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Abstract

A linear space is an incidence structure consisting of a set of points Π and a set of

lines Λ in the power set of Π such that any two points are incident with exactly

one line. We study those finite linear spaces which admit an automorphism group

G which is transitive upon the set of lines of the space.

Within the set of all linear spaces lies a particularly important subset: the pro-

jective planes. Results exist in the literature [Cam04, CP93] classifying the possible

minimal normal subgroups of a group G acting line-transitively on a finite projective

plane. We rewrite some of these results to deal with components rather than with

minimal normal subgroups. We then prove that, if a group G acts on a projective

plane which is not Desarguesian, then G does not contain any components. In order

to do this we make use of the classification of finite simple groups; our proof consists

of examining the different quasisimple groups given in the classification as possible

components of G.

We also examine the situation where an almost simple group G with socle

PSL(3, q) acts line-transitively on a linear space. This fits into the wider program

of examining those almost simple groups which can act line-transitively on linear

spaces, a program motivated by the result in [CP01]. We are able to give strong

information about the line-transitive actions of G.
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Chapter 1

Introduction

“I don’t know what I would give to do something irrevocable.”

Jean-Paul Sartre, “The Age of Reason”

1.1 Linear spaces

A linear space S is an incidence structure consisting of a set of points Π and a set of

lines Λ in the power set of Π such that any two points are incident with exactly one

line. The linear space is called non-trivial if every line contains at least three points

and there are at least two lines. The space is called finite if Π is finite; throughout

this thesis all spaces will be assumed to be finite. We write |Π| = v, |Λ| = b.

An automorphism of S is a permutation of Π which leaves Λ invariant. Our

interest is in pairs (S, G) where S is a non-trivial finite linear space admitting G, a

group of automorphisms that is transitive on the set of lines.

Such pairs have been studied for some time under progressively weaker assump-

tions about transitivity. In 1959, Ostrom and Wagner[OW59] proved that, in the

particular case where S is a projective plane and G is 2-transitive on points, S is

Desarguesian of order x a prime power and G contains PSL(3, x). In fact we can

assert the same conclusion for S any linear space under the stronger assumption

that G is 2-transitive on the set of lines. In this case S is necessarily a projective

plane and we can apply the Ostrom-Wagner theorem to the dual plane to achieve

our result.

Early results following the Ostrom-Wagner theorem included that of D.G. Hig-

man and McLaughlin[HM61] who proved, among other things, that if G acts flag-

transitively on S then it acts point-primitively. Here a flag is an incident point-line
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pair. Block[Blo67a] proved that line-transitivity implies point-transitivity.

Buekenhout, Delandtsheer and Doyen[BDD88] have summarised the implications

that hold between different transitivity properties of linear spaces as follows:

L 2−T

L Pr

F T

L T

P T

P 2−T P Pr

Here L, P and F mean ‘line’, ‘point’ and ‘flag’ respectively, while T and Pr mean

‘transitive’ and ‘primitive’ respectively. In fact the classification of flag-transitive

linear spaces is now complete except where G is a one-dimensional affine group. The

result was first announced in [BDD+90] with the proof appearing in [Lie98, Del86,

Del01, Kle90, Sax02].

Our attention now turns to those linear spaces which are line-transitive but not

flag-transitive. Observe that if a linear space S is line-transitive then every line

has the same number, k (where 2 < k < v), of points; in this case we say that S

is regular. It is not hard to see that in a regular space S every point lies on the

same number, r, of lines. In general, when we refer to a linear space S from here

on, we mean that S is regular and has parameters b, v, k, r as described; on the few

occasions when we wish to discuss linear spaces which are not necessarily regular

we will refer specifically to general linear spaces.

The classification of flag-transitive linear spaces makes heavy use of the fact that

a point-stabilizer acts on the set of remaining points with orbits of size a multiple of r.

Analysis of the subgroups of potential point-stabilizers then yields much information.

This avenue of attack is not open in the more general line-transitive case.

Regular linear spaces have another manifestation in the literature, as 2−(v, k, 1)

designs. We have the following definition:
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Definition 1.1. For t, v, k, λ ∈ Z+ with k > t, v > k + t, a t− (v, k, λ) design Λ is

a set Π of points and a set Λ of k-subsets of Π, called the lines or blocks of Λ, such

that every t-subset of Π is contained in exactly λ blocks.

A t − (v, k, λ) design with λ = 1 is also referred to as a Steiner system. The

literature on finite linear spaces is sometimes couched in the terminology of 2 −
(v, k, 1) designs; in particular referring to lines as blocks. Thus, in investigating

line-transitive finite linear spaces, we are investigating block-transitive 2 − (v, k, 1)

designs.

1.2 Projective planes

A particularly important type of linear spaces has already been mentioned, namely

the projective planes. These can be characterised in many different ways[Dem97,

3.2.3]; we define them as linear spaces for which any two lines intersect at exactly

one point. This is equivalent to saying that the number of lines, b, is equal to the

number of points, v.

The standard example of a projective plane is the Desarguesian plane constructed

from a 3-dimensional vector space over a finite field q. These are said to be projective

planes of order q and it turns out that v = q2+ q+1 while k = q+1. In general for

any projective plane an integer x exists such that v = x2 + x+1 and k = x+1 and

we refer to this integer x as the order of the plane.

There is a rich literature on the subject of projective planes. Some very famous

conjectures remain unproved in this area, most notably that all projective planes

have order x a prime power. For us a motivating conjecture of some fifty years

standing is that all point-transitive projective planes are Desarguesian.

Some progress has been made towards a proof of this conjecture. The most

significant result is one of Kantor[Kan87] who proved that a projective plane P

of order x admitting a point-primitive collineation group G is Desarguesian and

G ≥ PSL(3, x), or else x2 + x+ 1 is a prime and G is a regular or Frobenius group

of order dividing (x2 + x+ 1)(x+ 1) or (x2 + x+ 1)x.

Kantor’s result depends upon the classification of finite simple groups. A corol-

lary of the result is that a group acts primitively on the points of a projective plane

P if and only if it acts primitively on the lines of P. A direct proof of this equiva-

lence is not known and would be of great interest. We also know that a group acts
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transitively on the points of a projective plane P if and only if it acts transitively

on the lines of P[Dem97, 2.3.1], hence we will refer to a projective plane simply as

primitive or transitive in each case.

Under the stronger assumption that a plane P is flag-transitive Ott[Ott04] has

made some progress towards ruling out the non-Desarguesian cases left open by Kan-

tor. For a good survey article on flag-transitive projective planes see K. Thas[Tha03].

1.3 The classification programme

Spaces which are not projective planes

The framework for investigating line-transitive finite linear spaces which are not

projective planes is given by the following theorem. This theorem also applies to

the projective plane case but, as will be seen, stronger statements can be made in

this case and we will use those as a framework for investigation instead.

Theorem 1.2. [CP01] Let G be a group acting transitively on the lines of a finite

linear space. Then either G,

1. is affine (i.e. has an elementary abelian point-transitive normal subgroup),

2. is almost simple, OR

3. has a normal subgroup which is not transitive on points.

The first two possibilities given in the theorem are the same as the cases examined

in the flag-transitive case. They together cover the line-transitive, point quasi-

primitive possibilities; here G is said to act quasi-primitively on a set Γ if all normal

subgroups of G are transitive on Γ. The proof of Theorem 1.2 makes use of a

classification of all quasi-primitive actions given by Praeger[Pra93]. The majority

of the proof of Theorem 1.2 consists of eliminating the possibility that the action of

G on Π can be a ‘product action.’

The investigation of the quasi-primitive possibilities is likely to focus on well-

known properties of the particular groups specified. Already results have appeared

for the almost simple case: In [CNP03] and [CS00], the cases where G has socle an

alternating group and a sporadic group, respectively, are fully classified.

Weijun Liu and others have produced several papers examining the low rank

almost simple cases (particularly focusing on the conjecture that line-primitivity
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implies point-primitivity): in [ZLL00], it is shown that if 2G2(q)£G ≤ Aut(2G2(q))

then any line-primitive action of G is indeed point-primitive; in [Liu01, Liu03a,

Liu03d, LLM01] all line-primitive actions of G = G2(q), G = 3D4(q) and G with

socle 2B2(q) are classified; in [Liu03b, LZLF04] Liu examines the line-transitive

actions of G = PSU(3, 2a) and G = 2G2(q) on linear spaces; finally in [Liu03c]

Liu gives possibilities for line-transitive actions of G = PSL(2, q) on a linear space.

A stronger result for the case G = PSL(2, q) is known to have been proved by

Camina, Neumann and Praeger although it is unpublished; we will state this in full

in Chapter 3.

Finally Zalesskǐı and Camina are investigating actions of almost simple groups

with socle PSL(d, q) or PSU(d, q) for d large. Their methods are unlikely to work

for linear groups of small dimension.

The third possibility given in Theorem 1.2 is being examined using parameters

defined in a paper by Delandtsheer and Doyen[DD89]. They suppose that G acts

transitively on the lines of a t− (v, k, λ) design while leaving invariant a non-trivial

partition C of the point set Π. Now let d = |C| ≥ 2 and c = |C|, for C ∈ C. Then

Delandtsheer and Doyen prove that there exist positive integers x, y such that

c =

(

k
2

)

− x

y
, d =

(

k
2

)

− y

x
.

An immediate corollary of this result is that if v > (
(

k
2

)

− 1)2 then any line-

transitive automorphism group G is necessarily point-primitive (and the first two

cases given in Theorem 1.2 apply.) Thus the value (
(

k
2

)

− 1)2, for fixed k, gives an

upper bound for the value of v in a point-imprimitive line-transitive linear space.

By a set of results in [CP96, KMM89, OPP93, NNO+92], all point-imprimitive line-

transitive linear spaces for which v is equal to this upper bound are known.

Other results on the third possibility given in Theorem 1.2 are surveyed by

Praeger[Pra01]. Further results are given in [PT03, DNP03].

Projective planes

When we consider line-transitive projective planes our framework for investigation

is slightly different. Whilst the theorem given in the previous section also applies

to projective planes, by making use of results in [CP93] and [Cam04] we can make

somewhat more general statements. The key theorem is the following:
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Theorem 1.3. [Cam04, Theorem 2] Let G act transitively on a projective plane P

and let M be a minimal normal subgroup of G. Then M is either abelian or simple.

In fact we are able to state our results more strongly by rewriting this result in

terms of components; here a component of a group G is defined to be a subnormal

quasisimple subgroup of G. Hence the theorem which will provide the framework

for our analysis is the following:

Theorem 1.4. Suppose that G acts transitively on a projective plane P. Then G

contains at most one component.

The proof of this theorem, which involves rewriting proofs of similar theorems

from [CP93] and [Cam04], is given in Section 2.1.

We use this theorem to examine those groupsG acting transitively on a projective

plane; our interest is in examining the possible unique components of G. Existing

results in the literature are generally limited to the case where the component is

simple and G is almost simple, as described in the previous section.

1.4 Overview of results

Our primary result concerns groups acting transitively on projective planes:

Theorem A. Suppose that G acts transitively on a projective plane P of order x.

Then one of the following cases holds:

• P is Desarguesian, G ≥ PSL(3, x) and the action is 2-transitive on points;

• G does not contain a component.

In particular this theorem implies that if an almost simple, or almost quasi-

simple, group G acts on a projective plane P of order x then P is Desarguesian and

G has socle PSL(3, x).

The theorem is proved in Chapter 2 by an exhaustive case by case analysis of

the different possible unique components given by the classification of finite simple

groups. We record the following corollary to the theorem:

Corollary 1.5. Suppose that G acts transitively on a non-Desarguesian projective

plane P. Then F (G) = F ∗(G), i.e. the generalized Fitting group of G is equal to

the Fitting group of G. Let t be a prime dividing into |F (G)| and Nt the Sylow
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t-subgroup of F (G). Then Nt acts semi-regularly on the points of P for all t except

possibly one. Furthermore one of the following holds:

• x2 + x+ 1 is a prime and G is a Frobenius group of odd order dividing (x2 +

x+ 1)x or (x2 + x+ 1)(x+ 1);

• All minimal normal subgroups of G are elementary abelian, semi-regular and

intransitive.

Proof. The statement F (G) = F ∗(G) is a direct consequence of the fact that G has

no components. We may then apply [CP93, Theorem 3] to give the result about the

Sylow t-subgroups of F (G) (see also Proposition 2.2 in this thesis.)

We know that all minimal normal subgroups are elementary abelian. By [CP93,

Corollary 1], any elementary abelian group N is semi-regular.

IfN is intransitive then we have the second case above. IfN is transitive then it is

regular and [Kan87, Lemma 6.5] implies that the first case covers all possibilities.

Our other major result concerns line-transitive actions upon linear spaces by a

group with socle PSL(3, q).

Theorem B. Suppose that PSL(3, q) £ G ≤ AutPSL(3, q) and that G acts line-

transitively on a finite linear space S. Then one of the following holds:

• S = PG(2, q), the Desarguesian projective plane, and G acts 2-transitively on

points;

• PSL(3, q) is point-transitive but not line-transitive on S. Furthermore, if Gα

is a point-stabilizer in G then Gα ∩ PSL(3, q) ∼= PSL(3, q0) where q = qa0 for

some integer a.

The theorem is proved in Chapter 3. The proof involves examining different

possible significant primes and exploiting some general lemmas about line-transitive

linear spaces, as described in Chapter 3. It is hoped that one can extend the results

in this chapter to other almost simple groups acting line-transitively on a linear

space. Indeed it is possible that PSL(3, q) is one of the hardest cases (as it acts on

a Desarguesian projective plane.)

It is worth observing that the lemmas in Section 3.2 are, to our knowledge, new.

Some of these lemmas are of interest in their own right; in particular, Lemma 3.11

is a generalization of Fisher’s inequality to non-regular linear spaces. In addition
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the reduction outlined in Section 3.4 can be directly applied to the study of other

almost simple groups acting on finite linear spaces, in particular strengthening some

of the results of Weijun Liu given earlier.

1.5 General Notation

We record the general notation which will hold throughout the rest of the thesis.

Upper-case letters A, . . . , Q will be used to denote groups; upper-case letters

R, . . . , Z will denote matrices. There will be some (standard) exceptions to this,

e.g. Z(G) for the centre of a group G, U the unipotent radical of a parabolic

subgroup, I the identity matrix.

Lower-case letters are reserved for elements of a group and for integers. In

particular q will normally be a prime power, p a prime; if we are working with a

particular group of Lie type then p will typically be the characteristic prime.

Lower-case Greek letters, α, β, . . . , will generally be used to denote points of a

space or to denote superscripts ±,±1 as explained in Section 2.8 and Section 2.10.

Other uses for lower-case Greek letters will be explained at the relevant places. For

a line of a space we use L. Upper-case Greek letters, Ω,Γ, . . . , are used to denote

sets.

Spaces will be denoted by capital calligraphic letters. So S will be a general

linear space with points Π and lines Λ. A projective plane will be denoted by P.

All of the notation described so far may also apply with subscripts. Thus, for

instance, dg will denote an integer, the number of fixed points of a group element g.

Our group theoretic notation will be as follows: We write H.G for an extension

of a group H by a group G and H : G for a split extension. An integer n denotes a

cyclic group of order n, while [n] denotes an arbitrary soluble group of order n and

pn denotes an elementary abelian group of order pn where p is a prime. We write

|H|p for the highest divisor of |H| which is a power of a prime p. G ◦H denotes a

central product of groups G and H.

We will write (a1, . . . , an) to mean the greatest common divisor of the integers

a1, . . . , an.

Finally note that, unless stated otherwise, all objects studied in this thesis are

finite.



Chapter 2

Projective Planes

“Why don’t they make the whole plane out of that black box stuff?”

Steven Wright

In this chapter we prove Theorem A. We begin, in Section 2.1, with a proof of

Theorem 1.4 which provides a framework for our investigation. In Section 2.2 we

give the basic lemmas and notation which will be used throughout the remainder of

the chapter. The remaining sections consider possible actions for different possible

components of G, as given by the classification of finite simple groups.

2.1 Framework results

We prove Theorem 1.4 which states that if a group G acts transitively upon a

projective plane then G contains at most one component. Our proof of Theorem

1.4 starts with some preliminary results.

Note first that if C is a component of G then C◦ := < Cg : g ∈ G > ∼=
C ◦Cg1 ◦ · · · ◦Cgm is a normal subgroup of G where g1, . . . , gm ∈ G; furthermore, if

C and D are components of G with C not G-conjugate to D then [C,D] = 1 and

so [C◦, D◦] = 1.

We need some information about the fixed points of automorphisms of a projec-

tive plane P of order x: If a collineation g fixes at least x points then g is called

quasicentral and g fixes x + 1, x + 2 or x +
√
x + 1 points[Dem97, 4.1.7]. In the

first two cases g fixes a fan, namely a line L and a point α and all the points on L

and all the lines incident with α. The distinction between the two cases depends on

whether or not α lies on L. In the third case g fixes a subplane of P of order
√
x.



2.1 Framework results 10

In addition we have the following lemma:

Lemma 2.1. [Dem97, 3.1.2 and 4.1.6] Let P be a projective plane of order x. If

H is a group of collineations of P which does not fix a subplane of P then the fixed

set of H lies inside a fan. If, on the other hand, H fixes a subplane of P then that

subplane has order at most
√
x.

We are now ready to prove our first result which is very similar to [CP93, The-

orem 3]:

Proposition 2.2. Let G be a transitive automorphism group of a projective plane P

of order greater than 4. Let G have normal subgroups M and N such that Mα 6= 1

and Nα 6= 1 for some point α. Then [N,M ] 6= 1.

Proof. Let M and N be two normal subgroups of G such that there is a point α so

that Mα 6= 1 and Nα 6= 1 and [M,N ] = 1.

Consider the point β ∈ αN and let n ∈ N be such that β = αn. If m ∈ Mα,

then βm = αnm = αmn = β. Thus αN is fixed point-wise by Mα. If β ∈ αN\{α}
and L is the line through α and β, then Mα fixes L set-wise. Thus there is a line L

through α which is fixed by Mα and Mα fixes at least two points. A similar result

applies with N replacing M .

Next we show that every line through α is fixed either by Mα or Nα. Assume

that this is false and let L be a line through α which is fixed by neither. Since G is

line-transitive, there is some point β such that Mβ fixes L. Now, since [M,N ] = 1,

Nα acts on the set of fixed lines of Mβ. Thus each image of L under the action of Nα

is a line through α fixed by Mβ. Since Nα does not fix L, it follows that Mβ fixes α.

However, this means that Mβ = Mα and hence Mα fixes L which is a contradiction

to our assumption.

Thus for one of Mα and Nα, the number of lines through α which are fixed

must be at least k/2. Without loss of generality, this is true for Nα. We now show

that the fixed set of Nα is a subplane of P. By the lemma above it is sufficient to

prove that NG(Nα) acts transitively on the set of lines fixed by Nα; to show this we

demonstrate that NL = Nα for any line L fixed by Nα.

Let L be any line through α which is fixed by Nα. Letm ∈M such that Lm 6= L.

Then, since [M,N ] = 1, it follows that LmNL = LNLm = Lm, that is NL fixes Lm

and so NL fixes Lm∩L = {β}, say. Then Nα ⊆ NL ⊆ Nβ, and since Nα is conjugate

to Nβ, we obtain Nα = NL.
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Since N is normal in G, NG(NL) is transitive on the lines fixed by NL = Nα.

Thus the fixed set of Nα is a subplane of P with line size at least k/2. This is a

contradiction of the lemma above.

Corollary 2.3. Suppose that G acts transitively on a projective plane P. Then all

components of G are conjugate in G.

Proof. If P is Desarguesian then G contains at most one component and the state-

ment holds.

By [Dem97, 3.2.15] a non-Desarguesian projective plane has order at least 9.

Thus by the previous theorem any two normal subgroups M and N of G with

Mα 6= 1 and Nα 6= 1 for some point α satisfy [N,M ] 6= 1.

Now suppose that C and D are components of G which are not conjugate in G.

Then C◦ and D◦ are distinct normal subgroups of G. Note that any component

contains an involution and, since the number of points in P is odd, each involution

must fix a point. The theorem implies that [C◦, D◦] 6= 1. This is a contradiction.

We can now prove Theorem 1.4. Our method of proof is very similar to that of

Camina [Cam04, Theorem 1]. First we state some preliminary results:

Lemma 2.4. [CP93, Theorem 1] Let P be a finite linear space and let G be a line-

transitive automorphism group of P. Let N be a normal subgroup of G. Then N

acts faithfully on each of its point orbits.

Lemma 2.5. [HP73, XIII.13.1] Let A be an abelian collineation group of a projective

plane of order x then |A| ≤ x2 + x+ 1.

Lemma 2.6. [Dem97, 4.1.6] Let A be a collineation group of a projective plane of

order x. If A fixes a subplane of order y then either y2 = x or y(y + 1) ≤ x− 2.

Theorem 1.4. Suppose that G acts transitively on a projective plane P. Then G

contains at most one component.

Proof. We may assume that P is non-Desarguesian of order x and that all compo-

nents are conjugate in G. Let C be a component of G and write C◦ = C1 ◦ · · · ◦
Cm,m ≥ 2, normal in P with each Ci isomorphic to C.

Let D be a Sylow 2-subgroup of C◦. Since P has an odd number of points there

is a point α so that D fixes α. Thus (Ci)α 6= 1 for 1 ≤ i ≤ m. Since G acts
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transitively on P this is true for all points α. Choose α so that (C1)α has maximal

order. Observe that [C2, (C1)α] = 1 so αC2 consists of points fixed by (C1)α.

Now C◦ is faithful on all its point orbits by Lemma 2.4. This implies that αC2

contains at least 5 points as C2 is quasisimple and normal in C◦. The fixed set of

(C1)α is either a subplane or lies inside a fan. But, since C2 does not fix any point,

we conclude that (C1)α fixes a subplane whose order is at most
√
x.

We now show that for any line L incident with α there is a j so that (Cj)α fixes

L. Choose a line L incident with α. If (C1)α fixes L there is nothing to prove. We

know that there exists a line, L1, which is incident with α and is fixed by (C1)α. But

G is transitive on lines so there is g ∈ G with L1g = L. Then β = αg is incident

with L and ((C1)α)
g fixes L. But there exists j so that ((C1)α)

g = (Cj)β since g

permutes the factors Ci. Let i 6= j. Then (Ci)α commutes with (Cj)β and so acts

on the set of lines fixed by (Cj)β. If (Ci)α fixes L then we have proved our claim.

If not we see that (Cj)β fixes at least two lines through α and so fixes α. However

((C1)α)
g = (Cj)β so by the maximality of (C1)α we have (Cj)α = (Cj)β and the

claim is proved.

Let y be the order of the subplane fixed by (Ci)α. Then m(y + 1) ≥ x + 1. If

y =
√
x then this implies that m ≥ √x. If y 6= √

x then Lemma 2.6 implies that

y(y + 1) ≤ x− 2. Thus m ≥ y + 1 and so m ≥
√
x+ 1 >

√
x.

Since C◦ has an abelian subgroup of order at least 5m it follows from Lemma 2.5

that x2 + x+ 1 ≥ 5m ≥ 5
√
x. This has no solutions.

For the remainder of this chapter we will consider G acting transitively on a pro-

jective plane P where G has a unique component. We go through the classification

of finite simple groups and verify that if P is not Desarguesian then no such action

exists.

2.2 Basic Results and Notation

The notation outlined in this section will hold throughout the rest of the chapter. We

also state here a number of basic results which will be used repeatedly throughout

the chapter.
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Projective Plane Results

Consider a group G acting transitively on a projective plane P of order x with

v = x2 + x + 1 points and lines. We have noted already that v is an odd number.

In fact we know more than this:

Lemma 2.7. [Kan87, p.33] Let G act transitively on a projective plane with Gα

a point-stabilizer. Then if p1 is a prime ≡ 2(3) then Gα contains some Sylow p1-

subgroup of G. Moreover, Gα contains a subgroup of index at most 3 in a Sylow

3-subgroup of G.

For g an element of G we write ng for the size of the G-conjugacy class of g in

G and rg for the number of these conjugates lying in a point-stabilizer Gα, for some

fixed point α in P. Furthermore, dg is the number of fixed points of g. We will

sometimes also write rg(B) for the number of G-conjugates of g lying in a subgroup

B of G, so rg = rg(Gα).

We know already that if a collineation g fixes at least x points then g is called

quasicentral and g fixes x+1, x+2 or x+
√
x+1 points[Dem97, 4.1.7]. Furthermore,

if a collineation has x + 1 or x + 2 fixed points then it is known as a perspectivity

and Wagner has proved that if G contains a nontrivial perspectivity and G acts

transitively on P then P is Desarguesian and G ≥ PSL3(x)[Wag59].

Now any involution is quasicentral ([Dem97, 3.1.6]) and so all the groups that

we consider contain quasicentral collineations. Thus we assume that x is a square,

say x = u2, and that all quasicentral collineations, in particular all involutions, have

u2 + u+ 1 fixed points.

We will be particularly interested in properties of integers of the form u2+u+1

where u is an integer.

Lemma 2.8. If x = u2 then x2 + x+ 1 = (u2 + u+ 1)(u2 − u+ 1), where (u2 + u+

1, u2 − u+ 1) = 1.

Lemma 2.9. [Lju43, p.11] If u2 + u + 1 = pa1 where p1 is a prime, then either

pa1 = p1 or p
a
1 = 73.

Lemma 2.10. [Kan87, p.33] If x = u2 and x2 + x + 1 = pam for a prime p with

a > 1, then either m > 8pa or pa = u2 ± u+ 1 = 73.

Lemma 2.11. Let x = u2 and let g be an involution acting on projective plane P.

Then
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• ng
rg

= u2 − u+ 1;

• dg = u2 + u+ 1;

• v = ng
rg
dg and (ng

rg
, dg) = 1.

Proof. Count pairs of the form (α, g), where α is a point and g is an involution fixing

α, in two different ways. Then

|{(α, g) : αg = α}| = vrg = ngdg

We know already that dg = u2 + u+ 1 thus we must have ng
rg

= u2 − u+ 1 and the

result follows.

Lemma 2.12. Suppose that there exists an involution g in G such that ng = 2cpam

where (m, 2p) = 1. Then the largest power of p in v is less than or equal to

max(pa,m+ 2
√
m+ 2).

Proof. If p|ng
rg

then clearly the highest power of p dividing v divides pa. If not, then

u2− u+ 1 = ng
rg

divides into m. Then the highest power of p dividing v divides into

dg = u2 + u+ 1 < (u2 − u+ 1) + 2
√
u2 − u+ 1 + 2.

It is in our exploitation of the last two results that our treatment will differ

substantially from that of Kantor in the primitive case. We will make use of the

equalities outlined in Lemma 2.11, taking g to be a member of a small conjugacy

class of involutions.

Group Theory Results and Notation

We begin with a general lemma which will be useful throughout the chapter.

Lemma 2.13. Let C < A×B. Suppose |A| < |B : N | where N is the largest proper

normal subgroup of B. Then either:

• C ≤ A×B1 for B1 < B; or

• C = A1 ×B for A1 ≤ A.

Proof. Suppose C 6≤ A×B1 for B1 < B. Then define B1 = {(1, b) : (a, b) ∈ C} ∼= B

and observe that the projection C → A, (a, b) 7→ a has kernel K = {(1, b) ∈ C}¢B1.
But |B1 : K| ≤ |A| < |B : N | where N is the largest proper normal subgroup of B.

Thus K = B1 and C = A1 ×B for some A1 ≤ A as required.
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Now we want to show that a group G with unique component L cannot act

transitively on a projective plane P unless it contains a non-trivial perspectivity.

Put Lα = Gα ∩ L, the stabilizer of a point α in the action of L on P. In general,

we will set M to be a maximal subgroup of the component L which contains Lα.

Define L† := L/Z(L) and M † := M/(Z(L) ∩M).

Write G = (L ◦ CG(L)).N where N is a subgroup of OutL. Then G/CG(L) is

an almost simple group and we use results about the maximal subgroups of such

groups:

When L† is a classical simple group we use the results of Aschbacher[Asc84] as

described in Kleidman and Liebeck [KL90]. These results give information about

the maximal subgroups of a group L†.N with simple socle L† a classical group. In

small dimensions we will refer to the results given by Kleidman[Kle87] who uses

identical notation.

We will sometimes precede the structure of a subgroup of a projective group with

ˆwhich means that we are giving the structure of the pre-image in the corresponding

universal group. For a given element g ∈ L we will often write g∗ for an element in

the corresponding universal group which projects onto g. The symbol ∗ will also be

used in a different way, with groups, e.g. P ∗
1 , to signal that a group is a subgroup

of a section of L or L†.

We can exclude several atypical situations by observing that, except when L =

PΩ+(8, q), we may assume that G/CG(L) ≤ ΓL, the full semilinear classical group

associated with L. The cases we have excluded here are when L† = PSL(n, q) while

G/CG(L) contains an inverse-transpose automorphism of L and when L = Sp(4, 2f )

while G/CG(L) contains a graph automorphism of L. In both cases G contains a

normal subgroup H of index 2 such that H/CH(L) ≤ ΓL. Since we are acting on a

set of odd order, any transitive action of G induces a transitive action of H. Thus,

except when L† = PΩ+(8, q), we assume that G/CG(L) ≤ ΓL.

We will write M ∈ Ci to mean that M † is in the i-th family of natural maximal

subgroups of L† given by Kleidman and Liebeck[KL90]. When M is parabolic we

will write M = Pm to mean that M is a maximal parabolic subgroup fixing a totally

singular subspace W of dimension m inside the natural classical geometry V of

dimension n.

When L† is an exceptional simple group we use different sources to find in-

formation about maximal subgroups M of L. When M is parabolic we refer to

[Car89, GLS94, GL83]. In some other cases, the maximal subgroups are completely
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enumerated; in particular for L† = 2B2(q)[Suz62], for L
† = 2G2(q)[Kle88a, War66],

for L† = G2(q)[Kle88a, Coo81], for L† = 2F ′
4(q)[Mal91, CCN+85] and for L† =

3D4(q)[Kle88b].

In both classical and exceptional cases, we appeal to a result of Liebeck and

Saxl [LS85] and Kantor[Kan87] which gives the maximal subgroups of odd index

in an almost simple group. In particular, when the socle is a finite simple classical

group acting on a classical geometry V , such a maximal subgroup either lies in C1

(stabilizers of totally singular or non-singular subspaces) for characteristic 2 or, when

the characteristic is odd, lies in C1, C2 (stabilizers of decompositions into subspaces

of fixed dimension, V = ⊕t
i=1Vi) or C5 (stabilizers of subfields) or is in a small set

of listed exceptions.

Finally, when L† is a sporadic simple group we refer to [Asc86] which, amongst

many other things, lists the maximal subgroups of odd index.

Our analysis becomes slightly simpler by using the following result of Camina

and Praeger which is a corollary of Lemma 2.4:

Lemma 2.14. [CP93, Corollary 1] Let N be an abelian normal subgroup of a group

G. Suppose that G acts line-transitively on a finite linear space P. Then N acts

semiregularly on the points of P.

In the case where P is a projective plane we can apply Lemma 2.7. Thus if L is a

unique component of G then Z(L) is normal in G and must have order only divisible

by primes congruent to 1(3) or by 3 to the first power. In the case where L is a

group of Lie type, for instance, this implies that L is simple unless it is isomorphic

to E6(q),
2E6(q), U(n, q) or PSL(n, q) for certain n.

Hypothesis

Finally, we may state our hypothesis for the rest of the chapter:

Hypothesis. Assume that G is a group with a unique component L. Assume that

G acts transitively on a projective plane P of order x = u2 such that all involutions

fix u2 + u+1 points of P. Assume that Lα ≤M where M is a maximal subgroup of

L of odd index. Furthermore assume that v > |L : M |.

Throughout the rest of the chapter we will set L† to be in a particular family

of simple groups of Lie type and will demonstrate that our hypothesis leads to a

contradiction.
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2.3 L† is alternating or sporadic

In this section we prove the following proposition:

Proposition 2.15. Suppose G has a unique component L such that L† is isomorphic

to an alternating group, An with n ≥ 5, or a sporadic simple group. Then G does

not act transitively on a projective plane.

When L† is a sporadic simple group, the maximal subgroups of L† of odd index

are given by Aschbacher[Asc86]. Aschbacher’s list implies that any maximal sub-

group M of odd index in L has index divisible by 9 or by a prime congruent to 2(3).

Since Lα must lie in such a maximal subgroup this contradicts Lemma 2.7.

Suppose that L† ∼= An, the alternating group on n letters. If n 6= 6, 7 then

Z(L) ≤ 2 [Sch11]; thus, by Lemma 2.14, L = L† = An. If n = 6, 7 then Z(L) ≤ 6

and so, by Lemma 2.14, L = An or L = 3.An.

Assume for the moment that n > 7 and so L = An. Let g ∈ L = An be a double

transposition. Then ng = n(n−1)(n−2)(n−3)
8

. Now An contains an abelian subgroup,

H, of size 2b
n
2
c−1 which contains at least bn

2
c(bn

2
c − 1) L-conjugates of g.

Since H lies inside a Sylow 2-subgroup of L, we know that H lies in Lα for some

point α. We conclude that

ng
rg
≤ n(n− 1)(n− 2)(n− 3)

8bn
2
c(bn

2
c − 1)

.

Next we refer to Lemma 2.5 and observe that |H| ≤ v. Furthermore, for u > 2,

v < 2(ng
rg
)2. Hence

2b
n
2
c−1 ≤ 2

n2(n− 1)2(n− 2)2(n− 3)2

26bn
2
c2(bn

2
c − 1)2

=⇒ 2b
n
2
c < n4

=⇒ n ≤ 43.

If u = 2 then v = 21 and again we can conclude that n ≤ 43. Now to examine the

cases where 7 < n ≤ 43 we use a method similar to that in [CNP03, Section 5].

Consider the usual permutation action of L = An as Alt(Ω), acting on a set Ω

of size n. Then Lα contains a Sylow p-subgroup of L for every prime p ≡ 2(3) and

a subgroup of index 3 in a Sylow 3-subgroup of L.

Let Γ be the longest orbit of Lα in Ω. If 8 ≤ n ≤ 10 then, since Lα contains

a Sylow 2-group and a Sylow 5-group of L, LΓα must be primitive; if 11 ≤ n ≤ 21
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then the same conclusion comes from the primes 2 and 11; if 22 ≤ n ≤ 33 then the

same conclusion comes from the primes 2 and 17; and if 34 ≤ n ≤ 43 then the same

conclusion comes from the primes 2 and 29. Now LΓα has odd index in Alt(Γ) and 5

does not divide the index. By [LS85] this means that LΓα contains Alt(Γ).

For n ≥ 11, n 6= 39, we claim that |Γ| ≥ n − 2. This is proved using Lemma

2.7 for each individual value of n. We do not reproduce this here but consider, for

instance, when n = 16: Then Lα contains elements with cycle type (11) and (8, 8)

and so |Γ| = 16 ≥ n− 2.

Let us examine this case, where n ≥ 11, n 6= 39. Consider again, g, a double

transposition with ng =
n(n−1)(n−2)(n−3)

8
. Then rg ≥ (n−2)(n−3)(n−4)(n−5)

8
and so ng

rg
≤

n(n−1)
(n−4)(n−5) < 3 for n ≥ 11. This is impossible.

For n = 39 it turns out, using Lemma 2.7, that |Γ| ≥ 34. Then ng
rg
< 3 and this

case is excluded.

For n = 8 or 10, the same argument gives |Γ| = n and no action exists. For

n = 9, |Γ| ≥ 5 and, referring to [LS85], Lα lies in an intransitive subgroup of L and

this contradicts Lemma 2.7.

Now suppose n ≤ 7. If n = 5 or 6 then Lemma 2.7 implies that |L : Lα| ≤ 3.

This is impossible since no subgroup of such small index exists in L. We are left

with n = 7.

When n = 7 we know that Lα contains an element of order 5. Examining

[CCN+85] this means that M † = S5 or A6. In fact we must have Lα = S5 or A6. In

both cases ng
rg

is not an integer. Thus all cases are excluded.

Remark. It is worth noting that we could immediately conclude, from the transi-

tivity of G and by appealing to [GH00, Theorem 1], that n ≤ 21 . However this is a

large result and so we have given a more elementary and direct proof above.

2.4 L† = PSL(n, q)

In this section we prove the following proposition:

Proposition 2.16. Suppose G has a unique component such that L† is isomorphic

to PSL(n, q) with n > 3. Then G does not act transitively on a projective plane.

Note that, by the result of Wagner[Wag59] cited above, it is sufficient to prove

that our hypothesis, with L† = PSL(n, q), leads to a contradiction. Recall that, for
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n 6= 8, we assume that G/CG(L) ≤ ΓL(n, q). We also suppose that n > 3 for the

remainder of this section.

Now consider SL(n, q) acting naturally on a vector space V . Then recall that a

transvection, g∗ say, in SL(n, q) is a collineation of V such that g∗ − I has rank 1

and square 0. We now state the following preliminary result:

Lemma 2.17. Let C be a conjugacy classes of involutions in L corresponding to

either,

• diagonalizable involutions in the natural modular representation of SL(n, q)

with q odd; or to

• the projective image of transvections in SL(n, q), where q = 2a for some integer

a.

Then C is invariant under ΓL.

Proof. Consider the diagonalizable case first. We need to consider the actions by

conjugation of automorphisms of SL(n, q) on a diagonal matrix,

g∗ =

























−1
. . .

−1
1

. . .

1

























.

Clearly a field automorphism will preserve g∗. Similarly an automorphism lying in

GL(n, q) of form,














1
. . .

1

a















where a ∈ GF (q)∗, also preserves g∗. These generate the full outer automorphism

group of SL(n, q) in ΓL(n, q) and we are done. In the case where we have a transvec-

tion then we consider the actions by conjugation of automorphisms of SL(n, q) on
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a matrix,

g∗ =















1 1 0 . . . 0

1
. . .

...
. . . 0

1















.

Clearly both field automorphisms and the automorphism inGL(n, q) exhibited above

preserve g∗ and we are done.

Much of the ensuing treatment will involve counting involutions g. We will take

care to ensure that g is always of one of the two types in this lemma thus ensuring

that ng = rg(L) = |L : CL(g)| and rg = rg(Lα). Also, observe that we may exclude

PSL(4, 2) ∼= A8. We begin by restricting the family within which M , a maximal

subgroup of L containing Lα, may lie:

2.4.1 Lα must lie in a parabolic subgroup

By Liebeck and Saxl [LS85], we know that Lα lies inside a maximal subgroup M

where

• for q odd, M ∈ C1,C2 or C5; or n = 4;

• for q even, M ∈ C1.

Lemma 2.18. Lα cannot lie inside a maximal subgroup from families Ci, i > 1.

Proof. We may assume that q is odd. In SL(n, q), define

g∗ =



















−1
−1

1
. . .

1



















.

Then g∗ is centralized in SL(n, q) by (SL(2, q) × SL(n − 2, q)).(q − 1) Then the

projective image,g , of g∗ is an involution in L and ng divides into

q2(n−2)(qn−1 + · · ·+ q + 1)(qn−2 + · · ·+ q + 1)

q + 1
.

Examining the order of subgroups M in C2 or C5 we find that |M |p ≤ q
1
4
(n−1)n

and hence |L : M |p ≥ q
1
4
(n−1)n. Since n > 3, we know that q2 divides the index
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of any maximal subgroup in C2 or C5. In the case where n = 4, the only maximal

subgroups of odd index which do not lie in families C1, C2 or C5 also have index

divisible by q2. Hence p ≥ 7 by Lemma 2.7. Then, by Lemma 2.12, the largest

power of p in v is q2(n−2).

Thus, for n > 4, q
1
2
n(n−1)−2(n−2) = q

1
2
(n2−5n+8) divides the order of Lα. We

therefore need to have 1
2
(n2 − 5n+ 8) ≤ 1

4
(n− 1)n and so n < 7.

If n is 5 or 6 then the only possibility that fits this inequality is when M =

NL(L(n, q0)) for q = q20. But then |L : M | is even and so this case can be excluded.

This possibility can also be excluded when n = 4. However when n = 4 (and so

L = PSL(4, q)) we also need to consider the following further possibilities:

• M = (̂SL(2, q) × SL(2, q)).(q − 1).2. In this case |L : M | = ng = 1
2
q4(q2 +

1)(q2 + q + 1). Then we know that the maximum power of p in v is q4 hence

Lα contains Sylow p-subgroups of M . However the index of a parabolic sub-

group in SL(2, q) is even, hence we must have (̂SL(2, q) × SL(2, q)).2 < Lα.

Then we know that for some α, Lα > ˆ

(

SL(2, q)

SL(2, q)

)

. Since Lα also

contains a Sylow 2-subgroup of PSL(4, q), this implies that Lα must contain

the projective image of













1

−1
1

−1













which is L-conjugate to g and so

rg ≥ q2(q + 1)2. Thus ng
rg
≤ 1

2
q2(q2 + 1) and v ≤ q4(q2 + 1)(q2 + q + 1) and so

v = 1
2
q4(q2 + 1)(q2 + q + 1) contradicting Lemma 2.10.

• M = L(4, q0).[
c

(q−1,4)(q0 − 1, 4)] where c = (q − 1)/(q0 − 1, q−1
(q−1,4))) and q = q30.

Then |L : M | = (q120 (q80 + q40 + 1)(q60 + q30 + 1)(q40 + q20 + 1))/( c
(q−1,4)(q0 − 1, 4)).

Now we know that p ≡ 1(3) and so the highest power of 3 in c is 3. Then we

have 9
∣

∣|L : M | which is impossible.

• M is of odd index but does not lie in families C1,C2 or C5. Examining the

tables of Kleidman[Kle87], we find that there are two possibilities: Either

M ∈ C6 and M ∼= 24.A6 or M ∈ C8 and M ∼= PGSp(4, q). In the former case,

q6 divides |L : M | which is a contradiction. In the latter case, since p ≡ 1(3),

we find that 9 divides |L : M | which, again, is a contradiction.
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Thus we assume from here on that Lα lies inside M ∈ C1. This means that Lα

must always lie inside a parabolic subgroup, Pm, which stabilizes a subspace W of

dimension m in the natural vector space for G. We now seek to bound m.

2.4.2 Lα lies in Pm, m small

We begin by noting some preliminary facts which we will use to establish which

parabolic groups Pm are possible candidates to contain Lα. In particular we will

show that m is small.

Lemma 2.19. Suppose Lα lies inside Pm. For r|
(

n
m

)

, r prime, there exists an integer

a such that (1 + qa + · · ·+ qa(r−1)) divides into |L : Pm| which, in turn, divides into

v.

Proof. Let ra = |n|r. Clearly 1+ qr
i

+ · · ·+ qr
i(r−1) divides qn− 1 for i < a. Then to

prove Lemma 2.19 it is sufficient to prove that the polynomial 1+xr
i

+ · · ·+xr
i(r−1)

is irreducible in Q[x].

Now observe that 1 + xr
i

+ · · ·+ xr
i(r−1) is the product of those roots µ of 1 for

which µr
i+1

= 1 and µr
j 6= 1 where j ≤ i. In other words 1 + xr

i

+ · · · + xr
i(r−1) is

the ri+1-th cyclotomic polynomial and so is irreducible.

Corollary 2.20. Suppose Lα lies inside Pm.

• If p ≡ 1(3) then for all primes r dividing
(

n
m

)

, we must have r ≡ 1(3) or r = 3

and 9 6 |
(

n
m

)

.

• If p is odd then
(

n
m

)

must be odd and so either

– n is odd; or

– n is even and m is even.

• If p = 2 then
(

n
m

)

6≡ 0(4).

Proof. We need only prove the final statement. Suppose 4|
(

n
m

)

. Then either (q2+1)|v
or (q + 1)2|v. This means that either v is divisible by a prime equivalent to 2(3) or

that 9
∣

∣v. Both of these are impossible.

Note that, since (n, q) 6= (4, 2), the smallest index of a parabolic subgroup in

PSL(n, q), n ≥ 4 is 31 ([KL90, table 5.2A]). Since x is a square we know that

v ≥ 91 and so dg < 2ng
rg
.
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Case: n odd, p odd

In this case L contains the projective image, g, of

g∗ =















−1
. . .

−1
1















.

Then ng = qn−1(qn−1 + · · · + q + 1). Furthermore, since n ≥ 4, g is conjugate in

G to the projective image, h, of at least one other diagonal matrix. Then g and

h commute and lie in an elementary abelian 2-group. Since Lα contains a Sylow

2-subgroup of L, we must have rg ≥ 2.

Thus ng
rg
≤ 1

2
qn−1(qn−1 + · · · + q + 1), dg ≤ qn−1(qn−1 + · · · + q + 1) and v ≤

1
2
q2n−2(qn−1 + · · ·+ q + 1)2. Now observe that,

1

2
(qn−1 + · · ·+ q + 1)2 ≥ q2n−1 =⇒ (qn − 1)2 ≥ 2q2n−1(q − 1)2

=⇒ q2n ≥ 2q2n−1(q − 1)2

=⇒ q ≥ 2(q − 1)2

=⇒ q < 3.

We know that q ≥ 3 hence 1
2
(qn−1 + · · · + q + 1)2 < q2n−1 and v < q4n−3. But

|L : Pm| > qm(n−m) hence, for n ≥ 23, we have m ≤ 4. We use Corollary 2.20 to

narrow down the possibilities:

1. For p ≡ 1(3) we find, by explicit calculation using Corollary 2.20, that m ≤ 4

for all n. In fact, checking small n we find that if m = 1, 2 then n ≥ 7; if

m = 3 then n ≥ 39; if m = 4 then n > 70.

2. For p 6≡ 1(3) then ng
rg
|3(qn−1 + · · · + q + 1). Hence dg < 3.qn and so v < 9q2n.

For n ≥ 11 this implies that m ≤ 2.

Checking the cases where n < 11 we find that m ≤ 2 or (n,m) = (7, 3). This

final case will be dealt with along with other exceptional cases at the end of

Section 2.4.3.
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Case: n even, p odd

Note that in this case we must have m even and L contains the projective image, g,

of

g∗ =



















−1
. . .

−1
1

1



















.

Now ng = q2(n−2)(qn−2 + · · · + q2 + 1)(qn−2 + · · · + q + 1). Again rg ≥ 2 and so
ng
rg
≤ 1

2
q2(n−2)(qn−2+ · · ·+ q2+1)(qn−2+ · · ·+ q+1). This gives dg ≤ q2(n−2)(qn−2+

· · ·+q2+1)(qn−2+· · ·+q+1) and so v ≤ 1
2
q4(n−2)(qn−2+· · ·+q2+1)2(qn−2+· · ·+q+1)2.

In a similar fashion to before we know that, for q ≥ 3 and n ≥ 4,

1

2
(qn−2 + · · ·+ q2 + 1)2(qn−2 + · · ·+ q + 1)2 < q4n−7

and so v < q8n−15. But |PSL(n, q) : Pm| > qm(n−m) hence, for n ≥ 70, we have

m ≤ 8. Once again we use Corollary 2.20 to narrow down the possibilities:

1. For p ≡ 1(3), we find that n < 70 implies that m = 2. In fact (n,m) =

(14, 2), (38, 2) or (62, 2).

2. For p 6≡ 1(3), ng
rg
|3(qn−2 + · · · + q2 + 1)(qn−2 + · · · + q + 1) < 3q2n−3. Thus

v < 9q4n−5. But |G : Pm| > qm(n−m). Thus for n ≥ 18 we must have m ≤ 4.

For n < 18, m ≤ 4 or (n,m) = (14, 6). This final case will be dealt with along

with other exceptional cases in Section 2.4.3.

Case: p = 2

In this case G contains the projective image, g, of

g∗ =



















1 0 · · · 0 1

1 0
. . .

...

1 0

1



















.

Here g∗ is a transvection and ng = (qn−1 − 1)(qn−1 + · · · + q + 1). Examining

a Sylow-2 subgroup of PSL(n, q) we see that it contains at least 2(qn−1 − 1) L-

conjugates of g. Since Lα must contain one such Sylow 2-subgroup, we conclude
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that rg ≥ 2(qn−1 − 1) and so ng
rg

< 1
2
(qn−1 + · · · + q + 1). Since dg < 2ng

rg
, v <

1
2
(qn−1 + · · · + q + 1)2. Also, since Lα < Pm and |PSL(n, q) : Pm| > qm(n−m), we

conclude that, for n ≥ 10, m ≤ 2.

For n < 10, the fact that 4 6 |
(

n
m

)

implies that (n,m) = (7, 3), (8, 4) or (9, 4) if

m > 2. We rule these three possibilities out in turn:

• (9, 4): This gives q4(9−4) > q2n which is a contradiction.

• (8, 4): In this case, (q4 + 1)
∣

∣|G : P4| which is impossible.

• (7, 3): In this case, |G : P3| = (q2 − q+ 1)(q4 + · · ·+ q+ 1)(q6 + · · ·+ q+ 1) >
1
2
(q6 + · · ·+ q + 1)2 > v which is a contradiction.

Note that if m = 2 and n ≡ 0, 1(4) then (q2 + 1)
∣

∣v which is impossible. Hence

when m = 2 we assume that n ≡ 2, 3(4).

Cases to be examined

We now state those values ofm for which Lα < Pm gives a potential transitive action

of G on P:

1. p = 2: m = 1 (n ≥ 5) or 2 (n ≥ 6);

2. p 6≡ 1(3), p odd:

• n odd: m = 1 (n ≥ 5), m = 2 (n ≥ 7) or (n,m) = (7, 3);

• n even: m = 2 (n ≥ 6), m = 4(n ≥ 12) or (n,m) = (14, 6);

3. p ≡ 1(3):

• n even: m = 2 (n = 14 or n ≥ 38), m = 4, 6, 8 (n > 70);

• n odd: m = 1, 2 (n ≥ 7), m = 3 (n ≥ 39), m = 4 (n > 70).

Remark. Note that n = 4 is now done. We will assume that n ≥ 5 from now on.

All that remains is to go through the listed cases one at a time assuming that

Lα lies inside the given Pm and so |L : Pm| divides v. We seek a contradiction. We

begin with a preliminary lemma and corollary which will be useful for counting the

number of involutions in Lα:
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Lemma 2.21. Suppose that q is an odd prime power. Assume that the following

two matrices are involutions in SL(n, q), then they are conjugate in SL(n, q):
(

V X1

0 W

)

,

(

V 0

0 W

)

where V ∈ GL(m, q), W ∈ GL(n −m, q) and X1 ∈ M(m × (n −m), q), the set of

m by n−m matrices over the field of q elements.

Proof. Since these matrices are involutions we must have

V X1 +X1W = 0.

Take X such that 2X = −X1W . Then AX = X1 +XW and we find that:
(

I X

0 I

)(

V X1

0 W

)

=

(

V 0

0 W

)(

I X

0 I

)

.

Corollary 2.22. Let q be odd and suppose that Lα lies inside a parabolic subgroup,

Pm, of L where Lα = ˆA : (B : C) with C ≤ q − 1 and

A ≤
(

I M(m× (n−m), q)

I

)

, B ≤
(

SL(m, q)

SL(n−m, q)

)

.

Define π(Lα) to be equal to the following set:
{(

Y1

Y2

)

∣

∣

(

Y1 Z

Y2

)

∈ A : (B : C), for some Z ∈M(m× (n−m), q)

}

,

the projection of Pm onto the Levi quotient restricted to Lα. Now assume that Lα

contains an involution g which is the projective image of an involution in SL(n, q),

g∗ =

(

X1 Y

X2

)

.

Then rg is greater than or equal to the number of π(Lα)-conjugates of the block

diagonal matrix

(

X1

X2

)

in π(Lα).

Note that in what follows we will assume that Lα lies in a parabolic subgroup

which is L-conjugate to one of the above form. In fact, in PSL(n, q) where n ≥ 3,

there are two conjugacy classes of parabolic subgroups. However, since these two

classes are fused by a graph automorphism, our method extends trivially to cover

the other class.
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2.4.3 Remaining Cases

Case: p = 2,m = 1

Take g∗ a transvection as before, with ng = (qn−1−1)(qn−1+ · · ·+q+1). Recall that

rg ≥ 2(qn−1− 1) and so ng
rg
≤ 1

2
(qn−1+ · · ·+ q+1) and so v < 1

2
(qn−1+ · · ·+ q+1)2.

Then we suppose that Lα = ˆA.B.C ≤ P1 = [̂qn−1] : (SL(n−1, q).(q−1)). Since

Lα contains a Sylow 2-subgroup of L, A = [qn−1] with B ≤ SL(n−1, q), C ≤ (q−1).

Now |L : P1| = qn−1+ · · ·+ q+1 and thus |SL(n− 1, q) : B| < 1
2
(qn−1+ · · ·+ q+1).

We know that B contains a Sylow 2-subgroup of SL(n− 1, q) and so we are in one

of the following situations:

• B ≤ P ∗
m1

, a parabolic subgroup of SL(n − 1, q). For n ≥ 5 and m1 ≥ 2

observe that |SL(n − 1, q) : P ∗
m1
| > q2(n−3) > 1

2
(qn−1 + · · · + q + 1) which

is impossible. Thus m1 = 1 and B < [qn−2] : GL(n − 2, q). In this case

(qn−1+· · ·+q+1)(qn−2+· · ·+q+1)
∣

∣v and B = [qn−2] : B∗
1 where |GL(n−2, q) :

B∗
1 | < q. Thus B > B∗

1 > SL(n− 2, q).

• B = SL(n− 1, q).

Consider the second situation first. We know that, for some α, π(Lα) contains
(

1

SL(n− 1, q)

)

.We also know that projective images of the following matrices

are conjugate in L:

g∗ =



















1 0 · · · 0 1

1 0
. . .

...

1 0

1



















, h∗ =

























1

1 0 · · · 0 1

1 0
. . .

...

1 0

1

























.

Thus, by Corollary 2.22, rg ≥ rg (̂ SL(n−1, q)) ≥ (qn−2−1)(qn−2+ · · ·+q+1). This

implies that ng
rg
< q(q + 1) and v ≤ q4 + q2 + 1. This is a contradiction for n ≥ 5.

Thus we assume that we are in the first situation. The same argument though

implies that rg ≥ rg (̂ SL(n−2, q)) ≥ (qn−3−1)(qn−3+ · · ·+q+1). This implies that
ng
rg
< (q2+1)2 and so ng

rg
≤ q4+ q2+1. This means that v ≤ q8+4q6+7q4+6q2+3.

We know that (qn−1 + · · ·+ q + 1)(qn−2 + · · ·+ q + 1)|v which gives a contradiction

for n ≥ 6.
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For n = 5 we find that (q3 + q2 + q + 1)|v hence (q2 + 1)|v which implies that a

prime p1 ≡ 2(3) divides into v which is a contradiction.

Case: p = 2,m = 2

We assume here that n ≥ 6 and Lα ≤ P2 ∼= [̂q2(n−2)] : (SL(2, q)×SL(n−2, q)).(q−1).
Now P2 has index (qn−1+ · · ·+q+1)(qn−2+ · · ·+q+1)/(q+1). We know, as before,

that v < 1
2
(qn−1+· · ·+q+1)2 hence |P2 : Lα| < q(q+1). Now observe that SL(n−2, q)

does not have a subgroup of index less than q(q + 1) hence Lα > SL(n − 2, q). As

for m = 1, this implies that v ≤ q8+4q6+7q4+6q2+3. This must be greater than

the index of P2 and so we must have n = 6.

In fact when we examine n = 6 we find that, to satisfy the bound, we must have

q = 2. Explicit calculation of ng, rg and |L : P2| excludes this possibility.

Remark. From here on we assume that p is odd and n ≥ 5.

Case: p odd, p 6≡ 1(3), n odd, m=1

For the next two cases take g as before for p odd and n odd with ng = qn−1(qn−1 +

· · ·+ q + 1). We suppose that Lα = ˆA.B.C < P1 = [̂qn−1] : (SL(n− 1, q).(q − 1)).

Here A ≤ [qn−1], B ≤ SL(n− 1, q) and C ≤ q− 1. Note that |L : P1| = qn−1+ · · ·+
q + 1.

Suppose first that p 6= 3. Then ng
rg
|qn−1+· · ·+q+1 and so v < 2(qn−1+· · ·+q+1)2.

Then |P1 : Lα| < 2(qn−1 + · · · + q + 1). Now Lα contains a Sylow-p subgroup of L

since p ≡ 2(3). Hence B either lies in a parabolic subgroup, P ∗
m1

, of SL(n− 1, q) or

B = SL(n− 1, q).

Observe that if m1 is odd then |SL(n−1, q) : P ∗
m1
| is even. Thus we must assume

that m1 is even, in which case |SL(n− 1, q) : P ∗
m1
| > q2(n−3) > 2(qn−1 + · · ·+ q + 1)

for n ≥ 6. This is a contradiction. For n = 5, P ∗
2 also has even index in SL(4, q)

so can be excluded. Hence we assume that B = SL(n − 1, q) and |C| is even. We

know that, for some α, π(Lα) contains

(

±1
SL(n− 1, q).2

)

. Thus, appealing to

Corollary 2.22, we conclude that rg ≥ rg (̂ SL(n− 1, q).2) ≥ qn−2(qn−2+ · · ·+ q+1)

and so ng
rg
< q(q + 1). This means that v ≤ q4 + q2 + 1 which is a contradiction for

n ≥ 5.

We are left with the case where p = 3. Now Lα contains a group of index 3 in

a Sylow-3 subgroup of L and |L : Lα| is odd. Hence B either lies in a parabolic
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subgroup, P ∗
m1

of SL(n−1, q) or B = SL(n−1, q). The case where B = SL(n−1, q)

is ruled out exactly as for p 6= 3.

Consider B ≤ P ∗
m1

< SL(n−1, q) and suppose that n ≥ 8. Then v > q7+· · ·+q+
1 > 1333 and ng

rg
> 31. This, combined with the fact that ng

rg
≤ 3(qn−1+ · · ·+ q+1),

means that v < 12(qn−1 + · · ·+ q + 1)2.

Now B lies in P ∗
m1

and som1 must be even. Then |SL(n−1, q) : P ∗
m1
| > q2(n−3) >

12(qn−1 + · · ·+ q + 1) for n ≥ 8 which is a contradiction. We are left with n = 5 or

7. If n = 5 then we exclude it as for p 6= 3.

For n = 7, we know that dg < 2ng
rg
≤ 6(q6+ · · ·+ q+1) and so v < 18(q6+ · · ·+

q + 1)2. Thus we require that q2(7−3) < |SL(n− 1, q) : P ∗
m1
| < 18(q6 + · · · + q + 1).

This is impossible for q ≥ 9.

When q = 3 we find that ng
rg
|3(q6 + · · ·+ q+1) = 3279. Now ng

rg
= u2− u+ 1 for

some integer u and so ng
rg
≤ q6 + · · ·+ q + 1 and we refer to the case where p 6= 3.

Remark. Note that we have now covered all possible cases where n = 5 and we

assume that n ≥ 6 from here on.

Case: p odd, p 6≡ 1(3), n odd, m = 2

In this case Lα = ˆA.B.C ≤ P2 ∼= [̂q2(n−2)] : (SL(2, q) × SL(n − 2, q)).(q − 1)

where A ≤ [qn−1], B ≤ SL(2, q) × SL(n − 2, q) and C ≤ q − 1. Now |L : P2| =
(qn−3 + · · ·+ q2 + 1)(qn−1 + · · ·+ q + 1).

Now we know that ng
rg
|3(qn−1 + · · · + q + 1). Thus v < 12(qn−1 + · · · + q + 1)2

and hence |P2 : Lα| < 12(q+ 1)2. If (n, q) 6= (7, 3) then no subgroup of SL(n− 2, q)

has index less than 12(q + 1)2 unless (n, q) = (7, 3). If (n, q) = (7, 3) then the only

subgroups of SL(5, q) with indices less than 12(3+ 1)2 are the parabolic subgroups.

These have indices in SL(5, q) divisible by 11 and so can be excluded. This implies

that in all cases B = B∗ × SL(n− 2, q) for B∗ some subgroup of SL(2, q).

Now B = B∗ × SL(n − 2, q) implies that π(Lα) ≥ SL(n − 2, q).2 and so, by

Corollary 2.22, rg > rg (̂ SL(n− 2, q)) > qn−3(qn−3+ · · ·+ q+1) and ng
rg
< q2(q2+1)

and so v < q8 + q4 + 1. This gives a contradiction for n ≥ 7.

Case: p odd, p 6≡ 1(3), n even, m = 2

For the next two cases, take g as earlier for p odd and n even. Then ng =

q2(n−2)(qn−2 + · · · + q + 1)(qn−2 + · · · + q2 + 1). As in the previous case, Lα =

ˆA.B.C ≤ P2 ∼= [̂q2(n−2)] : (SL(2, q) × SL(n − 2, q)).(q − 1) where A ≤ [q2(n−2)],
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B ≤ (SL(2, q)× SL(n− 2, q)), C ≤ q − 1 and π(Lα) = ˆB.C. Now P2 has index in

L, (qn−2 + · · ·+ q2 + 1)(qn−2 + · · ·+ q + 1).

We know, by Lemma 2.13, that one of the following must hold:

• B ≤ (SL(2, q)×B1) for some B1 < SL(n− 2, q);

• B = (B2 × SL(n− 2, q)) for some B2 ≤ SL(2, q).

Consider the second possibility. As before Corollary 2.22 implies that rg ≥
rg (̂ SL(n−2, q)) ≥ q2(n−4)(qn−4+· · ·+q+1)(qn−4+· · ·+q2+1). Then ng

rg
≤ q4(q2+1)2

and v ≤ q18 which is a contradiction for n > 11. We will need to consider n = 6, 8, 10.

We turn to the first possibility above. We know that ng
rg
|3(qn−2+· · ·+q+1)(qn−2+

· · ·+ q2 + 1). This implies that v < 9(qn−2 + · · ·+ q + 1)3(qn−2 + · · ·+ q2 + 1) and

so |P2 : Lα| < 9(qn−2+ · · ·+ q+1)2. Thus we must have B1 lying inside a parabolic

subgroup, P ∗
m1

, in SL(n−2, q) with |SL(n−2, q) : P ∗
m1
| < 9(qn−2+ · · ·+ q+1)2. We

know that m1 must be even. If m1 ≥ 4 then we know that |SL(n − 2, q) : P ∗
m1
| >

q4(n−2−4) which is a contradiction for n ≥ 12. Thus n−2 ≤ 8 in which case m1 = 4 is

not allowed and so this can also be excluded. Thus we must have m1 = 2. However

we know that
(

n
2

)

is odd and so n ≡ 2(4), hence n − 2 ≡ 0(4), hence
(

n−2
2

)

is even

and |SL(n− 2, q) : P ∗
2 | is even by Lemma 2.19. We may exclude this possibility.

We are left with the possibility that n = 6, 8 or 10 and B = B2 × SL(n − 2, q)

for some B2 ≤ SL(2, q).

Observe first that A.B.C/A acts on the non-identity elements of A by conjuga-

tion. Since B = B2×SL(n−2, q), this action has orbits of size divisible by qn−2−1.

When p = 3, qn−2 − 1 does not divide into q2(n−2)

3
− 1 hence in all cases we may

assume that A = [q2(n−2)].

Then, for some α, A : B (or its transpose) has the following form and contains

the following conjugate of g∗:

h∗ =



















I2×2

−I2×2
1

. . .

1



















∈
(

B2 A

SL(n− 2, q)

)

.

Observe that |A : CA(h
∗)| = q4. Thus rg ≥ q4rg (̂ SL(n − 2, q)) ≥ q2n−4(qn−4 +

· · ·+ q + 1)(qn−4 + · · ·+ q2 + 1). Thus ng
rg
≤ (q2 + 1)2. In fact we may assume that

ng
rg
≤ q4 + q2 + 1 and so dg ≤ q4 + 3q2 + 3 and v ≤ (q4 + q2 + 1)(q4 + 3q2 + 3).
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Now |L : P2| = (qn−2+ · · ·+q2+1)(qn−2+ · · ·+q+1) > (q4+q2+1)(q4+3q2+3)

for n ≥ 6, q ≥ 3. This is a contradiction.

Remark. Observe that we have now completed the case where n = 6. We assume

that n ≥ 7 from now on.

Case: p odd, p 6≡ 1(3), n even, m = 4

We assume, for this case, that n ≥ 12. Similarly to the previous case, Lα =

ˆA.B.C ≤ P4 ∼= [̂q4(n−4)] : (SL(4, q) × SL(n − 4, q)).(q − 1) where A ≤ [q4(n−4)],

B ≤ (SL(4, q)× SL(n− 4, q)), C ≤ q − 1 and π(Lα) = ˆB.C.

As before, ng = q2(n−2)(qn−2+· · ·+q+1)(qn−2+· · ·+q2+1) and so ng
rg
|3(qn−2+· · ·+

q+1)(qn−2+· · ·+q2+1). This implies that v < 9(qn−2+· · ·+q+1)3(qn−2+· · ·+q2+1).

Then we have

|L : P4||P4 : Lα| < 9(qn−2 + · · ·+ q + 1)3(qn−2 + · · ·+ q2 + 1)

Since 9(qn−2+ · · ·+ q+1)3(qn−2+ · · ·+ q2+1) < q4n−4 we must have |P4 : Lα| < q12.

We know, by Lemma 2.13, that one of the following must hold:

• B ≤ (SL(2, q)× B1) for some B1 < SL(n− 4, q). In this case |SL(n− 4, q) :

B1| < q12. For n ≥ 12 this implies that B1 lies in the parabolic subgroup P ∗
1

of SL(n− 4, q). But this has even index and so can be excluded.

• B = (B2 × SL(n− 4, q)) for some B2 ≤ SL(4, q).

Thus the second possibility must hold. As before Corollary 2.22 implies that

rg ≥ rg (̂ SL(n − 4, q)) ≥ q2(n−6)(qn−6 + · · · + q + 1)(qn−6 + · · · + q2 + 1). Then
ng
rg
< q8(q4 + 1)2 and

dg <
ng
rg

+ 2

√

ng
rg

+ 2 < (q8 + q4 + 3)q4(q4 + 1)

giving v ≤ q12(q4 + 1)3(q8 + q4 + 3) which is a contradiction for n ≥ 12.
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Case: p odd, p ≡ 1(3), n even, m = 2, 4, 6 or 8

We will take g to be the projective image of,

g∗ =



















−1
. . .

−1
1

1



















.

Then ng = q2(n−2)(qn−2+· · ·+q2+1)(qn−2+· · ·+q+1) and we know that v < q8n−15.

Recall that when m = 2 we may assume that n = 14 or n ≥ 38, otherwise n > 70.

Let Lα = ˆA.B.C ≤ Pm ∼= [̂q2(n−m)] : (SL(m, q) × SL(n −m, q)).(q − 1) where

A ≤ [qm(n−m)], B ≤ (SL(m, q)×SL(n−m, q)), C ≤ q− 1 and π(Lα) = ˆB.C. Note

that |L : Pm| > qm(n−m) and so |Pm : Lα| < q8n−15−mn+m
2
.

There are two possibilities for B, by Lemma 2.13:

• B = (B2×SL(n−m, q)) for some B2 ≤ SL(m, q). Then Corollary 2.22 implies

that rg ≥ rg (̂ SL(n−m, q)) ≥ q2(n−m−2)(qn−m−2+· · ·+q+1)(qn−m−2+· · ·+q2+
1). Then ng

rg
≤ q2m(qm+1)2 and v ≤ q8m+3 Thus we need m(n−m) < 8m+3

which implies that m > n−8
2

which is a contradiction.

• B ≤ (SL(m, q) × B1) for some B1 < SL(n − m, q). By Liebeck and Saxl

[LS85], the projective image of B1 in PSL(n−m, q) must lie in families C1,C2

or C5. The latter two possibilities imply that,

1

4
n(n− 1) < 8n− 15−mn+m2

=⇒ n2 − (33−m)n+ (60−m2) < 0

=⇒ n < 33−m

=⇒ n = 14,m = 2.

We examine the remaining situation with n = 14,m = 2. Then one sub-

group in C2 has index less than q8n−15−mn+m
2
= q6n−11, namely the projec-

tive image of Q2 ∼= (SL(6, q) × SL(6, q)).(q − 1).2 which has even index in

PSL(12, q). Similarly the only subgroup in C5 with index less than q6n−11 is

NPSL(12,q)(PSL(12, q0)) where q = q20. This also has even index in PSL(12, q)

and so can be excluded.
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Thus B1 lies in a parabolic subgroup P ∗
m1

of SL(n − m, q). Since n − m is

even, we must have m1 even to have i := |SL(n −m, q) : P ∗
m1
| odd. Observe

that qm1(n−m−m1) < i < q8n−15−mn+m
2
. Suppose first that m +m1 ≥ 10. The

upper and lower bounds for i imply that

(10−m)(n− 10) < 8n− 15−mn+m2

=⇒ 2n < m2 − 10m+ 85

=⇒ n < 35,m = 2.

We examine the remaining situation with n < 35,m = 2. Referring to Corol-

lary 2.20 the only value of n less than 35 for which P2 has admissible index

is n = 14. But in this case m1 = 8 is too large to define a parabolic group

in SL(12, q). This case is excluded. Thus we assume that m + m1 ≤ 8 and

m ≤ 6. We split into cases:

– Suppose that m = 6 and so m1 = 2. Then |L : P6| odd implies that
(

n
6

)

is odd and hence n ≡ 2(4). However this implies that
(

n−6
2

)

is even and

so i is even which is impossible.

– Suppose that m = 4 and so m1 ≤ 4. Recall that, by Corollary 2.20, 5

does not divide into
(

n
4

)

hence n ≡ 4(5). However this implies that 5

divides into
(

n−4
m1

)

which implies, by Lemma 2.19, that i is divisible by a

prime p1 ≡ 2(3) which is impossible.

– Suppose that m = 2 and so m1 ≤ 6. We exclude m1 = 2 or 6 in the same

way as we excluded m1 = 2 for m = 6. We exclude m1 = 4 in the same

way as we excluded m1 = 4 for m = 4. Hence we are done.

Case: p odd, p ≡ 1(3), n odd, m = 1, 2, 3 or 4

We will take g to be the projective image of,

g∗ =















−1
. . .

−1
1















.

Then ng = qn−1(qn−1 + · · · + q + 1) and we know that v < q4n−3. Furthermore, by

Lemma 2.12, we know that |v|p ≤ qn−1. Recall that, for m = 1 or 2, we have n = 7

or n ≥ 13, for m = 3 we have n ≥ 39 and for m = 4 we have n > 70.
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Then, in this case, Lα = ˆA.B.C ≤ Pm = [̂qn−m] : (SL(n − m, q).(q − 1))

where A ≤ [qn−m], B ≤ SL(n − m, q), C ≤ q − 1 and π(Lα) = ˆB.C. Note that

|L : Pm| > qm(n−m) and so |SL(n−m, q) : B| < q4n−3−mn+m
2
.

There are two possibilities for B, by Lemma 2.13:

• B = (B2 × SL(n−m, q)) for some B2 ≤ SL(m, q). We know that 2 ≤ C and

so, by Corollary 2.22, rg ≥ rg (̂ SL(n−m, q).2) ≥ qn−m−1(qn−m−1+ · · ·+q+1).

Hence ng
rg
< qm(qm + 1) and v ≤ q4m + q2m + 1. Thus we must have

m(n−m) < 4m+ 1

=⇒ m2 + (4− n)m+ 1 > 0

=⇒ m > n− 5.

This is a contradiction.

• B ≤ (SL(m, q) × B1) for some B1 < SL(n − m, q). By Liebeck and Saxl

[LS85], the projective image of B1 in PSL(n − m, q) must lie in a subgroup

M of PSL(m, q) from families C1,C2 or C5. The latter two possibilities imply

that,

1

4
n(n− 1) < 4n− 3−mn+m2

=⇒ n2 − (17− 4m)n+ (12− 4m2) < 0

=⇒ n < 17− 2m.

This implies that either m = 2 and n = 7 or m = 1 and n = 7, 13. In

fact, when m = 1 and n = 13 the initial inequality is not satisfied and this

possibility can be excluded. When m = 2 and n = 7, the only possibility is if

B1 ≤ M = NL5(q)(L5(q0)) where q = q20. But |SL(n − 2, q) : M | is even here

and can be excluded. When m = 1 and n = 7 we must have M a subgroup of

SL(6, q) in C2 or C5 and |SL(6, q) : M | < q19. The only such subgroups are

M = (̂SL(3, q))2.(q − 1).2 and M = NL(6,q)(L(6, q0)) where q = q20. Both of

these subgroups have even index in SL(6, q) and hence B1 does not lie inside

such an M .

Thus B1 lies in a parabolic subgroup, P ∗
m1

of SL(n−m, q). Write i := |SL(n−
m, q) : P ∗

m1
| and observe that qm1(n−m−m1) < i < q4n−3−mn+m

2
. Suppose first

that m+m1 ≥ 5. The upper and lower bounds for i imply that

(5−m)(n− 5) < 4n− 3−mn+m2

=⇒ n < m2 − 5m+ 28.
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This implies that n < 24 and either m = 1 or m = 2. These cases imply that

m1 ≥ 3. Now for i to be divisible only by primes equivalent to 1(3) or by 3

but not 9, we must have
(

n−m
m1

)

divisible only by primes equivalent to 1(3) or

by 3 but not 9 and hence n−m ≥ 39 which is a contradiction.

Thus m +m1 ≤ 4 and m ≤ 3. Note that if m is odd then m1 must be even

since i is odd implies that
(

n−m
m1

)

is odd. This excludes m = 3 and ensures

that, for m = 1, m1 = 2.

Observe some facts about the remaining cases:

– Suppose that m = 1 and m1 = 2. We must have n ≥ 39 to ensure that n

and
(

n−1
2

)

are divisible only by primes equivalent to 1(3) or by 3 but not

9. Then we have B1 ≤ P ∗
2
∼= [q2(n−3)] : (SL(2, q) × SL(n − 3, q)).(q − 1)

and, since |SL(n− 1, q) : P ∗
2 | > q2(n−3), then |P ∗

2 : B1| < qn+4.

– Suppose that m = 2. If n = 7 then B1 lies inside a parabolic subgroup of

SL(5, q). But 5 divides into
(

5
j

)

for j = 1, 2 which is not allowed. Thus

n ≥ 39 as this is the next smallest number with allowable divisors of
(

n
2

)

. Consider m1 = 2. Since
(

n
2

)

is odd we must have n ≡ 3(4) and so
(

n−2
2

)

is even which is a contradiction. Hence m1 = 1 and B1 ≤ P ∗
1
∼=

[qn−3] : SL(n − 3, q).(q − 1). Now |SL(n − 2, q) : P ∗
1 | ≥ qn−3 and so

|P ∗
1 : B1| < qn+4.

Now the only subgroup of SL(n−3, q) in C1,C2 or C5 with index less than qn+4

is a parabolic subgroup P ∗
1 which has even index. Thus, for m = 1 and m = 2,

B1 ≥ SL(n − 3, q).2 and so, by Corollary 2.22, rg ≥ rg (̂ SL(n − 3, q).2) ≥
qn−4(qn−4 + · · ·+ q + 1). Hence ng

rg
< q3(q3 + 1) and v ≤ q12 + q6 + 1 which is

a contradiction.

Exceptional cases

We have deferred two cases in the process of our proof. Firstly we need to consider

the possibility that n = 7, p 6≡ 1(3) is odd and Lα ≤ P3, a parabolic subgroup

stabilizing a 3-dimensional subspace in the vector space for G. We exclude this

possibility as follows:

Refer to Section 2.4.2 when np is odd and suppose that Lα < P3. In this case
ng
rg
|3(q6 + · · ·+ q + 1) and |L : P3| = (q6 + · · ·+ q + 1)(q6 + q4 + q3 + q2 + 1). Thus

v > q12 and ng
rg
> q5 ≥ 243.
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Suppose first that ng
rg
< q6+ · · ·+q+1. Then u2−u+1 = ng

rg
≤ 3

5
(q6+ · · ·+q+1)

and u2 + u+ 1 = dg < q6 + q4 + q3 + q2 + 1 since ng
rg
> 243. Thus v < |L : P3| which

is a contradiction.

Then consider the case where ng
rg
≥ q6 + · · · + q + 1. We must have v ≥ 3(q6 +

· · ·+ q+1)(q6+ q4+ q3+ q2+1). Suppose that ng
rg

= q6+ · · ·+ q+1. Then our lower

bound on v implies that dg ≥ 3(q6 + q4 + q3 + q2 + 1) > 2ng
rg

which is impossible.

The only other possibility is that ng
rg

= 3(q6 + · · · + q + 1) = u2 − u + 1. But then

u2 + u+ 1 = dg < 7(q6 + q4 + q3 + q2 + 1) which again is impossible for q ≥ 7. For

q = 3, 5 we find that 3(q6+ · · ·+ q+1) 6= u2− u+1 for integer u and so these cases

can be excluded.

The second possibility that we need to consider is when n = 14, p 6≡ 1(3) is

odd and Lα ≤ P6, a parabolic subgroup stabilizing a 6-dimensional subspace in the

vector space for G. We exclude this possibility as follows:

Refer to Section 2.4.2 when n is even and p is odd and observe that v < 9q51

and ng < q49. Furthermore

Lα ≤ P6 = [̂q48] : (SL(6, q)× SL(8, q)).(q − 1)

which has index greater than q48. Thus |P6 : Lα| < 9q3. Now SL(6, q) and SL(8, q)

do not have any subgroups with index this small, hence Lα > ˆA.(SL(6, q)×SL(8, q))
where A = [q48]∩Lα. Observe that |[q48] : A| ≤ 3. In fact, A.(SL(6, q)×SL(8, q))/A
acts by conjugation on the non-identity elements of A with orbits of size divisible

by q5 + · · ·+ q + 1, hence A = [q48]. Then, for some α, A : (SL(6, q)× SL(8, q)) (or

its transpose) has the following form and contains the following conjugate of g∗:

h∗ =













−1
I5×5

−1
I7×7













∈
(

SL(6, q) A

SL(8, q)

)

.

Let h be the projective image of h∗. Then rg > rh(̂ (SL(6, q)×SL(8, q))) > q10.q14 =

q24. Then h is certainly centralized by a subgroup of A of size no more than q36.

Hence rg > q36. This implies that ng
rg
< q13 and v < q27 which is a contradiction.

Our proof of Proposition 2.16 is complete.

2.5 L = PSL(2, q) or L† = PSL(3, q)

In this section we prove the following proposition:



2.5 L = PSL(2, q) or L† = PSL(3, q) 37

Proposition 2.23. Suppose that G contains a minimal normal subgroup L isomor-

phic to PSL(2, q) with q ≥ 4 or that G has a unique component L such that L† is

isomorphic to PSL(3, q) with q ≥ 2. If G acts transitively on a projective plane P

of order x then P is Desarguesian and G ≥ PSL(3, x).

Again we seek to demonstrate that our hypothesis leads to a contradiction. Note

that the result for n = 2 is known to have been proven for the case where G =

PSL(2, q) by Camina, Neumann and Praeger but has not been published. Note

also that the reason that our statement distinguishes between a component in the

PSL(3, q) case and a minimal normal subgroup in the PSL(2, q) case is given by

Lemma 2.14.

2.5.1 Preliminary facts

We will need some preliminary facts about PSL(2, q) and PSL(3, q). As before

we assume that (G/CG(L))/Z(L) ≤ PΓL(n, q) since |AutL : PΓL(n, q)| ≤ 2, n =

2, 3. Observe that both PSL(2, q) and PSL(3, q) have a single conjugacy class of

involutions of size, in odd characteristic, 1
2
q(q ± 1) and q2(q2 + q + 1) respectively

and, in even characteristic, q2−1 and (q2−1)(q2+q+1) respectively. Both also have

the property that a Sylow 2-subgroup contains at least 2 such involutions. Since

a point-stabilizer must contain such a Sylow 2-subgroup we conclude that rg ≥ 2.

Note also that PSL(3, q) has a single conjugacy class of transvections and this class

does not fuse with any other in PΓL(n, q).

Kleidman [Kle87] lists explicitly the maximal subgroups of PSL(3, q) and Liebeck

and Saxl[LS85] assert that the maximal subgroups of odd degree lie, as before, in

families C1,C2 and C5 for q > 2. Note that PSL(3, 2) ∼= PSL(2, 7) and so we will

deal with this group in the PSL(2, q) case. We state a result from Suzuki[Suz82]

which gives the structure of all the subgroups of PSL(2, q):

Theorem 2.24. Let q be a power of the prime p. Let d = (q−1, 2). Then a subgroup

of PSL(2, q) is isomorphic to one of the following groups.

1. The dihedral groups of order 2(q ± 1)/d and their subgroups.

2. A parabolic group P1 of order q(q−1)/d and its subgroups. A Sylow p-subgroup

P of P1 is elementary abelian, P ¢ P1 and the factor group P1/P is a cyclic

group of order (q − 1)/d.
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3. PSL(2, r) or PGL(2, r), where r is a power of p such that rm = q.

4. A4, S4 or A5.

Proof. See [Suz82, Theorem 6.25].

Note that when p = 2, the above list is complete without the final entry. Fur-

thermore, referring to [Kle87], we see that there are unique PSL(2, q) conjugacy

classes of the maximal dihedral subgroups of size 2(q ± 1)/d as well as a unique

PSL(2, q) conjugacy class of parabolic subgroups P1.

The result of Liebeck and Saxl[LS85] asserts that all of the families of maximal

subgroups can, for some q, contain a subgroup of odd index in PSL(2, q) thus we

will simply go through the possibilities given by Suzuki in the PSL(2, q) case. We

will use the results of Kleidman [Kle87] to examine conjugacy classes of subgroups

of PSL(2, q).

In the PSL(3, q) case we will also need the subgroups of GL(2, q) which can be

easily obtained from the subgroups of PSL(2, q).

Theorem 2.25. H, a subgroup of GL(2, q), q = pa, is amongst the following up to

conjugacy in GL(2, q). Note that the last two cases may be omitted when p = 2.

1. H is cyclic;

2. H = AD where

A ≤
{(

1 0

λ 1

)

: λ ∈ GF (q)

}

and D ≤ N(A), is a subgroup of the group of diagonal matrices;

3. H =< c, S > where c|q2 − 1, S2 is a scalar 2-element in c;

4. H =< D,S > where D is a subgroup of the group of diagonal matrices, S is

an anti-diagonal 2-element and |H : D| = 2;

5. H =< SL(2, pb), V > or contains < SL(2, pb), V > as a subgroup of index 2

and here b|a, V is a scalar matrix. In the second case, pb > 3;

6. H/ < −I > is isomorphic to S4 × C, A4 × C, or (with p 6= 5) A5 × C, where

C is a scalar subgroup of GL(2, q)/ < −I >;

7. H/ < −I > contains A4 × C as a subgroup of index 2 and A4 as a subgroup

with cyclic quotient group, C is a scalar subgroup of GL(2, q)/ < −I >.
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Proof. In this proof and subsequently, we will refer to subgroups of GL(2, q) as being

of type y, where y is a number between 1 and 7 corresponding to the list above.

When the characteristic is odd, the proof of this result is given in [Blo67b,

Theorem 3.4]. When the characteristic is even we know that GL(2, q) ∼= PSL(2, q)×
(q− 1). Then, for H < GL(2, q) either H ≥ SL(2, q) and we are in type 5 above, or

we have H ≤ H1 × (q − 1) where H1 is maximal in PSL(2, q).

If H1 = D2(q−1) then H of types 1 and 4 accounts for all H ≤ H1× (q−1). Since

there is only one conjugacy class of D2(q−1) in PSL(2, q) all H ≤ H1 × (q− 1) must

be of type 1 or 4 in GL(2, q).

Similarly H1 = D2(q+1) is accounted for by H of types 1 and 3 in GL(2, q), while

H1 = P1 is accounted for by H of type 2 in GL(2, q).

Finally consider H ≤ PSL(2, q0)×(q−1). Any maximal subgroup of PSL(2, q0)

must be an intersection with D2(q±1) or P1 (since these intersections exist and there

is only one conjugacy class of such maximal subgroups) or is of type PSL(2, q1)

where qo = qm1 ,m prime. Thus any subgroup of PSL(2, q0) lies inside D2(q±1) or P1

and so is already accounted for, or else equals PSL(2, q1) where q = qb1.

Thus we must consider H ≤ PSL(2, q1) × (q − 1) and H 6≤ B × (q − 1) for

B < PSL(2, q1). Then {a : (a, 1) ∈ H} is normal in {a : (a, b) ∈ H} ∼= PSL(2, q1).

Provided q1 > 2 this implies that {a : (a, 1) ∈ H} = 1 and H is cyclic or {a : (a, 1) ∈
H} ∼= PSL(2, q1) and H is a subgroup of GL(2, q) of type 5.

If q1 = 2 then PSL(2, q1) ≤ D2(q±1) and the case is already accounted for.

Note that a subgroup of type 1 in GL(2, q) is never maximal in GL(2, q). Fur-

thermore type 5 includes GL(2, q) itself. We now proceed with our analysis.

2.5.2 L = PSL(2, q)

Assume that L = PSL(2, q), q ≥ 4. We exclude the case where G/CG(L) contains

PGL(2, q) since then G has a normal subgroup N of index 2. Then N/CN(L) con-

tains only field automorphisms and N acts transitively on P (since the number of

points in P is odd.) Hence we assume that G/CG(L) contains only field automor-

phisms and |G/CG(L)| ≤ |PSL(2, q)|. logp q.
For q = 4, 5 or 9, L is isomorphic to an alternating group. This case has already

been examined [CNP03] and so these values of q can be excluded. Observe that P1,

a parabolic subgroup of PSL(2, q), has odd index if and only if p = 2. Furthermore

if p = 2 then Lα ≤ P1 since Lα must contain a Sylow 2-subgroup of PSL(2, q). This
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implies that ng = q2−1, rg = q−1 and u2−u+1 = ng
rg

= q+1. But then u2−u = q

which is impossible. Hence we assume Lα does not lie in a parabolic subgroup of

PSL(2, q) and that p is odd.

Now the only maximal subgroups of PSL(2, q) which contain a Sylow p-subgroup

of PSL(2, q) are the parabolic subgroups. Also, for q = 3a with a ≥ 3, the only

maximal subgroups containing a subgroup of index p in a Sylow p-subgroup of

PSL(2, q) are the parabolic subgroups. Thus Lemma 2.7 implies that p ≡ 1(3)

and we assume this from here on. Note that, for an involution g ∈ PSL(2, q),

ng =
1
2
q(q ± 1).

We examine the non-parabolic subgroups of L as candidates to be Lα, using

Theorem 2.24.

If Lα = A4 then rg = 3 and, since rg
∣

∣ng and p ≡ 1(3), we must have ng =
1
2
q(q−1)

and q ≡ 3(4). Similarly if Lα = A5 then rg = 15 and q ≡ 3(4). But then q+1
4

divides

into |L : Lα|. Since q+1
4
≡ 2(3) this contradicts Lemma 2.7.

If Lα = S4 then rg = 9 and once more q ≡ 3(4). In fact ng
rg

= q(q−1)
18

. Then in

PSL(2, q) there is a unique conjugacy class of elements of order 4. Let h be such an

element and observe that rh = 6. Now the fixed set of h lies inside the fixed set of

g = h2 and dh = 2
3
dg =

2
3
(u2+u+1). But g fixes a Baer subplane and so Fixh is the

fixed set of a quasicentral collineation of Fixg (see Section 2.2) and |Fixh| divides
|Fixg|. Thus 1

3
(u2 + u + 1) = u +

√
u + 1 and u = 4. But then q(q−1)

18
= ng

rg
= 13

which is impossible.

Now suppose that Lα ≤ Dq±1 so q±1 ≡ 0(4). Then ng
rg

=
1
2
q(q∓1)

1
2
|Lα|+1 . Now |

ng
rg
|p 6= 1

and so |ng
rg
|p = |v|p = q. Thus |Lα|+ 2 divides into q ∓ 1.

Define m := q±1
|Lα| and assume first that m > 1. Observe that v = q q±1|Lα|

q∓1
2
a for

some integer a and dg = |Lα|+2
2

q±1
|Lα|a. If |Lα| = 4 then ng

rg
= q(q∓1)

6
and, in fact,

since q ≡ 1(3), ng
rg

= q(q−1)
6

. But then dg = 3(q+1)
4

and, since q+1
4
≡ 2(3), this is a

contradiction. Thus |Lα| > 4.

Now observe that m(|Lα|+ 2) > q ∓ 1; furthermore if (m− 1)(|Lα|+ 2) = q ∓ 1

then q±1−|Lα|+2m−2 = q∓1. Reducing modulo 4, this equation gives 2m ≡ 0(4)

which is a contradiction since m
∣

∣v. Thus (m − 2)(|Lα| + 2) ≥ q ∓ 1. This implies

that m ≥ |Lα|+ 1 and so |Lα|2 + |Lα| ≤ q ± 1.
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Since ng
rg
< dg we have

q(q ∓ 1)

|Lα|+ 2
<
|Lα|+ 2

2

q ± 1

|Lα|
a

=⇒ 2|Lα|q(q ∓ 1) < (|Lα|2 + 4|Lα|+ 4)(q ± 1)a

=⇒ |Lα| <
q + 1

q
a.

The final inequality follows by using the fact that |Lα| > 4 and |Lα|2+ |Lα| ≤ q± 1.

It then implies that a > 3.

Take h of maximal order in Lα. Since |Lα| > 4 we know that h is not an

involution and nh = q(q ∓ 1) and so nh
rh

= q(q∓1)
2

. Thus dh = q±1
|Lα|a which means that

dh < dg and h acts as an automorphism on the Baer subplane, Fixg. This implies

that d2h < 3dg and so (q±1)2
|Lα|2 a

2 < 3 |Lα|+2
2

q±1
|Lα|a. This implies that q±1 < 1

2
|Lα|2+ |Lα|

which is a contradiction.

Hence m = 1 and |Lα| = q ± 1. We have two situations. If q ≡ 3(4) then

ng =
1
2
q(q− 1) and rg =

1
2
(q+1)+ 1. This means that ng

rg
is a not an integer, which

is impossible. If q ≡ 1(4) then ng
rg

=
1
2
q(q+1)

1
2
(q−1)+1 = q. Since |L : Lα| = 1

2
q(q + 1) we

must have dg a multiple of q+1
2
. The only possibility is that dg =

3(q+1)
2

which means

that q = 13 and v = 273.

In this case an involution fixes a Baer subplane with 21 points. Within this Baer

subplane a Sylow 2-subgroup of PSL(2, q) fixes 9 points. But the fixed set of a

collineation group is a closed set and so can have at most 7 points [Dem97, 3.1.2

and 3.2.18].

Now suppose that Lα = PGL(2, r) and q = ra where a ≡ 2(4). Thus q ≡ 1(4)

and ng
rg

=
1
2
q(q+1)

r2
. Now q

r2
= |ng

rg
|p 6= |v|p ≥ q

r
and so |ng

rg
|p = 1 and r =

√
q. Then

u2 − u + 1 = ng
rg

= 1
2
(q + 1). Then u = c+1

2
where c =

√
2q − 1. This implies

that u2 + u + 1 = q+3+2c
2

. Now |L : Lα| = 1
2
(q + 1)

√
q and so

√
q divides into

u2 + u + 1. Now observe that
√
q(

√
q+5

2
) > q+3+2c

2
. Furthermore

√
q(

√
q−1
2

) < ng
rg
.

Thus dg =
√
q(

√
q+e

2
) where e = 1 or 3.

Now 2u = dg − ng
rg

=
e
√
q−1
2

. We also know that u = c+1
2

and so we must have

e
√
q − 3 = 2

√
2q − 1. Since e = 1 or 3 we must have e = 3. Then

2
√

2q − 1 = 3
√
q − 3 =⇒ 2

√

2q > 3
√
q − 3

=⇒ q < (
3

3− 2
√
2
)2 < 182.

This implies that q = 72 or 132. But neither of these satisfy the equality 2
√
2q − 1 =

3
√
q − 3 and so can be excluded.
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Now suppose that Lα = PSL(2, r) and q = ra where a is odd. Then ng
rg

=
1
2
q(q±1)

1
2
r(r±1)

where q ∓ 1 ≡ 0(4). Now let h be an element of order r±1
2
. Then nh

rh
= q(q∓1)

r(r∓1) . If

r ≡ 3(4) then

ng
rg

= ra−1(ra−1 + ra−1 + · · ·+ r + 1) > ra−1(ra−1 − ra−1 + · · · − r + 1) =
nh
rh
.

Hence dg < dh which is impossible.

Now if r ≡ 1(4) then u2 − u + 1 = ng
rg

= ra−1(ra−1 − ra−2 + · · · − r + 1) and so

ra−1 − ra−2 < u < ra−1. This means that

r2a−2 − r2a−3 + · · · − ra + 3ra−1 − 2ra−2 < dg =
ng
rg

+ 2u;

dg =
ng
rg

+ 2u < r2a−2 − r2a−3 + · · · − ra + 3ra−1.

Now ra−1 + ra−2 + · · ·+ r + 1 divides into dg. But observe that

(ra−1 + ra−2 + · · ·+ r + 1)(ra−1 − 2ra−2 + 2ra−3 · · · − 2r + 3)

< r2a−2 − r2a−3 + · · · − ra + 3ra−1 − 2ra−2;

(ra−1 + ra−2 + · · ·+ r + 1)(ra−1 − 2ra−2 + 2ra−3 · · · − 2r + 4)

> r2a−2 − r2a−3 + · · · − ra + 3ra−1.

This gives a contradiction and all possibilities are excluded.

2.5.3 L† = PSL(3, q)

Once again we seek to show that our hypothesis leads to a contradiction; the usual

action of PSL(3, q) on a Desarguesian projective plane PG(2, q) will not arise due

to our restriction that all involutions fix a Baer subplane.

Recall that, for g an involution, ng = q2(q2 + q + 1) for q odd and ng = (q2 −
1)(q2 + q + 1) for q even. We assume here that q > 2 and we know that Lα ≤ M

where M is a member of C1,C2 or C5. We consider the latter two possibilities first.

Observe that, in both cases, p ≡ 1(3) since p2 divides |PSL(3, q) : M |.
Suppose that M ∈ C2. Then v is divisible by q3(q+1)(q2+q+1)

6
. Now the highest

power of q in ng
rg

is q2. Since v = ng
rg
dg and (ng

rg
, dg) = 1 we must have q3 dividing

into dg and q2 dividing into rg. But then u2 − u+ 1 = ng
rg
≤ q2 + q + 1. This means

that v ≤ (q2 + q + 1)(q2 + 3q + 3) which is a contradiction.
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Suppose that M = NPSL(3,q)(PSL(3, r)) ∈ C5 where q = ra and a ≥ 3 is an odd

integer. Then |v|p = q3

r3
. Suppose first that |v|p = |ng

rg
|p ≤ q2 and so q ≤ r3. Then

we must have a = 3, rg|(q2 + q + 1) and r3 dividing |Lα|. Since rg|(q2 + q + 1) we

cannot have Lα = PSL(3, r) or PSL(3, r).3. But since r3 divides into |Lα| we must

have Lα inside a parabolic subgroup P of PSL(3, r).3. But observe that then v is

divisible by

|PSL(3, q) : P | = q3(q3 − 1)(q2 − 1)

3r3(r − 1)(r2 − 1)

which is divisible by 9, a contradiction. The only other possibility is that p 6
∣

∣

ng
rg

and ng
rg
≤ q2 + q + 1. But then q2 ≤ rg ≤ r2(r2 + r + 1). This is impossible.

Hence we conclude that M ∈ C1. Thus Lα = ˆA.B where A is a subgroup of an

elementary abelian unipotent subgroup, U , of order q2 and B is a subgroup of odd

index in GL(2, q). We will write B∩SL(2, q) = (2, q−1).B1 where B1 ≤ PSL(2, q).

We will take α to be such that Lα ≤ P1 where

P1 = ˆ

{(

1
detY

a b

0 Y

)

: Y ∈ GL2(q), a, b ∈ GF (q)

}

.

Case: p 6≡ 1(3)

In this case |U : A| ≤ 3 and |P : B1∩P | ≤ 3 for some P ∈ SylpPSL(2, q). If B1 is a

subgroup of P ∗
1 , a parabolic subgroup of PSL(2, q), then q + 1 divides the index of

B in GL(2, q) and p = 2. Then Lα is a subgroup of the Borel subgroup of PSL(3, q)

and contains a normal Sylow 2-subgroup P . Thus rg = rg(P ) = 2q2 − q − 1 and so

rg 6
∣

∣ng which is a contradiction.

If B1 = PSL(2, q) then B ≥ SL(2, q). In fact, in odd characteristic, B must

contain all matrices of determinant ±1 since |GL(2, q) : B| is odd. Furthermore in

its action by conjugation on the non-identity elements of U , SL(2, q) is transitive.

Hence A = U . Thus, in both odd and even characteristic, Lα contains all involutions

of the parabolic group: q2(q+2) of them in the odd case, (q2− 1)(q+1) of them in

the even case. In both cases rg 6
∣

∣ng which is a contradiction.

For the remaining cases p|v and so p = 3. If B1 ≤ Dq±1 then q|v and we must

have q = 3. In this case ng = 3213 and so u2 − u + 1 = ng
rg

= 3 or 13. If ng
rg

= 3

then v = 21. This contradicts the fact that |L : M | = 13 and this divides into v. So
ng
rg

= 13, rg = 9, dg = 21 and, since B1 ≤ Dq±1 we must have Lα = [32] : (8.2). But

then Lα contains more than 9 involutions and this case is excluded.
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If B1 is a proper subgroup of PSL(2, q) isomorphic to A4, S4 or A5 then q = 3

or 9. Now PSL(2, 3) ∼= A4 and so q = 3 is already excluded. If q = 9 then 5 divides

PSL(2, q) and so B1 ∼= A5, but |PSL(2, 9) : A5| is even which is impossible.

If B1 ∼= PSL(2, r) or B1 ∼= PGL(2, r) for q = ra, a > 1 then q
r
|v. Hence q = 9

and r = 3. but then 5 divides |PSL(2, 9) : B1| which is a contradiction.

Case: p ≡ 1(3)

In this case 3 divides |PSL(3, q) : M | and thus we assume that B contains both the

Sylow 2 and Sylow 3-subgroups of GL(2, q). In fact L = PSL(3, q) since Z(L) is

semiregular (see Lemma 2.14.) Then B is a subgroup of GL(2, q) of type 4, 5, 6 or

7 in the list given earlier. Note that B contains the scalar subgroup of order 3 and

so |GL(2, q) : B| = |̂ GL(2, q) : ˆB|.
Observe first that there are two P1-conjugacy classes of involutions in P1. Only

one of these is centralized by a whole Sylow 2-subgroup, P , of P1. Call this conjugacy

class A.

In the case where Lα = A : B, that is we have a split extension, we know that

B contains a Sylow 2-subgroup of P1 and so the involution in the centre of B must

lie in A. This implies that we can conjugate by elements of P1 (i.e. choose α) such

that this involution g is the projective image of

g∗ =









1 0 0

0 −1 0

0 0 −1









.

We conclude that

B ≤
{(

1
detY

Y

)

: Y ∈ GL(2, q)

}

.

We begin with two preliminary lemmas:

Lemma 2.26. Let p be odd and Lα = ˆA : B ≤ P1. Suppose that |A| = q2 and that

(|B|, p) = 1. Then |B| > |GL(2,q)|
q2+q+1

.

Proof. Let h be an element of order p. Then

v =
nh
rh
dh =

(q2 − 1)(q2 + q + 1)

q2 − 1
dh = (q2 + q + 1)dh.

We have two possibilities:
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1. Suppose that h is quasi-central. We must have dh = u2 + u + 1 where v =

u4 + u2 + 1. Then u2 − u + 1 = nh
rh

= q2 + q + 1 and so dh = q2 + 3q + 3.

Thus |B| = |GL(2,q)|
q2+3q+3

a for some integer a. If a = 1 then |B| is not an integer for

q > 1. If a ≥ 2 then |B| > |GL(2,q)|
q2+q+1

as required.

2. Suppose that h is not quasi-central. Then d2h < v and so,
(

v

q2 + q + 1

)2

< v =⇒ v < (q2 + q + 1)2.

This implies that |B| > |GL(2,q)|
q2+q+1

as required.

Lemma 2.27. Let p be odd and Lα = A : B ≤ P1. Suppose that (|B|, p) = 1. Then

|A| 6= q.

Proof. Let h be an element of order p and suppose that |A| = q. Then

v =
nh
rh
dh =

(q2 − 1)(q2 + q + 1)

q − 1
dh = (q + 1)(q2 + q + 1)dh.

But, since v is odd and q + 1 is even, this implies that dh is not an integer. This is

a contradiction.

We now begin our analysis of the different possibilities for B. In the case where

B < GL(2, q) is of type 4, 6 or 7 then Schur-Zassenhaus implies that A.B is a split

extension.

Suppose first that B is a subgroup of type 4 in GL(2, q). Let α be such that

B ≤< D,S > whereD is the subgroup of diagonal matrices and S is an anti-diagonal

2-element. Note that we must have q dividing into |A|.
Now observe that, since B contains a Sylow 2-subgroup of D, we can choose α

such that








1 e f

0 1 0

0 0 1









∈ A =⇒









−1 e f

0 −1 0

0 0 1









2

∈ A

=⇒









1 −2e 0

0 1 0

0 0 1









∈ A

=⇒









1 e 0

0 1 0

0 0 1









∈ A.
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We conclude that A = A1 × A2 where

A1 ≤























1 e 0

0 1 0

0 0 1









: e ∈ GF (q)















, A2 ≤























1 0 f

0 1 0

0 0 1









: f ∈ GF (q)















.

Now consider an element, as given, of A1. Then,

X =









−1 0 0

0 0 a

0 a−1 0









∈ B =⇒ ˆ









−1 e 0

0 0 a

0 a−1 0









2

∈ Lα

=⇒ ˆ









1 e 0

0 1 0

0 0 1

















1 −e −ae
0 1 0

0 0 1









∈ Lα

=⇒









1 0 ae

0 1 0

0 0 1









∈ A2.

Thus, for fixed X, we have an injection from A1 into A2. There is a similar injection

from A2 into A1 and so |A1| = |A2| =
√

|A|. Now let

E = B ∩























−1 0 0

0 0 a

0 a−1 0









: a ∈ GF (q)















and observe that









1 e 0

0 1 0

0 0 1









∈ A1,









−1 0 0

0 0 a

0 a−1 0









∈ E, =⇒ ˆ









1 e 0

0 0 a

0 a−1 0









2

∈ Lα

=⇒ ˆ









−1 e ae

0 0 a

0 a−1 0









∈ Lα

and this last element is an involution. We now count all the involutions in Lα as

follows:
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Pre-image of involution g in SL(3, q) Number of such involutions in Lα









1 c d

−1
−1









|A|









−1 0 d

−1
1









√

|A|









−1 c 0

1

−1









√

|A|









−1 c d

a

a−1









|E|
√

|A|

Thus rg =
√

|A|(
√

|A|+ |E|+2) and note that rg ≤ q(2q+1) since |E| ≤ q− 1.

Suppose that (ng
rg
, p) = 1. Then rg ≥ q2 and we must have |A| = q2. Alternatively

suppose that (ng
rg
, p) 6= 1. Then

|ng
rg
|p = |v|p ≥

q3

|A| =⇒ q2
√

|A|
≥ |ng

rg
|p ≥

q3

|A|
=⇒ |A| ≥ q2.

Thus, in either case, |A| = q2. Then, by Lemma 2.26, |B| > |GL(2,q)|
q2+q+1

. But 2(q−1)2
7

<
|GL(2,q)|
q2+q+1

= q(q−1)2(q+1)
q2+q+1

for q > 1. Hence |B| = 2(q − 1)2 and |E| = q − 1. Then

rg = q(2q + 1) which makes ng
rg

a non-integer unless q = 1. This is a contradiction.

Next assume that B is of type 6 or 7. To ensure that B has odd index in GL(2, q)

we assume that B ∼= 2.(S4 × C) or B ∼= 2.(A4 × C).2 where C ≤ Z(GL(2, q))/ <

−I >.

Then we must have q dividing into |A| since |v|p ≤ q2. We write |A| = qpa where
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a ≥ 1 by Lemma 2.27. Since









1

−1
−1









∈ B this means that rg > |A|.

Suppose first that q = pa and |A| = q2. By Lemma 2.26,

|GL(2, q)|
q2 + q + 1

< |B| ≤ 24(q − 1)

=⇒ 24(q2 + q + 1) > q3 − q

=⇒ q < 30.

Then q = 7, 13 or 19. Note that in GL(2, 7) subgroups of type 6 or 7 have even index

and in GL(2, 19) subgroups of type 6 and 7 have index divisible by 3. Hence we are

left with q = 13. In this case ng = 32.13.61 and v is divisible by |L : M | = 3.7.13.61.

Now since u2 − u + 1 = ng
rg

divides into ng we must have u = 2, 4, 14 or 23. But in

all of these case u2 + u+1 is not divisible by both 7 and 61. Thus v is not divisible

by both 7 and 61 which is a contradiction.

Thus assume now that q > pa and |A| < q2. Then,

ng
rg

<
q2(q2 + q + 1)

|A| =⇒ dg <
q2(q2 + q + 1)

|A| + 2
q2 + q + 1
√

|A|
+ 2

=⇒ dg <
(q2 + 2q + 1)(q2 + q + 1)

|A|

=⇒ v <
(q + 1)2q2(q2 + q + 1)2

|A|2 .

This implies that,

(q2 + q + 1)q3(q − 1)2(q + 1)

|A||B| ≤ v <
q2(q2 + q + 1)2(q + 1)2

|A|2

=⇒ |A| < (q + 1)(q2 + q + 1)

q(q − 1)2
|B|

which implies that |A| < 2.|B| for q ≥ 7.

Now elements from 2̂.C do not centralize any element of ˆA. Thus letm = (q−1)/2
|C|

and observe that q−1
3m

= |̂ 2.C| divides into |A| − 1 = qpa − 1. This in turn means

that q−1
3m

divides into pa − 1. Since q > pa this means that 3m > p. Then

|B| > |A|
2

=⇒ 48|C| > q.pa

2

=⇒ 48
q − 1

m
> q.pa

=⇒ pa+1 < 144.



2.5 L = PSL(2, q) or L† = PSL(3, q) 49

Since p ≥ 7, a ≥ 1 we must have p = 7, a = 1. But when p = 7, 2.(A4 × C).2 and

2.(S4 × C) have even index in GL(2, q) which is a contradiction.

Thus we are left with the possibility that B is of type 5 in GL(2, q). We want

to show that Lα = ˆA.B is a split extension and we can choose α such that

B ≤
{(

1
detY

Y

)

: Y ∈ B∗

}

∼= B∗ ≤ GL(2, q).

Observe first that each Sylow 2-subgroup of Lα contains a unique element of A. thus

A∩Lα is a Lα conjugacy class. Furthermore there exist at least two non-conjugate

maximal subgroups, M1, M2, of B which are of order not divisible by p and index in

B not divisible by 2. Then, by Schur-Zassenhaus, A : M1 and A : M2 are subgroups

of Lα. But M1,M2 must both have centres which are conjugate in Lα, in fact must

lie in A. This implies that there exist conjugates of M1, M2 which both lie in

{(

1
detY

Y

)

: Y ∈ B∗

}

∼= B∗ ≤ GL(2, q).

These conjugates must generate a complement to A as required.

Now note first that SL(2, r) ≤ GL(2, q) implies that SL(2, r) ≤ SL(2, q). In fact

if we examine the maximal subgroups of PSL(2, q) given by Suzuki[Suz82] then, for

f = p1 . . . pn where pi is prime,

SL(2, r) < SL(2, rp1) < · · · < SL(2, rp1···pn−1) < SL(2, q).

We assume that at most one of these primes is equal to 2 since otherwise B has

even index in GL(2, q). If we assume that p2, . . . pn are all odd then the chain of

subgroups given here is maximal except for the first inclusion when p1 = 2. Now

SL(2, r) maximal in SL(2, q) has a unique conjugacy class hence, stepping down

the chain of inclusion, we assume that SL(2, rp1) has a unique conjugacy class in

SL(2, q). If p1 = 2 then two conjugacy classes of SL(2, r) exist in SL(2, rp1) and

hence in SL(2, q), otherwise SL(2, r) has a unique conjugacy class in SL(2, q).

By examining [KL90, Action Table 3.5G]) we find that, when f is even, the two

conjugacy classes are fused in GL(2, r2) through conjugation by

(

λ 0

0 1

)

where λ

generates the group GF (r2)∗. Thus, in GL(2, q) there is a unique conjugacy class

of SL(2, r) and we take α such that B∗ contains the copy of SL(2, r) consisting of

matrices of determinant 1 with entries in GF (r).
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Observe that B∗ 3
(

1 0

0 −1

)

and so









1 e f

0 1 0

0 0 1









∈ A =⇒









−1 e f

0 −1 0

0 0 1









2

∈ A

=⇒









1 e 0

0 1 0

0 0 1









∈ A

Once again we conclude that A = A1 × A2 where

A1 ≤























1 e 0

0 1 0

0 0 1









: e ∈ GF (q)















, A2 ≤























1 0 f

0 1 0

0 0 1









: f ∈ GF (q)















.

In the same way as earlier we also know that |A1| = |A2| =
√

|A|. We count

involutions in Lα:

Pre-image of involution g in SL(3, q) Number of such involutions in Lα









1 c d

−1
−1









|A|









−1 c d

±1
∓1









2
√

|A|









−1 c d

±1 x

∓1









, x 6= 0 2(r − 1)
√

|A|









−1 c d

v w

x −v









, x 6= 0 r(r − 1)
√

|A|
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Thus rg =
√

|A|(
√

|A|+r2+r). Now SL(2, r) has orbits of size r2−1 in its action

by conjugation on non-identity elements of A. Hence either |A| = 1 or
√

|A| ≥ r.

If |A| = 1 then, since q divides into |Lα|, we must have r = q and so ng
rg

= q2. This

contradicts Lemma 2.9. Hence
√

|A| ≥ r and so |ng
rg
|p = q2√

|A|r
.

Then either |ng
rg
|p = 1, r = q and

√

|A| = q or |ng
rg
|p = |v|p ≥ q3

|A|rp
a where

pa = |G|/|L|
|Gα|/|Lα| . In the latter case this means that

q2
√

|A|r
≥ q3

|A|rp
a

and so |A| ≥ q2.p2a. This implies that |A| = q2 and a = 0. In both cases we find

that |A| = q2 and so rg = qr( q
r
+ 1 + r). In order for this to divide into ng we find

that we must have r4+2r3− r+1 divisible by q
r
+1+ r. For q ≥ r6 this is clearly a

contradiction. Examining cases individually for q ≤ r5 we find only contradictions.

Thus Proposition 2.23 is proved.

2.6 L† = U(n, q)

In this section we prove the following proposition:

Proposition 2.28. Suppose G contains a unique component L such that L† is iso-

morphic to U(n, q). Then G does not act transitively on a projective plane.

We may assume that n ≥ 3 and (n, q) 6= (3, 2). Once again, we seek to show that

our hypothesis leads to a contradiction. We know ([KL90, Proposition 2.3.2]) that

our unitary geometry (V, κ) has a hyperbolic basis. Unless stated otherwise, we will

write all matrix representations of elements of SU(n, q) according to this basis:
{

{e1, f1, . . . , em, fm}, if n = 2m;

{e1, f1, . . . , em, fm, x}, if n = 2m+ 1.

where κ(ei, ej) = κ(fi, fj) = 0, κ(ei, fj) = δij, κ(ei, x) = κ(fi, x) = 0 for all i, j and

κ(x, x) = 1.

We will also need to make use of an orthonormal basis for (V, κ). Let vi, wi

with i = 1, . . . ,m be orthonormal vectors such that < vi, wi >=< ei, fi > for

all i = 1, . . . ,m. Our orthonormal basis B will consist of these vectors vi, wi with

i = 1, . . . ,m, as well as the vector x in the case where n is odd.

Now the result of Liebeck and Saxl [LS85] implies that Lα lies inside a maximal

subgroup M where
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• for q odd, M ∈ C1,M ∈ C2, M
† = NU(n,q)(U(n, q0)) where q = qa0 and a is

odd, or M † = M10 and (n, q) = (3, 5), or n = 4;

• for q even, M ∈ C1.

We show next that, in all cases, M must lie in C1:

Lemma 2.29. Lα lies inside M , where M maximal in L lies inside C1.

Proof. We may assume that p is odd. Define g to be the projective image of

g∗ =



















−1
−1

1
. . .

1



















.

For n 6= 4, g lies in the centre of a maximal subgroup (̂SU(2, q)×SU(n−2, q)).(q+1).

For n = 4, g lies in the centre of a maximal subgroup (̂SU(2, q)×SU(2, q)).(q+1).2.

Furthermore, g has the same form under our orthonormal basis B and, under this

basis, PΓU(n, q) = U(n, q). < δ, φ > where φ is a field automorphism and δ is

conjugation by

ˆ















a

1
. . .

1















for some a ∈ GF (q2)∗, a primitive (q + 1)-th root of unity. Then g is centralised by

< σ, φ > hence ng|q2(n−2)b where (q, b) = 1 and b < q2(n−2). Then, by Lemma 2.12,

|v|p ≤ q2(n−2).

Suppose that Lα ≤ M where M ∈ C2, or M
† = NU(n,q)(U(n, q0)) where q = qa0

and a is odd, or M † = M10 and (n, q) = (3, 5), or n = 4. Observe that |U(n, q)|p =
q

1
2
n(n−1) while, for n 6= 4, |M |p ≤ q

1
4
n(n−1). Thus we must have 1

2
n(n−1)−2(n−2) =

1
2
(n2− 5n+8) ≤ 1

4
n(n− 1). This implies that n ≤ 6. We assume this from here on.

Note that we may also assume that p ≡ 1(3) since, in all given cases, |U(n, q) :

M †| odd implies that p2 divides into |U(n, q) : M †|. We may immediately rule out

the possibility that M † = M10.

Consider first the case where n 6= 4. If M ∈ C2 then |U(n, q) : M †|p > q2(n−2)

for n = 3, 5 and 6 which is a contradiction. If M = NU(n,q)(U(n, q0)) then q = qa0
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where a is an odd prime. Then |M |p ≤ q
1
2a
n(n−1) hence we must have 1

2
(n2 −

5n + 8) ≤ 1
2a
n(n − 1) which implies that n = 3 and q = q30. Now, when n = 3,

ng = q2(q2 − q + 1) and Lα contains a Sylow p-subgroup of M . If Lα ≥ U(3, q0)

then rg = q20(q
2
0 − q0 + 1) but then rg 6 |ng which is a contradiction. The only other

possibility is that Lα ∩U(3, q0) ≤ P ∗
1 , where P

∗
1 is a parabolic subgroup of U(3, q0).

But this has even index in U(3, q0) which is a contradiction.

Now suppose that n = 4, p ≡ 1(3). Note that here L = U(4, q) and that

ng =
1
2
q4(q2 − q + 1)(q2 + 1). We need to consider the cases where M is a maximal

subgroup of odd index not lying in C1. Furthermore we need |U(4, q) : M |p ≤ q4.

We go through the possibilities in turn.

• Suppose that M ∈ C2. There exist two subgroups M ∈ C2 such that |U(4, q) :

M |p ≤ q4 but only one has odd index. We need to rule out this possibility,

when M ∼= (̂SU(2, q) × SU(2, q)).(q + 1).2 and |U(4, q) : M |p = q4. Then

Lα must contain a Sylow p-subgroup of M . But the parabolic subgroup of

SU(2, q) has even index hence we may conclude that, for some α,

Lα > ˆ

(

SU(2, q)

SU(2, q)

)

.

Then Lα contains,

h = ˆ













1

1

1

1













.

Now h is a U(4, q)-conjugate of g, thus rg ≥ 1
2
(q2 − q)2. Hence ng

rg
< q2(q +

1)(q + 2). If q4
∣

∣

ng
rg

then we must have ng
rg

= q4 which is a contradiction of

Lemma 2.9. The only other possibility is that ng
rg
≤ 1

2
(q2−q+1)(q2+1) < 1

2
q4.

But then dg < q4 and so v < 1
2
q4(q2−q+1)(q2+1) which contradicts Lα ≤M .

• Suppose that M ∈ C6 or M ∈ S. The only odd index subgroup is M = 24.A6

where q ≡ 3(8). But then |U(4, q) : M |p > q4 which is a contradiction.

• Suppose that M ∈ C5. If M = NU(4,q)(U(4, q0)) then q = qa0 where a is an odd

prime. Then |M |P ≤ q
6
a hence we must have 1

2
(n2 − 5n + 8) = 2 ≤ 6

a
which

implies that q = q30. However this implies that 9 divides into |U(n, q) : M |
which is a contradiction.
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The only other odd index subgroup in C5 is M = PGSp(4, q) when q ≡ 1(4).

Now, given our original basis {e1, f1, e2, f2} and our original hermitian form

κ, define the form κ] = ζ−1κ over the GF (q)-vector space V] spanned by

{ζe1, f1, ζe2, f2}. Here ζ is an element of GF (q2) such that ζq = −ζ. Then κ]

is a symplectic form over V].

Clearly if g∗ is an isometry for (κ], V]) then g∗ is an isometry for (κ, V ) and

we have an embedding Sp(4, q) < SU(4, q). This embedding corresponds to

a maximal subgroup PSp(4, q) < U(4, q) when q 6≡ 1(4) and PGSp(4, q) <

U(4, q) when q ≡ 1(4). In the latter case, there are two conjugacy classes of

PGSp(4, q) in U(4, q); it is this case which concerns us.

Under the orthonormal basis {v1, w1, v2, w2}, the two conjugacy classes of

PGSp(4, q) in U(4, q) are fused by x, the projective image of













λ

1

1

1













where λ ∈ GF (q2) is a (q + 1)-primitive element. Thus rg is the same no

matter which of the two conjugacy classes we lie in. Assume from here on that

Lα ≤M = PGSp(4, q) preserving (κ], V]).

Then |U(4, q) : M |p = q2, thus |M : Lα|p ≤ q2. The only maximal subgroup,

M1, of PSp(4, q) such that |PSp(4, q) : M1| is odd and |PSp(4, q) : M1|p ≤ q2

is (Sp(2, q) ◦ Sp(2, q)).2. Thus either

– Lα = M with v divisible by 1
2
q2(q + 1)(q2 − q + 1); or

– Lα ∩ PSp(4, q) ≤ B = (Sp(2, q) ◦ Sp(2, q)).2. Note that |(U(4, q) : B|p =
q4. Since the parabolic subgroups of Sp(2, q) are of even index we must

have Lα ∩ PSp(4, q) = B and so Lα = B.2 with v divisible by 1
4
q4(q +

1)(q2 − q + 1)(q2 + 1).

Under our original basis this implies that, for some α,

Lα > ˆ

(

SU(2, q)

SU(2, q)

)

.
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Now PSp(4, q) is normalized in U(4, q) by,

h = ˆ













1

1

1

1













.

Thus h lies in Lα and, as before, we know that h is a U(n, q)-conjugate of g. We

may conclude that rg ≥ 1
2
(q2− q)2 and so ng

rg
< q2(q+1)(q+2). As in the case

where M ∈ C2 this contradicts Lα = B.2. We conclude that M = PGSp(4, q).

Now observe that CPSp(4,q)(h) ∼= ˆGL(2, q).2 thus rg ≥ 1
2
q3(q + 1)(q2 + 1) and

ng
rg

< q2. This implies that v < q2(q + 1)(q + 2) which is a contradiction for

q > 4.

Thus Lα lies inside a maximal subgroup M ∈ C1. There are two types of M ∈ C1

[KL90, Table 3.5B]:

• The parabolic subgroups, Pm, 1 ≤ m ≤ bn
2
c. Observe that (q + 1)m divides

L : Pm|. This implies that p = 2. If q ≡ 1(3) then (q + 1) ≡ 2(3) and q + 1

divides into v. If m > 1 and q ≡ 2(3) then 9|v. Neither of these situations are

allowed. Hence m = 1 and we must have q = 2a, a odd.

• The subgroups Bm of type GU(m, q) ⊥ GU(n − m, q) with 1 ≤ m < n/2.

In this case qm(n−m) divides |L : Bm| and we must have p ≡ 1(3). Observe

that qm(n−m) > q2(n−2) for n
2
> m > 2. But we know, by the argument in the

previous lemma, that |v|p ≤ q2(n−2) hence m ≤ 2.

We now examine these two situations in turn and seek a contradiction.

2.6.1 Case: p = 2, q = 2a, a odd, Lα ≤ P1

Set ne to be the even element of {n, n − 1} while no is the odd element. Then

i := |U(n, q) : P1| = (qne−1)(qno+1)
q2−1 . We know that 3|(q+1)

∣

∣i. In addition, qne−2+· · ·+
q2+1|i and so for all r|ne

2
, q2r−2+· · ·+q2+1|i which means that for all r|ne

2
, r ≡ 1(3).

A similar argument allows us to conclude from the fact that (qno−1−· · ·+q2−q+1)|i
that for all r|no, r ≡ 1(3). We may conclude from this that n is even and n ≡ 2(12).

Thus n ≥ 14.
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Now Lα = [q2n−3] : B ≤ P1 where B ≤ (̂(q2 − 1)× SU(n− 2, q)) . We consider

the two possibilities given by Lemma 2.13:

• B ≤ (̂(q2 − 1)× B1) for some B1 < SU(n− 2, q). We know that B1 must lie

in a parabolic subgroup of SU(n− 2, q) by Liebeck, Saxl [LS85]. However any

parabolic subgroup of SU(n − 2, q) has index divisible by q + 1 which would

result in 9|v which is a contradiction.

• B = (̂A1 × SU(n− 2, q)) for some A1 ≤ (q2 − 1). For some α

Lα ≥ ˆ









SU(n− 2, q)

1

1









.

Now consider transvections in SU(n, q). All transvections are conjugate to

g∗ : V → V, v 7→ v + sκ(v, e1)e1

for some s ∈ GF (q2), s+ sq = 0[Tay92, p119]. For W =< e1 >, define XW,W⊥

to be the subgroup of SU(n, q) consisting of all transvections of this form.

Now suppose that h ∈ SU(n, q) preserves W . Then, for v ∈ V ,

v(h−1g∗h) = (vh−1 + sκ(vh−1, e1)e1)h

= v + sκ(vh−1, e1hh
−1)e1h

= v + sκ(v, e1h)e1h

= v + sttqκ(v, e1)e1

where t ∈ GF (q)∗ is defined via e1h = te1. Then (sttq)q + sttq = ttq(s+ sq) =

0. Thus XW,W⊥ is normal in the parabolic subgroup of SU(n, q) stabiliz-

ing W . Since |XW,W⊥ | = q[Tay92, p114], we may conclude that, for g the

projective image of g∗, |P1|
q−1 divides into CL(g). Then, since the only maxi-

mal subgroup of U(n, q) whose order is divisible by |P1|
q−1 is P1, we find that

ng ≤ |U(n,q)|(q−1)(n,q+1)2 log2 q
|P1| .

Furthermore, g ∈ Lα and, by the same argument, rg ≥ |SU(n−2,q)|
|P ∗

1 |
where P ∗

1 is

a parabolic subgroup of SU(n− 2, q). Thus,

ng
rg
≤ |U(n, q)|(q − 1)(n, q + 1)2 log2 q

|P1|
|P ∗
1 |

|SU(n− 2, q)| < q8.

Then v < q17 which is a contradiction.
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2.6.2 Case: p ≡ 1(3), Lα ≤ Bm, m ≤ 2

Observe that |L : Bm| = qm(n−m) (q
n−(−1)n)...(qn−m+1−(−1)n−m+1)

(q+1)...(qm−(−1)m) . Consider two situa-

tions:

• Suppose n is odd. Then L contains the projective image, g, of

g∗ =















−1
. . .

−1
1















.

Then g is centralized in U(n, q) by ˆGU(n− 1, q). Furthermore, as in Lemma

2.29, g has the same form, under the basis B, as above and so is centralised

by < σ, φ >. Hence ng|(qn−1)(qn−1 − · · · − q + 1). Thus |v|p ≤ qn−1. Suppose

that m ≥ 2, in which case |L : Bm| is divisible by q2(n−2). Thus we need

2(n − 2) ≤ n − 1 which gives n ≤ 3. For n = 3 we know that m = 1.

Thus, in general, Lα ≤ B1 = ˆGU(n− 1, q). Furthermore Lα contains a Sylow

p-subgroup of ˆGU(n− 1, q).

Thus either Lα ≥ ˆSU(n− 1, q) or Lα lies in a parabolic subgroup of ˆGU(n−
1, q). But (q + 1) divides |̂ GU(n − 1, q) : P | for P a parabolic subgroup of

ˆGU(n− 1, q) which is impossible. Thus Lα ≥ ˆSU(n− 1, q) and Lα contains

all the involutions of ˆGU(n− 1, q).

Now, for n > 3, consider a different involution g as in Lemma 2.29. Then

ng = q2(n−2) (q
n+1)(qn−1−1)
(q+1)(q2−1) and rg ≥ rg (̂ GU(n − 1, q)) = q2(n−3) (q

n−1−1)(qn−2+1)
(q+1)(q2−1) .

This implies that ng
rg
≤ q4 and so ng

rg
≤ q4 − q2 + 1 and v < q8 + q4 + 1. But

|L : B1| = qn−1(qn−1− · · · − q+1) which is greater than q8 + q4 +1 for n ≥ 7.

For n = 5, 2|U(5, q) : B1| > q8 + q4 + 1 and so have L = U(5, q), Lα = B1 and

v = q4(q4 − q3 + q2 − q + 1). But, since q4 >
√
v, this implies that dg = q4

which contradicts Lemma 2.9.

For n = 3 there is a unique conjugacy class of involutions of size q2(q2−q+1).

Since ˆSU(2, q) ≤ Lα ≤ ˆGU(2, q), Lα must contain precisely the involutions

lying in ˆGU(2, q) of which there are q2−q+1. Then ng
rg

= q2 which contradicts

Lemma 2.9.

• Suppose n is even and let g be as in the proof of Lemma 2.29. Now |U(n, q) :

B1| is even and thus Lα < B2 ∼= (̂SU(n− 2, q)× SU(2, q)).(q + 1) and, since
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|v|p ≤ q2(n−2), Lα contains a Sylow p-subgroup of (̂SU(n − 2, q) × SU(2, q)).

Note that, since B2 is non-maximal in L = U(4, q), we may assume that n ≥ 6.

Now the index of the parabolic subgroups of SU(n − 2, q) in SU(n − 2, q) is

even. Hence we must have Lα > ˆSU(n − 2, q). For some α, we may assume

that

Lα ≥ ˆ









SU(n− 2, q)

1

1









.

Now g is centralized in L by some conjugate of B2. This implies that

ng = q2(n−2)
(qn − 1)(qn−1 + 1)

(q + 1)(q2 − 1)
and rg ≥ q2(n−4)

(qn−2 − 1)(qn−3 + 1)

(q + 1)(q2 − 1)
.

Thus ng
rg
≤ q6(q2+1) and v ≤ q16+q15 and, for n ≥ 8, this contradicts Lα ≤ B2.

We are left with the possibility that n = 6. But 2|U(6, q) : B2| > q16 + q15,

thus Lα = B2 and v = q8(q4+ q2+1)(q4− q3+ q2− q+1). But then q8 ≥ √v
and so dg = q8 which contradicts Lemma 2.9.

Thus Proposition 2.28 is proven.

2.7 L = PSp(n, q)

In this section we prove the following proposition:

Proposition 2.30. Suppose G contains a minimal normal subgroup isomorphic to

PSp(n, q) with n ≥ 4. Then G does not act transitively on a projective plane.

We know [KL90, Proposition 2.4.1] that our symplectic geometry (V, κ) has a

symplectic basis. Unless stated otherwise, we will write all matrix representations of

Sp(n, q) according to this basis, {e1, f1, . . . , em, fm}, where n = 2m. Here κ(ei, ej) =

κ(fi, fj) = 0 and κ(ei, fj) = δij.

By Liebeck and Saxl [LS85], we know that Lα lies inside a maximal subgroup M

where

• for q odd, M ∈ C1,C2 or M = NPSp(n,q)(PSp(n, q0)) or n = 4;

• for q even, M ∈ C1.
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Note that when n = 4 we can assume that q > 3 since PSp(4, 3) ∼= U(4, 2) which

has already been covered.

Lemma 2.31. Lα lies inside a maximal subgroup from family C1.

Proof. Assume that q is odd and that Lα ≤ M where M is a maximal subgroup of

PSp(n, q) that does not lie in C1. Observe that in PSp(n, q) there exists a subgroup

B ∼= Sp(2, q) ◦ Sp(n− 2, q).

For n 6= 4, by [KL90, Lemma 3.2.1 and Table 3.5.c], B is normal in a PΓSp(n, q)-

maximal subgroup BΓ such that |PΓSp(n, q) : BΓ| = |L : B|. Thus, for n 6= 4, the

involution g ∈ Z(B) has ng = |L : B| = qn−2(qn−2 + · · ·+ q2 + 1).

When n = 4 the same argument applies to B ∼= (Sp(2, q) ◦ Sp(2, q)).2 and the

involution g ∈ Z(B) has ng =
1
2
q2(q2 + 1).

Therefore the highest value of p in v is at most qn−2. The lowest index of p

among maximal subgroups M ∈ C2 or M = NPSp(n,q)(PSp(n, q0)) is q
1
8
n2
. This

implies that n− 2 ≥ 1
8
n2 which is a contradiction for n > 4.

Now suppose that M is maximal in PSp(4, q), M 6∈ C1, |PSp(4, q) : M | is odd

and |PSp(4, q) : M |p ≤ q2. We must haveM = (Sp(2, q)◦Sp(2, q)).2. Then Lα ≤M

and Lα ≥ P for some P a Sylow p-subgroup of M . Since the parabolic subgroups

of Sp(2, q) have even index in Sp(2, q) we must have Lα = (Sp(2, q) ◦ Sp(2, q)).2.
Now we can choose α such that

Lα = ˆ

〈(

Sp(2, q)

Sp(2, q)

)

, h :=

(

I2×2

I2×2

)〉

.

Observe that h is conjugate to g in PSp(4,q). Now h has at least 1
2
q2(q2 − 1)

Lα-conjugates in Lα, thus
ng
rg
≤

1
2
q2(q2+1)

1
2
q(q2−1) ≤ 2q. Then v ≤ 8q2. But v > |L : Lα| =

1
2
q2(q2 + 1) which is a contradiction for q > 3.

Hence in all cases M ∈ C1.

In C1 we have subgroups of two types:

• Parabolic subgroups, Pm ∼= [qa].( q−1
(q−1,2)).(PGL(m, q)×PSp(n− 2m, q)) where

1 ≤ m ≤ n
2
, a = m

2
− 3m2

2
+ mn. If Lα ≤ Pm then (q + 1)

∣

∣|PSp(n, q) : Pm|
divides into v. Hence we must have p = 2.

• Subgroups, Bm, of type Spm ⊥ Spn−m isomorphic to Sp(m, q) ◦ Sp(n−m, q)

where 2 ≤ m < n
2
and m is even. In this case q2 divides into |PSp(n, q) : Bm|

which in turn divides into v. Hence we must have p ≡ 1(3).
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2.7.1 Case: p = 2, Lα ≤ Pm

The index of Pm in Sp(n, q) is divisible by q2 + 1 for all m > 1 which is impossible

and so m = 1. Then P1 ∼= [qn−1] : ((q − 1) × Sp(n − 2, q)) and |Sp(n, q) : P1| =
(q + 1)(qn−2 + · · · + q2 + 1). We conclude that q ≡ 2(3) and that every prime

dividing into n
2
is equivalent to 1(3). Hence n ≥ 14 and n ≡ 2(4). This implies that

n − 2 ≡ 0(4) and every parabolic subgroup of Sp(n − 2, q) has index divisible by

q2 + 1. Thus Lα = [qn−1] : (A× Sp(n− 2, q)) for some A ≤ q − 1.

Now consider Sp(n, q) acting on a vector space V preserving a symplectic form

κ. For u ∈ V, a ∈ GF (q) we have transvections in Sp(n, q) defined by,

ga,u : V → V, v 7→ v + aκ(v, u)u

Fix u, set W =< u > and let XW,W⊥ = {ga,u : a ∈ GF (q)}. Then XW,W⊥ < Sp(n, q)

is of size q. The parabolic subgroup of Sp(n, q) which preserves W normalizes

XW,W⊥ .

Now let g = g1,u. Then, since the only maximal subgroup whose order is divisible

by |P1|
q−1 is P1, we have

ng ≤
|Sp(n, q)|
|P1|

(q − 1) log2 q.

Similarly rg ≥ |Sp(n−2,q)|
|P ∗

1 |
where P ∗

1 is a parabolic subgroup of Sp(n− 2, q). Then

ng
rg
≤ |Sp(n, q)||P

∗
1 |(q − 1) log2 q

|Sp(n− 2, q)||P1|
≤ q4.

Thus v ≤ q9 which contradicts n ≥ 14 and this case is excluded.

2.7.2 Case: p ≡ 1(3), Lα < Bm

We know that the maximum power of p in v is at most qn−2. Now |PSp(n, q) :

Bm|p = q
1
4n2

q
1
4m2

q
1
4 (n−m)2

. Thus we need,

n− 2 ≥ 1

4
(n2 −m2 − (n−m)2) =

1

2
m(n−m).

This implies that m = 2 and so Lα ≤ Sp(2, q) ◦ Sp(n − 2, q). If n = 4 then B2 is

not maximal and so we assume that n > 4. Furthermore we know that Lα must

contain a Sylow p-subgroup of Sp(2, q) ◦Sp(n− 2, q). But the indices of a parabolic

subgroup of Sp(2, q) in Sp(2, q) and of a parabolic subgroup of Sp(n − 2, q) in
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Sp(n − 2, q) are both divisible by q + 1, hence are even. Thus we conclude that

Lα = Sp(2, q) ◦ Sp(n− 2, q).

Now rg ≥ 1
2
qn−4(qn−4 + . . . q2 + 1) and so ng

rg
≤ 2q2(q2 + 1) and v ≤ 8q4(q2 + 1)2.

But v > |L : Lα| = qn−2(qn−2 + . . . q2 + 1) which is a contradiction for n > 6.

Thus we must assume that n = 6 and |L : Lα| = q4(q4 + q2 + 1) and ng
rg
≤

2q2(q2 + 1). If |ng
rg
|p = |v|p ≥ q4 then ng

rg
= q4 which contradicts Lemma 2.9. Thus

|ng
rg
|p = 1 and so ng

rg

∣

∣q4 + q2 + 1. If ng
rg

= q4 + q2 + 1 then dg is not divisible by q4

which contradicts the fact that |L : Lα| divides into v. If ng
rg
< 1

2
(q4 + q2 + 1) then

v < |L : Lα| which is also a contradiction.

Our proof of Proposition 2.30 is complete.

2.8 L = Ω(n, q), nq odd

Throughout the next two sections, Greek letters such as ε, η and ζ will stand for

either +,− or ◦. We will write polynomials such as x− ε to mean x− ε1. We write

Ω◦(n, q) to mean Ω(n, q) when n is odd.

In this section we assume that n ≥ 7 and q is odd and we prove the following

proposition:

Proposition 2.32. Suppose that n is odd, n ≥ 7 and G has a minimal normal

subgroup isomorphic to Ω(n, q). Then G does not act transitively on a projective

plane.

Observe that L contains Ωε(n − 1, q).2 for ε = − and ε = +. One of these

groups contains a central involution and hence L contains an involution g such that

rg(L) = 1
2
q

n−1
2 (q

n−1
2 + ε). Examining [KL90, Table 3.5.D] for fusion of conjugacy

classes, we see that ng = rg(L) and thus |v|p ≤ q
n−1

2 .

We begin by proving that Lα must lie in a maximal subgroup M ∈ C1:

Lemma 2.33. Lα does not lie inside a subgroup M ∈ Ci, i > 1.

Proof. We examine the list of odd index maximal subgroups in G as given by Liebeck

and Saxl[LS85]. The following possibilities are available for a maximal subgroup M

of odd index. We exclude them in turn.

• L = Ω(7, q) and M = Ω(7, 2). We know that |v|p ≤ q3 and so |Lα| must be

divisible by q6. This is impossible for Lα ≤M .
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• M ∈ C2 or M = NΩ(n,q)(Ω(n, q0)) where q = qc0 for c an odd prime. In both

cases |M |p ≤
√

|Ωε(n, q)|p. Now |Ωε(n, q)|p = q
1
4
(n−1)2 and so we must have,

1

8
(n− 1)2 +

1

2
(n− 1) ≥ 1

4
(n− 1)2.

This is impossible for n ≥ 7.

Thus Lα lies inside a parabolic subgroup or a subgroup Bm of type O(m, q) ⊥
Oη(n −m, q) for some odd m < n. In fact parabolic subgroups have even index in

PΩ(n, q) hence we may assume that Lα ≤ Bm for some m.

Since |v|p ≤ q
n−1

2 we know that Lα ≤ B1 = Ωη(n− 1, q).2 and that Lα contains

a Sylow p-subgroup of Ωη(n − 1, q). Now the parabolic subgroups of Ωη(n − 1, q)

have even index. Hence we must have Lα = Ωη(n − 1, q) and v is divisible by

|Ω(n, q) : Ωη(n− 1, q).2| = 1
2
q

n−1
2 (q

n−1
2 + η).

Now consider the involution h centralized in L by (Ωζ(2, q) × Ω(n − 2, q)).[4].

Then nh = qn−2(qn−1−1)
2(q−ζ) . Now Ωη(n − 1, q) contains a conjugate of h centralized by,

at most, (Ωζ(2, q)× Ωζη(n− 3, q)).[4]. then rh ≥ qn−3(q
n−3

2 +ηζ)(q
n−1

2 −η)
2(q−ζ) . This implies

that nh
rh
≤ q(q + 1) and so v ≤ 2q2(q + 1)2. But then v < |L : Lα| which is a

contradiction.

Hence we have proved Proposition 2.32.

2.9 L = PΩε(n, q), n even

In this section we assume that n ≥ 8 and we prove the following proposition:

Proposition 2.34. Suppose that n is even, n ≥ 8 and G has a minimal normal

subgroup isomorphic to PΩε(n, q). Then G does not act transitively on a projective

plane.

First we examine what happens when p = 2:

Lemma 2.35. Suppose n ≥ 8 is even and G has a minimal normal subgroup iso-

morphic to PΩε(n, 2a). Then G does not act transitively on a projective plane.

Proof. Write q = 2a. We know that Lα ≤ Pm for some integer m. If m > 1 then

qb+1 divides |PΩε(n, q) : Pm| where b is some even integer. Since qb+1 ≡ 2(3) this
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is impossible. Thus Lα lies inside some parabolic subgroup P1. Now

|PΩε(n, q) : P1| =
(q

n
2 − ε)(q

n−2
2 + ε)

q − 1
.

If q ≡ 2(3) then q
n−2

2 +1 ≡ q
n
2 +1 ≡ 2(3). Since one of these divides |PΩε(n, q) :

Pm|, this is impossible. Hence q ≡ 1(3). Now let ne be the even one of n
2
and n−2

2
,

no the odd one. Then one of the following holds:

• |Ωε(n, q) : P1| = qne−1
q−1 (qn0 + 1) and 9 divides |Ωε(n, q) : P1|; or

• |Ωε(n, q) : P1| = qno−1
q−1 (qne + 1) and qne + 1 ≡ 2(3).

Both of these cases are impossible.

Throughout the rest of the section p is odd. Now L contains maximal subgroups

in C1 of type Oζ(2, q) ⊥ Oη(n − 2, q) for ζη = ε. One of these groups contains a

central involution and hence L contains an involution g such that |L : CL(g)| =
qn−2(q

n−2
2 +η)(q

n
2 −ε)

2(q−ζ) . Examining for fusion of conjugacy classes in [KL90, Tables 3.5.E

and 3.5.F] we see that, except when (n, ε) = (8,+), ng = |L : CL(g)|. When

(n, ε) = (8,+), we know that ng ≤ 3|L : CL(g)| and so, in all cases, |v|p ≤ qn−2.

We begin by proving that Lα must lie in a maximal subgroup M ∈ C1:

Lemma 2.36. Lα does not lie inside a subgroup M ∈ Ci, i > 1.

Proof. We examine the list of odd index maximal subgroups in G as given by Liebeck

and Saxl[LS85]. The following possibilities are available for a maximal subgroup of

odd index M 6∈ C1. We exclude them in turn.

• L = PΩ+(8, q) and either M = Ω+(8, 2) or M = 23.26.PSL(3, 2). We know

that |v|p ≤ q6 and so |Lα|p ≥ q6. This is impossible for Lα ≤M in both cases.

• M ∈ C2 or M = NPΩε(n,q)(PΩε(n, q0)) where q = qc0 for c an odd prime. In

both cases |M |p ≤
√

|PΩε(n, q)|p. Now |PΩε(n, q)|p = q
1
4
n(n−2) and so we must

have
1

8
n(n− 2) + n− 2 ≥ 1

4
n(n− 2).

This is impossible for n > 8. When n = 8, no subgroup M of odd index has

|M |p ≥ 6 so the result stands.
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Thus Lα lies inside a parabolic subgroup Pm or a subgroupBm of typeOζ1(m, q) ⊥
Oη1(n − m, q) for some m < n

2
. In fact parabolic subgroups have even index in

PΩε(n, q) for p odd. Hence we assume that Lα ≤ Bm for some integer m. We know

that |v|p ≤ qn−2 and so |PΩε(n, q) : Bm|p ≤ qn−2. This implies that m = 1 or m = 2.

Note also that p ≡ 1(3).

Suppose first that Lα ≤ B2 where B2 is of type Oζ1(2, q) ⊥ Oη1(n − 2, q) for

ζ1η1 = ε. Then |PΩε(n, q) : B2| = qn−2(q
n−2

2 +η1)(q
n
2 −ε)

2(q−ζ1) and so Lα must contain a

Sylow p-subgroup of B2. Since the parabolic subgroups of PΩη1(n− 2, q) have even

index we must have Lα > Ωη1(n− 2, q).

In the case where Lα ≤ B1 then Lα ≤ Ω(n − 1, q).c1 where c1 ∈ {1, 2}. Now

|PΩε(n, q) : B1|p = q
n−2

2 hence |B1 : Lα|p ≤ q
n−2

2 . Examining the proof of Lemma

2.33 this means that Lα ∩Ω(n− 1, q) lies inside a maximal subgroup of Ω(n− 1, q)

in family C1.

Since the parabolic subgroups of Ω(n− 1, q) have even index in Ω(n− 1, q) this

means that Lα∩Ω(n−1, q) ≤ B∗
m1

; here B∗
m1

is a maximal subgroup of Ω(n−1, q) of

type Om1(q) ⊥ Oγ(n−1−m1, q) for some odd m1 < n−1. In fact |B1 : Lα|p ≤ q
n−2

2

implies thatm1 = 1 and that Lα contains a Sylow p-subgroup of B∗
1 = Ωη1(n−2, q).c2

where c2 ∈ {1, 2}. Once again, since the parabolic subgroups of Ωη1(n − 2, q) have

even index we must have Lα > Ωη1(n− 2, q).

Thus in both cases, when m = 1 and when m = 2, we see that Lα > Ωη1(n−2, q)

is a subgroup of PΩε(n, q) which preserves a decomposition of the associated vector

space V into subspaces, V = W2 ⊥ Wn−2, where dimWi = i and the Wi are non-

degenerate subspaces of V .

Then H = Ωη1(n− 2, q) contains h a conjugate of g, and CH(h) is isomorphic to

either (Ωγ1(2, q)×Ωγ2(n− 4, q)).2 or 2.(PΩγ1(2, q)× PΩγ2(n− 4, q)).[4] (see [KL90,

Proposition 4.1.6]). In either case rg ≥ qn−4(q
n−4

2 +γ2)(q
n−2

2 −η1)
2(q−γ1) .

If n > 8 this means that ng
rg
≤ q2(q+1)3

(q−1)2 and so v ≤ 2q4(q+1)4. Since |L : Lα| < v

we must have n = 10, q = 7 and Lα = B1. But then |L : B1| is divisible by
1
2
74(75 ± 1). This is impossible since then |L : B1| is divisible by a prime s ≡ 2(3).

If n = 8 then ng
rg
< 4q2(q+1)2. Then v < 28q4(q+1)4 which is less than |L : B2|.

Thus Lα = B1. But then |L : Lα| is even which is a contradiction.

Proposition 2.34 is now proven.
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2.10 L is an exceptional group of Lie type in odd

characteristic

In this section we prove the following proposition:

Proposition 2.37. Suppose that G has a minimal normal subgroup L where L is an

exceptional group of Lie type in odd characteristic or that G has a unique component

L such that L† is isomorphic to a simple group E6(q) or
2E6(q) where q is odd. Then

G does not act transitively on a projective plane.

We introduce some extra notation for this section and the following one. We will

write E−
6 for 2E6, E

+
6 for E6. Similarly SL− will stand for SU , SL+ for SL. We will

use ε to denote either ±1 or ± depending on the context. Generally our notation

refers to the adjoint version of the exceptional group, any variation on this will be

specified. For a group G, we will write 1
2
G to mean a subgroup in G of index 2. We

define P (G) := min{|G : H| : H < G}. Finally, for a group H we write Op′H to

mean the unique smallest normal subgroup N of H such that |H/N |p = 1.

We have eight possibilities for L which we will examine in turn. As usual we will

examine odd-index maximal subgroups of L, treating these as candidates to contain

a stabilizer Lα, and seek to show a contradiction.

We immediately exclude the case where L = 2G2(q), q > 3, by examining the list

of maximal subgroups of 2G2(q) given in [Kle88a, Theorem C] (see also [War66]).

We see that any maximal subgroup of odd index must have index divisible by 9 and

hence cannot contain a point-stabilizer. Hence this case is excluded. Note that the

list given by Kleidman [Kle88a] contains a maximal subgroup of odd index (with

structure (22×D 1
2
(q+1)) : 3) which has been omitted by Liebeck and Saxl[LS85] and

by Kantor[Kan87].

For the remaining cases we will refer to the results of Liebeck and Saxl giving the

maximal subgroupsM † of odd index in L†.[LS85] These maximal subgroupsM † take

one of two forms: Either M † = NL†(L
†(q0)), where q = qa0 for a an odd prime and

the subgroup L†(q0) of L
†(q) corresponds to the centralizer of a field automorphism

of L†(q) (see [Kan87, Theorem C]), or M † is enumerated in [LS85, Table 1].

Note that, by [KL90, Table 5.1.B], OutL, the outer automorphism group of L,

has order strictly less than q provided L 6= 3D4(3),
2E6(5). We also use the following

lemma:
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Lemma 2.38. Let φ be a field automorphism of L(q) of prime order a. Let L(q0) =

Op′CL(q)(φ) where q = qa0 . Then NL(q)(L(q0)) . Inndiag(L(q0)) and, furthermore,

Inndiag(L(q0)) = L(q0).d where

d =















(3, q0 − ε) L = Eε
6

(2, q0 − 1) L = E7

1 otherwise

Proof. Our notation is consistent with that in [GLS94]. Write L(q) = Op′CL(σ)

where L is a simple adjoint Fp-algebraic group, Fp is the algebraic closure of GF (q)

and σ is a Steinberg automorphism [GLS94, Definition 2.2.1].

By [GLS94, Proposition 2.5.17], there exists a Steinberg automorphism τ of L

such that τ a = σ and τ induces φ on L. Then L(qo) = Op′CL(τ) and, by [GLS94,

Proposition 2.5.9], NL(L(q0)) = CL(τ).

Thus NL(q)(L(q0)) = CL(q)(τ) ≤ CL(q)(φ) . Inndiag(L(q0)) by [GLS94, Propo-

sition 4.9.1]. The structure of Inndiag(L(q0)) is given in [GLS94, Theorem 2.5.12].

2.10.1 Case: L = E8(q)

Referring to [GLS94, Table 4.5.1], we see that E8(q) contains an involution g such

that CL(g) ≥ 2.(PSL(2, q) × E7(q)). There is one such E8(q) conjugacy class of

involutions in L and so ng divides into

2q56(q10 + 1)(q12 + 1)(q6 + 1)(q30 − 1)

q2 − 1
.

Using Lemma 2.12 this implies that |v|p ≤ q56 and hence that |Lα|p ≥ q64. The

list in [LS85, Table 1] contains no maximal subgroups M such that |M |p ≥ q64.

Similarly Lemma 2.38 implies that |NL(E8(q0))|p = |E8(q0)|p = q1200 . Since q = qa0

where a is an odd prime, q1200 ≤ q40 and so this possibility is excluded.

2.10.2 Case: L = E7(q)

Referring to [GLS94, Table 4.5.1], we see that E7(q) contains an involution g such

that CL(g) contains SLε(8, q)/(4, q − ε) for ε either + or −. There is one such

Inndiag(E7(q)) conjugacy class of involutions in L and so ng divides into

(4, q − 1)q35(q7 + ε)(q5 + ε)(q3 + ε)(q8 + q4 + 1)(q12 + q6 + 1).
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This implies that |v|p ≤ q35 and hence that |Lα|p ≥ q28. The list in [LS85,

Table 1] contains one maximal subgroup such that |M |p ≥ q28, namely M =

NL(2.(PSL(2, q) × PΩ+(12, q)). Then |L : M |p = q32 and so p ≡ 1(3). But this

implies that 9 divides into |L : M | and so it is not possible that Lα ≤M .

Similarly Lemma 2.38 implies that |NL(E7(q0))|p ≤ |E7(q0).2|p = q630 . Since

q = qa0 where a is an odd prime, q630 ≤ q21 and so this possibility is excluded.

2.10.3 Case: L† = Eε
6(q)

Referring to [GLS94, Table 4.5.1], we see that L contains an involution g such that

CL(g) contains Spin
ε
10(q). Here Spin

ε
10(q)

∼= (4, q− ε).PΩε(10, q). There is only one

such Inndiag(Eε
6(q)) conjugacy class of involutions in L and so,

ng = q16(q6 + εq3 + 1)(q2 + εq + 1)(q8 + q4 + 1).

This implies that |v|p ≤ q16 and hence that |Lα|p ≥ q20. Then Lemma 2.38

implies that |NL†(L
†(q0))|p ≤ |L†(q0).(3, q − ε)|p which divides into 3q360 . Since

q = qa0 where a is an odd prime, q360 ≤ q12 and so this possibility is excluded.

Subcase: ε = +

In this case the list in [LS85, Table 1] contains two maximal subgroups M † such

that |M †|p ≥ q20: M † = NL†((4, q − 1).PΩ+(10, q)) or M † is parabolic of type D5.

If p ≡ 1(3) in either case then 9 divides |L : M | which is a contradiction. Hence

p 6≡ 1(3), the universal and adjoint versions coincide and L is simple.

In the non-parabolic case, |L : M |p > p2 which is impossible for p 6≡ 1(3). Hence

M is a parabolic subgroup of E+
6 (q) of type D5 and |L : M | = (q6+ q3+1)(q2+ q+

1)(q8 + q4 + 1).

Now M ∼= [q16] : (Spin+10(q)H) where H is a Cartan subgroup of E6(q) and H

normalizes Spin+10(q). Here Spin+10(q)
∼= (4, q − 1).PΩ+(10, q) and PΩ+(10, q) has

parabolic subgroups of even index. This implies that Lα ≥ [q16] : (Spin+10(q).2) for

p 6= 3.

Furthermore, for p = 3, every non-parabolic subgroup of PΩ+(10, q) has index

divisible by 9[Kle87]. This means that Lα ≥ [ q
16

3
].(Spin+10(q).2). Now E, the com-

mutator subgroup of the Levi complement in M, is isomorphic to Spin+10(q) and
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|E : Lα ∩E| is at most 3
2
(q − 1). But P (Spin+10(q)) >

3
2
(q − 1) [KL90, Table 5.2.A].

Thus Lα > E.

Now if q = 3a then |E| is divisible by 38a − 1; in particular, |E| is divisible

by the primitive prime divisors of 38a − 1. This implies that if φ : E → GL(m, 3)

is a non-trivial representation of E over GF (3) then m ≥ 8a. Now consider the

action of E on the unipotent radical of the full parabolic group, [q16], considered as

a module over GF (3). We know that E does not act trivially on any submodule

of the unipotent radical (otherwise Z(E) would have too large a centralizer; see

[GLS94, Table 4.5.1]). Thus the action must be either irreducible or split into two

modules both of size q8. In either case we must have Lα ≥ [q16] : (Spin+10(q).2).

We return to the general case where p 6≡ 1(3) and assume that M contains

CL(g) = Spin+10(q)H. Furthermore we know that L acts on the cosets of M as a

rank 3 permutation group with subdegrees 1, q(q3 + 1)(q8 − 1)/(q − 1) and q8(q4 +

1)(q5 − 1)/(q − 1)([Kan87]). Then we have two possibilities:

• Suppose CM(h) ≥ Spin+10(q) for all h in Lα where h is L-conjugate to g. Now if

M = [q16] : CL(g) then M contains q16 M -conjugates of CL(g) each containing

a unique copy of Spin+10(q). Any other L-conjugate of CL(g) lies inside a

non-trivial conjugate of M . But these intersect M with non-trivial indices as

above. These intersections cannot contain Spin+10(q). Hence M contains only

M -conjugates of g and, in fact, all these must lie in Lα. Thus rg = q16 and
ng
rg

= (q8 + q4 + 1)(q6 + q3 + 1)(q2 + q + 1). Set

u = q8 +
1

2
q7 +

3

8
q6 +

5

16
q5

99

128
q4 +

127

256
q3 +

423

1024
q2 +

749

2048
q +

39587

32768
.

Then u2−u+1 > ng
rg

for q ≥ 47. If we set u1 = u− 1
32768

then u21−u1+1 < ng
rg

for q > 1. Thus we need to check q < 47 but no such q satisfies u2−u+1 = ng
rg

for integer u.

• Suppose there exists h in Lα which is L-conjugate to g and CM(h) does not

contain a copy of Spin+10(q). Then CL(h) lies inside a non-trivial conjugate of

M . Hence |M : CM(h)| is a multiple of q(q3 + 1)(q8 − 1)/(q − 1) or q8(q4 +

1)(q5 − 1)/(q − 1). Furthermore we know that q16 divides |M : CM(h)| since
|M |p = q16|CL(g)|p. Hence |M : CM(h)| ≥ q16(q4 + 1)(q5 − 1)/(q − 1).

Now, if Lα ≥ [q16] : (Spin+10(q).2) then rg = rg(M) since Lα£M and |M : Lα|
is odd. Thus rg ≥ q16(q4 + 1)(q5 − 1)/(q − 1) and ng

rg
< q8 + q4 + 1. Then
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dg ≤ q8 + q4 + 1 < (q6 + q3 + 1)(q2 + q + 1). Thus v < |L : M | which is a

contradiction.

Subcase: ε = −

In this case the list in [LS85, Table 1] contains one maximal subgroup M † in L† such

that |M †|p ≥ q20, namely M † = NL†((4, q + 1).PΩ−(10, q)). In fact |M |p = q20 and

so p ≡ 1(3) and the universal and adjoint versions of E−
6 coincide and L is simple.

Then M = NL(Spin
−
10(q))

∼= Spin−10(q).(q + 1) ([GLS94, Table 4.5.2]). Furthermore

Lα must contain a Sylow p-subgroup of M . But the parabolic subgroups of PΩ−
10(q)

have even index, hence Spin−
10(q).2 ≤ Lα ≤ Spin−10(q).(q + 1).

Now, using [GLS94, Table 4.5.2], we see that E−
6 (q) contains two conjugacy

classes of involutions: those conjugate to g, centralized by Spin−
10(q), and those

conjugate to g1 say, centralized by SL(2, q) ◦ SU(6, q). Then ng = q16(q2 − q +

1)(q6 − q3 + 1)(q8 + q4 + 1) and ng1 = q20(q4 + 1)(q2 + 1)(q6 − q3 + 1)(q8 + q4 + 1).

We examine the involutions lying in Spin−
10(q) using [GLS94, Table 4.5.2]. Apart

from the central involution, Spin−
10(q) contains two conjugacy classes of involutions.

Let h be an involution in Spin−
10(q) centralized by Spin+4 (q) ◦ Spin−

6 (q). Then Lα

contains at least 1
4
q12(q4 + q3 + q2 + q + 1)(q2 − q + 1)(q4 + 1)(q2 + 1) conjugates of

h. If h is L-conjugate to g, then ng
rg

< 4q8 which is a contradiction. Thus assume

that h is L-conjugate to g1.

In this case ng
rg
≤ 4q16 + 4q12 + 4q8. Then

dg <
ng
rg

+ 2

√

ng
rg

+ 2 < 4q16 + 4q12 + 6q8 + 2q4 + 2.

This implies that v < 19|L : M | for q ≥ 7.

Now suppose that q16 does not divide into ng
rg
. Then ng

rg
divides into (q2 − q +

1)(q6 − q3 + 1)(q8 + q4 + 1) and so dg < 3q16 and v = |L : M |. This contradicts

Lemma 2.10. Thus v = 7|L : M | or v = 13|L : M | and q16
∣

∣

ng
rg
.

If ng
rg
≥ 7q16 then v > 49q32 > 13|L : M | which is a contradiction. Thus, by

Lemma 2.9, ng
rg

= 3q16. This implies that 3q16 < dg < 3q16 + 2
√
3q8 + 2 and so

9q32 < v < 9q32 + 12q24 + 6q16. But then 7|L : M | < v < 13|L : M | which is a

contradiction.
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2.10.4 Case: L = 3D4(q)

We know that 3D4(q) has a single conjugacy class of involutions[GLS94] which is

centralized by a maximal subgroup isomorphic to (SL(2, q3) ◦ SL(2, q)).2 [Kle88b].

Hence, for g an involution in L, ng = q8(q8+ q4+1) and so |v|p ≤ q8 and |Lα|p ≥ q4.

If Lα < M = NL(
3D4(q0))) then this condition implies that q = q30. No such

subfield subgroup exists.

There are two other odd index maximal subgroupsM such that |M |p ≥ q4.[LS85]

The first possibility is that M = G2(q) and |L : M |p = q6. But then odd index

subgroups of G2(q) have p-index strictly greater than q2.[LS85] Thus Lα = G2(q).

Now rg(G2(q)) = q4(q4 + q2 + 1) and so ng
rg

= q4(q4 − q2 + 1). But this implies that

|v|p ≤ q4 which is impossible.

The second possibility is that Lα ≤ M = 2.(PSL(2, q) × PSL(2, q3)).2. Then

|L : M | = q8(q8 + q4 + 1) and so p ≡ 1(3) and Lα contains a Sylow p-subgroup of

M . But the parabolic subgroups of PSL(2, q) have even index, hence we conclude

that Lα = M .

Now rg(2.(PSL(2, q) × PSL(2, q3))) ≥ 1 + 1
2
q3(q3 − 1)1

2
q(q − 1). This implies

that ng
rg
< 7q8. Suppose that |ng

rg
|p = 1 and hence ng

rg
≤ q8 + q4 + 1. Then dg < 3q8

and so dg = q8. This contradicts Lemma 2.10.

Thus |ng
rg
|p > 1 and so we must have either ng

rg
= q8 (contradicting Lemma 2.9)

or ng
rg

= 3q8. If ng
rg

= 3q8 then dg <
13
3
(q8 + q4 + 1) which is the smallest possibility

for dg that is larger than ng
rg
. Thus we have a contradiction.

2.10.5 Case: L = G2(q)

Referring to [GLS94, Table 4.5.1], we see that G2(q) contains an involution g such

that CL(g) contains SL(2, q) ◦ SL(2, q). There is one such conjugacy class of invo-

lutions in L and, examining [Kle88a], we see that CL(g) ∼= (SL(2, q) ◦ SL(2, q)).2.
Hence ng = q4(q4+ q2+1). Using Lemma 2.12, we may conclude that |v|p ≤ q4 and

hence that |Lα|p > q2.

Examining the odd-index maximal subgroups [KL90], we find that all have p-

index divisible by p2 and so p ≡ 1(3). We have a number of possibilities for M an

odd-index maximal subgroup, |M |p ≥ q2, M containing Lα:

• Suppose M = NL(G2(q0)). Then using Lemma 2.38 we find that q = q30. But

this means that 9 divides |L : M | which is impossible.
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• Suppose M = (SL(2, q) ◦ SL(2, q)).2. Then Lα ≥ 2.P.2 where P is a Sylow p-

subgroup of PSL(2, q)×PSL(2, q). Since the parabolic subgroup of PSL(2, q)

have even index we must have Lα = M and v = q4(q4 + q2 + 1)a for some

integer a. Then Lemma 2.10 implies that a 6= 1 and so a ≥ 7.

Now PSL(2, q) × PSL(2, q) has at least 1
4
q2(q ± 1)2 involutions and thus so

does SL(2, q) ◦ SL(2, q). Then

ng
rg

< 4q2
q4 + q2 + 1

q2 − 2q + 1
< 7q4

for q ≥ 7. Thus either ng
rg

= q4 (contradicting Lemma 2.9) or ng
rg

= 3q4 or ng
rg

divides into q4 + q2 + 1.

If u2−u+1 = ng
rg

= 3q4 then u2+u+1 = dg < 3q4+2
√

3q4+2 < 4q4+4q2+4.

This implies that v < 12q4(q4+q2+1) and so a = 7. But then dg =
7
3
(q4+q2+1)

which is less than ng
rg

for q ≥ 7. This is impossible.

If u2 − u + 1 = ng
rg

= q4 + q2 + 1 then u = q2 + 1 and dg = q4 + 3q2 + 3. But

then (v, p) = 1 which is impossible. If ng
rg

< q4 + q2 + 1 then u ≤ q2 which

implies that ng
rg
≤ q4− q2+1 and dg ≤ q4+ q2+1. Then ng

rg
dg < |L : M | which

is a contradiction.

• Suppose M = SLε(3, q).2 and so p ≡ 1(3). Consider first the situation where

Lα = M . When ε = +, M =< SL(3, q), φ > where φ is a graph automorphism

[Cha68, (2.6)]. When ε = −, M ≤ PΓU(3, q) [Kle88a, Proposition 2.2]. In

both cases M is equal to a universal version of Aε
2(q) extended by a graph

automorphism [GLS94, Definition 2.5.13].

Examining [GLS94, Table 4.5.2] we see that M has 2 conjugacy classes of

involutions. These have size q2(q2+εq+1) and q2(q2+εq+1)(q−ε).When ε = +

this gives rg = q3(q2 + q + 1) and ng
rg

= q(q2 − q + 1). This is impossible since

either |ng
rg
|p = 1 or |ng

rg
|p ≥ q3. When ε = − we have rg = q2(q2 − q + 1)(q + 2)

and ng
rg

= q2(q2+q+1)
q+2

. This is not an integer for q > 1 hence can be excluded.

Thus we must have Lα < M and we know that |M : Lα|p ≤ q. Examining the

subgroups of SLε(3, q) we find that Lα ∩SLε(3, q) ≤ P1, a parabolic subgroup

of SLε(3, q).

When ε = −, |SLε(3, q) : P1| is even hence this possibility can be excluded.
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When ε = +, M =< SL(3, q),m > where m is a graph automorphism of

SL(3, q). Since Lα has odd index in G2(q), Lα must contain a graph automor-

phism. Examining [KL90, Table 3.5.A] we find that Lα ∩ SL(3, q) lies inside

a subgroup M1 of SL(3, q) of type GL(2, q)⊕GL(1, q) or of type P1,2. In the

former case we find that |v|p ≥ q5. Since |ng|p = q4 we must have |ng
rg
|p = 1

which implies that ng
rg
≤ q4 + q2 + 1 and |dg|p ≥ q5 which contradicts Lemma

2.11. In the latter case, we find that |SL(3, q) : M1| is even and this case can

be excluded.

We have covered all possible odd-index maximal subgroups in G2(q).

2.10.6 Case: L = F4(q)

Referring to [GLS94, Table 4.5.1], we see that F4(q) contains an involution g such

that CL(g) contains Spin(9, q). There is one such conjugacy class of involutions in

L and so ng = q8(q8 + q4 + 1).

This implies that |v|p ≤ q8 and hence that |Lα|p ≥ q16. Then Lemma 2.38 implies

that |NL(F4(q0))|p ≤ |F4(q0)|p = q240 . Since q = qa0 where a is an odd prime, q240 ≤ q8

and so Lα does not lie in |NL(F4(q0)).

The list in [LS85, Table 1] contains one maximal subgroup M such that |M |p ≥
q16. Then M ∼= 2.Ω(9, q), Lα must contain a Sylow p-subgroup of M since |L :

M |p = q16. Furthermore, p ≡ 1(3). Now the parabolic subgroups of Ω(9, q) have

even index, hence we may conclude that Lα = M and v = q8(q8 + q4 +1)a for some

integer a. Lemma 2.10 implies that a 6= 1 and hence a ≥ 7.

Now suppose rg ≥ 1
2
q4(q4 − 1). Then ng

rg
≤ 2q4(q4 + 3) < 7

3
q8. Then dg <

14
3
q8

and v < 7q16 which is a contradiction. Also rg is clearly greater than 1. Thus there

is an involution g ∈ 2.Ω(9, q) such that

1 < |2.Ω(9, q) : C2.Ω(9,q)(g)| <
1

2
q4(q4 − 1).

Now let B be the central subgroup of Lα of order 2, so that Lα/B ∼= PΩ(9, q).

Let h = Bg an involution in PΩ(9, q). Then we must have

|Ω(9, q) : CΩ(9,q)(h)| <
1

2
q4(q4 − 1).

Examining [GLS94, Table 4.5.1] we see that all involution centralizers in Ω(9, q)

have index at least 1
2
q4(q4 − 1). Hence we have a contradiction.

Proposition 2.37 is now proven.
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2.11 L is an exceptional group of Lie type in char-

acteristic 2

In this section we prove the following proposition:

Proposition 2.39. Suppose G has a minimal normal subgroup L where L is an

exceptional group of Lie type in characteristic 2 or that G has a unique component

L such that L† is isomorphic to E6(q) or
2E6(q) where q = 2a. Then G does not act

transitively on a projective plane.

We have nine possibilities for L and, by Tits’ Lemma [Sei73, 1.6], we know that

Lα must lie in a parabolic subgroupM of L. We demonstrate that this is impossible,

generally by showing a contradiction with Lemma 2.7.

2.11.1 Case: L = 3D4(q); G2(q), q > 2

In each case, for any parabolic subgroupM , |L : M | is divisible by (q4+q2+1)(q+1).

If q ≡ 1(3) then |L : M | is divisible by q+1 ≡ 2(3), while if q ≡ 2(3) then 9 divides

|L : M |. Thus M cannot contain Lα (Lemma 2.7) and we are done.

2.11.2 Case: L = 2B2(q), q > 2; 2F4(q)
′
, F4(q), E7(q), E8(q)

Examining the indices of the parabolic subgroups M in L in these cases, we find

that they are nearly always divisible by qm + 1 for some even integer m. Since

qm + 1 ≡ 2(3) these cases are excluded. We deal with the exceptions which are as

follows:

1. L = E7(q) and M is of type E6. Then |L : M | is divisible by (q5 + 1)(q9 + 1).

If q ≡ 1(3) then q5 + 1 ≡ 2(3) and if q ≡ 2(3) then 9 divides |L : M |. Both of

these are impossible hence M cannot contain Lα.

2. L = E7(q) and M is of type D6. Then |L : M | is divisible by (q8+q4+1)(q12+

q6 + 1) which is in turn divisible by 9. Hence M cannot contain Lα.

3. L = E7(q) and M is of type D5×A1. Then |L : M | is divisible by (q5+1)(q8+

q4 + 1). If q ≡ 1(3) then q5 + 1 ≡ 2(3) and if q ≡ 2(3) then 9 divides |L : M |.
Both of these are impossible hence M cannot contain Lα.

Note that Kantor’s argument to exclude the last two cases (L = E7(q) and M

of type D6 or D5 × A1) when the action is primitive is incorrect[Kan87].
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2.11.3 Case: L† = Eε
6(q)

As in Subsection 2.11.2 we need only examine the parabolic subgroupsM in L which

are not divisible by qm + 1 for some even integer m. There are two possibilities:

1. L† = E+
6 (q) and M is of type D5. Then |L : M | = (q6 + q3 + 1)(q8 + q4 +

1)(q2 + q + 1). For q ≡ 1(3), |L : M | is divisible by 9 hence M cannot contain

Lα. Thus we assume that q ≡ 2(3) and so L is simple.

Now we know that M ′ := [q16].Ω+10(q) ≤ Lα ≤M ∼= [q16] : (Ω+10(q)H) where H

is the Cartan subgroup of L. This is because all parabolic subgroups of Ω+10(q)

have index divisible by q4 + 1 ≡ 2(3).

By [AS76, (15.1),(15.5)], L contains an involution g such that CL(g) = [q21] :

SL(6, q) and so ng = (q6 + q3 + 1)(q8 + q4 + 1)(q8 − 1). Now if rg ≥ (q6 + q3 +

1)(q8−1) then ng
rg
≤ (q4+1)2− (q4+1)+1 and so dg ≤ (q4+1)2+(q4+1)+1.

But then ng
rg
dg < |L : M | which is a contradiction. Thus, for all h ∈ Lα

conjugate in G to g, |K : CK(h)| < (q6 + q3 + 1)(q8 − 1).

Now Ω+10(q) 6≤ CL(g). Furthermore the only maximal subgroups of Ω+10(q) with

index less than (q6 + q3 + 1)(q8 − 1) are the parabolic subgroups and Sp8(q).

All but one type of parabolic subgroups have index divisible by q3 + 1. Since

q3 +1 does not divide into ng, there must be h ∈ Lα conjugate in G to g such

that CK(h) lies in either [q16].([q8] : 1
2
((q − 1)× SO+8 (q))) or [q

16].Sp8(q).

Consider the first possibility. Now SO+
8 (q) 6≤ CL(g) and so

rg ≥ P (SO+8 (q))
|Ω+10(q)|

|[q8] : 1
2
((q − 1)× SO+8 (q))|

.

Using the value for P (SO+
8 (q)) given in [KL90, Table 5.2.A] we conclude that

rg > (q6 + q3 + 1)(q8 − 1) which is impossible.

Similarly Sp+8 (q) 6≤ CL(g) and so

rg ≥ P (Sp+8 (q))
|Ω+10(q)|
|Sp+8 (q))|

.

Once again we find that rg > (q6 + q3 + 1)(q8 − 1) which is impossible.

2. L† = E−
6 (q) and M is of type 2D4(q). Then |L : M | is divisible by (q5+1)(q9+

1); we exclude this possibility in the same way as in Subsection 2.11.2, when

L = E7(q) and M is of type E6.

This concludes the proof of Proposition 2.39. Theorem A is now also proven.



Chapter 3

PSL(3, q) acting line-transitively on

linear spaces

“What is line? It is life.”

Jean Cocteau, “The Difficulty of Being”

We present a partial classification of those spaces S on which an almost simple

group G with socle PSL(3, q) acts line-transitively. The statement of our theorem

is as follows:

Theorem B. Suppose that PSL(3, q) £ G ≤ AutPSL(3, q) and that G acts line-

transitively on a finite linear space S. Then one of the following holds:

• S = PG(2, q), the Desarguesian projective plane, and G acts 2-transitively on

points;

• PSL(3, q) is point-transitive but not line-transitive on S. Furthermore, if Gα

is a point-stabilizer in G then Gα ∩ PSL(3, q) ∼= PSL(3, q0) where q = qa0 for

some integer a.

Note that, in the case where S is a projective plane, Theorem A implies Theorem

B. Note too that line-transitive linear spaces with k = 3 or k = 4 have been com-

pletely classified in [Cla76, KS84, BDD+90, CS89, Li95]. Hence we need to consider

the situation when S is not a projective plane and k ≥ 5.

One result should be mentioned which has an important bearing on our work

here: Camina, Neumann and Praeger have classified the line-transitive actions of

PSL(2, q) although this result has not been published. The result is as follows:
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Theorem 3.1. Let G = PSL(2, q), q ≥ 4 and suppose that G acts line-transitively

on a linear space S. Then one of the following holds:

• G = PSL(2, 2a), a ≥ 3 acting transitively on S, a Witt-Bose-Shrikhande space.

Here Π is the set of dihedral subgroups of G of order 2(q + 1) and Λ is the set

of involutions t ∈ G with the incidence relation being inclusion.

• S = PG(2, 2), G = PSL(2, 7) and the action is 2-transitive.

This chapter is devoted to proving Theorem B and the structure of the chapter is

as follows: The first two sections outline some background lemmas concerning linear

spaces. Section 3.3 gives background information about PSL(3, q). In Section 3.4 we

reduce the proof to the situation when PSL(3, q) is transitive upon the lines of the

space S. This reduction makes use of the notion of exceptionality of permutation

representations, the relevance of which was pointed out by Dr Peter Neumann. The

remaining sections are devoted to the situation when PSL(3, q) is line-transitive,

under different assumptions about significant primes.

The following notation will hold, unless stated otherwise, throughout the chapter.

We will take G to be a group acting on a regular linear space S with parameters

b, v, k, r. We will write α to be a point of S with Gα to be the stabilizer of α in the

action of G. Similarly L is a line of S and GL is the corresponding line-stabilizer.

3.1 Known Lemmas

We list here some well-known lemmas which we will use later. The first lemma is

proved easily by counting.

Lemma 3.2. 1. b = v(v−1)
k(k−1) ≥ v (Fisher’s inequality);

2. r = v−1
k−1 ≥ k;

Lemma 3.3. [CNP03, Lemma 6.5] Let p be an odd prime divisor of v.

1. If b = 3
2
v then p = 5 and 25 6

∣

∣v, or p ≡ 1, 2, 4 or 8(15);

2. If b = 2v then p ≡ 1(4).

For the remainder of this section assume that G acts line-transitively on the

linear space S.
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Theorem 3.4. [CG84, Theorem1] If k
∣

∣v then G is flag-transitive.

Lemma 3.5. [CS89, Lemma 4] If g is an involution of G and g fixes no points,

then k
∣

∣v. In particular, G is flag-transitive.

Lemma 3.6. [CS89, Lemma 2] Let L be a line in S and let T ≤ GL. Assume that

T satisfies the following two conditions:

1. |FixΠ(T ) ∩ L| > 1;

2. if U ≤ GL and |FixΠ(U) ∩ L| > 1 and U is conjugate to T in G, then U is

conjugate to T in GL.

Then either FixΠ(T ) ⊆ L or the induced linear space on FixΠ(T ) is regular and

NG(T ) acts line-transitively on the space.

Lemma 3.7. [CS00, Lemma 2.2] Let g be an involution in G and assume that there

exists N , N ¢ G such that |G : N | = 2 with g 6∈ N . Then N acts line-transitively

also.

Note that Lemma 3.7 allows us to conclude that if PGL(2, q) acts transitively

on the lines of a linear space S then PSL(2, q) also acts transitively on the lines of

S and so that space is known.

Our next result provides the framework for our analysis of the line-transitive

actions of PSL(3, q). Since S is not a projective plane then, by Fisher’s inequality

b > v and since b = v(v − 1)/(k(k − 1)), there must be some prime p that divides

both v − 1 and b. We shall refer to such a prime as a significant prime.

Lemma 3.8. [CNP03, Lemma 6.1] Suppose that S is not a projective plane and let

p be a significant prime. Let P be a Sylow p-subgroup of Gα. Then P is a Sylow

p-subgroup of G and Gα contains the normalizer NG(P ).

Lemma 3.9. [CNP03, Lemma 6.3] Let H,K be subgroups such that

Gα ≤ H < K ≤ G

and let c = |K : H|. Then r divides 1
2
(c− 1)k and b divides 1

2
(c− 1)v.

Corollary 3.10. [CNP03, Corollary 6.4] Let H,K be as in Lemma 3.9.
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1. Let

c0 = gcd{(c− 1) | c = |K : H|, where Gα ≤ H < K ≤ G}.

Then r divides 1
2
c0k and b divides 1

2
c0v.

2. There cannot be groups H,K such that Gα ≤ H < K ≤ G and |K : H| = 2.

3. If there are groups H,K such that Gα ≤ H < K ≤ G and |K : H| = 3 then S

is a projective plane.

3.2 New Lemmas

We state a series of lemmas which will be used in our analysis of the actions of

PSL(3, q). The first is a generalization of the Fisher inequality to non-regular linear

spaces.

3.2.1 General linear spaces

Lemma 3.11. In any linear space S, not necessarily regular, Fisher’s inequality

holds: b ≥ v.

Proof. We need to prove the statement under the assumption that the number of

points in a line is not a constant. Let c be the maximum number of points on a line

of S. Since any two points lie on a unique line we know that

b ≥
(

v
2

)

(

c
2

) =
v(v − 1)

c(c− 1)
.

Thus if c(c − 1) ≤ v − 1 then we are finished. Assume to the contrary from this

point on. We split into two cases:

1. Suppose that (c − 1)2 ≥ v. If there are two lines of size c then there are

at least (c − 1)2 lines between them and we are done. Now consider the two

largest lines of size c and c− a, 1 ≤ a < c.

Then

• b > (c− 1)(c− a− 1)+ 2 since there are at least this many lines between

the points of the two largest lines;

• b > (v−c)c
c−a−1 since there are at least this many lines joined to the line with

c points.



3.2 New Lemmas 79

Now we may assume that (v−c)c
c−a−1 < v since otherwise we are done. This inequal-

ity implies that v < c2

a+1
. Similarly we can assume that (c−1)(c−a−1)+2 < v

since otherwise the result holds. This implies that (c− 1)(c− a− 1)+2 < c2

a+1

and so c < a+ 2 + 3
a
.

For a ≥ 3 this implies that c ≤ a+ 2. But then all but one line must contain

precisely 2 points. Clearly b ≥ v in this case.

If a ≤ 2 then c ≤ 5. If a = 2 and c = 5 then v < c2

3
≤ 8. But the number of

lines connecting the points of the two largest lines is at least 8 and the result

holds. If a = 2 and c = 4 then all but one line must contain precisely 2 points

and once again the result holds. If a = 1 then (c − 1)(c − 2) + 2 < c2

2
and so

c = 3. But, again, this means that all but one line must contain precisely 2

points and the result holds.

2. Suppose that (c − 1)2 < v ≤ c(c − 1). Note that v > 2 implies that c > 2.

Let rα be the number of lines incident with a point α. If rα ≥ c for all α then,

let f be the number of flags:

vc ≤ f ≤ bc.

Thus v ≤ b as required. Assume then that there exists a point α such that

rα ≤ c − 1. Observe that every line not passing through α must have be

incident with at most rα points. Remove α and any lines which are incident

with only α and one other point. Then v > c and we still have a linear space,

S∗. S∗ has v − 1 points, at most b lines, and the maximum number of points

on a line is c− 1. This implies that,

bS ≥ bS∗ ≥
(

v−1
2

)

(

c−1
2

) =
(v − 1)(v − 2)

(c− 1)(c− 2)
.

Thus we are finished so long as (c− 1)(c− 2) < v − 2. But (c− 1)2 < v gives

us this inequality since c ≥ 3.

All cases are proved and the result stands.

3.2.2 Regular linear spaces

We return to our assumption that S is a regular linear space.

Lemma 3.12. Let g ∈ G be an involution. Then g fixes at least (v − 1)/k lines.
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Proof. If g has no fixed point then g fixes v/k ≥ (v − 1)/k lines. If g has a fixed

point, α, then let m be the number of fixed lines through α. By definition, g moves

the rest of the lines through α. Apart from α these lines contain v −m(k − 1)− 1

points. None of these points is fixed hence every one of these points lies on a fixed

line. Thus the number of lines fixed by g is at least

m+
v −m(k − 1)− 1

k
=
v +m− 1

k
≥ v − 1

k

lines as required.

Lemma 3.13. Let g be an involution which is an automorphism of a linear space

S. Suppose that S has a constant number of points on a line, k, and that g fixes dl

lines and dp points. Then, either

• dl ≥ dp; or

• v = k2.

Proof. We know that if S is a projective plane then the result holds since the per-

mutation character on points and lines is the same [Dem97, 4.1.2]. Now suppose

that S is not a projective plane and split into two cases:

1. Suppose that dp ≤ k. Assume that dl < dp. We know, by Lemma 3.12, that

g fixes at least v−1
k

lines. Then

dl < dp =⇒ v − 1

k
< k

=⇒ v − 1 < k2.

Then, since (k − 1)
∣

∣(v − 1), we must have v−1
k−1 ≤ k + 1. If v−1

k−1 ≤ k then b ≤ v

and so b = v and S is a projective plane. If v−1
k−1 = k + 1 then v = k2 as given.

2. Suppose that dp > k. Then the fixed points and lines of g form a linear

space. We may appeal to Lemma 3.11.

Lemma 3.14. Suppose that b = c
d
v where (c, d) = 1. Then the significant primes

are exactly those which divide c.
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Proof. By definition a prime is significant if it divides b and v− 1. Then we just use

the fact that
c

d
v = b =

v(v − 1)

k(k − 1)
=

(v − 1)/(k − 1)

k
v.

Lemma 3.15. Let H < Gα. If NG(H) 6≤ Gα then H is in GL for some line L.

Proof. Simply take g ∈ NG(H)\Gα. Then Hg = H is contained in Gα and Gαg.

Hence H fixes the line joining α and αg.

3.2.3 Line-transitive linear spaces

Throughout this section we assume that G acts line-transitively on S.

Lemma 3.16. Let g be an involution of G and write ng = |gG| for the size of a

conjugacy class of involutions in G. Let rg = |gG ∩ GL| be the number of such

involutions in a line-stabilizer GL. Then the following inequality holds:

ng(v − 1)

brg
≤ k ≤ rgv

ng
+ 1.

Proof. Count pairs of the form (L, g) where L is a line and g is an involution fixing

L, in two different ways. Then

|{(L, g)}| = brg ≥ ngc

where c is the minimum number of lines fixed by an involution. Now, by the previous

lemma, c ≥ v−1
k

thus we have

rg ≥
ngc

b
≥ ng(v − 1)

bk
=
ng(k − 1)

v
.

This implies two inequalities:

k − 1 ≤ rgv

ng
, k ≥ ng(v − 1)

brg

and the result follows.

Lemma 3.17. Suppose that |Gα| = c
d
|GL| where (c, d) = 1. Then the significant

primes are exactly those which divide c.

Proof. Simply use the fact that v = |G|/|Gα|, b = |G|/|GL| and refer to Lemma

3.14.
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Lemma 3.18. Suppose that pa is a prime power dividing v − 1 and that p does not

divide into |G|. Then pa divides k(k − 1).

Proof. Since p does not divide |G|, p cannot divide into b. Since b = v(v−1)
k(k−1) and pa

divides into v − 1 we must have pa dividing into k(k − 1).

We will often repeatedly use Lemma 3.18, with different primes, to exclude

the possibility of a particular group, G, acting line-transitively on a space with a

particular number of points, v. Our method for doing this usually involves showing

that any line size k must be too large to satisfy Fisher’s inequality (Lemma 3.2).

3.3 Background Information on PSL(3, q)

First a word about notation: As in the previous chapter, we will sometimes precede

the structure of a subgroup of a projective group with ˆ which means that we are

giving the structure of the pre-image in the corresponding linear group. We will

also refer to elements of this linear group in terms of matrices under the standard

modular representation.

3.3.1 Subgroup information

We need information about the subgroups of PSL(3, q), PSL(2, q) and GL(2, q).

Theorem 3.19. [Kle87, Mit11, Blo67b, Har25] The maximal subgroups of PSL(3, q)

are among the following list. Conditions given are necessary for existence and max-

imality but not sufficient. The first three types are all maximal for q ≥ 5.

Description Notes

1 [̂q2] : GL(2, q) two PSL(3, q)-conjugacy classes

2 (̂q − 1)2 : S3 one PSL(3, q)-conjugacy class

3 (̂q2 + q + 1).3 one PSL(3, q)-conjugacy class

4 PSL(3, q0).(q − 1, 3, b) q = qb0 where b is prime

5 PSU(3, q0) q = q20

6 A6 q odd

7 32.SL(2, 3) q odd

8 32.Q8 q odd

9 SO(3, q) q odd

10 PSL(2, 7) q odd
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In general we will refer to maximal subgroups of PSL(3, q) as being of type x,

where x is a number between 1 and 10 corresponding to the list above.

Referring to [Blo67b, Kle87] we state the following lemma:

Lemma 3.20. Suppose that H is a subgroup of PSL(3, q) lying in a maximal sub-

group of type 4 or 5 and H does not lie in any other maximal subgroup of PSL(3, q).

Then one of the following holds:

• H has a cyclic normal subgroup of index less than or equal to 3.

• H contains PSL(3, q1) with index less than or equal to 3. Here q = qc1, c an

integer.

• H contains PSU(3, q1) with index less than or equal to 3. Here q = qc1, c an

integer.

• H is isomorphic to A6.2 or A7 and q = 5a, a even.

We will need information about the subgroups of PSL(2, q). These have al-

ready been listed in Theorem 2.24. Note also the comments following that theorem

regarding the conjugacy classes of subgroups in PSL(2, q).

Information about the subgroups of GL(2, q) has also already been listed in

Theorem 2.25. This will be of use in analysing the subgroups of the parabolic

subgroups of PSL(3, q). Note that when we refer to subgroups of type 5 in GL(2, q)

we will use q0 for the size of our subfield, rather than r as stated in Theorem 2.25

(throughout this chapter the letter r is reserved for the number of lines through a

point of a linear space.)

Note finally that we will write µ for (q − 1, 3).

3.3.2 Involutions and 2-transitive actions

We will use the fact that PSL(3, q) contains a single conjugacy class of involutions.

This class is of size q2(q2+ q+1) for q odd and of size (q2−1)(q2+ q+1) for q even.

We need a list of the 2-transitive actions of PSL(2, q). The list is classical, see

for instance [Ban71]:

Lemma 3.21. Let G have socle PSL(2, q), q ≥ 4 and suppose it acts 2-transitively

on a set Ω then one of the following holds:
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1. PSL(2, q)£G ≤ PΓL(2, q), |Ω| = q + 1;

2. G = PSL(2, 11), |Ω| = 11;

3. G = PΓL(2, 8), |Ω| = 28;

4. PSL(2, 7)£G ≤ PGL(2, 7), |Ω| = 7;

5. G has socle PSL(2, 5) ' A5, |Ω| = 5;

6. G has socle PSL(2, 9) ' A6, |Ω| = 6.

Note that this list covers all of the 2-homogeneous actions of groups with socle

PSL(2, q); here a 2-homogeneous action of a group G on a set Ω is one which is

transitive on unordered pairs of elements of Ω.

Note too that PSL(2, 2) ' S3 and PSL(2, 3) ' A4 also have 2-homogeneous

actions of degree 3 and, for PSL(2, 3), of degree 4.

3.3.3 The subgroup D

We define D to be the centre of a Levi complement of a particular parabolic sub-

group. Typically D is the projective image of























1
a2 0 0

0 a 0

0 0 a









: a ∈ Fq















.

Suppose that G = PSL(3, q) acts line-transitively on a linear space. Since D

normalizes a Sylow t-subgroup of PSL(3, q) for many different t, D often lies inside

a point-stabilizer Gα. Furthermore, since D has a large normalizer, ˆGL(2, q), by

Lemma 3.15, D often lies inside a line-stabilizer, GL.

We exploit this fact using Lemma 3.6 since if D satisfies the conditions given in

the lemma and the fixed points of D are not collinear then we induce a line-transitive

action of PGL(2, q) on a linear space. All such actions on a non-trivial linear space

are known. In the event that the fixed set is a trivial linear space (that is, k = 2)

line-transitivity is equivalent to 2-homogeneity on points and these actions are also

all well-known.

We need information about the occurrence of D in various subgroups and about

how G-conjugates of D intersect. We state the relevant facts in a series of lemmas
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in which we refer to the following matrix equation. DET is the value required to

give the matrix determinant 1 and a ∈ GF (q).
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0 a 0

0 0 a
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DET

se+ tg sf + th
u

DET
ve+ wg vf + wh

x
DET

ye+ zg yf + zh









Lemma 3.22. The PSL(3, q) conjugates of D intersect trivially.

Proof. In the equation above, we can take f = g = 0 and suppose that e = h and

they are both equal to a or a−1. Then DET = e2. In order for the left columns to

be equal in the above, we must have either a3 = 1 or u = x = 0. For the top rows

to be equal in the above, we must have a3 = 1 or s = t = 0. The first option in

each case corresponds to the trivial intersection in PSL(3, q). The second possibility

means that we are conjugating by the normalizer of our diagonal element, hence our

conjugate of D is D itself. The result is proved.

Next we wish to analyse which PSL(3, q)-conjugates of D lie in the Levi com-

plement ˆGL(2, q) of a particular parabolic subgroup. We will use Theorem 2.25

which lists the subgroups of GL(2, q). Our notation will be consistent with that

theorem, in particular referring to a subgroup H of ˆGL(2, q) as being of type y if

the pre-image of H in SL(3, q) is of type y in GL(2, q). In the statement of the

following lemma, a will be a primitive element of GF (q).

Lemma 3.23. Let U : ˆGL(2, q) be a parabolic subgroup of PSL(3, q), q > 7, U an

elementary abelian p-group. We can choose ˆGL(2, q) conjugate to

CG(D) = ˆ























1
DET

0 0

0 e f

0 g h









:

(

e f

g h

)

∈ GL(2, q), DET = eh− fg















.

Let H be a maximal subgroup of ˆGL(2, q) in PSL(3, q).

1. If H is of type 2 in ˆGL(2, q) then some ˆGL(2, q) conjugate of H contains

one individual conjugate, and two families of conjugates, of D, generated by
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the projective images of the following matrices, for f ∈ GF (q):









1
a2 0 0

0 a 0

0 0 a









,









a 0 0

0 1
a2 0

0 f a









,









a 0 0

0 a 0

0 f 1
a2









.

2. If H is of type 3 in ˆGL(2, q) then H contains only D.

3. If H is of type 4 in ˆGL(2, q) then some ˆGL(2, q)-conjugate of H contains three

conjugates of D, generated by the projective images of the following matrices:









1
a2 0 0

0 a 0

0 0 a









,









a 0 0

0 1
a2 0

0 0 a









,









a 0 0

0 a 0

0 0 1
a2









.

4. If H is of type 5 in ˆGL(2, q) then one of the following holds:

• H contains only D;

• H ≥ SL(2, q);

• H ≥ SL(2, q0) where q = (q0)
2 and q0 = 3, 4 or 7.

5. If H is of type 6 or 7 in ˆGL(2, q) then one of the following holds:

• H contains only the central copy of D;

• q = 13, 16 or 19.

Proof. 1. Suppose H is maximal of type 2 in ˆGL(2, q). Assume g = 0 in the

equations above and consider the middle column. We must have one of the

following:

• e = a, s = 0;

• e = 1
a2 , v = y = 0

Consider the left column. We must have one of the following:

• 1
DET

= 1
a2 , u = x = 0;

• 1
DET

= a, r = 0

Combining these, we must have one of the following:
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• 1
DET

= a = h, e = 1
a2 , v = y = r = t = 0;

• 1
DET

= 1
a2 , e = a = h, u = x = s = f = 0;

• 1
DET

= a = e, h = 1
a2 , r = s = 0.

These correspond to the options as listed above.

2. Suppose H is maximal of type 3 in ˆGL(2, q). Then H has a single normal

subgroup of size q−1
µ
. This is D.

3. Suppose H is maximal of type 4 in ˆGL(2, q). If e = h = 0 in the equations

above then, by examining the right and middle column, we can conclude that

f = a2

g
. Then we must have DET = −a2. But we know, by considering the

left columns, that DET = a2 or 1
a
. For q > 7 this is impossible. Thus D has

only diagonal conjugates in this case.

So take f = g = 0. Consider the middle columns: Either e = a or v = y = 0.

Assume the latter and, considering the top row, we must have s 6= 0 and

e = 1
a2 . Furthermore, looking at the left columns, we must have x 6= 0 6= u

and so DET = 1
a
. This forces h to be a and we have one of the subgroups

described.

Now suppose that e = a. Then, looking at the right column, we can have

h = a and we get D back again or w = z = 0. So assume the latter. The top

right corner gives us that h = 1
a2 . Then u = x 6= 0 and we have DET = 1

a
.

Again we have one of the subgroups described.

4. Suppose H is maximal of type 5 in ˆGL(2, q). Take q0 < q and suppose that

H =< ˆSL(2, q0), D > or H =< ˆSL(2, q0), D > .2. Clearly D £ H and, if

H contains any other conjugate of D, then H/D must contain an element

of order q−1
µ
. But an element of ˆSL(2, q0) has order at most q0 + 1. Thus

q−1
2µ
≤ q0 + 1. If q0 < q then we must have q = (q0)

2 and q0 = 3, 4 or 7.

5. Suppose H is maximal of type 6 or 7 in ˆGL(2, q). Clearly D £ H then,

if H contains any other conjugate of D, E we must have DE ≤ H. Then

E ∼= DE/D ≤ H/D ≤ PGL(2, q). Then H/D is isomorphic to A4, S4, A5 or

A4.2. The largest order of any element these groups is 6. Thus |E| = q−1
µ
≤ 6

as required.
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Corollary 3.24. A subgroup of PSL(3, q) of type 3 contains only the 3 diagonal

conjugates of D as listed above for H of type 4 in ˆGL(2, q).

Proof. We know, by the above proof for H of type 4 in ˆGL(2, q), that the generator

of D is not conjugate to any element X.Y where X is diagonal, Y an involutory

permutation matrix. The only other non-diagonal possibility is if Y is a permutation

matrix of order 3. But then X.Y has order 3 and q−1
µ
6= 3 for all q.

3.4 Reducing to the Simple Case

Suppose a group G acts line-transitively on a linear space S; suppose furthermore

that B is a normal subgroup in G which is not line-transitive on S; finally suppose

that |G : B| = t, a prime. This means that, for a line L of S, GL = BL. We have

two possibilities:

• Suppose that B is point-transitive on S. Then let α and β be members

of Π, the set of points of S. Let L be the line connecting them. Then, since

Gα,β ≤ GL and Bα,β ≤ BL, we know that Gα,β = Bα,β.

We know furthermore that |Gα : Bα| = t, hence we may conclude that, for all

pairs of points α and β, |Bα : Bα,β| < |Gα : Gα,β|. In other words, considering

B and G as permutation groups on Π, the only common orbital of B and G is

the diagonal. In this situation we say that the triple (G,B,Π) is exceptional

(after [GMS03].)

• Suppose that B is not point-transitive on S. Then, by the Frattini

argument, G = NG(P )B for all P ∈ SylpB where p is any prime dividing

into |B|. If Gα ≥ NG(P ) then B is point-transitive which is a contradiction.

Thus, by Lemma 3.15, if a Sylow p-subgroup of B stabilizes a point then it

also stabilizes a line.

Now let bB = |B : BL|, vB = |B : Bα|. Then primes dividing into bB are a

subset of the primes dividing into vB. Furthermore b = tbB and v = tvB. Thus

primes dividing into b are a subset of the primes dividing into v. Thus there

are no significant primes and S is a projective plane.

Now suppose that PSL(3, q)£G ≤ AutPSL(3, q) and G acts line-transitively on

a space S which is not a projective plane. Suppose furthermore that PSL(3, q) is not
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line-transitive on S. Then there exist groups G1, G2 such that PSL(3, q)£G1£G2 ≤
G ≤ AutPSL(3, q) where |G2 : G1| is a prime, G1 is not line-transitive on S while

G2 is. By the above argument, (G2, G1,Π) is an exceptional triple and [GMS03,

Theorem 1.5] implies that Gα only lies inside maximal subgroups of type PSL(3, q0)

where q = qa0 , a > 3.

Appealing to Lemma 3.20 we have only four possibilities for Gα. The last two

on the list lie inside PSU(3, q0) with q = q20 and so can be excluded. The first can

be excluded similarly. Hence Theorem B holds in this situation for q > 2.

When q = 2, PSL(3, 2) ∼= PSL(2, 7). Since AutPSL(2, 7) = PGL(2, 7), Lemma

3.7 implies, under the given suppositions, that PSL(2, 7) is line-transitive on S.

Then Theorem 3.1 implies that Theorem B holds in this situation.

In order to prove Theorem B it is now sufficient to proceed under the assumptions

of the following hypothesis. Our aim is to show that this hypothesis leads to a

contradiction. We will need to consider different possibilities for a linear space S

having a significant prime dividing |PSL(3, q)| = q3(q − 1)2(q + 1)(q2 + q + 1)/µ

where µ = (q − 1, 3).

Hypothesis. Suppose that G = PSL(3, q) acts line-transitively but does not act

flag-transitively on a linear space S which is not a projective plane. Let b, v, k, r be

the parameters of the space. Let D be the subgroup of PSL(3, q) as defined in the

previous section. We suppose, by Lemma 3.5, that every involution of PSL(3, q)

fixes a point. Finally we assume that q > 2.

3.5 Preliminary Cases

3.5.1 Significant prime: t|q2 + q + 1, t 6= 3

Suppose first that some t|q2 + q + 1, t 6= 3 a significant prime. By Lemma 3.8

Gα ≥ (̂q2 + q + 1).3 which is the normalizer of a Sylow t-subgroup of PSL(3, q).

Now (̂q2 + q + 1).3 is maximal in PSL(3, q) for q 6= 4 and so, in this case, Gα =

(̂q2 + q+ 1).3 This is a contradiction since then Gα doesn’t contain any involution,

contradicting our Hypothesis.

When q = 4 the only other possibility is that Gα = PSL(2, 7) and v = 120.

Then 17|v − 1 and by Lemma 3.18, k ≥ 17 which contradicts Fisher’s inequality

(Lemma 3.2).
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3.5.2 Significant prime: t = p

Suppose now that p is significant. By Lemma 3.8 Gα ≥ [̂q3] : (q − 1)2, a Borel

subgroup, which is the normalizer of a Sylow p-subgroup of PSL(3, q). Then Gα is

either a Borel subgroup or a parabolic subgroup of PSL(3, q).

In the latter case the action of G is 2-transitive on points and hence flag-

transitive. Thus this case is already covered.

When Gα is a Borel subgroup v = (q2 + q + 1)(q + 1) and, by Corollary 3.10,

b divides into 1
2
q(q + 1)(q2 + q + 1). This implies that r > k > q + 1. Then

r = v−1
k−1 < q2 + q + 1.

Consider the set of lines through the point α. These lines contain all points

of S and so the points of S\{α} can be thought of as making up a rectangle with

dimensions r by k − 1. The area of this rectangle (that is, the number of points in

the rectangle) is v − 1 = r(k − 1) = q3 + 2q2 + 2q.

Now Gα has six orbits of size 1, q, q, q2, q2 and q3. Each of these orbits forms a

rectangle of points in S\{α}. Thus we have a rectangle of area q3 + 2q2 + 2q made

out of rectangles of area q, q, q2, q2 and q3 with integer dimensions. We investigate

this situation.

Suppose the rectangle of area q has dimensions pa × pb where pa ≤ √
q ≤ pb.

Then either the width of the large rectangle is pb (which is impossible since the

rectangle has dimensions r by k− 1 and r > k− 1 > q) or there are other rectangles

with side length pa or, possibly 2pa which make up the total width. The possibilities

are as follows:

Other rectangles Total width

q 2pb

q2 q2

pa
+ pb = (q + 1)pb

q2, p = 2 q2

2pa
+ pb = (q + 2)p

b

2

q2, q q2

pa
+ 2pb = (q + 2)pb

q2, q2 2 q
2

pa
+ pb = (2q + 1)pb

q2, q2, p = 2 2q2

2pa
+ pb = (q + 1)pb

q2, q2, q 2 q
2

pa
+ 2pb = (2q + 2)pb

q3 q3

pa
+ pb = (q2 + 1)pb

q3, p = 2 q3

2pa
+ pb = (q2 + 2)p

b

2

All possibilities involving another rectangle of area q3 result in a dimension at

least as big as (q2 + 2)p
b

2
. This must be less than q2 + q + 1 and so q ≤ 4. These
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possibilities can be ruled out using Lemma 3.18.

Now the dimensions of the rectangles both divide into v − 1 = q(q2 + 2q + 2).

The only possibility is that the width is 2pb. In fact the width is at least q + 1 and

so equals 2q and p = 2. If k − 1 = 2q then k = 2q + 1 divides into v(v − 1) and

so divides into (q2 + q + 1)(q2 + 2q + 2). This is impossible. If r = 2q then, in

order for our action to be intransitive on flags we must have the rectangle of area

q3 having width at most q. Then k − 1 ≥ q2 + 1. But k = 1
2
(q2 + 2q + 4) which is a

contradiction. Thus this possibility is excluded.

Remark. Note that we have excluded the possibility that Gα is a parabolic or a Borel

subgroup, no matter what prime is significant.

3.5.3 Small Cases

We seek to rule out the cases where q < 8, thus q = 3, 4, 5, 7.

Suppose first that q = 3 and G = PSL(3, 3) acts on a linear space S. Now

|PSL(3, 3)| = 33.24.13. We need only consider the possibility that 2 is uniquely

significant.

Since Gα contains a Sylow 2-subgroup of PSL(3, 3), Gα lies in a parabolic sub-

group. Gα must be a proper subgroup of the parabolic subgroup and so v = 13.3a

where a = 1, 2, 3. If a = 3 then 25 divides into v − 1, if a = 2 then 29 divides into

v − 1, if a = 1 then 19 divides into v − 1. Appealing to Lemma 3.18 we have lower

bounds for k − 1 of, in each case, 25, 29 and 19. But then k(k − 1) > v which

contradicts Fisher’s inequality (Lemma 3.2).

Thus we can conclude that any line-transitive action of PSL(3, 3) on a linear

space is flag-transitive as required.

Now consider the case where q = 4. Then PSL(3, 4) has order 26.32.5.7 and

there are several cases to consider:

1. If 5 is significant then Gα contains the normalizer of a Sylow 5-subgroup,

which is a maximal subgroup of ˆGL(2, q) of order 2(q2−1)
3

. Then the possible

candidates for Gα containing this subgroup are:

• maximal subgroup, H, of ˆGL(2, q) of order 2(q2−1)
3

. Then v = 2016 and

v−1 is divisible by 13 and 31 which must divide into k(k−1). By Lemma

3.18, we must have k ≥ 156 which is a contradiction.
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• ˆGL(2, q). Then v = 336. Then v − 1 is divisible by 67 hence k ≥ 67

which is a contradiction.

• A.H where A is elementary abelian of order q2. Then v = 126. Now

k− 1 must divide into v− 1, hence k− 1 = 1, 5, 25 or 125. The only valid

possibility is that k − 1 = 5. But then k|v and hence any line-transitive

action is flag-transitive which is a contradiction.

2. Suppose that 3 is uniquely significant. Then Gα is divisible by 18. This

implies that Gα lies in a subgroup of PSL(3, 4) of type 2,5 or 6. Thus Gα

must have order divisible by 18 and dividing into 72. So Gα = 18, 36 or 72.

Then v = 1120, 560 or 280. All of these cases can be excluded by examining

primes dividing v − 1 and appealing to Lemma 3.18.

Now suppose that q = 5. Then |PSL(3, 5)| = 53.25.3.31 and there are several

cases to consider:

1. Suppose that 2 is significant. Then 32 divides |Gα|. If we go through the

possibilities for v > 31 we find that, in all cases, there exists a prime p dividing

v−1 and not |PSL(3, 5)| which is such that if k ≥ p then k(k−1) > v which is

a contradiction of Fisher’s inequality. For v ≤ 31 the only possible stabilizers

are parabolic subgroups which are already excluded.

2. Thus suppose that 3 is uniquely significant. Then b = 3v or b = 3
2
v. Now

3|(q + 1) implies that H.2 ≤ Gα < q2 : GL(2, q), where H is cyclic of order

q2 − 1 = 24. Going through these seven possibilities (31
∣

∣v
∣

∣7750, v > 31) we

find that, in all cases but one, a large prime dividing v − 1 exists which rules

out any valid action. The remaining case is |Gα| = 48. In this case v = 7750

and our two possible values for b are 23250 and 11625. In both cases, no

integer k exists for which b = v(v−1)
k(k−1) .

Thus we can conclude that any line-transitive action of PSL(3, 5) on a linear

space is flag-transitive as required. Now suppose that q = 7 and G = PSL(3, 7)

acts on a linear space S.Then |PSL(3, 7)| = 25.32.73.19 and there are several cases

to consider:

1. Suppose that 2 is significant. Then 32 divides |Gα| and hence Gα lies in a

parabolic subgroup. Once again, we conclude that 57
∣

∣v
∣

∣57.3.73, v > 57. Going

through these seven possibilities we find that, in all cases, there are large primes
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dividing v − 1 and not dividing |G|. We can use Lemma 3.18 to exclude all

cases.

2. Suppose that 3 is significant. Then the Sylow 3-subgroup is of order 9 and

hence is normal in PSU(3, q) = 32 : Q8. Since H is not strictly contained in

any other group, Gα = H and v = 26068. But then the prime 8689 divides

v − 1 and k ≥ 8689 which contradicts Fishers’ inequality.

Thus we can conclude that any line-transitive action of PSL(3, 7) on a linear

space is flag-transitive as required.

3.5.4 Remaining Cases

We wish to enumerate the remaining cases that we need to examine. One case in

particular is worth mentioning now: When q is odd and when both 2 and 3|(q − 1)

are significant primes.

The only maximal subgroups which have index not divisible by 2 and 3 in this

case are those of type 2 and 4. Suppose that Gα lies in a subgroup M of type

2, Without loss of generality the diagonal subgroup normalized by the group of

permutation matrices isomorphic to S3. Now D normalizes a Sylow 2-subgroup of

M . In addition Q ∈ Syl3G is conjugate to H : C3 where H is a diagonal subgroup,

C3 a group of permutation matrices. Q does not normalize D hence Gα contains

at least two conjugates of D. Since these intersect trivially, by Lemma 3.22, these

generate a subgroup of index dividing µ in the diagonal subgroup. Our group Gα

must therefore be the full subgroup of type 2.

If Gα is contained in a subgroup,M , of type 4 then in order to contain an element

of order q−1
µ
, M = PSL(3, q0), q = (q0)

2. But then the index ofM in G is even which

is a contradiction.

Thus the cases which we need to examine are:
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Significant primes t Possible stabilizers

I ∃t
∣

∣(q + 1), t 6= 2 (̂q2 − 1).2 ≤ Gα < q2 : ˆGL(2, q)

II ∃t
∣

∣(q − 1), t 6= 2, 3 OR Gα = (̂q − 1)2 : S3

2, 3
∣

∣(q − 1) both significant

III 3
∣

∣(q − 1) is uniquely Gα is a subgroup of a

significant maximal subgroup of type 2, 4, 5 or 8

IV 2
∣

∣(q − 1) is uniquely Gα is a subgroup of a

significant maximal subgroup of types 1, 2 or 4

3.6 Case I: ∃t|(q + 1), t 6= 2 significant
In this case Gα contains a subgroup H of order 2(q2− 1)/µ which itself has a cyclic

subgroup of size (q2 − 1)/µ and Gα lies inside a parabolic subgroup of G.

Now observe that H lies inside a copy of ˆGL(2, q) and that ˆGL(2, q) normalizes

an elementary abelian subgroup, U , of PSL(3, q), of order q2. In its conjugation

action on the non-identity elements of U , ˆGL(2, q) has stabilizers of order q(q− 1).

Thus our group H must, if it normalizes any subgroup of U , normalize a subgroup of

order 1+x(q+1) for some integer x. Now for such a value to divide q2, as required,

x must be 0 or q − 1.

Thus Gα = ˆA.B where A is trivial or of size q2 and H ≤ B ≤ GL(2, q). Now, in

the characteristic 2 case, GL(2, q) = PSL(2, q)× (q− 1) and H = D2(q+1)× (q− 1).

SinceD2(q+1) is maximal in PSL(2, q) for all even q ≥ 8, we know that B = H or B =

GL(2, q). In the odd characteristic case, GL(2, q) =< −I > .(PSL(2, q) × ( q−1
2
)).2

and H =< −I > .(H × ( q−1
2
)).2. Now, for all odd q > 9, D2(q+1) is maximal in

GL(2, q) and, once again we conclude that B = H or B = GL(2, q).

We need to consider the case where q = 9 and H < B < GL(2, q). In fact

this case cannot occur since the only proper subgroup of PSL(2, 9) containing D10

is A5, but < −I > .(A5 × ( q−1
2
)) is not normalized by any element of GL(2, q) of

non-square determinant.

Thus we can summarize the cases that we need to examine:

1. Gα = U.̂ (q2 − 1).2 where U = [q2];

2. Gα = ˆGL(2, q);

3. Gα = (̂(q2 − 1).2).
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Note that we exclude the case where Gα = ˆU : GL(2, q), as then Gα is maximal

parabolic and this case is already excluded. We will consider the remaining cases in

turn.

Remark. These cases also arise when 2
∣

∣(q + 1) is the only significant prime (see

Section 3.9). The arguments given below are general and apply in that situation as

well.

3.6.1 Case 1: Gα = U.(̂ (q2 − 1).2).

Now we know that v = 1
2
(q2 + q + 1)q(q − 1) and, since Gα lies inside a parabolic

subgroup, we can appeal to Corollary 3.10 to observe that

b
∣

∣

1

8
(q2 + q + 1)q(q − 1)(q + 1)(q − 2) and b

∣

∣

1

4
(q2 + q + 1)q(q − 1)(q + 1)q.

Thus b
∣

∣

1
4(2,q−1)(q

2+q+1)q(q−1)(q+1) and so 4(2, q−1)q2(q−1)/µ divides |GL|.
For q > 7 this means that GL lies in a parabolic subgroup. Observe that we can

presume that U : D lies in GL for some L since U : D lies in Gα and is normalized

by the full parabolic subgroup (Lemma 3.15).

Suppose that U is non-normal in GL = ˆA.B where A is an elementary abelian

p-group and B ≤ GL(2, q). Then GL must lie in a parabolic subgroup which is

not conjugate to NG(U) and |U ∩ A| = q. If A\U is non-empty then U acts by

conjugation on these elements with an orbit, Ω, of size q. Then U ∩ A and Ω lie

inside A and generate q2 elements. Hence we must have A of size q or q2. The latter

would make |GL| ≥ 4q3(q− 1)/µ which is larger than |Gα| which is a contradiction.

Hence we conclude that |A| = q.

Since A is normal in GL we must have GL a subgroup of a Borel subgroup.

However in this case U is normal in GL. This is a contradiction.

Hence we have U normal in GL. Furthermore there are no other G-conjugates

of U in GL, since U ∩ U g is trivial for all g in G\NG(U). Hence we may appeal

to Lemma 3.6. Then either U : ˆGL(2, q) acts line-transitively on the fixed set of

U , which is itself a linear space, or this fixed set lies completely in one line. In the

first case, such an action of U : ˆGL(2, q) has a kernel U : ˆD and corresponds to a

line-transitive action of PGL(2, q) with stabilizer a dihedral group D2(q+1).

Examining the results of line-transitive and 2-transitive actions of PGL(2, q) we

find that there is one such action to consider. We have q even and PGL(2, q) acts
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line-transitively upon a Witt-Bose-Shrikhande space with line-stabilizer an elemen-

tary abelian group of order q. In PSL(3, q) this corresponds to GL having order
q3(q−1)

µ
and b = (q − 1)(q + 1)(q2 + q + 1). Then we must have,

k(k − 1) =
v(v − 1)

b
=

1

4
q(q3 − q2 + q − 2)

=⇒ 2k(2k − 2) = q4 − q3 + q2 − 2q.

Now observe that,

(q2 − 1

2
q + 1)(q2 − 1

2
q − 1) < q4 − q3 + q2 − 2q < (q2 − 1

2
q + 2)(q2 − 1

2
q).

Thus this case is excluded.

We can assume therefore that the set of fixed points of U lies completely in one

line. This fixed set has size 1
2
q(q − 1) and thus k is at least this large. Now the

subgroups conjugate to U intersect trivially. Thus U lying in GL has orbits on the

points of L of size 1 ( 1
2
q(q − 1) such) or q2 (for q odd) or q2

2
(for q even.)

If k ≥ q2+ 1
2
q(q− 1) then k(k− 1) > v which is a contradiction. If k = 1

2
q(q− 1)

then k − 1 = 1
2
(q + 1)(q − 2) divides into v − 1 = 1

2
(q + 1)(q3 − q2 + q − 2). This is

possible only for q ≤ 4 which is a contradiction. Thus we are left with the possibility

that q is even and k = 1
2
q(q − 2). Once again k − 1 dividing into v − 1 implies that

q ≤ 4.

3.6.2 Case 2: Gα = ˆGL(2, q)

Since v = q2(q2 + q + 1) and Gα lies inside a parabolic subgroup, we can appeal to

Corollary 3.10 to observe that

b
∣

∣

1

2
q2(q2 + q + 1)(q − 1)(q + 1) and b

∣

∣

1

2
q2(q2 + q + 1)(q + 1)q.

Thus b
∣

∣

1
2
q2(q2 + q + 1)(q + 1) and so 2q(q − 1)2/µ divides |GL|.

This implies that, for q > 7, GL lies in a parabolic subgroup or q = 16. When

q = 16 we find that the prime 4111 divides into v-1=69888 which, using Lemma

3.18, contradicts Lemma 3.2.

Thus GL lies in a parabolic subgroup and we write GL = ˆA.B as usual. If

A = {1} then we must have GL = ˆB ≤ ˆGL(2, q). Examining the subgroups of

GL(2, q) given in Theorem 2.25 we find that |GL| is divisible by |GL(2,q)|
2µ

. Now if

µ = 3 and 3 is significant then Gα does not lie in a parabolic subgroup. Hence we
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must have |GL| = 1
2
|Gα| with 2 uniquely significant. But then Lemma 3.3 implies

that any prime dividing into v must be equivalent to 1(4). Now in our current

situation any significant prime divides into q+1
2

thus 2 is not a significant prime; this

is a contradiction.

Now if 1 6= g ∈ A then |CPSL(3,q)(g)| = q3(q − 1)/µ. Thus B must act on the

non-trivial elements of A with orbits of size divisible by q − 1. Thus |A| = q or q2.

If |A| = q2 then |GL| ≥ 2q2(q − 1)2/µ > |Gα| which cannot happen. If |A| = q

then p = 2 (since, if p is odd, B must act on the non-trivial elements of A with

orbits of size divisible by 2(q − 1).) For q > 4 we must have B either maximal in

GL(2, q) of type 4 or a subgroup of the Borel subgroup of GL(2, q). In the first case

ˆB has orbits of size at least 2(q − 1) on the non-identity elements of A, thus this

case can be excluded.

If B lies inside a Borel subgroup of GL(2, q) then B = B1.B2 where 2 < B1 and

B2 = (q − 1)2. In fact we must have |B| = q(q−1)2
µ

since B2 acts by conjugation on

the non-identity elements of B1 with orbits of size q − 1. Hence |GL| = q2(q−1)2
µ

and

b = q(q + 1)(q2 + q + 1). Hence we must have

k(k − 1) = q4 + q2 − q.

Now observe that,

q2(q2 − 1) < q4 + q2 − q < (q2 + 1)q2.

Thus this case is excluded.

3.6.3 Case 3: Gα = (̂q2 − 1).2

Since v = 1
2
q3(q2 + q + 1)(q − 1) and Gα lies inside a parabolic subgroup, we can

appeal to Corollary 3.10 to observe that b divides into both

1

4
q3(q2+ q+1)(q− 1)(q+1)q and

1

8
q3(q2+ q+1)(q− 1)(q+1)(q3− 2q2+2q− 2).

Thus b
∣

∣

1
4(2,q−1)q

3(q2 + q + 1)(q − 1)(q + 1) and so 4(2, q − 1)(q − 1)/µ divides |GL|.
To begin with note that all cases where 11 < q ≤ 16 and q = 9, 19, 25, 31, 37, 64

can be ruled out using Lemma 3.18. When q = 11, Lemma 3.18 leaves one possibility,

namely that k = 444. But then b is not an integer and so this situation can be

excluded. When q = 8, Lemma 3.18 leaves one possibility, namely that k = 171.

But then k− 1 does not divide into v− 1 and so this situation too can be excluded.
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Using these facts, and recalling that 4(2, q − 1)(q − 1)/µ divides |GL| < |Gα|,
we can exclude the possibility that GL lies in a subgroup of PSL(3, q) of type 3-10.

Hence we assume that q ≥ 17 and GL lies inside a subgroup of type 1 or 2 for the

rest of this section.

Now D < Gα and, by Lemma 3.15, D lies in GL for some line L. We refer to

Lemma 3.6 to split our investigation into three cases:

• Case 3.A: All G-conjugates of D in GL are GL-conjugate and the fixed set of

D is a linear-space acted on line-transitively by ˆGL(2, q), the normalizer of

D.

• Case 3.B: All G-conjugates of D in GL are GL-conjugate and the fixed points

of D, of which there are 1
2
q(q − 1), lie on one line;

• Case 3.C: GL contains at least two GL-conjugacy classes of G-conjugates of

D.

Case 3.A

This situation corresponds to a line-transitive action of PGL(2, q) with stabilizer

D2(q+1). Then Theorem 3.1 implies that p = 2 and the fixed set of D is a Witt-Bose-

Shrikhande space. The corresponding line-stabilizer in PGL(2, q) has size q and so

|GL| is divisible by q(q−1)
µ

in PSL(3, q). Suppose that |GL| = q(q−1)
µ

and so

k(k − 1) =
v(v − 1)

b
=

1

4
(q6 − q5 + q4 − 2q3 + 2q2 − 2q)

=⇒ (2k)(2k − 2) = q6 − q5 + q4 − 2q3 + 2q2 − 2q.

But now observe that

(q3− 1

2
q2+

3

8
q+2)(q3− 1

2
q2+

3

8
q) < 2k(2k−2) < (q3− 1

2
q2+

3

8
q)(q3− 1

2
q2+

3

8
q−2).

For q > 16 this gives a contradiction.

The only other possibility is that |GL| = 2q(q−1)
µ

and [q] × q−1
µ

= GL ∩ CG(D).

This implies that GL lies inside a parabolic subgroup of PSL(3, q).

Now [q] × q−1
µ

is normal in GL and so [q] is normal in GL and GL lies inside a

Borel subgroup of PSL(3, q). Then D acts on the normal subgroup of GL of order

2q. Furthermore D centralizes at most q of these elements and has orbits on the

rest of size at least q−1
µ
. These orbits intersect cosets of [q] £ CG(D) ∩ GL with a

size of at most 1. This gives a contradiction.
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Case 3.B

Observe that all PSL(3, q)-conjugates of D intersect trivially. Observe too that all

elements of Gα are of form TS where T ∈ (̂q2 − 1) and S2 lies in D. Then (TS)2

lies in D and hence if E is some other conjugate of D then E ∩Gα is of size at most

(2, q − 1). Thus the orbits of D on L, a line which it fixes, are either of size q−1
(2,q−1)µ

or of size 1 and there are 1
2
q(q − 1) of these. We conclude that k is a multiple of

q−1
(2,q−1)µ .

Now we find that (v − 1, |G|) = q+1
(2,q−1) . Since q−1

(2,q−1)µ
∣

∣k and b = v(v−1)
k(k−1) divides

into |G| then b
∣

∣

µ
2
(q2 + q + 1)q3(q + 1).

Thus, for q 6≡ 1(3), |GL| = 2(q − 1)2 ≥ 512. If q ≡ 1(3) then |GL| = 2
9
(q − 1)2.a

where a = 1, 2 or 3.

Suppose first that p is odd. Consider the possibility thatGL lies inside a subgroup

of type 2 and not in a parabolic subgroup. So GL is a subgroup of (̂q− 1)2 : S3 and

must have either 3 or S3 on top. The former case is impossible as then b does not

divide into µ
2
(q2+q+1)q3(q+1). Now GL = (̂A×A) : S3 or (Aµ×A

µ
) : S3. Then, since

GL must contain a subgroup conjugate to D, we find that GL = ( q−1
µ
× q−1

µ
) : S3,

µ = 3 or GL = (̂q− 1)2 : S3. The latter case violates Fisher’s inequality and can be

excluded. In the former case GL contains at most q + 2 involutions. Appealing to

Lemma 3.16, we observe that

k ≤ rgv

ng
+ 1 =

1

2
q(q + 2)(q − 1) + 1.

This means that b = v(v−1)
k(k−1) > q5(q − 3) which is a contradiction.

Thus GL lies inside a parabolic subgroup; in fact GL is isomorphic to a subgroup

of ˆGL(2, q). In order for Fisher’s inequality to hold, we must have one of the

following cases:

• b = 1
2
q3(q2 + q + 1)(q + 1) and |GL| = 2(q−1)2

µ
. Thus GL is isomorphic to a

subgroup of ˆGL(2, q) of type 4 (in which case GL contains more than one

GL-conjugacy class of G-conjugates of D which is a contradiction) or GL is

isomorphic to a subgroup of type 6 or 7. This latter case requires that 2(q−1)

divides into 24 or 60. These possibilities have already been excluded.

• b = 3
4
q3(q2 + q + 1)(q + 1). Hence |GL| = 4

9
(q − 1)2 and q ≡ 7(12). Thus GL

is isomorphic to a subgroup of type 6 or 7 in ˆGL(2, q) and 4(q−1)
3

must divide

24 or 60. This is impossible.
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• b = 3
2
q3(q2 + q + 1)(q + 1). Then |GL| = 2

9
(q − 1)2 and q ≡ 1(3). Thus GL is

isomorphic to a subgroup of ˆGL(2, q) of type 4, 6 or 7.

If GL is isomorphic to a subgroup of ˆGL(2, q) of type 4 then rg ≤ q+8
3
. Using

Lemma 3.16 we see that

k ≥ ng(v − 1)

brg
> q2(q − 9).

Since (k − 1)2 < v this implies that

q4(q − 9)2 <
1

2
q3(q2 + q + 1)(q − 1)

which means that q < 31. Then q = 25, but this possibility has already been

excluded using Lemma 3.18.

If GL is isomorphic to a subgroup of ˆGL(2, q) of type 6 or 7 then we require

that 2(q−1)
3

divides into 24 or 60. Hence q = 31 or 37. These possibilities have

already been excluded.

If p = 2 then, in order for Fisher’s inequality to hold and so that 4(q − 1)/µ

divides into |GL|, we have |GL| = 4
9
(q − 1)2 and q ≡ 1(3). Thus GL lies inside a

parabolic subgroup of PSL(3, q) and GL = ˆA.B as usual.

If A is trivial then GL is a subgroup of type 2 in ˆGL(2, q). Then GL has a normal

2-group and, by Schur-Zassenhaus, GL also contains a subgroup of size (q−1)2
9

. This

subgroup has orbits in its conjugation action on 2-elements of GL of size at least
q−1
3
. This implies that |GL| is divisible by q(q−1)2

9
which is a contradiction.

If A is non-trivial then GL must have orbits in its conjugation action on non-

identity elements of A of size at least q−1
3
. Once again this implies that |GL| is

divisible by q(q−1)2
9

which is a contradiction.

Case 3.C

Now consider the possibility that GL contains at least two GL-conjugacy classes of

G-conjugates of D.

Suppose first that GL is a subgroup of (̂q−1)2 : S3 and does not lie in a parabolic

subgroup. We know that q is odd since 4(2, q− 1)(q− 1)/µ divides into |GL|. Since
GL is not in a parabolic subgroup we must have a non-trivial part of S3 on top,

of order 3 or 6. Thus all G-conjugates of D in GL are GL-conjugate which is a

contradiction.
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Thus we may conclude that GL is in a parabolic subgroup. Write GL = ˆA.B

as usual. If A is trivial then, referring to Lemma 3.23, we conclude that GL is a

subgroup of ˆGL(2, q) of type 2,4 or 5. If GL is of type 5 then q = 49 and this can

be ruled out using Lemma 3.18.

If GL is of type 2 and not of type 4 then it must contain non-trivial p-elements.

Some conjugate of D in GL must have orbits in its conjugation action on these

elements of size q−1
µ
. Thus A1 : q−1

µ
≤ |GL| where A1 is a p-group of size divisible

by q. We will consider this possibility together with the case when A is non-trivial.

So suppose that A is non-trivial. Now either all G-conjugates of D in GL lie in

CG(A) or else |A| ≥ q. Consider the first possibility. In this case A : D and A : E

lie inside CG(A) where E is a G-conjugate of D. Now CG(A) ≤ CG(g) for g an

element or order p. Since CG(g) ∼= [q3] : q−1
µ
, we know that D and E are conjugate

in CG(A)∩GL by Schur-Zassenhaus. This is a contradiction and so we assume that

|A| ≥ q; thus, in both cases that we have considered so far, Q : D ≤ GL where Q is

a p-group of order divisible by q.

Now let E be a G-conjugate of D in GL which is not GL-conjugate to D. Suppose

E ∩ (Q : D) is non-trivial and 1 6= h ∈ E ∩ (Q : D). Then h lies inside a Q : D-

conjugate of D by applying Sylow theorems to Q : D. But this is impossible since

Lemma 3.22 implies that either E = D or E ∩D is trivial. Hence |GL| ≥ q(q−1)2
µ2 >

|Gα| which is also impossible.

Finally we must consider the possibility that GL is of type 2 in ˆGL(2, q); that

is, GL is a subgroup of (̂q − 1)2 : 2. We must have q odd since 4(2, q − 1)(q − 1)/µ

divides into |GL|. Furthermore the G-conjugates of D in (̂q−1)2 : 2 normalize each

other and so (q−1)2
µ2 divides into |GL|. There are three possibilities to consider:

• GL ≤ (̂q − 1)2. In this case GL contains at most 3 involutions. Appealing to

Lemma 3.16, we observe that

k ≤ rgv

ng
+ 1 =

3

2
q(q − 1) + 1.

This is too small to satisfy b = v(v−1)
k(k−1) hence we have a contradiction.

• GL = ( q−1
µ
× q−1

µ
) : 2. Then GL contains q+8

3
involutions. Once again using

Lemma 3.16, we observe that

k ≤ rgv

ng
+ 1 =

1

6
q(q + 8)(q − 1) + 1.

But this is too small to satisfy b = v(v−1)
k(k−1) hence we have a contradiction.
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• GL = (̂(q− 1)× (q− 1)) : 2. Then GL contains q+2 involutions and we have

that,

k ≤ rgv

ng
+ 1 =

1

2
q(q + 2)(q − 1) + 1.

Once again this is too small to satisfy b = v(v−1)
k(k−1) .

Hence we may conclude that no line-transitive actions exist with primes dividing

q + 1 significant.

3.7 Gα = ˆ(q − 1)2 : S3

In this case v = 1
6
q3(q + 1)(q2 + q + 1) and any significant prime t must divide into

q − 1.

Note first that, by using Lemma 3.18, we can assume that q > 25 and that

q 6= 31, 37, 43, 49, 64, 109 or 271. Furthermore a conjugate of D lies in Gα and D

is normalized by ˆGL(2, q). Thus, by Lemma 3.15, a conjugate of D lies inside GL.

We split into three cases:

• Case A: A G-conjugate of D is normal in GL and GL contains no other

G-conjugates of D;

• Case B: A G-conjugate of D is normal in GL and GL contains other G-

conjugates of D. Thus |GL| is divisible by ( q−1
µ
)2 and so b divides into 6µv;

• Case C: All G-conjugates of D in GL are non-normal in GL.

We examine these possibilities in turn.

3.7.1 Case A

In this case we know, by Lemma 3.6, that either ˆGL(2, q) acts line-transitively on

the linear-space which is the fixed set of D or all fixed points of D lie on a single line.

The first possibility cannot occur however as this would correspond to PGL(2, q)

acting line-transitively on a linear-space (possibly having k = 2 and so being a 2-

homogeneous action) with line-stabilizer a dihedral group of size 2(q − 1) which is

impossible. Hence we may assume that all fixed points of D lie on a single line.

There are 1
2
q(q + 1) of these.
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If E is some other conjugate of D then E ∩Gα is of size at most 2. We conclude

that k = 1
2
q(q+1)+n q−1

2µ
for some integer n. This implies that k−1 is divisible by q−1

2µ
.

Now, since v−1 = q−1
2

q5+3q4+5q3+6q2+6q+6
3

, we observe that b
∣

∣(q5+3q4+5q3+6q2+6q+

6)v. Now, for p odd, (|G|, q5+3q4+5q3+6q2+6q+6) is a power of 3, hence 3 is the only

significant prime and 3|q−1. For p = 2, (|G|, q5+3q4+5q3+6q2+6q+6) is divisible,

at most, by the primes 2 and 3. However we know that 2 is not a significant prime

here thus, again, 3 is the only significant prime. Note that q5+3q4+5q3+6q2+6q+6

is divisible by 27 if and only if q ≡ 28(81). Thus, if 3a is the highest power of 3 in

q − 1 then a 6= 3 implies that b|27v. If a = 3 then we know already that b|81v.
This case will be completed below.

3.7.2 Case A and B

Now we examine the remaining possibilities of Case A along with Case B. Thus

GL < ˆGL(2, q) and one of the following holds:

• q ≡ 28(81), 2(q−1)
2

81
divides into |GL| and GL contains precisely one G-conjugate

of D;

• q ≡ 1(3), 2(q−1)
2

27
divides into |GL| and GL contains precisely one G-conjugate

of D;

• (q−1)2
µ2 divides into |GL| and GL contains more than one G-conjugate of D.

Observe also that k(k − 1) = v(v−1)
b

is even and that

|v(v − 1)|2 =
(q, 2)

4
|q3(q + 1)(q − 1)|2.

Thus if p is odd then we need |GL| divisible by 8(q − 1)/µ.

Suppose that GL is a subgroup of ˆGL(2, q) of type 6 or 7. Since q > 25, Lemma

3.23 implies that GL contains at most one conjugate of D. Thus 2(q−1)
9

must divide

24 or 60 or 2(q−1)
27

divides 24 or 60 and q ≡ 28(81). The prime powers we need

to check are, therefore, 13, 19, 31, 37, 109 and 271. These cases are already all

excluded.

If GL lies inside a group of type 3 then GL contains at most one conjugate of D

and either q ∼= 28(81) and 2(q−1)
27

divides into 4 or 2(q−1)
9

divides into 4. Both yield

values for q which are less than 25 and so can be excluded.
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Suppose that GL is a subgroup of ˆGL(2, q) of type 5, GL
∼= ˆ< SL(2, q0), V >.

Then (q−1)2
81

divides into 2q0(q
2
0 − 1) q0−1

3
and so q − 1 divides into 54(q20 − 1). For

q ≥ q30 we find that this is impossible for q0 > 2. If q0 = 2 then q < 32 and so

all cases have been excluded. For q = q0, |GL| < |Gα| implies a contradiction. For

q = q20, |GL| < |Gα| implies that
√
q ≤ 5 and all possibilities have been excluded.

Suppose that GL lies inside a parabolic subgroup of ˆGL(2, q) and not of type 4.

Then |GL| is divisible by p for q = pa, integer a. If |GL| is divisible by (q−1)2
µ2 then GL

has orbits on the non-identity elements of its normal p-Sylow subgroup divisible by
q−1
µ
. Thus GL contains the entire Sylow p-subgroup of ˆGL(2, q) and |GL| ≥ q (q−1)

2

µ2 ;

this implies that q < 6µ which is impossible. So assume that 3
∣

∣(q − 1) is the only

significant prime. If 2(q−1)
2

81
divides into |GL| we must have p = 2 and GL = ˆA : B

where A is a non-trivial 2-group. Then q ≥ 2a and q − 1 has a primitive prime

divisor s greater than 3 and s(q−1)
3

divides into |B|. Then B acts on the non-identity

elements of A by conjugation with orbits of size divisible by s and so |A| = q. Thus

|GL| is divisible by q(q−1)s
3

which means s must be 5 and so q = 16. This is already

excluded.

We are left with the possibility that GL is a subgroup of ˆGL(2, q) of type 4. If 2 is

significant then p is odd and GL contains at most 3 involutions since GL ≤ (̂q−1)2.

By Lemma 3.16 we know that k ≤ 3v
n
+ 1 = 1

2
q(q + 1) + 1. This is inconsistent

with our value for b. If 2 is not significant then |GL| = 2|D|e where e is a constant

dividing q − 1. Then the number of involutions in GL is at most e + 3. We appeal

to Lemma 3.16 to conclude that,

k ≤ rgv

ng
+ 1 =

(e+ 3)(q + 1)q

6
+ 1.

Thus,

3(q − 1)

e
=

b

v
=

v − 1

k(k − 1)
≥ 6(q6 + 2q5 + 2q4 + q3 − 6)

(e+ 3)2q2(q2 + 3q + 2)
>

6q2

(e+ 3)2
.

This implies that (e+3)2

e
> 2q and so e + 15 > 2q. Since e < q this must mean that

q < 15 which is a contradiction.

3.7.3 Case C

Finally we consider the possibility that no conjugate of D is normal in GL. We must

have at least two conjugates of D in GL and so |GL| > (q−1)2
µ2 .
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Suppose first that GL lies in a parabolic subgroup. Then GL = ˆA.B where A is

an elementary abelian p-group, B ≤ GL(2, q).

Suppose that A is trivial and refer to Lemma 3.23. Then GL lies in a subgroup

of ˆGL(2, q) of types 2, 4 or 5. If GL lies in a subgroup of type 5 then GL ≥ SL(2, q)

in which case |GL| > |Gα| which is a contradiction.

If GL lies in a subgroup of ˆGL(2, q) of type 4 then conjugates of D in GL

normalize each other and so (q−1)2
µ2 divides into |GL|. In this case some conjugate of

D must be normal in GL which is a contradiction.

If GL lies in a subgroup of ˆGL(2, q) of type 2 then we must have p dividing |GL|
otherwise all conjugates of D are normal in GL. But then some conjugate of D acts

by conjugation on the non-trivial elements of the normal p-subgroup with orbits of

size q−1
µ
. Thus q divides |GL| and GL has a normal subgroup Q of size q. We will

deal with this situation at the end of the section.

Thus A is non-trivial. Suppose that all conjugates of D in GL centralize all

elements of A. Then these conjugates lie in a subgroup of order q3(q − 1)/µ. Now

if GL ∩CG(A) only contains p-elements centralized by D then GL ∩CG(A) contains

only one conjugate of D. By our supposition this means that GL contains only one

conjugate of D which is a contradiction. Thus GL ∩CG(A) contains p-elements not

centralized by D. Then the normal p-subgroup of GL ∩ CG(A) has size |A| + n q−1
µ

for some n. Thus GL ≥ Q : D for a p-group Q of size at least q.

If a conjugate of D in GL does not act trivially in its action on elements of A

then A must be of order divisible by q. Once again GL ≥ Q : D where |Q| ≥ q. We

deal with this situation at the end of the section.

Now suppose that GL lies inside a subgroup of PSL(3, q) of type 2. In order for

there to be two conjugates, D and E, of D in GL we must have D,E in (̂q − 1)2.

Hence (q−1)2
µ2

∣

∣|GL|. For D,E to be non-normal, we must have GL ≥ ( q−1
µ
× q−1

µ
) : 3.

If 2 is significant then p is odd and GL ≤ (̂q − 1)2 : 3 and GL contains at most 3

involutions. By Lemma 3.16, we know that k ≤ 3v
n
+ 1 = 1

2
q(q + 1) + 1. This is

inconsistent with our value for b. If 2 is not significant then GL = ( q−1
3
× q−1

3
) : S3

and b = 3v.

When p is odd, GL contains at most q + 2 involutions and, by Lemma 3.16, this

implies that k ≤ (q+2)v
q2(q2+q+1)

+ 1. We therefore conclude that

k(k − 1) ≤ q(q + 1)(q + 2)(q + 3)(q2 + 2)

36
.

However this implies that b
v
= v−1

k(k−1) > 4 which is a contradiction.
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When p = 2, GL contains at most q − 1 involutions and we find that k(k − 1) ≤
1
36
q3(q3 + 6). Once again b

v
= v−1

k(k−1) > 4 which is a contradiction.

If GL lies inside a subgroup of PSL(3, q) of type 4 or 5 then we have two pos-

sibilities. If GL = A6.2 or A7 then, in order to satisfy |GL| > (q−1)2
µ2 , we must have

q = 25. This has already been excluded. If GL contains a subgroup of index less

than or equal to 3 isomorphic to PSU(3, q0) or PSL(3, q0) where q = qa0 then we

require that q30(q
2
0 − 1)(q30 − 1) < 6(q − 1)2. Thus we need q ≥ q40. This implies that

either q−1
µ

does not divide into |GL| or that q = 64. Both cases give contradictions.

If GL lies inside a subgroup of PSL(3, q) of type 6,7,8 or 10 then (q−1)2
µ2 < 360.

This implies that q ≤ 19 or q ≡ 1(3) and q ≤ 49. All of these cases have been

excluded already.

If GL is in a group of type 9 then |GL| < |Gα| implies that GL is a proper

subgroup. Since |GL| > (q−1)2
µ2 we must have GL ≤ [q] : (q − 1). Thus GL = A : B

where A ≤ [q], B ≤ (q − 1). All conjugates of B in GL are GL-conjugate and B

contains a conjugate of D. Thus q−1
µ

divides into |B|. Since B acts semi-regularly

on the non-trivial elements of A this means that |A| = q. Once more we conclude

that GL has a normal subgroup of order q.

We have reduced all cases to the situation where GL ≥ Q : D where Q is a

p-group of order divisible by q. Observe that all conjugates of D in Q : D are GL

conjugate. If GL contains E, another G-conjugate of D which is not GL-conjugate,

then E ∩ (Q : D) is trivial; hence |GL| ≥ q(q−1)2
µ2 which is too large. Thus all G-

conjugates of D in GL are GL-conjugate and we can apply Lemma 3.6 as in Case A.

As in Case A this implies that 3 is uniquely significant and either 2 (q−1)
2

81

∣

∣|GL|, q ≡
28(81) or 2 (q−1)

2

27

∣

∣|GL|, q ≡ 1(3). If p is odd then this means that either q < 81 and

q ≡ 28(81) or q < 27 and q ≡ 1(3). If p = 2 then this means that either q < 162

and q ≡ 28(81) or q < 54 and q ≡ 1(3). All such possibilities have already been

excluded.

Hence we may conclude that no new line-transitive action of PSL(3, q) exists

where Gα = (̂q − 1)2 : S3.

Remark. The argument in this section deals with Case II in our analysis of signif-

icant primes.
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3.8 Case III: 3|q − 1 is uniquely significant

In this case Gα lies inside a subgroup of PSL(3, q) of type 2, 4, 5 or 8.

3.8.1 Case 1: Gα is a proper subgroup of a group of type 2

Then Gα = A.B where B = C3 or S3 and A = (̂u × u) (this structure for A

follows since it is normalized by C3.) We can conclude, using Corollary 3.10, that

B = S3. Now observe that A.2 lies inside a copy of ˆGL(2, q), hence is centralized

by Z (̂ GL(2, q)). Thus, by Lemma 3.15, A.2 lies in GL. Thus |GL| = 2|A| or
|GL| = 4|A| while b

∣

∣3v. When p = 2 we know that v − 1 is odd. Since k(k − 1) is

even and b
v
= v−1

k(k−1) , this means that |GL| = 4|A| and b = 3
2
v.

Consider first the case where b = 3
2
v. Then b

v
= 3

2
= v−1

k(k−1) and so

k(k − 1) =
2

3
(v − 1) =

1

9u2
[q8 − q6 − q5 + q3 − 6u2].

Now observe that, for q > 8,

[
1

3u
(q − 1)(q3 + q2 +

1

2
q) +

1

2
][
1

3u
(q − 1)(q3 + q2 +

1

2
q)− 1

2
] >

2

3
(v − 1);

[
1

3u
(q − 1)(q3 + q2 +

1

2
q)
1

3
][
1

3u
(q − 1)(q3 + q2 +

1

2
q)− 2

3
] <

2

3
(v − 1).

Since 1
3u
(q − 1)(q3 + q2 + 1

2
q) = 1

6
a for some integer a, this is a contradiction.

Thus p is odd and b = 3v.

Now suppose that 4 does not divide into u. Then |Gα|2 ≤ 8 while |G|2 ≥ 16,

hence v − 1 is odd. This implies that |b|2 < |v|2 which is a contradiction. Hence

12|u.
Now GL = (̂u × u).2 < (̂q − 1)2 : 2 < ˆGL(2, q) and so contains at most u + 3

involutions. We appeal to Lemma 3.16 to observe that,

k ≤ (u+ 3)q(q + 1)(q − 1)2

6u2
+ 1.

We can conclude therefore that, for u ≥ 12,

k(k − 1) ≤ q2(q + 1)2(q − 1)4(u+ 3)(u+ 4)

36u4
.

This is strictly smaller than v−1
3

which is a contradiction.
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3.8.2 Case 2: Gα is a subgroup of type 4 or 5

We refer to Lemma 3.20. Consider first the possibility that Gα is isomorphic to A6.2

or A7 and p = 5. We exclude q = 25 using Lemma 3.18.

Observe that, since 3 divides q− 1, there is a group of order 3 normal in a group

isomorphic to (̂q − 1)2. Hence a line-stabilizer contains a subgroup of order 3 or

else contains the group (̂q − 1)2 (by Lemma 3.15). The latter possibility is not

possible, hence we may assume that 3
∣

∣|GL|. We may therefore conclude that b = 3v

or b = 3
2
v.

Now suppose that m is an integer dividing v and b = 3
x
v where x is 1 or 2. We

have that

v − 1

k(k − 1)
=

3

x

=⇒ 3k(k − 1) + x ≡ 0 (mod m)

=⇒ 36k2 − 36k + 12x ≡ 0 (mod m)

=⇒ 9(2k − 1)2 ≡ 9− 12x (mod m)

Thus 9− 12x is a square modulo m and m is not divisible by 3. If Gα = A6.2 then

we know that 25 divides v. For both values of x we find that 9− 12x is not a square

modulo 25.

Thus we assume that either Gα = PSL(3, q0), q = qa0 , 3
∣

∣q0 − 1, a 6≡ 0(mod 3); or

Gα = PSU(3, q0), q = qa0 , 3
∣

∣q0 + 1, a 6≡ 0(mod 6).

Then in the first instance we have a subgroup of Gα, (̂q0 − 1)2; in the second

instance we have a subgroup of Gα, (̂q0 + 1)2. Such subgroups are normal in the

subgroup of PSL(3, q), (̂q− 1)2. Thus these subgroups of Gα lie in GL and we may

conclude that b
∣

∣3v. Once again when p = 2 we know that v−1 is odd and so b = 3
2
v.

We know that q30
∣

∣|GL|, hence GL is not a subgroup of a group of type 2,3,6,7,8 or

10. IfGL is a subgroup of a group of type 9 then
(q30±1)
3

∣

∣(q2−1). Since q = qa0 , a 6≡ 0(3)

we must have q0 = 2 and Gα = PSU(3, 2). But then |Gα| = 72 which is the same

size as in Case 1 with u = 6. The arguments given there exclude both b = 3v and

b = 3
2
v.

If GL is only a subgroup of a group of type 4 or 5 then either GL = A6.2 or

A7 (and 25 divides into v which is a contradiction), or GL is one of PSL(3, q1) or

PSU(3, q1). Since b|3v we must have q0 = q1 and
q30+1

q30−1
equal to 3 or 3

2
. This is

impossible.
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Thus GL is a subgroup of a parabolic subgroup. Then we require that (q30 ±
1)
∣

∣(q2 − 1)(q − 1). This implies that q0 = 2 which can be excluded as in Case 1

setting u to be 6.

3.8.3 Case 3: Gα is a maximal subgroup of type 8

Note that p is odd here and, using Lemma 3.18, q ≥ 43. Here Gα
∼= 32.Q8 and

|q − 1|3 = 3. Observe that, since 3 divides q − 1, there is a group of order 3 normal

in a group isomorphic to (̂q − 1)2 and so, by Lemma 3.15, 3 ≤ GL. Thus b
∣

∣3v.

Now Gα has the same size as Gα in Case 1 with u = 6. The arguments given there

exclude both b = 3v and b = 3
2
v and we are done.

Thus we have ruled out all possible actions of line-transitive actions of PSL(3, q)

where 3 is the unique significant prime.

3.9 Case IV: 2|q − 1 is uniquely significant

In this case Gα either lies in a parabolic subgroup or in a subgroup of PSL(3, q) of

type 2 or 4. Since D normalizes a Sylow 2-subgroup of PSL(3, q), we know that

Gα contains D for some α. Furthermore, by Lemma 3.15, either Gα ≥ ˆGL(2, q) or

D < GL.

3.9.1 Case 1: Gα is a subgroup of a group of type 4 only

In this case Gα = PSL(3, q0) or PSL(3, q0).3 for some q0 where q = qa0 , a odd. Then

D < GL and so q−1
µ

divides into 3|PSL(3, q0)|. We must have q = q30. But then

PSL(3, q0) does not contain an element of order
q30−1
µ

and so D 6< PSL(3, q0) and

this case is also excluded.

3.9.2 Case 2: Gα lies inside a group of type 2

Here Gα is non-maximal, q ≡ 1(4) and Gα contains a cyclic subgroup of order

q − 1/µ. We have two possibilities:

1. Gα = A : 2 where A ≤ (̂q − 1)2 and |A| = a q−1
µ
. Then A is proper normal in

(̂q− 1)2 for a < q− 1 and proper normal in (̂q− 1)2 : S3 for a = q− 1. Thus

we may conclude, by Lemma 3.15, that GL = A. We can conclude that GL

contains at most 3 involutions.
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2. We suppose that 3|(q−1) and Gα = ( q−1
3
× q−1

3
) : S3. In this case, ( q−1

3
× q−1

3
) is

normal in (̂q−1)2 and hence lies in GL. We can conclude that |GL| = 3( q−1
3
)2

and GL contains at most 9 involutions.

Consider the first case. Since GL contains at most 3 involutions, we may appeal

to Lemma 3.16 to give,

k ≤ rgv

ng
+ 1 =

3q(q + 1)(q − 1)

2a
+ 1.

This implies that,

k(k − 1) <
9

4a2
q3(q + 1)2(q − 1).

Now we know that k(k − 1) = v−1
2
. Thus

v − 1

2
=
q3(q2 + q + 1)(q + 1)(q − 1)− 2a

4a
<

9

4a2
q3(q + 1)2(q − 1).

Hence q < 9
a
which is impossible.

We move on to the next possibility: H = ( q−1
3
× q−1

3
) lies inside GL with index 3.

Now H contains 3 involutions, hence GL must contain at most 9 involutions. Once

again we appeal to Lemma 3.16 to give,

k ≤ rgv

ng
+ 1 =

9q(q + 1)

2
+ 1.

This gives,
v − 1

2
= k(k − 1) <

41q2(q + 1)2

2
.

Given our value for v we may conclude that,

q3(q2 + q + 1)(q + 1)− 2 < 41q2(q + 1)2.

This is only true for q ≤ 7 which is impossible.

3.9.3 Case 3: Gα lies in a parabolic subgroup

Now, for P a parabolic subgroup, |G : P | = q2 + q + 1. By Lemma 3.9 this means

that any significant prime must divide 1
2
q(q + 1). Since 2 is uniquely significant, we

may conclude that q ≡ 3(4) and b
∣

∣

1
2
(q + 1)v. We write Gα = A.B where A is an

elementary abelian p-group and B ≤ ˆGL(2, q).

Suppose q ≡ 3(8). Then, by Lemma 3.9, b = 2v. Then, by Lemma 3.3, any

prime m dividing into v must be equivalent to 1(4). Since p ≡ 3(4) we have q3
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dividing into |Gα|. Thus A = [q2] and B ≥ ˆSL(2, q). However this means that A.B

is normal in the full parabolic subgroup. Hence, by Lemma 3.15, either GL ≥ Gα

(which is impossible) or Gα is the full parabolic subgroup. This case has already

been excluded.

Thus qequiv7(8) and B is a subgroup of ˆGL(2, q) of type 3 or 5. Consider

the case where B is a subgroup of ˆGL(2, q) of type 3. We examine the possible

situations here:

1. Suppose that B is maximal in ˆGL(2, q), i.e. |B| = 2(q2 − 1)/µ. Then B acts

by conjugation on the non-trivial elements of A with orbits divisible by q+ 1.

Thus |A| = q2 or 1. Since 2 is uniquely significant, A < GL. This is the same

situation as in Subsections 3.6.1 and 3.6.3; precisely the same arguments as in

those sections allow us to exclude the situation here.

2. Suppose that B is non-maximal in ˆGL(2, q). Then B contains a cyclic group

C which is normal in (̂q2− 1), hence lies in GL. Furthermore |A|
∣

∣|GL| since 2

is uniquely significant. Thus |GL| = |A|.|C| and Gα = 2|A|.|C| and so b = 2v.

However in this case, by Lemma 3.3, any prime m dividing into v must be

equivalent to 1(4). Here though p ≡ 3(4) and p divides into v. This is a

contradiction.

Now consider the possibility that B is of type 5. Since q ≡ 7(8), we must have

q = pa where a is odd and so B = ˆ< SL(2, q0), V >.

Suppose first that q = q0 and so B ≥ ˆSL(2, q) and either A is trivial or A = [q2].

If A is trivial then either B ¢ ˆGL(2, q) or B = ˆGL(2, q). The first option

implies that GL ≥ Gα (which is impossible). The latter option is the same as in

Subsection 3.6.2; precisely the same arguments as in that section allow us to exclude

the situation here.

If on the other hand A is non-trivial then A = [q2] and so Gα is either the full

parabolic subgroup (this possibility is already excluded) or Gα is normal in the full

parabolic subgroup and GL ≥ Gα (which is impossible). Thus both possibilities

are excluded when q = q0. We assume that q = qa0 , a is odd, a ≥ 3, p ≡ 7(8) and

D < GL.

Now observe that A. < V > is a split extension by Schur-Zassenhaus. So we

can take V to be in Gα. Furthermore Gα must contain a conjugate of D. Then,

since q ≥ q30, < V >∼= q−1
µ

is G-conjugate to D. The G-conjugates of D split into
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two conjugacy classes inside the parabolic subgroup with centralizers isomorphic to

[̂q] : (q− 1)2 and ˆGL(2, q). If we factor out the unipotent subgroup of the maximal

parabolic then we see that, in Gα/A, < V > A is centralized by SL(2, q0) and so

< V > must be centralized in the maximal parabolic by ˆGL(2, q). This means that

< V > acts by conjugation on the non-identity elements of A with orbits of size q−1
µ
.

In fact B has orbits of length a multiple of (q0+1)(q−1)
µ

on the non-trivial elements of

A. Thus |A| = q2 or |A| = 1.

Now note that, since b
∣

∣

1
2
v(q+1)q, we know that 2q0(q0−1)(q−1)

µ

∣

∣|GL|. Thus GL lies

inside a subgroup of PSL(3, q) of type 1 or 4.

If GL lies in a subgroup of PSL(3, q) of type 9 then GL = SO(3, q). If A is trivial

then |GL| > |Gα| which is a contradiction. If A is non-trivial then q2 divides into

|GL| which is a contradiction.

If GL lies in a subgroup of PSL(3, q) of type 4 then GL = PSL(3, q1) or

PSL(3, q1).3. Since D < GL we must have q ≤ q21. But q = pa where a is odd

which is a contradiction.

Thus GL lies inside a parabolic subgroup of PSL(3, q). So GL = A1.B1 where

A1 is elementary abelian and B1 ≤ ˆGL(2, q). Then 2(q0−1)(q−1)
µ

divides into |B1| and
B1 is of type 4, 5, 6 or 7.

If B1 is of type 5 then we must have B1 ≥ SL(2, q0). Since D < A1.B1 we require

that B1 contains a cycle of length q−1
2µ

and so B1 ≥< SL(2, q0),
q−1
2µ

> . If A is trivial

then |B1| ≥ 1
2
|Gα| which is a contradiction. If A = [q2] then A1 must be non-trivial

and B1 has orbits on the non-trivial elements of A1 of size a multiple of (q0+1)(q−1)
µ

.

Thus |A1| = q2 and |GL| ≥ 1
2
|Gα|. By Lemma 3.3, p ≡ 1(4) which is a contradiction.

If B1 is of type 4, 6 or 7 then q0 divides into |A1| and GL = A1.B1 is a split

extension. Furthermore A is trivial since q2q0 cannot divide into |GL|.
In the case of types 6 and 7, B1 must centralize EA1 in GL/A1 where E is a

conjugate of D. Thus E has an orbit on the non-trivial elements of A1 of size a

multiple of (q−1)
µ

. Thus |A1| ≥ q. But |Gα| < q30
q−1
µ

and |GL| > q q−1
µ

which is

impossible.

We are left with the possibility that B1 is of type 4 and take D to be in GL.

Suppose first that DA1 is central in B1 = GL/A1. Since q + 1 does not divide into

b, |B1|2 ≥ 2|(q − 1)2|2. This implies that D is centralized in the full parabolic by

ˆGL(2, q) and D has orbits on A1 of size a multiple of (q−1)
µ

. If, on the other hand,

DA1 is not central in B1 = GL/A1 then it is not normal either and |B1| is divisible
by 2( q−1

µ
)2 Then GL has orbits on the non-trivial elements of A1 of size a multiple
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of (q−1)
µ

. Thus in either case |A1| ≥ q. But |Gα| < q30
q−1
µ

and |GL| > q q−1
µ

which is

impossible.

This deals with all the cases where 2 is a uniquely significant prime. We conclude

that PSL(3, q) has no line-transitive actions in this case.

We have now dealt with all possibilities for line-transitive actions of PSL(3, q)

on finite linear spaces. Our proof of Theorem B is complete.
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