v, k + k2, λ′ , λ′ + 2) graph then the bound is tight for every vertex.

Proof. The proof is similar to the proof of Theorem 5.3.3. Here equality for every vertex
implies that "the distance at least 3 graph" G3+ is a strongly regular (v, k3+, λ, λ) graph,
and so G1, 2 is a strongly regular (v, dx + k2, x, λ′ , λ′ + 2) graph. Note that in that case G
must have diameter 3 or 4.

Examples for r = 3 for which this bound is tight were already given above. We do not
know of any graph with more than four eigenvalues for which the bound is tight.

5.3.2. Special subsets in graphs with four eigenvalues

In a graph with four eigenvalues two vertices are at distance three if and only if they are
not adjacent and have no common neighbours. The purpose of this section is to generalize
the bound on the number of vertices k3 at distance 3 from a vertex x to a bound on the
number of vertices n3 that are not adjacent to x and have µ common neighbours with x.
Here the reader should keep in mind the analogue of the generalization of distance-regular
graphs with diameter three to three-class association schemes. The question of bounding n3

was raised after we characterized the graphs in a three-class association scheme as those
regular graphs with four eigenvalues for which n3 equals g(∑, µ), for every vertex, for
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some µ (Theorem 4.3.4). Recall that g(∑, µ) is a (rather complicated) function of the
spectrum ∑ of the graph and µ. Furthermore, we know that if g(∑, µ) is a nonnegative
integer then n3 is at most g(∑, µ). We strongly believe that the integrality condition can be
dropped, but are (so far) unable to prove so. Still, the bound we obtain in this section is
close, giving some evidence for the conjecture.

Let us define Gµ as the graph on the same vertices as G, where two vertices are
adjacent if in G they are not adjacent, and have µ common neighbours. Let G¬µ be the
graph with two vertices being adjacent if in G they are not adjacent, and do not have µ
common neighbours.

THEOREM 5.3.5. Let G be a connected graph on v vertices with four distinct Laplace
eigenvalues 0 = θ0 < θ1 < θ2 < θ3. Let µ be a nonnegative integer, let x be an arbitrary
vertex, and let n3 be the number of vertices that are not adjacent to x and have exactly µ
common neighbours with x. Then

where γ =n3 ≤
v

1 + γ2

v−1

,















2(θ1θ3 − vµ )

(θ3 − θ2)(θ2 − θ1)
+ 1 if vµ ≤ θ1θ2 or θ2θ3 < vµ ,

2(θ2θ3 − vµ )

(θ3 − θ1)(θ1 − θ2)
+ 1 if θ1θ2 < vµ ≤ θ1θ3 ,

2(θ1θ2 vµ )

(θ2 − θ3)(θ3 − θ1)
+ 1 if θ1θ3 < vµ ≤ θ2θ3 .

If equality holds for every vertex, then Gµ is a strongly regular (v, n3, λ, λ) graph. If G is
regular then equality holds for every vertex if and only if G, Gµ and G¬µ form a three-class
association scheme and Gµ is a strongly regular (v, n3, λ, λ) graph.

Proof. Here we use a slight variation to the technique we used in the proof of Theorem
5.1.1. Let p(z) = p2z

2 + p1z + p0 be a quadratic polynomial such that p(0) = p0 = 1 + p2vµ.
Let Q be the Laplace matrix of G, then (p2(Q

2 − µJ) + p1Q + p0I)xy = 0 for all vertices y
that are not adjacent to x and have µ common neighbours with x. If we replace p(Q) by
p2(Q

2 − µJ) + p1Q + p0I in the proof of Theorem 5.1.1, then the matrix M has row and
column sums equal to 1, and spectrum {± 1} ∪ {± p(θi) i = 1, 2, 3} with corresponding
multiplicities. Now it follows that

n3 ≤
v

1 + γ2

v−1

, where γ−1 = max
i ≠ 0

p(θi) .

So here the sharpest bound is obtained by minimizing max{ p(θi) i ≠ 0} over all
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polynomials p(z) = p2z
2 + p1z + p0 such that p(0) = 1 + p2vµ. For µ = 0 we know the

solution: there is a unique optimal polynomial p, and p(θ1) = −p(θ2) = p(θ3). In general the
situation is more complicated. We shall see that the polynomial is not always unique
anymore. However, we can use Lemma 5.3.2 to optimize the bound explicitly. In order to
characterize the case of equality, we need to be sure that the bound we find is indeed
derived with the best possible polynomial. After substitution of p(0) = 1 + p2vµ our
problem becomes to find

min
p2, p1

max
i ≠ 0

p2(θi
2 + vµ ) + p1θi + 1 ,

so we are looking for a best approximation of the function −1 on S = {θ1, θ2, θ3} from
W = {w w(z) = p2(z

2 + vµ) + p1z}, which is a two-dimensional subspace of C(S).
Now suppose we have a best approximation w* (these always exist), and suppose that it

has one critical point (t = 1), say θi. Then it follows from the lemma that for all w ∈ W,
w(θi) = 0, which implies that θi = 0, a contradiction.

Now suppose that it has two critical points, say θi and θj with si = sgn(w*(θi) + 1) and
sj = sgn(w*(θj) + 1). Then there are α i, α j > 0 such that for all p2 and p1 we have

α isi(p2(θi
2 + vµ) + p1θi) + αjsj(p2(θj

2 + vµ) + p1θj) = 0.

Setting p2 = 0 gives α isiθi + α jsjθj = 0, from which we find that si = −sj. By setting p1 = 0
and by use of the derived equation, we have that (θi

2 + vµ)θj = (θj
2 + vµ)θi, which is

equivalent to vµ = θiθj. Using that w*(θi) + 1 = −(w*(θj) + 1), we find that in this case the
optimal min-max value of the above problem equals

θi − θj

θi + θj

.

Note that here the optimal polynomial is not unique, in fact there are infinitely many.
Next, consider the case that all three eigenvalues θi are critical points with

si = sgn(w*(θi) + 1). Then it follows from Lemma 5.3.2 that there are α i > 0 such that

3

i=1

α i si (θi
2 + vµ ) = 0 , and

3

i=1

α i siθi = 0 ,

which is equivalent to

α1s1(θ3 − θ1)(θ1θ3 − vµ) + α2s2(θ3 − θ2)(θ2θ3 − vµ) = 0,
α3s3(θ3 − θ1)(θ1θ3 − vµ) + α2s2(θ2 − θ1)(θ1θ2 − vµ) = 0.
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So it follows that if vµ < θ1θ2 or vµ > θ2θ3, then s1 = −s2 = s3, and the optimal polynomial
is uniquely determined giving optimal value

(θ3 − θ2)(θ2 − θ1)

2(θ1θ3 − vµ ) + (θ3 − θ2)(θ2 − θ1)
.

Similarly we find that if θ1θ2 < vµ < θ1θ3, then −s1 = s2 = s3 and if θ1θ3 < vµ < θ2θ3, then
s1 = s2 = −s3, giving similar expressions as above for the optimal value. We see that the
optimal value is a continuous function of µ. Thus we find the "optimal" bound.

If for every vertex the bound is tight, then it follows (similarly as before) that
J − (v − n3)(p2(Q

2 − µJ) + p1Q + p0I) is the adjacency matrix of Gµ and that this graph is a
strongly regular (v, n3, λ, λ) graph. Moreover, if G is regular, then we have to prove that
we have a 3-class association scheme. To show this, suppose that G is regular with degree
k and adjacency matrix A. Furthermore, let A3 be the adjacency matrix of Gµ, and
A2 = J − I − A − A3 be the adjacency matrix of G¬µ. As Q = kI − A, it follows that
A3, A2 ∈ 〈 A2, A, I, J 〉 , the adjacency algebra A of G. Since G is regular with four
eigenvalues, it follows that A3 ∈ A. This implies that 〈 A3, A2, A, I 〉 = A, and so G, Gµ

and G¬µ form a 3-class association scheme.
On the other hand, if G is a graph with four eigenvalues such that G, Gµ and G¬µ form

a 3-class association scheme and Gµ is a strongly regular (v, n3, λ, λ) graph then the bound
is tight for every vertex. The proof is similar to the situation in the previous section. Here
we have to show that the bound is tight for some polynomial p(z) = p2z

2 + p1z + p0 such
that p(0) = 1 + p2vµ . Now there are q2, q1 and q0 such that
(J − A3)/(v − n3) = q2(A

2 − µJ) + q1A + q0I. If we now take q(z) = q2z
2 + q1z + q0, then it

follows by taking row sums in the matrix equation that q(k) = 1 + q2vµ, and by taking
p(z) = q(k − z), we find the required polynomial (note that p2 = q2). It gives a tight bound,
which is proven similarly as in the proof of Theorem 5.3.3.

Examples of graphs for which the bound is tight, and µ ≠ 0, are given by the line graph of
the Petersen graph (µ = 1, n3 = 8), the Johnson graph J(7, 3) (µ = 4, n3 = 18), the distance
two graph of the generalized hexagon GH(q, q) (µ = q3 + q2 − q − 1, n3 = q5) and several
graphs in the association schemes that are obtained by Hoffman colorings in strongly
regular (v, n3, λ, λ) graphs.

The bound does in general not prove the conjecture. For example, suppose we have a
regular graph with spectrum {[5]1, [√5]7, [−1]5, [−√5]7}. After rounding the numbers, the
bound gives n3 ≤ 2, 15, 3, 1, 0, 0 for µ = 0, 1, 2, 3, 4, 5, respectively. The conjectured
bounds, however, are 2, 14, 2, 0, 0, 0, respectively. There is precisely one graph with the

given spectrum, a 2-cover of C5 J2 (cf. Section 3.3.7), for which every vertex has
n3 = 1, 12, 1, 0, 0, 0, respectively.
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5.3.3. Equally large sets at maximal distance

As a last illustration of Theorem 5.1.1 we derive bounds on the sizes of two equally large
sets at maximal distance, and distance at least two.

PROPOSITION 5.3.6. Let G be a connected graph on v vertices with r + 1 distinct Laplace
eigenvalues 0 = θ0 < θ1 < ... < θr. Let X1 and X2 be sets of vertices of size κ, such that the
distance between any vertex of X1 and any vertex of X2 is r, then

κ ≤ v
1 + γ

, where γ =
j ≠ 0 i ≠ 0, j

θi

θj − θi

.

If the bound is tight then again we must have tight interlacing in Theorem 5.1.1, and so
the partition of M is regular. It now follows that the partition of p(Q) induced by the
partition of the vertices into X1, X2 and the set of remaining vertices is regular with
quotient matrix

























κ
v − κ

1 − κ
v − κ

0

κ
v − κ

1 − 2κ
v − κ

κ
v − κ

0 1 − κ
v − κ

κ
v − κ

.

Consider the connected regular graphs with four eigenvalues. Let G be a 2-antipodal
distance-regular graph with diameter three, so that it has eigenvalues

k > λ1 > λ2 = −1 > λ3, with λ1λ3 = −k, then G Jn is a connected regular graph with four
eigenvalues. For such graphs Proposition 5.3.6 gives κ ≤ n, and it is easy to find vertex
sets for which this bound is tight. Checking the list of feasible parameter sets in Appendix
A.3, it follows that the only other examples of regular graphs with four eigenvalues on at
most 30 vertices, for which the bound is tight, are given by the four incidence graphs of
2-(15, 8, 4) designs, which all have a tight bound κ ≤ 3. The problem of finding two sets
of size three at distance three is equivalent to finding three points all of which are incident
with three blocks in the corresponding complementary 2-(15, 7, 3) designs.

Another example is given by the Hamming graph H(d, q), which has Laplace
eigenvalues jq, j = 0,..., d. Here we find that 1 + γ = 2d, so κ ≤ (1

2-q)d. For q even, the
bound is tight: split the alphabet into two equally large parts Q1 and Q2, and take as vertex
sets the set of words with letters in Q1, and the set of words with letters in Q2.

If we have only three Laplace eigenvalues then Proposition 5.3.6 provides a bound on
the size of two equally large disconnected vertex sets, that is, two sets with no edges in
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between. We also find such a bound in case we have more Laplace eigenvalues.

PROPOSITION 5.3.7. Let G be a connected graph on v vertices with r + 1 distinct Laplace
eigenvalues 0 = θ0 < θ1 < ... < θr. Let X1 and X2 be two disconnected vertex sets of size κ′ ,
then κ′ ≤ 1

2-v(1 − θ1/θr).

Proof. Use the first degree polynomial p(z) = 1 − 2z/(θ1 + θr).

This method was used by Haemers [58] to find a bound due to Helmberg, Mohar, Poljak
and Rendl [64] on the bandwidth of a graph.

Next, we consider the case that the bound on κ′ is tight. Then the Laplace matrix Q is
regularly partitioned with quotient matrix

















θ1 −θ1 0

(θ1 − θr ) θr − θ1 (θ1 − θr )

0 −θ1 θ1

.1
2-

1
2-

Thus a necessary condition for tightness is that θr − θ1 is an even integer.
Families of (strongly regular) graphs for which we have a tight bound are given by the

complete multipartite graphs Km × n for even n, with κ ≤ 1
2-n, the triangular graphs T(n) for

even n, with κ ≤
1
2-n
2 , and the lattice graphs L2(n) for even n, with κ ≤ (1

2-n)2. Checking
the list of feasible parameter sets in Appendix A.2, it follows that besides the mentioned
graphs, the only connected graphs with three Laplace eigenvalues on at most 27 vertices
for which the bound can be tight are the graphs obtained from polarities in 2-(15, 8, 4),
2-(16, 6, 2) and 2-(21, 5, 1) designs. For example, the matrices given by



































D1

I I

I I

I P

P I

O O

O O

I I

I I
D2

O O

O O

I P

P I

I P

P I

O O

O O
D3

I I

I I

O O

O O

I P

P I

I I

I I
D4

, with Di ∈ {










O J

J O
,










J O

O J
} ,

where
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O =










0 0

0 0
, J =











1 1

1 1
, I =











1 0

0 1
, P =











0 1

1 0
,

are incidence matrices of 2-(16, 6, 2) designs with a polarity, and we obtain graphs with
Laplace spectrum {[8]m, [4]15 − m, [0]1} for m = 5, 6, 7, 8, and 9. For these graphs we have
κ ≤ 4, and the bound is tight, as we can see from the matrices. The regular graphs in this
example are the Clebsch graph and the lattice graph L2(4). The only other regular graph
obtained from a 2-(16, 6, 2) design with a polarity is the Shrikhande graph, and also here
the bound is tight. The triangular graph T(6) is an (the only regular) example obtained
from a 2-(15, 8, 4) design with a polarity, and it has tight bound κ ≤ 3. Furthermore, there
are precisely two graphs that can be obtained from a polarity in the 2-(21, 5, 1) design
(the projective plane of order 4), and for both graphs the bound κ ≤ 6 is tight.

Besides the graphs we already mentioned, there are only two other strongly regular
graphs on at most 35 vertices for which the bound is tight: these are two of the three
Chang graphs. These graphs have the same spectrum as and are obtained from switching
in the triangular graph T(8). The one that is obtained from switching with respect to a
4-coclique and the one that is obtained from switching with respect to an 8-cycle have a
tight bound, the one that is obtained from switching with respect to the union of a 3-cycle
and a 5-cycle not.



Appendices

A.2. Graphs with three Laplace eigenvalues

By computer we generated all feasible parameter sets for graphs on v vertices with
constant µ and µ, having restricted Laplace eigenvalues θ1 > θ2 and vertex degrees k1 ≥ k2,
for v ≤ 40, satisfying 0 < µ ≤ µ. If λ22 < 0, then the condition n2 ≤ v(θ1 − k2)/θ1 is
satisfied. By # we denote the number of nonregular graphs. If there are any strongly
regular graphs, then their number is denoted in between brackets. By Bruck-Ryser(p) we
denote that the Bruck-Ryser condition is not satisfied modulo p.

v µ µ θ1 θ2 k1 k2 n1 n2 λ22 # Notes Subsection 2.2.*

5 1 1 3.6180 1.3820 2 2 0 × (1) C5, G(3,1,0) 5

7 1 2 4.4142 1.5858 3 2 4 3 -1 1 G(4,1,0), P(7,3,1) 3.a,d, 4, 5

9 1 3 5.3028 1.6972 4 2 5 4 -2 1 G(5,1,0) 3.a, 5
9 2 2 6 3 4 4 1 × (1) L2(3)

10 1 4 5 2 3 3 0 × (1) Petersen

11 1 4 6.2361 1.7639 5 2 6 5 -3 1 G(6,1,0) 3.a, 5
11 2 3 6.7321 3.2679 5 4 6 5 0 1 P(11,5,2) 4

13 1 5 7.1926 1.8074 6 2 7 6 -4 1 G(7,1,0) 3.a, 5
13 1 6 5.7321 2.2679 4 3 9 4 -1 1 P(13,4,1) 3.c,d, 4
13 2 4 7.5616 3.4384 6 4 7 6 -1 1 G(7,3,1) 5
13 3 3 8.3028 4.6972 6 6 2 × (1) P(13)

15 1 6 8.1623 1.8377 7 2 8 7 -5 1 G(8,1,0) 3.a, 5
15 2 5 8.4495 3.5505 7 4 8 7 -2 0 G(D) 5
15 3 4 9 5 7 6 1 ≥ 3 (1) P(15,7,3) (T(6)) 4

16 2 6 8 4 6 5 0 ≥ 4 (3) P(16,6,2) (Clebsch, 4
L2(4), Shrikhande)

17 1 7 9.1401 1.8599 8 2 9 8 -6 1 G(9,1,0) 3.a, 5
17 2 6 9.3723 3.6277 8 4 9 8 -3 0 Bruck-Ryser(3), G(D) 1, 5
17 3 5 9.7913 5.2087 8 6 9 8 0 0 Bruck-Ryser(7) 1
17 4 4 10.5616 6.4384 8 8 3 × (1) P(17)

19 1 8 10.1231 1.8769 9 2 10 9 -7 1 G(10,1,0) 3.a, 5
19 1 10 7.4495 2.5505 6 3 11 8 -3 0 Bruck-Ryser(3) 1, 3
19 2 7 10.3166 3.6834 9 4 10 9 -4 0 G(D) 5
19 4 5 11.2361 6.7639 9 8 10 9 2 ≥ 1 P(19,9,4) 4

21 1 9 11.1098 1.8902 10 2 11 10 -8 1 G(11,1,0) 3.a, 5
21 1 12 7 3 5 4 -1 2 P(21,5,1) 3.b,d, 4
21 2 8 11.2749 3.7251 10 4 11 10 -5 0 Bruck-Ryser(3), G(D) 1, 5
21 3 7 11.5414 5.4586 10 6 11 10 -2 1 G(11,5,2) 5
21 4 6 12 7 10 8 1 ≥ 1 (1) T(7), switched T(7) 6
21 5 5 12.7913 8.2087 10 10 4 × (0) Bruck-Ryser(3) 1

22 3 8 11 6 9 7 0 ≥ 2 switched T(7) 6

23 1 10 12.0990 1.9010 11 2 12 11 -9 1 G(12,1,0) 3.a, 5
23 2 9 12.2426 3.7574 11 4 12 11 -6 0 G(D) 5
23 3 8 12.4641 5.5359 11 6 12 11 -3 0 G(D) 5
23 4 7 12.8284 7.1716 11 8 12 11 0 ?
23 5 6 13.4495 8.5505 11 10 12 11 3 ≥ 1 P(23,11,5) 4

25 1 11 13.0902 1.9098 12 2 13 12 -10 1 G(13,1,0) 3.a, 5
25 1 15 7.7913 3.2087 6 4 16 9 -2 1 3.c
25 2 10 13.2170 3.7830 12 4 13 12 -7 0 G(D) 5
25 2 12 10 5 8 6 -1 ? (1) L2(5) 2
25 3 9 13.4051 5.5949 12 6 13 12 -4 1 G(13,4,1) 5
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v µ µ θ1 θ2 k1 k2 n1 n2 λ22 # Notes Subsection 2.2.*

25 3 10 11.4495 6.5505 9 8 16 9 1 ≥ 1 P(25,9,3) 4
25 5 7 14.1926 8.8074 12 10 13 12 2 ?
25 6 6 15 10 12 12 5 × (15) L3(5)

26 4 9 13 8 10 10 3 × (10)

27 1 12 14.0828 1.9172 13 2 14 13 -11 1 G(14,1,0) 3. a, 5
27 2 11 14.1962 3.8038 13 4 14 13 -8 0 G( D) 5
27 3 10 14.3589 5.6411 13 6 14 13 -5 0 G( D) 5
27 5 8 15 9 13 10 1 ? (1) Schl äfli
27 6 7 15.6458 10.3542 13 12 14 13 4 ≥ 1 P(27,13,6) 4

28 4 10 14 8 12 9 0 ? (4) T(8), Chang

29 1 13 15.0765 1.9235 14 2 15 14 -12 1 G(15,1,0) 3. a, 5
29 2 12 15.1789 3.8211 14 4 15 14 -9 0 Bruck-Ryser(3), G( D) 1, 5
29 2 15 10.4495 5.5505 8 7 21 8 0 0 Bruck-Ryser(3), P( D) 1, 4
29 3 11 15.3218 5.6782 14 6 15 14 -6 0 Bruck-Ryser(31), G( D) 1, 5
29 4 10 15.5311 7.4689 14 8 15 14 -3 10 G(15,7,3) 5
29 5 9 15.8541 9.1459 14 10 15 14 0 ?
29 6 8 16.3723 10.6277 14 12 15 14 3 0 Bruck-Ryser(11) 1
29 7 7 17.1926 11.8074 14 14 6 × (41) P(29)

31 1 14 16.0711 1.9289 15 2 16 15 -13 1 G(16,1,0) 3. a, 5
31 1 20 8.2361 3.7639 6 5 25 6 -1 1 P(31,6,1) 3. d, 4
31 2 13 16.1644 3.8356 15 4 16 15 -10 0 G( D) 5
31 3 12 16.2915 5.7085 15 6 16 15 -7 0 G( D) 5
31 3 14 12.6458 7.3542 10 9 21 10 1 ≥ 1 P(31,10,3) 4
31 4 11 16.4721 7.5279 15 8 16 15 -4 3 G(16,6,2) 5
31 6 9 17.1623 10.8377 15 12 16 15 2 ?
31 7 8 17.8284 12.1716 15 14 16 15 5 ≥ 1 P(31,15,7) 4

33 1 15 17.0664 1.9336 16 2 17 16 -14 1 G(17,1,0) 3. a, 5
33 1 21 9.5414 3.4586 8 4 19 14 -4 0 3
33 2 14 17.1521 3.8479 16 4 17 16 -11 0 Bruck-Ryser(3), G( D) 1, 5
33 3 13 17.2663 5.7337 16 6 17 16 -8 0 Bruck-Ryser(7), G( D) 1, 5
33 4 12 17.4244 7.5756 16 8 17 16 -5 0 G( D) 5
33 6 10 18 11 16 12 1 ?
33 7 9 18.5414 12.4586 16 14 17 16 4 ?
33 8 8 19.3723 13.6277 16 16 7 × (0) Bruck-Ryser(3) 1

34 5 12 17 10 15 11 0 ?

35 1 16 18.0623 1.9377 17 2 18 17 -15 1 G(18,1,0) 3. a, 5
35 2 15 18.1414 3.8586 17 4 18 17 -12 0 G( D) 5
35 3 14 18.2450 5.7550 17 6 18 17 -9 0 G( D) 5
35 4 13 18.3852 7.6148 17 8 18 17 -6 0 G( D) 5
35 6 11 18.8730 11.1270 17 12 18 17 0 ?
35 7 10 19.3166 12.6834 17 14 18 17 3 ?
35 8 9 20 14 17 16 6 ≥ 5 ( ≥ 3854) P(35,17,8) 4

36 1 24 9 4 7 5 -2 1 2, 3. b
36 2 20 12 6 10 7 -2 ? (1) L2(6)
36 4 15 16 9 14 10 -1 ? (1) T(9)
36 6 12 18 12 15 14 4 ≥ 5 ( ≥ 32728) P(36,15,6) ( L3(6)) 4

37 1 17 19.0586 1.9414 18 2 19 18 -16 1 G(19,1,0) 3. a, 5
37 2 16 19.1322 3.8678 18 4 19 18 -13 0 G( D) 5
37 2 20 13.5311 5.4689 12 6 20 17 -5 0 Bruck-Ryser(5) 1
37 2 21 11.6458 6.3542 9 8 28 9 0 ≥ 1 P(37,9,2) 4
37 3 15 19.2268 5.7732 18 6 19 18 -10 0 G( D) 5
37 4 14 19.3523 7.6477 18 8 19 18 -7 0 G( D) 5
37 5 13 19.5249 9.4751 18 10 19 18 -4 22 G(19,9,4) 5
37 5 14 17.3166 10.6834 15 12 20 17 1 ?
37 7 11 20.1401 12.8599 18 14 19 18 2 ?
37 8 10 20.7016 14.2984 18 16 19 18 5 ?
37 9 9 21.5414 15.4586 18 18 8 × ( ≥ 82) P(37)

39 1 18 20.0554 1.9446 19 2 20 19 -17 1 G(20,1,0) 3. a, 5
39 2 17 20.1240 3.8760 19 4 20 19 -14 0 G( D) 5
39 3 16 20.2111 5.7889 19 6 20 19 -11 0 G( D) 5
39 4 15 20.3246 7.6754 19 8 20 19 -8 0 G( D) 5
39 5 14 20.4772 9.5228 19 10 20 19 -5 0 G( D) 5
39 7 12 21 13 19 14 1 ?
39 8 11 21.4641 14.5359 19 16 20 19 4 ?
39 9 10 22.1623 15.8377 19 18 20 19 7 ≥ 1 P(39,19,9) 4

40 3 20 15 8 13 9 -2 ?
40 4 18 16 10 13 12 2 ≥ 5 ( ≥ 27) P(40,13,4) 4
40 6 14 20 12 18 13 0 ?



A.3. Regular graphs with four eigenvalues 119

A.3. Regular graphs with four eigenvalues

In this Appendix we list all feasible spectra for connected regular graphs with four
eigenvalues and at most 30 vertices. If both the spectrum and its complementary spectrum
correspond to connected graphs then only the one with least degree is mentioned. #
denotes the number of graphs. In between brackets the number of such graphs or their
complements that are a relation in a three-class association scheme is denoted (if positive).
These numbers are obtained from Appendix A.4. The references refer to the subsections of
Chapter 3 or the literature. For more on the computer results, see [40]. McKay and Royle
[82] determined all vertex-transitive graphs with at most 26 vertices. Godsil [private
communication] ran a program to extract the ones with four eigenvalues and found five
more graphs: two with spectrum {[9]1, [3]7, [−1]9, [−3]7} and three with spectrum
{[11]1, [3]7, [−1]8, [−3]8}.

A.3.1. Four integral eigenvalues

Nr v spectrum ∆ Ξ # Notes References

1 6 {[ 2] 1, [ 1] 2 , [-1] 2 , [-2] 1 } 0 0 1 (1) C6 3.2

2 8 {[ 5] 1, [ 1] 2 , [-1] 4 , [-3] 1 } 6 22 1 (1) G = 2C4 3.3
3 8 {[ 3] 1, [ 1] 3 , [-1] 3 , [-3] 1 } 0 3 1 (1) Cube 3.2

4 10 {[ 4] 1, [ 1] 4 , [-1] 4 , [-4] 1 } 0 12 1 (1) IG(5,4,3) 3.2

5 12 {[ 9] 1, [ 1] 3 , [-1] 6 , [-3] 2 } 28 204 1 (1) G = 3C4 3.3
6 12 {[ 8] 1, [ 2] 2 , [-1] 8 , [-4] 1 } 19 123 1 (1) G = 2K3,3 3.3
7 12 {[ 4] 1, [ 2] 3 , [ 0] 3 , [-2] 5 } 2 2 2 L(Cube), BCS 9 3.5
8 12 {[ 7] 1, [ 1] 4 , [-1] 6 , [-5] 1 } 9 81 1 (1) G = 2CP(3) 3.3
9 12 {[ 5] 1, [ 1] 5 , [-1] 5 , [-5] 1 } 0 30 1 (1) IG(6,5,4) 3.2

10 12 {[ 5] 1, [ 1] 3 , [ 0] 6 , [-4] 2 } 0 25 0 λ1 = 1 3.5
11 12 {[ 5] 1, [ 1] 6 , [-1] 2 , [-3] 3 } 2 14 1 GQ(2,2)\3-cl, L(CP(3)) 3.5, 3.6
12 12 {[ 5] 1, [ 3] 2 , [-1] 8 , [-3] 1 } 6 14 1 C6 J2 3.4
13 12 {[ 5] 1, [ 2] 2 , [ 1] 3 , [-2] 6 } 4 9 1 (1) L( K3,4 ) 3.5

14 14 {[ 6] 1, [ 1] 6 , [-1] 6 , [-6] 1 } 0 60 1 (1) IG(7,6,5) 3.2

15 15 {[ 4] 1, [ 2] 5 , [-1] 4 , [-2] 5 } 2 0 1 (1) L(Petersen) 3.1, 3.5
16 15 {[ 4] 1, [ 3] 3 , [-1] 9 , [-2] 2 } 4 4 0 λ3 = -2 3.5
17 15 {[ 6] 1, [ 1] 6 , [ 0] 5 , [-4] 3 } 1 36 0 λ1 = 1 3.5
18 15 {[ 6] 1, [ 3] 2 , [ 1] 4 , [-2] 8 } 7 20 1 (1) L( K3,5 ) 3.5

19 16 {[13] 1, [ 1] 4 , [-1] 8 , [-3] 3 } 66 738 1 (1) G = 4C4 3.3
20 16 {[11] 1, [ 3] 2 , [-1] 12, [-5] 1 } 39 367 1 (1) G = 2K4,4 3.3
21 16 {[ 6] 1, [ 4] 2 , [ 0] 6 , [-2] 7 } 9 27 0 λ3 = -2 3.5
22 16 {[ 9] 1, [ 1] 6 , [-1] 8 , [-7] 1 } 12 204 1 (1) G = 2CP(4) 3.3
23 16 {[ 7] 1, [ 1] 7 , [-1] 7 , [-7] 1 } 0 105 1 (1) IG(8,7,6) 3.2
24 16 {[ 7] 1, [ 1] 8 , [-1] 5 , [-5] 2 } 3 69 0 λ1 = 1 3.5
25 16 {[ 7] 1, [ 3] 3 , [-1] 11, [-5] 1 } 9 57 1 Cube J2 3.4

26 18 {[14] 1, [ 2] 3 , [-1] 12, [-4] 2 } 73 894 1 (1) G = 3K3,3 3.3
27 18 {[13] 1, [ 1] 6 , [-1] 9 , [-5] 2 } 54 666 1 (1) G = 3CP(3) 3.3
28 18 {[13] 1, [ 1] 8 , [-2] 8 , [-5] 1 } 56 652 1 (1) G = 2L2(3) 3.3
29 18 {[ 5] 1, [ 2] 6 , [-1] 9 , [-4] 2 } 1 12 1 K3,3 ⊕ K3 3.4
30 18 {[ 5] 1, [ 2] 7 , [-1] 1 , [-2] 9 } 3 2 0 λ3 = -2 3.5
31 18 {[11] 1, [ 2] 4 , [-1] 12, [-7] 1 } 28 360 1 (1) G = 2K3,3,3 3.3
32 18 {[ 6] 1, [ 3] 4 , [ 0] 4 , [-2] 9 } 7 16 1 L( L2(3)) 3.5
33 18 {[ 7] 1, [ 1] 11, [-2] 4 , [-5] 2 } 2 58 1 BCS 179 3.5
34 18 {[ 7] 1, [ 4] 2 , [ 1] 5 , [-2] 10} 11 40 2 (1) L( K3,6 ), BCS 70 3.5
35 18 {[ 8] 1, [ 1] 8 , [-1] 8 , [-8] 1 } 0 168 1 (1) IG(9,8,7) 3.2
36 18 {[ 8] 1, [ 2] 7 , [-2] 9 , [-4] 1 } 12 68 0 2.2
37 18 {[ 8] 1, [ 2] 6 , [-1] 8 , [-4] 3 } 10 78 2 computer
38 18 {[ 8] 1, [ 5] 2 , [-1] 14, [-4] 1 } 19 96 1 C6 J3 3.4
39 18 {[ 8] 1, [ 2] 4 , [ 0] 9 , [-4] 4 } 8 84 3 (1) L2(3) ⊗ J2 3.4, computer
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40 18 {[ 8] 1, [ 4] 3 , [-1] 8 , [-2] 6 } 18 78 0 λ3 = -2 3.5

41 20 {[17] 1, [ 1] 5 , [-1] 10, [-3] 4 } 120 1816 1 (1) G = 5C4 3.3
42 20 {[16] 1, [ 1] 8 , [-2] 10, [-4] 1 } 99 1401 1 (1) G = 2Petersen 3.3
43 20 {[14] 1, [ 4] 2 , [-1] 16, [-6] 1 } 66 817 1 (1) G = 2K5,5 3.3
44 20 {[ 6] 1, [ 2] 5 , [ 0] 10, [-4] 4 } 0 27 2 (1) Petersen ⊗ J2 3.4, computer
45 20 {[ 6] 1, [ 3] 4 , [ 1] 4 , [-2] 11} 6 12 1 L( IG(5,4,3)) 3.5
46 20 {[13] 1, [ 1] 10, [-2] 8 , [-7] 1 } 45 615 1 (1) G = 2Petersen 3.3
47 20 {[ 7] 1, [ 2] 4 , [ 0] 12, [-5] 3 } 0 63 0 computer
48 20 {[ 7] 1, [ 2] 8 , [-1] 5 , [-3] 6 } 6 30 9 SR(26,10,3,4)\6-cocl. 3.1, 3.6,

Dodecahedron 3,5 computer
49 20 {[ 7] 1, [ 3] 5 , [-1] 10, [-3] 4 } 9 33 4 (1) Petersen J2 3.4, computer
50 20 {[ 7] 1, [ 3] 3 , [ 2] 4 , [-2] 12} 9 27 1 (1) L( K4,5 ) 3.5
51 20 {[11] 1, [ 1] 8 , [-1] 10, [-9] 1 } 15 415 1 (1) G = 2CP(5) 3.3
52 20 {[ 9] 1, [ 1] 9 , [-1] 9 , [-9] 1 } 0 252 1 (1) IG(10,9,8) 3.2
53 20 {[ 9] 1, [ 3] 4 , [-1] 14, [-7] 1 } 12 156 1 IG(5,4,3) J2 3.4
54 20 {[ 9] 1, [ 2] 8 , [-1] 4 , [-3] 7 } 15 105 26 L3(5)\5-coclique 3.6, computer
55 20 {[ 9] 1, [ 3] 5 , [-1] 9 , [-3] 5 } 18 108 9 (1) J(6,3) 3.1, [61]

56 21 {[ 6] 1, [ 3] 5 , [-1] 13, [-4] 2 } 5 20 0 4
57 21 {[ 8] 1, [ 5] 2 , [ 1] 6 , [-2] 12} 16 72 1 (1) L( K3,7 ) 3.5

58 22 {[10] 1, [ 1] 10, [-1] 10, [-10] 1} 0 360 1 (1) IG(11,10,9) 3.2

59 24 {[21] 1, [ 1] 6 , [-1] 12, [-3] 5 } 190 3630 1 (1) G = 6C4 3.3
60 24 {[20] 1, [ 2] 4 , [-1] 16, [-4] 3 } 163 2961 1 (1) G = 4K3,3 3.3
61 24 {[19] 1, [ 3] 3 , [-1] 18, [-5] 2 } 139 2395 1 (1) G = 3K4,4 3.3
62 24 {[19] 1, [ 1] 8 , [-1] 12, [-5] 3 } 135 2403 1 (1) G = 4CP(3) 3.3
63 24 {[ 5] 1, [ 3] 6 , [-1] 14, [-3] 3 } 4 6 1 2-cover C6 J2 3.7, computer
64 24 {[ 5] 1, [ 2] 8 , [ 0] 8 , [-3] 7 } 0 5 0 computer
65 24 {[17] 1, [ 5] 2 , [-1] 20, [-7] 1 } 100 1536 1 (1) G = 2K6,6 3.3
66 24 {[ 6] 1, [ 4] 4 , [ 0] 8 , [-2] 11} 8 19 0 λ3 = -2 3.5
67 24 {[17] 1, [ 1] 9 , [-1] 12, [-7] 2 } 88 1560 1 (1) G = 3CP(4) 3.3
68 24 {[ 7] 1, [ 3] 6 , [-1] 15, [-5] 2 } 5 41 0 computer
69 24 {[ 7] 1, [ 3] 3 , [ 1] 11, [-3] 9 } 4 25 5 computer
70 24 {[ 8] 1, [ 2] 11, [-2] 9 , [-4] 3 } 7 48 5 computer
71 24 {[ 8] 1, [ 2] 8 , [ 0] 9 , [-4] 6 } 4 60 4 computer
72 24 {[ 8] 1, [ 4] 3 , [ 0] 15, [-4] 5 } 8 68 5 L(Cube) ⊗ J2, BCS9⊗ J2 3.4, computer
73 24 {[15] 1, [ 3] 4 , [-1] 18, [-9] 1 } 57 981 1 (1) G = 2K4,4,4 3.3
74 24 {[ 8] 1, [ 4] 3 , [ 2] 5 , [-2] 15} 13 48 1 (1) L( K4,6 ) 3.5
75 24 {[ 9] 1, [ 1] 17, [-3] 2 , [-5] 4 } 4 116 1 GQ(2,4)\3-cl, BCS 183 3.5, 3.6
76 24 {[ 9] 1, [ 3] 7 , [-1] 9 , [-3] 7 } 15 84 ≥ 5 computer
77 24 {[14] 1, [ 2] 6 , [-1] 16, [-10] 1} 37 822 1 (1) G = 2K3,3,3,3 3.3
78 24 {[ 9] 1, [ 3] 4 , [ 1] 9 , [-3] 10} 12 84 87 computer
79 24 {[ 9] 1, [ 6] 2 , [ 1] 7 , [-2] 14} 22 119 1 (1) L( K3,8 ) 3.5
80 24 {[10] 1, [ 2] 3 , [ 0] 18, [-8] 2 } 0 285 0 4
81 24 {[10] 1, [ 1] 16, [-2] 4 , [-6] 3 } 7 196 0 λ1 = 1 3.5
82 24 {[10] 1, [ 4] 2 , [ 0] 18, [-6] 3 } 10 205 0 4
83 24 {[10] 1, [ 2] 11, [-2] 8 , [-4] 4 } 16 141 183 computer
84 24 {[10] 1, [ 4] 5 , [ 0] 3 , [-2] 15} 25 145 0 λ3 = -2 3.5
85 24 {[13] 1, [ 1] 10, [-1] 12, [-11] 1} 18 738 1 (1) G = 2CP(6) 3.3
86 24 {[10] 1, [ 4] 4 , [ 2] 3 , [-2] 16} 24 141 9 L(CP(4)), BCS 153-160 3.5
87 24 {[11] 1, [ 1] 11, [-1] 11, [-11] 1} 0 495 1 (1) IG(12,11,10) 3.2
88 24 {[11] 1, [ 3] 5 , [-1] 17, [-9] 1 } 15 335 1 IG(6,5,4) J2 3.4
89 24 {[11] 1, [ 5] 3 , [-1] 19, [-7] 1 } 28 279 1 Cube J3 3.4
90 24 {[11] 1, [ 1] 16, [-1] 2 , [-5] 5 } 15 255 0 λ1 = 1 3.5
91 24 {[11] 1, [ 3] 6 , [-1] 14, [-5] 3 } 23 239 28 ( GQ(2,2)\3-clique) J2 3.4, computer
92 24 {[11] 1, [ 7] 2 , [-1] 20, [-5] 1 } 39 303 1 C6 J4 3.4
93 24 {[11] 1, [ 3] 7 , [-1] 8 , [-3] 8 } 27 215 ≥ 16 computer

94 25 {[10] 1, [ 5] 2 , [ 0] 18, [-5] 4 } 15 180 0 4

95 26 {[12] 1, [ 1] 12, [-1] 12, [-12] 1} 0 660 1 (1) IG(13,12,11) 3.2

96 27 {[22] 1, [ 1] 12, [-2] 12, [-5] 2 } 191 3892 1 (1) G = 3L2(3) 3.3
97 27 {[ 6] 1, [ 3] 6 , [ 0] 12, [-3] 8 } 3 12 4 (1) H(3,3), 3-cover C3⊗ J3 3.1, 3.7, [61]
98 27 {[20] 1, [ 2] 6 , [-1] 18, [-7] 2 } 136 2664 1 (1) G = 3K3,3,3 3.3
99 27 {[ 8] 1, [ 2] 12, [-1] 8 , [-4] 6 } 4 48 13 (3) GQ(2,4)\spread (2 ×) 3.1, 3.6, [61]

H(3,3) 3, GQ(3,3) 2( x)
100 27 {[ 8] 1, [ 5] 4 , [-1] 20, [-4] 2 } 16 72 1 computer
101 27 {[10] 1, [ 4] 6 , [ 1] 2 , [-2] 18} 23 124 1 L( K3,3,3 ) 3.5
102 27 {[10] 1, [ 7] 2 , [ 1] 8 , [-2] 16} 29 184 1 (1) L( K3,9 ) 3.5
103 27 {[12] 1, [ 3] 2 , [ 0] 22, [-9] 2 } 6 492 0 4
104 27 {[12] 1, [ 3] 4 , [ 0] 18, [-6] 4 } 18 348 5 (1) L2(3) ⊗ J3 3.4, computer
105 27 {[12] 1, [ 3] 8 , [ 0] 6 , [-3] 12} 30 276 ≥ 1 (1) H(3,3) 2 3.1

106 28 {[25] 1, [ 1] 7 , [-1] 14, [-3] 6 } 276 6372 1 (1) G = 7C4 3.3
107 28 {[ 6] 1, [ 5] 4 , [-1] 20, [-2] 3 } 12 36 0 λ3 = -2 3.5
108 28 {[20] 1, [ 6] 2 , [-1] 24, [-8] 1 } 141 2587 1 (1) G = 2K7,7 3.3
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109 28 {[ 9] 1, [ 5] 3 , [ 2] 6 , [-2] 18} 18 81 1 (1) L( K4,7 ) 3.5
110 28 {[10] 1, [ 2] 14, [-2] 7 , [-4] 6 } 12 117 ≥ 2 SR(36,14,4,6)\8-cocl. 3.6, computer
111 28 {[11] 1, [ 3] 7 , [ 1] 7 , [-3] 13} 21 175 ≥ 10350 computer
112 28 {[12] 1, [ 2] 14, [-2] 6 , [-4] 7 } 24 270 ≥ 8472 (56) T(8)\spread 3.6, computer

SR(35,16,6,8)\7-cocl.
113 28 {[15] 1, [ 1] 12, [-1] 14, [-13] 1} 21 1197 1 (1) G = 2CP(7) 3.3
114 28 {[13] 1, [ 1] 13, [-1] 13, [-13] 1} 0 858 1 (1) IG(14,13,12) 3.2
115 28 {[13] 1, [ 3] 6 , [-1] 20, [-11] 1} 18 618 1 IG(7,6,5) J2 3.4
116 28 {[13] 1, [ 5] 5 , [-1] 6 , [-2] 16} 48 408 0 λ3 = -2 3.5

117 30 {[26] 1, [ 2] 5 , [-1] 20, [-4] 4 } 289 6972 1 (1) G = 5K3,3 3.3
118 30 {[26] 1, [ 1] 12, [-2] 15, [-4] 2 } 289 6966 1 (1) G = 3Petersen 3.3
119 30 {[25] 1, [ 1] 10, [-1] 15, [-5] 4 } 252 5940 1 (1) G = 5CP(3) 3.3
120 30 {[24] 1, [ 4] 3 , [-1] 24, [-6] 2 } 226 5022 1 (1) G = 3K5,5 3.3
121 30 {[ 6] 1, [ 2] 9 , [ 1] 9 , [-3] 11} 0 6 0 4
122 30 {[23] 1, [ 2] 10, [-2] 18, [-7] 1 } 196 4194 1 (1) G = 2GQ(2,2) 3.3
123 30 {[ 6] 1, [ 3] 8 , [ 1] 4 , [-2] 17} 5 4 0 λ3 = -2 3.5
124 30 {[23] 1, [ 1] 15, [-2] 12, [-7] 2 } 190 4230 1 (1) G = 3Petersen 3.3
125 30 {[ 7] 1, [ 2] 14, [-2] 14, [-7] 1 } 0 42 4 (4) IG(15,7,3) 3.2, [61]
126 30 {[ 7] 1, [ 2] 15, [-2] 5 , [-3] 9 } 3 12 0 4
127 30 {[ 7] 1, [ 4] 5 , [ 0] 15, [-3] 9 } 7 28 0 computer
128 30 {[ 7] 1, [ 2] 12, [ 1] 5 , [-3] 12} 2 14 0 4
129 30 {[ 8] 1, [ 2] 14, [-2] 14, [-8] 1 } 0 84 4 (4) IG(15,8,4) 3.2, [61]
130 30 {[ 8] 1, [ 2] 15, [-2] 9 , [-4] 5 } 4 36 11 GQ(3,3)\10-coclique 3.6, computer
131 30 {[ 8] 1, [ 3] 9 , [-1] 15, [-4] 5 } 7 42 0 computer
132 30 {[ 8] 1, [ 4] 7 , [-1] 8 , [-2] 14} 14 42 0 λ3 = -2 3.5
133 30 {[21] 1, [ 1] 12, [-1] 15, [-9] 2 } 130 3030 1 (1) G = 3CP(5) 3.3
134 30 {[ 8] 1, [ 4] 5 , [ 2] 5 , [-2] 19} 12 36 1 L( IG(6,5,4)) 3.5
135 30 {[21] 1, [ 1] 18, [-3] 10, [-9] 1 } 138 2934 1 (1) G = 2GQ(2,2) 3.3
136 30 {[ 9] 1, [ 3] 8 , [-1] 19, [-7] 2 } 4 124 0 4
137 30 {[ 9] 1, [ 4] 6 , [-1] 21, [-6] 2 } 11 102 0 4
138 30 {[ 9] 1, [ 3] 5 , [ 0] 20, [-6] 4 } 0 126 2 (1) Petersen ⊗ J3 3.4, computer
139 30 {[ 9] 1, [ 4] 4 , [ 0] 20, [-5] 5 } 6 102 0 computer
140 30 {[ 9] 1, [ 3] 10, [-1] 9 , [-3] 10} 12 60 ≥ 17 computer
141 30 {[ 9] 1, [ 5] 5 , [-1] 19, [-3] 5 } 20 92 1 L(Petersen) J2 3.4, computer
142 30 {[ 9] 1, [ 7] 3 , [-1] 24, [-3] 2 } 28 156 0 4
143 30 {[ 9] 1, [ 4] 4 , [ 3] 5 , [-2] 20} 16 62 1 (1) L( K5,6 ) 3.5
144 30 {[10] 1, [ 2] 15, [-2] 10, [-5] 4 } 9 120 3 computer
145 30 {[19] 1, [ 4] 4 , [-1] 24, [-11] 1} 96 2082 1 (1) G = 2K5,5,5 3.3
146 30 {[10] 1, [ 5] 4 , [ 2] 5 , [-2] 20} 23 120 1 L(Petersen) 3.5
147 30 {[11] 1, [ 2] 16, [-3] 9 , [-4] 4 } 16 162 0 computer
148 30 {[11] 1, [ 5] 5 , [-1] 20, [-4] 4 } 28 198 8 (1) Petersen J3 3.4, computer
149 30 {[11] 1, [ 2] 10, [ 1] 9 , [-4] 10} 13 174 ?
150 30 {[11] 1, [ 6] 4 , [-1] 20, [-3] 5 } 34 222 0 computer
151 30 {[11] 1, [ 5] 5 , [ 1] 4 , [-2] 20} 30 186 0 λ3 = -2 3.5
152 30 {[11] 1, [ 8] 2 , [ 1] 9 , [-2] 18} 37 270 1 (1) L( K3,10 ) 3.5
153 30 {[12] 1, [ 2] 6 , [ 0] 20, [-8] 3 } 4 414 0 computer
154 30 {[12] 1, [ 2] 9 , [ 0] 15, [-6] 5 } 12 318 2 (1) GQ(2,2) ⊗ J2 3.4, computer
155 30 {[12] 1, [ 2] 16, [-3] 8 , [-4] 5 } 22 244 ?
156 30 {[12] 1, [ 2] 14, [ 0] 5 , [-4] 10} 20 254 ?
157 30 {[12] 1, [ 3] 10, [ 0] 5 , [-3] 14} 27 240 ≥ 68876 L3(6)\6-coclique 3.6, computer
158 30 {[17] 1, [ 2] 8 , [-1] 20, [-13] 1} 46 1590 1 (1) G = 2K3,3,3,3,3 3.3
159 30 {[12] 1, [ 4] 5 , [ 1] 10, [-3] 14} 28 248 ≥ 50 computer
160 30 {[13] 1, [ 1] 20, [-1] 5 , [-7] 4 } 14 474 0 λ1 = 1 3.5
161 30 {[13] 1, [ 2] 15, [-2] 9 , [-5] 5 } 27 372 ?
162 30 {[13] 1, [ 3] 9 , [-1] 15, [-5] 5 } 30 378 ≥ 1487 (1) GQ(2,2) J2 3.4, computer
163 30 {[13] 1, [ 3] 11, [-2] 8 , [-3] 10} 36 344 ?
164 30 {[13] 1, [ 3] 9 , [ 1] 5 , [-3] 15} 34 346 ≥ 82 L3(6)\6-clique 3.6, computer
165 30 {[14] 1, [ 1] 14, [-1] 14, [-14] 1} 0 1092 1 (1) IG(15,14,13) 3.2
166 30 {[14] 1, [ 2] 9 , [-1] 19, [-13] 1} 10 930 0 2.2
167 30 {[14] 1, [ 5] 4 , [-1] 24, [-10] 1} 37 660 1 IG(5,4,3) J3 3.4
168 30 {[14] 1, [ 4] 6 , [-1] 20, [-6] 3 } 41 542 ?
169 30 {[14] 1, [ 9] 2 , [-1] 26, [-6] 1 } 66 692 1 C6 J5 3.4
170 30 {[14] 1, [ 2] 15, [-1] 4 , [-4] 10} 37 498 ≥ 24931 SR(35,16,6,8)\5-cl. 3.6, computer

A.3.2. Two integral eigenvalues

Nr v spectrum ∆ Ξ # Notes References

1 10 {[ 7] 1, [-3] 1 , [ 0.618] 4 , [-1.618] 4 } 15 80 1 (1) G = 2C5 3.3
2 10 {[ 4] 1, [ 0] 5 , [ 1.236] 2 , [-3.236] 2 } 0 10 1 (1) C5⊗ J2 3.4
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3 12 {[ 5] 1, [-1] 5 , [ 2.236] 3 , [-2.236] 3 } 5 10 1 (1) Icosahedron 3.1, [61]
4 12 {[ 5] 1, [ 1] 3 , [ 0.732] 4 , [-2.732] 4 } 2 13 0 λ1 = 1 3.5

5 14 {[ 3] 1, [-3] 1 , [ 1.414] 6 , [-1.414] 6 } 0 0 1 (1) IG(7,3,1) 3.2
6 14 {[ 4] 1, [-4] 1 , [ 1.414] 6 , [-1.414] 6 } 0 6 1 (1) IG(7,4,2) 3.2
7 14 {[ 6] 1, [ 0] 7 , [ 1.646] 3 , [-3.646] 3 } 3 33 0 computer

8 15 {[12] 1, [-3] 2 , [ 0.618] 6 , [-1.618] 6 } 55 560 1 (1) G = 3C5 3.3
9 15 {[ 4] 1, [ 0] 6 , [ 1.791] 4 , [-2.791] 4 } 0 4 0 4

10 15 {[ 6] 1, [-1] 10, [ 4.162] 2 , [-2.162] 2 } 11 32 0 4
11 15 {[ 6] 1, [-1] 6 , [ 2.449] 4 , [-2.449] 4 } 7 20 0 computer
12 15 {[ 6] 1, [ 0] 10, [ 1.854] 2 , [-4.854] 2 } 0 48 1 (1) C5⊗ J3 3.4

13 16 {[ 7] 1, [-1] 11, [ 4.464] 2 , [-2.464] 2 } 15 57 0 4

14 18 {[ 5] 1, [ 3] 1 , [ 1.303] 8 , [-2.303] 8 } 2 4 1 td L2(3) 3.4

15 20 {[17] 1, [-3] 3 , [ 0.618] 8 , [-1.618] 8 } 120 1815 1 (1) G = 4C5 3.3
16 20 {[ 5] 1, [-1] 5 , [ 2.236] 7 , [-2.236] 7 } 3 2 1 2-cover C5 J2 3.7, computer
17 20 {[ 7] 1, [-1] 15, [ 5.873] 2 , [-1.873] 2 } 18 75 0 λ3 > -2 3.5
18 20 {[ 8] 1, [-2] 9 , [ 3.236] 5 , [-1.236] 5 } 15 60 0 λ3 = -2 3.5
19 20 {[ 8] 1, [ 0] 15, [ 2.472] 2 , [-6.472] 2 } 0 132 1 (1) C5⊗ J4 3.4
20 20 {[ 8] 1, [ 0] 11, [ 2.317] 4 , [-4.317] 4 } 6 80 0 computer

21 21 {[ 4] 1, [-2] 8 , [ 2.414] 6 , [-0.414] 6 } 2 0 1 (1) L( IG(7,3,1)) 3.5, 3.1
22 21 {[ 6] 1, [-1] 6 , [ 2.449] 7 , [-2.449] 7 } 5 10 0 computer
23 21 {[ 6] 1, [ 0] 8 , [ 2.193] 6 , [-3.193] 6 } 2 16 1 computer
24 21 {[ 8] 1, [-1] 14, [ 4.742] 3 , [-2.742] 3 } 18 78 0 computer
25 21 {[ 8] 1, [-1] 8 , [ 2.828] 6 , [-2.828] 6 } 12 56 6 (1) L( IG(7,3,1)) 3 3.1, computer
26 21 {[ 8] 1, [ 1] 12, [-0.209] 4 , [-4.791] 4 } 2 88 0 λ1 = 1 3.5
27 21 {[ 8] 1, [ 1] 6 , [ 1.449] 7 , [-3.449] 7 } 6 62 0 4
28 21 {[ 8] 1, [ 2] 8 , [-0.586] 6 , [-3.414] 6 } 8 60 28 (1) L( IG(7,3,1)) 2 3.1, computer

29 22 {[ 5] 1, [-5] 1 , [ 1.732] 10, [-1.732] 10} 0 10 1 (1) IG(11,5,2) 3.2
30 22 {[ 5] 1, [ 0] 11, [ 2.372] 5 , [-3.372] 5 } 0 10 0 computer
31 22 {[ 6] 1, [-6] 1 , [ 1.732] 10, [-1.732] 10} 0 30 1 (1) IG(11,6,3) 3.2
32 22 {[10] 1, [ 0] 11, [ 2.317] 5 , [-4.317] 5 } 15 175 0 computer

33 24 {[ 7] 1, [-1] 15, [ 4.464] 4 , [-2.464] 4 } 13 41 0 computer
34 24 {[ 7] 1, [-1] 7 , [ 2.646] 8 , [-2.646] 8 } 7 21 10 (1) Klein 3.1, [61]
35 24 {[ 8] 1, [ 0] 15, [ 2.873] 4 , [-4.873] 4 } 3 78 0 computer
36 24 {[ 9] 1, [ 1] 15, [-0.551] 4 , [-5.449] 4 } 2 134 0 λ1 = 1 3.5
37 24 {[ 9] 1, [ 1] 7 , [ 1.646] 8 , [-3.646] 8 } 8 91 1 (1) Klein 1,3 3.1, computer
38 24 {[11] 1, [-1] 17, [ 5.472] 3 , [-3.472] 3 } 35 255 1 Icosahedron J2 3.4, computer

39 25 {[22] 1, [-3] 4 , [ 0.618] 10, [-1.618] 10} 210 4220 1 (1) G = 5C5 3.3
40 25 {[10] 1, [ 0] 20, [ 3.090] 2 , [-8.090] 2 } 0 280 1 (1) C5⊗ J5 3.4

41 26 {[ 4] 1, [-4] 1 , [ 1.732] 12, [-1.732] 12} 0 0 1 (1) IG(13,4,1) 3.2
42 26 {[19] 1, [-7] 1 , [ 1.303] 12, [-2.303] 12} 123 2208 1 (1) G = 2P(13) 3.3
43 26 {[ 7] 1, [ 5] 1 , [ 1.562] 12, [-2.562] 12} 6 24 1 td P(13) 3.4
44 26 {[ 9] 1, [-9] 1 , [ 1.732] 12, [-1.732] 12} 0 180 1 (1) IG(13,9,6) 3.2
45 26 {[12] 1, [ 0] 13, [ 2.606] 6 , [-4.606] 6 } 24 318 ≥ 85 (1) P(13) ⊗ J2 3.4, computer

46 27 {[ 8] 1, [-1] 20, [ 6.243] 3 , [-2.243] 3 } 22 102 0 4
47 27 {[ 8] 1, [-1] 14, [ 3.854] 6 , [-2.854] 6 } 13 48 1 3-cover C3 J3 3.7, computer

48 28 {[ 6] 1, [-2] 15, [ 3.414] 6 , [ 0.586] 6 } 6 9 1 L( IG(7,4,2)), 3.1, 3.5
Coxeter 4

49 28 {[ 7] 1, [-1] 7 , [ 2.646] 10, [-2.646] 10} 6 15 0 computer
50 28 {[ 9] 1, [-1] 21, [ 6.583] 3 , [-2.583] 3 } 27 144 0 computer
51 28 {[ 9] 1, [ 0] 21, [ 3.623] 3 , [-6.623] 3 } 0 153 0 computer
52 28 {[12] 1, [ 0] 21, [ 3.292] 3 , [-7.292] 3 } 12 390 0 computer
53 28 {[12] 1, [ 0] 15, [ 2.873] 6 , [-4.873] 6 } 21 300 ?
54 28 {[13] 1, [-1] 13, [ 3.606] 7 , [-3.606] 7 } 39 390 ≥ 515 (1) Taylor 3.1, [61]

55 30 {[27] 1, [-3] 5 , [ 0.618] 12, [-1.618] 12} 325 8150 1 (1) G = 6C5 3.3
56 30 {[ 7] 1, [-3] 9 , [ 2.732] 10, [-0.732] 10} 5 16 ?
57 30 {[ 8] 1, [ 0] 21, [ 3.583] 4 , [-5.583] 4 } 0 84 0 4
58 30 {[ 9] 1, [ 3] 5 , [ 1.236] 12, [-3.236] 12} 8 62 ?
59 30 {[10] 1, [ 0] 19, [ 3.359] 5 , [-5.359] 5 } 7 151 0 computer
60 30 {[11] 1, [-1] 11, [ 3.317] 9 , [-3.317] 9 } 22 165 ?
61 30 {[11] 1, [ 1] 19, [ 0.162] 5 , [-6.162] 5 } 3 249 0 λ1 = 1 3.5
62 30 {[11] 1, [ 5] 5 , [-0.382] 12, [-2.618] 12} 29 190 ?
63 30 {[12] 1, [ 0] 25, [ 3.708] 2 , [-9.708] 2 } 0 510 1 (1) C5⊗ J6 3.4
64 30 {[13] 1, [-2] 19, [ 5.372] 5 , [-0.372] 5 } 47 388 0 λ3 = -2 3.5
65 30 {[13] 1, [-1] 25, [ 9.325] 2 , [-3.325] 2 } 62 570 0 4
66 30 {[13] 1, [-1] 21, [ 5.899] 4 , [-3.899] 4 } 46 410 ?
67 30 {[13] 1, [ 3] 9 , [-0.268] 10, [-3.732] 10} 32 358 ?
68 30 {[14] 1, [-2] 21, [ 5.791] 4 , [ 1.209] 4 } 56 532 0 λ3 = -2 3.5
69 30 {[14] 1, [ 0] 15, [ 2.873] 7 , [-4.873] 7 } 35 525 ?
70 30 {[14] 1, [ 2] 11, [ 0.449] 9 , [-4.449] 9 } 34 513 ?
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A.3.3. One integral eigenvalue

Nr v spectrum ∆ Ξ # Notes References

1 7 {[2] 1, [1.247] 2, [-0.445] 2, [-1.802] 2} 0 0 1 (1) C 7 3.1, 3.5
2 13 {[4] 1, [1.377] 4, [ 0.274] 4, [-2.651] 4} 0 4 1 (1) Cycl(13) 3.1
3 19 {[6] 1, [2.507] 6, [-1.222] 6, [-2.285] 6} 6 12 1 (1) Cycl(19) 3.1
4 28 {[9] 1, [2.604] 9, [-0.110] 9, [-3.494] 9} 9 72 ≥ 2 (2) Mathon, Hollmann 3.1

A.4. Three-class association schemes

In the following Appendices all possible parameter sets for 3-class association schemes on
at most 100 vertices are listed, except for the less interesting schemes generated by the
disjoint union of strongly regular graphs, the schemes generated by SRG⊗ Jn, and the
rectangular schemes R(m, n) for m ≠ n. For the parameters of the first two kind of
schemes, see Sections 4.1.1 and 4.1.2, respectively. The parameters of the rectangular
scheme are given below. The number of vertices of the scheme is denoted by v. If the
scheme is primitive, then this number is in bold face. The "spectrum" is given by the last
three rows of P T, and so the first row represents the spectrum of the first relation, and
similarly for the second and third relation. In the first row of the spectrum, the
multiplicities of the (eigenvalues of the) scheme are denoted in superscript. In Appendices
A.4.1 and A.4.4 the multiplicities are omitted, since there the schemes are self-dual, so the
multiplicities are equal to the degrees. L1, L2 and L3 here denote the reduced intersection
matrices, that is, the first row and column are omitted. # denotes the number of
nonisomorphic schemes of that type. At the end of the line remarks are made. The
rectangular scheme R(m, n) would read as follows.

v spectrum L1 L2 L3 #

mn {( m−1)( n−1), 1, 1− m, 1− n} ( m-2)( n-2) n-2 m-2 n-2 0 1 m-2 1 0 1 R( m, n), if m or
{ n−1 , -1, -1, n-1} ( m-1)( n-2) 0 m-1 0 n-2 0 m-1 0 0 n equals 2 then
{ m-1 , -1, m-1, -1} ( m-2)( n-1) n-1 0 n-1 0 0 0 0 m-2 DRG and Q-pol.

A.4.1. Amorphic three-class association schemes

v spectrum L1 L2 L3 #

4 { 1, 1, -1, -1} 0 0 0 0 0 1 0 1 0 1 L1,1 (2) R(2,2)
{ 1, -1, 1, -1} 0 0 1 0 0 0 1 0 0
{ 1, -1, -1, 1} 0 1 0 1 0 0 0 0 0

9 { 4, 1, -2, -2} 1 1 1 1 0 1 1 1 0 1 L1,1 (3) R(3,3)
{ 2, -1, 2, -1} 2 0 2 0 1 0 2 0 0
{ 2, -1, -1, 2} 2 2 0 2 0 0 0 0 1

16 { 9, 1, -3, -3} 4 2 2 2 0 1 2 1 0 1 L1,1 (4) R(4,4)
{ 3, -1, 3, -1} 6 0 3 0 2 0 3 0 0
{ 3, -1, -1, 3} 6 3 0 3 0 0 0 0 2

16 { 6, 2, -2, -2} 2 2 1 2 2 2 1 2 0 4 L1,2 (4) [56]
{ 6, -2, 2, -2} 2 2 2 2 2 1 2 1 0
{ 3, -1, -1, 3} 2 4 0 4 2 0 0 0 2



124 Appendices

16 { 5, -3, 1, 1} 0 2 2 2 2 1 2 1 2 2 Cycl(16) [56]
{ 5, 1, -3, 1} 2 2 1 2 0 2 1 2 2
{ 5, 1, 1, -3} 2 1 2 1 2 2 2 2 0

25 {16, 1, -4, -4} 9 3 3 3 0 1 3 1 0 1 L1,1(5) R(5,5)
{ 4, -1, 4, -1} 12 0 4 0 3 0 4 0 0
{ 4, -1, -1, 4} 12 4 0 4 0 0 0 0 3

25 {12, 2, -3, -3} 5 4 2 4 2 2 2 2 0 2 L1,2(5)
{ 8, -2, 3, -2} 6 3 3 3 3 1 3 1 0
{ 4, -1, -1, 4} 6 6 0 6 2 0 0 0 3

25 { 8, 3, -2, -2} 3 2 2 2 2 4 2 4 2 2 L2,2(5), Cycl(25) [56]
{ 8, -2, 3, -2} 2 2 4 2 3 2 4 2 2
{ 8, -2, -2, 3} 2 4 2 4 2 2 2 2 3

36 {25, 1, -5, -5} 16 4 4 4 0 1 4 1 0 1 L1,1(6) R(6,6)
{ 5, -1, 5, -1} 20 0 5 0 4 0 5 0 0
{ 5, -1, -1, 5} 20 5 0 5 0 0 0 0 4

36 {20, 2, -4, -4} 10 6 3 6 2 2 3 2 0 22 L1,2(6) [26, 90]
{10, -2, 4, -2} 12 4 4 4 4 1 4 1 0
{ 5, -1, -1, 5} 12 8 0 8 2 0 0 0 4

36 {15, 3, -3, -3} 6 6 2 6 6 3 2 3 0 ? SRG(36,20,10,12) spread
{15, -3, 3, -3} 6 6 3 6 6 2 3 2 0
{ 5, -1, -1, 5} 6 9 0 9 6 0 0 0 4

36 {15, 3, -3, -3} 6 4 4 4 2 4 4 4 2 0 L2,2(6)
{10, -2, 4, -2} 6 3 6 3 4 2 6 2 2
{10, -2, -2, 4} 6 6 3 6 2 2 3 2 4

49 {36, 1, -6, -6} 25 5 5 5 0 1 5 1 0 1 L1,1(7) R(7,7)
{ 6, -1, 6, -1} 30 0 6 0 5 0 6 0 0
{ 6, -1, -1, 6} 30 6 0 6 0 0 0 0 5

49 {30, 2, -5, -5} 17 8 4 8 2 2 4 2 0 563 L1,2(7) [90]
{12, -2, 5, -2} 20 5 5 5 5 1 5 1 0
{ 6, -1, -1, 6} 20 10 0 10 2 0 0 0 5

49 {24, 3, -4, -4} 11 9 3 9 6 3 3 3 0 ≥ 1 L1,3(7)
{18, -3, 4, -3} 12 8 4 8 7 2 4 2 0
{ 6, -1, -1, 6} 12 12 0 12 6 0 0 0 5

49 {24, 3, -4, -4} 11 6 6 6 2 4 6 4 2 ≥ 1 L2,2(7)
{12, -2, 5, -2} 12 4 8 4 5 2 8 2 2
{12, -2, -2, 5} 12 8 4 8 2 2 4 2 5

49 {18, 4, -3, -3} 7 6 4 6 6 6 4 6 2 ≥ 1 L2,3(7)
{18, -3, 4, -3} 6 6 6 6 7 4 6 4 2
{12, -2, -2, 5} 6 9 3 9 6 3 3 3 5

49 {16, -5, 2, 2} 3 6 6 6 6 4 6 4 6 0 SRG does not exist [18]
{16, 2, -5, 2} 6 6 4 6 3 6 4 6 6
{16, 2, 2, -5} 6 4 6 4 6 6 6 6 3

64 {49, 1, -7, -7} 36 6 6 6 0 1 6 1 0 1 L1,1(8) R(8,8)
{ 7, -1, 7, -1} 42 0 7 0 6 0 7 0 0
{ 7, -1, -1, 7} 42 7 0 7 0 0 0 0 6

64 {42, 2, -6, -6} 26 10 5 10 2 2 5 2 0 ≥ 1 L1,2(8)
{14, -2, 6, -2} 30 6 6 6 6 1 6 1 0
{ 7, -1, -1, 7} 30 12 0 12 2 0 0 0 6

64 {35, 3, -5, -5} 18 12 4 12 6 3 4 3 0 ≥ 1 L1,3(8)
{21, -3, 5, -3} 20 10 5 10 8 2 5 2 0
{ 7, -1, -1, 7} 20 15 0 15 6 0 0 0 6

64 {28, 4, -4, -4} 12 12 3 12 12 4 3 4 0 ≥ 1 L1,4(8)
{28, -4, 4, -4} 12 12 4 12 12 3 4 3 0
{ 7, -1, -1, 7} 12 16 0 16 12 0 0 0 6

64 {35, 3, -5, -5} 18 8 8 8 2 4 8 4 2 ≥ 1 L2,2(8)
{14, -2, 6, -2} 20 5 10 5 6 2 10 2 2
{14, -2, -2, 6} 20 10 5 10 2 2 5 2 6

64 {28, 4, -4, -4} 12 9 6 9 6 6 6 6 2 ≥ 1 L2,3(8)
{21, -3, 5, -3} 12 8 8 8 8 4 8 4 2
{14, -2, -2, 6} 12 12 4 12 6 3 4 3 6

64 {27, -5, 3, 3} 10 8 8 8 6 4 8 4 6 ?
{18, 2, -6, 2} 12 9 6 9 2 6 6 6 6
{18, 2, 2, -6} 12 6 9 6 6 6 9 6 2

64 {21, 5, -3, -3} 8 6 6 6 6 9 6 9 6 ≥ 1 L3,3(8), Cycl(64)
{21, -3, 5, -3} 6 6 9 6 8 6 9 6 6
{21, -3, -3, 5} 6 9 6 9 6 6 6 6 8

81 {64, 1, -8, -8} 49 7 7 7 0 1 7 1 0 1 L1,1(9) R(9,9)
{ 8, -1, 8, -1} 56 0 8 0 7 0 8 0 0
{ 8, -1, -1, 8} 56 8 0 8 0 0 0 0 7
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81 {56, 2, -7, -7} 37 12 6 12 2 2 6 2 0 ≥ 1 L1,2(9)
{16, -2, 7, -2} 42 7 7 7 7 1 7 1 0
{ 8, -1, -1, 8} 42 14 0 14 2 0 0 0 7

81 {48, 3, -6, -6} 27 15 5 15 6 3 5 3 0 ≥ 1 L1,3(9)
{24, -3, 6, -3} 30 12 6 12 9 2 6 2 0
{ 8, -1, -1, 8} 30 18 0 18 6 0 0 0 7

81 {40, 4, -5, -5} 19 16 4 16 12 4 4 4 0 ≥ 1 L1,4(9)
{32, -4, 5, -4} 20 15 5 15 13 3 5 3 0
{ 8, -1, -1, 8} 20 20 0 20 12 0 0 0 7

81 {48, 3, -6, -6} 27 10 10 10 2 4 10 4 2 ≥ 1 L2,2(9)
{16, -2, 7, -2} 30 6 12 6 7 2 12 2 2
{16, -2, -2, 7} 30 12 6 12 2 2 6 2 7

81 {40, 4, -5, -5} 19 12 8 12 6 6 8 6 2 ≥ 1 L2,3(9)
{24, -3, 6, -3} 20 10 10 10 9 4 10 4 2
{16, -2, -2, 7} 20 15 5 15 6 3 5 3 7

81 {32, 5, -4, -4} 13 12 6 12 12 8 6 8 2 ≥ 1 L2,4(9)
{32, -4, 5, -4} 12 12 8 12 13 6 8 6 2
{16, -2, -2, 7} 12 16 4 16 12 4 4 4 7

81 {40, -5, 4, 4} 19 10 10 10 6 4 10 4 6 ≥ 2 Van Lint-Schrijver
{20, 2, -7, 2} 20 12 8 12 1 6 8 6 6
{20, 2, 2, -7} 20 8 12 8 6 6 12 6 1

81 {30, -6, 3, 3} 9 12 8 12 12 6 8 6 6 ≥ 1 Van Lint-Schrijver
{30, 3, -6, 3} 12 12 6 12 9 8 6 8 6
{20, 2, 2, -7} 12 9 9 9 12 9 9 9 1

81 {32, 5, -4, -4} 13 9 9 9 6 9 9 9 6 ≥ 1 L3,3(9)
{24, -3, 6, -3} 12 8 12 8 9 6 12 6 6
{24, -3, -3, 6} 12 12 8 12 6 6 8 6 9

100 {81, 1, -9, -9} 64 8 8 8 0 1 8 1 0 1 L1,1(10) R(10,10)
{ 9, -1, 9, -1} 72 0 9 0 8 0 9 0 0
{ 9, -1, -1, 9} 72 9 0 9 0 0 0 0 8

100 {72, 2, -8, -8} 50 14 7 14 2 2 7 2 0 ≥ 1 L1,2(10)
{18, -2, 8, -2} 56 8 8 8 8 1 8 1 0
{ 9, -1, -1, 9} 56 16 0 16 2 0 0 0 8

100 {63, 3, -7, -7} 38 18 6 18 6 3 6 3 0 ≥ 1 L1,3(10)
{27, -3, 7, -3} 42 14 7 14 10 2 7 2 0
{ 9, -1, -1, 9} 42 21 0 21 6 0 0 0 8

100 {54, 4, -6, -6} 28 20 5 20 12 4 5 4 0 ? L1,4(10), SRG(100,63,38,42) spread
{36, -4, 6, -4} 30 18 6 18 14 3 6 3 0
{ 9, -1, -1, 9} 30 24 0 24 12 0 0 0 8

100 {45, 5, -5, -5} 20 20 4 20 20 5 4 5 0 ? L1,5(10), SRG(100,54,28,30) spread
{45, -5, 5, -5} 20 20 5 20 20 4 5 4 0
{ 9, -1, -1, 9} 20 25 0 25 20 0 0 0 8

100 {63, 3, -7, -7} 38 12 12 12 2 4 12 4 2 ≥ 1 L2,2(10)
{18, -2, 8, -2} 42 7 14 7 8 2 14 2 2
{18, -2, -2, 8} 42 14 7 14 2 2 7 2 8

100 {54, 4, -6, -6} 28 15 10 15 6 6 10 6 2 ? L2,3(10)
{27, -3, 7, -3} 30 12 12 12 10 4 12 4 2
{18, -2, -2, 8} 30 18 6 18 6 3 6 3 8

100 {45, 5, -5, -5} 20 16 8 16 12 8 8 8 2 ? L2,4(10)
{36, -4, 6, -4} 20 15 10 15 14 6 10 6 2
{18, -2, -2, 8} 20 20 5 20 12 4 5 4 8

100 {55, -5, 5, 5} 30 12 12 12 6 4 12 4 6 ?
{22, 2, -8, 2} 30 15 10 15 0 6 10 6 6
{22, 2, 2, -8} 30 10 15 10 6 6 15 6 0

100 {44, -6, 4, 4} 18 15 10 15 12 6 10 6 6 ?
{33, 3, -7, 3} 20 16 8 16 8 8 8 8 6
{22, 2, 2, -8} 20 12 12 12 12 9 12 9 0

100 {45, 5, -5, -5} 20 12 12 12 6 9 12 9 6 ? L3,3(10)
{27, -3, 7, -3} 20 10 15 10 10 6 15 6 6
{27, -3, -3, 7} 20 15 10 15 6 6 10 6 10

100 {36, 6, -4, -4} 14 12 9 12 12 12 9 12 6 ? L3,4(10)
{36, -4, 6, -4} 12 12 12 12 14 9 12 9 6
{27, -3, -3, 7} 12 16 8 16 12 8 8 8 10

100 {33, -7, 3, 3} 8 12 12 12 12 9 12 9 12 ?
{33, 3, -7, 3} 12 12 9 12 8 12 9 12 12
{33, 3, 3, -7} 12 9 12 9 12 12 12 12 8
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A.4.2. Four integral eigenvalues

Excluded here are association schemes generated by SRG⊗ Jn, and the rectangular schemes R(m, n), except the
6-cycle C6 and the Cube.

v spectrum L1 L2 L3 #

6 { 2, 1 2, -1 2, -2 1} 0 1 0 1 0 1 0 1 0 1 C6
{ 2, -1 , -1 , 2 } 1 0 1 0 1 0 1 0 0 DRG
{ 1, -1 , 1 , -1 } 0 2 0 2 0 0 0 0 0 Q-123

8 { 3, 1 3, -1 3, -3 1} 0 2 0 2 0 1 0 1 0 1 Cube
{ 3, -1 , -1 , 3 } 2 0 1 0 2 0 1 0 0 DRG
{ 1, -1 , 1 , -1 } 0 3 0 3 0 0 0 0 0 Q-123

15 { 4, 2 5, -1 4, -2 5} 1 2 0 2 4 2 0 2 0 1 L(Petersen)
{ 8, -2 , -2 , 2 } 1 2 1 2 4 1 1 1 0 DRG, R2 SRG
{ 2, -1 , 2 , -1 } 0 4 0 4 4 0 0 0 1

20 { 9, 3 5, -1 9, -3 5} 4 4 0 4 4 1 0 1 0 1 J(6,3)
{ 9, -3 , -1 , 3 } 4 4 1 4 4 0 1 0 0 R1 R2 DRG
{ 1, -1 , 1 , -1 } 0 9 0 9 0 0 0 0 0 Q-123, Q-321

27 { 6, 3 6, 012, -3 8} 1 4 0 4 4 4 0 4 4 1 H(3,3)
{12, 0 , -3 , 3 } 2 2 2 2 5 4 2 4 2 DRG
{ 8, -4 , 2 , -1 } 0 3 3 3 6 3 3 3 1 Q-123

27 { 8, 212, -1 8, -4 6} 1 6 0 6 8 2 0 2 0 2 GQ(2,4) spread
{16, -2 , -2 , 4 } 3 4 1 4 10 1 1 1 0 R1 DRG, R2 SRG
{ 2, -1 , 2 , -1 } 0 8 0 8 8 0 0 0 1

28 {12, 214, -2 6, -4 7} 4 6 1 6 4 2 1 2 0 56 T(8) spread, Chang spread [102]
{12, -2 , -2 , 4 } 6 4 2 4 6 1 2 1 0 R2 SRG
{ 3, -1 , 3 , -1 } 4 8 0 8 4 0 0 0 2

30 { 7, 214, -214, -7 1} 0 6 0 6 0 8 0 8 0 4 IG(15,7,3)
{14, -1 , -1 , 14 } 3 0 4 0 13 0 4 0 4 R1 and R3 DRG
{ 8, -2 , 2 , -8 } 0 7 0 7 0 7 0 7 0 Q-123, Q-213

32 { 6, 215, -215, -6 1} 0 5 0 5 0 10 0 10 0 3 IG(16,6,2)
{15, -1 , -1 , 15 } 2 0 4 0 14 0 4 0 6 R1 and R3 DRG
{10, -2 , 2 ,-10 } 0 6 0 6 0 9 0 9 0 Q-123, Q-213

32 {15, 310, -115, -5 6} 6 8 0 8 6 1 0 1 0 1 2(GQ(2,2)+1)
{15, -3 , -1 , 5 } 8 6 1 6 8 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 15 0 15 0 0 0 0 0 Q-123, Q-321

35 {12, 5 6, 014, -314} 5 6 0 6 9 3 0 3 1 1 J(7,3)
{18, -3 , -3 , 3 } 4 6 2 6 9 2 2 2 0 R1 and R3 DRG, R2 SRG
{ 4, -3 , 2 , -1 } 0 9 3 9 9 0 3 0 0 Q-123

35 {12, 314, -2 6, -314} 4 6 1 6 9 3 1 3 0 ≥ 1 SRG(35,16,6,8) spread
{18, -3 , -3 , 3 } 4 6 2 6 9 2 2 2 0 R2 SRG
{ 4, -1 , 4 , -1 } 3 9 0 9 9 0 0 0 3

35 {12, 410, -220, -3 4} 5 2 4 2 0 4 4 4 8 0 SRG(35,18,9,9) spread
{ 6, -1 , -1 , 6 } 4 0 8 0 5 0 8 0 8 R3 SRG
{16, -4 , 2 , -4 } 3 3 6 3 0 3 6 3 6

36 { 5, 216, -110, -3 9} 0 4 0 4 8 8 0 8 2 1 Sylvester, residual of 4-(11,5,1)
{20, -1 , -4 , 4 } 1 2 2 2 11 6 2 6 2 DRG, R3 L2(6)
{10, -2 , 4 , -2 } 0 4 1 4 12 4 1 4 4

40 { 9, 315, -1 9, -315} 2 6 0 6 18 3 0 3 0 ≥ 1 GQ(3,3) spread
{27, -3 , -3 , 3 } 2 6 1 6 18 2 1 2 0 R1 DRG, R2 SRG
{ 3, -1 , 3 , -1 } 0 9 0 9 18 0 0 0 2

40 {18, 412, -224, -6 3} 8 5 4 5 0 4 4 4 4 0 SRG(40,27,18,18) spread
{ 9, -1 , -1 , 9 } 10 0 8 0 8 0 8 0 4 R3 SRG
{12, -4 , 2 , -4 } 6 6 6 6 0 3 6 3 2

42 { 5, 220, -220, -5 1} 0 4 0 4 0 16 0 16 0 1 IG(21,5,1)
{20, -1 , -1 , 20 } 1 0 4 0 19 0 4 0 12 R1 and R3 DRG
{16, -2 , 2 ,-16 } 0 5 0 5 0 15 0 15 0 Q-123, Q-213

42 { 6, 221, -1 6, -314} 0 5 0 5 20 5 0 5 0 1 Ho-Si2(x), 2-(15,5,4)
{30, -2 , -5 , 3 } 1 4 1 4 21 4 1 4 0 DRG
{ 5, -1 , 5 , -1 } 0 6 0 6 24 0 0 0 4

45 { 8, 225, -2 9, -410} 0 5 2 5 5 10 2 10 4 1 Gewirtz2(x)
{20, -1 , -5 , 5 } 2 2 4 2 9 8 4 8 4 R3 SRG
{16, -2 , 6 , -2 } 1 5 2 5 10 5 2 5 8

45 { 8, 412, -1 8, -224} 3 4 0 4 24 4 0 4 0 0 SRG(45,12,3,3) spread
{32, -4 , -4 , 2 } 1 6 1 6 22 3 1 3 0 R2 SRG
{ 4, -1 , 4 , -1 } 0 8 0 8 24 0 0 0 3

45 {16, 415, -220, -4 9} 6 6 3 6 4 6 3 6 3 ?
{16, -2 , -2 , 6 } 6 4 6 4 8 3 6 3 3 R2 T(10), R3 SRG
{12, -3 , 3 , -3 } 4 8 4 8 4 4 4 4 3
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45 {24, 320, -320, -6 4} 12 5 6 5 0 3 6 3 3 ≥ 2 GQ(4,2) spread
{ 8, -1 , -1 , 8 } 15 0 9 0 7 0 9 0 3 R3 SRG
{12, -3 , 3 , -3 } 12 6 6 6 0 2 6 2 3

45 {24, 227, -3 8, -6 9} 11 10 2 10 4 2 2 2 0 396 T(10) spread [83]
{16, -2 , -2 , 6 } 15 6 3 6 8 1 3 1 0 R2 SRG
{ 4, -1 , 4 , -1 } 12 12 0 12 4 0 0 0 3

48 {12, 230, -415, -6 2} 1 5 5 5 0 10 5 10 5 3 2 linked 2-(16,6,2) [80]
{15, -1 , -1 , 15 } 4 0 8 0 14 0 8 0 12
{20, -2 , 4 ,-10 } 3 6 3 6 0 9 3 9 7 Q-213

48 {15, 512, -115, -320} 6 8 0 8 20 2 0 2 0 0
{30, -5 , -2 , 3 } 4 10 1 10 18 1 1 1 0 DRG
{ 2, -1 , 2 , -1 } 0 15 0 15 15 0 0 0 1

51 {16, 417, -116, -417} 5 10 0 10 20 2 0 2 0 ≥ 1 3(Cycl(16)+1)
{32, -4 , -2 , 4 } 5 10 1 10 20 1 1 1 0 DRG
{ 2, -1 , 2 , -1 } 0 16 0 16 16 0 0 0 1

52 {25, 513, -125, -513} 12 12 0 12 12 1 0 1 0 4 Taylor [19, 101]
{25, -5 , -1 , 5 } 12 12 1 12 12 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 25 0 25 0 0 0 0 0 Q-123, Q-321

56 {15, 7 7, 120, -328} 6 8 0 8 16 6 0 6 4 1 J(8,3)
{30, -2 , -5 , 3 } 4 8 3 8 15 6 3 6 1 DRG
{10, -6 , 3 , -1 } 0 9 6 9 18 3 6 3 0 Q-123

56 {27, 321, -127, -9 7} 10 16 0 16 10 1 0 1 0 1 2(Schläfli+1)
{27, -3 , -1 , 9 } 16 10 1 10 16 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 27 0 27 0 0 0 0 0 Q-123, Q-321

60 {15, 325, 016, -518} 2 8 4 8 8 8 4 8 8 ≥ 1 hyperbolic quadric in PG(3,5)
{24, 0 , -6 , 4 } 5 5 5 5 8 10 5 10 5
{20, -4 , 5 , 0 } 3 6 6 6 12 6 6 6 7

60 {21, 332, -424, -7 3} 6 6 8 6 0 8 8 8 8 ?
{14, -1 , -1 , 14 } 9 0 12 0 13 0 12 0 12
{24, -3 , 4 , -8 } 7 7 7 7 0 7 7 7 9

63 { 6, 321, -127, -314} 1 4 0 4 4 16 0 16 16 2 GH(2,2)
{24, 0 , -4 , 6 } 1 1 4 1 10 12 4 12 16 DRG, R3 SRG
{32, -4 , 4 , -4 } 0 3 3 3 9 12 3 12 16

63 {24, 427, -3 8, -427} 9 12 2 12 16 4 2 4 0 ≥ 1 SRG(63,30,13,15) spread
{32, -4 , -4 , 4 } 9 12 3 12 16 3 3 3 0 R2 SRG
{ 6, -1 , 6 , -1 } 8 16 0 16 16 0 0 0 5

63 {24, 521, -335, -4 6} 10 3 10 3 0 5 10 5 15 ? SRG(63,32,16,16) spread
{ 8, -1 , -1 , 8 } 9 0 15 0 7 0 15 0 15 R3 SRG
{30, -5 , 3 , -5 } 8 4 12 4 0 4 12 4 13

64 { 7, 321, -135, -5 7} 0 6 0 6 0 15 0 15 20 1 Folded 7-cube
{21, 1 , -3 , 9 } 2 0 5 0 10 10 5 10 20 R1 and R2 DRG, R3 SRG
{35, -5 , 3 , -5 } 0 3 4 3 6 12 4 12 18 Q-123, Q-312

64 { 9, 5 9, 127, -327} 2 6 0 6 12 9 0 9 18 2 H(3,4), Doob
{27, 3 , -5 , 3 } 2 4 3 4 10 12 3 12 12 DRG, R2 SRG
{27, -9 , 3 , -1 } 0 3 6 3 12 12 6 12 8 Q-123

64 {14, 242, -2 7, -614} 0 12 1 12 24 6 1 6 0 ?
{42, -2 , -6 , 6 } 4 8 2 8 28 5 2 5 0
{ 7, -1 , 7 , -1 } 2 12 0 12 30 0 0 0 6

64 {15, 330, -115, -518} 2 12 0 12 30 3 0 3 0 ≥ 5 SRG(64,18,2,6) spread
{45, -3 , -3 , 5 } 4 10 1 10 32 2 1 2 0 DRG, R2 SRG
{ 3, -1 , 3 , -1 } 0 15 0 15 30 0 0 0 2

64 {18, 615, -245, -6 3} 7 5 5 5 0 10 5 10 15 0 linked designs
{15, -1 , -1 , 15 } 6 0 12 0 14 0 12 0 18
{30, -6 , 2 ,-10 } 3 6 9 6 0 9 9 9 11 Q-123

64 {30, 615, -245,-10 3} 14 9 6 9 0 6 6 6 6 12 3 linked 2-(16,6,2), SRG spread [80]
{15, -1 , -1 , 15 } 18 0 12 0 14 0 12 0 6 R3 SRG
{18, -6 , 2 , -6 } 10 10 10 10 0 5 10 5 2 Q-123

65 {10, 513, 026, -325} 3 6 0 6 12 12 0 12 12 1 Locally Petersen
{30, 0 , -5 , 4 } 2 4 4 4 13 12 4 12 8 DRG
{24, -6 , 4 , -2 } 0 5 5 5 15 10 5 10 8

66 {15, 244, -311, -710} 0 10 4 10 8 12 4 12 4 ≥ 1 block scheme 4-(11,5,1)
{30, -1 , -6 , 8 } 5 4 6 4 15 10 6 10 4 R3 T(12)
{20, -2 , 8 , -2 } 3 9 3 9 15 6 3 6 10 Q-312

66 {20, 244, -210, -811} 2 16 1 16 20 4 1 4 0 ?
{40, -2 , -4 , 8 } 8 10 2 10 26 3 2 3 0
{ 5, -1 , 5 , -1 } 4 16 0 16 24 0 0 0 4

66 {40, 244, -410, -811} 22 14 3 14 4 2 3 2 0 526915620 T(12) spread [44]
{20, -2 , -2 , 8 } 28 8 4 8 10 1 4 1 0 R2 SRG
{ 5, -1 , 5 , -1 } 24 16 0 16 4 0 0 0 4
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68 {12, 417, 034, -516} 1 10 0 10 20 10 0 10 5 1 Doro, 3-(17,5,1)
{40, 0 , -4 , 6 } 3 6 3 6 24 9 3 9 3 DRG
{15, -5 , 3 , -2 } 0 8 4 8 24 8 4 8 2

70 {17, 334, -334,-17 1} 0 16 0 16 0 18 0 18 0 ≥ 53387 IG(35,17,8) [102]
{34, -1 , -1 , 34 } 8 0 9 0 33 0 9 0 9 R1 and R3 DRG
{18, -3 , 3 ,-18 } 0 17 0 17 0 17 0 17 0 Q-123, Q-213

70 {18, 249, -3 6, -714} 1 14 2 14 21 7 2 7 0 ≥ 1 Merging example (Section 4.1.7)
{42, -2 , -7 , 7 } 6 9 3 9 26 6 3 6 0
{ 9, -1 , 9 , -1 } 4 14 0 14 28 0 0 0 8

70 {18, 714, -249, -3 6} 8 2 7 2 0 7 7 7 28 ? SRG(70,27,12,9) spread
{ 9, -1 , -1 , 9 } 4 0 14 0 8 0 14 0 28 R3 SRG
{42, -7 , 2 , -7 } 3 3 12 3 0 6 12 6 23

70 {36, 340, -4 9, -620} 17 15 3 15 9 3 3 3 0 ≥ 1 SRG(70,42,23,28) spread
{27, -3 , -3 , 6 } 20 12 4 12 12 2 4 2 0 R2 SRG
{ 6, -1 , 6 , -1 } 18 18 0 18 9 0 0 0 5

72 {15, 335, -335,-15 1} 0 14 0 14 0 21 0 21 0 ≥ 25634 IG(36,15,6) [100, 101]
{35, -1 , -1 , 35 } 6 0 9 0 34 0 9 0 12 R1 and R3 DRG
{21, -3 , 3 ,-21 } 0 15 0 15 0 20 0 20 0 Q-123, Q-213

72 {35, 521, -135, -715} 16 18 0 18 16 1 0 1 0 ≥ 227 Taylor [101]
{35, -5 , -1 , 7 } 18 16 1 16 18 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 35 0 35 0 0 0 0 0 Q-123, Q-321

75 {24, 620, -124, -430} 9 14 0 14 32 2 0 2 0 ?
{48, -6 , -2 , 4 } 7 16 1 16 30 1 1 1 0 DRG
{ 2, -1 , 2 , -1 } 0 24 0 24 24 0 0 0 1

75 {28, 342, -214, -718} 8 18 1 18 21 3 1 3 0 ? SRG(75,32,10,16) spread
{42, -3 , -3 , 7 } 12 14 2 14 25 2 2 2 0 R2 SRG
{ 4, -1 , 4 , -1 } 7 21 0 21 21 0 0 0 3

75 {28, 814, -256, -7 4} 13 6 8 6 0 8 8 8 16 0 SRG(75,42,25,21) spread
{14, -1 , -1 , 14 } 12 0 16 0 13 0 16 0 16 R3 SRG
{32, -8 , 2 , -8 } 7 7 14 7 0 7 14 7 10 Q-123

76 {18, 338, -118, -619} 2 15 0 15 36 3 0 3 0 0 SRG(76,21,2,7) spread
{54, -3 , -3 , 6 } 5 12 1 12 39 2 1 2 0 DRG, R2 SRG
{ 3, -1 , 3 , -1 } 0 18 0 18 36 0 0 0 2

78 {25, 526, -125, -526} 8 16 0 16 32 2 0 2 0 ≥ 1 3(Cycl(25)+1)
{50, -5 , -2 , 5 } 8 16 1 16 32 1 1 1 0 DRG
{ 2, -1 , 2 , -1 } 0 25 0 25 25 0 0 0 1

80 {13, 339, -339,-13 1} 0 12 0 12 0 27 0 27 0 ≥ 930 IG(40,13,4) [102]
{39, -1 , -1 , 39 } 4 0 9 0 38 0 9 0 18 R1 and R3 SRG
{27, -3 , 3 ,-27 } 0 13 0 13 0 26 0 26 0 Q-123, Q-213

80 {24, 260, -6 4, -815} 3 15 5 15 15 10 5 10 0 1 4 linked 2-(16,6,2) [80]
{40, -2 ,-10 , 8 } 9 9 6 9 21 9 6 9 0
{15, -1 , 15 , -1 } 8 16 0 16 24 0 0 0 14 Q-312

81 {10, 710, 120, -250} 5 4 0 4 6 10 0 10 40 0 λ3 = −2
{20, 2 , -7 , 2 } 2 3 5 3 1 15 5 15 30 DRG, R2 SRG
{50,-10 , 5 , -1 } 0 2 8 2 6 12 8 12 29 Q-123

81 {16, 432, -232, -516} 3 8 4 8 8 16 4 16 12 ?
{32, -1 , -4 , 8 } 4 4 8 4 15 12 8 12 12 R3 SRG
{32, -4 , 5 , -4 } 2 8 6 8 12 12 6 12 13

81 {20, 520, 220, -440} 5 6 8 6 6 8 8 8 24 ?
{20, 2 , -7 , 2 } 6 6 8 6 1 12 8 12 20 R2 SRG (unique)
{40, -8 , 4 , 1 } 4 4 12 4 6 10 12 10 17

81 {24, 348, -3 8, -624} 5 16 2 16 26 6 2 6 0 ?
{48, -3 , -6 , 6 } 8 13 3 13 29 5 3 5 0
{ 8, -1 , 8 , -1 } 6 18 0 18 30 0 0 0 7

84 {18, 9 8, 227, -348} 7 10 0 10 25 10 0 10 10 1 J(9,3)
{45, 0 , -7 , 3 } 4 10 4 10 22 12 4 12 4 DRG
{20,-10 , 4 , -1 } 0 9 9 9 27 9 9 9 1 Q-123

84 {20, 435, -120, -528} 4 15 0 15 42 3 0 3 0 ?
{60, -4 , -3 , 5 } 5 14 1 14 43 2 1 2 0 DRG
{ 3, -1 , 3 , -1 } 0 20 0 20 40 0 0 0 2

85 {16, 434, -116, -434} 3 12 0 12 48 4 0 4 0 ≥ 2 GQ(4,4) spread
{64, -4 , -4 , 4 } 3 12 1 12 48 3 1 3 0 DRG, R2 SRG
{ 4, -1 , 4 , -1 } 0 16 0 16 48 0 0 0 3

85 {48, 530, -350,-12 4} 26 11 10 11 0 5 10 5 5 ? SRG(85,64,48,48) spread
{16, -1 , -1 , 16 } 33 0 15 0 15 0 15 0 5 R3 SRG
{20, -5 , 3 , -5 } 24 12 12 12 0 4 12 4 3

88 {12, 422, 132, -433} 1 10 0 10 40 10 0 10 5 ?
{60, 0 , -6 , 4 } 2 8 2 8 40 11 2 11 2 DRG
{15, -5 , 4 , -1 } 0 8 4 8 44 8 4 8 2
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90 {12, 344, -344,-12 1} 0 11 0 11 0 33 0 33 0 ≥ 2285 IG(45,12,3) [81]
{44, -1 , -1 , 44 } 3 0 9 0 43 0 9 0 24 R1 and R3 DRG
{33, -3 , 3 ,-33 } 0 12 0 12 0 32 0 32 0 Q-123, Q-213

90 {44, 433, -144,-1112} 18 25 0 25 18 1 0 1 0 0 Taylor
{44, -4 , -1 , 11 } 25 18 1 18 25 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 44 0 44 0 0 0 0 0 Q-123, Q-321

91 {20, 712, 065, -813} 3 12 4 12 6 12 4 12 24 ?
{30, 4 , -3 , 9 } 8 4 8 4 13 12 8 12 20
{40,-12 , 2 , -2 } 2 6 12 6 9 15 12 15 12 Q-123

91 {60, 265, -512,-1013} 37 18 4 18 4 2 4 2 0 ≈1.13*1018 T(14) spread [44]
{24, -2 , -2 , 10 } 45 10 5 10 12 1 5 1 0 R2 SRG
{ 6, -1 , 6 , -1 } 40 20 0 20 4 0 0 0 5

95 {36, 357, -218, -919} 10 24 1 24 27 3 1 3 0 ? SRG(95,40,12,20) spread
{54, -3 , -3 , 9 } 16 18 2 18 33 2 2 2 0 R2 SRG
{ 4, -1 , 4 , -1 } 9 27 0 27 27 0 0 0 3

96 {15, 530, -115, -350} 4 10 0 10 60 5 0 5 0 ≥ 1 GQ(5,3) spread
{75, -5 , -5 , 3 } 2 12 1 12 58 4 1 4 0 DRG, R2 SRG
{ 5, -1 , 5 , -1 } 0 15 0 15 60 0 0 0 4

96 {15, 718, -145, -332} 6 8 0 8 36 16 0 16 4 0
{60, -4 , -4 , 6 } 2 9 4 9 38 12 4 12 4 DRG, R2 and R3 SRG
{20, -4 , 4 , -4 } 0 12 3 12 36 12 3 12 4

96 {19, 719, -157, -519} 6 12 0 12 30 15 0 15 4 ?
{57, -3 , -3 , 9 } 4 10 5 10 36 10 5 10 4 DRG, R2 and R3 SRG
{19, -5 , 3 , -5 } 0 15 4 15 30 12 4 12 2 Q-123

96 {25, 520, 150, -725} 4 8 12 8 4 8 12 8 30 ?
{20, 4 , -4 , 4 } 10 5 10 5 4 10 10 10 30 R2 and R3 SRG
{50,-10 , 2 , 2 } 6 4 15 4 4 12 15 12 22

96 {30, 275, -6 5,-1015} 4 20 5 20 20 10 5 10 0 1 5 linked 2-(16,6,2) [80]
{50, -2 ,-10 , 10 } 12 12 6 12 28 9 6 9 0
{15, -1 , 15 , -1 } 10 20 0 20 30 0 0 0 14 Q-312

96 {30, 448, -215, -632} 8 20 1 20 36 4 1 4 0 ? SRG(96,35,10,14) spread
{60, -4 , -4 , 6 } 10 18 2 18 38 3 2 3 0 R2 SRG
{ 5, -1 , 5 , -1 } 6 24 0 24 36 0 0 0 4

96 {30, 630, -245, -620} 10 15 4 15 18 12 4 12 4 ?
{45, -3 , -3 , 9 } 10 12 8 12 24 8 8 8 4 R2 and R3 SRG
{20, -4 , 4 , -4 } 6 18 6 18 18 9 6 9 4

96 {30, 1015, -275, -6 5} 14 5 10 5 0 10 10 10 30 0 SRG(96,45,24,18) spread
{15, -1 , -1 , 15 } 10 0 20 0 14 0 20 0 30 R3 SRG
{50,-10 , 2 ,-10 } 6 6 18 6 0 9 18 9 22 Q-123

96 {60, 445, -445,-12 5} 36 11 12 11 0 4 12 4 4 ≥ 1 GQ(5,3) spread
{15, -1 , -1 , 15 } 44 0 16 0 14 0 16 0 4 R3 SRG
{20, -4 , 4 , -4 } 36 12 12 12 0 3 12 3 4

96 {38, 619, 238, -638} 14 9 14 9 4 6 14 6 18 ?
{19, 3 , -5 , 3 } 18 8 12 8 2 8 12 8 18 R2 and R3 SRG
{38,-10 , 2 , 2 } 14 6 18 6 4 9 18 9 10

96 {45, 360, -315, -920} 18 24 2 24 18 3 2 3 0 ? SRG(96,50,22,30) spread
{45, -3 , -3 , 9 } 24 18 3 18 24 2 3 2 0 R2 SRG
{ 5, -1 , 5 , -1 } 18 27 0 27 18 0 0 0 4

96 {45, 727, -363, -9 5} 22 8 14 8 0 7 14 7 14 ? SRG(96,60,38,36) spread
{15, -1 , -1 , 15 } 24 0 21 0 14 0 21 0 14 R3 SRG
{35, -7 , 3 , -7 } 18 9 18 9 0 6 18 6 10

99 {28, 363, -521, -814} 5 10 12 10 3 15 12 15 15 ?
{28, -1 , -5 , 10 } 10 3 15 3 12 12 15 12 15 R3 SRG
{42, -3 , 9 , -3 } 8 10 10 10 8 10 10 10 21 Q-312

99 {28, 621, 144, -633} 7 6 14 6 2 6 14 6 36 ?
{14, 3 , -4 , 3 } 12 4 12 4 1 8 12 8 36 R2 and R3 SRG
{56,-10 , 2 , 2 } 7 3 18 3 2 9 18 9 28

99 {32, 822, -132, -444} 13 18 0 18 44 2 0 2 0 ?
{64, -8 , -2 , 4 } 9 22 1 22 40 1 1 1 0 DRG
{ 2, -1 , 2 , -1 } 0 32 0 32 32 0 0 0 1

99 {40, 544, -410, -544} 16 20 3 20 25 5 3 5 0 ≥ 1 SRG(99,48,22,24) spread
{50, -5 , -5 , 5 } 16 20 4 20 25 4 4 4 0 R2 SRG
{ 8, -1 , 8 , -1 } 15 25 0 25 25 0 0 0 7

99 {40, 636, -454, -5 8} 17 4 18 4 0 6 18 6 24 ? SRG(99,50,25,25) spread
{10, -1 , -1 , 10 } 16 0 24 0 9 0 24 0 24 R3 SRG
{48, -6 , 4 , -6 } 15 5 20 5 0 5 20 5 22

100 {18, 356, -218, -625} 1 14 2 14 35 14 2 14 2 ?
{63, -2 , -7 , 7 } 4 10 4 10 40 12 4 12 2 R3 L2(10)
{18, -2 , 8 , -2 } 2 14 2 14 42 7 2 7 8
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100 {22, 716, 233, -450} 6 9 6 9 12 12 6 12 26 ?
{33, 3 , -7 , 3 } 6 8 8 8 8 16 8 16 20 R2 SRG
{44,-11 , 4 , 0 } 3 6 13 6 12 15 13 15 15

100 {22, 820, -255, -324} 9 6 6 6 9 18 6 18 20 ?
{33, -3 , -3 , 8 } 4 6 12 6 14 12 12 12 20 R2 and R3 SRG
{44, -6 , 4 , -6 } 3 9 10 9 9 15 10 15 18

100 {48, 450, -224, -825} 21 25 1 25 21 2 1 2 0 ?
{48, -4 , -2 , 8 } 25 21 2 21 25 1 2 1 0
{ 3, -1 , 3 , -1 } 16 32 0 32 16 0 0 0 2

100 {49, 725, -149, -725} 24 24 0 24 24 1 0 1 0 ≥ 18 2(P(49)+1) [19, 101]
{49, -7 , -1 , 7 } 24 24 1 24 24 0 1 0 0 R1 and R2 DRG
{ 1, -1 , 1 , -1 } 0 49 0 49 0 0 0 0 0 Q-123, Q-321

A.4.3. Two integral eigenvalues

Excluded here are association schemes generated by SRG⊗ Jn

v spectrum L1 L2 L3 #

12 { 5, -1 5, 2.236 3, -2.236 3} 2 2 0 2 2 1 0 1 0 1 Icosahedron
{ 5, -1 , -2.236 , 2.236 } 2 2 1 2 2 0 1 0 0 R1 R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 5 0 5 0 0 0 0 0 Q-213, Q-312

14 { 3, -3 1, 1.414 6, -1.414 6} 0 2 0 2 0 4 0 4 0 1 IG(7,3,1)
{ 6, 6 , -1.000 , -1.000 } 1 0 2 0 5 0 2 0 2 R1 and R3 DRG
{ 4, -4 , -1.414 , 1.414 } 0 3 0 3 0 3 0 3 0 Q-231, Q-321

21 { 4, -2 8, 2.414 6, -0.414 6} 1 2 0 2 2 4 0 4 4 1 L(IG(7,3,1))
{ 8, 2 , -0.586 , -3.414 } 1 1 2 1 2 4 2 4 2 DRG
{ 8, -1 , -2.828 , 2.828 } 0 2 2 2 4 2 2 2 3

22 { 5, -5 1, 1.73210, -1.73210} 0 4 0 4 0 6 0 6 0 1 IG(11,5,2)
{10, 10 , -1.000 , -1.000 } 2 0 3 0 9 0 3 0 3 R1 and R3 DRG
{ 6, -6 , -1.732 , 1.732 } 0 5 0 5 0 5 0 5 0 Q-231, Q-321

24 { 7, -1 7, 2.646 8, -2.646 8} 2 4 0 4 8 2 0 2 0 1 Klein
{14, -2 , -2.646 , 2.646 } 2 4 1 4 8 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 7 0 7 7 0 0 0 1

26 { 4, -4 1, 1.73212, -1.73212} 0 3 0 3 0 9 0 9 0 1 IG(13,4,1)
{12, 12 , -1.000 , -1.000 } 1 0 3 0 11 0 3 0 6 R1 and R3 DRG
{ 9, -9 , -1.732 , 1.732 } 0 4 0 4 0 8 0 8 0 Q-231, Q-321

28 {13, -113, 3.606 7, -3.606 7} 6 6 0 6 6 1 0 1 0 1 Taylor
{13, -1 , -3.606 , 3.606 } 6 6 1 6 6 0 1 0 0 R1 R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 13 0 13 0 0 0 0 0 Q-213, Q-312

33 {10, -110, 3.16211, -3.16211} 3 6 0 6 12 2 0 2 0 0 Hasse-Minkowski
{20, -2 , -3.162 , 3.162 } 3 6 1 6 12 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 10 0 10 10 0 0 0 1

35 { 6, -1 6, 2.44914, -2.44914} 1 4 0 4 16 4 0 4 0 0 Hasse-Minkowski, PG(2,6)
{24, -4 , -2.449 , 2.449 } 1 4 1 4 16 3 1 3 0 DRG
{ 4, 4 , -1.000 , -1.000 } 0 6 0 6 18 0 0 0 3

36 {17, -117, 4.123 9, -4.123 9} 8 8 0 8 8 1 0 1 0 1 2(P(17)+1)
{17, -1 , -4.123 , 4.123 } 8 8 1 8 8 0 1 0 0 R1 R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 17 0 17 0 0 0 0 0 Q-213, Q-312

38 { 9, -9 1, 2.23618, -2.23618} 0 8 0 8 0 10 0 10 0 6 IG(19,9,4)
{18,-18 , -1.000 , -1.000 } 4 0 5 0 17 0 5 0 5 R1 and R3 DRG
{10,-10 , -2.236 , 2.236 } 0 9 0 9 0 9 0 9 0 Q-231, Q-321

40 { 9, 115, 2.16212, -4.16212} 0 4 4 4 4 4 4 4 10 ?
{12, -4 , 2.000 , 2.000 } 3 3 3 3 2 6 3 6 9 R2 SRG
{18, 2 , -5.162 , 1.162 } 2 2 5 2 4 6 5 6 6

40 {18, -2 9, 3.46415, -3.46415} 8 8 1 8 8 2 1 2 0 0 Hasse-Minkowski
{18, -2 , -3.464 , 3.464 } 8 8 2 8 8 1 2 1 0
{ 3, 3 , -1.000 , -1.000 } 6 12 0 12 6 0 0 0 2

42 {13, -113, 3.60614, -3.60614} 4 8 0 8 16 2 0 2 0 ≥ 1 3(Cycl(13)+1)
{26, -2 , -3.606 , 3.606 } 4 8 1 8 16 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 13 0 13 13 0 0 0 1

44 { 7, -7 1, 2.23621, -2.23621} 0 6 0 6 0 15 0 15 0 0 IG(22,7,2)
{21, 21 , -1.000 , -1.000 } 2 0 5 0 20 0 5 0 10 R1 and R3 DRG
{15,-15 , -2.236 , 2.236 } 0 7 0 7 0 14 0 14 0 Q-231, Q-321

44 {21, -121, 4.58311, -4.58311} 10 10 0 10 10 1 0 1 0 0 Hasse-Minkowski
{21, -1 , -4.583 , 4.583 } 10 10 1 10 10 0 1 0 0 R1 R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 21 0 21 0 0 0 0 0 Q-213, Q-312
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45 {16, -220, 4.87312, -2.87312} 7 5 3 5 5 6 3 6 3 ?
{16, -2 , -2.873 , 4.873 } 5 5 6 5 7 3 6 3 3 R3 SRG
{12, 3 , -3.000 , -3.000 } 4 8 4 8 4 4 4 4 3

46 {11,-11 1, 2.44922, -2.44922} 0 10 0 10 0 12 0 12 0 582 IG(23,11,5) [102]
{22, 22 , -1.000 , -1.000 } 5 0 6 0 21 0 6 0 6 R1 and R3 DRG
{12,-12 , -2.449 , 2.449 } 0 11 0 11 0 11 0 11 0 Q-231, Q-231

50 { 9, -9 1, 2.44924, -2.44924} 0 8 0 8 0 16 0 16 0 50 IG(25,9,3) [43]
{24, 24 , -1.000 , -1.000 } 3 0 6 0 23 0 6 0 10 R1 and R3 DRG
{16,-16 , -2.449 , 2.449 } 0 9 0 9 0 15 0 15 0 Q-231, Q-321

52 { 6, -227, 3.73212, 0.26812} 2 3 0 3 6 9 0 9 18 1 L(IG(13,4,1))
{18, 2 , 0.464 , -6.464 } 1 2 3 2 3 12 3 12 12 DRG
{27, -1 , -5.196 , 5.196 } 0 2 4 2 8 8 4 8 14

54 {13,-13 1, 2.64626, -2.64626} 0 12 0 12 0 14 0 14 0 105041 IG(27,13,6) [102]
{26, 26 , -1.000 , -1.000 } 6 0 7 0 25 0 7 0 7 R1 and R3 DRG
{14,-14 , -2.646 , 2.646 } 0 13 0 13 0 13 0 13 0 Q-231, Q-321

55 {18, -410, 3.85422, -2.85422} 6 6 5 6 4 8 5 8 5 ?
{18, 7 , -2.000 , -2.000 } 6 4 8 4 9 4 8 4 6 R2 T(11)
{18, -4 , -2.854 , 3.854 } 5 8 5 8 4 6 5 6 6

56 { 5, -315, 2.41420, -0.41420} 0 4 0 4 4 12 0 12 18 0 Fon-der-Flaass [50]
{20, 4 , 0.828 , -4.828 } 1 1 3 1 6 12 3 12 15 DRG
{30, -2 , -4.243 , 4.243 } 0 2 3 2 8 10 3 10 16

57 { 6, -320, 2.61818, 0.38218} 0 5 0 5 15 10 0 10 10 ≥ 1 Perkel
{30, 3 , 0.854 , -5.854 } 1 3 2 3 14 12 2 12 6 DRG
{20, -1 , -4.472 , 4.472 } 0 3 3 3 18 9 3 9 7

58 { 8, -8 1, 2.44928, -2.44928} 0 7 0 7 0 21 0 21 0 0 IG(29,8,2)
{28, 28 , -1.000 , -1.000 } 2 0 6 0 27 0 6 0 15 R1 and R3 DRG
{21,-21 , -2.449 , 2.449 } 0 8 0 8 0 20 0 20 0 Q-231, Q-321

60 {11, -111, 3.31724, -3.31724} 2 8 0 8 32 4 0 4 0 ≥ 1 Mathon
{44, -4 , -3.317 , 3.317 } 2 8 1 8 32 3 1 3 0 DRG
{ 4, 4 , -1.000 , -1.000 } 0 11 0 11 33 0 0 0 3

60 {19, -119, 4.35920, -4.35920} 6 12 0 12 24 2 0 2 0 ≥ 1 3(Cycl(19)+1)
{38, -2 , -4.359 , 4.359 } 6 12 1 12 24 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 19 0 19 19 0 0 0 1

60 {29, -129, 5.38515, -5.38515} 14 14 0 14 14 1 0 1 0 6 2(P(29)+1) [101]
{29, -1 , -5.385 , 5.385 } 14 14 1 14 14 0 1 0 0 R1 and R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 29 0 29 0 0 0 0 0 Q-213, Q-312

62 { 6, -6 1, 2.23630, -2.23630} 0 5 0 5 0 25 0 25 0 1 IG(31,6,1)
{30, 30 , -1.000 , -1.000 } 1 0 5 0 29 0 5 0 20 R1 and R3 DRG
{25,-25 , -2.236 , 2.236 } 0 6 0 6 0 24 0 24 0 Q-231, Q-321

62 {10,-10 1, 2.64630, -2.64630} 0 9 0 9 0 21 0 21 0 82 IG(31,10,3) [98, 99]
{30, 30 , -1.000 , -1.000 } 3 0 7 0 29 0 7 0 14 R1 and R3 DRG
{21,-21 , -2.646 , 2.646 } 0 10 0 10 0 20 0 20 0 Q-231, Q-321

62 {15,-15 1, 2.82830, -2.82830} 0 14 0 14 0 16 0 16 0 ≥ 633446 IG(31,15,7) [100]
{30, 30 , -1.000 , -1.000 } 7 0 8 0 29 0 8 0 8 R1 and R3 DRG
{16,-16 , -2.828 , 2.828 } 0 15 0 15 0 15 0 15 0 Q-231, Q-321

63 { 8, -1 8, 2.82827, -2.82827} 1 6 0 6 36 6 0 6 0 1 PG(2,8)
{48, -6 , -2.828 , 2.828 } 1 6 1 6 36 5 1 5 0 DRG
{ 6, 6 , -1.000 , -1.000 } 0 8 0 8 40 0 0 0 5

64 {14, -2 7, 3.46428, -3.46428} 3 9 1 9 27 6 1 6 0 ?
{42, -6 , -3.464 , 3.464 } 3 9 2 9 27 5 2 5 0
{ 7, 7 , -1.000 , -1.000 } 2 12 0 12 30 0 0 0 6

64 {30, -215, 4.47224, -4.47224} 14 14 1 14 14 2 1 2 0 ?
{30, -2 , -4.472 , 4.472 } 14 14 2 14 14 1 2 1 0
{ 3, 3 , -1.000 , -1.000 } 10 20 0 20 10 0 0 0 2

68 {12,-12 1, 2.82833, -2.82833} 0 11 0 11 0 22 0 22 0 0 IG(34,12,4)
{33, 33 , -1.000 , -1.000 } 4 0 8 0 32 0 8 0 14 R1 and R3 DRG
{22,-22 , -2.828 , 2.828 } 0 12 0 12 0 21 0 21 0 Q-231, Q-321

68 {33, -133, 5.74517, -5.74517} 16 16 0 16 16 1 0 1 0 0 Taylor, Hasse-Minkowski
{33, -1 , -5.745 , 5.745 } 16 16 1 16 16 0 1 0 0 R1 and R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 33 0 33 0 0 0 0 0 Q-213, Q-312

69 {22, -122, 4.69023, -4.69023} 7 14 0 14 28 2 0 2 0 0 Hasse-Minkowski
{44, -2 , -4.690 , 4.690 } 7 14 1 14 28 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 22 0 22 22 0 0 0 1

72 {17, -117, 4.12327, -4.12327} 4 12 0 12 36 3 0 3 0 ≥ 1 Mathon
{51, -3 , -4.123 , 4.123 } 4 12 1 12 36 2 1 2 0 DRG
{ 3, 3 , -1.000 , -1.000 } 0 17 0 17 34 0 0 0 2

74 { 9, -9 1, 2.64636, -2.64636} 0 8 0 8 0 28 0 28 0 3 IG(37,9,2) [2]
{36, 36 , -1.000 , -1.000 } 2 0 7 0 35 0 7 0 21 R1 and R3 DRG
{28,-28 , -2.646 , 2.646 } 0 9 0 9 0 27 0 27 0 Q-231, Q-321
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76 {37, -137, 6.08319, -6.08319} 18 18 0 18 18 1 0 1 0 ≥ 11 Taylor [19, 101]
{37, -1 , -6.083 , 6.083 } 18 18 1 18 18 0 1 0 0 R1 and R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 37 0 37 0 0 0 0 0 Q-213, Q-312

78 {19,-19 1, 3.16238, -3.16238} 0 18 0 18 0 20 0 20 0 ≥ 19 IG(39,19,9) [100]
{38, 38 , -1.000 , -1.000 } 9 0 10 0 37 0 10 0 10 R1 and R3 DRG
{20,-20 , -3.162 , 3.162 } 0 19 0 19 0 19 0 19 0 Q-231, Q-321

81 { 8, -132, 3.85424, -2.85424} 2 5 0 5 15 20 0 20 12 0
{40, -5 , -0.854 , 5.854 } 1 3 4 3 20 16 4 16 12 DRG
{32, 5 , -4.000 , -4.000 } 0 5 3 5 20 15 3 15 13

81 {10, 120, 2.85430, -3.85430} 0 4 5 4 6 10 5 10 35 ?
{20, -7 , 2.000 , 2.000 } 2 3 5 3 1 15 5 15 30 R2 SRG (unique)
{50, 5 , -5.854 , 0.854 } 1 2 7 2 6 12 7 12 30

81 {16, -232, 5.24324, -3.24324} 5 6 4 6 10 16 4 16 12 ?
{32, -4 , -2.243 , 6.243 } 3 5 8 5 14 12 8 12 12 R3 SRG
{32, 5 , -4.000 , -4.000 } 2 8 6 8 12 12 6 12 13

81 {20, 220, 3.24330, -5.24330} 3 6 10 6 6 8 10 8 22 ?
{20, -7 , 2.000 , 2.000 } 6 6 8 6 1 12 8 12 20 R2 SRG (unique)
{40, 4 , -6.243 , 2.243 } 5 4 11 4 6 10 11 10 18

81 {24, -3 8, 4.24336, -4.24336} 7 14 2 14 28 6 2 6 0 ?
{48, -6 , -4.243 , 4.243 } 7 14 3 14 28 5 3 5 0
{ 8, 8 , -1.000 , -1.000 } 6 18 0 18 30 0 0 0 7

81 {28, 156, 3.37412,-10.37412} 4 12 11 12 6 6 11 6 11 ?
{24, -3 , 6.000 , 6.000 } 14 7 7 7 9 7 7 7 14 R2 SRG
{28, 1 ,-10.374 , 3.374 } 11 6 11 6 6 12 11 12 4

82 {16,-16 1, 3.16240, -3.16240} 0 15 0 15 0 25 0 25 0 ≥ 56000 IG(41,16,6) [100]
{40, 40 , -1.000 , -1.000 } 6 0 10 0 39 0 10 0 15 R1 and R3 DRG
{25,-25 , -3.162 , 3.162 } 0 16 0 16 0 24 0 24 0 Q-231, Q-321

84 {13, -113, 3.60635, -3.60635} 2 10 0 10 50 5 0 5 0 ≥ 1 Mathon
{65, -5 , -3.606 , 3.606 } 2 10 1 10 50 4 1 4 0 DRG
{ 5, 5 , -1.000 , -1.000 } 0 13 0 13 52 0 0 0 4

84 {41, -141, 6.40321, -6.40321} 20 20 0 20 20 1 0 1 0 ≥ 18 Taylor [19, 101]
{41, -1 , -6.403 , 6.403 } 20 20 1 20 20 0 1 0 0 R1 and R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 41 0 41 0 0 0 0 0 Q-213, Q-312

85 {12, -516, 3.44934, -1.44934} 1 6 4 6 2 16 4 16 28 ?
{24, 7 , 0.449 , -4.449 } 3 1 8 1 8 14 8 14 26
{48, -3 , -4.899 , 4.899 } 1 4 7 4 7 13 7 13 27

85 {32, -250, 8.32517, -4.32517} 15 11 5 11 11 10 5 10 5 ?
{32, -2 , -4.325 , 8.325 } 11 11 10 11 15 5 10 5 5 R3 SRG
{20, 3 , -5.000 , -5.000 } 8 16 8 16 8 8 8 8 3

85 {32, -216, 4.89934, -4.89934} 12 18 1 18 27 3 1 3 0 0 Hasse-Minkowski
{48, -3 , -4.899 , 4.899 } 12 18 2 18 27 2 2 2 0
{ 4, 4 , -1.000 , -1.000 } 8 24 0 24 24 0 0 0 3

86 { 7, -7 1, 2.44942, -2.44942} 0 6 0 6 0 36 0 36 0 0 IG(43,7,1)
{42, 42 , -1.000 , -1.000 } 1 0 6 0 41 0 6 0 30 R1 and R3 DRG
{36,-36 , -2.449 , 2.449 } 0 7 0 7 0 35 0 35 0 Q-231, Q-321

86 {15,-15 1, 3.16242, -3.16242} 0 14 0 14 0 28 0 28 0 0 IG(43,15,5)
{42, 42 , -1.000 , -1.000 } 5 0 10 0 41 0 10 0 18 R1 and R3 DRG
{28,-28 , -3.162 , 3.162 } 0 15 0 15 0 27 0 27 0 Q-231, Q-321

86 {21,-21 1, 3.31742, -3.31742} 0 20 0 20 0 22 0 22 0 ≥ 14 IG(43,21,10) [102]
{42, 42 , -1.000 , -1.000 } 10 0 11 0 41 0 11 0 11 R1 and R3 DRG
{22,-22 , -3.317 , 3.317 } 0 21 0 21 0 21 0 21 0 Q-231, Q-321

87 {28, -128, 5.29229, -5.29229} 9 18 0 18 36 2 0 2 0 ≥ 1 3(PseudoCycl(28)+1)
{56, -2 , -5.292 , 5.292 } 9 18 1 18 36 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 28 0 28 28 0 0 0 1

88 {42, -221, 5.29233, -5.29233} 20 20 1 20 20 2 1 2 0 0 Hasse-Minkowski
{42, -2 , -5.292 , 5.292 } 20 20 2 20 20 1 2 1 0
{ 3, 3 , -1.000 , -1.000 } 14 28 0 28 14 0 0 0 2

92 {10,-10 1, 2.82845, -2.82845} 0 9 0 9 0 36 0 36 0 0 IG(46,10,2)
{45, 45 , -1.000 , -1.000 } 2 0 8 0 44 0 8 0 28 R1 and R3 DRG
{36,-36 , -2.828 , 2.828 } 0 10 0 10 0 35 0 35 0 Q-231, Q-321

92 {45, -145, 6.70823, -6.70823} 22 22 0 22 22 1 0 1 0 ≥ 80 Taylor [19, 101]
{45, -1 , -6.708 , 6.708 } 22 22 1 22 22 0 1 0 0 R1 and R2 DRG
{ 1, 1 , -1.000 , -1.000 } 0 45 0 45 0 0 0 0 0 Q-213, Q-312

93 {20, 532, -1.58630, -4.41430} 5 8 6 8 8 16 6 16 18 ?
{32, -1 , -5.657 , 5.657 } 5 5 10 5 11 15 10 15 15
{40, -5 , 6.243 , -2.243 } 3 8 9 8 12 12 9 12 18

94 {23,-23 1, 3.46446, -3.46446} 0 22 0 22 0 24 0 24 0 ≥ 1 IG(47,23,11)
{46, 46 , -1.000 , -1.000 } 11 0 12 0 45 0 12 0 12 R1 and R3 DRG
{24,-24 , -3.464 , 3.464 } 0 23 0 23 0 23 0 23 0 Q-231, Q-321
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96 {19, -519, 4.46438, -2.46438} 4 12 2 12 30 15 2 15 2 ?
{57, 9 , -3.000 , -3.000 } 4 10 5 10 36 10 5 10 4 R2 SRG
{19, -5 , -2.464 , 4.464 } 2 15 2 15 30 12 2 12 4

96 {30, -6 5, 4.47245, -4.47245} 9 5 15 5 0 10 15 10 25 ?
{15, 15 , -1.000 , -1.000 } 10 0 20 0 14 0 20 0 30
{50,-10 , -4.472 , 4.472 } 9 6 15 6 0 9 15 9 25

96 {30, -263, 9.70816, -3.70816} 14 8 7 8 8 14 7 14 14 ?
{30, -2 , -3.708 , 9.708 } 8 8 14 8 14 7 14 7 14 R3 SRG
{35, 3 , -7.000 , -7.000 } 6 12 12 12 6 12 12 12 10

96 {31, -131, 5.56832, -5.56832} 10 20 0 20 40 2 0 2 0 ≥ 1 3(Cycl(31)+1)
{62, -2 , -5.568 , 5.568 } 10 20 1 20 40 1 1 1 0 DRG
{ 2, 2 , -1.000 , -1.000 } 0 31 0 31 31 0 0 0 1

96 {38, -257, 8.92819, -4.92819} 18 14 5 14 14 10 5 10 4 ?
{38, -2 , -4.928 , 8.928 } 14 14 10 14 18 5 10 5 4 R3 SRG
{19, 3 , -5.000 , -5.000 } 10 20 8 20 10 8 8 8 2

98 {16,-16 1, 3.31748, -3.31748} 0 15 0 15 0 33 0 33 0 ≥ 22 IG(49,16,5)
{48, 48 , -1.000 , -1.000 } 5 0 11 0 47 0 11 0 22 R1 and R3 DRG
{33,-33 , -3.317 , 3.317 } 0 16 0 16 0 32 0 32 0 Q-231, Q-321

99 {10, -110, 3.16244, -3.16244} 1 8 0 8 64 8 0 8 0 0 PG(2,10)
{80, -8 , -3.162 , 3.162 } 1 8 1 8 64 7 1 7 0 DRG
{ 8, 8 , -1.000 , -1.000 } 0 10 0 10 70 0 0 0 7

99 {42, -254, 8.37422, -5.37422} 20 17 4 17 17 8 4 8 2 ?
{42, -2 , -5.374 , 8.374 } 17 17 8 17 20 4 8 4 2 R3 SRG
{14, 3 , -4.000 , -4.000 } 12 24 6 24 12 6 6 6 1

A.4.4. One integral eigenvalue
v spectrum L1 L2 L3 #

7 { 2, 1.247, -0.445, -1.802} 0 1 0 1 0 1 0 1 1 1 C7
{ 2, -0.445, -1.802, 1.247} 1 0 1 0 0 1 1 1 0 R1 R2 R3 DRG
{ 2, -1.802, 1.247, -0.445} 0 1 1 1 1 0 1 0 0 Q-123, Q-231, Q-312

13 { 4, 1.377, 0.274, -2.651} 0 2 1 2 1 1 1 1 2 1 Cycl(13)
{ 4, 0.274, -2.651, 1.377} 2 1 1 1 0 2 1 2 1
{ 4, -2.651, 1.377, 0.274} 1 1 2 1 2 1 2 1 0

19 { 6, 2.507, -1.222, -2.285} 2 2 1 2 1 3 1 3 2 1 Cycl(19)
{ 6, -1.222, -2.285, 2.507} 2 1 3 1 2 2 3 2 1
{ 6, -2.285, 2.507, -1.222} 1 3 2 3 2 1 2 1 2

28 { 9, 2.604, -0.110, -3.494} 2 4 2 4 2 3 2 3 4 2 Mathon, Hollmann
{ 9, -0.110, -3.494, 2.604} 4 2 3 2 2 4 3 4 2
{ 9, -3.494, 2.604, -0.110} 2 3 4 3 4 2 4 2 2

31 {10, 3.084, -0.787, -3.297} 3 4 2 4 2 4 2 4 4 ≥ 1 Cycl(31)
{10, -0.787, -3.297, 3.084} 4 2 4 2 3 4 4 4 2
{10, -3.297, 3.084, -0.787} 2 4 4 4 4 2 4 2 3

37 {12, 2.187, 1.158, -4.345} 2 5 4 5 4 3 4 3 5 ≥ 1 Cycl(37)
{12, 1.158, -4.345, 2.187} 5 4 3 4 2 5 3 5 4
{12, -4.345, 2.187, 1.158} 4 3 5 3 5 4 5 4 2

43 {14, 2.888, 0.615, -4.503} 3 6 4 6 4 4 4 4 6 ≥ 1 Cycl(43)
{14, 0.615, -4.503, 2.888} 6 4 4 4 3 6 4 6 4
{14, -4.503, 2.888, 0.615} 4 4 6 4 6 4 6 4 3

49 {16, 4.296, -2.137, -3.159} 6 5 4 5 4 7 4 7 5 ≥ 1 Cycl(49)
{16, -2.137, -3.159, 4.296} 5 4 7 4 6 5 7 5 4
{16, -3.159, 4.296, -2.137} 4 7 5 7 5 4 5 4 6

52 {17, 4.302, -1.548, -3.754} 6 6 4 6 4 7 4 7 6 ?
{17, -1.548, -3.754, 4.302} 6 4 7 4 6 6 7 6 4
{17, -3.754, 4.302, -1.548} 4 7 6 7 6 4 6 4 6

61 {20, 4.230, -0.445, -4.786} 6 8 5 8 5 7 5 7 8 ≥ 1 Cycl(61)
{20, -0.445, -4.786, 4.230} 8 5 7 5 6 8 7 8 5
{20, -4.786, 4.230, -0.445} 5 7 8 7 8 5 8 5 6

67 {22, 4.085, 0.230, -5.316} 6 9 6 9 6 7 6 7 9 ≥ 1 Cycl(67)
{22, 0.230, -5.316, 4.085} 9 6 7 6 6 9 7 9 6
{22, -5.316, 4.085, 0.230} 6 7 9 7 9 6 9 6 6

73 {24, 4.950, -1.132, -4.818} 8 9 6 9 6 9 6 9 9 ≥ 1 Cycl(73)
{24, -1.132, -4.818, 4.950} 9 6 9 6 8 9 9 9 6
{24, -4.818, 4.950, -1.132} 6 9 9 9 9 6 9 6 8

76 {25, 3.570, 1.444, -6.014} 6 10 8 10 8 7 8 7 10 ?
{25, 1.444, -6.014, 3.570} 10 8 7 8 6 10 7 10 8
{25, -6.014, 3.570, 1.444} 8 7 10 7 10 8 10 8 6
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79 {26, 3.122, 2.108, -6.230} 6 10 9 10 9 7 9 7 10 ≥ 1 Cycl(79)
{26, 2.108, -6.230, 3.122} 10 9 7 9 6 10 7 10 9
{26, -6.230, 3.122, 2.108} 9 7 10 7 10 9 10 9 6

91 {30, 4.412, 0.960, -6.373} 8 12 9 12 9 9 9 9 12 ?
{30, 0.960, -6.373, 4.412} 12 9 9 9 8 12 9 12 9
{30, -6.373, 4.412, 0.960} 9 9 12 9 12 9 12 9 8

91 {30, 5.909, -2.404, -4.506} 11 10 8 10 8 12 8 12 10 ?
{30, -2.404, -4.506, 5.909} 10 8 12 8 11 10 12 10 8
{30, -4.506, 5.909, -2.404} 8 12 10 12 10 8 10 8 11

97 {32, 6.207, -3.098, -4.109} 12 10 9 10 9 13 9 13 10 ≥ 1 Cycl(97)
{32, -3.098, -4.109, 6.207} 10 9 13 9 12 10 13 10 9
{32, -4.109, 6.207, -3.098} 9 13 10 13 10 9 10 9 12
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Samenvatting

Een graaf is in essentie een (eenvoudig) wiskundig model van een netwerk van,
bijvoorbeeld, steden, computers, atomen, enz., maar ook van meer abstracte (wiskundige)
objecten. Grafen worden toegepast in verscheidene gebieden, zoals scheikunde,
besliskunde, elektrotechniek, architectuur en informatica. Grofweg gezegd is een graaf een
verzameling punten die de knopen van het netwerk (in de voorbeelden zijn dit de steden,
computers en atomen) representeren, en tussen ieder tweetal punten zit een zogenaamde
kant, of niet, al naar gelang er een weg is tussen de steden, de computers verbonden zijn,
of dat er verbindingen zijn tussen de atomen. Deze kanten kunnen gewichten hebben,
waarmee we afstanden, capaciteiten, krachten representeren, en ze kunnen gericht zijn
(eenrichtingsverkeer). Alhoewel het model vrij eenvoudig is, dat wil zeggen, in die mate
dat we niet aan een graaf kunnen zien wat voor netwerk het representeert, is de
onderliggende theorie zeer rijk en divers.

Er is een grote verscheidenheid aan problemen in grafentheorie, bijvoorbeeld het
beroemde handelsreizigersprobleem, het probleem om een kortste ronde door de graaf te
vinden die ieder punt bezoekt. Voor kleine grafen lijkt dit probleem eenvoudig, maar als
het aantal punten toeneemt, kan het probleem zeer moeilijk worden. De naam van het
probleem geeft een aanwijzing waar het oorspronkelijk vandaan komt, maar het is
interessant om te zien dat het probleem toegepast wordt in heel andere gebieden, zoals in
het ontwerp van zeer grote I.C.’ s (VLSI). Een ander type probleem is het
samenhangsprobleem: hoeveel kanten kunnen we uit de graaf verwijderen (door
wegversperringen, verbroken lijnen) zodanig dat we toch nog vanuit ieder punt in de graaf
naar ieder ander punt kunnen door over kanten door de graaf te lopen.

In dit proefschrift bestuderen we speciale klassen van grafen, die veel structuur
hebben. In het oog van de wiskundige aanschouwer zijn grafen met veel structuur en
symmetrie de mooiste grafen. Belangrijke klassen van mooie grafen zijn de sterk reguliere
grafen, en algemener, afstandsreguliere grafen of grafen in associatieschema’s. De grafen
van Plato’ s reguliere lichamen mogen beschouwd worden als antieke voorbeelden: de
tetraëder, de octaëder, de kubus, de icosaëder en de dodecaëder. Associatieschema’s
komen ook voor in andere gebieden van de wiskunde en haar toepassingen, zoals in de
coderingstheorie van boodschappen, om fouten tegen te gaan die optreden tijdens
verzending of opslag (op een CD bijvoorbeeld), of om geheime boodschappen (zoals PIN-
codes) te coderen. Associatieschema’s komen oorspronkelijk vanuit het ontwerp van
statistische testen, en ze zijn ook belangrijk in de eindige groepentheorie.

Vooral in de theorie van grafen met veel symmetrie, maar zeker ook in andere delen
van de grafentheorie, heeft het gebruik van lineaire algebra zijn kracht bewezen.
Afhankelijk van de specifieke problemen en persoonlijke voorkeur gebruiken
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grafentheoretici verschillende matrices om een graaf te representeren. De meest populaire
zijn de (0, 1)-verbindingsmatrix en de Laplace matrix. Vaak worden de algebraïsche
eigenschappen van de matrix gebruikt als brug tussen verschillende structurele
eigenschappen van een graaf. De relatie tussen de structurele (combinatorische,
topologische) eigenschappen van een graaf en de algebraïsche van de corresponderende
matrix is daarom een zeer interessante. Soms gaat de theorie zelfs verder, bijvoorbeeld, in
de theoretische scheikunde, waar de eigenwaarden van de matrix van de graaf die
correspondeert met een koolwaterstofmolecuul gebruikt worden om zijn stabiliteit te
voorspellen.

Enkele voorbeelden van elementaire vragen in algebraïsche grafentheorie zijn: kunnen
we zien aan het spectrum van de matrix of een graaf regulier is (is ieder punt het eindpunt
van een constant aantal kanten), of samenhangend (kunnen we vanuit ieder punt in ieder
ander punt komen), of bipartiet (is het mogelijk om de verzameling punten in twee delen
te splitsen zodanig dat alle kanten van het ene deel naar het andere lopen)? Het antwoord
hangt af van de gebruikte matrix. Zowel het verbindingsspectrum als het Laplace spectrum
geven aan of een graaf regulier is, echter, het verbindingsspectrum herkent of een graaf
bipartiet is, maar niet of het samenhangend is. Voor het Laplace spectrum is het net
andersom: het herkent of een graaf samenhangend is, maar niet of het bipartiet is.

Een graaf bepaalt zijn spectrum, maar zeker niet andersom. Derhalve is het zinvol om
te onderzoeken welke structurele eigenschappen afgeleid kunnen worden uit de
eigenwaarden, of algemener, van sommige eigenschappen van de eigenwaarden.

Bijvoorbeeld, is het mogelijk om een graaf volledig te bepalen uit zijn
verbindingsspectrum {[6]1, [2]6, [−2]9}? Het antwoord is nee, er zijn twee verschillende
grafen met dit spectrum, maar ze hebben soortgelijke combinatorische eigenschappen.

Andere vragen gaan over de kleinste verbindingseigenwaarde van een graaf. Er is
bijvoorbeeld een grote verzameling grafen met alle verbindingseigenwaarden ten minste
−2, de gegeneraliseerde lijngrafen. Er zijn echter meer voorbeelden, en deze zijn
gekarakteriseerd met behulp van zogenaamde wortelroosters door Cameron, Goethals,
Seidel en Shult [25]. Ander type resultaten zijn grenzen voor speciale deelstructuren in een
graaf in termen van (sommige van) de eigenwaarden, zoals Hoffmans cokliekgrens.

Ook als we zoeken naar grafen met speciale structurele eigenschappen, kan het handig
zijn om eerst de eigenschappen in spectrale eigenschappen te vertalen, alvorens ons geluk
te beproeven. Bijvoorbeeld, stel dat we alle reguliere grafen willen vinden, waarvoor ieder
tweetal punten precies één gemeenschappelijke buur heeft (dat wil zeggen, een punt dat op
kanten ligt met alle twee die punten). De vriendschapsstelling stelt dat de enige graaf die
aan die eigenschap voldoet de driehoek is, en haar bewijs berust op een eenvoudige
algebraïsche eigenschap.

Natuurlijk zijn er veel meer (type) resultaten op het gebied van de spectrale
grafentheorie, en we verwijzen de geïnteresseerde lezer naar het boek van Cvetković,
Doob en Sachs [33], bijvoorbeeld.

In het algemeen zijn de meeste eigenwaarden van een graaf verschillend, maar als er
veel eigenwaarden samenvallen, dan blijkt dat we in een zeer speciale situatie zitten. Als
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alle eigenwaarden hetzelfde zijn, dan moeten we een lege graaf hebben (een graaf zonder
kanten). Als we slechts twee eigenwaarden hebben, dan hebben we in essentie een
volledige graaf (een graaf met kanten tussen ieder tweetal punten). Hier bestuderen we
grafen met weinig eigenwaarden, waar weinig meestal drie of vier betekent. Zulke grafen
kunnen gezien worden als algebraïsche generalisaties van zogenaamde sterk reguliere
grafen. Sterk reguliere grafen (cf. [16, 95]) worden gedefinieerd in termen van
combinatorische eigenschappen, maar ze hebben een makkelijke algebraïsche
karakterisering: grofweg gezegd zijn het de reguliere grafen met drie (verbindings- of
Laplace) eigenwaarden. Door de regulariteit te laten varen, en grafen met drie
verbindingseigenwaarden, en grafen met drie Laplace eigenwaarden te beschouwen,
verkrijgen we twee zeer natuurlijke generalisaties. Seidel (cf. [94]) deed iets soortgelijks
voor het Seidel spectrum, en vond grafen die nauw verbonden zijn met de combinatorische
structuren genaamd reguliere twee-grafen. Er is weinig bekend over niet-reguliere grafen
met drie verbindingseigenwaarden. Er zijn twee artikelen over zulke grafen, van Bridges
en Mena [10] en Muzychuk en Klin [85]. Het blijkt dat de zaken hier zeer gecompliceerd
kunnen zijn, maar met behulp van de Perron-Frobenius eigenvector kunnen we toch enige
combinatorische eigenschappen afleiden, en het aantal verschillende graden beperken. We
zullen de grafen met kleinste eigenwaarde −2 nader bekijken, en ze bijna allemaal vinden.
Niet-reguliere grafen met drie Laplace eigenwaarden lijken tot op heden niet onderzocht
(behalve de geodetische grafen met diameter twee, maar die werden niet als zodanig
herkend), wat verrassend genoemd mag worden, want we vinden een betrekkelijk
eenvoudige combinatorische karakterisering van zulke grafen.

Het fundamentele probleem van grafen met weinig (verbindings)eigenwaarden is
gesteld door Doob [45]. Volgens zijn standpunt is weinig ten hoogste vijf, en hij
karakteriseerde een familie van reguliere grafen met vijf eigenwaarden afkomstig van
Steiner tripelsystemen. Het lijkt echter te ingewikkeld om reguliere grafen met vijf
eigenwaarden in het algemeen te bestuderen. Doob [46] bestudeerde ook reguliere grafen
met vier eigenwaarden, waarvan de kleinste −2 is. In het algemene geval van vier
eigenwaarden zullen we enkele mooie eigenschappen afleiden, zoals wandel-regulariteit,
maar er is geen gemakkelijke combinatorische karakterisering, zoals in het geval van drie
eigenwaarden. Niettemin vinden we veel constructies.

Associatieschema’s (cf. [3, 12, 15, 52]) vormen een combinatorische generalisatie van
sterk reguliere grafen, en na deze grafen vormt het volgende punt van onderzoek de drie-
klasse associatieschema’s. In zulke schema’s zijn alle grafen regulier met ten hoogste vier
eigenwaarden, dus we kunnen de resultaten over zulke grafen toepassen. Zo bereiken we
meer dan door de algemene theorie over associatieschema’s toe te passen, en we vinden
twee verrassende karakteriseringsstellingen. De literatuur over drie-klasse
associatieschema’s bestaat voornamelijk uit speciale constructies, en resultaten over het
speciale geval van afstandsreguliere grafen met diameter drie. Resultaten over drie-klasse
associatieschema’s kunnen worden gevonden in het artikel van Mathon [79], waarin vele
voorbeelden worden gegeven, en het proefschrift van Chang [26], dat zich beperkt tot het
imprimitieve geval.
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In het afsluitende hoofdstuk van dit proefschrift leiden we grenzen voor de diameter
en de grootte van speciale deelverzamelingen in grafen af. Het geval van scherpe grenzen
wordt onderzocht, en hier komen afstandsreguliere grafen en drie-klasse associatieschema’s
tevoorschijn. Alle grenzen worden afgeleid met behulp van het scheiden van eigenwaarden
en het vinden van geschikte polynomen. De diametergrenzen worden toegepast op
foutenverbeterende codes.

Aan dit proefschrift zijn lijsten met parameterverzamelingen voor grafen met drie
Laplace eigenwaarden, reguliere grafen met vier eigenwaarden, en drie-klasse
associatieschema’s (op een begrensd aantal punten) toegevoegd. Mede dankzij
computerresultaten van Spence zijn alle grafen voor bijna alle parameterverzamelingen
voor reguliere grafen met vier eigenwaarden en ten hoogste dertig punten gevonden.

Delen van de resultaten in dit proefschrift zijn elders verschenen. De resultaten over
grafen met drie Laplace eigenwaarden in [38], reguliere grafen met vier eigenwaarden in
[34] en [40], drie-klasse associatieschema’s in [35] en [39], grenzen voor de diameter in
[37] en grenzen voor speciale deelverzamelingen in [36].


