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Summary

In this thesis, we study particular finite geometric structures, such as
quadrics, Hermitian varieties, Veroneseans,... and their applications in re-
search areas such as coding theory and cryptography. Characterizing these al-
gebraically defined objects in a combinatorial way is an interesting and widely
spread habit which dates back to Segre, when he proved his classical result
that every oval in PG(2,¢q), ¢ odd is a conic. Furthermore, it turns out that
finite geometric structures are an excellent tool for the construction of cer-
tain cryptographic systems such as secret sharing schemes and authentication
codes.

The first chapter is an introductory chapter, where we briefly discuss the
geometrical background needed to read this thesis. It consists of a collection
of definitions and some important theorems which are used throughout the
thesis.

In Chapter 2, we study the applications of the studied finite geomet-
ric structures, namely authentication codes and secret sharing schemes. Here
the construction of such cryptographic protocols by means of geometric struc-
tures is studied. The later Chapters 3 and 4 study the geometric structures
themselves.

We start with authentication codes, which are cryptographic systems
used to authenticate a person. We list their important parameters and prop-
erties, and give a small overview of previous geometrical constructions of them.
First we show that generalized Veroneseans can be used to construct gener-
alized dual arcs. Next, it is shown how generalized dual arcs and generalized
quadrangles can be used to construct authentication codes and their perfor-
mance with respect to the above described parameters is discussed.

The second part describes secret sharing schemes, protocols designed for
the distribution of a secret amongst a group of people. Several geometric secret
sharing schemes, including new ones using Veroneseans are described. Follow-
ing Massey [40], the link with coding theory is exploited, as it is shown that one
can construct secret sharing schemes based on so-called minimal codewords in
a linear code.

In Chapter 3, minimal codewords in a particular code, the binary Reed-
Muller codes are investigated. It is easy to show that codewords of very small
weight are all minimal and codewords of very large weight are all non-minimal.
In [5], Borissov, Manev and Nikova considered the first non-trivial case from
the lower side. We continue in this fashion, thereby translating the problem
into a geometrical one, which concerns the intersection of quadrics and other
geometrical objects in projective space.

In the fourth chapter, the quadric Veronesean and the generalized Verone-



sean is studied. Several very good characterization results on the quadric
Veronesean are already known for quite some time.

In the first part of the chapter, we are able to obtain an extension and a
characterization result for the generalized Veronesean. The proof is quite long
and technical, but it relies on and extends one of the characterization results
for the quadric Veronesean.

The second part of this chapter forms the bridge to the last chapter of
the thesis, since we will study geometric objects by means of their intersection
numbers with respect to certain subspaces. Here, the quadric Veronesean is
characterized, since we are able to prove the conditions of a structural charac-
terization result of it from the intersection numbers.

The last chapter concerns the study of classical polar spaces by means of
intersection numbers, except for the symplectic ones for obvious reasons. First,
some previous characterizations using line intersection numbers are given.
These are not only of general interest, but in some proofs, they are used. We
state a nice characterization result of the parabolic quadric Q(4,q) by Ferri
and Tallini [23], which is characterized by means of its intersection numbers
with planes and 3-spaces. This theorem is extended in two ways. One direc-
tion is to show that one can characterize singular classical polar spaces if one
allows all possible intersection numbers with planes and 3-spaces. Only few
exceptions, containing a very large singular subspace, are found. The other
direction is to extend this result to higher dimension and to consider more gen-
erally the intersection numbers with hyperplanes and spaces of codimension 2.
No exceptions are found here.
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Chapter 1

Introduction

In this introductory chapter, we give an overview of the geometrical back-
ground needed to read this thesis, and we introduce some notations. We do
not intend to be complete when discussing some of this background, but we
rather try to restrict ourselves to the particular results we will use later on. For
those who want to know about particular things, we have included references
to standard works.

1.1 Generalized quadrangles

A finite generalized quadrangle (GQ) of order (s,t) is an incidence structure
S = (P,B,I) in which P and B are disjoint non-empty sets of objects called
points and lines respectively, and for which I is a symmetric point-line incidence
relation satisfying the following axioms.

(GQ1) Each point is incident with ¢+ 1 lines (¢ > 1) and two distinct points are
incident with at most one common line.

(GQ2) Each line is incident with s 4+ 1 points (s > 1) and two distinct lines are
incident with at most one common point.

(GQ3) If pis a point and L is a line not incident with p, then there is a unique
point-line pair (¢, M) such that pI M I¢1T L.

A generalized quadrangle (GQ) of order (s,t) contains (s + 1)(st + 1) points.
If s =t, then S is also said to be of order s.

If S has a finite number of points and if s > 1, it is easy to show one can
replace axiom (GQ1) by the following axioms.

(GQT’) No point is collinear with all others.

9
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(GQL”) There is a point on at least two lines.

Sometimes this alternative definition will be used in our proofs.

The classical generalized quadrangles. Consider a non-singular
quadric of Witt index 2, that is of projective index 1, in PG(3, q), PG(4, ¢) and
PG(5,q). The points and lines of these quadrics form generalized quadrangles
which are denoted by QT (3,¢q), Q(4,q) and Q~(5,¢), and of order (¢, 1), (g, q)
and (g, q?) respectively. Next, let H be a non-singular hermitian variety in
PG(3,¢?) or PG(4,¢?). The points and lines of H form a generalized quad-
rangle H(3,¢?) or H(4,¢*), which has order (¢2, q) or (¢?, ¢*) respectively. The
points of PG(3,¢) together with the totally isotropic lines with respect to a
symplectic polarity form a GQ, denoted by W (q), of order q. The generalized
quadrangles defined here are the so-called classical generalized quadrangles.

Definition 1.1.1 Let V be a vector space over some skew field, not necessarily
finite-dimensional. A generalized quadrangle S = (P, B,I) is fully embedded
in the projective space PG(V') if there is a map w from P to the set of points
and from B to the set of lines of PG(V') such that:

(i) 7 is injective on points,
(11) if t € P and L € B with v I L, then 2™ € LT,
(1ii) the set of points x™, where x € P, generates PG(V),

(iv) every point in PG(V') on the image of a line L of the quadrangle is also
the image of a point of that line L of the quadrangle.

The following beautiful theorem is due to Buekenhout and Lefevre [11].

Theorem 1.1.2 Fvery finite generalized quadrangle fully embedded in projec-
tive space is classical.

Point-Line Duality. There is a point-line duality for GQs of order
(s,t) for which in any definition or theorem the words “point” and “line” are
interchanged and also the parameters s and ¢t. (If § = (P, B,I) is a GQ of
order (s,t), SP = (B,P,1) is a GQ of order (¢,s).)

Collinearity /Concurrency/Regularity. Let p and ¢ be (not nec-
essarily distinct) points of the GQ S; we write p ~ ¢ and call these points
collinear, provided that there is some line L such that p I L T ¢q. Dually, for
L, M € B, we write L ~ M when L and M are concurrent.

For p € P, put



1.1. GENERALIZED QUADRANGLES 11

pr={qeP|qg~p}
(and note that p € p*). For a pair of distinct points {p, ¢}, we denote p* N g+

also by {p,q}*. Then [{p,q}*| = s+ 1 or t + 1, according as p ~ q or p % ¢,
respectively. For p # ¢, we define

(p,g}y* - ={reP|rest forall sc{pq}*}.

Automorphisms. An automorphismof a GQ S = (P, B,1) is a permu-
tation of PUB which preserves P, B and I. The set of automorphisms of a GQ
S is a group, called the automorphism group of S, which is denoted by Aut(S).

SubGQs. A subquadrangle, or also subGQ, §' = (P',B,T') of a GQ
S = (P, B,1) is a GQ for which P’ C P, B’ C B, and where I’ is the restriction
of I'to (P' x B')U (B x P).

Ovoid of a GQ. An ovoid of a generalized quadrangle S is a set O of
points of § such that each line of S is incident with a unique point of O.

The following results will sometimes be used without further reference.

Theorem 1.1.3 [/1, 2.2.1] Let 8" be a proper subquadrangle of order (s',t")
of the GQ S of order (s,t). Then either s = s or s > §'t'. If s = &', then
each external point of S’ is collinear with the st' + 1 points of an ovoid of S';
if s = §'t', then each external point of 8" is collinear with exactly 1+ s’ points

of §'.

Theorem 1.1.4 [41, 2.2.2] Let S8’ be a proper subquadrangle of the GQ S,
where S has order (s,t) and S’ has order (s,t") (sot >t'). Then we have

1) t>s;ifs=t, thent =1.
2) If s> 1, thent < s;ift =s5>2, thent = s
3) If s=1, then 1 < t' <t is the only restriction on t'.

(1)
(2)
(3)
(4) If s> 1 and t' > 1, then /s <t' < s and s3/* <t < 2.
(5) Ift=25%2>1andt > 1, then t' = \/s.

(6)

6) Let 8" have a proper subquadrangle 8" of order (s,t"), s > 1. Then
=1t =5 and t = s>
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A lot of information on finite generalized quadrangles can be found in
the reference work [41].

1.2 Classical polar spaces

Polar spaces were first described axiomatically by Veldkamp [72]. Later on,
Tits simplified Veldkamp’s list of axioms and further completed the theory
[71]. We recall Tits’ definition of polar spaces.

A polar space of rank n, n > 2, is a point set P together with a family
of subsets of P called subspaces, satisfying the following axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional
projective space with —1 < d < n — 1; d is called the dimension of the
subspace.

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V' of dimension n — 1 and a point p € P\V, there is
a unique subspace W of dimension n — 1 such that p € W and VNW
has dimension n — 2; W contains all points of V' that are joined to p by
a subspace of dimension 1, also called a line.

(iv) There exist two disjoint subspaces of dimension n — 1.

The polar spaces of rank 2 are by definition the generalized quadrangles. The
finite classical polar spaces are the following structures.

(i) The non-singular quadrics in odd dimension, @ (2n + 1,¢),n > 1, and
Q (2n+1,q9),n > 2, together with the subspaces they contain, give a
polar space of rank n+ 1 and n, respectively. The non-singular parabolic
quadrics Q(2n, q),n > 2, in even dimension, together with the subspaces
they contain, give a polar space of rank n.

(i) The non-singular hermitian varieties in PG(2n, ¢?), n > 2, together with
the subspaces they contain, give a polar space of rank n; the non-singular
hermitian varieties in PG (2n+1, ¢%), n > 1, together with the subspaces
they contain, give a polar space of rank n + 1.

(iii) The points of PG(2n + 1,¢q),n > 1, together with the totally isotropic
subspaces of a non-singular symplectic polarity of PG(2n + 1, ¢), give a
polar space of rank n + 1.

By theorems of Veldkamp and Tits, all polar spaces with finite rank at least
3 are classified. In the finite case, i.e. the polar space has a finite number of
points, the following theorem, which can be found in [71], holds.
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Theorem 1.2.1 A finite polar space of rank at least 3 is classical.
Buekenhout and Shult described polar spaces as point-line geometries.

Definition 1.2.2 A Shult space is a point-line geometry S = (P, B,1), with B
a non-empty set of subsets of P of cardinality at least 2, such that the incidence
relation I, which is containment here, satisfies the following axiom. For each
line L € B and for each point p € P\L, the point p is collinear with either one
or all points of the line L.

A Shult space is non-degenerate if no point is collinear with all other points.
A subspace of a Shult space S = (P, B,1) is a subset W of P such that any
two points of W are on a common line and any line containing distinct points
of W is completely contained in W. A Shult space is linear if two distinct lines
have at most one common point. Buekenhout and Shult proved the following
fundamental theorem [12]. A Shult space is of finite rank n if each chain of
distinct subspaces Ry C Ry -+ C R; of S has at most n elements.

Theorem 1.2.3 (i) Every non-degenerate Shult space is linear.

(ii) If S is a non-degenerate Shult space of finite rank n at least 3, and if all
lines contain at least three points, then the Shult space together with all
its subspaces is a polar space.

Hence we have the following theorem.

Theorem 1.2.4 Suppose that S is a non-degenerate Shult space of rank at
least 3, such that each line contains at least 3 points. Then S is isomorphic to
the point-line geometry of a finite classical polar space.

If a Shult space is fully embedded in a projective space then the following
theorem follows from Buekenhout and Lefevre [11], and Lefevre-Percsy [37, 38].

Theorem 1.2.5 Suppose S is a non-degenerate finite Shult space. If S 1is
fully embedded in a projective space, then S consists of the points and lines of
a finite classical polar space. Here fully embedded means that the set of lines
of S is a subset of the set of lines of the projective space and that the point set
of § 1s the set of all points contained in these lines.

1.3 Veroneseans and generalized (dual) arcs

In this section, we define the generalized Veronesean. We give a construction
showing that one can associate generalized dual arcs with them. These gen-
eralized dual arcs turn out to be excellent tools to construct message authen-
tication codes and secret sharing schemes, which we will explain in Chapter
2.
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We start by defining a generalized dual arc.

Definition 1.3.1 A generalized dual arc F of degree d with dimensions n =
ng > ny > ng > - > ngey > —1 of PG(n,q) is a set of ni-dimensional
subspaces of PG(n, q) such that:

1. each j of these subspaces intersect in a subspace of dimension n;, 1 <
j<d+1,

2. each d + 2 of these subspaces have no common intersection.

We call (n = ng,ny,...,nqs1) the type of the generalized dual arc.

An ordinary d-dimensional dual arc in PG(n,¢) has type (n,d,0). A
generalized dual arc of degree 0 is a partial n;-spread.

A (k,n)-arc K in PG(2,q) is a set of k points such that some line of
the plane meets IC in n points but such that no line meets K in more than n
points, where n > 2. The dual of a (k,n)-arc is a (k,n)-dual arc. Iif n =2, we
simply use arc and dual arc respectively.

Example 1.3.2 o Take a dual arc in a plane . Embed m in a 3-dimensional
space. Now we have a generalized dual arc of type (3,1,0). But the 3-
space s not really used.

o Take a dual arc with k elements in a plane w. Embed m in a space of
dimension k + 2 and choose planes different from w through the k lines
of the dual arc that span PG(2+ k,q). This is a generalized dual arc of
type (k +2,2,0). Even if the planes span PG(2 + k, q), the interesting
part of the construction is contained in the plane .

e The following planes of PG(4,q) form a generalized dual arc of type
(4,2,0):

{la,b,¢,0,0] || a,b,c € F,},
{la,0,b,b,c] || a,b,c € F,},
{l
{l

0,a,b,¢,b] || a,b,c € F,},

™
T2
3
T4 a,a,0,b,c| || a,b,c € F,}.

The intersection points of m with the other planes lie on the line Xy =
X3 = X4y = 0. So only that line of m is a real part of the generalized
dual arc.
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These examples motivate the notion of a regular generalized dual arc.
In a characterization result on Veroneseans which we will prove in Chapter 4
even a stronger form of regularity is used.

Definition 1.3.3 A generalized dual arc F of degree d and type (n = ng, ..., Ngs1)
is regular if, in addition, the ni-dimensional spaces of F span PG(n,q) and
iof it satisfies the property that if w is the intersection of j elements of F,
J < d, then m is spanned by the subspaces of dimension n;y1 which are the
intersections of m with the remaining elements of F.

A generalized dual arc is strongly regular if it is reqular and satisfies

K 12 K
(Q, .., Q)N [ = <leﬂ9;,...,9kmﬂ9;>
=1 i=1 i=1

for all arc elements Qy, ..., Q, Q... Q.

Let us recall the definition of the quadric Veronesean V2".

Definition The Veronese variety V" of all quadrics of PG(n,q), n > 1, is
the variety

Vyzln = {p(x(z)v l’%, e 71'317'I0x17$0x2a e 7wn—1xn) || (.Io, e rrn) S PG(n7 Q)}

of PG(" ("13) ¢): this variety has dimension n and order 2". The natural
number 7 is called the index of V2".

For the basic properties of Veroneseans we refer to [28].

The image of an arbitrary hyperplane of PG(n, ¢q) under the Veronesean
map is a quadric Veronesean V2", | and the subspace generated by it has
dimension N,_; = w Such a subspace is called a V,_1-subspace. In
particular for n = 2, the V;-subspaces are called conic planes.

The image of a line of PG(n, q) is a plane conic, and if ¢ is even, then the

set of nuclei of all such conics is the Grassmannian of the lines of PG(n, ¢) and
(n=1)(n+2)

5 , which we call the nucleus

hence generates a subspace of dimension
subspace of V2", see [65].
One can also consider the quadric Veronesean from a matrix point of

view.

Theorem 1.3.4 The quadric Veronesean V2" of PG(n, q) consists of all points

P(Yo.05 "+ Y Yo,15 " 5 Yn—1,n) OfPG‘r(""+3 ,q) for which [y; ;], withy; ; = y;,;
for i # j, is a symmetric matriz of rank 1.
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Let PG(V) be an n-dimensional space with basis e; (0 <i < n).

Let PG(WW) be an ((”z_‘ﬁrl) — 1)—dimensional space with basis e;, 4,
(0<ip<i3 <---<ig<nm).

Below, we define a map which is a generalization of the quadratic Verone-
sean map.

The generalized Veronesean is the point set which is the image of this
map.

We define ¢ : PG(V) — PG(WW) by
C:D_mel = Y m e,
=0 0<ip<--<ig<n

For each permutation o of {0, ..., d}, let ¢;_,
1y < - <ge

77777 iy Peequaltoe;, i, i <

Construction 1.3.5 Let 0 : VI — W be the multilinear mapping

0 d 0 d
0: 0> aVei,....Y aley— > @l alVey . (L1)

io=0 ig=0 0<ig,.myig<n
For each point p = (x) of PG(V'), we define a subspace D(p) of PG(W) by
D(p) = <0<33',Ul,"' 7Ud) H U1, ,0q € V)

Theorem 1.3.6 The set D = {D(p) || p € PG(V)} is a strongly regular

generalized dual arc with dimensions d; = ("Zﬁﬁ;z) —1,i=0,---,d+ 1.

Proof Since 0 is a multilinear form we get
D(pO) n... mD<pk) = <9<I07"'7xkavk+17"'7vd) H Uk41y---,0d € v>

and hence D is a generalized dual arc with the specified dimensions (see
also [35]).
To see that D is strongly regular, a calculation yields that

(D(p1),...,D(pr))y = O(x,v1,...,04) || x € (x1,...,2) ,01,...,04 € V)

(D(p1), ..., D(pw)) N (D) N...N D' (K))) =
Oz, 2y, T, Uity -5 0a) || @ € (T1, o Th) s Vg1, .00 € V)

Since 0 is a multilinear form
Oz, 2y, Tpry Vprsny -, 0a) || @ € (X1, k), Vg1, -y 0g €V =
{O(xi, 2, T iy 0a) |y kat, - va EV) i =1,..0 k)

and this is exactly the definition of strongly regular. O
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gvti—1 n4d+1
If T 2 ( d+1

constructions are equivalent is proved in Lemma 6 of [73] for the case d = 1.
The general proof is completely similar.

) there is an alternative construction. That these two

Construction 1.3.7 With b and B respectively, we denote the standard scalar
product of V and W, i.e.,

b(z Tie;, Z yie;) = Z Tilis
=0 =0 =0

and

B( ) TigyoiaCioniar D Yioy...riaCior.ria) =

0<ig<-<ig<n 0<ig<--<ig<n

0<ip<--<ig<n

For each x € V, we denote by x* the subspace of V perpendicular to x
with respect to b. So

vt ={y eV | b(z,y) =0},
Then
D(p) = {[2] e PG(W) || B(2,¢{(y)) = 0 for all y € z*}. (1.2)

We call the arcs D defined by Construction 1.3.5 Veronesean dual arcs.
Below, we give two examples of our general construction.

Example 1.3.8 Starting with PG(2, q), the mapping ¢ : PG(2,q) — PG(5,q)
with

C([éﬂo,wl,xz]) = [37(2)755%7353,950551,%0372,551372]

defines the quadric Veronesean Vj.
If p=la,b,c|, the planes D(p) defined above have the representation

D(p) = {[axo, bx1, cxe, axy + bxg, axs + cxo, bro + cx1] || 2o, 21,22 € Fy} .

These planes form a strongly reqular generalized dual arc of ¢*> + q + 1
planes of type (5,2,0).
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Example 1.3.9 The map ¢ : PG(2,q) — PG(9, q) with

C([ll?o, Z1, 9152]) = [:63, 53:1)’, 1’%7 35?)371, iﬁ'gi@, 37%9507 55%1'2, 9535170, 1'33?17 3701'1962]

defines a cubic Veronesean. Construction 1.5.5 associates to each of the ¢* +
q+ 1 points of PG(2,q) a 5-dimensional space in PG(9,q). Each two of these
5-spaces intersect in a plane. Each three 5-spaces share a common point and
each four 5-spaces have an empty intersection.

Three of the ¢*> + ¢ + 1 5-spaces are:

o = D([17070]) = {[607070761762763707 64’0765] || € € ]Fq}7
m = D([07 170]) = {[0760707617076276370764765] H € € Fq}v
g = D([0>07 1]) = {[0,0, 60707617()’62’63764765] || € € ]Fq}

The intersections of ; with the other ¢>+¢ 5-spaces are planes, i = 0, 1, 2.
These planes are part of the generalized dual arc described in Example 1.3.8.
For 7y, the corresponding Veronesean has the following form

2 2 2
Vo = [25,0,0, zoz1, ToTa, 7, 0, 5, 0, x125].

To this Veronesean V, Construction 1.3.5 associates ¢®> 4+ ¢ + 1 planes;
where ¢? + ¢ of these planes are intersections of 7y with the other 5-spaces.
The extra plane has the form

Ey :={[e0,0,0,e1,€e2,0,0,0,0,0] || €, e1,€2 € Fy} .
Similarly, we see in 7 the Veronesean
V= [0,22,0,22,0, 2021, 2129, 0, 73, T075]
and the extra plane
E, :={[0,€0,0,0,0,e1,€e2,0,0,0] || e, e1,€2 € F,},
and in 7y, we have the Veronesean
Vy = [0,0,23,0, 25,0, 2%, 2972, 1172, ToT1]
and the extra plane
Ey :=1{[0,0,¢e0,0,0,0,0,e1,e2,0] || €, e1,€2 € Fy} .

Also to construct secret sharing schemes the previous constructions are
very well-suited as we will show in Chapter 2. Actually, we don’t apply gen-
eralized dual arcs directly. But the dual of these structures, which we call
generalized arcs.
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Definition 1.3.10 A generalized arc A of degree d with dimensions ny <
ng < -+ < ngr1 of PG(n,q) is a set of ni-dimensional subspaces of PG(n,q)
such that:

1. each j of these subspaces generate a subspace of dimension nj, 1 < j <
d+1,

2. each d + 2 of these subspaces span PG(n,q).

We call (n,nyq,...,nqs1) the type of the generalized arc.

If in addition the common intersection of all njii-dimensional subspaces
spanned by j+1 elements of the arc containing a given n;-dimensional subspace
m spanned by 7 elements of the arc is equal to w, we call the arc regular.

Theorem 1.3.11 The dual of a generalized arc of type (n,nq,...,Ngy1) is a
generalized dual arc of type (n,n — 1 —nq,...,n—1—ngy1) and vice versa.
Furthermore, the dual arc is regular if and only if the arc is reqular.

Proof Dualising in PG(n, ¢) maps every k-dimensional subspace onto an (n—
1 — k)-dimensional subspace. Dualising exchanges the concepts ”span” and
"intersection”. O

Dual to Construction 1.3.5, we have the following construction of gener-
alized arcs.

Construction 1.3.12 Asin Construction 1.3.5, let PG(V') be an n-dimensional
space with basis e; (0 <1i<n).

Let PG(W) be a ((”Z_‘ﬁrl) - 1) -dimensional space with basis e;, .. ;, (0 <
ig <y <-o- <ig <n).

We define ¢ : PG(V) — PG(W) by

n
C: [Z zie)] — | Z Tig* e v TigCig iyl -
i=0

0<ig<-<ig<n]

With b and B respectively, we denote the standard scalar product of V

and W, i.e.,
b(z xi€;, Z yzez) = Z T;Yi,
=0 =0 =0

and

B( § Tig,...,1qCio,...ia> E Yion...iqCio,mia) = § Tig,...iqYioria-

0<ip<-+<ig<n 0<ip<-+<ig<n 0<ip<+<ig<mn
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For each x € V, we denote by x+ the subspace of V perpendicular to x
with respect to b. So

vt ={y eV | b(z,y) = 0}.

For each point p = [z] of PG(V), we define a subspace A(p) of PG(W)

by

Alp) = (C) lly € ™). (1.3)
Theorem 1.3.13 The set A = {A(p) || p € PG(n,q)}, defined in Con-
struction 1.3.12, is a generalized arc of type n; = ("Zjﬁrl) — (”;ﬁt;’) -1,
i=1,.. . . d+1.

The generalized dual arc described in Construction 1.3.5 is the dual of
that arc.

Proof By definition (check equation (1.2)) we have D(p) = A(p)* with respect
to the bilinear form B. Since B is a non-degenerate form, this means that
D(p) is dual to A(p). Thus we may apply Theorem 1.3.11, which together
with Theorem 1.3.6 shows that A is indeed a generalized arc. ([l

Remark 1.3.14 The elements A(p) are exactly the V,_i-subspaces defined
above. Hence the set D of Construction 1.3.5 is the dual of the set of V,,_1-
subspaces.

1.4 Blocking sets

A blocking set B in I1 = PG(2,q) is a set of points of IT which meets every
line. A line is an example of a blocking set, but a blocking set containing a
line is called trivial.

A blocking set is called minimal if for every p € B, the point set B\ {p}
is not a blocking set. It is easy to prove the following useful lemma.

Lemma 1.4.1 A blocking set B is minimal if and only if for every point p of
B, there is some line L such that BN L = {p}.

A blocking set containing k£ points is called a blocking k-set. The following
theorem gives an upper and a lower bound on the size of a non-trivial minimal
blocking set. First we need two definitions.

Definition 1.4.2 A unital of PG(2,¢?) is a set of ¢* + 1 points in PG(2, ¢%)
intersecting every line of PG(2,¢*) in either 1 or q + 1 points.
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Definition 1.4.3 Consider I1 :== PG(n,¢?). Let B = (P,L,1I) be a geometry
isomorphic to PG(n,q), whose point set P is a subset of the point set of 11,
whose line set is a subset of the line set of Il and whose incidence is inherited
from I1. Then the geometry B is called a Baer subgeometry of II.

Theorem 1.4.4 Let B be a non-trivial minimal blocking set in PG(2,q).
Then

(i) |B| = ¢+ /g + 1 with equality if and only if q is a square and B is a
Baer subplane [8].

(ii) |B| < q/q+1 with equality if and only if q is a square and B is a unital

[10].
Next, let us consider multiple blocking sets.

Definition 1.4.5 An s-fold blocking set in PG(2,q) is a set of points of
PG(2,q) that intersects every line in at least s points. It is called minimal
if mo proper subset is an s-fold blocking set.

A 1-fold blocking set is a blocking set. The following theorem shows that if
s > 1, then in order to find s-fold blocking sets of small cardinality, one must
look for sets not containing a line.

Theorem 1.4.6 Let B be an s-fold blocking set of PG(2,q),s > 1.
(i) If B contains a line, then |B| > sq+q—s+2 [9].
(ii) If B does not contain a line, then |B| > sq+ \/sq+1 [2] .

For small s, this theorem can be improved, and if s is small and ¢ is a square
the smallest minimal s-fold blocking sets are classified [3]. Finally we introduce
blocking sets in higher dimensional spaces.

Definition 1.4.7 A blocking set with respect to t-spaces in PG(n, q) is a set
B of points such that every t-dimensional subspace of PG(n,q) meets B in at
least one point.

The following result of Bose and Burton gives a nice characterization of the
smallest ones [7].

Theorem 1.4.8 If B is a blocking set with respect to t-spaces in PG(n,q)
then |B| > |PG(n — t,q)| and equality holds if and only if B is an (n —t)-
dimensional subspace.
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1.5 Arcs and caps in PG(n, q)

1.5.1 Arcs and caps in projective spaces of small dimen-
sion

We begin with the classical definition of arcs in PG(2, q).

Definition 1.5.1 A k-arc of PG(2,q) is a set of k points, no three collinear.
Let m(2,q) denote the maximal size of a k-arc in PG(2,q).

We state the Bose result on the maximum size of a k-arc in PG(2, q) [6].

Theorem 1.5.2 [f q is odd, then m(2,q) = q+ 1. If q is even, then m(2,q) =
q—+2.

Definition 1.5.3 A k-cap in PG(n,q) is a set of k points in PG(n,q), no
three of which are collinear.

The size of a k-cap in PG(3, ¢) is bounded. For ¢ even in [6] and for ¢ odd in
[43].

Theorem 1.5.4 If K is a k-cap of PG(3,q), then k < ¢* + 1 for ¢ > 2, and
k <8 forq=2.

Definition 1.5.5 A (¢*> + 1)-cap of PG(3,q), q > 2, is called an ovoid; an
ovoid of PG(3,2) is a set of 5 points of PG(3,2) no four of which are coplanar.
A (q+ 1)-arc of PG(2,q) is called an oval.

Lemma 1.5.6 Consider a set K of points in PG(4,q). Suppose all planes
intersect K in 1, ¢+ 1 or 2¢ + 1 points. If K is a cap in PG(4,q), then
K| <¢’+1.

Proof Consider a line L intersecting K in 2 points and consider all planes
through L in PG(4,q). These planes cannot intersect K in 2¢ 4+ 1 points, by
Theorem 1.5.2. Hence, K contains at most

(PF+q+D)(g—-1)+2=¢+1

points. 0]
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1.5.2 Arcs and caps in higher dimensional projective
spaces

Next, we give the general definition of arcs in PG(n, q). These objects are of
importance since they have applications in coding theory. In Chapter 4 we
will use properties of these arcs.

Definition 1.5.7 A (k;r,s;n,q)-set K is defined to be a set of k points in
PG(n, q) with at most r points in any s-space and such that K is not contained
in a proper subspace. Furthermore, the set KC is complete if it is not contained
in a (k+1;r s;n,q)-set. In particular, a (k;n,n — 1;n,q)-set is a k-set not
contained in a hyperplane with at most n points in any hyperplane of PG(n, q)
and 1s also called a k-arc.

An important question is to find the maximum value m(r, s;n, q) of k for
a k-arc in PG(n, q). We will consider only the maximum value for a k-arc here
and we denote it by m(n,q). The theorem which we state below is certainly
not the best one known, but it is sufficient for the results obtained in this
thesis.

Theorem 1.5.8 In PG(3,q),q >3, m(3,9) =q¢+ 1. InPG(4,q),q > 5,
m(4,q) =g+ 1.

Forq>5n2>5,
m(n,q) < ¢+n—3.

If ¢ < n, then m(n,q) =n+ 2.
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Chapter 2

Message authentication codes
and secret sharing schemes

In this chapter we discuss two important applications of the geometrical objects
which are considered in this work, authentication codes and secret sharing
schemes.

Firstly, authentication codes are discussed. They serve to authenticate
for example the sender of a message. They are used in situations where a
malicious intruder could send fake information or in situations where sender
and receiver don’t trust each other, for instance on the stock market.

The second part of the chapter discusses secret sharing schemes. These
are designed to distribute a secret among a group of people such that only
a limited number of subsets of this group can reconstruct the secret. They
are used in environments where you don’t want a single person to have all
knowledge about some secret. At the end of this chapter we briefly describe
a secret sharing scheme coming from a linear code. Here, the concept of a
minimal codeword is introduced, linking this chapter to the next one, where
minimal codewords in the binary Reed-Muller code will be discussed.

The results of this chapter are based on parts of the articles [45], [44],
[35], [36] and [46].

2.1 Authentication codes

Authentication codes were introduced by Simmons in [53]. A good survey of
the current status can be found in [42]. We start by explaining what authen-
tication codes with and without arbitration are and mention some important
properties of them. We illustrate these concepts by showing some easy known
schemes. Next we show how generalized dual arcs can serve as a tool to
construct authentication codes. Finally, we will briefly discuss some other geo-

25
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metric authentication schemes and how the schemes we constructed perform in
comparison with them with regard to the properties described in the beginning
of this chapter.

2.1.1 What is authentication?

Authentication is very important in information security, for instance when
Alice and Bob try to exchange messages. It provides protection against mali-
cious persons trying to change messages or to impersonate the sender of these
messages. There are two main models:

e one where Alice and Bob trust each other, called A-codes;

e one where they do not, called A2-codes.

In the latter case, an arbiter is needed.

We denote the set of all source states (messages) by S, the set of keys by
IC, the set of encoding rules by £ and the set of all possible encoded messages
(tags) by M. The authentication scheme is denoted as A = (S, M, £) and the
set of messages corresponding with an encoding rule by M(e).

In the A-model, sender Alice and receiver Bob agree upon a secret private
key k. With each key, a unique encoding rule e is associated, which is a
mapping from S to M. Alice selects a source state s and encodes s into an
encoded message m using the encoding rule e corresponding with the chosen
key k. Upon receiving m, Bob checks whether it lies in the image of e. If it
does, then the message is accepted as authentic. Bob can recover the possible
source states as the preimage of the message m under e. If this preimage is
always unique, then we say the code is Cartesian. So once the encoded message
is observed, one can retrack the corresponding source state. Whence there is
no secrecy involved here.

An opponent can try to construct a message lying in e(S) after observing
r valid messages. The probability of success of such a spoofing attack will be
denoted by P,.

In the A%-model, we assume that Alice and Bob do not trust each other.
In this case, they do not agree upon an encoding rule. Instead, a trusted
person, the arbiter, is also involved in the scheme. Now Alice has a set of
encoding rules &, and Bob a set of decoding rules £x. If Alice and Bob
want to communicate, Bob chooses a decoding rule f € £r and sends it to
the arbiter. For every given f and given source state s, there is a set of valid
messages M (s, f). On receipt of f, the arbiter selects one message m(s, f) out
of M(s, f), hereby forming an encoding rule e € & which maps a source state
s to the chosen message m(s, f). The arbiter sends this encoding rule e secretly
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to Alice. In this case, the encoding rule e is valid for the decoding rule f. When
Bob receives a message, he checks whether it is in some subset M(s, f). If so,
he accepts it as a valid one and he can retrieve the corresponding source state.
If there is a dispute between Alice and Bob about a message m, the arbiter
checks if m is valid for the encoding rule given to the transmitter.

Below, we define the attack probabilities for both the A-model and the
A%-model more formally. We start with the A-model. As in [42], we will use
the “worst case definition”. Denote a set of r observed messages as m" =
(mq,---,m,) and the set of all sets of r observed messages as M,.. Let P(m")
be the probability that one has observed m” after r messages. Furthermore,
let P(m|m”) be the probability that the message m is valid given that m” has
been observed. Then we define the attack probability Pp, of the opponent as
follows.

Po, = Z P(m")max,,ep P(m|m").

mT'EMr

If we assume a uniform probability distribution for the messages, then we get

Po, = max,,ep P(m|m”).

Introduce the following notation:

Em")y={ec&||m;ee(S),1<i<r}

Denote by m'” the set of » + 1 messages m” and m'. Then

b, _ €]
" JEm)]

In the A%-model, three types of attacks have to be considered. The first
one is the spoofing attack by the opponent such as in the A-model. The other
two attacks are the spoofing attack T by Alice, sending a message and then
claiming not to have sent it, and the spoofing attack by Bob, claiming to have
received a message from Alice while this is not the case. One denotes the
corresponding probabilities by Pp,, Pgr, and Pr respectively.

The opponent’s attack probability Pp, is defined as in the A-model.

Let P(f) denote the probability of a decoding rule f, and let P(m/|f, m")
denote the probability of the event that the message m could be valid for the
encoding rule used by the transmitter, given the decoding rule f and the first
r messages m" = (my,...,m,). The spoofing attack probability of the receiver
is then defined as
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P, =Y P(f) Y P[f)maxpemP(mlf,m").
fEER m"eMT
Let P(e) denote the probability of an encoding rule e, and let P(m/|e)
denote the probability of the event that the message m’ € M'(e) is acceptable
for the receiver, given the encoding rule e. The spoofing attack probability of
the transmitter is then defined as

PT = Z P(e)maxmfeM/(e)P(m’\e).

eeEr

If we assume a uniform probability distribution on the messages, the
formulas reduce in the same way as for the A-codes.

2.1.2 Previously known results

Combinatorial bounds. If we denote |S| = k, |M| = v, and by M" the
set of r-tuples of elements of M and if we have observed r messages, then we
have the following theorem [42, Proposition 3.3, pp. 36].

Theorem 2.1.1 We have "
—r

Po, > .
v—T

Equality holds if and only if
k—r

v—T

P(m|m") =

is satisfied for any m" = (m4,...,m,) € M" and any m € M with m #
m;, 1 <1<

Naturally, the number of encoding and decoding rules is lower bounded
if one wants to construct good schemes.

For authentication without arbitration, we have the following result [42,
Corollary 3.1, pp. 21].

Theorem 2.1.2 [f an authentication code has attack probabilities Po, = 1/n,
(0 <r <) for the opponent then |E| > ng---- - ny.

If equality holds, the authentication code is called perfect.
We have the following lower bounds on the number of encoding and
decoding rules for a scheme with arbitration [42, Proposition 4.5, pp. 47].
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Theorem 2.1.3
|SR| > (Poopol T POtAPT)_l?

|5T| > (POOPOl e POt—1PROPR1 e PRt—l)_l'

If equality holds in both inequalities above, then we call the arbitration
scheme t-fold perfect.

2.1.3 Examples of authentication schemes

All sorts of mathematics can be used to construct message authentication
codes. Here we will focus primarily on schemes based on finite geometry.
Most of the time, only the ideas behind the scheme are described, and not
the actual calculations. For the schemes we proposed ourselves, more detail is
provided.

Schemes without arbitration

The first scheme is a generalization of the first MAC scheme by Gilbert-
MacWilliams-Sloane [24]. This scheme nicely illustrates the concept of au-
thentication.

Fix an r-dimensional subspace I, in PG(n, q) where 1 <r <n—1. All
t-dimensional subspaces, 0 < ¢t < r, contained in II, are regarded as source
states (messages). All (n —r — 1)-dimensional subspaces which are skew from
I1, are regarded as keys. All (n —r +t)-dimensional spaces which intersect II,
in a t-dimensional space are regarded as encoded messages (tags). A source
state s together with a key £ is encoded into the tag m, which is the space

Spanned by s and k.
Pl

PG(n,q) n-r-1

If Eve wants to cheat, she has to produce a space which contains the space
spanned by the key completely. She can do this by guessing the key. If she
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chooses a source state s, then all (n —r — 1)-spaces inside the space generated
by s and k are good guesses. After having seen one (source state, tag) pair,
Eve knows the key lies in the tag space, so her chances to cheat will increase.
We assume she can pick any source state she likes if she wants to cheat, except
for the ones already used (so we exclude a so-called replay attack). Clearly the
chance for her to achieve her goal will be the greatest if her chosen source state
has a (f — 1)-dimensional intersection space with the source state she has seen,
since then the chance that the key is contained in her tag space is the greatest.
If one performs the actual calculations, this yields that this scheme defines a
Cartesian authentication scheme with Py = ¢~ "0=% and P, = ¢~ ("),

Now we show how to use generalized dual arcs to construct perfect
MACs.

Theorem 2.1.4 Let II be a hyperplane of PG(n+1,q) and let D be a gener-
alized dual arc of degree d in Il of type (n,nq,...,ngs1).

The elements of D are the messages and the points of PG(n + 1, q) not
in IT are the keys. The authentication tag that belongs to a message and a key
is the generated (ny + 1)-dimensional subspace.

This defines a perfect MAC of order r = d + 1 with attack probabilities

L ATit1 Ny
P =q
, .

Proof After i message tag pairs (mq,t1),...,(m;,t;) have been sent, the at-
tacker knows that the key must lie in the (n; + 1)-dimensional space m =
t; N ---Nt;. This space contains ¢™*! different keys. A message m;,; in-
tersects m; N --- N 'm; in an n,,;-dimensional space 7. Two keys K and K
generate the same authentication tag if and only if K and K generate together
with 7" the same (n;41 + 1)-dimensional space. Thus the keys form groups of
size ¢"i+17! and keys from the same group give the same authentication tag.
The attacker has to guess the correct group. The probability to guess
the correct group is P; = ¢+t /gnit1, 0

Arbitration schemes

The scheme below is due to Johansson [33]. Take a fixed line L in PG(3, q).
The points on L are regarded as the source states. The decoding rules are the
points not on L, and the encoding rules are the lines not intersecting L. The
messages are planes spanned by a source state and an encoding rule. When
Alice and Bob want to communicate, Bob chooses a decoding rule F' and hands
it to the arbiter. The arbiter chooses an encoding rule e which contains F' and
hands e to Alice. If Alice wants to transmit a message, she chooses a source
state S and sends S and the plane (S, €) to Bob. In case of a dispute, the arbiter
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checks if the encoding rule he gave to Alice is contained in the transmitted
plane. If this is the case, he decides Alice has sent the message, otherwise he
decides it was someone else. This defines a 2-fold perfect Cartesian code with
Ph=P =1

q

Next we show how generalized dual arcs can be used to construct a MAC
with arbitration.

Consider the space II,, spanned by a generalized dual arc of type (n =
no, N1, -..,n41) and embed II, in an (n + 2)-dimensional space II,,5. The
source states are the ni-dimensional spaces which are the elements of the gen-
eralized dual arc, the decoding rules are the points in II,,5\II,,, the encoding
rules are the lines in Il,, ;5 which are skew to Il,,, and the encoded messages are
the (n; + 2)-dimensional spaces generated by a source state and an encoding
rule. We assume that Alice and Bob do not trust each other. When Alice
and Bob want to communicate, Bob chooses a point p in I1,,15\II,, as decoding
rule and sends it to a trusted arbiter. The arbiter picks one of the lines L
through p skew to II,, as encoding rule and sends it to Alice. When receiving
an (nj + 2)-dimensional space II,,, 12, Bob checks if p € I, y5. If this is the
case then he accepts the message, else he does not.

The goal for an opponent Eve is thus to produce a pair (II,,, I1,,2) such
that pE Hn1—|—2-

If there is a dispute between Alice and Bob about a valid message, then
the arbiter checks if the encoding rule which he handed to Alice is contained
in II,,, 1o. If this is the case, then he decides that Alice has sent the message,
else that she has not.

If Alice wants to fool Bob, she has to produce an (n; + 2)-dimensional
space containing p but not L. If Bob wants to fool Alice, he has to produce
an (n; + 2)-dimensional space which contains the line L.

The number of encoding rules for the transmitter is the number of lines
skew to I, this is equal to |Ex| = ¢*"T2. The number of decoding rules is the
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number of points in II,, 5 \II,, this is |Eg| = (¢ + 1)g™ ™.

If an opponent wants to cheat, he has to produce an (n; + 2)-space
containing the point p. His chance to do so after having seen i pairs is Pp, =
qnifnifl .

If Alice wants to fool Bob, she has to guess which point p on L is Bob’s
decoding rule. Hence, she has a chance Pr = qul.

If Bob wants to fool Alice, he has to produce an (n; 4 2)-space containing
L. After seeing 7 pairs, this chance is equal to ¢ "1,

Comparing with the lower bounds above, this scheme is perfect.

Schemes from generalized quadrangles (GQs)

The first scheme is due to De Soete [16].

Let p be a fixed point of a GQ of order (s,t). The t 4 1 lines of the GQ
through p are the source states, the points not collinear with p are the keys,
and the points collinear with, but different from p are the messages. If Alice
wants to send a message to Bob, she chooses one of the lines L of the GQ
through p. If the key is the point k, then by (GQ3) there is a unique point r
on L collinear with k. Alice sends the pair (L,r) to Bob. When receiving a
(line, point)-pair, Bob checks if the point r is collinear with k. If and only if
this is the case, he decides Alice has sent the message.

Theorem 2.1.5 The De Soete scheme yields a Cartesian authentication code
with
IS|=t+1, IM|=(t+1)s, || =ts*.

Furthermore, Py = Py = 1.

The two schemes below are joint work with K. Thas [46].

Suppose S is a GQ of order (s,t). Suppose S’ is a subGQ of S of order
(s,t/s); then an easy counting exercise shows that each line of S meets S’ in
either 1 or s + 1 points.

Let = be a point of S\ &'; then the ¢ + 1 points of &’ which are collinear
with z (and which respectively correspond to the lines incident with = by the
previous property) are two by two non-collinear; since t + 1 = s-t/s + 1, this
means that these points form an ovoid, O,, of §’. An ovoid of a GQ is a point
set meeting each line precisely once. This ovoid is subtended by x.

Now suppose {S1,Ss,...,S,} is a set of r > 0 distinct subGQs of order
(s,t/s) of the GQ S of order (s,t), where s # 1 # t. Let X be the number of

points in
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so that the number of points outside this union is

(s+1)(st+1)—3%.

The S;’s are the source states. The keys are the points of S\ U_; S;,
and the messages are the ovoids in the GQs §; which are subtended by a point
outside their union.

Let k be the maximal number of points outside of |J;_, S; that subtend
the same ovoid of some §;. Then

_|&m)| _ k
Fo= €] (s+D)(st+1)—3%

By [41, 1.4.1], we have

B<—+1

so that

P < s2/t+1
S s+ D)(st+1) =%

We want to focus on two particular situations that appear to yield satis-
factory results.

Example 2.1.6  Let t = s* so that t/s = s. Then

2

hsmiyEry-x

Suppose now that in S we have the following situation: T is an (s+ 1) X
(s+1)-grid (that is, a subGQ) of order (s,1)), and all the S;’s contain I'. Then
it follows easily that T is precisely the pairwise intersection of any two distinct
S;’s. Moreover, if z is a point outside the subG(Q) union, and S, and Sy, are
two elements of {S1,Ss,...,S.}, then z obviously subtends different ovoids in
Sy and Sy,

Whence
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P < 2 _ 2
= G+ 1D)(P+1) —(s+12—r(sP—s) (s+1)(s>2—s)(s+1—7)

Note that we can choose the subGQs in such a way that the inequality
becomes strict.

Example 2.1.7 Lett = s, so that t/s =1 and

s+1
Py < .
"= s+ 1)(s2+1) -2

Also, let T' be two distinct lines, and let all the S;’s contain I'. It fol-
lows (again) that T' is precisely the pairwise intersection of any two distinct
S;’s. If z is a point outside of the union, and S, and Sy, are two elements of
{81, 8s,..., S}, then z subtends different ovoids in Sy and Sy,

Whence

s+1
Py < .
= s(2+(1—r)s—1)

Remark 2.1.8 The schemes described above are Cartesian. Furthermore,
the scheme is perfect if every ovoid is subtended by the same number of points
outside US;. Examples of this situation are given below.

We first describe all known generalized quadrangles of order (s, s*) (for
some natural number s) that have at least one subGQ of order s.

First, we recall the description of some classical examples of GQs.
Consider a non-singular quadric ) of Witt index 2, that is, of projective
index 1, in PG(n,q), n € {4,5}. The points and lines of the quadric form
a generalized quadrangle which is denoted by Q(n,q) and has order (g, ¢"3).
Next, let H be a non-singular Hermitian variety in PG(3, ¢?). The points and
lines of H form a generalized quadrangle H (3, ¢?), which has order (¢?, q).
Note that the variety H has the following canonical form:

X X+ X§T X =0,
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A flock of the quadratic cone in PG(3, ¢), the 3-dimensional projective
space over the finite field F,, is a partition of the cone without its vertex into
q disjoint irreducible conics. The planes generated by the conics are the flock
planes. Independently, Thas [62] and Walker [74] proved that one can associate
a translation plane to a flock. Let F be a semifield flock [64][§4.5] of the
quadratic cone in PG(3, ¢q), ¢ any prime power. This kind of flocks arise from
a construction by Casse, Thas and Wild [13], and the associated translation
plane is a semifield plane in this case, hence the name semifield flock. Then a
GQ S(F) of order (g%, q) can be constructed from F which has the property
that its dual S(F)P has a point (co) such that there exists an elementary
abelian automorphism group of S(F)? that fixes (c0) linewise while acting
sharply transitively on the points not collinear with (co). This property has
the advantage that from S(F)? one can construct another GQ, the “translation
dual” [64][§3.10], of the same order, which has an automorphism group with
similar properties as the original one.

Consider the following sequence:

D

S(F) 5 S(F)P = (SF)P) 2 (S,

(Here, the operation “x” means that we take the translation dual.) Then

(S(F)P)" is a GQ of order (g, q?) which has Q(4, q)-subGQs, with the follow-
ing features.

Classical/Even case. If F is classical (“linear” — the flock planes
share a line), then we have

* D

H(3,¢%) = S(F) 5 Q(5,9) = S(F)P — Q(5,9) = (S(F)P)"

x, D
H(3,¢%) = [(S(F)")].

In Q(5,q), any Q(4,q)-subGQ has the property that each subtended
ovoid is subtended by precisely two distinct points (see, for instance, [69]).
For g even, we are necessarily in the classical case.

Nonclassical case. Then ¢ is odd. We distinguish between two sub-
cases.

e KANTOR-KNUTH. If F is a nonlinear Kantor-Knuth flock [68], then
(S(F)P)" = S(F)P, and the latter contains two classes of Q(4, ¢)-subGQs
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of order ¢, the union of which has size ¢* + ¢. In one class, each sub-
tended ovoid is subtended by two distinct points, in the other class this
is not the case.

e NoT KANTOR-KNUTH. A result by K. Thas [70] states that no Q(4, q)-
subGQ in (S(F)P)" can be doubly subtended. As in the Kantor-Knuth
case, each such example contains ¢ + ¢ subGQs of Q(4, q) type.

As for the specific scheme described in Example 2.1.7, we now introduce
a class of generalized quadrangles that contains all known GQs of order s (for
some integer s) which have (s + 1) x (s 4 1)-grids.

Suppose H = PG(3n — 1, q) is the finite projective (3n — 1)-space over
F,, and let H be embedded in a PG(3n,q), say H'. Now consider a set
O = O(n,n,q) of ¢" + 1 distinguished (n — 1)-dimensional subspaces of H,
denoted PG(n — 1,¢), so that (i) every three generate H; (ii) for every
i=0,1,...,q", there is a subspace PG(2n — 1, ¢)® of H of dimension 2n — 1,
which contains PG(n — 1,¢)® and which is disjoint from any PG(n — 1, ¢q)"
if j £ .

Then O is called a pseudo-oval or an [n— 1]-oval of PG(3n—1,q). (Note
that a [0]-oval of PG(2,¢q) is an oval of PG(2,q).)

From any such O = O(n,n,q) there arises a GQ T(n,n,q) = T(O), as
follows.

e The POINTS are of three types.

(1) A symbol (00).

(2) The subspaces PG(2n,q) of H' which intersect H in a PG(2n —
1,q)®.

(3) The points of H"\ H.

e The LINES are of two types.

(a) The elements of O(n,n,q).

(b) The subspaces PG(n, q) of PG(3n,q) which intersect H in an ele-
ment of O.

e INCIDENCE is defined as follows: the point (00) is incident with all the
lines of Type (a) and with no other lines; a point of Type (2) is incident
with the unique line of Type (a) contained in it and with all the lines
of Type (b) containing it (as subspaces); finally, a point of Type (3) is
incident with the lines of Type (b) that contain it.
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Define
Ct={T(0) | O isa pseudo-oval in even characteristic}U

{T(O)” | O is a pseudo-oval in even characteristic},

and

C~ ={T(O) || O is a pseudo-oval in odd characteristic}.

Then every element of C* UC™ is a GQ of order s for some integer s
which has an (s + 1) x (s + 1)-grid, and each known GQ with that property
belongs to Ct UC™.

Authentication with arbitration: H-schemes

Consider the following situation. {S;,8s,...,S,} is a set of distinct
Q(4,q)-subGQs in a Q(5,q) (which, as above, can be chosen in a suitable
position), and let those subGQs be source states. Let x be a point of Q(5,q)
outside the union of the subGQs, which is chosen by Bob. For such a point x
and for each source state S;, let O, be the ovoid of S; which is subtended by
x. The arbiter chooses a point ¢; of S; on O,.

We can now make a scheme with arbitration as follows. For the system
we choose a list H of subgroups of Aut(Q(5,¢)), being O~ (6, q) x Gal(F,2/F,)
(q is a power of the prime p). Bob chooses a fixed subgroup H in H. Bob
hands H and his chosen point = to the arbiter. The subgroup H has different
orbits on (5, ¢). The arbiter hands ¢; and the H-orbit of ¢;, denoted by cf , as
encoding rule to Alice for a given source state S;. If Alice transmits a message
to Bob, then she picks the source state S; and sends the triple (S;, ¢;, cf[) to
Bob.

When receiving a triple (a,b,c), Bob accepts it as valid if b is on the
ovoid of a and ¢ is the H-orbit of b.

In case of a dispute concerning a triple (a, b, ), the arbiter checks if b is
the point he handed to Alice for the subGQ a and if ¢ is the orbit under H of
b. If this is the case, then he decides Alice sent the message, otherwise that
she has not.

If Bob wants to cheat, he has to make a guess about the point ¢;.

If Alice wants to cheat, she has to make sure she gets the correct orbit.
It is almost impossible for Alice to guess H from the orbits she sees, except
possibly by exhaustive search through all subgroups of Aut(Q(5,q)) if there
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are only very few groups producing an orbit she observes. But the arbiter can
avoid this by choosing the appropriate points.

An opponent has to guess both ¢; and the group H; an even harder task.

We do not make calculations in detail, but once one has chosen the list
of allowed subgroups one can adapt the scheme to one’s own needs.

This scheme depends largely on the list H of subgroups we allow. By
choosing them appropriately, one can control the length of the orbits.

Remark 2.1.9 (i) Similar schemes can be built from other incidence ge-

ometries, such as the embedding of Hermitian quadrangles H(3,¢?) C
H(4,¢%).

(ii) We always assume that the points outside of the union of subGQs are
chosen with equal probability. One could define a natural probability

pP:S \ UiSZ' |—>]0, 1[,

on this set by comparing, for a pre-chosen subgroup G of Aut(S)y,s,, the
size of the G-orbit G(z) that contains z, to |S \ U;S;|.

2.1.4 Link with designs and various schemes

In this subsection we will describe some other geometries which can be used
to construct MAC’s. This is not intended to be a complete overview, but
is based on the author’s personal taste and meant to give the readers some
feeling which geometric ideas can be used if they want to construct a MAC
themselves.

The link with designs

In the several examples we gave, one could see that for a given source state,
there are a number of keys which produce the same encoded message. Using
the language of design theory, we call such a group of keys a block. Especially
if we have a perfect scheme, these blocks have a nice structure. We make this
link more precise below. We follow [42]. First of all, we give some definitions
coming from design theory.

Definition 2.1.10 Letv,b,k, A\ t be positive integers with t < k. A partially
balanced ¢-design (PBD) t — (v,b,k; \,0) is a pair (N, F), where N is a set
of v points and F is a family of b subsets of N, each of cardinality k (called
blocks) such that any t-subset of N either occurs together in exactly A blocks
or does not occur in any block.
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Definition 2.1.11 If a partially balanced t-design t — (v, b, k; A, 0) is a par-
tially balanced r-design r — (v,b,k; A, 0) for 1 < r < t as well, then it is
called a strong partially balanced t-design (SPBD) and is denoted by t —
(0,b, k; A1, -+, A\, 0).

We will assume that any point of M appears in at least one block M(e),
otherwise the point can be dismissed from M. The following theorem links
perfect authentication schemes without arbitration with (SPBD)’s.

Theorem 2.1.12 An authentication scheme A = (S, M, E) with probabilities
Ps and Pg is t-fold perfect if and only if the pair (M,{M(e) || e € S}) is a
(SPBD) t—(v,b,k; A1, -+, A, 0) with Ay = 1, pg is uniform, and psr,1 < r <
t, are message uniform (pgr is always message uniform when A\, = 1). Here

v= |M|7 b= |5|’ k= |S|’
)\r:(P'rPr—i-l"'-Pt—l)_la]- <r<t-1
As a lot of geometries are examples of designs, this explains why several ge-
ometries are well-suited to describe perfect authentication codes.

Rational normal curves, unitary and symplectic spaces

Consider the following set of points in PG(n,q), 2 <n < g — 2:
{La,---,a") || e F,} U{(0,0,---,0,1)}.

The image of this point set under any projective transformation is called a
normal rational curve. These normal rational curves can be used to construct
a family of non-cartesian perfect A-codes, where source states are points on a
fixed normal rational curve and the encoding rules are determined by projective
transformations between various rational normal curves. A system based on
symplectic spaces can be found in [75] and a system based on unitary spaces
in [21]. More details can be found in [42].

2.2 Secret sharing schemes

2.2.1 Introduction

One of the applications where finite geometry turned out to be very useful are
secret sharing schemes. A good reference for secret sharing schemes is [57] and
a nice overview of the geometric aspects of secret sharing schemes is given in
[32]. We give a short introduction on the subject.
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Definition 2.2.1 A secret sharing scheme is a method of distributing a secret
amongst a set of participants by giving each participant a share in such a way
that only specified subsets of participants, called authorised sets (defined by the
access structure I') can reconstruct the secret from a pooling of their shares.

Secret sharing schemes are used in situations where it is not desirable to
give one single person all information about a secret, for example to decide to
fire nuclear weapons, or for codes of bank accounts of large organisations. In
such cases, it is better to distribute the secret among several people, thereby
reducing the chances of any malicious activity.

The access structure of a secret sharing scheme says which subsets of
participants are allowed to reconstruct the secret, these are the authorised
sets. All the other subsets of participants are called unauthorised. Thus a
secret sharing scheme has the two following important properties.

(i) Privacy: Unauthorised subsets of participants are not able to determine
the secret.

(ii) Recoverability: Authorised subsets of participants should be able to de-
termine the secret by combining their shares.

A secret sharing scheme is called perfect if unauthorised sets do not re-
trieve any information about the secret via their shares.

Most secret sharing schemes are assumed to have a monotone access
structure, meaning that if a subset of participants A can reconstruct the secret,
then the participants of any superset of A can also reconstruct the secret. The
set of subsets of participants which are allowed to reconstruct the secret is
denoted by I'. The dealer of the secret sharing scheme is a fully trusted party,
who is responsible for the setup of the system, meaning that he generates the
shares and the secret, and he hands each participant his or her shares. The
combiner is the person who pools the shares of a given subset of participants,
and tries to reconstruct the secret.

Let P be the set of n participants of the secret sharing scheme. Fur-
thermore, let £ be an integer such that 1 < k < n. The access structure is
such that any group of at least k persons is allowed to reconstruct the se-
cret. SoI' = {A C P || |A| > k} is an access structure on P, known as the
(k,n)-threshold access structure on P.

A famous example of a threshold scheme was given by Shamir in [52].
This threshold scheme is defined over Z,. To each participant P;, one asso-
ciates a unique non-zero x;, which is not secret. If the secret is s, the dealer
randomly chooses a polynomial f(z) of degree at most k — 1 over Z, such that
f(0) = s. The dealer then secretly gives f(x;) to participant P;,. The Shamir
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threshold scheme has perfect privacy since knowledge of k — 1 shares does not
leak any information about the secret s. Furthermore, any k participants can
reconstruct the secret.

2.2.2 A geometric secret sharing scheme

Now we will investigate applications of generalized arcs in secret sharing schemes.

Before we describe the construction of a secret sharing scheme from a
generalized arc in general, we give two examples that use the dual arc with
parameters (9, 5,2,0) we have seen in Example 1.3.9.

Example 2.2.2 The dual of the dual arc with parameters (9,5,2,0) is an arc
consisting of ¢*> + ¢+ 1 3-spaces in PG(9, q) with the following properties:

1. Fach two 3-spaces generate a 6-space.
2. Each three 3-spaces generate an 8-space.
3. Each four 3-spaces generate PG(9,q).

Now take the space PG(10,q). Choose any hyperplane as the secret. In
that hyperplane, choose the above configuration of ¢*+q-+1 3-spaces as shares.

If the attacker does not have a share, he has a probability ofq‘ff—El to guess
the secret 9-space.

If the attacker knows only one share, he has to guess a 9-space through

the known 3-space so he has a probability of qq7__11 to guess the secret.

Similarly, an attacker that knows 2 or 3 shares has a probability of

g—1 1
or 5 = 57 to guess the share.

Any 4 shares reconstruct the secret.

qg—1
q*—1

Example 2.2.3 As in the previous example, we choose a hyperplane 11 in
PG(10,q) and an arc consisting of ¢*>+q+ 1 3-spaces with the same properties
as above. One of these 3-spaces ™ will be the secret. The other 3-spaces are
the shares.

Furthermore, we choose a 4-space 114 through m not contained in 11 and
make it public. If an attacker wants to find the secret space, he has to recon-
struct IT and then the secret space is the intersection IINILy. A short calculation
shows that an attacker who knows i (i < 4) shares has a probability of q;{_—il_l
to guess the secret.

Another way to vary the attack probabilities is the following. Remember
that the ¢*> + q + 1 5-spaces of the dual arc are of the form D(p) where p is a
point of a 2-dimensional space PG(2,q). The q+ 1 5-spaces that correspond
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to the g + 1 points of a line lie in a common 8-space. In the dual setting, this
means that the q + 1 3-spaces intersect in a common point.

So if we fix one 3-space 7, it has q + 1 different intersection points with
the other ¢* + q 3-spaces. These q + 1 points form the well-known arc of the
points p, = [1,a,a* a*] (a € F,) and p, = [0,0,0,1]. Choose a plane in
which contains no such intersection point. This is possible, since Fy[z] contains
an irreducible polynomial of degree 3.

Now we choose as the secret a 3-space through this plane, not contained
in 1. An attacker who knows i (i < 4) shares has probabilities py = p; =
m, Py = @ and p3 = q%l to guess the secret. Thus the new scheme
leaks no information if only one share is known.

By choosing the correct subspace of w, we can also construct schemes that
have no information leak for 2 or 3 shares. Then we must choose a line or a
point inside m and take a plane or line respectively as the secret.

Now we give two theorems which use generalized arcs to construct secret
sharing schemes.

Theorem 2.2.4 In PG(n+ 1,q) choose an n-dimensional subspace I as se-
cret. In Il choose a generalized arc A of degree k — 2 with n' elements and of
type (n,dy,...,dx_1). The elements of A are the shares.
This describes a k-out-of-n’ secret sharing scheme with the attack proba-
bilities
q—1
i gti-di —

for 0 <i <k (formally we set dy = —1).

Proof Every k shares span II, since A is a generalized arc of degree k — 2.
Less than k participants can take their shares 7, ..., m; and compute the
d;-dimensional space (my, ..., ;). They know that IT must contain that space.
But for every n-dimensional space Il containing (m, ..., m;), there exists an
arc which has my, ..., 7 as elements. Thus the best attack is to guess an n-

1-d; 1

dimensional space through (7, ..., m;). The number of such spaces is Wq_—l

Theorem 2.2.5 In PG(n + 1,q), choose a (dy + 1)-dimensional subspace 7'
and make it public. In 7', choose a di-dimensional subspace m as the secret.
Choose any hyperplane I1 of PG(n + 1, q) that contains m but not w’'. Let A
be a generalized dual arc of Il of degree k — 2 with n + 1 elements and of type
(n,dy,...,dg_1). The subspace m should be an element of A. The n elements
of A, different from m, are the shares.
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This describes a k-out-of-n secret sharing scheme with the attack proba-
bilities
qg—1

p-_ 9 -
v qdz‘+1*di+1 -1

for 0 <i<k—1 (formally we set dy = —1 and dj, = n).

Proof Every k shares span II, since A is a generalized arc of degree k — 2.
Thus k participants can compute II N 7" which is the secret 7.

Less than k participants can take their shares 7, ..., 7; and compute the
d;-dimensional space (my, ..., ;). Since the secret 7 is also an element of the
arc A, we find that (mq,...,m, 7) has dimension d;;1. This means that

dim((m, Ce :7Ti> N 7T) = dz -+ d1 - di+1 .
Since by construction #’ N II = 7 we also have
dim((m, e ,7Ti> N 71'/) = dl + dl - di+1 .

The 4 participants know that 7 is a d;-dimensional subspace of 7’ con-
taining the —d; .1 +d; +d; dimensional subspace (1, ..., m)N7’'. But for every
di-dimensional subspace 7, there exists a generalized arc containing 7y, ..., m;
and 7. So the 7 participants have no further information and must guess a
d;-dimensional subspace of 7’. The probability for guessing this correctly is

qg—1
qd1+1—(di+d1_di+l) ’

P =

2.2.3 Minimal codewords and secret sharing

Minimal codewords were introduced by Massey [40] for cryptographical pur-
poses. They are used in particular secret sharing schemes, to model the access
structures. Here we describe Massey’s scheme. In the next chapter, we will
study minimal codewords in the particular case of Reed-Muller codes.

Definition 2.2.6 The support of a codeword ¢, denoted by supp(c), is the set
of positions in which the non-zero digits appear.

Definition 2.2.7 Let C be a g-ary linear code. A non-zero codeword c € C' is
called minimal if its leftmost non-zero component is a 1 and if it has a support
that does not contain the support of any other non-zero codeword with leftmost
component 1 as a proper subset. The support of a minimal codeword is called
minimal with respect to C.
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Now we explain how one can construct a secret sharing scheme based
on a linear [n, k|-code where the first digit in every codeword is not always
0. The secret is chosen as the first digit of a codeword. The digits in & — 1
chosen positions, selected so that together with the first position they form
an information set, meaning they uniquely determine the full codeword, are
selected uniformly at random over I, and the full codeword then computed;
and the s = n — 1 shares are all the codeword digits after the first.

In [40], the following is proved.

Proposition 2.2.8 The access structure of the secret sharing scheme corre-
sponding to the linear q-ary [n, k]-code C' is specified by those minimal code-
words in the dual code C+ whose first component is a 1 in the manner that the
set of shares specified by each such minimal codeword in the dual code is the
set of shares corresponding to those locations after the first where this minimal
codeword is non-zero.



Chapter 3

Minimal codewords

Minimal codewords were introduced by Massey [40] for cryptographical pur-
poses. They are used in particular secret sharing schemes to model the access
structures. We study minimal codewords of weight smaller than 3 - 2™~" in
the binary Reed-Muller codes RM(r, m) and translate our problem into a ge-
ometrical one, using a classification result of Kasami, Tokura, and Azumi [34]
on Boolean functions. In this geometrical setting, we calculate numbers of
non-minimal codewords. So we obtain the number of minimal codewords in
the cases where we have information about the weight distribution of the code
RM(r,m).

The presented results, based on the paper [48], improve previous results
obtained theoretically by Borissov, Manev, and Nikova [5], and computer aided
results of Borissov and Manev [4].

3.1 Introduction

First we give some definitions and theorems required for a good statement of
the problem. We will associate geometrical objects to the codewords. This
will allow us to translate the problem into an equivalent geometrical problem.

Definition 3.1.1 For any m and r, 0 < r < m, the binary r-th order Reed-
Muller code RM(r, m) is defined to be the set of all binary vectors f of length
n = 2" associated with Boolean polynomials f(x1, za, ..., T,) of degree at most
T.

Definition 3.1.2 If f(z1,...,xm) is a Boolean function, then T(f) is the col-
lection of vectors X = (x1, ..., ) such that f(X) = 1.

Definition 3.1.3 The support of a codeword ¢ € RM(r, m), denoted by supp(c),
is the set of positions in which the non-zero digits appear.

45
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Definition 3.1.4 Let C be a g-ary linear code. A non-zero codeword c € C' is
called minimal if its leftmost non-zero component is a 1 and if it has a support
that does not contain the support of any other non-zero codeword with leftmost
component 1 as a proper subset. The support of a minimal codeword ¢ € C' is
called minimal with respect to C.

The following properties can be found in [1]; we will use the second one later
on.

Lemma 3.1.5 Let C be a binary linear [n, k, d]-code.

(i) Every support of a codeword of weight < 2d — 1 is minimal with respect
to C.

(ii) The codeword c is a non-minimal codeword in C' if and only if there is a
pair of non-zero codewords ¢y, co, with disjoint supports contained in the
support of ¢, such that ¢ = c¢; + cs.

(iii) If ¢ is a minimal codeword in C, then wt(c) <n —k + 1.

So a naturally arising question is what happens for weights in between the
above bounds. The smallest non-trivial case is wt(c) = 2d. This was solved
by Borissov, Manev, and Nikova for RM(r,m) [5], by interpreting the non-
minimal codewords of weight 2d geometrically as a union of two disjoint affine
spaces AG(m — r,2). To state their result, we first need some notations.

Definition 3.1.6 The quantity known as g-ary Gaussian coefficient is defined

. m . i—1 gm—gJ m . .
by: [ ; ]—szo q,-qj,{ 0 ] =1, fori=1,2,...,m.

Furthermore, we use the following notations:

A, =21 m
rm m—-r+1|°

2r+1_4 27‘+1 m
Brm = 4 < 3 ){m—r—l}'

Sr,m _ (2m7r+1 _ 1)Ar,m + 3Br,m-

m—r

— (m—r—k)(m—r—k+1) | Tt —T r
Erm Z 2 { k }{m—r—k]

k=max{0,m—2r}

JA— { m } (2 { . ] — Erm).

m—rTr

Now we can state their main theorem.
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Theorem 3.1.7 The number of non-minimal codewords of weight 2d = 2m"+1
in RM(r,m) is Arm + By + Prm — Spm-

We translate the problem for larger values wt(c) into a geometrical one,
making use of the following result of Kasami, Tokura, and Azumi [34].

Theorem 3.1.8 Let f(z1,...,2,) be a Boolean function of degree at most r,
where v > 2, such that |T(f)] < 2™+, Then f can be transformed by an
affine transformation into either

f=a1 - xo(@rxy + -+ Trgop—3Triou—2), 2< 20 <m—r+2, or

f=z1 w2+ T Tygy), 3< u<r,p<m—r.

We call codewords of the forms above codewords of first and second type re-
spectively. It is not hard to determine the weight of these codewords. As is
well-known, the smallest weight vectors in RM(r,m) are the ones of weight
2™~ which can be interpreted as the incidence vectors of (m — r)-dimensional
affine spaces, see [39].

We need the following lemma which can be found in [39].

Lemma 3.1.9 The number of values (x4, ..., o) for which

h
E Toi—1T2; = 0
i=1

is equal to 221 4 2h—1,

Lemma 3.1.10 The weight of codewords of first type is equal to

2m—r—2,u+2(22u—1 o 2#—1) — 2m—7"—u+1(2,u . 1)

The weight of codewords of second type is equal to
om—urHl (g 1),

These weight functions are both increasing in p, so the smallest weights are
found for the smallest values of 1.

Proof For the codewords of first type, we use the lemma above, where we
must have
Tp 1Ty + v+ Tpgopu—3Trpou—2 = 1.

We also have to put the first r—2 coordinates equal to 1, so only m—(r+2u—2)
coordinates can be chosen freely.
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Hence, the weight of the codewords of first type is

2m—r—2u+2(22;¢—1 . 2/1—1).
For those of second type, we note that if

xriu+1...$r+xr+l...xr+“:1’

then not all coordinates x,_,1,..., %4, can be one. If (z,_,41,...,2,) F#
(1,...,1), which happens 2#—1 times, then necessarily (2,11, ..., Zr4,) = (1, ..., 1).
The same reasoning works with (x,1, ..., 2,1,); hence we obtain 2(2* — 1) so-
lutions. We can still choose m — r — u coordinates freely, so the weight of a
codeword of second type becomes 2™+~ TL(2# — 1), O

The second smallest weight of the code RM(r,m) is 3 - £—. We will
count the number of non-minimal codewords ¢ = ¢; + ¢o of weight smaller
than 3 - 2™~". This implies that either ¢; or ¢y can be interpreted as an affine
(m — r)-dimensional space.

We can regard vectors (1, ..., Z,,) as points of the affine space AG(m, 2).
So by adding an extra variable X, we can consider the problem in the projec-
tive space PG(m, 2); this means we set x; = ))go and hence we are working in
a projective space where Xy = 0 denotes the space at infinity. For y = 1, the

set T'(f) of a codeword of first type is defined by the equations

X1:X0,...,X0:X7-,

so represents an (m —r)-dimensional space. So let i > 1. The first object then
can be considered as the incidence vector of the geometrical object defined by
the following equations:

Xi=Xo, ooy Xp0=Xo, Xg =X, X, +- -+ Xorou—3Xri2u-2.

The first » — 2 equations all describe hyperplanes, so their intersection is a
PG(m —r+2,2). The remaining equation is the standard equation of a non-
singular parabolic quadric in 2 dimensions. If we look at the intersection with
infinity, we get
XO = 07
XT—IX'/‘ + -+ XT+2u—3Xr+2u—2 = 0.

This is the standard equation of a non-singular hyperbolic quadric in 2u — 1
dimensions. Furthermore we see that the coordinates X, o, _1,..., X, can be

chosen freely, so in the PG(m — r + 2,2) defined by X; = Xo,..., X, o =
X, this codeword defines a cone W with as vertex a PG(m —r + 1 — 2pu,2)
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at infinity, and base a 2u-dimensional parabolic quadric Q(2u,q) having a
(2u — 1)-dimensional hyperbolic quadric at infinity. We must also keep in
mind that the codeword defines the affine part of this cone W.

The object of second type is easily seen to define all affine points lying
inside the union of two (m — r)-dimensional affine spaces o and /3, but not in
the (m — r — p)-dimensional affine intersection space a N 3; we will call this
kind of object a symmetric difference.

A codeword ¢ of RM(r,m) is non-minimal if and only if ¢ = ¢; + co,
where ¢; and ¢y are non-zero codewords having disjoint supports. Since we
are interested in counting the number of non-minimal codewords of weight less
than 3-2™7" we take ¢; to be a non-zero codeword of smallest weight, namely
27" and ¢y to be a codeword of first or second type with small u. We don’t
take weight 2™~" for both codewords since this case has already been solved by
Borissov, Manev, and Nikova [5]; their result is stated here in Theorem 3.1.7.
So a non-minimal codeword corresponds to a pair (cy, cz) of geometric objects
having no affine intersection points, where ¢; is an (m — r)-dimensional space,
and where ¢; is a quadric or a symmetric difference. This geometrical problem
will be solved more generally over I, instead of over Fs.

3.2 The geometrical setting

In this section, we describe the different geometrical situations that can occur,
which we will treat in the following sections. First of all, we distinguish between
two cases according to the choice of the second codeword c,. We will first only
describe the situations, to give an overview of the possibilities. The goal is to
clarify the sections that follow, in which the actual calculations will take place.

3.2.1 The second codeword ¢, is a quadric V¥

Let IT be the (m—r-+2)-dimensional projective space containing the quadric ¥
and let « be the projective completion of the (m — r)-dimensional affine space
corresponding to the codeword c; of smallest weight. The intersection of II
with the space at infinity is denoted by I1.,. Note that W has an (m—r—2u+1)-
dimensional vertex I' at infinity. Denote the 2u-dimensional parabolic quadric
base of the cone ¥ by B, and the intersection of B with I, by By.

First we describe the different situations in AG(m, ¢) which occur if we
want to count the pairs (U, ) having no affine points in common, where ¥
is the quadric and where « is a projective space PG(m — r,q) not lying at
infinity. Note that in the case ¢ = 2, the affine part of o defines the codeword
c1 and that the affine part of ¥ defines the codeword cs.
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Case 1) The spaces o and II have no points in common. So « certainly
does not have affine points in common with W.

Case 2) The spaces « and II intersect in an z-dimensional space, = > 0,
lying completely in Il,,. All these spaces a have no affine points in common
with W. To find the number of such spaces, we take a fixed z-dimensional space
I1, lying in II, and we count how many (m —r)-dimensional affine spaces have
a projective completion that intersects II exactly in II,.

Case 3) The spaces « and II intersect in a I-dimensional space II;, I > 0,
not lying completely in I1,. If [ = 0, we count how many (m — r)-dimensional
affine spaces have a projective completion that intersects Il exactly in an affine
point not lying on V.

So assume that [ > 0. Denote the (I — 1)-dimensional intersection space
IT; NI by II;_;. Suppose that o has an s-dimensional space II, in common
with the vertex I' of ¥. Consider a complementary space II;_;_ o of I, in II; ;.
Take in II a complementary space II, of dimension 2u of the vertex I' that
contains II;_,_», and assume that B is contained in II,. The intersection of II;
with the quadric ¥ is a quadric in II; having a certain vertex II;; of dimension
I’ > —1, and a non-singular base );_;_; in a space of dimension [ —1"—1. The
space Il can only have points at infinity in common with the quadric W, since
c1 and ¢y share no affine points. So );_;_; does not span a space of dimension
[—1'"—1. So Q;_y_ is either a space of dimension [ —1' —2 or [ — I’ — 3. Hence,
the intersection of the projective completion of o with B, must be a subspace
Iy, k> —1.

Consider the (s + k + 1)-dimensional space Il 4,1 generated by Il and
IT,. We claim that II,, 4, is either equal to II;_1, so a hyperplane of II;, or a
hyperplane of II;_1, so a hyperplane in the hyperplane at infinity of II;.

Indeed, project 1I; from Il ;. onto a complementary space of Ilg,
in IT;. After projecting we get a (I — (s + k + 1) — 1)-dimensional space. This
space is not allowed to contain points of the quadric ¥. Every quadric lying
in a space of dimension at least 2 contains points. So we have [ < s+ k + 3.
Hence, our claim is proved.

We summarize these results in the following lemma.

Lemma 3.2.1 Let « be an (m — r)-dimensional affine space in AG(m,q)
having a non-empty intersection with the (m —r + 2)-dimensional affine space
IT containing the quadric V. Assume that a N 11 is skew to ¥, then a N1l is
either contained in W N1l or a NIl NV is a hyperplane of o N 1.

Terminology. For the rest of this chapter, we refer to these two cases
as the cases "hyperplane” and "hyperplane in the hyperplane”.

We always start from an intersection at infinity. This intersection must
be the space at infinity of an affine space having no points in common with the
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cone V. To obtain such affine spaces, we need to consider external lines to the
quadric ¥ through a point p. We have to consider several cases according to
whether or not p lies on or off the quadric ¥, in II, or not, ... . The number of
such lines in each case is calculated in several lemmas in further sections before
the actual counting arguments take place. If some space I is the space at
infinity of some affine space II' of dimension [, we will say that the affine space
IT" extends 11 . We now use the notations s and k of above.

a) If k = —1, then we have two possibilities. If II;,_; lies entirely in the
vertex space " of the quadric ¥, we extend this intersection to an [-dimensional
affine space skew to W. If II,_; intersects 1, in an external point of the quadric
U (and then s =1 — 2), we again extend the (I — 1)-dimensional space II;_; to
an affine [-dimensional space having no affine points in common with W.

b) If £ > 0 and if we are in the case "hyperplane”, we extend the (s +
k+1 =l —1)-dimensional space to an (s+ k+2 = [)-dimensional affine space,
such that we don’t get affine intersection points with W.

¢) If k£ > 0 and if we are in the case "hyperplane in the hyperplane”, we
extend the (s + k 4+ 1 = [ — 2)-dimensional space contained in ¥ N1l to an
(s + k + 2 =1 — 1)-dimensional space at infinity without adding intersection
points with the cone W. Then we extend this (s + k + 2 = [ — 1)-dimensional
space at infinity to an (s + k + 3 = )-dimensional space not lying completely
at infinity, such that we do not get affine intersection points with W.

After this is done, we describe which situations we might have double
counted. To see in which situations this occurs, we assume that we can write
a given non-minimal codeword ¢ in two ways as a pair of non-zero codewords
with disjoint supports, so we assume that

C=2C + Cy = cC3+ 4.

The codewords ¢; and c3 are both assumed to be of minimal weight. They cor-
respond to (m — r)-dimensional affine spaces in AG(m, ¢). These intersect in
a t-dimensional affine space. This intersection dimension ¢ puts severe restric-
tions on the intersection possibilities, see Section 3.7. First we prove that the
projective completion of the (m — r)-dimensional affine space c3 must contain
the whole vertex I' of the quadric ¢y, so ¥, in order to have an interchange.
Then we will consider this situation and perform a case by case study. In very
few cases, an actual interchange and hence a double counting will occur, see
Section 3.8.

3.2.2 The second codeword c; is a symmetric difference

Denote by 3 and v the two (m — r)-dimensional projective spaces forming
the symmetric difference ¢y, and let a be the (m — r)-dimensional projective
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space corresponding to the codeword c¢;. We start from a given symmetric
difference and we count how many (m — r)-dimensional affine spaces have no
affine intersection points with it.

Case 1) The space a has no intersection points with 3 nor . Then it
certainly has no affine intersection points with any of these two spaces.

Case 2) The only intersection points of a with # and ~ lie in N ~y. So
the intersection is a k-dimensional space lying in 3N 7.

Case 3) There are intersection points of o with ( or v not lying in 5N ~.
Then all intersection points of a with G U v have to lie at infinity, otherwise
we get affine intersection points not lying in 3N ~.

The cases 2) and 3) are solved in a very similar way using projections.
We start from given intersection spaces aN 3 and aN~y. So we have a starting
configuration. We count how many times each starting configuration can occur.
Then we gradually extend this starting configuration until we have an (m —r)-
dimensional affine space a. In each step, we project on a complementary
space of the space we have already constructed. Then we can count how many
extensions are possible at this given step. This yields an inductive formula,
from which we can calculate the required number of (m —r)-dimensional affine
spaces having no affine intersection points with the given symmetric difference.

3.3 Counting the number of objects

In this section, we determine how many basic objects of each type, namely
quadrics and symmetric differences, there are. From now on, we work more
generally over [F, instead of [F,. Hence, we will no longer use the term codeword,
since only for ¢ = 2, the geometric objects correspond to codewords.

However, we will still use sentences like ”the projective space defined by
c1”, and such sentences will be used to indicate that we are talking about the
generalization over F, of the geometric object in [Fy that corresponds to the
codeword c¢;.

Denote the number of m-dimensional spaces PG(m, q) lying inside an n-
dimensional space PG(n, q) by ¢(m;n,q), the number of non-singular hyper-
bolic quadrics Q1 (2u—1, q) inside a (2u—1)-dimensional space PG (2u—1, ¢) by
O(Q"(2u—1,q)), and the number of non-singular parabolic quadrics Q (2, q)
inside a 2u-dimensional space PG(2u, q) by O(Q(2u, q)).

These numbers can be found in [28].

We now determine how many quadrics W there are, where ¥ is a cone
having an (m — r — 2u + 1)-dimensional vertex I' at infinity and having as
base a non-singular 2u-dimensional parabolic quadric Q(2u,¢). This quadric
U lies in an (m — r 4+ 2)-dimensional subspace II of AG(m,q). To calculate
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this number, we first fix the (m — r + 1)-dimensional space at infinity Il of
I1. This can be done in the following number of ways:

Fr=¢(m—r+1,m-1,q).

Once we have fixed this space I, we must look for the number of PG(m —
r + 2, q) through Il,,, but not contained in the space at infinity of AG(m,q).
This is Fh = ¢" 2.

Inside the space at infinity Il.,, we must choose the vertex I' of dimension
m —r — 2 + 1 of the quadric ¥. The number of choices equals

Fs=¢(m—r+1-2um—r+1,q).

Consider a complementary space II;, of the (m —r —2u+ 1)-dimensional vertex
space I' inside IT = PG(m — r + 2,q), this is a 2u-dimensional space; take
the space 1I, as the space spanned by the base of the quadric W. This space
I, intersects I, in a (24 — 1)-dimensional space. Inside this last space, we
have F, = O(Q"(2u — 1,q)) different ways to choose the base Q@ (2u — 1, q)
at infinity. Finally, we need the number Fj of non-singular parabolic quadrics
Q(2u, q) through a fixed Q@ (2 —1, ¢) lying inside the selected 2pu-dimensional
space II,. This number can be found by double counting. First we notice that

H=1Q"(2u—1,9) in PG(2u,9)| = ¢(2p0 — 1521, q) Fl.

Furthermore,

10(Q(21, ) |QT (21 — 1,q) on a given Q(2u, q)| = HF5.

The total number of quadrics ¥ is the product F' = Fy FyF5F,F.

Since for ¢ = 2, the weight distribution for codewords of RM(r,m) of
weight less than 2.5d = g?m” is known [34], we also have the number of
symmetric difference objects in this case, but not in general. Note that a
symmetric difference (aUB)\ (aNp) is defined by two affine (m—r)-dimensional
spaces a and 3, intersecting in an affine (m — r — p)-dimensional space, with
3<u<m—rpu<r. Wecount them as follows. Take an (m —r — p)-
dimensional affine space inside AG(m, q). For this space, we have the following
number of choices

qm(qm _ 1)(qm _ q) . <qm _ qm—r—u—l)
qm—r—u(qm—r—,u _ 1)(qm—'r—,u _ q> . <qm—r—u _ qm—r—,u—l)

Fl(maraﬂa q) =

The number of PG(m — r, q) through such an (m — r — p)-dimensional affine
space is ¢(r — 1;u — 1 + r,q). This is exactly the number of choices for the
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first AG(m — r,q) through this given (m — r — u)-dimensional affine space.
The number of choices for the second AG(m — r,q) is the number of (m —
r)-dimensional affine spaces inside AG(m,q) that intersect a given (m — r)-
dimensional affine space of AG(m, ¢) in a given (m — r — u)-dimensional affine
space. This is equal to

(qm _ qur)(qm _ qurJrl) . (qm _ q(mfr)Jr(ufl))
qm—r _ qm—r—u)(qm—r _ qm—T—p,—i-l) - (qm—r _ qm—r—l)

FQ(ma T 1, Q) = (
We will have counted all the pairs constituting the symmetric differences twice,

hence we find

¢<T - 1’ M= 1 + r, Q)Fl(m7 r, W, Q)FQ(m7T7 1y q)
2

symmetric difference objects, consisting of two affine (m — r)-dimensional
spaces intersecting in an affine (m — r — p)-dimensional space.

3.4 Counting affine spaces skew to the quadric
U

Suppose that we have fixed a quadric ¥ in AG(m, q), where W is a cone having
an (m —r — 2u+ 1)-dimensional vertex I' at infinity and having as base a non-
singular 2u-dimensional parabolic quadric Q(2u, q), and we wish to determine
how many (m — r)-dimensional affine spaces AG(m — r,q) are skew to the
affine part of the quadric W. If the projective completion o of AG(m — r,q)
has no points in common with the (m — r 4 2)-dimensional projective space I1
spanned by the quadric W, then AG(m — r,q) is certainly skew to the affine
part of U, so suppose that « has intersection points with II.

We distinguish between several cases for the intersections at infinity of «
and W, and then for each case, we count the number of affinely skew extensions.
In order to achieve this, we need the following two lemmas.

Lemma 3.4.1 Consider in PG(2u, q) a parabolic quadric Q(2u,q), intersect-
ing a particular hyperplane, playing the role of hyperplane at infinity, in a
hyperbolic quadric Q* (21— 1,q).
For q even, a point p at infinity of PG(2u, q), not lying on QT (2u—1,q),
lies in PG(2u,q) on
q2,u71 _ q2,u72 + q,u,fl
2

affine external lines to Q(2u,q).
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Proof Since p lies at infinity, it is not equal to the nucleus n of Q(2u, q). The
tangent lines through p all lie in a hyperplane through the line (p,n). So this
2;1,71_1
q —

through p inside this hyperplane are tangent lines to Q(2u, ¢). There are g

affine ones among them. The quadric Q(2p, ¢) has

21 (g — 1)+ 1
q q q .
Q(21,q)| = 1QT (21 = 1,9)] = 1 - ;(_1 )=q2" '

lines
2u—2

is a tangent hyperplane T,.(Q(2u,q)) at some r € Q(2u,q). All

— qu—l

affine points. So there are

q2u—1 _ q,u—l _ q2u—2

affine bisecants through p. There are ¢**~! affine lines through p. So the

number of affine external lines through p equals

q2,u71 _ qN*l _ q2,u72

2

2p—1 2u—2

q —q

O

For ¢ odd, there are two types of points of PG(2u, ¢) at infinity lying off the
hyperbolic quadric @ (2u — 1,¢), call a representant of each of them p* and
p~. For p™, the associated hyperplane with respect to the polarity defined by
Q(2u, q) intersects Q(2u, ) in a hyperbolic quadric Q*(2u —1,¢), and for p,
the associated hyperplane with respect to the polarity intersects Q(2u,q) in
an elliptic quadric Q= (2u — 1, q).

—1)g2+—2 .
% affine external lines

of Q(2u,q) lying in PG(2u,q), and through p—, there pass % + gt
affine external lines of Q(2u,q) lying in PG(2u,q). Furthermore, the number

. n : - - @~ (g 1)
of points p™ equals the number of points p~, and is equal to *—5—.

Lemma 3.4.2 Forq odd, through p*, there pass

Proof Let a be the number of affine external lines to Q(2u, q) inside PG (2, q)
through a point p at infinity not belonging to the quadric at infinity Q" (2u —
1,q), let B be the number of affine tangents through p, and let v be the num-
ber of affine bisecants through p. Then we immediately obtain the following
equality

a+f+y=g""

for the total number of affine lines through p, and the equation

B2y =" =g
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counting the number of affine points of the quadric Q(2u, q) in PG(2u, q).
This yields o = w, so if we can calculate the number (3, we
have the desired numbers. For a point p*, there are

QT (2u—1,9)| — Q21 —2,9)| = ¢* >+ ¢

affine tangents through it inside PG(2u, ¢). For a point p~, there are

Q (2n—1,¢)] — |QC2u —2,9)| = ¢ % — ¢"*

affine tangents through it inside PG (2, q).

The subgroup G(Q(2u,q)) of PGL(2u + 1,q) fixing Q(2u,q) has two
orbits on the set of external points of the quadric Q(2u,q), see [28]. The
intersections of these orbits with respect to Q(2u, ¢) with the space at infinity
PG(21—1, q) yield the two orbits of the group G(Q*(2u—1,q)), the subgroup
of PGL(2u,q) fixing Q*(2u — 1,¢), on the points of PG(2u — 1,¢) not on
Q1 (2pu — 1,q), see [63]; hence the number of points p* equals the number of
points p~. Since the total number of points of PG(2u — 1,¢) lying off the
quadric Q1 (2u—1, ¢) at infinity in PG(2u— 1, ¢) is equal to [PG(2u—1,¢q)|—
Q1 (21 — 1, )|, both the numbers of points p™ and p~ are equal to q“_l%.

O

The projective quadric W spans an (m — r + 2)-dimensional projective space I1
over I, intersecting at infinity in II.,. Let o be an affine (m — r)-dimensional
space skew to the affine part of .

We look at a given intersection Il N « at infinity and determine how
many suitable affine spaces extending it we can find, skew to the affine quadric
V. To improve transparency, we treat the cases separately in several little
lemmas. In the proofs, we need the number of affine external lines to the
quadric Q(2u, q) through a point p lying at infinity; these numbers were cal-
culated above. Albeith that these numbers differ for different situations, we
denote this number by N. Furthermore, we always denote the quadric by
U, the (m — r — 2u + 1)-dimensional vertex at infinity of W by I', the 2u-
dimensional base of U by Q(2u, q), the space spanned by Q(2u, q) by I, and
the intersection of Q(2u, ¢q) with I, by Q@ (2u — 1, q).

Lemma 3.4.3 Through an (s + k + 1)-dimensional space W,y 1 at infinity,
completely lying on V, that intersects the vertex I' in an s-dimensional space
II,, there pass

m—r+2-2u( 2u—2k—2 __ 2u—2k-3 pn—k—2
Hs. k) = 1 (4 q +¢"")

qs+1

affine (s+k+2)-dimensional spaces of Il skew to the affine part of the quadric
v,
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Proof Consider a complementary space of Il in I, .1, say I, and consider
a complementary (2u — 1)-dimensional space I1,, NI, to the vertex space I" in
Il that contains IIj.

We take II, as the space spanned by the base Q(2p, q) of the quadric W.
Since Ty 41 C W, the space IIj lies entirely on the quadric Q1 (2u — 1,¢) at
infinity of the base Q(2u, q) of V.

The number of affine 2u-dimensional spaces passing through the (2u—1)-

dimensional space (Q*(2u — 1,q)), and lying inside IT, is g™ 2724,
Every affine (s + k + 2)-dimensional space contains —q;:ifz = ¢*! affine

(k + 1)-dimensional spaces through a k-dimensional space Il at infinity.

Every skew (k + s+ 2)-dimensional affine space through Il 4,1 will have
an intersection with II, that lies in 1T}, the polar space of II; with respect
to Q(2u,q). This space IT;- intersects Q(2u,q) in a cone with vertex the k-
dimensional space Il and base a parabolic quadric Q(2u — 2k — 2,q). In
order to have an affinely skew space, we have to take an affine external point
inside the (21 — 2k — 2)-dimensional space spanned by the parabolic quadric
Q(2p — 2k — 2,q). There are

2u—2k—2 2u—2k—3 —k—2
qt —q* +q"

such points. So taking multiple countings into account, we find

qm—r+2—2,u,(q2u—2k—2 _ q2,u,—2k—3 + q,u—k—2)

qs—i-l

(s+k+2)-dimensional affine spaces through I1s, 1 inside IT skew to the affine
part of the quadric V. |

Lemma 3.4.4 Through an (s + k + 1)-dimensional space 1l 1 at infinity,
lying completely on U, that intersects the vertex I' of ¥ in an s-dimensional
space Iy, there are in 11

q2m—2r—3u—25—k’(qu—k—1 _ 1)<<q _ 1>q2u—2k’—4 + qu—k—Z)
2

HIH(s, k) =

affine (s + k + 3)-dimensional spaces g3 skew to the affine part of the
quadric V, intersecting I, in an (s+k+2)-dimensional space only intersecting
U oain g pqr

Proof Let I, = Il; ;.1 be the space we start from at infinity. The polar
space of II, with respect to the quadric at infinity TQ™ (2 — 1, ¢), denoted by
T, (TQ* (21 — 1,q)), is equal to

[T, (@7 (21— 1,q)) = (PG(m —r — 2pu + 1,9), Tin, (@7 (20 — 1,9)))-
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Here T1;, means the intersection of all tangent spaces T}, p € II,., with respect
to TQT(2u — 1,¢). In order to extend II, at infinity without changing the
intersection space with W, we have to choose a point in Ty, (T'Q* (21 — 1,q))
not lying on W. So we get the following number of choices for the extension
point.

C= |PG(m—r— k?Q)| - |<<F>Hk>>Q+(2M_ 21{7—37‘])”'

A calculation yields C' = ¢™ "% — g™+ In Ty, (TQ*(2u — 1,q)) we
see a cone with vertex the space (I',II) and base a non-singular hyperbolic
quadric QT (2u—2k—3, q). Every (s+k+2)-dimensional space through Ty, 41
in Ty, ., is contained in W, or only intersects W in Il 41; so contains gstht2
points not in W. So to know the number of (s + k + 2)-dimensional spaces
through ITs 41 in T only sharing II,, ;41 with ¥, we divide C by ¢*tk+2
to get

s+k+1

m—r—s—2k—2 __ qm—r—u—s—k—l

q

such (s + k + 2)-dimensional spaces (IT;, ;. 1).

Once we have fixed such a space Ilxy;, we count in how many ways
this space can be extended in PG(2u, q) to a (k + 2)-dimensional affine space
I}, skew to the affine part of Q(2u,q). We have the inclusion II;, C II;,
where the polarity is taken with respect to the parabolic quadric Q(2,q).
The intersection I} N Q(2u,q) is a cone with as vertex Il and as base a
non-singular parabolic quadric Q(2u — 2k — 2, q). The required number is the
number N of affine external lines of Q(2u — 2k — 2, ¢) through the intersection
p of i1 and (Q(2u — 2k — 2, q)). Note that, for ¢ odd, the number of affine
external lines through a point p depends on the type of the point p (Lemma
3.4.2), but since the number of points p* equals the number of points p~, the
total number of spaces I, o defined by all spaces Il is the total number of
points p times the average of the numbers of affine external lines through p,
see Lemma 3.4.2. Hence for all ¢, we find

m—r+2-—2pu 2u—2k—4 q,ufka

m—r—s—2k—2 _ m—r—p—s—k—1 (q — l)q

q

qs—i-l (q

and after simplification

qu—Qr—Su—Qs—k<qu—k’—1 _ 1)((q _ 1)q2u—2k—4 + qu—k—2>
2

affine (s + k + 3)-dimensional spaces through Il 4.1 lying inside II and skew
to the affine part of U, intersecting ¥ at infinity in Ils, 4,1, and intersecting
the (m —r+1)-dimensional space at infinity Il of the (m —r+2)-dimensional
affine space II containing ¥ in an (s + k + 2)-dimensional space. O
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We now determine how many times we can start from a given (s + k +
1)-dimensional space lying completely on the quadric T'Q*(2u — 1,q) at in-
finity and intersecting the vertex I' of the quadric ¥ in an s-dimensional
space. Denote the number of c-dimensional projective spaces lying inside an
a-dimensional projective space I, that are skew to a given b-dimensional pro-
jective space of II, by Skew(a,b, c).

Lemma 3.4.5 The number Skew(a,b,c) is equal to

H q k+2_1

k=-1

Proof We start by choosing a point inside the a-dimensional space II, not
lying in the b-dimensional space II,. The number of such points is equal to

a+1 b+1

q —q

qg—1
Suppose that we have already constructed all k-dimensional spaces Il in II,
skew to II,. Consider a space complementary to some Il inside Il,; this is an
(a — k — 1)-dimensional space II,_x_1. Since II, has nothing in common with
I, the projection II; of Il from II; onto II,_;_; is a b-dimensional space. So
the number of choices to extend Il to a (k + 1)-dimensional space having no
points in common with II; is the number of points in II,_;_; not lying in II}.
This number is equal to

qa—k o qb+1

qg—1
Doing this for all spaces I, we will have obtained each (k + 1)-dimensional
space of II, skew to II, several times, namely the number of k-dimensional
spaces lying in a (k + 1)-dimensional space, that is,

qk+2 -1

qg—1
Hence, extending to a c-dimensional space skew to the given space II, yields
the above formula. 0

In the lemma below, the following numerical notation is used:
[r,sl+ = (¢" + 1)(q ’"+1+1) (¢ +1)if s >

[rslo=(¢" =g = 1)+ (¢" = 1) if s > 1
If s <, then [r,s]y = [r,s]- = 1.
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Lemma 3.4.6 The number of (s+k+1)-dimensional spaces lgyyy1 at infinity
lying on the quadric TQT(2u — 1,q) and intersecting the vertex T’ in some s-
dimensional space 1l is equal to

(k+1)(v—s) [,LL —1- k? B 1]+[M - k?ﬂ“]—

S(s, k) = ¢(s;v,q)q (1 k+1]_

withv=m —1r —2u+ 1.

Proof The number of choices for the s-dimensional spaces in the vertex I is
o(s;v,q) with v = m —r +1 — 2u. Once we have fixed the s-dimensional
intersection space II, with the vertex I', we have to determine how many
(s + k 4+ 1)-dimensional spaces lie completely on the quadric TQ*(2u—1,¢q) =
U N1l at infinity, that intersect the vertex space I' exactly in Il;. Suppose
that we have a k-dimensional space II; on W NIl skew to the vertex space
[. If we project this space from the vertex I' on (Q1(2u — 1,q)), we get a
k-dimensional space II), lying on the hyperbolic quadric @ (2u — 1, ¢).
The number of k-dimensional spaces lying on a hyperbolic quadric Q* (2u—

1,q) is equal to

p—1—kp—1][p—k pl-
1,k+1]- ’

N%ﬂu—LQZ[

see [28].

The same space I} is the projection of all k-dimensional spaces skew to
the vertex space I inside the (v 4+ k 4 1)-dimensional space spanned by the
vertex I' and II}. The number of them is equal to

Skew(v+k+1,v,k) = gD+,

We have counted the number of (s+k+1)-dimensional spaces intersecting
the vertex space I' exactly in the s-dimensional space Il several times; namely
as many times as the number of k-dimensional spaces lying in an (s + k + 1)-
dimensional space and skew to a given s-dimensional space. This is Skew(s +
kE+1,s k) = qt¢+D  Hence we finally find

D) = 1=k = 1] [ — K, p] -
[k + 1) '

P(sim —r+1—=2pu,q)q
O
So we know for each possible intersection I, ;.1 at infinity, lying on ¥ and

intersecting the vertex I" of ¥ in an s-dimensional space and the base Q" (2u —
1,q) in a k-dimensional space, which we will call a starting configuration from
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now on, in how many ways we can extend this intersection to an affine space
s ypq2 or Mgipes lying in IT = PG(m — r + 2,¢) and skew to the affine part
of ¥, intersecting Il in this given starting configuration Il for Il o or
intersecting Il in an (s + k + 2)-dimensional space only sharing I, ;.1 with
U for Tl k3.

The remaining problem consists of determining the number of ways these
spaces [/, 2’ > 0, 2" = s+ k+2 or 2/ = s+ k+ 3, can be extended to (m —r)-
dimensional affine spaces in the space AG(m, ¢q), that intersect the affine part
AG(m—r+2,q) of IT exactly in the space 1./, and determining the number of
spaces AG(m—r, q) that are affinely completely skew to the AG(m—r+2,q).
The number of ways to extend II, to an (m —r)-dimensional space intersecting
AG(m —r+2,q) in I,/ is

m mfr+2) . m __ q(mfr+2)+mfrfx’fl)

—q (g
(qm—r _ qx’) . (qm—r _ qm—r—l)

(q

Extg(2') =

Lemma 3.4.7 The number P of AG(m—r,q) skew to a given space AG(m —
r+2,q) in AG(m,q) is equal to

m—r—1

P = Z ¢(xsm —r+1,¢)T (),

r=—1

where T'(z) is equal to Skew(m—x—1,m—r+1—z,m—r—x—1)-Skew(m—
r—2m—-r—x,m—r—x—1).

Proof The projective completion of every such space AG(m — r, q) intersects
the projective completion PG(m —r+2, q) of the given space AG(m—r+2,q)
at infinity in an z-dimensional space Il,, * > —1. Project from II, on a
complementary space I1,,_,_1 of II,, in the space PG(m,q). The number of
ways to extend II, to an (m — r)-dimensional projective space such that the
intersection with PG(m —r + 2, ¢) remains I1, is then equal to Skew(m —z —
ILm—r+1—xz,m—r—x—1). However we must exclude the ones lying
completely in the space at infinity II,. We can count them in a similar way
by projecting from II, onto a complementary space of II, in II.,. It follows
that the number of ways to extend II, to an (m — r)-dimensional space having
exactly II, in common with PG(m — r 4+ 2,¢) and not lying completely at
infinity is equal to

Skew(m—x—1,m—r+1—z,m—r—x—1)—Skew(m—z—2, m—r—x,m—r—x—1).

The number of z-dimensional spaces lying in an (m — r + 1)-dimensional space
is equal to ¢(z;m —r + 1,¢q). Hence, the result follows. O
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Since we have determined for all dimensions x how many affine spaces AG(m—
r,q) intersect AG(m — r + 2,q) in a given z-dimensional affine space, x > 0,
and since we know the number of AG(m — r,q) skew to AG(m — r + 2,¢q),
the number of affine (m — r)-dimensional subspaces of AG(m,q) skew to the
affine part of ¥ can be counted.

Theorem 3.4.8 The number of affine (m — r)-dimensional subspaces of
AG(m,q) skew to the affine part of a given cone ¥V = I'Q(2u,q), where I is
the (m — r — 2p + 1)-dimensional vertex at infinity of V, is equal to

P+ Y S(s,k)(H(s,k)Exto(s + k+2) + HIH(s, k) Exto(s + k + 3)),
(s,k)ER(s,k)

where
R(s,k)={(s,k)| =1 <s<m—r+1-2u, —1<k<p-—1},
and where P is defined in Lemma 3.4.7.

Proof First of all, by Lemma 3.4.7, we have P distinct (m — r)-dimensional
affine spaces that have no affine points in common with II = AG(m—r+2,¢q).
By Lemma 3.4.6, the number of (s+k+1)-dimensional spaces at infinity Iy, 41
lying on the quadric TQ*(2u — 1,¢) and intersecting the vertex I' in some s-
dimensional space II; is equal to S(s, k). We recall Lemma 3.4.3. Through an
(s + k + 1)-dimensional space I, at infinity that intersects the vertex I' in
an s-dimensional space Il;, and supposing that we are in the case hyperplane,
there pass H(s, k) affine (s + k 4+ 2)-dimensional spaces in IT skew to the affine
part of the quadric ¥. Another case is treated in Lemma 3.4.4. Through an
(s + k + 1)-dimensional space I, at infinity that intersects the vertex I' in
an s-dimensional space II,, and supposing that we are in the case hyperplane
in the hyperplane, there are HIH (s, k) affine (s + k + 3)-dimensional affine
spaces in II skew to the affine part of the quadric V.

So suppose that we already have such an (s + k + 2)- or (s + k + 3)-
dimensional affine space in II. A given space II,, x > 0, can be extended to
(m — r)-dimensional affine spaces in the space AG(m,q), that intersect the
affine part AG(m — r + 2,q) of II exactly in the space II,, in Extg(z) ways.

OJ

3.5 Counting affine spaces skew to a symmet-
ric difference

We are going to count the number of (m—r)-dimensional affine spaces AG(m—
r,q) having no affine points in common with a fixed symmetric difference. We
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repeat that a symmetric difference is equal to (aU3)\ (aNf), with a and (5 two
affine (m — r)-dimensional spaces, intersecting in an (m — r — p)-dimensional
affine space, where 3 <y < r,u < m —r (Theorem 3.1.8).

We look at the projective completion I1,,_,. of such an (m—r)-dimensional
affine space. Denote the (m — r)-dimensional projective spaces forming the
symmetric difference by « and f3.

Since I1,,,_, is allowed to contain affine points lying in a N 3, we have to
distinguish between two cases.

1) The (m —r)-dimensional space II,,_, has affine points in common with
anpg.

Suppose that I1,,_,. has a k-dimensional projective intersection space I,
Iy & I, in common with a N 3, which is a space of dimension m — r — pu.
There are
qm—r—u(qm—r—u _ 1) . (qm—r—,u _ qk—l)

¢*(¢" —1)---(¢" — ¢*)

N(k) =

choices for such a space II;.

Suppose that we have fixed such a k-dimensional intersection space Ilj.
We are going to extend it to an (m—r)-dimensional affine space without adding
any point of U (3 to it. We do this inductively on the dimension and we work
in the projective space PG(m,¢q). Such an (m — r)-dimensional space has a
t-dimensional intersection space with the space generated by « and [, further
denoted by (a, ).

We start from a given k-dimensional intersection space Il; and we first
construct the ¢-dimensional intersection spaces Il with (o, ) that intersect
a U f exactly in [I, C ang.

Suppose that we have already constructed all a-dimensional affine spaces
in («, #) through II; that have exactly Il in common with o U 3. Let v be
an a-dimensional space through I, having only II; in common with o U 3.
We project from v onto a complementary space of v in the m-dimensional
projective space PG(m, q); this complementary space v* has dimension m —
a — 1. Denote the projections on v* of «, 3, and («a, 3) from v by «*, 5*, and
(o, B)* respectively. These spaces have dimension m —r—k—1, m—r—k—1,
and m—r+pu—a—1 respectively, and a*NF* has dimension m—r—pu—2k+a—1.
So in order to have an extension of 7 to an (a + 1)-dimensional space lying in
(o, B), such that the intersection space with aU 3 remains I, we must choose
points in {(«, 3)*, but outside of o* U 5*. In this way, we get

m—r+pu—a __ 1 m—r—k __ 1 m—r—u—2k+a __ 1
q Y L4

qg—1 qg—1 qg—1

Q(a, k) =
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choices for an extension of this a-dimensional space 7 to an (a+ 1)-dimensional
space in («, 3), intersecting o U (3 in Il

Denote the number of a-dimensional affine spaces in («, 3) that intersect
aUp exactly in I, C an( by ¢(a, k). Then we have ¢(k, k) = 1, namely the
k-dimensional space ITj itself. If we have a given a-dimensional space in («, [3)
intersecting a U 8 exactly in Ilj, then we have Q(a, k) extensions to an (a+1)-
dimensional affine space lying in {«, 3) and intersecting aU (8 exactly in II;. In
this (a+ 1)-dimensional space, there are p(a—k—1;a—k,q) = ¢(0;a—k, q) a-
dimensional spaces through II;. Hence, we get the following induction formula

Q(a, k)y(a, k)
¢(0;a —k,q)

The number of ¢-dimensional affine spaces lying in («, 5) that intersect o U 3
exactly in a given affine space Il of dimension k contained in o N /3 is thus
equal to ¥(t, k), and the number of ¢-dimensional affine spaces that intersect
a U f exactly in some k-dimensional space lying in N 3, but not in I, is
equal to N (k) (t, k).

Next we are going to count in how many ways we can extend a given
t-dimensional space II; lying in (v, 3), which intersects o U 3 in a given k-
dimensional affine space Il; lying in o N 3, with II; not lying completely in
I, to an (m — r)-dimensional affine space without changing the intersec-
tion with (a, 3). Suppose that we have already constructed all a-dimensional
spaces through II, that have exactly Il in common with o U 8 and that have
exactly II; in common with («, ). Let v be an a-dimensional affine space
through II;, having only II; in common with («, 5). We project from ~ onto
a complementary space of 7 in the m-dimensional projective space PG(m, q);
this complementary space 7v* has dimension m —a — 1. Denote the projection
on v* of (o, B) from 7 by («, B)*. This space has dimension m —r 4 pu —t — 1.
So in order to have an extension of 7 to an (a + 1)-dimensional space, such
that the intersection space with («, ) remains II;, we must choose points in
~* outside of (o, 3)*. In this way, we get

Yla+1,k) =

m—a __ | m—r+pu—t __ 1
R(a, k) = 2 _4
q—1 q—1

choices for an extension.

Denote the number of a-dimensional affine spaces 7 that intersect («, (3)
exactly in II;, and o N B exactly in a k-dimensional space, k£ > 0, not lying
at infinity, by p(a, k,t). Then we have p(t, k,t) = 1, namely the t-dimensional
space I1; itself. If we have a given a-dimensional affine space intersecting («, 3)
exactly in II;, then we have R(a, k, t) extensions to an (a+1)-dimensional affine
space intersecting (v, ) exactly in II;. In this (a+ 1)-dimensional space, there
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are p(a—t—1;a—t,q) = ¢(0;a—t, q) a-dimensional spaces through II;. Hence,
we get the following induction formula

R(a,k,t)p(a, k,t)

The number of (m — r)-dimensional affine spaces intersecting (a, 3) in a given
t-dimensional affine space II;, where IIl; Na N G = 1I, k£ > 0, is thus equal to
p(m —r k,t).

In order to find the total number of such (m — r)-dimensional spaces,
we must sum over all possible dimensions £ and ¢, which yields the following
theorem.

pla+1,kt)=

Theorem 3.5.1 The number of (m—r)-dimensional affine spaces in AG(m, q)
having no affine points in common with a fized symmetric difference formed by
two affine (m — r)-dimensional spaces a and (3, but having at least one affine
intersection point with the (m — r — p)-dimensional space o N B, is equal to

M—r— m—r

> CN(R)(t k)p(m — 1k, 1),

k=0 t=k

2) Now suppose that all intersection points of I1,, . and o U /3 lie at infinity.

We start from such an intersection at infinity. Denote the intersections
of o and (# with the space at infinity by a., and [, respectively. These are
(m — r — 1)-dimensional spaces intersecting in an (m — r — g — 1)-dimensional
space.

Suppose that the affine space II,,_, intersects . in a k-dimensional
space Ilj, O in an [-dimensional space II;, and a, N B in an u-dimensional
space II,. If these intersection spaces are given, we call this a (k, [, u)-starting
configuration.

We denote the number of a-dimensional spaces contained in Il,,, and
intersecting (oo, Boos Qoo M Boo, and ((ao, B0 ) in & k-dimensional, I-dimensional,
u-dimensional, and f-dimensional space, respectively, by ¥ (a, k,, u, f).

The number of u-dimensional spaces inside an (m—r— p—1)-dimensional
space is equal to ¢(u;m —r — u — 1,q). Suppose that we have fixed an u-
dimensional space I, inside a,, N Bs. We count in how many ways we can
extend I, to a k-dimensional space Il in a, that intersects a, NGy exactly in
I1,. Project the (m—1)-dimensional space at infinity I, of AG(m, ¢) from II,,
onto an (m — u — 2)-dimensional complementary space of II,, in ... Then o
and a, N s are projected onto an (m —r—u—2)-dimensional space I1,,_,_, 2
and an (m—r—pu—u—2)-dimensional space I1,,,_,_,,_,_o respectively. We must
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choose a (k — u — 1)-dimensional space inside II,,,_,_,_o skew to IL,;,_,_,_y—o.
Hence, by Lemma 3.4.5, we have Skew(m—r—u—2,m—r—pu—u—2,k—u—1)
choices. Hence,

k—1
m—r—a—1 m—r—p—u—1
S

4q
Er(k,u) = H ( goutl — 1

a=u

In a similar way, the number of [-dimensional spaces inside (., that intersect
Qoo N P exactly in a given u-dimensional space is equal to

-1 m—r—a—1 __ mfrfufufl)

(¢ q
EQ(l’u) - H qa—u+1 -1

a=u

The number S(k, [, u) of (k,l,u)-starting configurations is equal to
Vk+1—uk,Luk+1l—u)=d(uym—r—pu—1,q) E1(k,u)E2(l,u).

So suppose that we now have a certain (k, [, u)-starting configuration and we
look at the (k + [ — u)-dimensional space II;;_, generated by the spaces of
this configuration.

Similarly to the previous case, we will inductively extend this space in .
to larger spaces without changing the intersection spaces with a and 3. We will
do this in two steps: first we extend this space to an f-dimensional space Il
lying completely in (0o, G0, then we extend II; to an (m —r—1)-dimensional
space in I, without changing the intersection space II 7 with (oo, Boo)-

Denote by A(k,l,u,s) the number of s-dimensional spaces lying com-
pletely in (oo, o) Which intersect oo, Boo, and ae N By in a given k-, -, and
u-dimensional space respectively. Suppose that we have already constructed
an s-dimensional space Il in (@, O) With the correct intersection dimensions
with oo, Os, and ag N feo.

We project onto a complementary space of Il in the (m —r + u — 1)-
dimensional space ((, Os0); this is a space IT* of dimension m —r + pu— s — 2.
The projection of ay, from Il onto IT is an (m —r — k — 2)-dimensional space
o, . Similarly, 8 is projected on an (m — r — 2 — [)-dimensional space (%,
and o N B% is a space of dimension

(m—r—k=2)+(m—r—01—-2)—(m—r+p—s—2)=m—-r—k—Il—pu+s—2.

We want to extend I in (o, f) without changing the intersections with
Qoo OF Poo.

Hence, we have to choose a point in II} not belonging to the projected
spaces o or (3%, so we find the following number Extg(k,[, u, s) of extension
points
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qm—r+p—s—1 -1 qm—r—k—l -1 qm—r—l—l -1 qm—r—k—l—u—i-s—l -1

q—1 B qg—1 B qg—1 + q—1
An (s 4+ 1)-dimensional space contains ¢(0;s — (k + [ — u),q) s-dimensional
spaces containing a given (k + [ — u)-dimensional space.
So we can calculate A(k, [, u, s) by induction, with A(k, [, u, k+1—u) =1,
by the induction formula

Mk, L u, s)Exts(k,l,u,s)
¢(0;s = (k+1—u),q)

ME Lu,s+1) =

We call an f-dimensional space constructed in this way a (k, [, u, f)-space.
Next suppose that we have a given (k, [, u, f)-space II;. We project again
from IIy onto a complementary space IT} of IIf; this time complementary to

IT¢ in MI.. So suppose that we already have constructed all a-dimensional
spaces at infinity, which intersect qioo, Boo, Qoo N Poo, and (oo, fso) in a given
k-, I-, u-, and f-dimensional space respectively. Consider one of these spaces
IT,. We want to extend II, without changing the intersections with a., Guo,
and (Xeo, foo)-

Hence, we have to choose a point in II? not belonging to the projected
space (oo, foo)™ Here (aoo, Boo) is an (m —r+ p—1)-dimensional space, hence
(Qooy PBoo)™ has dimension m —r + u — f — 2. So we find the following number
of extension points

qm—l—a -1 qm—r-i—u—f—l -1

Q(a7k7l7u7f>: q—l - q—l

In an (a + 1)-dimensional space, there are
¢pla—f=TLlat+1)—f-1g)

a-dimensional spaces containing a given f-dimensional space. Hence, we have
as starting formula ¥(f, k, [, u, f) = A(k,[,u, f) and the following induction

formula,

U(a, k, L u, [)Q(a, k,l,u, f)
pla—f—1lia—f.q)
Suppose that we have an (m — r — 1)-dimensional space A lying at infinity,
which is the extension of a (k,l,u, f)-space. We still have to extend A to
an (m — r)-dimensional space, not lying at infinity. We project from A onto
a complementary space A* of A in PG(m,q); the space A* has dimension
m—(m—r—1)—1=r. The spaces a and f3, respectively, are projected onto

w(a/—i_]‘?k'?l?u?f):
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spaces o and *, of dimension m —r —k — 1 and m —r — [ — 1. The space
a* N G* has dimension (m—r—k—1)4+(m—-r—I—1)—(m—r+pu—f—1) =
m—r—k—I0l—pu+f—1

Since we have to choose affine points not lying in o* U 8*, we find the
following number of extension points:

E(ka l7 Uu, f) = qr - qur—lfk; - qmirilil -+ qurfk*lﬁuﬁ*f*l.

The total number of affine (m — r)-dimensional spaces intersecting a given
symmetric difference only at infinity is found by summing over all possible
(k,l,u)-starting configurations and the corresponding (k, [, u, f)-spaces. We
collect the restrictions on k, [, u, and f by introducing the following set:

Res(k7l7u7f):{<k7l7u7f>|_1 §/€,l§m—r—l, _1§u§m_r_ﬂ_17
max(k —p,l —p,—1) <u<klk+l—u<f<m-—r—1}
With the above introduced notations, we get the following theorem.

Theorem 3.5.2 The number of (m — r)-dimensional affine spaces having no
affine points in common with fized (m — r)-dimensional affine spaces a and 3,
which intersect in an affine (m —r — p)-dimensional space and together form
a symmetric difference is equal to

> Sk, L,wyp(m —r — 1,k L, fYE(k,1,u, f).

(k,lu,f)ERes(k,lu,f)

Proof We have S(k,1,u) possibilities to obtain a (k, [, u)-starting configura-
tion Ilgxy—y. We have A(k,l,u, f) ways to extend a given (k,[,u)-starting
configuration to an f-dimensional space II; contained in (@, ) Which in-
tersects oo U s in the given (k, [, u)-starting configuration. A given space
II; can be extended at infinity to an (m — r — 1)-dimensional space II,,_,_1
intersecting (Quo, Boo) in Hy in ¢(m —r — 1, k, L, u, f) ways. A given space
I1,,_,_1 can be extended to an affine space II,,_, having no affine points in
common with o U 8 in E(k, [, u, f) ways. O

The previous two theorems together yield the following theorem.

Theorem 3.5.3 The number of (m — r)-dimensional affine spaces having no
affine points in common with a fized symmetric difference, formed by two (m —
r)-dimensional affine spaces a and B which intersect in an affine (m —r — p)-
dimensional space, is equal to N, + N, where

m—r—pm—r

N, = Z ZN(k)l/)(t,k?)p(TfL-T,k,t),

k=0 t=k

N, = > Sk, Luyb(m —r — 1,k Lu, fYE(k,1,u, f).
(k,lu,f)ERes(k,l,u,f)
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3.6 Interchange with the symmetric difference

We want to obtain the number of minimal codewords in the coding-theoretical
setting corresponding with the case ¢ = 2. In the geometrical translation of
the problem, we count the number of non-minimal codewords; geometrically
they correspond to two geometrical objects of AG(m, ¢) which have no affine
points in common. The non-minimal codeword then corresponds to the union
of the affine point sets of the two objects. It might happen however that a
given affine point set corresponding to a non-minimal codeword can be split in
several ways into two disjoint affine point sets forming the correct geometrical
objects. Then we have counted these objects more than once. In which cases
this happens, is investigated in this section and in the one that follows.

Suppose that ¢; U ¢co = ¢3 U ¢4 considered as affine point sets, where ¢;
and cg are two (m — r)-dimensional affine spaces and where ¢, is a symmetric
difference, formed by two (m — r)-dimensional spaces a and 3. There are
two possibilities for ¢; N c3. Either it is an empty intersection or ¢; Nc3 is a
t-dimensional space, hence |¢; N3] = ¢ for a certain ¢, with 0 < ¢ <m —r.

If t = m — r, then ¢; and c3 are equal. This means that c; and ¢4
are equal when considered as affine point sets. Hence, ¢; also has to be a
symmetric difference. Suppose that ¢, is formed by two (m — r)-dimensional
spaces v and 0. We may assume that none of them is equal to o or 3. One
of v and 4, say v, has to cover at least ©——L—" > ¢™~"~2 points of the
symmetric difference belonging to . Hence, ~y intersects a in an (m —r — 1)-
dimensional space. Furthermore, even if 6 covers ¢ "~! points of 3, there
are still (¢ — 1)¢g™ "1 — ¢™ " points of 3 left to be covered by 7. Since
w1 > 3, this means that also 7 intersects 3 in an (m —r — 1)-dimensional space.
Since v and [ intersect in an (m — r — u)-dimensional space, this yields a
contradiction with the dimension theorem, because then dim{a, ) < m—r+2,
while dim(«, 5) > m —r + 3.

So from here on, we will suppose that t <m — r.

1) First suppose that ¢; N ¢z is empty. This means that c3 is completely
contained in ¢y and that ¢ = 2, since ¢z = (c3Na)U(c3NF); so cg is the union of
two (m—r—1)-dimensional spaces. So ¢z needs to have (m—r—1)-dimensional
spaces in common with « and (3, and these spaces should intersect each other
in an (m — r — 2)-dimensional space at infinity. But a0 3 intersects infinity
only in an (m —r — u — 1)-dimensional space, u > 3, so this case is impossible.

2) Next suppose that ¢; and ¢3 have a non-empty intersection, so suppose
that |¢; Nez| = ¢*, 0 < ¢ < m —r. Then we have

’62 ﬂCg‘ — qur o qt — qt(qurft _ 1)

Denote the dimensions of the intersections of ¢3 with o, , and aN 3, by k, [,
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and u respectively. We consider several cases, and we determine in which cases
a possible interchange can occur. We always assume that & > [ without loss of
generality. The symmetric situation is taken into account when we make the
actual calculations in Theorem 3.6.1. We first treat the different cases. Our
arguments will also show that in case of an interchange ¢; + ¢ = ¢35+ ¢4, there
is never a swap from a sum ¢; + ¢y consisting of an (m — r)-dimensional space
¢; = AG(m — r,q) and a symmetric difference ¢; to a sum c3 + ¢4 consisting
of an (m — r)-dimensional space cg = AG(m — r,q) and a quadric ¢.

Case 1: k > [ =u > 0. Then there are ¢* — ¢ points contained in c;Nc.
Comparing this number with the previous expression, we find the equation

qt(qm—r—t . 1) — qu(qk—u o 1)

After comparing both sides and their respective powers of ¢, we find ¢t = u and
m—r—t=k—u,sok=m-—r. Hence, c3isequal toa. Sol=m—r—pu = u.
What has happened is the following: ¢; contains aN3; when considering ¢;+co,
this makes c3 = a possible. For a given pair (c;, ¢2) satisfying the conditions
above, there will be one other pair corresponding to ¢ = a which also yields
the same affine point set. Considering also the symmetric configuration with
c3 = (3, this type of configuration will be counted three times. The number of
such configurations follows from the proof of Theorem 3.5.1 and the number
of symmetric difference objects which is 4 = 2=l _HT’Q)Fl(Qm’T’“ D (mritd)
Section 3.3, and using the same notations as before this number is equal to

Z @Z)(t,m—r—,u)p(m—r,m—r—u,t)A,
t=m—r—u

where we have substituted k = m — r — u and replaced N(k =m —r — u) by
1 in the sum stated in Theorem 3.5.1; see the beginning of Section 3.5 for the
definition of N (k).

Case 2: k> 1 > u > 0. This time we get
@™ =) ="+ - 2¢" =" (" + 4T - 2).
If ¢ # 2, then comparing the powers of ¢ yields t = u and the equation
FT 1= g — 2,

A calculation modulo ¢ yields a contradiction for this equation.
If ¢ = 2, we have the equation

2t(2m7r7t o 1) — 2u+1(2k7u71 4 Qlfufl o 1)
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a) If l =u+1, we get
2k — 2t(2m71”7t o 1)

Hence, k =tand m —r —t =1,s0 k =t = m —r — 1. This means that
c1 N3 is a hyperplane and that c; N ¢3 has to be the parallel hyperplane of
it in c3. The space c3 N« is an (m — r — 1)-dimensional space, the space
c3Ney is also an (m —r — 1)-dimensional space, and these two spaces intersect
in a u-dimensional space, where u < m —r — u. For c3 shares an 0 < u <
(m — r — p)-dimensional space with o N /3, so ¢3 shares a point with o N G;
this point must lie in c¢3 N ¢;. So they span at least a space of dimension
(m—-r—1)4+m-r—1)—(m—r—pu) =m—r+ u— 2. This yields a
contradiction since ¢ > 3 and dimecg = m — r.
b) If Il > u+ 1, then we get ¢ = u + 1 and the equation

2k7(u+1) + 2l7(u+1) — 2mfr7t.

Hence, we get k = [ and so the equation 2¥~% = 2m="=! This implies k — u =
m—r—t=m—r—(u+1), hence k = m —r — 1. But then ¢; has dimension
k+l—u>m—r—1+1—u>m—r, which yields a contradiction.

Case 3: k> 1> 0, u= —1, where u = —1 denotes that c3 has no affine
points in common with a N 3. We find

¢ = 1) =4 (" +1).

Forg=2and k=1, wefindt=[1+1andt=m—r—1. Soc;Nc3is an
(m—r—1)-dimensional space, and aNcg and fNegz are (m —r—2)-dimensional
spaces. This (m — r — 1)-dimensional and these two (m — r — 2)-dimensional
spaces must be parallel since their union must be c3, so they all pass through
the same (m — r — 3)-dimensional space at infinity; but then in particular
dim(as N Ba) = m — r — 3, but this is impossible since dim(ay N By) =
m—r—pu—1<m—r—4, since p > 3.

In the other cases, comparing powers of g yields ¢ = [, and the remaining
equation is

qm—’r—l —9 = q
If ¢ > 3, this yields a contradiction. If g = 2, we get k = m—r—1,l =m—r—2,
so these spaces should intersect at least in an (m — r — 3)-dimensional space at
infinity, but the space at infinity MGy only has dimension m—r—pu—1, p >
3. This yields a contradiction. If ¢ = 3, then we obtain k =1 =m —r —1, but
this contradicts the fact that as, N fe is only an (m —r — p — 1)-dimensional
space.

Case 4: k>0, u=—1, and [ = —1. Then the equation becomes

qt(qurft . 1) — qk

k—l
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Comparing the prime factors of both sides yields ¢™" "¢ —1 =1 and k = t,
hence g =2 and k = m —r — 1. Since | = —1, c¢3 intersects a,, exactly in an
(m — r — 2)-dimensional space I1,,,_,_». Furthermore, the space II,,,_,_5 has to
contain the (m — r — u — 1)-dimensional space a., N [ completely since the
(m — r — 1)-dimensional space ¢, N ¢ through I, .5 has no affine points in
common with aN 3. The intersection ¢; Nes has to be the parallel (m —r—1)-
dimensional space to c3MNcy in ¢3. Moreover, since [ = —1, ¢3 intersects aieUfBso
exactly in an (m — r — 2)-dimensional space II,,_,_o through o, N fs or c3
intersects o U s in an (m — r — 2)-dimensional space II,,_,_o completely
lying in a4, and passing through a., N G and in an (m — r — p)-dimensional
space II,,,_,_, completely lying in (., and passing through o N B.

The number of (m — r — 2)-dimensional spaces completely containing an
(m — r — pu — 1)-dimensional space inside an (m — r — 1)-dimensional space is
equal to 2# — 1.

Hence, in this Case 4, for a given symmetric difference cs, the spaces ¢;
for which there are interchange possibilities are the following.

(1) Assume that the space ¢; intersects au in an (m —r —2)-dimensional
space lying completely in a.,, and containing a., N f. Suppose that we
have such a c¢; together with the fixed ¢;. We may select one of the two
(m — r — 1)-dimensional spaces I1,,_,_; through II,,_,_» inside ¢;. The space
I1,,—,—1 together with the unique (m — r — 1)-dimensional space in a through
I1,,_,_2 and skew to (8 forms the space c¢3 which is then used for interchange.
So in this case we have two interchange possibilities w.r.t. the original ¢; and
Co.

We calculate the number of such spaces ¢;. We start with an (m —r —2)-
dimensional space II,,_,_s which is completely contained in a, and which
contains the (m — r — p — 1)-dimensional space ay N Bs completely. So
we have 2# — 1 such starting possibilities for the intersection ¢; N ay,, where
¢ NaNlly has dimension m —r — 2.

We calculate in how many ways we can extend II,,_,_» completely con-
tained in v to an (m — r)-dimensional affine space having exactly I1,,,_,_5 in
common with o U B, or I,,_,_9 with o and II,,,—,_, with 8.,. We proceed
in two steps. First, we extend II,,_,_5 to an (m — r — 1)-dimensional space at
infinity.

We project from II,,_,_» onto an r-dimensional space II, which is com-
plementary to II,,_,_, in I, the space at infinity of AG(m,q). Then o is
projected onto a point a*, [, is projected onto a (u — 1)-dimensional space
B*, and (oo, o) 1 projected onto a u-dimensional space. Hence, o* N 5* has
dimension —1. We can either select:

(a) a point contained in (a*, %), but not in a* U 8*. We have 2#+1 —
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1—(2# —1) —1 = 2* —1 choices for the extension point in II, to get into this
situation.

(b) a point contained in 5*. We have 2* —1 possibilities for this extension
point to get into this situation.

(c) a point outside of (a*, 3*). We have 27! —1—(2#F1 —1) = 21 —2n+l
choices for the extension point in II, to get into this situation.

Next, we count the number of affine extension possibilities in all cases
(a), (b), and (c) above.

(a) We still have to extend the (m — r — 1)-dimensional space I,
to an affine (m — r)-dimensional space. We project from Il,,_,_; onto an 7-
dimensional space II, complementary to II,,_,_; in the m-dimensional space
PG(m,q). Then « is projected onto a line o*, f ontoan m —r — (m—r — pu —
1) — 1 = p-dimensional space 3*, and (a*, 5*) has dimension m —r 4 pu— (m —
r—1)—1=p, so o C [*. We have to select an affine point not contained in
a* U 3*. Hence, we have 2" — 2# choices for our extension point. This gives in
total (2# — 1)(2* — 1)(2" — 2*) such affine (m — r)-dimensional spaces ¢, all
giving two interchange possibilities.

(b) We still have to extend the (m — r — 1)-dimensional space I,,_,_,
to an affine (m — r)-dimensional space. We project from II,,_,_; onto an r-
dimensional space II, complementary to II,,_,_; in the m-dimensional space
PG(m,q). Then « is projected onto a line o*, f onto an m—r—(m—r—pu)—1 =
(1 — 1)-dimensional space *, and (a*, 5*) has dimension m —r+pu— (m—r —
1) =1 = p, so dim(a* N 5*) = 0, i.e., it is equal to a point. This intersection
point of a* and $* must correspond to the affine extension of II,,_,._; by an
affine point of N B. So we have 2" —2¢~1 —241 = 2" —2#~1 — 1 affine choices
for our extension point. This gives in total (2* —1)(2* —1)(2" —2¢~! —1) such
affine (m — r)-dimensional spaces ¢y, all giving two interchange possibilities.

(c) We still have to extend the (m — r — 1)-dimensional space II,,_,_,
to an affine (m — r)-dimensional space. We project from II,,_,_; onto an
r-dimensional space I, complementary to II,,,_,_1 in PG(m,q). Then « is
projected onto a line a*, [ onto a p-dimensional space §*, and (a*, 3*) has
dimension m —r +pu — (m —r —2) — 1 = p+ 1. Hence, o* N 3* is an
affine point. The number of affine points not contained in o* U g* is equal to
2r—2—2#41=2"—2¢_1. This gives in total (2¢—1)(2r+1 —2e+1)(2 — 20 —1)
such affine (m — r)-dimensional spaces ¢;; all giving two interchange possibili-
ties.

(2) Assume that the space ¢; intersects ao U B in the (m —r — 1)-
dimensional space . For each of the 2# — 1 (m — r — 2)-dimensional spaces
contained in a, containing completely the (m —r — p — 1)-dimensional space
Qoo N B, we have the interchange possibilities as described in (1), hence we
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have 2 - (2 — 1) possibilities for an interchange in this case. We calculate
the number of such spaces ¢;. We start with a,,. The number of ways to
extend a,, to an affine (m — r)-dimensional space ¢; is calculated as follows.
We project from a., onto an r-dimensional space complementary to a., in
PG(m,q). Then « is projected onto a point a*, 5 onto a u-dimensional space
B*, and (o, §) onto an m —r+ pu— (m —r—1) — 1 = p-dimensional space. We
have to select an affine point not contained in o* U * = 3*. Hence, we have
2" — 2* choices for an extension. So for a given ¢y, we find 2" — 2# such spaces
¢1. This gives 2-(2# —1)+1 times the same sum ¢; +¢; for a given choice for cs.

This concludes the discussion of the four cases, where we assumed that
k > [. For the actual calculations in Theorem 3.6.1, the symmetric situation
[ > k is of course also considered.

If ¢ # 2, then case 1 is the only case which occurs. If ¢ = 2, then both
case 1 and case 4 can occur. We show the following. After having made an
interchange of type case 4, one cannot get a configuration where an interchange
of type case 1 is possible. For it is clear in both cases that the (m — r — p)-
dimensional affine intersection space aNg of the two (m—r)-dimensional affine
spaces « and [ forming the symmetric difference ¢4 has to be the same as the
one of the symmetric difference c,. Since in case 1, c3 contains this intersection
space and in case 4, c3 does not contain this intersection space, we cannot have
switched.

We also notice that if ¢; + ¢ = ¢3 + ¢4, for ¢; and ¢z affine (m — r)-
dimensional spaces and ¢, a symmetric difference, then also ¢4 is a symmetric
difference.

The above results now yield the following theorem.

Theorem 3.6.1 Denote the number of symmetric differences consisting of
two affine (m — r)-dimensional spaces intersecting in an affine (m —r — p)-
dimensional space

¢(7~ — LM — 1+ T, q)Fl(m, T,/L,Q)FQ(m:rauaéﬁ
2

by A. Then there are

m—r

Z Yt,m—r—pplm—rim—r—p,t)A
t=m—r—pup
pairs (1, ¢o), where ¢y is an affine (m —r)-dimensional space and where ¢y is a
symmetric difference, which can be partitioned into blocks of three pairs, such
that the three pairs of a given block determine the same affine union.
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Furthermore, if ¢ = 2, there are an extra
2- (24 —1)((2"—1) (2" —2M)+ (2# —1) (2" = 2" = 1) (27T —2# ) (2" —2# — 1)) A

pairs (c1,ce), where ¢y is an affine (m—r)-dimensional space and where ¢y is a
symmetric difference, which can be partitioned into blocks of three pairs, such
that the three pairs of a given block determine the same affine union.

Finally, if ¢ = 2, there are

2. (2" —2M)A

pairs (c1,¢2), where ¢ is an affine (m — r)-dimensional space and where ¢y is
a symmetric difference, which can be partitioned into blocks of 2- (2* — 1) + 1
pairs, such that the 2 - (2 — 1) + 1 pairs of a given block determine the same
affine union.

Proof The interchanges only occur in cases 1 and 4. In case 1, the interchange
occurs for all ¢. We obtain always blocks of three pairs (c¢;,¢2) determining
the same affine union.

In case 4, which only can occur for ¢ = 2, we get blocks of three pairs
(c1, c2) determining the same affine union (case (1)), and blocks of 2-(2#—1)+1
pairs determining the same affine union (case (2)).

In the arguments above, we always assumed k > [; now we also have
to include the possibility [ > k; this explains the leftmost factor 2 in the
two final formulas in the statement of this theorem. For the first formula

:Z;_T_M W(t,m—r—p)p(m—r,m—r—pu,t)A, the factor 2 is not necessary
since ¢; passes through o N 3, so ¢; has the same status w.r.t. a and f3. O

3.7 Interchange with quadrics

Suppose that ¢; Ucy = e3Ucy as affine point sets, where ¢; and ¢z are (m —r)-
dimensional affine spaces and where ¢y is a cone. Recall that ¢; Ncy = 0
and c3 N ¢y = (), if they are considered as affine point sets. From the previous
section, it follows that if this interchange effectively occurs, also ¢4 is a quadric.

1) First suppose that ¢; Nez = (). Then all affine points of ¢3 lie on c,.
But c3 is a space of dimension m — r while the largest spaces lying completely
on ¢y are of dimension

p—14+m—-r+1-2p+1l=m-r—p+1.

This yields a contradiction since p > 1.
2) Next suppose that ¢; Neg is a t-dimensional affine space. If t = m —r,
then ¢; = c3. Hence, ¢y and ¢4 are equal if considered as affine point sets. If
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cy is a cone, then ¢y = ¢4 because the cone is completely determined by its
affine point set. So suppose that ¢4 is a symmetric difference. This yields a
contradiction, since the quadrics determine an (m — r 4+ 2)-dimensional space
and the symmetric differences an (m — r + u)-dimensional space, where p > 3.

Hence, we may suppose that 0 < ¢t < m —r, so |c; Neg| = q' and
leaNes| = g™ —¢".

Suppose that cs intersects the projective completion II of the (m —
r + 2)-dimensional affine space spanned by the cone ¢; = I'Q(2u,q) in an
[-dimensional space II;. Furthermore, suppose that c3 shares a k-dimensional
space II; with the vertex T' of the cone ¢ = T'Q(2u,q). Consider a space
complementary to the space IIj in II;; this is an (I — k — 1)-dimensional space
IT;_x_1 chosen in such a way that co N 1I;_,_; is maximal. Suppose that c3
intersects co N II;_;_; in z affine points. This means that |c; N3] = 2qhtt
Take a space II, complementary to the vertex space of ¢y in Il and containing
IT;_x_1. We will call this space the base space.

Comparing the two equations above for the number of affine intersection
points of ¢y and c3, and rewriting them, yields the following equation,

qm—r—t -1 4 qu-i-l—t'

Since m — r > t, we have z¢"*'=* > 1. We introduce the variables = and y by
puttingt =m—r—xand k =t—y =m—r — (x+y). Since k is at most the
dimension of the vertex I' of ¢; = I'Q(24, q), we have

m—r—(r+y)<m-r+1—-2u, sox+y>2u—1.

We want to prove that in case of interchange, c3 has to contain the vertex I’
of co = I'Q(2u, q); this means x +y = 2u — 1.

The base space II, contains ¢"~!(¢# — 1) affine points of the quadric W,
so z can be at most this number. Combining this with z¢"**'~* > 1 yields:

¢ (¢ —1)> 1L
Hence, we find that ¢V7* < ¢*, and since y is an integer, we have
y<2u—1.

Next suppose that x +y = 2u — 1 + 9, with ¥» > 1. Then using previous
expressions, we find

m—r—k—1 _ _t—k

q -1 _ qx—i-y—l o

z=q qy—l _ q2,u—1+1li—1 . qy—l'

So bringing into account that this number is at most the number ¢?#~ — g*~!

of base points of the quadric ¥, yields the inequality

g g < g (g - ).
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After dividing both sides by ¢*~! and rearranging terms, we find
¢"(¢" =1 <" -1
Since ¥ > 1, we have

¢t < qu<qw—1 _ 1) <@g —1 < i
It follows that ¢* < ¢¥~*, which contradicts y < 2u — 1.

So we are left with two possibilities. Either x4+y =2u—1or z+y = 2pu.
We want to eliminate the latter possibility.

So suppose that x +y = 2u. The same technique as above, but now
with ¥ = 1, yields that y > p. We introduce an other variable s by setting
y = p+ s. Since we also proved that y < 2u — 1, the variable s satisfies
0<s<u—1. We have

2=q""(¢" - ¢°).
If s =0, then x = y = pu, hence z = ¢! — ¢*! equals the number of
affine points in the base Q(2u, ¢) belonging to the quadric V. In this case, the
dimension theorem yields that the dimension of c3 is at least k + 2u + 1 =
m—r—2u+2u+1=m—r-+1, a contradiction.

If 1 <s<pu—1,wefind z > ¢* 2, so ¢ intersects the space II, spanned
by the base of U either in a (2u — 1)-dimensional affine space or in a 2u-
dimensional affine space. The latter is impossible by the dimension argument
as shown above for s = 0.

We will treat the case s = y — 1 in detail first.

If s =p—1, then 2 = ¢* 2(q—1). If ¢ # 2, then z > |[AG(2u — 2,q)|,
so c3 intersects the space 11, in a (2 — 1)-dimensional space; by the dimension
argument already used above, c¢3 N I, cannot be 2u-dimensional. So assume
that ¢ = 2, hence z = 2272, Either IT,N ¢y is (2 — 1)-dimensional or (2u — 2)-
dimensional.

(a) If ¢ = 2, s = pu— 1, and II, N ¢3 is (2u — 2)-dimensional, then
I, Nc3| = 2 = 2272, so [T, N ¢3 is contained in the affine part of the non-
singular parabolic quadric Q(2u,2). An affine quadric in (2u — 2)-dimensional
affine space coincides with the space if and only if it consists of two parallel
affine (2u — 3)-dimensional spaces. As a generator of (Q(2u,2) has dimension
w— 1, it follows that 2u —3 < pu—1,s0 p < 2. If p = 2, then we would get
two parallel affine lines. But then their intersection point at infinity would lie
on 4 lines of Q(4,2), since Q(4,2) N1, = QT (3,2), a contradiction.

(b) Suppose that ¢ =2, s = u— 1, and II; N3 is a (2u — 1)-dimensional
space. The points of II,Nc3, not contained in ¢y NI, have to be covered by ¢;.
As z = 2272 ¢ Nez intersects 1T, in a (2u — 2)-dimensional affine space Iy, _o.
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Since ¢; and ¢ have no affine points in common, coNesNII, has to be the affine
space in IT,Ncg parallel to the space Il,,_». We can proceed now as in case (a).

We return to the case 1 < s < pu — 1, and the case ¢ > 2 and s = . — 1.

So we may now suppose that ¢z intersects Il in a (2u — 1)-dimensional
space Ily,—1. We will look at the possibilities of intersection of c3 and the
quadric W inside II,, and comparing the number of intersection points with z
will yield contradictions.

So cg intersects the quadric Q(2u, ¢) of I, in a quadric @ of Ily,_;.

1) In a non-singular hyperbolic quadric Q = Q*(2u — 1, ¢), which inter-
sects I, in a non-singular parabolic quadric Q(2u — 2, q).

Then we have ¢*~(¢#~! + 1) affine points. Comparing with z yields the
following equation

2=¢"N¢" ") =T+ ),

which yields
¢ +1=q¢""q-1).

Hence, since p > 2, s = 0, a case which we already proved to be impossible.
2) In a non-singular hyperbolic quadric @ = Q*(2u — 1,¢), which inter-

sects Il in a cone with vertex a point and as base a non-singular hyperbolic

quadric Q" (2u—3, q). Then we have ¢**2 affine points. The equation becomes

z=q" Ng" — ¢°) = ¢,

and after simplification
¢ =q¢""(qg—1).

Hence, we find ¢ = 2, s = 4 — 1, this is case (b) mentioned above.

3) In a non-singular elliptic quadric @ = Q~ (21 — 1, ¢), which intersects
I in a non-singular parabolic quadric Q(2u — 2, q).

Then we have ¢" (¢~ — 1) affine points. We have the equation

2=¢"¢" - ¢)=¢"(¢"" - 1),

leading to
¢ —1=¢""(¢-1).

This yields a contradiction for all s, since y > 2.

4) In a cone @) with vertex a point r and base a non-singular parabolic
quadric Q(2u — 2,q). If the point r does not lie at infinity, we may choose
the base of this cone to lie at infinity. Then we find ¢*#~2 affine points, which
reduces to cases 2) and (b) mentioned above.
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If the point r lies at infinity, we look at the number of points in the
intersection of the tangent hyperplane Ils,—1 = T,(Q(2x,q)) of Q(2u,q) at
this point r with the quadric @ (21— 1, ¢) of Q(2u, q) in the space at infinity;
denote this number by z’. The number of affine points is the total number of
points lying on the cone inside II,,_; minus z'.

Necessarily, T,(Q(2u,q)) N Q(2u,q) NIy, = rQ*T(2u — 3,¢q). We find
q" (¢! — 1) affine points which yields a contradiction, as in case 3).

3.8 Vertex

In the previous section, we have shown that in order to have a possible inter-
change with quadrics, c3 must contain the whole vertex I' of the quadric ¥. In
this section, we will show, that even if this is the case, only in a few exceptional
cases there is an actual interchange possible. We keep using the notations of
the previous section. So here we have x +y = 2u — 1. Set y =  + s, hence z
becomes ¢*~2(g" — ¢**1). This implies that s > —(uu— 1), otherwise z is not an
integer. Since z > 0 and x +y = 2u — 1, we also have s < pu — 2. In contrast
to the previous section, the parameter s can also take on negative values here.
In particular, s = —1 will turn up if © = 2. So from here on, we only consider
values s such that —(u—1) <s < p—2.

For —(u—1)<s<pu-—3andfor s =pu—2, ¢ >2, wefind z > ¢*3,
so c¢g intersects the space II, spanned by the base of U at least in a (2u — 2)-
dimensional space Ily,_». This intersection dimension cannot be larger than
21 — 2, otherwise the dimension theorem yields a contradiction since c3 also
contains the (m — r — 2 + 1)-dimensional vertex I' of W.

We treat the case ¢ = 2, s = p — 2, separately first. Note that in this
caser =1,so0t=m—r — 1.

(a) If IT, N ey is a (2 — 3)-dimensional affine space, then |1, Nes| = 2, so
IT, N ¢3 is contained in the non-singular parabolic quadric Q(2u,2). An affine
quadric in (2 — 3)-dimensional affine space coincides with the space if and
only if it consists of two parallel affine (2 — 4)-dimensional spaces or if its
projective completion is completely contained in the quadric. As a generator
of Q(2u,2) has dimension pu — 1, it follows that 2y —4 < pu— 1, so p < 3.
Consider the case p = 3. The planes through a line L lying completely on
Q(6,2) have to lie in the tangent space at L to Q(6,2). This tangent space
intersects Q(6,2) in a cone with vertex the line L and base a conic (Q(2,2).
Hence, the number of such planes is equal to 3. By a similar reasoning for the
tangent space at L to Q1 (5,2), we find that two of them lie on the hyperbolic
quadric QT (5,2) of Q(6,2) at infinity. So there are no two parallel affine planes
through L lying on Q(6,2). Hence, for u = 3, there is no interchange possible
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in this case.

Furthermore, if s = p — 2, then y = 2u — 2, * = 1, and hence t =
m—r—x=m-—r—1. If y =2, then z = 2 for ¢ = 2. The case u = 2 will be
treated separately afterwards in Section 3.9.

(b) Suppose that II, N ¢3 is a (2u — 2)-dimensional affine space, with
z = 2?73, The points of IT, N ¢3 not contained in ¢y N IT, have to be covered
by ¢1. So ¢; N g intersects I, in a (2u — 3)-dimensional space II5,_5. Since
c1 and ¢o have no affine points in common, ¢ N ¢3 N I, has to be the affine
space in II, N ¢z parallel to Iy, 3. We can proceed now as in case (a). Here
the comparison with the generator size yields 2u —3 < p— 1, so p < 2. As
above, if 4 = 2, then z = 2, and this case p = 2 will be treated in Section 3.9.

From now on, we will assume that we are not in the case ¢ = 2, s = p—2.
As in the previous Section 3.7 concerning interchange with quadrics, we check
all possibilities for the intersection of c3 with the space II, and we will be able
to exclude almost all possibilities by simple comparison with the number 2 of
intersection points.

Remark 3.8.1 Sometimes there will be possibilities for =2 and p =3, but
we don’t treat them in full detail here, since we will treat these cases separately
later on in Sections 3.9 and 3.10.

So ¢3 intersects the non-singular base quadric Q (2, ¢) of ¥ in a quadric
Q of Iy, _».

1) The projective completion of ¢ intersects Q(2u,¢) in a non-singular
parabolic quadric @ = Q(2u — 2, q).

Case A: At infinity, ¢3 N ey NI, is a hyperbolic quadric Q™ (21 — 3, q).

We find ¢*~2(¢"~! — 1) affine points. Comparing with the expression for
z yields the equation

=" " =) =" - 1),

reducing to
¢ =1=¢"q¢-1)

Comparing the powers of ¢ yields a contradiction for all s if p > 2.
Case B: At infinity, ¢3 N ce N 11, is an elliptic quadric @~ (2u — 3, q).
We find ¢*2(¢g"~1+1) affine points, which leads to the following equation

2=q"2(¢" — ") =" (" + 1),

and hence
¢ H1=¢""(qg-1).
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The comparison of the powers of ¢ again yields a contradiction if p > 2. If
W =2, then ¢ =2, s = —1, is a possibility and so as above t =m —r —x =
m—r—2asrx+y=2u—1=3,y=p+s=1,and z = 3.

Case C: At infinity, c3 N ¢y N 11, is a cone with vertex a point r and
base a non-singular parabolic quadric Q(2u — 4,¢q); we denote this cone by
rQ(21 —4,q).

We find ¢%#—3 affine points, which yields the equation

s+1) — 3

z2=q"(¢" — ¢

Y

which becomes
¢t =q""g 1)

Hence, ¢ = 2 and s = 1 — 2, Case (b) which we described above.

2) The projective completion of ¢z intersects Q(2u,q) in a cone with
vertex a point r and base a non-singular hyperbolic quadric Q*(2u — 3, ¢q).
Denote this cone by rQ*(2u — 3, q).

Case A: The vertex r does not lie at infinity.

In this case we can select the base to lie at infinity, so the number of
affine points is

1+ (¢—1)|QT(2u—3,9)| =¢" (¢ ' +q—1).

Comparing with z leads to the following equation
2=¢"(¢" ¢ =" (" g - 1),

thus
@ Ng—-1)=ql¢"+1) -1

Since an even number can never be equal to an odd number, this yields a
contradiction for all ¢.

Case B: The vertex r lies at infinity.

First possibility: at infinity ¢ N cg N1, is a cone rQ(2u — 4,¢q). The
number of affine points is equal to

0(|QF (21 = 3,9)| = Q21— 4,9)]) = ¢" 1 (¢" > + 1).
We obtain the following equation
2= "¢ =) =TT+ ),

and hence
¢ Hl=¢"" ¢,
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SO
¢ +1=q¢"q-1).

This yields a contradiction unless p =2, ¢ =3, s =0, 0or p =3, ¢ =
2, s = 0. In both cases, we have s =0, soif u =2, ¢ =3, theny =2, z =1,
t=m-r—xz=m-r—1z=6,andif u =3, ¢=2,theny =3, x =2
t=m-—r—2, z=12.

Second possibility: at infinity ¢ N ez NI, is a cone rsQ(2u — 5, ¢q),
so a cone with vertex a line rs and base a non-singular hyperbolic quadric
QT (21 — 5,q). We find ¢**3 affine points, a case which we already treated
above.

3) The projective completion of c3 intersects (Q(2u,q) in a cone with
vertex a point r and base a non-singular elliptic quadric @~ (2x— 3, ¢). Denote
this cone by rQ~(2u — 3, q).

Case A: The vertex r does not lie at infinity.

In this case we can select the base to lie at infinity, so the number of
affine points is

Y

1+ (g—1)Q (2u—3,¢) =¢" (¢ " —q+1).

We obtain the following equation

2=q¢"(¢" — ¢ =¢" " =g+ 1),
SO
¢ g—1)=q(¢ —1)+1

Since an even number is never equal to an odd number, this yields a contra-
diction for all q.

Case B: The vertex r lies at infinity.

First possibility: at infinity rQ~(2u — 3, ¢) intersects in an rQ (21 — 4, q).
The number of affine points is equal to

q(|Q~ (2 —3,9)| — |Q2u—4,9)]) = ¢ (¢ - 1).

The equation becomes
2=¢" " =) =T - ),

¢ g-1)=¢ -1
We find p = 2,s =1, but then s = 4 — 1 which was impossible.
Second possibility: at infinity rQ~(2u — 3, ¢) intersects in an rsQ~ (21 —
5,4), so a cone with vertex a line rs and base a non-singular elliptic quadric
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Q (2 — 5,q). We find again ¢**~3 affine points, reducing to Case (c) of 1)
above.

4) The projective completion of ¢ intersects (24, ) in a cone with as
vertex a line L and as base a non-singular parabolic quadric Q(2u — 4, q).

Case A: The line L does not lie completely at infinity.

Hence we can select the base to lie at infinity. We find again ¢
points, reducing to Case (c) of 1) above.

Case B: The line L lies completely at infinity.

We distinguish between the following three cases.

(1) If the non-singular parabolic quadric Q(2u—4, q) intersects infinity in
a non-singular hyperbolic quadric Q" (2u — 5, ¢), then we have ¢#~(¢*=2 — 1)
affine points. We already treated this case in 3) Case B.

(2) If Q(2u — 4,q) intersects infinity in a non-singular elliptic quadric
Q= (2u—5,q), then we have ¢*~1(¢g#"2+1) affine points, and also this case was
already treated in 2) Case B.

(3) If Q(2u — 4, q) intersects infinity in a cone with vertex a point p and
base a non-singular quadric Q(2u — 6,¢), then we have ¢*~3 affine points,
reducing to Case (C) of 1) above.

2n=3 affine

The results of the preceding section, together with those of this section,
now lead to the following theorem.

Theorem 3.8.2 If u > 3, then an interchange with a quadric VU is impossible.
For p = 2 and p = 3, an interchange can only occur if the verter of ¥ s
contained in c3. If interchange is possible for p = 2, we have ¢ = 2, t =
m—r—2,z=3, orq=3,t=m—-r—1,2=6,orq=2,t=m—-r—1, 2z = 2.
If interchange 1s possible for u = 3, then we have g =2, t =m—r—2, z = 12.

Proof Going through all the cases on the previous pages shows that 1) Case
B yields the possibility p =2, g =2, t =m —r — 2, z = 3, 2) Case B yields
the possibilities py =2, ¢ =3, t=m—r—1, z=6,and pu =3, q =2, 1t =
m—r —2, z = 12. The last possibility comes from (a) in the beginning of this
section and yields the possibility u =2, ¢=2, t=m—r—1, 2 = 2. O

3.9 The case =2

We have already shown that in this case the vertex of ¥ has to be contained
in c3 N ¢y in case of an interchange. By Theorem 3.8.2, ¢; N ¢3 has dimension
m — r — 2 or dimension m — r — 1. Even in these cases, only for ¢ = 2 and
q = 3, there were only a few possibilities that could occur.
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3.9.1 ¢g=2

The base of ¥ is a non-singular parabolic quadric Q(4,2) and the vertex T is
of dimension k =m —r — 3.

(a) If the dimension of ¢;Ne3 is m—r—2, we have z = 3 by Theorem 3.8.2;
this implies that c3 intersects I, at least in a plane. Since c3 also contains the
whole (m — r — 3)-dimensional vertex I' of U, the intersection 7 = ¢3 N1l is a
plane. Three of the four affine points of 7 belong to c¢3 N ¢y. The fourth affine
point p of m belongs to ¢; N c3. Since c3 contains the vertex I' of U, all affine
points in the space spanned by the vertex I' and p have to be contained in
c1 Ncg. Hence, the projective completion of ¢; also has to contain I'.

So starting from a given pair (¢, ¢2), in order to have an interchange, ¢
has to contain at least one point of 11, which is the space spanned by the base
of ¢o, and ¢; also has to contain the vertex I' of 5. The intersection ¢y N 11,
contains 6 affine points, and let I be the set formed by these 6 affine points.

By the previous paragraph, we have to find a plane 7 lying in II, which
contains exactly three points of I. The space spanned by 7 and the vertex
space I" of ¥ can then serve as the space cs.

Consider a point r in ¢; N1, and a point s € I. The line L spanned by
r and s intersects infinity in a point p’. Through p’, there passes exactly one
line that contains two points belonging to L, regardless if p’ € Q7 (3,2) or not;
call this line L. Hence, (L, L") is the plane m we were looking for.

Since I contains 6 points, we find 6 planes for a given point r in ¢; N II.
However, we will have counted all these planes three times. So we find only
2 such different affine planes through r. Hence, depending on the number of
affine points contained in ¢; N I, namely 0, 1, 2, or 4, we get 0, 2, 4, or
8 possibilities for an interchange in this way. Note that by Theorem 3.1.8,
(c1 U ez)\cs corresponds to a quadric of the suitable type, since we are in the
case ¢ =2 and p = 2.

(b) If the dimension of ¢; Ne3 is m —r — 1, we have z = 2 by Theorem
3.8.2. Since c3 has to contain the (m — r — 3)-dimensional vertex I' of ¥ and
the dimension of ¢; N ez is m —r — 1, it follows that the vertex space I' of W
is completely contained in the projective completion of ¢;.

Suppose now that we are given a pair (c1,cz). If we want to have an
interchange, then c3 has to contain one affine bisecant L of ¢y in II,, which
intersects I, in a point . The space ¢; N ¢y is an (m — r — 1)-dimensional
space which intersects I, in the (m —r —2)-dimensional space spanned by the
(m—7r—3)-dimensional vertex I' = I1,,_,_3 and . The intersection c;Nc3 has to
be the parallel (m—r—1)-dimensional affine space through (I', r) = (II,,_,_3,7)
in c3. Hence, the projective completion of ¢; has to contain the point r.

As the projective completion of L intersects Il in a point r belonging to
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¢1, then the space II' spanned by the vertex space I and the plane formed by
L and a line L', which is parallel to [ and belongs to ¢;, can serve as c3. The
number of affine lines through the point 7 at infinity in the (m—r)-dimensional
space ¢; is 277! As stated above, with each line L', there corresponds a
space II'. However, each space II’ is obtained for 2™~ "~2 different lines through
r, hence we have 3::—:; = 2 interchange possibilities.

We look at the situation for a point p’ belonging to ¢; N II, N I,,. As
already remarked above, regardless if p’ € Q7 (3,2) or not, there is exactly one
line L’ through p’ that contains 2 points of L. So for each such point p’, we
have two possibilities for interchange. Note that as above, because of ¢ = 2,
pu = 2, and Theorem 3.1.8, the points in the set (¢; U c2)\c3 form a quadric
with (m — r — 3)-dimensional vertex and base Q)(4,2), so that we really have
an interchange.

So starting from a given pair (ci, ce), we look for the number of points
contained in ¢; N II, N Il.

If ¢ has 4 affine points in II,, then it intersects II, NIl in a line, so then
we find 6 interchanges of this type.

If ¢, has 2 affine points in I, then it intersects 1I, N1l in a point, so
two interchanges of this type.

If ¢; has 1 affine point in II;, then it does not intersect I, NIl so no
interchanges of this type.

If ¢; has no affine points in II,, then either ¢; N 1I, NIl is empty or ¢
intersects I, NIl in a point or a line. We have 0, 2, or 6 interchanges in the
respective cases.

To summarize, we have the following result. If we have a given quadric
¢, then in order to have an interchange, ¢; always has to contain the vertex I'
of ¢co completely. Furthermore, we distinguish between the following four cases.

(1) If ¢; has all its affine points outside of II,, we have counted the sum
c1 + co precisely 1 +6 = 7,1+ 2 = 3, or 1 times if the number of points
belonging to ¢; N 11, NIl is 3,1, or 0 respectively.

(2) If ¢; has one affine point in II,, we obtain the sum ¢y + ¢y precisely
1+ 2 =3 times.

(3) If two affine points are in II,, we obtain the sum ¢; + co precisely
1+2+44 =7 times.

(4) If all affine points are in II,, we obtain the sum c¢; + ¢y precisely
1+64 8 =15 times.

Note that for cases (2), (3), and (4), we also have included the inter-
changes discussed in case (a).
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Remark 3.9.1 The pairs (c1,c2) and (c3,cq) play the same role with respect
to interchange, since each role has its specific number of interchanges. So we
cannot jump from one case to another.

Since we now have determined in which cases there is an actual inter-
change and how many times we have counted the same affine point set in these
cases, the only thing left to do is to count how many times these cases effec-
tively occur. This can be done exactly in the same way as done in Section 3.4
concerning the skew space-quadric pairs, but now only considering the specific
starting situations where interchange can occur. Let ¢, be a fixed quadric and
let 11,,,_,+2 be the space spanned by the point set of c,.

(o) Assume that the (m — r)-dimensional space ¢; has all its affine points
outside of II,. Note that in Case (a) above, there is no interchange here, so
we can assume that we are in Case (b), which means that ¢; shares at least
an (m —r — 2)-dimensional space with II,, ..o NII,. We distinguish between
two cases.

(a.1) The intersection ¢; NI, 40 N1y is (m — r — 2)-dimensional.
So ¢y N1II, N1l is a point r. We have 15 choices for the point 7 in the
space I, N II,,. The number of affine (m — r)-dimensional spaces intersecting
IT,,_, 12 exactly in the space spanned by the vertex I' and the point r is found
by projecting from the (m —r—2)-dimensional space (I'; r) = ¢; NI, 2N
onto a complementary (r + 1)-dimensional space 11,1 in AG(m,2). We have
to choose an affine line in 11, skew to the 3-dimensional complementary space
of AG(m —r+2,2), which also does not lie at infinity. This means that there
are Skew(r +1,3,1) — Skew(r,2,1) = 25(2"=2 —1)(2"73 — 1) such lines. Hence,
this case occurs

15-20(22 —1)(27% — 1)

times. These are all counted 3 times.

(«.2) The intersection ¢; N 11,12 N1l is (m — r — 1)-dimensional. So
cp NI, NIl is a line L. We have 12:;4 = 35 choices for the line L in the
space 11, N Tl,,. The number of affine (m — r)-dimensional spaces intersecting
IT,,_,12 exactly in the space spanned by the vertex I" of ¥ and the line L is
equal to (2™ — 2m~r+2)/2m=" = 2" — 22, Hence, this case occurs 35 - (2" — 2?)
times and they are all counted 7 times.

() Assume that the space ¢; has one affine point p in I, so ¢; NI, 12N
I is (m—r—3)-dimensional and equals the vertex I" of ¥. We have 16—6 = 10
choices for this affine point p in II,. For each space spanned by such a point p
and the vertex I', we have Extg(m —r — 2) extensions, see Section 3.4. So we
have

28(2r—2 _ 1)(2r—3 _ 1)

10 -
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such spaces. These pairs are all counted 3 times.

() Assume that the space ¢; has a line in common with II,, and ¢; N
I, 1o NIy is (m — r — 2)-dimensional. There are 10 affine points in I, not
lying on cs, so they determine % = 45 choices for the line L = ¢; N I1;. For
each space spanned by such a line L and the vertex I', we have Extg(m—r—1)

extensions. So we get
45-2%. (2772 1)

such spaces. These pairs are all counted 7 times.

(6) Assume that the space ¢y lies completely in II,,_,,2. For each point
p lying in II, N Il there is exactly one line in II, through p which intersects
the quadric ¥ in 2 affine points. So three lines in II, through p not lying com-
pletely at infinity have no points in common with co. Hence, there are exactly
three planes through p which have no affine points in common with c;. We
have counted all these planes three times. So we find 15 such spaces in total.
These pairs are all counted 15 times.

The above arguments yield the following theorem concerning pairs (¢, ¢o)
which are counted several times, where ¢y is a quadric I'Q(4,2) with T an
(m —r — 3)-dimensional space and with ¢; an affine (m — r)-dimensional space.

Theorem 3.9.2 Denote the number of quadrics cs, where ¢y is a quadric
I'Q4,2), with I' an (m — r — 3)-dimensional space at infinity, which we cal-
culated in Section 3.3, by the same notation F. Let ¢; be an affine (m — r)-
dimensional space skew to co. Then there are

28(2r—2 _ 1)(2r—3 _ 1)

(15-20(2"2 —1)(2"3 = 1) + 10 - VF

pairs (c1, c2) which are counted 3 times. The following number of pairs (c1, )
are counted 7 times

(35- (2" —22) +45.2% . (272 —1))F,

Finally, 15F pairs (c1,c2) are counted 15 times.

3.9.2 ¢=3

In this case of possible interchange of Theorem 3.8.2, the base of the quadric
VU is a non-singular parabolic quadric (4,3) and the vertex I' at infinity has
dimension k = m — r — 3. The only possibility for interchange is Case 2) B
of Section 3.8. The intersection space II; N ¢3 is a plane 7 in this case. The
intersection II,Ncy Nes consists of two lines L and L' which intersect in a point
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r lying on the non-singular hyperbolic quadric @7 (3,3) of Q(4,3) at infinity
since this intersection should contain z = 6 affine points. So in the base of
the quadric ¢, we have 6 affine points contained in ¢3 N ¢y. The third parallel
affine line through r in 7 belongs to ¢; N 1I,.

In the case ¢ = 3, we cannot apply Theorem 3.1.8 directly, so we still
have to check that the affine point set formed by the affine points belonging to
(1 Ueg)\cs forms a singular quadric ¢, with base a parabolic quadric Q'(4, 3).

Since ¢;NesNIly is a line and t = m—r—1, it follows that the vertex space
I' of ¥ is completely contained in the projective completion of ¢;. All points in
(1 Ueg)\c3 have to be covered by ¢4. Consider a point s in IT, N ((¢; Uea)\c3).
Let p be an arbitrary point in the vertex I' of ¢,. The three affine points on
the line sp have to be covered by the quadric ¢4, but then the whole line sp,
so in particular p, has to belong to c¢y.

This implies that ¢, contains the (m — r — 3)-dimensional vertex space
I' of ¢5. As the point p belongs to at least 18 lines of ¢4, namely the lines
connecting p with the 24 — 6 = 18 affine points of ¢y in II, not covered by
3, p is necessarily a singular point of ¢;. These 18 affine points of Q(4,3)
span the 4-dimensional space II, = I1; of (4, 3), since the only possibility in
3 dimensions would be 2 parallel affine planes, but there are no planes lying
on ((4,3). Since p lies on a line of ¢4 to all these 18 points, necessarily p is
singular for ¢4. So all points of I" are singular points for ¢y.

There cannot be other singular points, since then ¢4 is no longer a quadric
of the required form, that is, a cone with an (m —r — 3)-dimensional vertex at
infinity and with base a 4-dimensional parabolic quadric @'(4,3). Hence, the
vertex of ¢4 is equal to the vertex I' of cs.

The quadric ¢4 has to contain 18 of the 24 affine base points of the non-
singular parabolic quadric @ = Q(4, 3), which is the base of ¢. These 18 affine
points of @ in ¢4 NI, span the 4-dimensional space 11, completely. Since we
already know that the vertex space of ¢4 has no points in common with II,, we
can choose the base Q' = @Q)'(4,3) of ¢4 to lie in TII,.

Suppose that we have an interchange so that we can write the affine
point set formed by ¢; and ¢, also as an affine point set formed by an (m —r)-
dimensional affine space c3 and a quadric ¢y.

The 18 affine points of Q\(L U L’) must lie on @’. Through r, there pass
two lines L; and Ls lying completely on the non-singular hyperbolic quadric
Q7 (3,3) of @ at infinity.

Every point of (L U L) \ {r} lies on two affine lines containing 3 points
of the base Q' = Q'(4, 3) of ¢4. So these points of (L; U L2)\{r} also lie on the
projective completion of ¢4. But then L; and Ly contain 3 points of ¢4, so also
rE 4.

The plane spanned by the lines L; and Ly lies in 4 solids of PG(4, 3).
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One of them is T,.(Q(4,3)) containing L, L', Ly, and Ls. One of them is
PG(3,3)e = PG(4,3) Nl; the other 2 solids contain skew lines of Q(4, 3);
so intersect (4, 3) in two distinct non-singular hyperbolic quadrics Q7 (3, 3).
So it should be the case that the bases (4, 3) and Q'(4, 3) of ¢2 and ¢4 are two
parabolic quadrics Q(4,3) and @Q'(4,3) in the pencil of quadrics of PG(4,3)
defined by these two hyperbolic quadrics Q7 (3, 3).

We study the pencil of quadrics in PG(4, 3) containing the 25 points of
@ N Q. The number of points of PG(4, 3) is 121, the number of points con-
tained in a non-singular parabolic quadric (4, 3) is 40, the number of points
contained in two intersecting hyperplanes is 67, and the number of points
contained in a cone with vertex a point and base a non-singular hyperbolic
quadric Q7 (3,3) is equal to 49. The pencil of quadrics defined by the two 3-
dimensional hyperbolic quadrics @7 (3, 3) intersecting in the two lines L; and
Ly certainly contains the base Q(4,3) of ¢y in II, and the union of the two
solids containing the two hyperbolic quadrics @*(3,3). Since @ and Q' have
25 points in common, there are still 121 — 25 — 15 — 42 = 24 + 15 points
remaining in PG(4,3). The only possibility is that they belong to one other
4-dimensional parabolic quadric and to one cone with vertex a point and base
a 3-dimensional hyperbolic quadric. So this shows that this pencil of quadrics
defined by the bases @ and Q' of ¢, and ¢y effectively occurs.

We look at the pencil of quadrics in 7,(Q) induced by the pencil of
quadrics defined by @ and @’. Then @ intersects T,.(Q)) in a cone with vertex
r and base a conic. We coordinatize this cone with vertex the point r and
base a conic as follows. The point r has coordinates (0,0, 0, 1), the base plane
has equation X3 = 0, and the conic in the base has equation X? = X X,. We
furthermore choose the lines L; and Ly to have the equations X; =0, X5 =0
and Xy = 0, X; = 0 respectively. The two 3-dimensional hyperbolic quadrics
in QN Q" which determine the pencil of quadrics containing ) and @’ intersect
in the lines Ly and Ly. So the two corresponding hyperplanes containing them,
whose union is one of the quadrics in the pencil of quadrics defined by @) and
@', both intersect T,.()) in the plane (L1, Ly). So this plane (L;, Ls), counted
with multiplicity two, is one of the quadrics in the pencil of quadrics induced
in 7,(Q). Here, the plane (L;, Ls) has equation X; = 0, thus the pencil of
quadrics induced in T,.(Q) is defined by X7 — XX, = 0 and X7 = 0.

We also find the union of the two planes Xy = 0 and X, = 0 in
the pencil, and the cone X7 + XyX, = 0 with vertex r and base X7 +
XoXy = X3 = 0. The base X? + XoX, = X3 = 0 contains the points
(1,0,0,0), (0,0,1,0), (1,—1,—1,0), (1,1,—1,0). The two cones share the
lines L, and L,. Take the two other lines of the first cone with equation
X? = XoX,. These lines intersect the base in the points P, = (1,1,1,0)
and P, = (1,—1,1,0). We are interested in the third point on the line
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((1,1,1,0), (1,—1,1,0)) different from the intersection point with X; = X3 =
0. This is the point (0,1,0,0). Since this point is collinear with the points
(1,—1,-1,0) and (1,1,—1,0) of the cone X? + XoX» = 0, the interchange
can occur. Furthermore, the reasoning above shows that for a given cone ¢y
and a given point r € ¢ N1l there is exactly one ¢; which gives exactly one
interchange. Namely, ¢; is the (m — r)-dimensional affine space defined by I'
and the plane defined by the two affine lines of Q(4,3) through r. This yields
the following counting. In Theorem 3.4.8, we proved the following theorem on
the number of affine (m — r)-dimensional subspaces of AG(m,3) skew to the
affine part of a given cone ¥ =T'Q(4, 3).

Theorem 3.9.3 The number of affine (m — r)-dimensional subspaces of
AG(m,3) skew to the affine part of a given cone ¥ =T1Q(4,3), with an
(m —r — 3)-dimensional vertex I at infinity and base Q(4,3), is equal to

Ay =P+ > S(s,k)(H(s, k)Extq(s+k+2)+HIH(s, k)Evto(s+k+3)),
(s,k)ER(s,k)

where
R(s,k) ={(s,k)| —1<s<m—r—3, -1 <k<1},

and where P is defined in Lemma 3.4.7.
Hence, the number of distinct unions ¢y U ¢y for the case ¢ = 3, u = 2, is

equal to
16 F

Proof There are F' choices for the quadric cg, see Section 3.3. For a given
quadric co, there are 16 pairs doubly counted, corresponding to the 16 points
at infinity of the base Q(4,3) of c,. O

3.10 The case u=3

In this case ¢ = 2, the vertex I' has dimension m — r — 5 and the base of
the quadric V¥ is a non-singular parabolic quadric Q(6,2) which intersects the
space Il at infinity in a non-singular hyperbolic quadric Q*(5,2).

By Theorem 3.8.2, the intersection space ¢; N c¢3 has dimension t = m —
r — 2. Note that if we can find an (m — r)-dimensional affine space ¢ lying on
¢1 Uy, then by Theorem 3.1.8; the affine point set (¢; U cy)\c3 forms a quadric
or a symmetric difference. Since in Section 3.6, we never got a quadric for ¢y
after interchange, we know that we will not get a symmetric difference for ¢,
here. Hence, the points in the set (¢; Ucz)\cs form a quadric of the same type,
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that is, ¢4 = (c;1 Ucg) \ c3 is a cone with an (m — r — 5)-dimensional vertex and
a 6-dimensional parabolic quadric Q(6,2) as base.

The interchange which can occur is Case 2) B of Section 3.8. By Theorem
3.8.2, in this case, we have ¢ =2, t =m —r — 2, and z = 12.

Moreover, by Case 2) B of Section 3.8, the projective completion of the
space c3 intersects the projective completion of II, N ¢y in a cone with vertex a
point r lying in IT,, and base a non-singular hyperbolic quadric @™ (3,2) which
intersects I, in a cone with vertex r and base a conic C' = )(2,2). This cone
has to lie entirely in the tangent space to Q(6,2) at r, which is a cone with
vertex the point r and as base a non-singular parabolic quadric (4, 2) which
intersects Il in a non-singular hyperbolic quadric @*(3,2). But then there
pass two non-singular hyperbolic quadrics QT (3,2) through the conic C' inside
the non-singular parabolic quadric Q(4,2), a contradiction. Hence, this case
is impossible.

3.11 Summary and conclusion

In this chapter, the goal was the calculation of the number of non-minimal
codewords in a binary Reed-Muller code RM(r,m) of weight smaller than
3 - 2™7"; thereby extending the results of Borissov, Manev, and Nikova, who
calculated the number of non-minimal codewords in RM(r, m) of weight 2-2™m~"
(Theorem 3.1.7). We transformed the original problem into a geometrical one
concerning affine point sets, and studied this geometrical problem for general
q. In the geometrical setting for ¢ = 2, we are in fact calculating the number
of non-minimal codewords. If the weight distribution of the Reed-Muller code
is known, we can also calculate the number of minimal codewords.

We summarize our results for the numbers of pairs (¢y, ¢y), with ¢; and
¢ point sets of AG(m,q) having empty intersection, where ¢; is an (m —
r)-dimensional space and where ¢y is either a quadric (particular cone) or a
symmetric difference. In this summary, we use the same notations as before,
but we will not recall their meaning here. Additionally, some new shorthand
notations will be used here, to be able to write down the formulas in a concise
way.

In Section 3.3, we calculated the number F' of quadrics T'Q(2p, ¢) and the
number S of symmetric differences defined by two affine (m — r)-dimensional
spaces intersecting in an (m — r — p)-dimensional affine space. If we denote

F\FyFy g Pem—r+1Lm—1,q9)p(m—r+1—-2um—r+1,q)

¢(21 — 1;2p, q) (21 — 15 2u, q)
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by F},, then we get

F = F,|0(Q(21,¢)||Q" (21 — 1,9) on a given Q(24, )|

S = ¢(T B 17:“ —1 +Ta Q)Fl(ma’ra:uaCI)FQ(mar?H’a q)
5 .

In Theorem 3.4.8, we proved the following theorem on the number of
affine (m — r)-dimensional subspaces of AG(m, q) skew to the affine part of a
given cone V.

Theorem 3.11.1 The number of affine (m—r)-dimensional subspaces of AG(m, q)
skew to the affine part of a given cone ¥ =T'Q(2u,q), where I' is an (m —r —
2 + 1)-dimensional vertez at infinity, is equal to

Ar=P+ Y S(s,k)(H(s, k)Evtq(s+k+2)+HIH(s, k) Extg(s+k+3)),
(s,k)ER(s,k)

where
R(s,k)={(s,k)| =1 <s<m—r+1-2u, —1<k<p-—1},
and where P is defined in Lemma 3.4.7.

In Theorem 3.5.3, we calculated the number of affine (m — r)-dimensional
spaces having no affine points in common with a fixed symmetric difference.
We obtained the following result.

Theorem 3.11.2 The number of (m — r)-dimensional affine spaces having
no affine points in common with a fired symmetric difference, formed by two
(m — r)-dimensional affine spaces a and [ which intersect in an affine (m —
r — p)-dimensional space, is equal to Ay = N, + Neo, where

m—r—pm—r

Na= > > NE)W(tk)p(m —r,k,t),

k=0 t=k

N, = > Sk, Luyp(m—r—1,k Lu, f)E(k,1,u, f).

(k,lLu,f)eRes(k,l,u,f)

In Sections 3.6 to 3.10, we studied the problem of affine point sets ¢; U ¢y
which might have been counted several times.

Concerning the possible multiple countings of an affine point set which
can be written as ¢; U co, where ¢; is an (m — r)-dimensional affine space and
where ¢ is a symmetric difference, we obtained the following theorem at the
end of Section 3.6.
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Theorem 3.11.3 Denote the number of symmetric differences consisting of
two affine (m — r)-dimensional spaces intersecting in an affine (m —r — p)-
dimensional space

¢(7’ - 17/*6 —1 + T, q)Fl(m,r,u,q)Fg(m,r,u,q)

2
by A. Then there are
Ag: Z w(t,m—T—u)p(m—r,m—r—,u,t)A
t=m—r—pu

pairs (c1,ce), where ¢y is an affine (m —r)-dimensional space and where ¢ is a

symmetric difference, which can be partitioned into blocks of three pairs, such

that the three pairs of a given block determine the same affine union.
Furthermore, if ¢ = 2, there are an extra

Ay = 2-(2"=1)((2"=1)(2"—=2") (2" —1) (2" =2+ = 1) (2" 1 —2vF 1) (2" —2K 1)) A

pairs (c1,c), where ¢y is an affine (m—r)-dimensional space and where ¢y is a
symmetric difference, which can be partitioned into blocks of three pairs, such
that the three pairs of a given block determine the same affine union.

Finally, if ¢ = 2, there are

As=2-(2"—2")A

pairs (cy1, c2), where ¢y s an affine (m — r)-dimensional space and where ¢y is
a symmetric difference, which can be partitioned into blocks of 2 - (2 — 1) + 1
pairs, such that the 2 - (2* — 1) + 1 pairs of a given block determine the same
affine union.

For the possible multiple countings of pairs where ¢, is a quadric, Sections
3.7 and 3.8 yielded the following Theorem 3.8.2.

Theorem 3.11.4 If y > 3, then an interchange with a quadric V is im-
possible. For u = 2 and p = 3, an interchange can only occur if the ver-
tex of W is contained in cs. If interchange is possible for p = 2, we have
q=2,t=m-—-r—22z=3, 0orq=3t=m-r—1, 2 = 6, or
q=2,t=m—r—1, 2z = 2. If interchange is possible for @ = 3, then
we have q =2, t=m—r —2, z=12.

In Sections 3.9 and 3.10, the analysis of the remaining cases showed that there
were only two cases where an interchange was possible.

If 4 = 2 and ¢ = 2, an interchange is possible, and in this case we
obtained the following result.
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Theorem 3.11.5 If p =2, q = 2, there are

28(2r-2 —1)(2 % — 1
Ag=15-25(2"2 = 1)(2"% — 1) + 10 ( I )

)P

pairs (c1, c2) which are counted 3 times. The following number of pairs (¢y, ¢2)
are counted 7 times

A;=(35- (2" —2%) +45-2°(2"% = 1))F.
Finally, As = 15F pairs (c1,c2) are counted 15 times.

If £ =2 and g = 3, we counted (A; — 8)F different pairs (Theorem 3.9.3).
This eventually leads to our Main Theorem, where for ¢ = 2, the ob-
tained numbers are the numbers of non-minimal codewords of weight 2™~ 4
am=r=ptl (o — 1) = 3. 2m7" — 2m="=i+L i the Reed-Muller code RM(r, m) we
started from. In the Theorem below, we impose p > 2, since the case y =1
reduces to the results of Borissov, Manev and Nikova, see Theorem 3.1.7.

Theorem 3.11.6 The number of affine point sets formed by two disjoint affine
point sets ¢y and ¢, where ¢y is the point set of an (m — r)-dimensional affine
space and where ¢y is the point set of either a quadric TQ(2u,q), 4 < 2u < m—
r+2, with an (m—r—2u+1)-dimensional vertex " at infinity, or a symmetric
difference defined by two affine (m — r)-dimensional spaces intersecting in an
affine (m — r — p)-dimensional space, 3 < u <r, p <m—r, is equal to A1 F
ifq>3, p=2.

Itis A\F + AsS — Ay + 43 if ¢ > 2, p> 2.

If g =2, > 2, we get

Ay As

Az
A1F+AQS—(A3+A4+A5)+g+§+m'

If g =2, =2, we obtain

8
Ag A4 A5 A6 A? A8
AF+A,8-N A+ 2428045 160, T 08
(AuF + 4o5 ; Z)+3+3+2(2u—1)+1+3+7+15

Finally, if ¢ = 3, u = 2, we obtain
(A; — 8)F.

Proof For ¢ > 3, u = 2, we only need to consider the case ¢, is a quadric, and
there are no double countings. So there are A;F' distinct unions ¢; U ¢y since
there are F' possibilities for ¢, and A; for ¢; (Theorem 3.11.1). In the next
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case, we first count the total number A F'+ AS of pairs (¢, ¢2), where either:
(1) ¢; is an affine (m — r)-dimensional space and ¢y is a quadric I'Q (2, q)
which are disjoint, or (2) ¢ is an affine (m — r)-dimensional space and ¢, is a
symmetric difference which are disjoint. Note that there are S possibilities for
the symmetric difference and A, possibilities for ¢q, given a fixed symmetric
difference ¢y (Theorem 3.11.2). We then subtract all pairs (¢1, ¢2) which lead
to unions c¢; U co which are counted multiple times. Then we add each such
union ¢; U ¢y once back to the sum, leading finally to the correct number of
distinct unions ¢; U ;. ]
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Chapter 4

Characterizations of the
generalized Veronesean

In [65], a characterization of the finite quadric Veronesean V" by means of
properties of the set of its V,_i-spaces is proved. These V,_;-spaces form a
regular generalized dual arc. In [35] and [36], we prove an extension result
for regular generalized dual arcs, which is then used inductively to provide a
similar characterization of the finite generalized Veronesean.

In the second part of this chapter, we characterize the finite Veronesean
variety by means of intersection properties. For the smallest Veronesean, the
conic, this was already done in the odd case by Segre, in his celebrated char-
acterization of conics: “every set of ¢ + 1 points in PG(2, ¢q), ¢ odd, no three
of which are collinear, is a conic” [51]. This was in fact the starting point of
this kind of results. For the Veronese surface of all conics in PG(2, q), this
was already done by Ferri [22], Hirschfeld and Thas [28], and Thas and Van
Maldeghem [66]. These results of the second part of this chapter can be found
in [50].

4.1 A characterization result of the general-
ized Veronesean

4.1.1 Known results

In 1947, Bose studied ovals in [6]. In that paper, he proved that a cap in
PG(2,¢q) has at most ¢ + 1 points if ¢ is odd and at most ¢ + 2 points if ¢
is even. If these bounds are attained we call the cap an oval and a hyperoval
respectively.

Special cases of generalized dual arcs have a long history. A generalized

97
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dual arc of degree 0 is just a (partial) spread of PG(n,q). The generalized
dual arc of degree n — 1 in PG(n,q) of type (n,n — 1,...,1,0) is just the
dual of an ordinary arc of points in PG(n, q). Generalized dual arcs of degree
1 with ny = 0 are known as n;-dimensional dual arcs. It is known that the
dimension n of the ambient space PG(n,q) of an ni-dimensional dual arc
satisfies 2ny <n < Ini(ng + 3) (see [73]).

Definition 4.1.1 A family A of ql;iIl—i-l [-dimensional subspaces of PG(n, q)
with n > 2 is called an [-dimensional dual hyperoval if it satisfies the following
three axioms:

e cvery two elements of A intersect in a point,
e cvery three elements of A have no point in their intersection,

e all members of A span the whole space PG(n,q).

The ny-dimensional dual arc in PG(3n1(n; +3), ¢), defined by Construc-
tion 1.3.5, was first described in [73].
We need the following theorem about this Veronesean dual arc.

Theorem 4.1.2 For q odd, the Veronesean dual arc is maximal, with respect
to the property of being a Veronesean dual arc, while for q even, the Veronesean
dual arc can be extended by an ni-dimensional space to an ny-dimensional dual
hyperoval. The extension element is called the nucleus.

Proof In every arc element 2 = D((xq,...,x,,)), there is only one point not
covered by a second arc element. This point is

C((zoy . @ny)) = (3, .., 25, 23021, . . ., 2Ty 1Ty, ),

where ( is the Veronesean map.

For odd ¢, these points ¢((zo, ..., %,,)) span PG(3n1(n1 +3),q), i.e. the
Veronesean dual arc is not extendable. For g even, they form an n;-dimensional
space which extends the Veronesean dual arc. This space is called the nucleus.

OJ

The set F of ¢*> + ¢ + 1 planes in PG(5,¢q) from Example 1.3.8 has the
following properties:

(P1) Each two of these planes intersect in a point.

(P2) Each three of these planes have an empty intersection.
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Definition 4.1.3 The tangent space of V2" at p € V*" is the union of the
tangent lines at p of the conics on V2" containing p (for ¢ = 2 one considers
the conics which are the images of the lines of PG(n,2)).

If ¢ is odd, then D(p) is the tangent plane to V3 at p.

In 1958, Tallini [60] (see also [28]) showed that every set of ¢ + ¢ + 1
planes in PG(5,¢q), ¢ odd, for which (P1) and (P2) hold, must be isomorphic
to the set F of Example 1.3.8, so isomorphic to the set of all tangent planes
of Vy.

Furthermore, tangent planes are related to conic planes, see Theorem
25.1.18 of [28].

Theorem 4.1.4 If q is odd, then PG(5,q) admits a polarity which maps the
set of all conic planes of Vi onto the set of all tangent planes of Vi.

This allows to state a dual version of Tallini’s result.

Theorem 4.1.5 If L is a set of ¢> +q+ 1 planes of PG(5,q), q odd, with the
following properties

(i) Any two distinct elements of L have ezactly one point in common.
(ii) Any three distinct elements of L generate PG(5,q).
(iii) There is no point belonging to all elements of L.

Then L is the set of all conic planes of a Veronesean Vs.

This result was generalized to higher dimensions and to ¢ even in [65].

They obtained the following characterization of the finite quadric Veronesean
Y3

Theorem 4.1.6 ([65]) Let F be a set of L1

q—1
in PG(N = ”("2+3),q), n > 2, with the following properties:

: - (n=1)(n+2)
subspaces of dimension *——5—

(VS1) Each two members of F generate a hyperplane of PG(N,q).
(VS2) Each three elements of F generate PG(N, q).
(VS3) No point is contained in every member of F.

(VS4) The intersection of any non-empty collection of members of F is a subspace
of dimension N; = @ for some i € {—1,0,1,--- ;n—1}.

(VS5) There exist 8 members Qy, Qo, Q3 of F with Q1 Ny = QN Q3 = Q3N Q.
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Then either F is the set of V,_i-subspaces of a quadric Veronesean V*' in
PG(N,q) or q is even, there are two members 1,y € F with the property
that no other member of F contains $21 Ny, and there is a unique subspace 2
of dimension w such that FU{Q} is the set of V,,_1-subspaces together
with the nucleus subspace of a quadric Veronesean V*". In particular, if n = 2,
then the statement holds under the weaker hypothesis of F satisfying (VS1),
(VS2), (VS3) and (VS5).

For n = 2 one can classify all examples that do not satisfy (VS5) by
a result of [15], and the only possibilities occur for ¢ = 2 and ¢ = 4. This
classification remains open for n > 3, although an infinite class of examples is
known for ¢ = 2, see [65].

We work in the dual setting. Recall from Remark 1.3.14 that the Verone-
sean dual arc is the dual of the set of V,,_i-subspaces. The dual formulation
of the above theorem reads as follows. We will prove an extension of this dual
version.

n-dimensional spaces in PG(W, q)

+1_1

Theorem 4.1.7 Let F be a set of & -

q
with the following properties:
(VS1) Each two elements of F intersect in a point.

(VS2) Each three elements of F are skew.
(VS8) The elements of F span PG(@,q).

(VS4) Any proper subspace of PG(@, q) that is spanned by a collection of ele-
ments of F is a subspace of dimension w—l, for somei € {0,...,n}.

(VS5) If q is even, at least one space spanned by two elements of F contains more
than two elements of F.

Then either F is the Veronesean dual arc defined by Construction 1.3.5 or
q is even, there are two members €2y,€ € F such that the 2n-dimensional
space (21,Qs) only contains 2 elements of F and there is a unique subspace €
of dimension n such that {Q} UF is the Veronesean dual arc defined by Con-
struction 1.8.5 together with the nucleus subspace of a quadric Veronesean V2" .
In particular, if n = 2, then the statement holds under the weaker hypotheses
of F satisfying (V.S1), (V.S2), (V.S3) and (V.S5).
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4.1.2 Algebraic characterisation of dual arcs

qn+1_1
q—1

Let F be a strongly regular generalized dual arc of size
n+d+1—i) 1

n

— ¢ of type

(no, ..., Ngs1), where n; = (

Definition 4.1.8 If any proper subspace spanned by a collection of elements
of F has dimension (";’jﬁ“l) - (”Zl:ll_l) — 1 for some i € {0,...,n} then F
has property (P).

We will prove the following theorem.

Theorem 4.1.9 Assume that d + § < % for q odd and d + 6 < % for q

even.

Let F be a strongly reqular generalized dual arc of size qn;_ll_l — 0 of type

(ner:Lrlfi)

(no, ..., Ngr1), where n; = — 1. having property (P).
If q is even, then we require in addition that there are two elements
Qo, Q€ F, such that (g, 1) contains at least three elements of F.

B Then F 1is extendable to a strongly reqular generalized dual arc of size
ntl_

q—1
If q is even and d = 1, then the dual arc is even extendable to a dual arc

. qn+171
of size T 1
In any case, the dual arc is a subset of the maximal dual arc described
by Construction 1.3.5 or of the Veronesean dual arc plus the nucleus subspace

in the case d =1, q even.

q

Property (P) seems somewhat artificial, but we can prove that for ¢ >
n, property (P) is satisfied by every strongly regular generalized dual arc
(Lemma 4.1.35).

The arc of Construction 1.3.5 satisfies property (P). Since the generalized
dual arc of Construction 1.3.5 has the group PGL(n + 1, ¢) as automorphism
group, it is sufficient to determine the dimension of (D(eg), D(e1), ..., D(e;—1)).
The arc element D(e;) is spanned by all points of the form p;, ,. Thus the
span of D(eg), D(e1),...,D(e;—1) contains all points which have either 0, 1,
...,or7—1 as an index. There are (”;ﬁ’l) different points and ("+§J’:11_i) only
contain indices from ¢ to d.

The proof of this theorem consists of two parts, which will be covered by
the next two sections. At this point, we just give an overview.

In the case d = 1, we prove that for § > 0, § small, a dual arc of type
(ng,n1,ngy) of size qn;_ll_ ! _ § is not maximal. The proof techniques are similar

to the techniques used in [28] to give an algebraic characterisation of a dual
qn+1_1

q—1

arc of size

. The main difference is that the deficiency 0 makes simple
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counting arguments impossible, so we have to use more difficult structural
arguments.

For d > 1, we use induction on d. The idea of this part is the following.
In Construction 1.3.5, we have n + 1 special arc elements of the form
D((0,...,0,1,0,...,0)). In each of these arc elements, the other arc elements
mduce a degree d — 1 dual arc of size qq__l — 1. Thus each arc element
D((0,...,0,1,0,...,0)) contains an extension space. Now we look at the dual
arc induced in the extension space and find again an extension space inside
and so on.

The indices of a point p, .., describe in which arc elements in which
extension spaces this point lies. For example, ey = ¢ means that pe, .,
lies in D((0,...,0,1,0,...,0)) where the 1 stands at the i-th position, and
eop = e; = ¢ means that in addition the point lies in the extension space of
D((0,...,0,1,0,...,0)).

The idea of the proof is to take n 4+ 1 elements of the dual arc that span
PG(no, q). These elements will be the elements of the form
D((0,...,0,1,0,...,0)). Define the basis points p., ., as the intersection of
the appropriate extension spaces. Then use the known algebraic characterisa-
tion for dual arcs of degree d — 1 to find the generalized Veronesean surface.

4.1.3 The case d =1

For d = 1, the main theorem reads as follows.

Theorem 4.1.10 Assume that 6 < &+ for q odd and 6 < &= for q even, and

let F be a set of q; ;1 -9 dzﬁerent n-dimensional spaces in PG5 "+3),q)

with the following properties:

(1) each two elements of F intersect in a point,

(2) each three elements of F are skew,

(3) the elements of F span PG(=% 13 q),

"("+3) ,q) that is spanned by a collection of ele-

i(2n—i+3
% 1,forsomez€{0,~-7 }:

(4) any proper subspace of PG (™5

ments of F is a subspace of dzmenswn

(5) if q is even, at least one space spanned by two elements of F contains more
than two elements of F.

-1

Then F is extendable to a strongly reqular generalized dual arc of size L pam

(In the case q even, this dual arc of size % q_l_l 15 even extendable to a dual

hyperoval.)
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The idea of the proof is in the same spirit as the proof of Theorem 4.1.6,
so the proofs of some results describing the general structure will look very
similar as the ones used for that result. The main work lies in the lemmata
which actually deal with the deficiency itself, where we have to reconstruct the
missing elements.

Definition 4.1.11 A contact point is a point belonging to exactly one element

of F.

Property (4) seems very technical. Our next lemma shows that for large
q, property (4) is no restriction. This motivates property (4).

Lemma 4.1.12 Let g > n, then any configuration F which satisfies the prop-
erties (1)-(3) also satisfies property (4).

Proof Assume that the claim of the lemma is wrong, i.e. there exists a se-
quence T, ..., of elements in F with the property:

[} Hj:<7To,...,7Tj>,f0rj§]€,

odimHj:M;_jH)—l,forj<k,

k(2n—k+3)

(k+1)(2n—k+2) _ ¢
5 e )

® 2

— 1 <dimll; <

By induction, we will construct a sequence 711, ..., 7,1 of members of
F with the properties:

(I) the subspace defined recursively by II; = (II;_;, ;) has at least an i-
dimensional subspace in common with ;1

(IT) the space ;41 is not contained in II;.

For 7 = n, these two conditions yield a contradiction, because the elements of
F have dimension n. This proves the lemma.

Now we construct m;;; from the sequence m,...,m;. Note that dimII;
is bounded by

dimIly+(n—k)+---+(n—(—-1)) <
(l{:+1)(2n—k+2)_2+(j—k:)(2n—k—j—|—1) <n(n—|—3)

—-1.
2 2 2

Thus 11, is not the whole space. By property (3), we know that there exists a
space ;41 of F not in II;. There are at least ¢" —1 — 0 elements of F meeting
Tj41 in a point outside of II;. Thus there are at least ¢" — 9 elements of F not
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in II,. Since 7,41 has at most an (n — 1)-dimensional space in common with
II; (i < k), we conclude that at most qqn___11 elements of F intersect m;4; in a
point of II;. Thus for at most j % elements of F, there exists an ¢ < j such
that this element intersects m;,1 in a point of Il;. Because k <n < g,

"—1
q”—é—kq > 0,
qg—1

implying that there is an element 7;,, of F with the property that 7, is not in
I1; and 741 Nm4q ¢ 11;. Especially, we have dim (1 Ny || -1 < i< j) =
J, i.e. i1 NII; is at least a j-dimensional space.

Thus, by induction, we have found the members of F with the properties
(I) and (II), which proves the lemma. O

Property (4) allows us to compute the dimensions of many objects re-
lated to F. An important special case is the following result.

Remark 4.1.13 Let II be a 2n-dimensional space spanned by two elements of
F. Then an element of F either lies inside I or intersects I in a line.

The next lemma gives us an upper bound on the number of elements of
F contained in a space having one of the dimensions mentioned in property

(4).

Lemma 4.1.14 FEvery <M — 1> -dimensional space contains at most %

elements of F.

Proof Let II be an (w — 1) -dimensional space spanned by ¢ elements

Ty, ..., m of F.

An element of F, not contained in II, intersects IT in an (i—1)-dimensional
space II; (this is part of property (4)). Each element of F, contained in II,
must share a point with II;. Furthermore, no two elements of F in II intersect
II; in the same point, so II contains at most % elements of F. 0

To understand the goal of the next lemma, consider the dual arc obtained
by Construction 1.3.5. In this example, every element of F corresponds to a
point of a projective space PG(n, q). The 2n-dimensional spaces spanned by
two elements of F correspond to the lines of PG(n, ¢). Thus if a dual arc with

qn+1_1
q—1

— 0 elements is a subset of this example, then the following is true:
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Every 2n-dimensional space spanned by two elements of F contains at
least ¢ +1 — & elements of F.

Lemma 4.1.15 is the first step in that direction.

Lemma 4.1.15 FEvery 2n-dimensional space contains 0, 1, 2 or at least ¢ — o
(0 <(q—T7)/2 for q odd and 6 < (q—8)/2 for q even) elements of F.
If q is odd, no 2n-dimensional space contains exactly 2 elements of F.

Proof Let II be a 2n-dimensional space which contains k elements of F, where
2<k<q-—9.

Let 7’ be any element of F not contained in II. This element 7’ intersects
IT in a line L' by the remark after Lemma 4.1.12. At least ¢ — § points of L'
must be covered by a second element of F. Since ¢ — d — k > 0, there must
be a second element n” of F, not contained in II, which intersects L'. Let
o NIl=L1".

The lines L' and L” span a plane w. Since every one of the k elements
of F in II must intersect 7’ and 7", these k elements intersect 7’ and 7" in a
point on L', respectively on L”, different from L' N L”. Hence, they intersect
7 in lines.

Assume that 7" is another element of F, not contained in II, that inter-
sects IT in L". We prove that if L has a point in common with L' then it
has also a point in common with L”.

Suppose that L intersects L'. If L does not intersect L”, then every
element of F contained in II must share a line with the plane spanned by L’
and L”, and has a point in common with L”. Thus these elements share a
plane with the 3-dimensional space spanned by L', L” and L"”. Especially, two
of these elements intersect each other in a line, a contradiction.

This proves that the elements of F, not contained in 11, can be partitioned
into groups. The elements from one group intersect each other in II, and
elements from different groups intersect each other outside of II. Each group
defines a plane inside IT and the k elements of F contained in II must intersect
such a plane in lines.

Let 7 and 75 be two planes inside II defined by such groups. We distin-
guish several cases for the intersection 7 N 7.

(1) The planes m; and 7 cannot be skew to each other. Otherwise, they
would span a 5-dimensional space ). Now every element of F in II shares a
line with 7, and 79, so shares at least a 3-dimensional space with 2, but then
the elements of F in II intersect each other in at least a line, which is false.

(2) If m and 7y intersect in a line, then at most one element of F con-
tained in II contains the line 7 N7y. So at least k — 1 elements of F contained
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in II must share a plane with the 3-dimensional space spanned by m; and 7.
Thus each two of these elements must share a line, a contradiction for £ > 2.
We now eliminate the case k = 2, where one of the two elements of F in II,
for instance 7, passes through the line L = m N .

For k = 2, all groups have size at least ¢ — § — 1. For, consider a first
element 7' of F not in II, then consider the line L' = 7/ N II. This line has at
most 6 + 1 contact points, so it is intersected in a point by at least ¢ —2 — ¢
elements of F, not lying in II. This shows that a group of elements of F, not
lying in II, has at least size ¢ —  — 1.

But now consider the line L. = m; N 7o, lying in an element 7 of F in II,
and in the two planes 7m; and 7y containing at least ¢ — § — 1 lines lying in
elements of F, not contained in II. Since no point of L lies in three elements
of F, and every point of L already lies in the element 7 of F, we must have
g+1>2(q—06—1)+1, where the +1 arises from the second element of F in
I1. This implies ¢ < 20 + 2, a contradiction.

(3) Thus m and 7y intersect in a point s. But then the only possibility

for an element of F contained in II to intersect m; and 73 in lines is that s is a
point of that element. Thus all elements of F contained in II contain s. Since
every three elements of F are skew, this means that k£ = 2.
o 1Assume now that we are in the case k = 2 and ¢ is odd. Since there are
o 2 — ¢ elements of F not contained in II, and since for odd ¢ a dual arc
of lines in PG(2, ¢) contains at most g + 1 elements, each group can contain
at most ¢ — 1 elements, so there are at least

1 ntl _ 1 n_1
q —2—-9 >q
g—1\ ¢—1 qg—1

q

different groups.

Each group defines a plane through s which intersects an element of F
contained in II in a line. Since an n-dimensional space only contains %
different lines through s, there must exist two groups which define planes m;
and m, intersecting in a line. But this is impossible as we already proved.

So the case k = 2 is only possible for ¢ even. O

Even if we could not exclude the case k = 2 for ¢ even, we have proven
in step (3) the following characterisation:

Corollary 4.1.16 Let q be even and let (w,n’') be a 2n-space that contains
only ™ and 7' as elements of F. Then the elements of F\{m, 7'} intersect
(m, ') in groups of pairwise intersecting lines. Furthermore, there can be at
most % such groups.
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We call a 2n-dimensional space big if it contains at least ¢ — 0 elements of
F. The next lemma associates with each big 2n-dimensional space Il a plane
7 which will be very important in the remaining part of this section.

Lemma 4.1.17 Let I be a 2n-dimensional space containing q+1—09; > q—0
elements of F. Then 11 contains a plane T which intersects the ¢ + 1 — §;
elements of F in 1l in lines. The elements of F, not in II, intersect 11 in
a line. These lines either lie in @, or they are skew to ® and then contain J;
contact points. Moreover, those latter lines skew to @ which are the intersection
of Il with an element of F not lying in Il are pairwise disjoint.

Proof Assume that two elements 7; and 75 of F, not in II, intersect II in two
intersecting lines L; and Ls. Let 7 be the plane spanned by 1, and Ls.

We are not in the case which is assumed in the beginning of the proof of
Lemma 4.1.15. However, the same kind of arguments as the ones used in the
proof of Lemma 4.1.15 show that

1. Every line in II that intersects m and that comes from an element of F
not in IT must lie in 7.

2. Every element of F in II must intersect 7 in a line.

3. The lines in II that come from an element of F not in II and that do not
lie in ™ must be pairwise disjoint.

Property 3 is proven in the following way. Otherwise we have two planes 7; and
7o corresponding with two different groups of lines as in the proof of Lemma
4.1.15. We have shown in the proof of Lemma 4.1.15 that m; and 75 must
intersect in a point s which lies on every element of F in II. But this implies
that II has only 2 elements of F which is not the case.

So, from now on, we may assume that all the elements of F, not in II,
intersect II in pairwise disjoint lines. Now we construct the plane 7.

Let w1, m and w3 be three elements of F in II. Let s;5 = 7 N mo,
S13 =M T3 and S93 = Mo (1 T3.

The points s19, $13, Se3 generate a plane 7, since otherwise, my, mg, 73
share a line. Assume that an element of F, not in I, intersects Il in a line L
that meets 7. We claim that L must lie in 7. Suppose the contrary. Without
loss of generality, we may assume that L N7 ¢ 7 U me. But then m and my
share a plane with the 3-dimensional space (7,L), i.e. they share a line, a
contradiction.

At most one line in II that comes from an element of F not in II lies in
7, since these lines are pairwise disjoint. Since every element of F has only
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0 4+ 1 contact points, this proves that at least ¢ — 0 — 1 points of s12513 lie in
an element of F in II, different from ;.

Assume that there exists an element 7 of F in II which intersects m; in
a point s not on s13s13. The above arguments show that si15s13, ss12 and ss;3
must contain at least 3(¢ —d — 1) —3 > ¢ + 1 points in m; which lie on two
elements of F inside II, a contradiction with Lemma 4.1.14.

Thus every element 7 of F in II meets s19513, S12503 and S13893, i.e. it
has a line in common with 7. ]

The next series of lemmas deal with the case ¢ even and k = 2. Let
us again have a look at the example that comes from Construction 1.3.5. In
this example, every 2n-dimensional space containing at least one element of F
contains either 1 or ¢+1 elements of F. If g is even, we can extend the dual arc
of size qn;_ll_ L by one element 7. This element 7 has the special property that
for all other elements 7' € F, the 2n-space (m,n’) contains no other element
of F, see [65]. We call this element the nucleus of F.

We will prove in Lemma 4.1.20 that this property holds for every regular

generalized dual arc for ¢ even.

Lemma 4.1.18 Let g be even and let 7, " € F be such that the 2n-dimensional
space (w, ') contains no other element of F. Let s =mwN7'.

Let 11 be a big 2n-dimensional space containing © and let @ be the plane
inside 11 described by Lemma 4.1.17. Then s € 7.

Proof Let Il = (m,n"), 7" € F\{m,n'}. Let @’ = (s =nna', 7" Nnm 7" N7').
As we have already seen in Corollary 4.1.16, this gives us a group of intersecting
lines in this plane. But Lemma 4.1.17 states that the only plane in II which
contains a group of intersecting lines is 7, i.e. 7 = 7. 0.

Lemma 4.1.19 Let q be even. For each m € F either all 2n-dimensional
spaces (w,7') with m # w € F contain exactly two elements of F, or there
exists at most one element m # ' € F such that (m, ') contains exactly two
elements of F.

Proof Assume that 7 lies in a big 2n-dimensional space II, and let 7™ be the
plane described by Lemma 4.1.17 and let L be the line 7 N 7. By Lemma
4.1.18, we know that an element 7’ of F for which (7, #’) contains no other
element of F must intersect 7 in a point of L.

Since L has only ¢ + 1 points and |F| = qn;_ll_l — §, this means that =
must lie in more than one big 2n-space II'. But then we have a second line
L' = # N7 and every element 7’ of F for which (m,7') contains no other
element of F must intersect 7 in a point of LN L. (L and 1 are different,
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since L, must meet the ¢— 4§ elements of F in II, L' must meet the g— ¢ elements
of Fin IT" and 2 — 26 — 2 > ¢ + 1, see also step (2) of Lemma 4.1.15.) This
proves the lemma. O

Lemma 4.1.20 Let g be even and assume that there exists a 2n-dimensional
space 11 which contains exactly two elements of F. Then there exists one
element m € F such that for every m # n' € F, the 2n-space (m,n’) contains
exactly two elements of F.

Proof Let IT = (m,7’). Assume that both elements 7 and 7’ lie in a big
2n-dimensional space. Then all other elements of F generate with = and 7/,
respectively, a big 2n-dimensional space (Lemma 4.1.19). Let 7” be such an
element and Il = (7, 7”) with the special plane 7y and II; = (7', 7”) with
the special plane 7;. By the proof of Lemma 4.1.18, we know that 7y =
(rna',mna”, 7' Nna") =7.

But this is a contradiction since this plane cannot contain 2(q —9) — 1 >
q+ 2 different lines coming from elements of F in Il and II;. Thus either 7 or
7’ does not lie in big 2n-dimensional spaces. They cannot both lie only in 2n-
spaces which contain 2 elements of F or else by condition (5) of Theorem 4.1.10
which we assume to be valid for F, we find a 7" € F\{m, 7'} lying in at least one
big 2n-space and in two 2n-spaces with only two elements of F, a contradiction
with Lemma 4.1.19. 0

If g is even and the special element 7 from Lemma 4.1.20 exists, we sim-
ply remove it from F. This increases the deficiency by 1.

Remark 4.1.21 Thus from now on, we assume that a 2n-space cannot con-
tain 2 elements of F and that § < (¢ —6)/2 when q is even and § < (¢ —7)/2
when q 1s odd.

Our next goal is a stronger version of Lemma 4.1.17 which states that
an element of F, not in a big 2n-space II, must be skew to the plane 7. We
will reach this goal with Lemma 4.1.28.

Lemma 4.1.22 Let 114, Iy and I3 be distinct 2n-dimensional spaces contain-
ing at least ¢ — & elements of F.
Then dim(II; NIy N II5) < n.

Proof By property (4), we know that dim(II; N 1Il;) <n + 1.
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Assume that I1; N 11y N 1I3 is an (n + 1)-dimensional space II. Since two
elements of F span a 2n-dimensional space, the space II contains at most one
element of F and the other elements of F in II; intersect II in a line.

Let L be such a line in II that comes from an element of F in II;. The
elements in Il and II3 intersect L in a point. Since 2(¢ —d — 1) > ¢+ 1, some
point of L lies on an element of F in Iy, Il and Il3. A contradiction since
each point lies on at most 2 elements of F. ([l

In the case of Construction 1.3.5, we know that the big 2n-dimensional
spaces correspond to the lines of an n-dimensional projective space PG(n, q).
Thus in that case, every element of F lies in exactly % big 2n-spaces. Now
we can prove this for a regular generalized dual arc.

Lemma 4.1.23 Let m € F. Consider all 2n-dimensional spaces through w
containing at least ¢ — & elements of F. Then the planes T of these 2n-spaces
intersect w in different lines through a common point.

Moreover, there are exactly % different big 2n-spaces through .

Proof Let IT and IT" be two different 2n-spaces through 7, and let @ and 7’
be the corresponding planes defined by Lemma 4.1.17. By Lemma 4.1.17, we
know that # N7 and © N 7 are lines. These lines must be different since
otherwise 7 N7 = 7 N 7" would contain at least 2(¢ —J — 1) > ¢ + 1 points
lying on 7 and on another element of F.

By the proof of Lemma 4.1.17, we know that at most d + 2 elements of
F not in IT" intersect IT" in lines contained in 7’. The other elements intersect
IT" in pairwise skew lines. Thus II contains at least ¢ — 20 — 3 > 3 elements
of F that intersect II' in pairwise skew lines; we call this set of lines £;. By
symmetry, we know that II’ contains at least ¢ — 25 —3 > 3 elements of F that
intersect Il in pairwise skew lines; we call this set of lines L.

Each line in £; must intersect each line of L5, in the intersection point of
the corresponding elements of 7. Thus £, and L, are the lines of two opposite
reguli of a hyperbolic quadric Q*(3, q).

By Lemma 4.1.17, we know that every element of F in II has a line in
common with 7. Thus the line 7 N 7 intersects all lines of £y, i.e. it lies in
the regulus defined by L. By symmetry, 7 N 7 lies in the regulus defined by
Ly. Thus 7 N7 and 7 N7 intersect. In addition we see that every element of
IT different from 7 must lie in the regulus defined by £, i.e. all elements of II
intersect I in pairwise skew lines not in 7’. Thus the first case in Lemma 4.1.17
cannot occur. Especially the intersection point of 7 N7 and 7 N7’ must be a
contact point, since it can lie only in elements of F that lie in the intersection
[InIr.
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This proves that either the lines of the form 7 N7 share a common point
or they lie in a common plane since they pairwise share a point. But the
lines of the form 7 N 7© must additionally cover all non-contact points in 7
and intersect only in contact points. Thus the lines of the form © N 7 share
a common contact point and there are at most qn%ll lines of the form = N 7.
That there are at least that many such lines follows from the fact that each
big 2n- space contains at most q —|— 1 elements of F and hence 7 is contained in
at least (- _1 —6—1)/q¢ > L= — 1 big 2n-spaces. O

Remark 4.1.24 We note that in this proof, we encounter the strongest con-
dition on §, namely ¢ — 26 — 3 > 3; equivalently, 6 < (¢ — 6)/2 for d = 1.

An important consequence of Lemma 4.1.23 is the following result.

Corollary 4.1.25 Let IIy, ..., ;o1 be the big 2n-spaces containing a given
q—1
element w of F. Let the space 1l; contain q + 1 — O; elements of F. Then
" -1

L 6=
Especially, most big 2n-dimensional spaces through © contain q + 1 ele-
ments of F. Moreover, each 2n-space contains at least ¢ + 1 — o elements of

F.

Proof We already know that every 2n-space containing more than two ele-
ments of F, contains ¢ + 1 — 9; > ¢ — § elements of F (Lemma 4.1.15).

qg -1 n_1
Since > .77 0; = 9, necessarily ¢; < 4, so we can conclude that every 2n-

space contammg more than two elements of F, contains ¢+1—6;, > qg+1—90
elements of F. O

The next lemma allows us to reduce the case of an ( "(”;5) n,0)-arc to
the case of a (5,2, 0)-arc.

Lemma 4.1.26 Let II be a (3n — 1) -space spanned by three elements of F.
Let F be the set of elements of F in I1.
For every m in .7: define

7%::<7TO7T’H7T7£7T/€.7}>.

For every m in ]:', the space 7 is a plane and these planes form a dual
arc in 5 dimensions.

Proof For cach element 7 in F, we define a linear space £ with the following
properties:
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(i) The points of the linear space are the points 7 N7/, with w # ' € F.

(ii) The lines of the linear space are the lines of 7 through two points of the
form N7 and 7N 7" (7' #m, 7" £ 7 e F).

If 7 is not contained in the 2n-dimensional space II spanned by 7’ and
7", then it intersects I in a line containing 7 N7" and = N7”; in fact, this
line contains at least ¢ — & elements of the form 7N#"”, with 7 # 7 € F
(Lemma 4.1.15).

If 7 is contained in the 2n-space II, then 7 N «’ and 7 N 7" lie on the
intersection line of 7 with the plane 7 of Il (Lemma 4.1.17) which contains
at least ¢ — § — 1 intersection points of m with other planes of F.

The number of points in £ is at least 3(¢ — 0 — 1) — 3 (Lemma 4.1.15)
and at most ¢* + ¢+ 1 (Lemma 4.1.14).

If po, p1 and p, are three non-collinear points of the linear space, then pop,
contains at least ¢—d—1 intersection points of two elements of F and thus there
are at least ¢—d—1 lines through p, and therefore at least (¢—d—1)(¢—9d—2)+1
intersection points in the plane (po, p1, p2)-

By the same arguments, four points pg, p1, p2 and p3 of the linear space
L that do not lie in a plane would imply that the linear space £ contains at
least (¢ —9—2)((¢q—0—1)(¢—0 —2)+ 1)+ 1 points. But this is not possible
since the number of points in £ is bounded by ¢ + ¢ + 1.

Thus 7 := <7rﬂ7r’ || m# 7" € ]:"> is a plane.

It remains to be proven that the planes 7 span a 5-space. Their span
has at most dimension 5 as we know from [73]. Assume that they only span
a 4-space. Then the three elements of F that span IT would have a plane in
common with this 4-dimensional space. This would imply that I1 has at most
dimension 4 + 3(n — 2) = 3n — 2, but this is false. O

qn—l
q—

Corollary 4.1.27 Ewvery big 2n-space lies in exactly 1_1 different (3n—1)-

spaces spanned by three elements of F.

Proof Every big 2n-space Il through 7 corresponds to a line 7# N 7w and all
these lines go through a common point s. A (3n — 1)-space defined by three
elements of F through 7 corresponds to the lines in one plane through s inside
7 by Lemma 4.1.26. Thus the (3n — 1)-spaces defined by three elements of
F through II correspond to planes inside m through 7 N 7. There are exactly

"—1,1
! —1 such planes. O

Now we are able to improve the result of Lemma 4.1.17.
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Lemma 4.1.28 With the notations of Lemma 4.1.17, the following result
holds: no element of F not in 11 intersects 7.

Proof We know from the preceding lemma that 7 shares a line with every
element 7 of F in II, passing through a fixed contact point of 7. Assume that
7 contains an extra line from an element 7’ of F not contained in II. Let
{r}=mn7a'Nr.

The elements © and 7’ define a big 2n-dimensional space IT', and II’
contains a plane 7’. The intersection 7’ N 7 is a line which contains r and the
fixed contact point. Thus # N 7" = 7 N 7, a contradiction.

Thus 7 contains no line that comes from an element of F not in II.
Elements of F inside II intersect 7 in a dual arc of ¢ + 1 — §; lines. OJ

Remark 4.1.29 If © contains lines of contact points, these lines extend the
dual arc of ¢+ 1 — 6; lines induced by the elements of F in Il. For §; =1 and
q odd, we find one line of contact points, and for 6; = 1 and q even, we find
two lines of contact points.

Now we are reaching our final goal to prove that F is not maximal. As
a first step, we prove that the planes 7 contain lines of contact points.

Lemma 4.1.30 Let II; and Il; be two big 2n-spaces with the property that
(I1y, IIy) is a (3n — 1)-dimensional space. Assume that 11y and Ily share no
element of F. Let w and Ty be the planes in 11y and 11y which exist by Lemmas
4.1.17 and 4.1.28. Then 7 N1y is a line of contact points.

Proof First of all, it is impossible that the plane 7 is contained in II,. For
assume the contrary. We obtain a contradiction in the following way. Every
element 7 of F in II; intersects Il in a line. If 7y lies completely in II,, then
the intersection line L = Il N 7 equals the line 7 N 7. This line contains at
least ¢ — ;1 points lying in two elements of F in II;. But the g+ 1 — 5 elements
of F in I, must intersect 7 in a point. So at least ¢+ 1 — d, points of L still lie
in an element of F in Il;. Then there are points of L lying in three elements
of F. This is false.

Note that the plane 7 lies in the 5-space I, C 11, spanned by the planes
7 defined in Lemma 4.1.26. Then I, cannot contain f[l, since otherwise every
element of F would intersect II, at least in a plane, contradicting the remark
after Lemma 4.1.12. Thus II, N II; is a 4-dimensional space, spanned by two
planes 7 and 7’ corresponding to elements m and 7’ of F in II,. The plane
71 lies in the 5-dimensional space f[l and thus it intersects the 4-dimensional
space Il N f[l, and therefore Il,, in at least a line.
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Consider again the intersection line L. = II, N 7 of an element 7 of F in
[Ty with II,. This line contains ¢ + 1 — d5 points lying on an element of F in
I1, and 9 contact points (Lemma 4.1.17 and Lemma 4.1.28). So the points of
L do not lie in an other element of F in II;.

Now L and 7 N 7y intersect in a point, since both lines lie in the plane 7
defined by Lemma 4.1.26. This point must be a contact point, for else, it lies in
a second plane of F in II;, but this was excluded in the preceding paragraph.

So 7 shares a contact point with II,, which also lies on the intersection
line of H2 with 1.

This proves that the line 7 NIl intersects the dual arc in 7y, consisting
of lines of the form 7 N 7, where 7 is an element of F in II;, only in contact
points, i.e. ™ N1y only contains points covered by at most one element of F.

This proves the theorem. 0

Lemma 4.1.31 Let 1y and Iy be two big 2n-dimensional spaces with the
property that (I1y,1ls) is a (3n — 1)-space. Assume that 11; and Iy share no
element of F and let ¢ + 1 — 01 be the number of elements of F in I} and let
q+ 1 — 09y be the number of elements of F in Ils.

Let w1 and 75 be the planes in 11y and Ily which exist by Lemma 4.1.17.

Then the lines L1 = {me NIL}U{m NIl || m € F,m C 11} and
Lo={mNIL}U{m NIl || 17 € F,m C Iy} are lines of two opposite requli
of a hyperbolic quadric Q*(3,q).

Especially this implies that 61 > 0 and d3 > 0 since a requlus has only
q+ 1 lines, and that 7o NIy and 7 N 1ly are concurrent.

Proof By Lemma 4.1.28, we know that the elements of F in II; intersect
II, in pairwise skew lines. Thus £] = {m NIl || m € F,m C II;} and
Ly = {m NIl || m € F,my C Ily} are sets of pairwise skew lines. Since
m Ny C Iy N1y, every line of £} intersects every line of L.

Since both sets contain more than 2 lines, it follows that the lines of £}
and L, are lines of opposite reguli.

Now consider the line 7o N1, which exists by Lemma 4.1.30. By Lemma
4.1.28, the plane 75 is skew to all elements of F in II;. Thus woN1II; is different
from all lines in £]. But every element 7y of F, contained in Il, has a line
in common with 7o. Thus 75 N II; intersects all lines of £,. This proves that
L1 = {7 NI} U L] are the lines of a regulus. By symmetry, the same is true
for Ls. ]

Recall that the final goal is to prove that F is given by Construction

1.3.5. Thus every element of F should correspond to a point of PG(n,q).

+1_1

Since F has only q"q_l — 0 elements, ¢ points of PG(n,q) are not used in

Construction 1.3.5. The next lemma will identify these holes.
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Consider the linear space £ with the elements of F as points and the
2n-spaces generated by two elements of F as lines. This is a linear space with
RS S points.

q—1
As planes of £, we define the (3n — 1)-dimensional spaces generated by

three elements of F.

Lemma 4.1.32 Every plane of L is a projective plane of order q with possibly
some holes.

Proof Let P be a (3n — 1)-dimensional space generated by three elements of
F.

Let IT C P be a 2n-dimensional space that contains ¢ + 1 elements of F.
This 2n-space II exists since there are g+ 1 different big 2n-dimensional spaces
through an element 7 of F in P and at most ¢ of them contain less than ¢+ 1
elements of F (Corollary 4.1.25). Let I’ be an other big 2n-dimensional space
in P. By Lemma 4.1.31, we know that II and II" share an element of F.

Let II; and II; be two big 2n-dimensional spaces in P. Let m be an
element of F in II;, but not in Il;. Since Il; contains at least ¢ + 1 — 0
elements of F, there must be at least ¢ + 1 — § big 2n-dimensional spaces in
P through .

At most ¢ of the qqn___11 different big 2n-dimensional spaces through m
contain less than ¢ + 1 elements of F (Corollary 4.1.25). Each of the at least
q + 1 — ¢ elements of I, spans together with 7 a big 2n-dimensional space in
P. Thus there are at least ¢ + 1 — 20 > 2 big 2n-spaces in P through 7 which
contain exactly ¢ + 1 elements of F. We denote these 2n-dimensional spaces
by II; and IIs.

By the same arguments we find an additional 2n-dimensional space II3
which contains g+ 1 elements of F, and which intersects II; and Il in different
elements of F.

Thus that plane P of L contains a triangle II;, I, II3, and each side of
the triangle contains ¢ + 1 points of £. Every other big 2n-dimensional space
in P intersects II;, IIy and II3 in elements of F (Lemma 4.1.31), thus a direct
counting argument shows us that P contains (¢—1)*+3(¢—1)+3 =¢*+q+1
lines of £, where (¢ — 1) is the number of lines intersecting the side of the
triangle in different points, 3(¢ — 1) is the number of lines through a vertex
different from the sides and 3 is the number of sides of the triangle. The
number of elements of F in P is at most ¢> + ¢ + 1 (by Lemma 4.1.14) and at
least ¢> + ¢+ 1 — & (by Corollary 4.1.25).

Now consider any line L of P with ¢ + 1 — z points (z > 1). Then
q(¢+1—x) lines intersect L and thus there are zq lines skew to L. Every point
not on L lies on z lines that do not intersect L. Thus there must exist a point
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(®+q+1-6—(q+1—2))x

not on L that lies on a line L' disjoint to L with at least =

>
q — 1 points. By Lemma 4.1.31, 1" has ¢ points.

As we have seen above, there are ¢ lines of P skew to L' and every point
not on L’ lies on such a line. We may extend £ by a point that lies on L and
all lines skew to L'. Extending £ stepwise by at most § points, we obtain a
2—(¢>+q+1,q+1,1) design, i.e. a projective plane of order q. [l

Lemma 4.1.33 Let F be a dual arc that satisfies the assumptions of Theo-
rem 4.1.10. Let 6 > 0, then F is not mazimal.

Proof Since § > 0, we find a big 2n-space which contains less than ¢ + 1
elements of F (Corollary 4.1.25). Every (3n — 1)-dimensional space spanned
by three elements of F through such a 2n-space contains less than ¢* + ¢ + 1
elements of F. Let P be such a (3n — 1)-space.

Select a 2n-space Il in P that contains exactly ¢ elements of F. Such a
space exists, because by Lemma 4.1.32, the linear space L is a projective plane
with at most ¢ holes and such linear spaces contain lines with exactly ¢ points.

Consider the (3n — 1)-spaces through II generated by three elements of
F. By Lemma 4.1.32, these (3n— 1)-spaces define projective planes with holes.
We will call a big 2n-space II' parallel to II if it "goes through” the unique
hole of II in the corresponding projective plane defined by Lemma 4.1.32.

The 2n-spaces parallel to II partition the set F. By Corollary 4.1.27, we
know that every big 2n-space lies in % different (3n — 1)-spaces spanned
by three elements of F. Thus there are exactly

n—1 n
q <u> 124~ 1
q—1 q—1
2n-spaces parallel to II, including II itself.

Consider two big 2n-spaces II; and Il parallel to II. If Iy ¢ (II,II),
then (IL,II;,II5) is a (4n — 3)-dimensional space (Property (4)). Since 2n <
dim (I1y, ITy) < dim (I, IT;, 1) = 4n—3, Property (4) implies that dim (II;, II5)
= 3n — 1. Thus any two elements in the parallel class satisfy the conditions of
Lemma 4.1.30 and Lemma 4.1.31, i.e. they lie in a (3n — 1)-space.

Let ¢ be odd. Choose any 2n-space II' parallel to II which contains
exactly ¢ elements of F. By a direct counting argument we find that at least
q;:f — (0 — 1) of the % elements in the parallel class have this property.
Then by Lemma 4.1.28, the plane 7" of II' contains exactly one line of contact
points. By Lemma 4.1.30, these lines must lie in the common intersection €2
of all 2n-spaces parallel to II. Thus €2 contains qq"___11 — (6 — 1) lines of contact
points that share a common point s (Lemma 4.1.31). This proves that € is an

n-dimensional space; it cannot be bigger by Lemma 4.1.22. Now look at any
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big 2n-space I1” parallel to II containing ¢ + 1 — §; elements of . By Lemma
4.1.30 and Lemma 4.1.31, the plane ©” must share a line through s with every
other 2n-space parallel to II. This line must lie in € since otherwise 7" would
need different lines for each 2n-space. Thus 2 contains q;:f lines of contact
points through s, i.e., it only contains contact points and we can extend F by
Q.

For g even, the situation is more complicated. We have always two lines
of contact points and we must choose the correct one. Let II; be a 2n-space
which contains exactly ¢ elements of F. By Lemma 4.1.30, the plane 7, of II;
must share a line of contact points with each 2n-space parallel to II;. By the
pigeon hole principle there are at least %(qqn%ll — 0) different 2n-spaces parallel
to II;, which contain ¢ elements of F and which intersect 71 in the same line
L: of contact points.

Let I and TI3 be two such spaces. Choose 11y and I3 such that dim(II; N
II, N1I3) = n. For n = 2, this is always the case since the intersection of three
4-spaces in a b5-space is at least a plane, and since Lemma 4.1.22 states that
dim(IT; N1l N TI3) < 2. For n > 2, we can choose Il and II3 such that
dim (ITy, [Ty, II3) = 4n — 3 and then we obtain dim(II; N 11y N 1II3) = n by the
dimension formula.

Let Ly be the line 75 N1II;. Consider the hyperbolic quadric with the two
reguli L, = {7_1'2 N Hl} U {7T1 NI, || m e F,m C Hl} and L9 = {7_1'1 N ]._.[2} U
{ma NIy || me € F,my C Iy} (see Lemma 4.1.31).

Then II3 contains the line L; = 7, N Iy of this hyperbolic quadric since
IT; shares the same line of 7; with Il and II;5. Hence, II3 must contain a
second line of this hyperbolic quadric. We prove this as follows. We know that
dim(II; NIly) = n+1 and that dim(IT; NII;N1I5) = n. The hyperbolic quadric
L1 U Ly cannot lie in II; N II; N 113, or else every space m; € F of II; shares
the same line with II, and II3. Then some points of this line necessarily lie on
three elements of F (false). So II; NII, N 115 intersects the solid containing the
hyperbolic quadric £; U L, in a plane. This plane contains already one line 1
of this hyperbolic quadric £, U L5, so it contains a second line of £, U L.

But for each 7 € II;, we find that the line m NII; cannot lie in 15 since
otherwise m; NIl would meet ¢ elements of F in Il and ¢ elements of F in Il3,
a contradiction. Thus Ly = 75 N II; must be the second line of the hyperbolic
quadric in II3.

By symmetry, we also find that 73 intersects II; and II, in the same line.

Applying this argument for all the %(q::f —0§)+1 different parallel spaces
found in the first step, we obtain a space €2 in the common intersection which
contains %(qq_—_ll — 0) + 1 different lines of contact points. This proves that €
must have dimension n and we can copy the final steps of the case ¢ odd to

prove that {2 contains only contact points. O]
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Applying Lemma 4.1.33 precisely § times, we find that F can be extended
to a dual arc F’ of size qn;_ll_ L Even in the case ¢ even, no 2n-dimensional
space contains exactly 2 elements of 7'. By Theorem 4.1.6, this implies that F’
is the dual arc given by Construction 1.3.5. As we know from Theorem 4.1.2,

in the case ¢ even this dual arc can be extended by one extra element.

4.1.4 The case d > 2

Now we want to prove Theorem 4.1.9 for d > 2.
We start with a lemma concerning strongly regularity in the induced
arcs.

Lemma 4.1.34 If F is strongly regular, then Fo = {QNQ'||Y € F\{Q}} is
strongly reqular.

Proof Let Qy,...,Q, Qf, ..., Q) be elements of 7. Then O, NQ, ..., QN
and Q) NQ,...,Q, NQ are elements of F,. Since F is strongly regular, we
have:

k' k'
(U NQ. . un)N[(JUNQ) = (..., NN ()N

i=1 i=1

k/
= (Q,.... Q) NN

=1

K K
:<le9mﬂﬁg,...,9kmﬂmﬂﬂg>

i=1 i=1

:<(Qlmg)mﬂ(agmm,...,mm@)ﬂﬂ(92ﬂ9)> :

=1 =1

That means that Fg is strongly regular. ([l

Next we prove a lemma that shows that property (P) of Theorem 4.1.9
is no restriction if ¢ > n.

Lemma 4.1.35 Let F be a strongly regular generalized dual arc with ¢ > n.
Then F satisfies property (P).

Proof We prove this by induction on the degree d. For d = 1, this statement
is Lemma 4.1.12. Assume from now on that d > 2. We prove by induction
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on k that if we have elements €2y, ..., such that Q.1 ¢ (Q,...,Q;), then
(€q,...,€) has dimension

n+d+1 n+d+1—-k
— -1
d+1 d+1
For k = 1, there is nothing to prove. Assume now that k£ > 1. Since we assume
that F is strongly regular, we have

(e Q) O Qe = (0 Ny, Uy N

This is a span of elements of the degree (d — 1) strongly regular generalized
dual arc

Fo, = {QN Q|2 € F\{Q}},

and by induction, we know that

d d—(k—1
dim(leQk,...,Qk_ka>:(n;r )_(n—l— d( ))_1.

We also know by induction that

' n+d+1 n+d+2-—k
dlIﬂ(Ql,,Qk—l):( d_|_1 )_< d+1 )_1

Thus by the dimension formula

d+1 d+1—Fk
011m<91,...,9,€>:(”+ + >_(”+ + )_

d+1 d+1

O

We will prove Theorem 4.1.9 by induction on d. In Section 4.1.3, we
handled the case d = 1. Now let d > 2. First we have to show that we can
apply the induction hypothesis.

Fix an element ) of F. Consider the intersections ) N €2; with the
other dual arc elements €2; of F. By the definition of a generalized dual arc,
Fao={QNQ; || Q; € F\{Q}} is a generalized dual arc of degree d — 1.

The next series of lemmas will prove that Fq satisfies all conditions of
Theorem 4.1.9.

Lemma 4.1.36 If F is strongly regular and satisfies property (P), then Fq
satisfies property (P).
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Proof We have to show that

mmﬁhﬁanﬁhﬂQ>:<n§d>—(n+j_{>—L

for some 1.
We distinguish between the following two cases.

Case 1: Q C (Qy,..., Q).
In this case, Q@ = (21N Q,...,Q NQ), since F is strongly regular.

Case 2: Q & (Qq,..., Q).
By property (P), we know that

' n+d+1 ntd+1-—d
d1m<Ql,..-,Qk>:< d+1 )_< d+1 >_1,

for some 7 and

. n+d+1 n+d+1—i—1

By the dimension formula, we have

dim (QNQ,..., % NQ) =dim (..., %) NQ
= dim Q + dim (Q, ..., Q) — dim (..., %, Q)

[ (n+d A n+d+1\ (n+d+1—i .
B d d+1 d+1
n+d+1 n+d+1—(i+1)
- - —1
d+1 d+1
_(n+d\ (n+d—i 3
B d d '
Thus Fq, satisfies property (P). O

Lemma 4.1.37 Let q be even and suppose that F is a strongly regular gen-
eralized dual arc, which satisfies property (P) and which has three elements
), Q% QL with Qf C (], Q%).

Then Fq has three elements €21 N Q, € N Q, Q3 N Q, with Q3 N Q C
(1 NQ,QNQ).

Proof We distinguish between the following two cases.
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Case 1: ), ), and Q) are all different from (2.

Since F is strongly regular, we find

(QNOLANQL,QNAQL) = (0,0, Q)NQ = (0, Q)N = (QNQL,ANQ) .

Case 2: 2 = Q.
Choose €2y, ..., Q4 different from 2,5, Q4. Let T=Q; N---NQy_y,
then
Fa={InNnQQ € F\{Q,...,Q_1}}

is a dual arc of degree one. Since F is strongly regular, we find [IN % C
(ITN QI N Q). Thus the dual arc in II satisfies the assumptions of
Section 4.1.3; i.e. it is a Veronesean. Especially, we have Qf, Q5 Qf
different from = Q}, with IINQ; C (ITNQY, IINQY). By property (P),
we conclude that either

d+1 d—1
dim<9’{,§2§79§>=<n+ N )—("* )—1,

d+1 d+1
+d+1 n+d-—2
. Q”Q//Q” — n _ _1
dim (€27, Q3, Q3) ( d+1 ) ( d+1 )

But dim(Q5N(Q27, Q) > dim(Q4NIIN(QYNIL Q5 NIT)) = dim(Q5NII) =
n. By the dimension formula we find that

dim(Q], 5, Q%) = dim(Q7, Q) + dim Q5 — dim((Q, Q25) N Q)
n+d n+d—1 n+d
< (2 — -1 -1 -
<00 - Cat) )0 )
n+d+1 n+d-—2
< - 1
d+1 d+1
Hence, we find that dim(Q2/, 5, Q) = dim(Q, QF). Since Q is different
from all of QF, Q. Qf, we are back in case 1. O]

Now we know that we can apply induction; thus the dual arc F¢ induced
in  satisfies the assumptions of Theorem 4.1.9.
We need an analog to Lemma 4.1.14.

Lemma 4.1.38 Let F be a strongly reqular generalized dual arc, that satisfies

property (P). Then (Qq, ..., Q%) contains at most % elements of F.

1
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Proof Choose elements €,...,Q, | € F, different from Q,..., Q. Let
II=0N---NQ,_,. Investigate the dual arc Fyj of degree one in II defined by

Fu={QnIl|| Qe FA\{Q,...,2% 1}}.

By the induction hypothesis applied to Theorem 4.1.9, the dual arc Fq, in €}
is Veronesean, and hence the “subarc” Fpr is Veronesean.
Since F is strongly regular, we have

TN (Q, .. Q) = (QNTL,..., QNTI)

qurl_l

By Lemma 4.1.14, we know that (Qg NII, ..., Q NII) contains at most =

elements Q N II of Fy.
But Q C (Qp, ..., Q) implies that QN IT C (Qy NI, ..., Qx NII), thus

qk;_ll_l elements Q € F that lie in (Q, ..., Q). O

there are at most

For g even, d = 2, we must exclude the case that QN is the nucleus in
the dual arc Fq induced in Q. We do this as follows. Suppose that ' N Q" is
not the nucleus in Fqr». Then there exist two other arc elements €2q, {25 with
dim(X' N Q" QN Q" QN Q") = 2n. Since the dual arc is strongly regular,
dim (€, Q, Q) = ("5?) = ("4') —1, and hence dim(Q'NQ, Q;NQ, QNQ) = 2n,
a contradiction to the assumption that Q N is the nucleus of Fg.

Hence, the only possibility is that €' N § is the nucleus in Fq, for all
Q # Q. In this case, we remove ' from the arc and we apply the remaining

arguments to F\{Q'}.

Remark 4.1.39 Note that in this case, none of the induced dual arcs contains

a nucleus, so we have the extension result for q even with d +§ < %.

We will see at the end of the proof that an element ' € F, with Q' N Q2
being the nucleus in Fq cannot exist.

For ¢ = 4", we can prove this directly without using the strongly regular
property.

Lemma 4.1.40 Let d = 2, ¢ = 4", and let F = {Qo, ..., Qp+14_, } bea
-1

reqular but not necessarily strongly reqular generalized dual arc that satisfies
the assumptions of Theorem 4.1.9.
Then {QoNy, ..., QoﬂQan,l_&_l} can be extended to a dual hyperoval
q—1

Fo which is defined by a Veronesean. The nucleus of that dual hyperoval is not

of the form Qo N Q;, with 1 <i < qn;_ll_l — 4.
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Proof Assume that the nucleus of Fy has the form Qy N Q;. We distinguish
between two cases: Either Q5 N € is also the nucleus of the hyperoval F; in
)y which contains the intersections £2; N 2; or not.

Case 1 : 2y N (Y is the nucleus of F; in ;.

In this case, we can choose coordinates pgé)il, 0 <19 <13 <mn,in €,
1 = 0,1, such that the Veronesean defining F; is in standard form. Since
Qo N is the nucleus of F; and Fy , we have Qg N Q) = <p£§20 |0 <ig< n>,
j = 0,1. We can choose the coordinates in €2y and §2; in such a way that
pl((?z?o = pz(1lz)1

We select the coordinates such that there exists a dual arc element 2 € F
different from €2y and €2;, which contains p(()o) = p&)

Consider the at most ¢ dual arc elements ., different from € and €,
which contain a point of the form xp(o) + p Slnce we know that the dual arc
in )y is described by a Veronesean in standard form, ZEp( )+ p(o) € ' implies

that

V10 = Dy((w,1,0,....,0)) = (apl)) +p [|i=0,....m).

But this means that ' NQyNQ; = xp(()%) + pg? since oM €2y is the nucleus
of Fy, and since the dual arc in €2 is described by a Veronesean in standard
form we determine

Q,ﬂleDl((‘r7170a"'70)) <xp(()z)+plz) ||l_0 >7

especially xp(%) + P[()l1) € V. (Note that we always identify pg; with pig, see

Construction 1.3.5.) Since pé%) = pét), this implies pfﬁ) — péll) € ) i.e. we have
found a point which lies in at least ¢ —9 — 1 dual arc elements. A contradiction,
since ¢ —§ — 1 > 2. Remark that we have excluded case 1 for all g = 2", r > 1.

Case 2 : N is not the nucleus in ;. 0

In this case, we can choose the coordinates as follows: p;;’ = 100Z , for
t=20,...,n, and
QN = {(p i =0,....n) = (s 1i=0,....n) .
Then the element Dq((ao, . .., a,)) of the Veronesean dual arc in {2 shares
a point with the element D;((a?,...,a2)) of the Veronesean dual arc in ;.

Thus these two n-spaces must lie in a common element §2; of the degree 2 dual
arc.

Now look at the intersections of €2; with the plane 7 = <péo) = p(%), P((n) , pﬁ)>

With the chosen coordinates, we have ; N Qy = Dy((x,1,0,...,0)) and
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QN Q= Di((2%1,0,...,0)) for some z € F,. A straightforward calcula-

tion gives that ; N7 = <xp(()%) + pg)(i)v 37413&)) + p§11)>

The property that the §2; belong to a dual arc of degree 2 implies that no

four of the lines ; N7 share a common point. But this is not true for ¢ = 4,
(0)

since p(()(i) + pﬁ) € <xp00 + p((ﬁ), :E4p(%) + pﬁ)>, for x € Fy. O
Next we prove that for d > 2 the generalized dual arc defined by the
Veronesean is maximal.

Theorem 4.1.41 Let d > 2, then the strongly reqular generalized dual arc F
of degree d defined by Construction 1.3.5 is mazimal.

Proof Let {Qy,...,Q 41} be the generalized dual arc defined by Construc-

tion 1.3.5.

Assume that the dual arc can be extended by an element €. Then for
each 4, the elements Q; N Q;, j # ¢, form qn+_1_1 — 1 elements of a Veronesean
dual arc F; of degree d — 1 in €);. For d # 2 or ¢ odd, this dual arc has an
unique extension element E; and the extended dual arc is a Veronesean dual
arc F;. For d = 2 and ¢ even, there are two extension elements (one belongs to
the Veronesean dual arc and the other is the nucleus of this Veronesean dual
arc). By the arguments preceding Lemma 4.1.40, ' N Q is either always or
never the nucleus in Fq.

Suppose that d = 2, ¢ even, and that Q' N is always the nucleus of
the induced Veronesean dual arc Fq in Q. For Q, = {0(x,z1,22) || 21,22 €
PG(n,q)}, we have Q' NQ, = {0(z,y,y) || y € PG(n,q)}. Thus ' contains
all points of the form p;;;, i.e. € has at least rank (n + 1)?, a contradiction
with the fact that arc elements should have rank (";1)

Now we may treat the case that ' N €2 is never the nucleus of Fq. This
includes also the case ¢ odd or d > 2, in which cases the condition is trivial
since the dual arc Fq has no nucleus.

Then a straightforward calculation gives that the extension element FE;
of the space Q; = (0(pi, x1,...,2q) || 1, .., 24 € PG(n,q)) is the space

E; = (0(piypi, 2y - - -y xq) || 22, ..., 24 € PG(n,q)) .

Especially, if we set p; = (0,...,0,1,0,...,0), we get E; = (pjiiy..i,), where i
denotes the position of the 1. This means that Q' contains all points p;..,,
with at least two indices being the same. This proves that €)' has at least
dimension

n+d+1 . n+1 - n+d+1 . n+d B n+d 3
d+1 d+1 d+1 d+1) \ d ’
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in contradiction to the fact that ' extends the dual arc F and therefore has

dimension (";d) — 1. O

Now we may assume by induction that Theorem 4.1.9 is true for d — 1.
Let €y and €; be two elements of the dual arc. Let Ilj; = Q9 N Q. The

q"(;_ll_ L _ §—2 other elements of the dual arc intersect Ip; in a regular dual arc
of type (na,...,nq). By the induction hypothesis, this strongly regular dual
arc can be extended to a dual arc Fy; of size qnqtl; L. The intersections of €

with the other elements of the dual arc form a strongly regular dual arc of size

qn;_ll_ L _ § — 1. By the induction hypothesis, this dual arc can be extended
to a dual arc Fy of size qn;_ll_ Lin Q. The elements of F, different from IIy;

qn+171 .

p 1 elements of Fp;. Let Eél) be the remaining element

intersect IIy; in
of f()l.

By symmetry, the intersections of {2; with the other dual arc elements
define a dual arc F; and a remaining element EAfo) of Fo1.

Lemma 4.1.42 For any two spaces 2y and §2y, we have Eél) # Efo).

Proof Assume the contrary.

Step 1: Coordinates in Ilj;.

By the induction hypothesis, we know that Fy; comes from a Veronesean
Vo1 of degree d — 2. Choose the coordinates ez(»g’l._)vid_Q (0<ipg<: - <igo<n)
in such a way that Vy; is in standard form and

%U:E@:J%ﬂﬁﬂ,”ﬂ»:<%ﬁwmaHOSHS-“SM4§H>

where Dy is the map from PG(n, q) to Vy; described by Construction 1.
Step 2: Coordinates in )y and €2;.

In €y, choose coordinates eg(‘f}m,idﬂ in such a way that F; comes from a

Veronesean V), in standard form. We may choose in addition the coordinates

such that

€0,i1,ig_

Mot = Do(1,0,....,0)) = (ell), s, 110 i1 <+ Siay <)

where Dy is the map from PG(n, q) to Fy, and in Ily;, we have

(0) _ (o1)
€0,itsig—1 — Cityensia—1”

. : . 1) . (1) (o)
Similarly, we obtain coordinates ¢; ’ ;,  inQy withey; - =e; ", .

Step 3: Finding ¢ — § — 2 elements with a common intersection.
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Now consider the elements D, = Dy ((z,1,0,...,0)) (z € F,) of Fo.
At least ¢ — 6 — 2 of these elements are an intersection 25 N €2 N €2, of three
elements of the dual arc.

Now , intersects Qg in Dy((x,1,0,...,0)). Especially, Q, contains the

point xeéﬁ?".n—l—egmn in 9. By symmetry, €2, contains the point xeégmnvteggmn

of Ql.

We have chosen the coordinates such that e
(2, contains the point eg(;)mn — e&)‘“n. But now we have a point which lies in
the intersection of at least ¢ — d — 2 > d + 1 elements of the generalized dual

arc of degree d. This is a contradiction. O

(©) O0) _ () e

On.n — En..n = €on_ps

By Lemma 4.1.42, there exists an element E(()l) of Fy which intersects

IIy; in Eio). We will call E(()l) the extension element of €2y with respect to €2;.

If the dual arc is given by Construction 1.3.5, the extension element of € is

independent of ;. We will now prove this for d > 3. We will see the case

= 2 as a consequence of Theorem 4.1.9. This will force us in Step 4 of the
proof of Theorem 4.1.9 to include a special argument for d = 2.

Lemma 4.1.43 Let d > 3 and let 2y, 21,89 € F. Then E(gl) = E(gQ).

Proof Let Ilgo = Q¢ N Q) N Q. By induction, we know that the other

qn;_ll_ L _ § — 3 elements of F induce a generalized dual arc Fyio in Ily;o that
comes from Construction 1.3.5. From the qn;_l; L elements of Fyip we obtain
qn;_ll_l — 1 as intersections of the form Iy, N7, with 7 € Fi5 where Fi5 is the

. n+1__
dual arc of size < 1 !

element of Fyis.

By Lemma 4.1.42 (applied to the dual arc F; in €y with the arc elements
Qo N Qy and QN Qy), we find that EFgjo = Epp N Ilg12 for some element Ey; of
the dual arc Fo; in Ilg; = ¢ N Q2;. By the choice of Eyo we know that Fy,
cannot be of the form Ily; N7, with 7 € F; where F; is the dual arc induced
in ;. Thus by Lemma 4.1.42, we get Ey; = [Ip; N Eél).

By symmetry, we define the arc element Eyy in Fpo with Ego = Ilgo ﬂEéz).

But Egis = Foi N 1lg1a = Ego N1 and thus ESY N o = E N Moo
This is only possible if E(gl) = Eé2). O

induced in Il;5 = Q7 N Q5. Let Eyio be the remaining

We are now ready to prove the main theorem.
Proof of Theorem 4.1.9:

Step 1: Selection of (), ..., ,.
We choose (g arbitrarily. In €2y, the other elements of the generalized

dual arc induce a generalized dual arc of size qn;l_ L _§—1. By the induction
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hypothesis, in {2y we can extend this generalized dual arc to a generalized dual

arc of size qn;_ll_ L (Note that even in the case d = 2, ¢ even, we can be sure
not to have a nucleus, see the remarks before Lemma 4.1.40.) Let Eo, cee Es

be the extension elements.

By the pigeon hole principle, there exist at least (qnqtl; L_§5— 1) /(6 +

1) > 2‘1;—_11 elements ; € F for which Eéi) is the same extension element FEj.
(Actually, we proved in Lemma 4.1.43 that for d > 3, all €2; induce the same

extension element in )y, and we will see later in this proof that this is also
true for d = 2.) Let F be the set of at least <qn;_11_1 -4 — 1) /(6 +1) elements

in F which define the same extension element Ey in (.
Now choose €2y € F. If we have already chosen the elements (o, ..., €2
(1 < n), we choose ;41 in F such that

1. Qi—l—l Z <QQ7. . 7Qz> and
2. Qi+1 ﬂQO Z <E0,Ql ﬂQ(), e 7Qi N Qo>

qi+1_1

elements
q—1

This is possible, because by Lemma 4.1.38, there are at most 2
in F which do not satisfy one of these two conditions.

By property (P), we find that dim (€, ..., ;) = (";ﬁrl) — ("er:{i;i*l) -
1. In particular €, ..., 2, span the whole space.

Step 2: (); is spanned by 2; N (); and Ei(o).

In what follows, we denote the induced arc in €; by F;, II;; = Q; N €
and the induced arc in II;; is F;;. By induction, the induced arc can be
extended to a generalized dual arc given by Construction 1.3.5; we will call
these generalized dual arcs Veronesean dual arcs.

The Veronesean dual arc Fy in €2y defines in each arc element €, a contact
space. Let Eé?) be the contact space in Ily;. Then Eé?) is an element of the
induced Veronesean arc in Ily,. By Lemma 4.1.42, E(()?) is the intersection of
the extension element EZ-(O) of F; in €; with respect to 2y and Ily;.

_ Since the dual arc Fy is Veronesean and {2y is spanned by the arc elements
Eél) = FEy, p; = N Q (1 <i < n), we find that the induced dual arc in
IIo; is spanned by the elements ; N1y (1 < j < n, j # i), Ey N1l and
EY = B9 n11y,.

Since the induced arc in €2; is Veronesean and its element Ily; is spanned
by Q; NIy (1< j<n,j+#i), ByNIly and EX = E” N1y, we know that
(); is spanned by the corresponding arc elements 2, N (1 < j < mn, j # 1),
QN Q; and B

Step 3: Choosing a basis in ();.

By induction, we know that in €2; we find a Veronesean dual arc. We want
to choose a basis pz(?w in €; such that ; N Q; = D;((0,...,0,1,0,...,0))
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where the 1 stands on position j and Ei(O) = D;((0,...,0,1,0,...,0)) with the
1 at position ¢. This is possible since €2; is spanned by €©; N €; (0 < 5 < n,
j #i) and E.

To fix the coordinates we must still choose the all one vector. To that
end, let 2’ be an element of F such that €' N Q) lies in general position with
respect to €; N Qg (1 <i < n)and Ey. Then we can choose the coordinates in
Qo such that ' N Qy = Dy((1,...,1)). With this choice the Veronesean dual
arc in €}y is uniquely determined.

Since Q' N Qy lies in general position with respect to €; N Qy = Il
(1 <i<n)and Ey, NIl lies in general position with respect to ©; N Ily,
(1<i<mn,j#1), EgNIly, Ei(o) N IIp;. Thus ' N Q; lies in general position
with respect to ;N €, (0 <j <mn,j#i)and EZ-(O) for all 4.

We choose the coordinates in €2; such that ' NQ; = D;((1,...,1)). Now
that the coordinates are fixed, we have no remaining degree of freedom.

By the choice of the coordinates we have for each Q2 € F that Q N Qy =
Do((ao, - .. ,a,)) implies that QN Q; = D;((ag, ..., an)).

Step 4: Determining the basis of PG((”+d+1) —1,q).

Now we define a basis in PG((’”LZH) —1,q9) bY pig...iy = pEfO) -

.....

""" d

Pig()emioiay- 1L 0(0) = 0 this follows by induction.
We only have to prove that piyi,...i, = Diiioio,..ig- FOr 79 =0 or i; = 0,
this is a direct consequence of Lemma 4.1.42; in fact

(i) _ plia)
-Pilo ) _Pl

----- iq 10,82,--,1d

is just a symbolic reformulation of Lemma 4.1.42.

If ig # 0 and i1 # 0, we must prove that EZ»((?) = Ei(él) and El-(lo) = Ei(fO) to
apply Lemma 4.1.42.

For d > 3, we have done this in Lemma 4.1.43. For d = 2 we argue as
follows.

Let €2 be an element of F with the following properties.

1. QN Qe Z (N, QN Q).
2. QN Z (i N, Uy N,

30N Z (N, L, Ny

n+1_1
There are at least < =

1
Since we are considering an arc of degree two, we have dim(2N0€Q;,NQ;,) =

— 0 — 3q elements 2 that satisfy these conditions.
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Let 2NQy = Dy((ag, - . ., ay)) be the coordinate representation of 2N .
Then QN QN Q;, = Do, ((ag, . .. ,a,)) and hence QN Q;, = D;,((ag, . .., a,)).
Especially Y% al-pgf) is a point in .

By symmetry, we also have > aipl(-f;) € Q, and since dim(2 N €, N
Q;,) =0 we get

Sl =3 apli),
1=0 1=0

This equation holds for at least qn;_ll_ L_§—3q different vectors (ag, . . . , a,).
Thus pgg) = pgﬁ), i.e. the coordinates in ;, fit with the coordinates in €2;, .

Now we have defined the points p;,;, . .,. By definition, each (2; is
spanned by the points of the form p;; _;,, thus the points span the whole
space, since €, ..., ), span the space PG(("TH) —1,q).

Step 5: Check the formulas.

Now take any element  of F different from €2, ...,€2,. By Step 3 the
induced dual arc in €y is in standard form. By Construction 1.3.5 this means
that Q© = QN Qy has the form

Q0 = <Z QigDigOin...ig || 0 < iz, yig < n>

i9=0

for some a;, € F,.

Now we can compute the intersection Q09 = QO N Q, = QN QN Q.
By definition (Step 2), we have €; = (pi;, 4, || 0 < i1,...,iq < n) and thus

n
QO = <Zaiopi00ii3-..id 10 <. ia < n> :

10=0

(Note that in the special case d = 2, Q%) = ZZ):O @iy Dio0i)
But by Step 3 we know that the Veronesean V; in (); is in standard form.

Thus QO = QN Q; must be the unique element of the Veronesean dual arc F;
which intersects Qo in Q9. This implies that

Q(l) — <Z a/loplol ZQld H 0 S 7,2, P ,/Ld S n> .

i9=0
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By Definition, we have Q) c Q for all 4, thus

(QO 0y ca

<U{Z Wi Pigiin..ig || 0 <igy ... ig < n}> cQ

=0 i0=0

n
<Z QigPigini.ig || 0 < d1y .o sla < n> C (L

10=0

But the space on the left hand side is exactly the space defined by Construc-
tion 1.3.5. Since dim <Q(0), ce Q(”)> = (”Zd) = dim ) and <Q(0), o ,Q(”)> C
Q this proves that Q = (Q©, ... QM) as desired. O

4.1.5 Open problems

e We are not aware of any regular dual arc that is not strongly regular.
Do such examples exist?

e For d = 1, we have examples of non-Veronesean dual arcs in which no

2n-space contains more than two elements. Do such examples exist for
d>17

e We proved property (P) for ¢ > n. Do there exist counterexamples for
property (P) for ¢ < n?

4.2 Characterizations of the finite quadric Verone-
seans by intersection numbers

In this section we provide two characterizations of the finite quadric Verone-
sean by intersection numbers. The second will be proved by reduction to the
first one. Very small values of ¢ are excluded. In some cases we found coun-
terexamples, while in other cases we were not able to prove the statement.

For n = 2, Theorem 4.1.6 is a generalization of Theorem 25.2.14 of [2§]
to q even, and allows to generalize Theorem 25.3.14 of [28] to ¢ even, and so
there arises

Theorem 4.2.1 ([67]) If K is a set of k points of PG(5,q), q # 2,4, which
satisfies the following conditions

(i) T,NK| =1, g+ 1, 2¢+1 for every hyperplane 11y of PG(5, q) and there
exists a hyperplane 11y for which |1, N K| = 2q + 1.
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(i) Any plane of PG(5, q) with four points in IC has at least ¢ + 1 points in
K.

Then K is the point set of a Veronesean Vy.

A theorem by Zanella [76] gives an upper bound for the intersection of
k-dimensional subspaces with the quadric Veronese variety, so for the intersec-
tions I, NV,,.

Theorem 4.2.2 ([76]) Consider the Veronese variety defined by the mapping

n(n + 3)

¢:PG(n,q) — PG( 5

.q),

('IO;J:I’ e 7'1771) - ({E?),I'%,' o 7xn—1xn)-

(a+3)(a+2
ST

If k,a are natural numbers such that k + 1 ), then the intersections

II, NV, contain at most

¢t —1 p (at2)(at1)
— + 2
g—1 ' °
points.

Applying this for small dimensions yields the upper bounds ¢+ 1, ¢+ 2, 2¢+1
and ¢> +q+1for k=2, k=3, k=4 and k = 5 respectively.

A result of Thas and Van Maldeghem [66] characterizes Veronese varieties
in terms of ovals.

Theorem 4.2.3 Let X be a set of points in 11 := PG(M, q), M > 2, spanning
I1, and let P be a collection of planes such that for any m € P, the intersection
X N s an oval in w. Form € P and x € X Nw, we denote by T, () the
tangent line to X N at x in w. We assume the following three properties.

(U) Any two points x,y € X lie in a unique member of P which we denote
by [z, y].

(NE) If my,m9 € P and m Ny is non-empty then m Ny C X.

(TP) If v € X and m € P with x ¢ =, then each of the lines T,([z,y]), y €
X N, is contained in a plane of I1, denoted by T'(x, ).

Then there exists a natural number n > 2 (called the index of X ), a projective
space II' := PG(@, q) containing 11, a subspace R of I skew to 11, and a
quadric Veronesean V,, of index n in I, with RNV, = 0, such that X is the
(bigective) projection of V,, from R onto 1. The subspace R can be empty, in
which case X 1is projectively equivalent to V,,.
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4.2.1 First characterization

We want to use the following set of conditions to characterize the quadric
. n+1l_ . . .
Veronesean. Consider a set K of & — L points spanning PG(M q), with

2
n > 2, such that the following conditions are satisfied.

(P) If a plane intersects K in more than three points then it contains exactly
q+ 1 points of IC. Furthermore, any two points p;, ps of K are contained
in a plane containing ¢ + 1 points of K.

(S) If a 3-space II3 intersects IC in more than 4 points then there are four
points of IC contained in a plane of II. In particular, by (P), this implies
that if [II3 N K| > 4, then |TI3 N K| > ¢ + 1.

(V) If a 5-space II5 intersects K in more than 2¢g + 2 points then it intersects
K in exactly ¢®> + ¢ + 1 points.

Definition 4.2.4 Planes intersecting K in g+ 1 points and 5-spaces intersect-
ing K in ¢*> +q+1 points will be called big planes and big 5-spaces respectively.

Assume ¢ > 5 in the following.
We will prove the following main theorem.

Theorem 4.2.5 If ¢ > 5, then the set K is the point set of the Veronese
variety of all quadrics of PG(n,q).

Remark 4.2.6 A counterexample for ¢ = 2, n > 2, to the previous theorem is
given by removing one point of a Veronese variety and replacing it by a point
in the projective space which corresponds with a matriz of mazimal rank, using
the correspondence of Theorem 1.3.4.

A counterexample for ¢ = 3, n = 2, is given by the point set formed by
the points of an elliptic quadric & lying in a space 113 C PG(5,3) and 3 points
on a line L C PG(5,3) which does not intersect I1;.

First of all we have to prove that these conditions are well-chosen, mean-
ing the object we want to characterize satisfies them.

Theorem 4.2.7 The Conditions (P), (S) and (V) above hold for the Verone-
sean V2" .

Proof For Condition (P), we cannot use Lemma 25.3.1 of [28] directly, since
we don’t know a priori that every plane containing more than three points of
V2" is contained in a 5-space intersecting K in a Vy but a slight adaptation of
the argument works. Suppose that the plane 7 contains at least four distinct
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points qi, ¢2, g3, qu of V*". By Corollary 1 of Theorem 25.1.9 of [28], the points
i, qj, with i # j, are contained in a unique conic of V2". Let C”, in the plane
7', be the conic defined by ¢; and ¢o, and let C”, in the plane 7", be the conic
defined by ¢ and ¢3. Suppose that C’ # C”. By Theorem 4.2.2 the conic
planes 7’ and 7”7 generate a 4-space I, such that [II; N K| < 2¢ + 1. But
besides the 2¢ + 1 points in ¢’ U C”, the point ¢4 would also be contained in
this 4-space, a contradiction. Hence |7t N K| > ¢ + 1 and by Theorem 4.2.2,
TN K| = ¢+ 1. Conditions (S) and (V) can be proved using a coordinatization
and checking the different possibilities for the position of the inverse images of
the points in PG(n, q). O

We prove some upper bounds on the number of points of K contained in low-
dimensional spaces.

Lemma 4.2.8 [fn > 2, every 4-space contains at most 2q + 2 points of IC.

Proof Let IT be a 4-space. By Condition (V), it follows directly that [[IN/K| <

¢®> + ¢+ 1 and clearly [IINK| = ¢*> + ¢ + 1 also yields a contradiction.
Suppose that 2¢ +2 < |[IIN K| < ¢* + ¢ + 1. Again by Condition (V),

every 5-space through II contains exactly ¢? + ¢ + 1 points of K. The number

n(n+3)

of 5-spaces through a fixed 4-space in PG(” (n+3) ,q) is equal to % p -
Hence, we get at least

n(n+3) _4 n+1

3 1 -1

C—— +2¢+2> A
q—1 q—1

points in K, a contradiction for n > 2. O

Lemma 4.2.9 Any line L meets K in at most 2 points. Hence, a plane m with
TN K| =q+ 1 intersects K in an oval.

Proof First suppose that |LNK| = 3. If n > 2, then consider 3 planes 7, 7y, 73
through L containing more than 3 points of K and hence by Condition (P) ¢g+1
points of IC. Then dim(my, o, m3) < 4. For ¢ > 5, this yields a contradiction
by Lemma 4.2.8. If ¢ = 5, then consider a 3-space II5 through L containing at
least 9 points of K inside a big 5-space II5. But then considering all 4-spaces
through Il3 inside II5, by Lemma 4.2.8, we get at most 6 -3 4+ 9 = 27 points in
IT5; N K, a contradiction.

If n = 2 then we get the following equation for the number « of planes
through L which contain exactly ¢ + 1 points of K:

alg—2)+3=q¢"+q+ 1.
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This yields a contradiction if ¢ > 5. Next, suppose that |L N K| = x, with
3 <x < q+ 1. Consider all planes through L. Then clearly, we get too many
points for our set K, a contradiction. Finally, if |[L N K| = ¢+ 1, we also get a
contradiction as planes can contain at most ¢ + 1 points of K. ([l

The previous lemma allows us for n = 2 to prove the same upper bound as in
Lemma 4.2.8.

Lemma 4.2.10 FEvery 4-space intersects IC in at most 2q + 2 points. Hence,
every 3-space contained in a big 5-space intersects IC in at most g + 3 points.

Proof For n > 2 this is Lemma 4.2.8. Next let n = 2.

Suppose there exists a 3-space II3 which contains two planes 7 and 7y
which intersect K in ovals O, and O, respectively which have two points py, po
of K in common. Consider two points ry and 9, different from p; and ps, which
lie on O; and O, respectively. Then there are at most 4 planes through the
line (ry,79) which are not (¢ + 1)-planes, namely the planes containing either
the point p; or p, or those which intersect 7; in a tangent line to O; at r; for
t=1or¢=2.

Hence, we get at least

24 (q—3)(g—1)+4=¢"—4¢+9

points in I3 N AC.

The bound above is already sufficient for the remainder of the proof if
q > 5. But since we now know there is a point p in II3 N X not contained
in O; U Oy we can consider all planes through the line (p,p;) inside II3. In
this case, we get at most three exceptions, namely the plane containing p, and
those which intersect 7; in a tangent line to O; at p;. Hence we get at least

24+3+(q—2)(q—1)=¢*—3¢q+7

points in I3 N AC.

If one would carry out this argument a bit more carefully one can get up
to ¢ + 1 points in II3 N K, and hence this intersection is an ovoid. However
this does not shorten the reasonings made in the remainder of this proof.

Hence if there are three such 3-spaces we distinguish the following cases.

Case (i): Any two of them only intersect in a line. Then the union of
the 3-spaces contains at least 3(¢> — 3¢+ 7) — 3+ 2 points of K, a contradiction
since q > 5.

Case (ii): There are two of them which intersect in a plane. Then we get
a 4-space II; containing at least 2(¢> —3¢+7) — (¢ + 1) = 2¢*> — 7q + 13 points
of . Consider a point p in K not contained in I14. Through p and any point
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r in I, N C there passes an oval of K by Condition (P). If none of these ovals
have two points of I in common, we get too many points, a contradiction. If
two of these ovals have two points of I in common then the 3-space spanned
by these two ovals contains at least ¢ — 3¢ + 7 points of K. Hence, we get at
least

2¢° —Tq+13+¢* =3¢+ 7—(¢+1)

points in K, a contradiction since ¢ > 5.

If there are exactly one or two such 3-spaces we consider a 4-space Il
containing such a 3-space II3 and a point p in K not contained in II,. Through
p and each point r in II4 N IC there passes an oval by Condition (P). For each
such point r we choose exactly one such oval. If we have two ovals of IC through
p and a point r of K in Il4, then these two ovals define a 3-space II}; containing
at least ¢> — 3¢ + 7 points of K, and then the line rp lies in at most ¢ + 1
planes of the solid containing an oval of II5 N KC. If there are more than ¢ + 1
ovals through p sharing two points of I, then there would be another 3-space
I1; through p sharing at least ¢ — 3¢ + 7 points with K. Now II} and IIj are
different from the solid Il in II, sharing at least ¢ — 3¢ + 7 points of K. But
this contradicts the assumption that there are no three such solids. Hence we
clearly get too many points in K, a contradiction.

Now consider a 4-space II; which intersects K in x points. Consider a
point p of K not in II;. By Condition (P) through every 2 points of K there
passes an oval of IC. Consider all ovals through p and a point r of [I; N K. Any
two of these ovals can intersect in at most one point. Since any oval through p
intersects I N K in at most 2 points, we get at least § ovals, which all contain
q — 2 points in II5 N KC different from p and the x points in 11, N K. Hence we
get the following equation,

x
2

This yields x < 2q + 2.

Consider a 3-space I3 in a big 5-space II5 which intersects K in ¢+3+y
points. Since all 4-spaces through Il3 inside II5 intersect K in at most 2q + 2
points we get the following inequality

(q—2)+x+1<@P+q+1.

(+)(g—1-y+q+3+y>¢+q+1
This implies y < 0. O
Now we are able to lower the bound of Lemma 4.2.10.

Lemma 4.2.11 (i) Every 4-space 11y intersecting KC in more than q + 1
points contains a plane which intersects IC in an oval.
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(i1) Every 4-space 11y contains at most 2q + 1 points of K.

Proof (i) Suppose that |[Il; N K| > ¢ + 1. Since ¢ > 5, by a result on arcs,
namely Theorem 27.6.3 of [28], there are 5 points which are contained in a 3-
space. By Condition (S), it follows that there are 4 of them which are contained
in a plane m. Hence, by Lemma 4.2.9, 7 intersects K in an oval.

(ii) Suppose that |II;NK| = 2¢g+2. Consider a plane 7 in I1, intersecting
K in an oval O. Such a plane always exists by (i).

Consider 2 points a and b in II;N/C, but not in 7, such that (a,b) N7 = 0.
Note that this is always possible, since at most ¢+ 3 points of K are contained
in a 3-space by Lemma 4.2.10.

Consider a third point ¢ in (II;N/C)\7, and let p be the intersection point
of mand 7’ = (a, b, ¢).

We distinguish the following cases.

Case (i): p € O.

Since 7’ contains at least 4 points of I it contains at least ¢ + 1 points
of K by Condition (P). The planes m and 7’ both intersect K in an oval, O
and O'. Denote the remaining point in II; N K by p’. Consider a plane 7"
spanned by p’ and two points o’ and ¥’ belonging to O\{p}. The planes 7" and
7" intersect in a point r. If r belongs to K then 7" contains at least 4 and
hence, by Condition (P), ¢ + 1 points of K. If r does not belong to K we may
assume it is not the nucleus of ', otherwise we can restart the reasoning with
two other points of @. Then the 3-space spanned by n” and a bisecant to O
through r, but not through p, contains at least 5 and hence by Condition (S)
at least ¢+ 1 points. Since ¢ > 5, in both cases we get more than 2¢q + 2 points
in IT; N K, a contradiction by Lemma 4.2.10.

Case (ii): p ¢ O.

(ii.A) First of all, we assume that not all points in II, N KC are contained
in 7 U a’. Since not all points in II; N K are contained in 7 U 7/, we may
assume that p is not the nucleus of O. Indeed, if p would be the nucleus of O
we consider a point ¢ of Il N K not in 7/ U 7 and the plane 7" = (a, b, )
which then intersects 7 in a point p’, with p’ not the nucleus of O@. So in that
case we continue the reasonings with 7" instead of 7/. Consider two secants of
O through p, say L and L'. The 3-spaces (7', L) and (7', L) both contain at
least 5 points of K, hence they both contain a plane intersecting K in an oval.
These planes have to coincide, since also 7 intersects K in an oval, otherwise
we get too many points in II; N K. Hence, the plane 7" intersects K in an oval
O'. This yields a contradiction with the assumption at the beginning of this
paragraph. Note that as a byproduct we proved that if a 4-space contains at
least ¢ + 5 points of I, it contains two planes which intersect I in an oval,
hence |II; N K| > 2¢ + 1. Indeed we only used 4 points a, b, c and ¢ in K but
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not in 7 to find the second oval (O'. Furthermore, these ovals can have at most
one point in common, otherwise they only span a 3-space, but a 3-space inside
IT5 intersects K in at most ¢ + 3 points by Lemma 4.2.10.

(ii.B) Next, we may suppose that IT, N K is a union of two ovals O and
O’ contained in planes m and 7’ which intersect in a point p.

(ii.B.1) If p is the nucleus of neither O nor of (', then consider a secant T’
of O and a secant 1" of O’ through p. The plane spanned by T and 7" contains
4 and hence ¢ + 1 points of I, and so |14 N K| > 2¢ + 2, a contradiction.

(ii.B.2) If p is the nucleus of O, but not the nucleus of @', then consider
a 5-space II5 containing II, which intersects K in ¢+ ¢+ 1 elements. Since p is
not the nucleus of (0, there is a secant L’ of O’ through p. Hence, by Lemma
4.2.10, the 3-space II3 spanned by O and L’ contains exactly ¢ + 3 elements of
IC. Tt follows that exactly one of the 4-spaces containing II3 in II5 intersects &C
in 2q + 1 points, while all the other 4-spaces through II3 in II5 contain 2q + 2
points of K.

By the foregoing there is a 4-space II) # II; containing II3 inside Il
which intersects K in 2¢ + 2 elements on two ovals O and O”, where the planes
of O" and O" intersect in L’. Hence the 3-space II} spanned by O’ and O”
contains at least 2¢ elements of . Consider all 4-spaces through II} inside I1;.
By Lemma 4.2.10 we get at most 2qg + 2(¢ + 1) = 4¢ + 2 points in II; N K, a
contradiction since ¢ > 5.

(ii.B.3) Finally, if p is the nucleus of both O and ', then consider a
3-space II3 spanned by O and a tangent L to O through p. Consider a big 5-
space II5 through II;. Consider all 4-spaces through I3 inside II5. No 4-space
through II3 inside II5 different from Il can intersect K in 2¢ 4 2 points as well.
Indeed, by Case (i) and the previous subcases of Case (ii) such a 4-space II)
again has to intersect K in two ovals @ and O”, contained in planes 7 and 7"
respectively. The planes 7’ and 7" have to intersect in the tangent line L, and
p again has to be the nucleus of both the ovals O and O”.

But then the 3-space II5 spanned by O’ and O” contains at least 2¢ + 1
points of . Consider all 4-spaces through II inside II5. Then by Lemma
4210 |[IINK| <2¢+ 14 ¢+ 1=3g+ 2, a contradiction since ¢ > 5.

Consider now all 4-spaces through II3 inside II5. Exactly one of them
intersects K in 2g 4+ 2 points by the previous and all the others intersect I
in at most 2¢g + 1 points. Hence, by an easy inspection, there is exactly one
4-space through Il in II5 containing exactly 2¢ points of IC, but this yields a
contradiction by the remark made at the end of Case (ii.A). 0

Remark. A 4-space intersecting KC in 2¢+ 1 points will be called a big 4-space.

Lemma 4.2.12 (i) Inside a big 5-space 115 all 3-spaces contain at most g+2
points. Furthermore, all 4-spaces inside 15 through a 3-space intersecting
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K in q + 2 points are big ones.

(11) A big 4-space 1y contained in a big 5-space Iy intersects K in two ovals

O1, 05 with O1 N Oy = {P}, Pek.

Proof (i) Suppose a 3-space Il of the big 5-space I1I5 intersects K in g+2+x
points, with z > 0. Then considering all 4-spaces in II5 through II3, we get at
most (2¢+1—(¢+2+1))(¢+1)+q+2+x =¢*+q+1—2q points in I3 N K
by Lemma 4.2.11, a contradiction if x > 0. The second part follows directly if
x = 0.

(ii) By (i) of Lemma 4.2.11 there is a plane 7 in II; which intersects K in
an oval. We claim we can find a second plane in II; which intersects I in an
oval. Take 3 points contained in II; N K not lying in 7. These points span a
plane 7'. The space (m, 1) is a 4-space, otherwise we get a 3-space intersecting
K in more than ¢ + 2 points, contradicting (i).

If 7’ contains exactly 3 points of I then consider all 3-spaces through
7' in Il4. If none of them contains at least 5 points of K we get at most
g+ 143 =g+ 4 points in I, N IC, a contradiction. So there is a 3-space I3
through 7’ in II,; containing more than 4 points of IC, hence by Conditions (P)
and (S) we find a plane 7" containing ¢ + 1 points of K inside II5. Clearly 7
and 7" are different since m and 7’ span a 4-space.

If the two different planes m and 7" which intersect IC in an oval intersect
in a point, then we are done by Lemma 4.2.11. Suppose that 7 and 7" intersect
in a line. Then the 3-space 115 = (7, ") intersects K in more than g+ 2 points,
contradicting (i). O

Lemma 4.2.13 FEvery 4-space contained in a big 5-space 115 intersects IC in
1, q+1 or 2q+1 points and each such big 5-space contains at least one 4-space
intersecting IC in exactly 2q + 1 points. Hence, each big 5-space intersects K
inaVy.

Proof Denote the number of points belonging to I contained in a 4-space
II; C II5 by x;; here II5 is a big 5-space. In the following sum and all the
others below, ¢ runs over all 4-spaces II; contained in II5. We have

Z(xz- — (i — (¢ +1))(z; — (2¢ + 1)) = 0. (4.1)

Indeed, by a standard counting technique counting in two different ways re-
spectively the number of pairs (p,II) in II5, where p € K and II is a 4-space
in II5, the number of triples (p1,p2,I1),p1 # pe € IIN K and II a 4-space in
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I15, and the quadruples (p1, po, p3, I1), p; € I N K, where the points p; are all
distinct and II is a 4-space in II5 yields

Zmi:(Q2+q+1)(Q5_1> (42)

i ¢—1 ’
3w~ 1) = (@ +a+ 1)q(€1_2 IL (¢~ 1) (4.3)

(@ +q+1) P+ (P+q-1)(-1)
q—1 '

> wilw — 1) (2 —2) = (4.4)

Now Equations (4.2), (4.3) and (4.4) together lead to Equation (4.1).

If a 4-space Il inside a big 5-space contains more than ¢+ 1 points of /C,
then it is a big one. Indeed, by Lemma 4.2.11 there is a plane in 11 intersecting
IC in an oval. Hence we can find a 3-space in IlI; which intersects K in ¢ + 2
points. The claim now follows from (i) of Lemma 4.2.12.

Suppose I, N K| = x, 11y C 5, with 4 < 2z < ¢+ 1. Let I3 be a
3-space containing 4 points pi, pa, p3, ps in Iy N K. Hence, by Condition (S),
III; N KC| = 4. Consider all 4-spaces through Il inside II5. If there are less
than 4 big ones among them, we get less than

32¢—3)+(¢—2)(¢g—3)+4=¢"+q+1

points in II; N K, a contradiction.

By (ii) of Lemma 4.2.12, in each of the at least 4 big 4-spaces inside II;
containing II3 the points p;, pa2, p3, ps are contained in 2 ovals. Hence either
there is an oval containing 3 of them, which yields a contradiction, or there is a
pair p;, p; contained in two different ovals. But the latter yields a contradiction
by (i) of Lemma 4.2.12.

Suppose now that |11, N K| = 3. Consider a 3-space I3 in II4 containing
the 3 points p1, ps, ps of II, N K and all 4-spaces inside II5 containing I13. By
the previous arguments these intersect I in 3, ¢ + 1 or 2¢ + 1 points. Denote
the number of them intersecting K in ¢ + 1 and 2¢ + 1 points by « and f3
respectively. This yields the following equation

alg—2)+B2¢—2)+3=¢+q+1.

We deduce that « is a multiple of ¢ — 1. If @ = ¢ — 1, then we get at most
(¢ —1)(¢ — 2) + 2q + 1 points in II5 N K, a contradiction.

Hence, we find that o = 0 and § = %2. This already yields a contradic-
tion if ¢ is odd. As ¢ > 2, the points p;, po, p3 are contained in 2 ovals in each
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of the at least 3 different big 4-spaces of Il containing II3 by (ii) of Lemma
4.2.12. This yields a contradiction.

Finally, suppose that |II;NK| = 2. Consider a 3-space II3 in I1, containing
the 2 points py, pg of I[I; N K and all 4-spaces inside Il5 containing II5. By the
previous these all intersect IC in 2, ¢ + 1 or 2¢q + 1 points. Denote the number
of them intersecting I in ¢+ 1 and 2g+ 1 points by « and 3 respectively. This
yields the following equation,

alg—1)+B2¢—-1)+2=¢+q+1.

This yields that g — 1 is a multiple of ¢ — 1. If 8 = 1, we get at most
(¢ —1)(g—1)+2q+ 1= ¢*+ 2 points of K in II5, a contradiction. If 8 = gq,
we get exactly 2¢> — ¢ + 2 points in II; N K, also a contradiction.

In the previous paragraphs we proved that if a 4-space contains at least
2 points of I, then it contains at least ¢ + 1 points of K. By (i) of Lemma
4.2.12 and (ii) of Lemma 4.2.11 the only possibilities in this case are ¢+ 1 and
2q + 1. By Equation (4.1), this implies that there are no 4-spaces which have
an empty intersection with /C.

Hence, every 4-space contained in Il5 intersects K in 1, ¢+ 1 or 2¢ + 1
points.

We prove there is a 4-space contained in Il which intersects IC in 2¢ + 1
points. If this is not the case, then consider a 3-space in Il5 containing x > 1
points of K. We get the following equality:

(g+D)(g+1—a)+z=q¢+q+1,

hence x = 1, a contradiction.
Hence by Theorem 4.2.1, II; intersects K in a Veronese variety Vy. [

Theorem 4.2.14 The set K is a Veronese variety V.

Proof We check the conditions of Theorem 4.2.3. The set P consists of all
planes intersecting I in an oval.

Any two points of K are contained in at least one oval of K by Condition
(P) and Lemma 4.2.9. If two points p;, ps are contained in two ovals, namely
O in the plane m; and O, in the plane 7y, then these ovals span a 3-space Il3
containing too many points of K, a contradiction. Indeed, consider a point r
on the intersection line L of 7m; and 7y which is not the nucleus of O; neither
of Oy and two bisecants Ly and Ls through r to O; and O, respectively. Then
the plane spanned by L; and Ly contains at least 4 points of I and hence by
Condition (P) ¢ 4+ 1 points of K. In this way we get at least 2¢ + ¢ — 3 =
3¢ —3 > 2q + 2 (since ¢ > 5) points in II3 N K, a contradiction by Lemma
4.2.10. Hence, Property (U) is proved.
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To prove Property (NE), consider two planes 7; and 7s which intersect &
in an oval. If 7 N7y is a point then the property follows directly from Lemma
4.2.11. If m; Ny is a line then we get a 3-space I3 containing at least and so
exactly 2¢+ 1 points. But then there are 4-spaces through II3 containing more
than 2q + 1 points of K, a contradiction.

For Property (TP), take a point p not contained in a plane 7 which inter-
sects K in an oval O;. Consider two points 7 and s on O; and the ovals Oy and
O3 which are uniquely determined by p and r, and p and s respectively. The
point set of the ovals O, Oy and O3 are contained in a 5-space Il5 intersecting
KC in more than 2q+ 2 points. Hence, by Lemma 4.2.13 II; N KC is a Veronesean
Vy. Take an arbitrary point ¢ on O; and consider the oval determined by p
and t. Since II5 N K is a Vy, this oval is contained in II5. For each of these
ovals there is a tangent at p to these ovals. By Lemma 25.4.2 of [28] the union
of these tangents forms a plane. OJ

4.2.2 Second characterization

In this section, we show that for n > 2, we can replace the set of conditions
of Section 2 by the following set of conditions. Furthermore, we provide a
counterexample for the case n= 2

Consider a set I of q L points spanning PG
such that

(n”+3 ,q), with n > 2

(P’) If 7 is a plane then the intersection 7 N K contains at most ¢ + 1 points

of IC.

(S”) If a 3-space 113 intersects K in more than 4 points, then [II3NK| > g+ 1
and II3 N K is not a (g + 1)-arc.

(V’) If a 5-space II5 intersects K in more than 2¢ + 2 points then it intersects
K in exactly ¢®> + ¢ + 1 points. Furthermore, any two points p;, ps of K
are contained in a 5-space containing ¢* + ¢ + 1 points of K.

Lemma 4.2.15 FEvery 4-space contains at most 2q + 2 points of K. Hence, a
3-space contained in a big 5-space contains at most q + 3 points of K.

Proof Exactly the same as the proof of Lemma 4.2.10 using Condition (V’),
since we only used there that part of Condition (V). O

Lemma 4.2.16 Forn > 2 ,q > 7, if a plane m contains at least 4 points of
IC, then it contains exactly ¢ + 1 points of IC.
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Proof First suppose that 4 < [t N K| < ¢+ 1. Then all 3-spaces through 7

n(n+3)
contain at least ¢ + 1 points. This yields at least %{271 points for the set
IC, a contradiction since n > 2.

Next, suppose that |7 N K| = 4. Consider points a, b and ¢ of K such
that (m,a), (m,b) and (m,c) are three different 3-spaces. By Condition (S’)
each of these three 3-spaces intersects K in at least ¢ + 1 points. Then the
space (m, a, b, ¢) contains at least 3(¢ — 3) 44 points of K. Hence, since ¢ > 7,
by Lemma 4.2.15 and Condition (V’) it is a big 5-space II.

By Lemma 4.2.15, a 3-space II3 in II5 contains at most g+ 3 points of .

From the previous paragraph it follows that we get the following in-
equality for the number x of 3-spaces IT§ through 7 inside the big 5-space IT5

containing at least ¢ + 1 points of .

v(g—1)+4>¢ +q+1.

Hence we get © > q+ 2 — q_%, this implies x > q + 2 if ¢ > 2.

Now consider a 3-space II§ containing 7 and at least ¢ + 1 points of K
which is not contained in II5 and consider also the 6-space Ilg = (II5, IT}). Take
one fixed 3-space IIj and consider the 5-spaces (I}, IT4, IT4) with ¢ # 1. Each of
these 5-spaces intersects K in more than 2¢+2 points since ¢ > 7 and hence is a
big 5-space. It follows that ITg N K contains at least (¢+1)(¢* —q—1)+2¢+2 =
q® + 1 points.

Repeating this reasoning yields inductively the following recursion for-
mula for the number of points ¢y in Il 1 N where I1; is a 3-space contain-
ing 7 and at least ¢ + 1 points of K which is not contained in II; and where
[y = (IT;, I3), where ¢5 = ¢> + g+ 1.

—4
Prt1 = ((bqk_ 1

—1)(*—q—1)+2¢+2. (4.5)

We will adapt the recursion formula to a recursion formula for numbers
W, such that ¢, < ¢y for all & > 5.
First we rewrite the recursion formula for ¢, as follows.

2
g1
97" L og+2.

¢k+1:(¢k—q—3) 1

Since q2q__ql_ L~ g —1if ¢ > 2 we get after a little calculation

Or1 > (¢ — 1) — ¢* +5.

Since ¢5 = ¢*> + ¢ + 1 we can even write for all integers k > 5

Dr1 > (¢ — 2) @
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Now we set 15 = ¢5 and Y41 = (¢— 2)¢. Hence we get ¢y = (¢—2)V 5 (¢® +
q+1) for all N > 5. This yields the following inequality

n(n+3) _5

n+1_1
(-2 (@ +q+1 <L ——=

qg—1

This is an equality if n = 2 and the left hand side increases faster than the
right hand side if n increases, hence this yields a contradiction for n > 2. [

The remaining cases are ¢ = 5 and ¢ = 7. First we prove a lemma for
q=>5.

Lemma 4.2.17 Let g =5,n > 2, and consider a plane m which intersects IC in
4 points. If inside a big 5-space 115 there is a 4-space 14 through m intersecting
IC in 12 points then there are no 4-spaces through m inside 115 intersecting IC
i 11 or 10 points.

Proof Suppose the contrary and consider a 6-space Ilg containing II; which
intersects C in more than 31 points. Such a 6-space always exists otherwise
we don’t get enough points for the set .

If TI5 contains a 4-space I through 7 intersecting K in 11 points, then
consider all 5-spaces through II; and II) inside IIs. By Conditions (S’) and
(V") the only ones which yield extra points are big 5-spaces. For take a 5-space
with an extra point p, then we have at least two extra points. Namely, the
3-space (m,p) contains more than 4 points of K and hence by Condition (S’)
at least 6 points of K.

Denote the number of big 5-spaces inside Ilg through Il and II), by «
and ( respectively. We get the following equation

190 + 12 = 208 + 11

If we rewrite this as 1 + 19(a — ) = (3, then clearly the only solution
with 1 < a, 8 <6is a = =1, a contradiction since Ilg intersects I in more
than 31 points.

If there is a 4-space II/, in II5 through 7 intersecting X in 10 points then
5-spaces through 1T inside I which yield extra points intersect C either in 12
or in 31 points by Condition (S’) and Condition (V’). Denote the number of
big 5-spaces through Il inside Ilg by x, the number of 5-spaces of IIz through
IT) intersecting K in 12 points by y and the number of big 5-spaces through
IT) inside Il by z. Then the following equation is obtained

192 +12 =2y + 212+ 10, with x > 1 and z, y, 2 <6.

The only solution is * = z = 1 and y = 0, a contradiction since Ilg
intersects C in more than 31 points. 0
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Lemma 4.2.18 For g =5 orq =7 and n > 2, a plane m intersecting IC in
exactly 4 points 1s never contained in a big 5-space Il5.

Proof Case (a) ¢ = 5:

Assume 7 is contained in a big 5-space Il5. First of all, a 3-space in IIj
contains at most 8 points of K by Lemma 4.2.15.

Project Il5 from 7 onto a plane n’ which is skew to 7 in II5;. For the
3-spaces through 7 which contain 6, 7 or 8 points of K, the projection in 7’ is
given weight 2, 3 or 4 respectively.

First suppose there is a 3-space IlI3 in II; which contains © and which
intersects K in 8 points. Then five 4-spaces through II3 in II5 intersect /C in 12
points and one 4-space through I3 in Il5 intersects K in 11 points. But this
yields a contradiction by Lemma 4.2.17.

Hence, from now on, we may assume that each 3-space through 7 inside
a big b-space which contains more than 4 points of C contains 6 or 7 points
of IC. Hence if we denote the number of 3-spaces through 7 inside II; which
intersect IC in 6 points by a and those which intersect K in 7 points by (3, we
get the following equation,

44 2a + 30 = 31.

The rest of the proof is case-by-case analysis.

(A)p>7:

In this case we have a set P of at least 7 points with weight 3 in 7’
Since an oval in PG(2,5) contains at most 6 points, three points of P will be
collinear. But this implies that the 4-space spanned by the line L containing
them and 7 intersects C in more than 12 points, a contradiction by Lemma
4.2.15.

(B)a=6,6=5:

Consider a point p of weight 3 in 7’ and all lines Ly, --- , Lg through it.
On four of these lines, say Lq,--- , Ly we have exactly one other point which
has weight 3 otherwise we get a 4-space with more than 12 points. If none of
Ly,--- , Ly contains a point of weight 2 then the six points of weight 2 have to be
distributed over the remaining two lines through p, a contradiction since then
we get a 4-space intersecting K in more than 12 points of IC, a contradiction
by Lemma 4.2.15. Hence we have already found a 4-space through 7 inside Il5
which intersects K in 12 points. By Lemma 4.2.17, this implies that no 4-space
through 7 inside Il5 can intersect K in 10 or in 11 points. Now consider a point
of weight 2 in 7’ and all lines through it. Then the 5 points of weight 3 are
distributed over these lines as 24241, as 2414141 or as 1+1+4+14141. The
latter two possibilities clearly yield a 4-space intersecting K in more than 12
points, a contradiction by Lemma 4.2.15. Namely, in the last case for instance,
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since no 4-space inside Il is allowed to intersect I in exactly 11 points, all
points of weight two are contained in one line through p in 7’. The other case
is similar.

But if it is always the 24241 possibility then through each point of
weight 2 there passes a line L containing 4 points of weight 2, which yields a
contradiction.

(C)a=9,5=3:

Consider a point p of weight 3 in 7" and all lines through it. On two of
these lines, L; and Ly, we have exactly one other point which has weight 3
otherwise we get a 4-space with more than 12 points. If there is no 4-space
through 7 in IT5 which intersects K in 12 points, then the 9 points of weight
2 have to be distributed over the remaining 4 lines, which again yields a too
big 4-space. Hence there is a 4-space inside Il intersecting I in 12 points,
implying no 4-spaces through = inside II5 are allowed to intersect K in 10 or
in 11 points by Lemma 4.2.17. This is impossible.

D)a=12,=1:

Denote the 3-space through = inside II; which intersects K in 7 points
by II3. We have a set P of 13 points of weight 2 and 3 in 7. We claim that
there has to be a line L containing 4 points of P.

Indeed, consider an arbitrary point p contained in P and all lines through
it. If there is no line which intersects P in 4 points then all lines of 7’ through
p intersect K in 3 points. Since p was arbitrary this implies that all lines in 7’
intersect P in 0 or 3 points. But consider now a point 7 in 7’ not contained
in P and all lines through it. Then we get a contradiction, since 3 does not
divide 13. So we may assume that there is a line L in 7" which intersects P in
4 points.

Hence, the 4-space spanned by L and 7 intersects K in 12 points. It has
to be contained in another big 5-space otherwise we don’t get enough points in
IC. There again there has to be at least one 3-space, say I}, through 7 which
intersects KC in 7 points.

But now consider a space I spanned by II3, I} and another 3-space
through 7 which contains at least 6 points of K.

Then IT is certainly contained in a big 5-space, otherwise we don’t have
enough points in the set K. But this is a contradiction since in any big 5-space
we already excluded all cases with § > 1.

Case (b) ¢ =T:

Assume the plane 7 is contained in a big 5-space II5. First of all, a
3-space in II5 contains at most 10 points of K by Lemma 4.2.15.

Project II5 from 7 onto a plane «’ which is skew to 7 in II5. For the
3-spaces through 7 which contain 8, 9 or 10 points of I, the projection in 7’
is given weight 4, 5 or 6 respectively. Denote this set of points by P.
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First suppose there is a 3-space II3 in II; which contains 7 and which
intersects K in 10 points. Then seven 4-spaces through II5 in II5 intersect K in
16 points and one 4-space through I3 in II5 intersects IC in 15 points. Consider
all lines through the point p in 7’ corresponding with II3. There is exactly one
line through p which contains one point p’ of weight 5.

This implies that inside a big 5-space through II3 there is exactly one
3-space II;, namely the one which corresponds with p’, which contains = and
which intersects IC in 9 points.

But a 4-space Il through II3 intersecting I in 16 points has to be con-
tained in at least one other big 5-space II5. Inside IT5 we also find a 3-space I1;
which contains 7 and which intersects K in 9 points. But now the big 5-space
spanned by I3, IT; and I1; contains II; and two 3-spaces which contain 7 and
which intersect IC in 9 points, a contradiction by the previous paragraph.

Hence, from now on, we may assume that each 3-space through 7 inside
a big b-space through 7 which contains more than 4 points of K contains 8 or
9 points of K. Hence if we denote the number of 3-spaces through 7 inside II5
which intersect K in 8 points by « and those which intersect IC in 9 points by
(B, we get the following equation,

4+ 4o+ 506 =5T7.

Remark that inside 7’ each line through a point of weight 5 can contain
at most one other point of weight 4 or 5 otherwise we get a 4-space which
intersects I in more than 16 points. Hence |P|=a+(<1+4+8-1=09.

The only solutions of the above equation for («, 3) are the pairs (12, 1),
(7,5) and (2,9), which yields a contradiction by the previous paragraph. [

Remark 4.2.19 The method of proof of the above theorem can also be used
for the general case. However, Lemma 4.2.16 directly excludes all planes con-
taining 4 points of K for q > 7.

Lemma 4.2.20 Any line L meets K in at most 2 points. Hence, a plane 7
with |m N K| = q + 1 intersects KC in an oval.

Proof Similar to the proof of Lemma 4.2.9; use Lemma 4.2.15 and Lemma
4.2.16. OJ

Theorem 4.2.21 If ¢ > 5 and n > 2, then the set K s the point set of the
Veronese variety of all quadrics of PG(n,q).

Proof We check Conditions (P), (S) and (V) of Theorem 4.2.5. Conditions
(S) and (V) are implied by Condition (S’) and Theorem 1.5.8 and by Condition
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(V?) respectively. The first part of Condition (P) was proved in Lemma 4.2.16
for ¢ > 7.

Furthermore, for ¢ = 5 and ¢ = 7 we proved the first part of Condition
(P) for all planes which are contained in a big 5-space. In fact, we did only
use Condition (P) for these planes in our first characterization.

The second part of Condition (P), namely that every 2 points of K are
contained in an oval of C, is never used to obtain Lemma 4.2.13 if n > 2. If
n = 2, we did use Condition (P) for the proof of Lemma 4.2.10. Since every
two points are contained in a big 5-space II5 by Condition (V), and since IIsNKC
is a Veronese variety V4 by Lemma 4.2.13 the second part of Condition (P) is
proved. The proof is finished by Theorem 4.2.5. 0

The counterexample for the case n = 2 is the following. Consider in
PG(5,¢q) a point p on an ovoid O in PG(3, ¢) and a tangent line L to O at p.
Furthermore, consider a 3-dimensional space II} intersecting II3 exactly in L
and containing an oval O’ which intersects L in p. Then the set O U O’ fulfills
Conditions (P’), (S’) and (V’) but it is not a Veronesean V.
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Chapter 5

Characterizations of finite
classical polar spaces by
intersection numbers

5.1 Introduction

When Segre [51] proved his celebrated characterization of conics (“every set of
g+ 1 points in PG(2, ¢), ¢ odd, no three of which are collinear, is a conic”), he
did more than proving a beautiful and interesting theorem; he in fact provided
the starting point of a new direction in combinatorial geometry. In this branch
of combinatorics the idea is to provide purely combinatorial characterizations
of objects classically defined in an algebraic way. In Chapter 4 several such
combinatorial characterizations of Veroneseans were obtained. In this chap-
ter we again discuss several results of this kind, namely we characterize finite
classical polar spaces by means of their intersection numbers with respect to
certain subspaces. The work in this chapter is based on a result of Ferri and
Tallini, stated later on, which provides a characterization of Q)(4, q) by inter-
section numbers with respect to planes and solids. This is a clear motivation
to look at the following questions:

Is it possible to characterize finite classical polar spaces by their
intersection numbers with respect to planes and solids, respectively
by their intersections with respect to hyperplanes and subspaces of
codimension 2?7

(Note that these questions of course do not make any sense for the polar space
Wans1(q), as this polar space comprises all points of its ambient projective

space.)

149
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The first question was answered affirmatively in Schillewaert [47], and
Schillewaert and Thas [49]; the second question in [17]. Though it is possible to
characterize certain polar spaces only by their line intersections, the existence
(in abundance) of quasi-quadrics and quasi-Hermitian varieties shows that it
is not possible to characterize them merely by their intersections with respect
to hyperplanes. Here we define a quasi-quadric, respectively quasi-Hermitian
variety, to be a subset of the set of points of a projective space having the same
intersection numbers with respect to hyperplanes as a non-singular quadric,
respectively a non-singular Hermitian variety. In the case of the parabolic
quadric, this is a slight deviation of the standard definition as given in [14]. The
concept of a quasi-Hermitian variety in fact does not appear in the literature,
but it is very easy to show that examples can be constructed with the same
techniques as those used to construct quasi-quadrics. For an overview on
quasi-quadrics, we refer to [14].

5.2 Previous characterization results and main
results

The following characterizations of quadrics and Hermitian varieties, which can
be found in Hirschfeld and Thas [28], will be of great importance later on in this
chapter. These theorems also provide nice examples of Segre-type theorems.

Definition 5.2.1 A point set K in PG(n, q) is said to be of type (ry, 19, ,75)
if ILNK] € {ry,r9,--+ ,rs} for all lines L of PG(n,q). A point p € K is called
singular with respect to K if all lines through p intersect K either in 1 or in
q+ 1 points. If a set KC contains a singular point, then IC is called singular.

The theorem below is an amalgamation of results of Tallini-Scafati [61], Hirschfeld
and Thas [27], and Glynn [25].

Theorem 5.2.2 Let K be a non-singular point set of type (1,7,¢*> + 1) in
PG(n,q*), n >4 and q > 2, satisfying the following properties:

e 3<r<¢—1;

e there does not exist a plane w such that every line of m intersects m N K
inr or ¢®+ 1 points;

Then the set K is the point set of a non-singular Hermitian variety H(n, ¢?).

The result below was obtained by Tallini in [58] and [59].
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Theorem 5.2.3 In PG(n,q), withn >4 and q > 2, let K be a non-singular
point set of type (0,1,2,q + 1).

n+1_1

If Y= > || > q;—_ll, then one of the following cases holds:

(i) |K| = L=, n is even, and K is the point set of a Q(n, q).

q—1"’

(i) |K| = qqn%ll +q 7, nis odd, and K is the point set of a Q*(n, q).

(i) |K| = qq"%ll +1, q is even, and K = IL,K'"U{N} with I, some PG(t,q) C
PG(n,q) and with K' (the point set of ) a Q(n—t—1,q) in some (n—t—1)-
dimensional subspace of PG(n,q) skew to PG(t,q) (hence n —t —1 is
even) or with K' a (q + 1)-arc in a plane skew to PG(t,q) if t = n — 3.

In each case, N is the nucleus of a particular chosen basis KC'.

These two theorems provide characterizations of certain polar spaces by
their line intersections. It is a natural question to ask whether polar spaces can
also be characterized by their intersections with respect to other subspaces.

As a first result in this direction, we state the following result of Durante,
Napolitano and Olanda [19].

Theorem 5.2.4 Let K be a set of points in PG(3,q), with |[K| = ¢* +q+ 1,
and suppose that IC contains at least two lines. Furthermore, suppose that IC
intersects every plane in 1, ¢+ 1 or 2¢+1 points. Then K is a cone projecting
an oval in a plane I from a point v not in II.

Ferri and Tallini proved the following nice characterization of the parabolic
quadric Q(4, q) in [23].

Theorem 5.2.5 A set K of points in PG(n,q), with n > 4 and |K| > ¢3 +
¢* + q + 1, intersecting all planes in 1, a or b points, where b > 2q + 1, and
intersecting every solid in ¢, ¢ + q or ¢ + 2q points, where ¢ < ¢*> + 1, such
that solids intersecting in ¢ and solids intersecting in ¢ + q points exist, is a
non-singular quadric of PG(4,q).

We will prove the following corollary of this theorem in the following
section.

Corollary 5.2.6 If a set of points K in PG(4, q) is such that it intersects all
planes in 1, ¢+1, or 2g+1 points and all solids in ¢*+1, ¢*>+q+1 or ¢*>+2q+1
points, then it is a parabolic quadric Q(4,q).

Further, we extend this theorem to a characterisation of quadrics in
PG(n,q), n > 4, by all possible intersection numbers with planes and solids.
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Theorem 5.2.7 If a set K of points in PG(n, q), n > 4, intersects planes and
solids in the same number of points as quadrics, then IC is one of the following:

(i) the projective space PG(n,q),
(i) a hyperplane in PG(n, q),
(11i) a quadric in PG(n, q).
(iv) For q even,
(iv.1) a cone with vertex an (n — 3)-dimensional space and base an oval,

(iv.2) a cone with vertex an (n — 4)-dimensional space and base an ovoid.

Next, we prove the analogous result for Hermitian varieties, i.e. a char-
acterization of Hermitian varieties in PG(n,q), n > 4, by their intersection
numbers with respect to planes and solids.

Theorem 5.2.8 If for a set K of points in PG(n, ¢?*), n > 4, the intersection
numbers with planes and solids are also intersection numbers of planes and
solids with a Hermitian variety, then IC is either:

(i) the projective space PG(n,q?),
(ii) a hyperplane in PG(n,¢?),
(iii) a Hermitian variety in PG(n, ¢%),
)

(iv) a cone with vertex an (n — 2)-dimensional space and base a line inter-
secting K in q or ¢ + 1 points,

(V) a cone with vertex an (n — 3)-dimensional space and base a unital, or

(vi) a cone with vertex an (n — 3)-dimensional space and base a set K of
PG(2,¢%) intersecting each line of PG(2,¢%) in 1, q, g+ 1 or ¢> +1
points and containing exactly one full line.

Remark 5.2.9 Let M be a maximal {¢> — ¢* + ¢; q}-arc in PG(2, ¢?), that
is, a point set M of size ¢ — ¢* + q in PG(2,q¢%) intersecting each line of
PG(2,q?) in either 0 or q points; such a set is known to exist for any q = 2",
see [30]. Let M be a line of PG(2, ¢?) intersecting M in q points and let L be
a line of PG(2,¢%) containing no points of M. Then K = (M\M)U L can be
taken as base of the cone described in Theorem 5.2.8 (vi).
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So far we extended the Corollary 5.2.6 of Theorem 5.2.5 of Ferri and
Tallini to higher-dimensional quadrics and higher-dimensional Hermitian vari-
eties allowing extra intersection numbers for the intersection with planes and
solids. Another direction is to view intersections with planes and solids in 4-
dimensional space more generally as intersections with hyperplanes and spaces
of codimension 2 in higher-dimensional space. This viewpoint leads to a char-
acterization of non-singular classical polar spaces except for the symplectic
ones of course.

We show that non-singular quadrics and non-singular Hermitian varieties
are completely characterized by their intersection numbers with respect to
hyperplanes and spaces of codimension 2. This strongly generalizes the result
Theorem 5.2.5 of Ferri and Tallini and also provides necessary and sufficient
conditions for quasi-quadrics (respectively their Hermitian analogues) to be
non-singular quadrics (respectively Hermitian varieties).

The following Segre-type characterization of polar spaces provides neces-
sary and sufficient conditions for a quasi-quadric or a quasi-Hermitian variety
to be a non-singular quadric or Hermitian variety.

Theorem 5.2.10 If a point set K in PG(n,q), n > 4, ¢ > 2, has the same
intersection numbers with respect to hyperplanes and subspaces of codimension
2 as a polar space P € {H(n,q),Q"(n,q),Q (n,q),Q(n,q)}, then K is the
point set of a non-singular polar space.

Remark 5.2.11 Forn = 3, the conclusion of the above theorem remains true
in the Hermitian and hyperbolic case. This is easily seen using Theorem 1.2.5.
Also in the elliptic case the conclusion remains true, since an ovoid is a not a
polar space. If n = 4, the conclusion of the theorem is true for all q. In the
parabolic case, this is Theorem 5.2.6, and in the Hermitian case, this result is
proved in Section 5.4.

In the following sections, we give the proofs of the theorems above.

5.3 Proof of Theorem 5.2.7

5.3.1 A corollary of the theorem of Ferri and Tallini

Consider a set IC of points in PG(4, ¢) intersecting every plane in 1, ¢+ 1 or
2q + 1 points, and every solid in ¢*> + 1, ¢*> + ¢ + 1 or ¢* + 2¢ + 1 points.

Planes intersecting K in 1, ¢ + 1 and 2g + 1 points respectively will be called
small, medium and large respectively. Solids intersecting K in ¢>+1, ¢> +q+1
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and ¢ + 2¢ + 1 points respectively, will be called small, medium and large
respectively.

We prove the conditions required for the characterization of Ferri and
Tallini of Q(4,q). Consider a given solid II. First count how many small,
medium and large planes there are in II; call the number of them a, b and ¢
respectively. Denote the number of points of K inside IT by 7. Counting the
total number of planes in a solid, the incident pairs (p, «) where p is a point
of £ and « a plane, and the number of ordered triples (p,r, a) where p and r
are distinct points of IC lying in the plane « respectively, yields the following
equations

a+b+c=(q+1)(¢"+1),

a+b(g+1)+c2¢+1) =5+ q+1),
ba(q+1) +c2q9(2¢ + 1) = y(v — 1)(g + 1).

We can calculate a, b and c¢ exactly for each value of v; later on we will only
use that ¢ = 0 if v = ¢® + 1, that a, b and ¢ are all non-zero if v = ¢> + ¢ + 1,
and that a = 0 if v = ¢® + 2¢ + 1.

Note that it never occurs that two of the integers a, b and ¢ are zero.

Lemma 5.3.1 Small solids intersect K in an ovoid.

Proof Consider a small solid IT and all planes through a line L inside 11, where
we assume that L contains x > 2 points of L. Since a small solid contains no
large planes, we get exactly

(+1)(g+1—a)+zx=¢>+1

points, hence x = 2. For ¢ = 2, we have 5 points, no four coplanar. So, for all
¢, small solids intersect K in an ovoid. O

We first prove that the size assumption of Theorem 5.2.5 is fulfilled.

Lemma 5.3.2 The set K contains ¢* +¢*> +q+1 or ¢3 + ¢*> + 2q + 1 points.

Proof (1) If a small plane « exists, then consider all solids through « inside
the 4-dimensional space A. We obtain the following lower bound on the size
of IC,

K| >14+(q+ 1) =¢ +¢ +1.

Equality holds if and only if all solids through « are small, and small solids are
ovoids. Take a line L inside A. If L lies in a solid through «, then L contains
at most 2 points of K.

Next consider a line M not intersecting o and assume it contains a point x of
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IC. Consider the small solid Il spanned by x and «. Inside II one can find a
small plane containing x. Hence, M lies in a small solid through a small plane,
a case already treated. So all lines intersect I in at most 2 points. Hence, we
would find a cap of size ¢* + ¢®> + 1. This yields a contradiction with Lemma
1.5.6.

So at least one solid through a is medium or large, so |K| > ¢*+¢*+q+1.
In both cases, there is a large plane. Let m be this large plane. Look at all
solids through 7 inside A. We get the inequality,

K| <(q+1)¢*+2¢+1=¢+¢*+2¢+1.

(2) If no small plane exists, then all 3-spaces are large ones. In this case, we
get the following size for K:

IK|=(@+1)¢®*+2¢+1=¢+¢*+2¢+ 1.

Taking an arbitrary plane and looking at all solids through it learns that the
number of points in K is always 1 mod ¢, hence this lemma is proved. O

Lemma 5.3.3 There exist small and medium solids.

Proof We show that for both possible values of ||, there exist small and
medium solids. Denote the number of small, medium and large solids in the
4-dimensional space by a, b and c respectively.

Counting the total number of solids Il in a 4-dimensional space, the
number of incident pairs (p,II) where p € K, and the number of ordered
triples (p,r,I1) where p and r are distinct points of K incident with TI, yields
the following equations

5
-1
a+b+c= q ,
qg—1
g' -1
(P +Da+ (P +q+1)b+ (¢ +2¢+1)c= K| PR
3
-1
(¢ +1Dg*a+(¢° +q+1)(¢* +9)b+(¢° +2¢+1)(¢* +29)c = |K|(|K] — 1)(2 T
Solving these equations yields that in both cases a # 0 and b # 0, so there
exist small and medium solids. O

In our previous lemmas, we have proved all the necessary conditions for The-
orem 5.2.5, hence we have the following result.

Theorem 5.3.4 If a set K of points in PG(4,q) is such that it intersects all
planes in 1, ¢g+1, or 2g+1 points and all solids in ¢>+1, ¢*>+q+1 or ¢*> +2q+1
points, then it is a parabolic quadric Q(4,q).
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It is this result we will extend in the next section to obtain a characterization
of all quadrics by means of their intersection numbers with respect to planes
and solids.

5.3.2 The characterization

Consider a set IC of points in PG(n, q), n > 4, that has as intersection numbers
with planes
L,g+1,2¢+1, ¢ +q+1

and as intersection numbers with solids
g+1, P+1, P+qg+1, F+29+1, 2 +qg+1, @+ +q+1.

We adopt the following terminology for the rest of this section. We call planes
and solids that intersect the set K in ¢ and j points respectively, i-planes and
j-solids respectively. A line containing g + 1 points of the set K is called a full
line, a (¢* + q+ 1)-plane will be called a full plane, and a (¢* + ¢*> + g+ 1)-solid
will be called a full solid.

Lemma 5.3.5 A (2¢°> + ¢ + 1)-solid meets the set K in the union of two full
planes.

Proof Consider a (2¢* + ¢ + 1)-solid II, a line L contained in IT and look at
all planes through L inside II. Suppose that L contains x points of the set K.
Then, if we suppose that II does not contain a full plane, we find at most

(g+1)(2¢+1—2)+x

points. We find that z < 2, but then we would have a cap of size 2¢> +¢+1 in
PG(3,¢q). This is impossible, hence II does contain a full plane, say m. Next
consider a point p in IT\7 belonging to IIN/C, and let L be a line through p in II
such that L does not lie in a full plane of IT; hence L lies only in (2¢+ 1)-planes
of I. Call & the number of points in N L. Then we get the following equality

T+ (q+1)(2¢+1—2)=2¢"+q+1.

Hence, x = 2. If there is no full plane through p in II, this would mean that
K =I1U{p}, which is a contradiction. Hence, we have shown that I meets K
in the union of two full planes. 0]

Lemma 5.3.6 A (¢ + 1)-solid meets KC in a full line.

Proof Since by assumption every plane is blocked, and since a (¢ + 1)-solid
contains only ¢ 4+ 1 points of IC, the proof is finished by Theorem 1.4.8. U
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Lemma 5.3.7 If a solid 11 contains a full plane m and a point p € K\7, then
I is a (2¢> + q + 1)-solid or a full solid.

Proof Since I already contains ¢® + ¢ + 2 points of K, we only have to prove
that IT is not a (¢* + 2q + 1)-solid. Suppose it is a (¢* + 2¢ + 1)-solid. Consider
a line N through p inside II intersecting I in = points. Consider all planes
through N inside II. They all intersect I in at least ¢ + 2 points and hence in
at least 2¢ + 1 points. Counting yields the following equality

(g+1)(2¢+1—2)+x=¢"+2¢+1.

This is only possible if z = ¢ + 1. Since N was an arbitrary line through p in
I1, II would intersect K in more than ¢? + 2¢ + 1 points, a contradiction. [

Lemma 5.3.8 There exist full lines.

Proof If there exists a full plane or a (¢ + 1)-solid, then we are done. So
suppose that these do not exist. Then by the previous lemmas, there is a
4-dimensional space A whose planes are only 1-planes, (¢ + 1)-planes and
(2q + 1)-planes, and whose solids are only (¢? + 1)-solids, (¢* + ¢ + 1)-solids
and (¢* +2¢+1)-solids. But then by Theorem 5.2.6, A meets K in a parabolic
quadric Q(4, ¢); which contains lines. O

We define a point-line geometry S = (P, B,1I), where the points of P are the
points of IC, where the lines of B are the full lines and where incidence is
containment.

Theorem 5.3.9 The geometry S is a Shult space.

Proof We have already shown that there exist full lines, so B is non-empty.
The different cases we consider in this proof will also show that B contains at
least two lines.

Consider a point p of S and a line L of S, such that p and L are not
incident. We prove the axiom for the incidence relation of a Shult space, and
we refer to it as the 1-or-all axiom (see Section 1.2 for the definition of a Shult
space).

Consider the plane « generated by p and L. Since this plane contains at
least ¢+ 2 points of S, it is either a (2¢ + 1)-plane or a full plane. If this plane
is a full plane, then we have the all part of the 1-or-all axiom.

So suppose from now on that « is a (2¢ + 1)-plane. We distinguish
between several cases that cover all possible situations.

(1) Suppose that there exists a solid II through « containing a full plane
G. If II was a full solid, then a would be a full plane. Since small solids intersect
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K in an ovoid by Lemma 5.3.1, the solid II either is a (¢* + 2q + 1)-solid or a
(2¢* + g + 1)-solid.

Since 8 # «, Lemma 5.3.7 shows that II is a (2¢® + ¢ + 1)-solid. By
Lemma 5.3.5, IT contains two full planes, they both intersect « in a line, hence
the 1-axiom is fulfilled.

(2) Suppose now that there exists a 4-space A containing a that does
not contain full planes. Since (2¢* + ¢ + 1)-solids and full solids contain full
planes, also these do not occur in this 4-space.

(a) Suppose that also no (g+ 1)-solids occur in A. Then we have exactly
the intersection numbers with planes and solids as required for Theorem 5.2.6,
so that S intersects A in a parabolic quadric Q(4,q), which is a generalized
quadrangle, so we have proved the 1-axiom.

(b) Suppose that a (g + 1)-solid IT does occur in A, and that it intersects
S in a full line M different from L. Consider all planes through M in A. Then
we find at most

2q+1=(q+1)+(q+1)=¢+q+1

points of § in A. Consider all lines through p inside . One of them, say
N, intersects S in exactly 2 points, otherwise a would intersect S in more
than 2¢ + 1 points. Consider all planes through N inside A. Since « is a
(2q + 1)-plane, we find at least

(P+)(qg+1 -2 +2¢+1 -2 +2=¢+q+1

points. Comparing these inequalities yields that all planes of A containing M
and not contained in II are (2¢ + 1)-planes. Hence, all solids of A different
from II, intersecting II in a plane that contains M, contain

¢((2¢+1) = (g+1)+g+1=¢"+qg+1

points of S. The line L and the solid II intersect in a point r. Then {r} =
LNM. If M lies in «, then we have proved the 1-axiom, so suppose that M
does not lie in «.

Consider the solid I' generated by o and M. This solid contains at least
two lines, namely L and M, it intersects K in ¢> + ¢+ 1 points and all planes of
this solid are 1-planes, (¢ + 1)-planes or (2q + 1)-planes. Theorem 5.2.4 gives
that I intersects K in a cone with as vertex r and base an oval. Hence, the line
pr is the only line of S through p intersecting L. We have proved the 1-axiom.

(c¢) The remaining case is that the (¢ + 1)-solids in A intersect K exactly
in L. Let II be such a (¢ + 1)-solid of A through L. Considering all planes
through L inside A yields as above that K intersects A in at most ¢ + ¢+ 1
points. Consider a 1-plane 3 contained in II, and consider all solids through
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B in A. Since we know the (¢ + 1)-solids contained in A contain L, we get at
least

(@) +q+1=¢+q+1

points. Considering the two inequalities above learns us that they must be two
equalities, so there pass ¢ (¢* + 1)-solids through (3 inside A. By Lemma 5.3.1,
all (¢? + 1)-solids through 3 inside A intersect K in an ovoid of PG(3, q).

We consider the union of all these ovoids and add one extra point of L;
hence we have found a cap of size ¢(¢*+1—1)+2 = ¢*+2 in PG(4, q), yielding
a contradiction with Lemma 1.5.6. Indeed, take any line N lying in A and not
in II. There always exists a solid I’ through N in A such that § = II' N1l
intersects L in a point. So, IT' contains the 1-plane II N II', hence as in the
previous paragraph, IT" intersects K in an ovoid and hence N intersects K in
at most 2 points.

(3) Consider now a 4-space A containing « such that no solid through «
inside A contains a full plane, but A does. Call this full plane 7.

(a) Suppose that p € m. Then L does not intersect 7. Take a point r on
L and consider the solid II/. generated by r and 7. By Lemma 5.3.7, II' is a
(2¢® + ¢ + 1)-solid or a full solid.

If a solid II. is a full solid, then r is collinear with p in §. Since « is a
(2q + 1)-plane, we have proved the l-axiom. Suppose now that all solids II/,
are (2¢*> + ¢ + 1)-solids. If the full plane of IT/. through 7 intersects 7 in a line
through p, then we have again proved the 1-axiom. Suppose that this never
happens. Then all the lines pr, r € L, contain only two points of S, namely p
and r. But then a contains exactly g + 2 points of S, a contradiction.

(b) Suppose that p ¢ 7 and look at the solid generated by the point p
and the plane 7, call it II.

Suppose that II is a full solid. Then it does not contain «. It intersects
« in a line of S, hence we have proved the 1-axiom.

If IT is a (2¢* + q + 1)-solid, then it intersects K in a union of two full
planes. But then one of these planes contains p, and we are again in case
(3)(a). o

Theorem 5.3.10 If S is non-degenerate, then it is a non-singular quadric in
PG(n,q), n > 4.

Proof If there exists a full plane, then S is a non-degenerate Shult space
of finite rank at least 3, and since all lines contain at least three points by
definition, § with all its subspaces is a polar space. By Theorem 1.2.1, it is a
finite classical polar space and by looking at the intersection numbers, we see
that S is a non-singular quadric.
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If there exists no full plane, then the previous arguments show we have
proved for S axiom (GQ3) for generalized quadrangles. Clearly, there is a
point p through which there pass two lines of S. Hence, S is a generalized
quadrangle.

By Theorem 1.1.2, it is a classical one; going through the list of classical
generalized quadrangles yields it is the non-singular parabolic quadric Q(4, q)
or the non-singular elliptic quadric Q@ (5, q). O

Suppose now that S is degenerate, so there exist points collinear with all other
points. We call such points singular points.

Lemma 5.3.11 The singular points of S form a subspace 11}, of PG(n,q).

Proof Take two singular points p and r of S and consider a point ¢ lying on
the line L = pr. Surely, t € S. All points on § are collinear with ¢. Take a
point s of § not lying on L and consider the plane generated by s and L. This
plane has to be a full one, hence s is collinear with t. ([l

Lemma 5.3.12 If § contains singular points, then all lines not intersecting
the subspace 11y, formed by the singular points, intersect S in 0, 1, 2 or ¢+ 1
points.

Proof Consider a line L not intersecting II;. Take a singular point p and
consider the plane generated by p and L. Since this plane contains either 1,
q+1,2¢+1 or ¢>+ g+ 1 points of S by assumption, the statement is proved.

O

Lemma 5.3.13 Ifn—k—1 >4, then S is a cone with vertex a k-dimensional
space and base a non-singular quadric.

Proof If § is degenerate, then look at a complementary space PG(n—k—1, q)
of the space II;. By assumption, this space does not contain singular points
of §. If n—k —1 > 4, then Theorem 5.3.10 shows that S intersects this space
in a non-singular quadric, hence § is a cone with vertex a k-dimensional space
and base a non-singular quadric. O

Now we consider all other cases one by one.

(a) If n —k — 1= —1, then § is the projective space PG(n,q).

(b) If n — k — 1 =0, then S is a hyperplane of PG(n, q).

(¢) If n —k —1 = 1, then the complementary space is a line. If this
line intersects K in zero points, we have an (n — 2)-dimensional space. If it
intersects KC in 2 points, we have the union of two hyperplanes.
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(d) If n—k—1 = 2, then the complementary space is a plane m. Suppose
that 7 intersects S in ¢ + 1 points. Since all lines intersect N7 in 0, 1,
2 or ¢ + 1 points, the intersection of 7 and § is an oval (a line is impossible
otherwise we have extra singular points). Suppose that 7 intersects K in 2¢+1
points. Since 7 contains more than ¢ + 2 points of IC, 7 surely contains a line
L of §. Take a point p € SN outside L. Considering all lines through p in 7
learns that one of them is a line of §. The intersection of the two lines would
be a singular point, this yields a contradiction.

(e) If n — k — 1 = 3, then the complementary space is a solid II. If this
solid intersects S in ¢ + 1 points, it intersects S in an ovoid.

If this solid intersects S in ¢® + ¢ + 1 points, it surely contains a line L
of S. Take a point p on S, p ¢ L, inside II. Then the plane generated by p
and L intersects S in two lines, as before. Hence, II contains at least two lines.
Theorem 5.2.4 learns that S intersects Il in a cone with vertex a point p and
base an oval. This yields a contradiction, since the point p is then a singular
point of S.

Suppose II intersects S in ¢ + 2¢ + 1 points. By Lemma 5.3.7, we may

assume II intersects all planes in 1, ¢ + 1 or 2¢ + 1 points. Again we surely
have lines of S lying in S N 1II.
Consider a point p of SNIT and a line L of S, with p ¢ L. The plane « generated
by them is a (2¢+1)-plane and the intersection sizes of lines immediately prove
axiom (GQ3) for generalized quadrangles. By assumption, there is no point of
S in II collinear with all other points of II N S.

So S NI is a generalized quadrangle. Again by Theorem 1.1.2, it is a
classical one and hence it is Q*(3, q).

If IT intersects S in 2¢*+ ¢+ 1 points, then, by Lemma 5.3.5, we get extra
singular points, this yields a contradiction. Hence Theorem 5.2.7 is proved.

5.4 Proof of Theorem 5.2.8

Below we will prove the analogue of the above theorem for Hermitian varieties,
i.e. we will characterize Hermitian varieties by means of their intersection
numbers with respect to planes and solids.

5.4.1 Characterizations of H(3,¢*) and H (4, ¢?)
The classical generalized quadrangle H (3, ¢?)

It is known that a non-singular Hermitian variety H (3, ¢?) in PG(3,¢*) inter-
sects lines either in a point, a Baer subline or all ¢> + 1 points of the line. So
the intersection numbers with lines are 1, ¢+ 1, and ¢®+ 1. It intersects planes
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either in a non-singular Hermitian variety H(2,¢?) or in a cone with vertex a
point and as base a Baer subline. So the intersection numbers with planes are
@ +1and ¢+ ¢*+ 1.

The following terminology is introduced for the considered set K; it is
also used in the next section. Lines intersecting K in one point are tangent
lines, lines intersecting KC in ¢ + 1 points Baer lines, and lines intersecting IC
in ¢® + 1 points full lines.

Planes that intersect our set K in ¢® + 1 points are called non-singular
planes, and planes that intersect K in ¢> + ¢*> + 1 points are called singular
planes. Denote the intersection of a plane o and the set IC by IC,.

Theorem 5.4.1 If the intersection numbers with lines and planes of the point
set K of PG(3,q?) are intersection numbers with lines and planes of H(3,q?),
then K is a Hermitian variety H(3,q*).

Proof Firstly, every plane « contains a tangent line. Suppose the contrary;
then every line of « intersects IC in at least ¢ 4+ 1 points. This means that /C,
is a (¢ + 1)-fold blocking set in o. By Theorem 1.4.6, (¢ + 1)-fold blocking
sets in PG(2, ¢?) have size at least (¢ + 1)¢® + /(¢ + 1)¢% + 1, which yields a
contradiction with the assumptions on the intersection numbers with planes.

Next, there exists a full line. Suppose this is not the case, then we
distinguish between two cases.

Either no singular plane exists in which case all planes are non-singular.
In this case all lines must have the same intersection number with the set /C.
Suppose the contrary, so assume that there exists at least one tangent line, and
at least one Baer line, and consider all planes in PG(3, ¢?) through a line L,
respectively M, where we take L to be a tangent line and M to be a Baer line.
This yields two different numbers for the size of K, a contradiction. Since all
planes contain at least one tangent line, this means that all lines are tangent
ones. Then consider a plane o and a point p of K inside a. Look at all lines
through p inside .. Then a would contain only the point p, a contradiction.

The other case is that there exists a singular plane a. Take a point p of
Ko lying on a tangent line L and consider all lines through p inside . After
counting we find at most 1 + (¢?)g = 1 + ¢* points, again a contradiction. So
full lines certainly exist.

Also singular planes exist. To show this, consider a full line L and a point
p of K which is not incident with L. Consider all lines through p in the plane
a generated by p and L. All these lines contain at least 2 points hence they
are Baer lines or full lines. So at least 1+ q(¢*> + 1) = ¢* + ¢ + 1 points of the
set IC belong to a. Hence, a necessarily is a singular plane, and elementary
counting yields that exactly one of the lines through p inside « is a full line,
say M.
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This line M intersects L in a point r. Consider a point p’ in K, not lying
on L or M. Through this point p’ there goes a full line N in « by the previous
arguments. The line N necessarily contains r, otherwise it intersects L and M
in two different points s and ¢ respectively, but then through s ¢ M there are
two full lines in « that intersect M, namely L and N, a contradiction. Hence,
all lines through r in « are either tangent lines or full lines, so counting yields
that inside « there pass ¢ + 1 full lines through r.

One can also calculate the size of K. Consider all planes through a full
line; since they are all singular by the previous arguments, this yields

Kl=(@*+ 1)+ +1=(+1)(¢+1).

Define S to be the incidence structure with as points the points of the set IC,
as lines the full lines, and where a point p and a line L are said to be incident
if L passes through p. We have already proved that axioms (GQ2) and (GQ3)
for generalized quadrangles hold for S.

It is impossible that one point p of S is collinear with all other points
of §. If this were the case, then consider a plane 7 not through p. Since this
plane intersects K in either ¢34+ 1 or ¢® + ¢ + 1 points, K would contain either
14+ ¢*(¢*+ 1) or 1+ ¢*(¢* + ¢* + 1) points, which yields a contradiction with
the size of .

Since it was proved that there exists a point p in S such that there go
at least 3 lines of S through p, and since no point of S is collinear with all
other points of S, we have shown that the incidence structure S is a generalized
quadrangle. Hence by Theorem 1.1.2 of Buekenhout and Lefevre it is a classical
one, and by looking at the different classical generalized quadrangles, it has to

be H(3,q%). O

The classical generalized quadrangle H (4, ¢?)

Consider a set K of points in PG(4,¢?), such that all intersection numbers
with planes and solids are also intersection numbers with planes and solids
of the non-singular Hermitian variety H(4,q¢*). We show that K has to be
H(4,¢%). Since H(4,q?) intersects a plane either in a line, a non-singular
Hermitian variety H(2,¢?), or a cone with vertex a point p and base a Baer
subline H (1, ¢?), the intersection numbers with planes are

¢+ ¢+ ¢+ + 1

Call planes with intersection number either ¢ +1, ¢* +1 or ¢® + ¢*> + 1, small,
medium or large.

The intersection of a non-singular Hermitian variety H (4, ¢*) with a solid
is either a non-singular Hermitian variety H(3,q?) or a cone with vertex a
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point p and base a non-singular Hermitian variety H (2, ¢*), so the intersection
numbers with solids are

@+ (@ +1), ¢+ 1)+ 1L

Call solids with intersection number ¢?(¢® + 1) + 1 singular, the other ones
non-singular. For a given plane a, the set of points belonging to K N« will be
denoted by K,. A line L intersecting K in ¢ + 1 points is called a full line.

Theorem 5.4.2 If each intersection number with planes and solids of a point
set K in PG(4,q?) is also an intersection number with planes and solids of
H(4,q¢%), then K is a non-singular Hermitian variety H(4,q%).

To prove Theorem 5.4.2, we first need a series of lemmas.

Lemma 5.4.3 The set K contains |H(4,4*)| points.

Proof Call H; = ¢*(¢*> + 1) + 1 the number of points of K contained in a
singular solid, Hy = (¢> + 1)(¢® + 1) the number of points of K contained in
a non-singular solid, and x the total number of points contained in the set .
Call a the number of singular solids. Then counting the pairs (p, ) where p
is a point and « a solid such that p € K N «, respectively the triples (p,r, «)
with p, » € KNa, p # r, in two ways yields the following equations

10 _q 8 _ 1
a4 (g )y = v,

10_1 6—1

aHl(Hl _1)+(qu_1 —G)H2<H2—1) :$($—1>Z2_1

From the first equation we obtain a in function of x. Substituting this in
the second equation yields a quadratic equation in x. This equation has the
following two solutions

0"+ ¢+ ¢ +2¢° +2¢° +2¢" +2¢° +2¢° + ¢ + 1
P+q+1 '

The first solution is the desired one. The second one is not an integer, this
proves the lemma. O

r=q +¢+¢+1,

Consider a small plane a and look at all solids through « inside PG(4, ¢%).
Call the number of singular and non-singular ones a and b respectively, so
a+b=q*>+ 1. An elementary counting yields the following equation

a® +0(¢° + @)+ ¢+ 1= (¢ +1)(¢* +1).

Solving these equations yields a = ¢? + 1 and b = 0. So all solids containing a
small plane are singular. Similar calculations learn that the other planes are
contained in both kinds of solids.
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Lemma 5.4.4 There exist solids of both kinds.

Proof Suppose the contrary. Then the calculations above show that all planes
are small and all solids are singular. Take a line L containing ¢ points of the
set K. Consider all planes through L inside a solid. One gets the following
equation,

(F+D)(F+1—c)+e=¢+¢+ 1.

This yields a contradiction for all c. Hence, there exist solids of both kinds.
O

Lemma 5.4.5 For a large plane «, the set IC, is a blocking set in a.

Proof Suppose that o contains a line L which is not blocked by K. Con-
sider a large solid II through «. Since through small planes, there only pass
singular solids, all planes through L inside II are medium or large ones, but
then IT intersects the set K in more than (¢* + 1)(¢® + 1) points, which yields
a contradiction. O

Next we prove that also for small and medium planes «, the sets K, are
blocking sets in a. The case ¢ = 2 will be proved separately. First, the general
case is proved.

Lemma 5.4.6 Consider a medium plane . If ¢ > 2, then K, is a blocking
set i o

Proof Suppose that K, is not a blocking set in «, meaning that o contains a
line L which is not blocked by IC,. Consider a singular solid II through «, and
look at all planes through L inside II. By the previous lemma, all these planes
are small or medium. Call a the number of small ones, and b the number of
medium ones. We obtain the following equation

a(P+1)+b(@+1) =3P +1)+ 1.

Substituting @ = ¢> + 1 — b in the above expression yields
g

1
b=¢* — —.
qg—1
Since b has to be an integer, this is a contradiction if ¢ > 2. O

Lemma 5.4.7 Consider a small plane o. If ¢ > 2, then K, s a blocking set
i « and hence the points belonging to IC,, form a line of a.
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Proof If o contains a line L which is not blocked by the set I, then by the
previous lemmas all planes through L inside a solid II on o must be small ones.
But then II intersects K in (¢ + 1)? points, which yields a contradiction.

So K, is a blocking set in o, and blocking sets of size ¢*> + 1 in a plane
of order ¢* are lines by Theorem 1.4.8 of Bose and Burton. U

Next, the case ¢ = 2.

Lemma 5.4.8 Let ¢ = 2 and consider a plane o that is either small or
medium. Then the set K, is a blocking set for «. In particular, a small
plane « intersects IC in a line.

Proof Suppose that a small plane « contains a line L which is not blocked by
KCo. Consider a singular solid IT containing «, and call the number of small and
medium planes through L inside II, ¢ and v respectively. By Lemma 5.4.5,
we know that ¢ 4+ 1 = ¢*> + 1. Counting the number of intersection points of
IT and K yields the following equation

AP+ 1)+ 0P +1) =P +1)+ 1.

Substituting ¢ = 2 into these equations, one obtains ¢ = 2 and ¢ = 3.

Next it is shown that the total number of small planes inside II is 2. Call
the number of small, medium and large planes inside I1, a, b and ¢ respectively.
Then by counting the total number of planes in a solid, the incident pairs (p, a),
where p is a point of K and « a plane of II, and the triples (p,r, «) where p
and r are distinct points of K and « is a plane in II containing p and r, in two
ways, the following equations are obtained, where k = ¢*(¢® + 1) + 1,

a+b+c=(¢"+1)(¢"+ 1),
a(¢® +1) +b(¢° +1) + (¢’ + ¢ + 1) = k(¢" + ¢* + 1),

a(q* +1)¢* +b(q° + 1)¢* + (¢’ + ¢ + 1)(¢* + ¢*) = k(k — 1)(¢* + 1)
Solving these equations yields a = ¢(q — 1), so if ¢ = 2, then a = 2. This
implies that all other lines inside a are blocked, otherwise at least 3 small
planes are contained in II, since each non-blocked line has two small planes
through it in II and only o can be counted twice.

This implies that by adding an arbitrary point r on L to K, a blocking
set of size ¢* + 2 arises and so each such blocking set K, U {r} has to contain
a line M, by Theorem 1.4.4. Since the point r on L was arbitrary this means
all these sets contain the same line M already contained in IC,, but then L is
blocked by K, a contradiction.

Consider a line L in a medium plane «. Consider a singular solid II

containing a. The calculation in the beginning of the proof shows that if L is
skew to K, then L is contained in a small plane. Hence, L is blocked. 0]
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Remark 5.4.9 It was already shown that singular solids exist, and by the
previous proof all singular solids contain small planes. Since small planes
intersect IC in a full line, the set IC contains full lines.

Lemma 5.4.10 Every line intersecting K in ¢ points, where 2 < ¢ < ¢*> + 1,
18 contained in at least one medium plane.

Proof Suppose a line L intersects K in ¢ points, with 2 < ¢ < ¢*> + 1, and has
no medium planes through it. Consider a solid Il containing L and look at all
planes through L inside II. So since none of these planes can be small since
they share a full line with IC, by assumption all these planes are large ones, 11
would contain (¢ +1)(¢> + ¢> + 1 — ¢) + ¢ points belonging to the set K. This
yields a contradiction, even for a non-singular solid, unless ¢ = ¢® + 1, a case
which is excluded. [

Lemma 5.4.11 If o is a medium plane, it contains no full lines.

Proof A medium plane « is always contained in at least one non-singular solid
I1. Suppose that L is a full line lying in o and consider all planes through L
inside II. The proof of the foregoing lemma immediately shows that all these
planes have to be large ones, as [ITINK| = (*+ 1)(¢*+1) = (P + 1)(*+ ¢ +
1 —|L|) + |L], a contradiction. O

Lemma 5.4.12 If a is a medium plane, then IC, is a minimal blocking set in
a.

Proof Consider a line L in « containing ¢ points of the set IC, where 2 < ¢ <
¢*> + 1. Note that such a line exists since a medium plane does not contain full
lines by Lemma 5.4.11.

Consider a singular solid II through «, and look at all planes through L
inside II. We get at least

(@ +1-0(+1)+ec

points belonging to II N I because no small planes can contain L since all
small planes intersect K in a line. This yields ¢ > ¢ otherwise II would not
be a singular solid. The case ¢ = ¢ cannot occur. Suppose the contrary. So
take a line L such that L intersects K in ¢ points. Consider a singular solid
IT through L. The same counting argument as above yields that all planes
through L inside II must be medium planes. Since every plane through L is
contained in at least one singular solid, X would contain

@+ +D)(@P+1—)+g=q¢+¢"+¢ +1
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points, which yields a contradiction. So, ¢ > ¢+ 1. If K, would be a non-
minimal blocking set, then there would be a point p of K, so that no line
of av through p is a tangent one. Hence, all lines through p would contain
at least ¢ + 1 points. But then counting yields that K, contains at least
1+ (¢> +1)g = ¢* + ¢ + 1 points, a contradiction. O

Using the foregoing lemma, one can easily determine the intersection numbers
with lines.

Lemma 5.4.13 All lines intersect K in 1, ¢+ 1, or ¢*> + 1 points.

Proof Since every line intersecting K in ¢ points, with 2 < ¢ < ¢% + 1, is
contained in a medium plane and since medium planes intersect /C in minimal
non-trivial blocking sets, it follows from Theorem 1.4.4 that the blocking set
is a unital and so ¢ = ¢ + 1. 0

Proof of Theorem 5.4.2. A line L intersecting K in ¢ + 1 points is called
a Baer line; a line intersecting K in ¢? + 1 points is called a full line. For
q > 2 the proof is easily finished by Theorem 23.5.19 in [28]. So an additional
argument is necessary for ¢ = 2. However, the following reasoning works for
all q. Consider a point p in K and a line L in K which are not incident. By
Lemma 5.4.11, the plane generated by them is a large one. The lines through
p in that plane all are Baer lines or full lines. Elementary counting yields that
exactly one of them is a full one.

Define § to be an incidence structure with as points the points of the
set KC, as lines the full lines, and where a point p and a line L are said to be
incident if L passes through p. We have already proved that axioms (GQ2)
and (GQ3) for generalized quadrangles hold for §. There is no point which
is collinear with all others. If there was a point p collinear with all others,
then consider a solid II not incident with p. Since this solid contains either
(@ +1)+1or (¢*+1)(¢*+ 1) points, then

Kl e {1+ +1)+1),14+ (" +1)(¢° + 1))}

This yields a contradiction with the size of IC. Next it will be shown that there
is a point with at least three lines through it. Let p be a point of IC and let L be
a full line of I with p not on L. We know that every point p’ of K\ L in (p, L)
lies on exactly one full line intersecting L. Suppose that the full line through p
intersecting L intersects L in r, then r already lies on two full lines. Consider
a Baer line of (p, L) not through r. Every point of this Baer line is contained
in a full line which intersects L which necessarily has to pass through r. So
r is on at least 3 lines of S. Hence, § is a generalized quadrangle. Theorem
1.1.2 implies that it is a classical one and by looking at the different classical
ones, it has to be a non-singular Hermitian variety H (4, ¢?%). O
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5.4.2 Generalization

Consider a set K of points in PG(n,¢?), n > 4, for which each intersection
number with planes and solids is also an intersection number with planes and
solids of a Hermitian variety. First let us recall what the intersections of
Hermitian varieties with planes and solids look like.

A plane lies on the Hermitian variety, or intersects it in either a non-
singular Hermitian variety H(2,¢?), a cone with vertex a point and base a
non-singular Hermitian variety H(1,q?), or a line.

A solid lies on the Hermitian variety, or intersects it in either a non-
singular Hermitian variety H(3,¢?), a cone with vertex a point and base a
non-singular Hermitian variety H(2,¢?), a cone with vertex a line and base a
non-singular Hermitian variety H(1,¢?), or a plane.

So the intersection numbers of the set IC with planes belong to

¢+, + 1,8+ ¢+ L+ ¢+,
and the intersection numbers of the set X with solids belong to
e B TN Al S/l O S S/l o A Rl R B

Call a plane, a solid or a line intersecting the set K in ¢ points an i-plane,
i-solid or i-line. A plane intersecting the set K in ¢* + ¢*> + 1 points will be
called a full plane, a solid intersecting the set K in ¢ + ¢* + ¢® + 1 points will
be called a full solid, and a line intersecting the set K in ¢ + 1 points will be
called a full line.

Lemma 5.4.14 A (¢* + ¢* + 1)-solid 11 intersects the set K in a full plane.

Proof Suppose some line L in Il does not intersect . Consider all planes
through L inside II. Then at least (¢*> + 1)? points are contained in IIN K, a
contradiction. Hence all lines in II are blocked by the set K. Theorem 1.4.8
implies that II N IC is a plane. OJ

Lemma 5.4.15 A (¢° + ¢ + ¢* + 1)-solid 11 does not contain full planes nor
(¢*> + 1)-planes.

Proof Let H, =¢* +1, Ho=¢+1, Hy=¢+ ¢+ 1, Hy=q¢* +¢* +1 and
r = ¢+ ¢ +¢>+1. Call the number of Hi-, Ho-, Hs- and Hy-planes inside II,
a, b, ¢ and t respectively. It will be shown that the parameters a and t have
to be zero.

By counting the total number of planes in a solid, the incident pairs
(p, ), where p is a point of K and « a plane of II, and the triples (p,r, «)
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where p and r are distinct points of K and « is a plane in II containing p and
r, in two ways, the following equations are obtained.

8
q° —1
a+b+c= o t,
¢° -1
CLH1 -+ bHQ -+ CH3 = 332— — tH4,
g —1
4
—1
aHy(Hy, — 1) + bHy(Hy — 1) + cHy(H; — 1) = 2(z — 1);12 — — tHy(H, — 1),
Solving these equations yields a = —t(¢* — ¢ + 1), hence t = 0 = a. O

Lemma 5.4.16 A (¢° + ¢* + 1)-solid 11 contains at most q full planes. If it
contains q full planes, then there are no (¢* + ¢* + 1)-planes contained in II.
Furthermore, a (¢° + ¢* + 1)-solid always contains (¢*> + 1)-planes.

Proof Denote the number of full planes inside IT by ¢ as above. Using the
same counting techniques as above we find a = ¢* —tq* +tq—t+1, b = ¢*(¢*+t)
and ¢ = ¢* — (t + 1)¢® + (1 + t)¢*> — tq. Since ¢ has to be positive, it follows
that t < q. We see that a > 0. O

Lemma 5.4.17 If a (¢° + ¢*> + 1)-solid 11 does not contain lines intersecting
KC in q points then it does not contain full planes.

Proof Suppose II does contain a full plane 7. By the proof of the previous
lemma there exist (¢* + 1)-planes in IT. Consider a (¢* + 1)-plane « in IT and a
point p € LN« outside 7 and a line L in « passing through p. If |LNK| = =,
the following inequality holds.

@+ )@ +1-2)+2<+¢+1

Hence x > ¢. Since we assume there are no ¢-lines in II, it follows that
x > q+ 1. Considering all lines through p inside « yields a contradiction. [J

Lemma 5.4.18 A (¢° + ¢* + ¢* + 1)-solid contains q + 1 full planes.

Proof Apply exactly the same method as in the proofs of the lemmas above.
Hence, a = ¢ +¢* —q—1—1t(¢> —q+ 1) and b = ¢*(—q +t — 1). The first
equation implies t < ¢+ 1, while the second implies t > ¢+ 1, hence t = g+ 1.

O

Lemma 5.4.19 A (¢° + ¢* + ¢* + 1)-solid 11 is a union of ¢+ 1 full planes all
passing through the same line L.
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Proof Suppose there does not pass a full plane lying in IT through p, with
p € KNII. Consider an arbitrary line L in Il passing through p and intersecting
KC in x points. Consider all planes through L inside II. Then at most

@+ D@+ +1-2)+r=¢+¢" +¢" +1+¢" + (1 - 2)¢”

points belong to II N K. This implies x < g + 1. Consider all lines through p
in a fixed plane  of Il through p; they all contain at most ¢ + 1 points of I,
hence 3 contains at most 1+ (¢> + 1)g = ¢® + ¢ + 1, so at most ¢> + 1 points
of the set K. Hence all planes in II through p would contain at most ¢ + 1
points. Consider again an arbitrary line L in Il passing through p and repeat
the argument above. We get the inequality

@+ +1—a)+z>¢+¢" +¢ + 1.

This yields a contradiction. Hence through all points p € II N KC there passes
a full plane belonging to II. So II intersects K in a union of ¢ + 1 full planes.
Since [IIN K| = ¢® + ¢* + ¢* + 1, these planes all intersect in the same line,
otherwise there would be fewer points contained in I1 N K. 0

Lemma 5.4.20 If a 4-space A is such that |ANK| = (¢* + 1)(¢° + 1), then
AN K is a non-singular Hermitian variety H(4,q%).

Proof Let S = ¢* + >+ 1, S =¢ +¢*+1, 83 =¢+¢3+¢>+1, Sy =
CHt++1S5=¢4+¢*+¢*+1and x = ¢" +¢° +¢*+1. Call the number
of Si-, So-, S3-,94- and Ss-solids inside I, a, b, ¢, t; and t5, respectively. It
will be shown that the parameters ¢; and ¢, have to be zero.

Then by counting the total number of solids in a 4-space, the incident
pairs (p, IT), where p is a point of I and IT a solid of A, and the triples (p, r, II)
where p and r are distinct points of IC and II is a solid in A containing p and
r, in two ways, we obtain the following equations

q10_1

b = — 11—t
a+0+c q2 1 1 2

8

1
aS; +bS, + Sy = 2= - — 1153 — 1S5,
q —

¢ -1
T DS ) aS5(S5).

Solving these equations yields a = —t2(q47q2ﬁ‘f!1q+1)+tl. Hence, t| =ty = a =
0. So the only solids that occur in A are (¢° + ¢* + 1)- and (¢° + ¢* + ¢* + 1)-
solids. If A contains a full plane 7, then consider all solids in A through 7.
We get at most

aS1(S1—1)+bS3(S—1)+cS5(53—1) = z(x—1)

@+ +E -+t + P +1
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points, a contradiction. Hence the intersection numbers with planes and solids
are those of Theorem 5.4.2, so A N K is a non-singular Hermitian variety
H(4,¢%). O

Lemma 5.4.21 If a 4-space A contains a line L intersecting IC in q points,
then this line cannot be contained in a (¢*> + 1)-plane of A. Furthermore, if L
is only contained in (¢> + 1)-planes of A, then [CNA| =q" +¢* +¢* + 1.

Proof Clearly L cannot be contained in full planes of A. First suppose that
L is only contained in (¢*+1)-planes of A. Then KNA = (¢*+¢*+1)(¢*+1—
q)+q=q" +q*+¢*+ 1. Next suppose that L is contained in a (¢? + 1)-plane
a of A. By Lemma 5.4.15, « is not contained in a (¢° + ¢* + ¢* + 1)-solid
of A. Since (¢* + ¢* + 1)- and (¢° + ¢* + ¢* + 1)-solids do not contain lines
intersecting K in ¢ points, all solids through « in A are (¢° + ¢ + 1)-solids.
Hence [ANK| = (¢*> + 1)¢° + (¢* + 1). This is impossible by the previous
lemma. 0]

Lemma 5.4.22 In a j/-space A, a (¢* + ¢*> + 1)-plane 3 does not contain a
q-line.

Proof By the previous lemma, a g-line cannot be contained in a (¢*+1)-plane.
If in some 4-space A, a g-line L lies in a (¢° + ¢* + 1)-solid II then an easy
counting learns that inside II, L is only contained in (¢* + 1)-planes. Hence
if a (¢> + ¢*> + 1)-plane 3 lying in A contains L, then § is not contained in
(¢° + ¢ + 1)-solids of A. Since (¢° + ¢* + ¢*> + 1)-solids do not contain g-lines,
in this case

IKNAl=(@+ 1) +F+ @+ 1=¢"+¢ +¢F + ¢+ 1.

Suppose A contains a (¢? + 1)-plane a and look at all solids through « inside
A A (¢° + ¢+ ¢® + 1)-solid and a full solid do not contain (¢ + 1)-planes,
hence

ag' +0¢° + (@ +1-a-0)( +¢" )+ +1=¢" +" + ¢+ + 1.

Solving this equation yields a = m, but this is never an integer, con-
q

tradiction. Hence A does not contain (¢* + 1)-planes. Since (¢* + ¢ + 1)-,
(¢® +¢* + 1)- and (¢° + ¢* + ¢* + 1)-solids all contain (¢* + 1)-planes, these
solids do not occur in A.

Consider a (¢°+¢>+¢*+1)-solid in A. Such a solid contains (¢*+1)- and
(¢ + ¢*> + 1)-planes. Consider all solids through a (¢* + 1)-plane inside A. By
the previous all these solids are (¢°+¢®+¢*+1)-solids. Next, consider all solids
through a (¢® + ¢* + 1)-plane inside A. Again these are all (¢° + ¢* + ¢*> + 1)-
solids. This yields a contradiction since we get a different number of points in
the respective cases. 0]
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Lemma 5.4.23 A 4-space A intersecting K in q7 +¢* + ¢> + 1 points contains
at most q full solids. Furthermore, if A contains q full solids, then it contains
no (¢° + ¢* + ¢* + 1)-solids.

Proof Let S = ¢* +¢*+ 1, So =+ +1, Ss=¢"+@F+¢*+1, 8, =
CHt+?+1S5=¢4+¢*+¢*+1and x = ¢" +¢*+¢*+1. Call the number
of Si-, So-, S3-,594- and Ss-solids inside 11, a, b, ¢, t; and ts, respectively. The
parameters t; and t, will be used in the calculations.

Then by counting the total number of solids in a 4-space, the incident
pairs (p, IT), where p is a point of I and II a solid of A, and the triples (p, r, II)
where p and r are distinct points of IC and II is a solid in A containing p and
r, in two ways, one obtains the following equations

10
g™ —1
b+c= —t—t
a+0+c P -1 1 25
¢ —1
a81 + sz + CSg =X D) 1 — t184 — t255,
q _
6
-1
4S1(S1—1)+bSs(So—1)+¢S3(S5—1) = x<x—1>32 — —1Su(S1= 1)~ 255(S5—1).
Solving this yields ¢ = (q4_(qg_q232(1_ztji_qt2_t1)q3. Since ¢ must be non-negative,
the proof is finished. O

Lemma 5.4.24 Suppose all lines intersect K in 1, q, ¢+ 1 or ¢*> + 1 points
inside a (¢* + 1)-plane «.

(i) If at least 2 lines in o intersect K in ¢*>+1 points, then « intersects K in
a cone with vertex a point and base a line intersecting in K in q points.

(ii) If there is no line intersecting K in q points contained in o, then «
intersects IC in a unital.

(i) If there is a line intersecting KC in q points contained in «, then there is
also a full line is contained in .

Proof (i) Assume that o contains more than one full line, so at least two, say
L and M. These lines intersect in a point r. Take an arbitrary point p on
L or M different from r. All lines through p inside « different from L or M
intersect K in ¢ points otherwise one gets more than 1+¢*+¢*(¢—1) = ¢*+1
points. Consider now a point s in N« not lying on L or M. All lines through
s inside a not through r intersect K in ¢ points. Hence the line rs is a full line.
Hence, the point r is collinear with all other points, proving our claim. (ii)

and (iii) follow easily using standard counting techniques as in Lemma 5.4.23.
O
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Lemma 5.4.25 If a /-space A contains a line L intersecting IKC in q points,
then it intersects K in q° + ¢* + ¢*> + 1 points. Furthermore all lines in A
intersect K in 1, q, ¢+ 1 or ¢* + 1 points and (¢* + ¢* + 1)-planes in A do not
contain q-lines.

Proof By Lemma 5.4.21 and Lemma 5.4.22, L is only contained in (¢ + 1)-
planes inside A. Then Lemma 5.4.21 shows that |[ANK| = ¢" + ¢* + ¢* + 1.
Consider all solids through a (¢* + 1)-plane of A inside A. Then one gets at
least
@+ +E—P)+ P +1=q"+¢" "+ +1

points. Hence, a (¢> + 1)-plane of A is only contained in (¢° + ¢* + 1)-solids in
A and not contained in a (¢° + ¢* + ¢* + 1)-solid in A. This means there are
no (¢° + ¢* + ¢>+ 1)-solids inside A, since by Lemma 5.4.15 such solids contain
(¢® + 1)-planes.

Consider a (¢ + 1)-plane in A. If such a plane is not contained in a
(¢* + ¢* + 1)-solid of A, then at least (¢* +1)(¢°) + ¢* + 1 points are contained
in KN A, a contradiction. Hence (¢* + 1)-planes contained in A intersect K
in a line by Lemma 5.4.14.

Consider a (¢ + ¢*> + 1)-plane 8 in A and all solids through it inside
A. By Lemma 5.4.14, (3 is not contained in a (¢* + ¢*> + 1)-solid, clearly (3
cannot be contained in a full solid and by the previous paragraph there are no
(¢° + ¢ + ¢* + 1)-solids inside A. Then counting yields there passes exactly
one (¢° + ¢* + ¢ + 1)-solid through 3 in A. Hence if a point p of K in A does
belong to a (¢* + ¢*> + 1)-plane of A, then there is a full plane through p in A
by Lemma 5.4.19. Suppose there is a point p of I in A such that there does
not pass a full plane through p in A. Then also no (¢* + ¢* + 1)-plane passes
through p in A. Consider a line through p in A that contains x points of K.
This yields the following inequality

@+ +D)(@P+1—2)+2>¢ +¢" + 7+ 1.

Hence x < ¢g. Consider all lines through p inside a fixed plane 7 through p
lying in A. Then 7 contains at most (¢? +1)(¢ — 1) + 1 points, hence 7 should
be a (¢?+1)-plane, but such a plane contains a full line, a contradiction. Hence
through all points p € £ N A, there passes a full plane. Hence it follows that
a (¢° + ¢* + 1)-solid of A is the union of full lines.

Ima (¢*+¢*+1)- a(¢®+q¢*+ ¢+ 1)-, and a full solid of A, all lines
intersect K in 1, ¢+ 1 or ¢® + 1 points. Hence if a line in A does not intersect
Kin 1, ¢+ 1 or ¢*> + 1 points, then it lies in a (¢° + ¢* + 1)-solid II inside A
since there are no (¢° + ¢* + ¢* + 1)-solids inside A.

Consider a point p € KNII. Consider a line L through p in I containing
x points of K, where x is different from 1, ¢+ 1 and ¢® + 1. Consider all planes



5.4. HERMITIAN 175

through L inside II. Assume, by way of contradiction, that L is contained in a
(¢®+¢* +1)-plane of A. As such a plane is contained in one (¢° +¢* +¢* +1)-
solid of A, we have z € {1,q + 1,¢*> + 1} by Lemma 5.4.19, a contradiction.
Hence, all planes of II containing L are (¢® + 1)-planes. This implies

@+ +1-a)+r=¢+¢+1.

Hence z = ¢, so all lines in A intersect K in 1, ¢, ¢ + 1 or ¢> + 1 points. I

5.4.3 Case 1: There is no line intersecting K in ¢ points

In this section it is assumed that no line intersects the set IC in ¢ points. Define
a point-line geometry S = (P, B,I), where the points of P are the points of
IC, where the lines of B are the full lines and where incidence is containment.

Theorem 5.4.26 The geometry S is a Shult space.

Proof Consider a point p of § and a line L of §, such that p and L are not
incident. We prove the main axiom for the incidence relation of a Shult space,
referring to it as the 1-or-all axiom; see Section 1.2 for the definition of a Shult
space.

Consider the plane « generated by p and L and let A be a 4-dimensional
subspace containing «. Several cases are distinguished.

By Lemma 5.4.17 all (¢° 4+ ¢* 4+ 1)-solids in A do not contain full planes.

1) Suppose there is a solid IT containing « in A that contains a full plane
(. Then II intersects K either in 3, a (¢° +¢* +¢*>+ 1)-solid, which is the union
of ¢ + 1 full planes through a line M, or a full solid. In all cases the 1-or-all
axiom holds.

2) Suppose A does not contain full planes. Then A also does not contain
(¢* 4+ q® +1)- or (¢° + ¢* + ¢* + 1)-solids. By Theorem 5.4.2 A intersects K in
a non-singular Hermitian variety H(4,¢*), hence the 1-or-all axiom holds.

3) Suppose A contains a full plane /3, but no solid containing « inside A
contains a full plane. Consider a solid II in A containing (. If L belongs to II
then it is contained in a full plane lying in II bringing us back to Case 1. So
assume L and II intersect in a point s. This point belongs to a full plane v in
I1, which might be equal to 5. Consider the solid generated by p and ~. This
solid is either a (¢° + ¢* + ¢* + 1)-solid or a full solid. Inside this solid there
is a full plane 1 that passes through p. If L intersects 1) we are back in Case
1, so assume L N = (). Consider an arbitrary point » € L and the solid II,
generated by r and . This solid intersects K in a full solid or in a cone with
vertex a line and base a line intersecting I in ¢ + 1 points. Hence the line rp
intersects K in ¢ + 1 or ¢*> + 1 points. Consider all lines through p inside «;
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then the assumptions on the intersection sizes of planes with the set I imply
that the 1-or-all axiom holds. OJ

Theorem 5.4.27 If S is non-degenerate, then it is a non-singular Hermitian
variety in PG(n,q¢*), n > 4.

Proof If there exists a full plane, then S is a non-degenerate Shult space
of finite rank at least 3, and since all lines contain at least three points by
definition, & with all its subspaces is a polar space. By Theorem 1.2.1 it is a
finite classical polar space and by looking at the intersection numbers, S is a
non-singular Hermitian variety.

If there exists no full plane, then the previous arguments show we have
proved that axiom (GQ3) for generalized quadrangles is satisfied for S. Clearly,
there is a point p through which there pass three lines of S. Hence, § is a
generalized quadrangle.

By Theorem 1.1.2, it is a classical one; going through the list of classical

generalized quadrangles yields it is the non-singular Hermitian variety H (4, ¢%).
O

Suppose now that S is degenerate, so there exist points collinear with all other
points. Such points are called singular points.

Lemma 5.4.28 The singular points of S form a subspace I of PG(n, ¢?).

Proof Take two singular points p and r of § and consider a point ¢ lying
on the line L = pr. We claim that ¢ is a singular point. Since p and r are
both singular, all the points of L belong to S, sot € S. Let M # L be an
arbitrary line through ¢ and consider the plane o generated by L and M. If «
intersects S in L then M intersects S in 1 point. If a contains a point n of S
not belonging to L, then through n there pass at least two full lines in « since
p and r are singular points. Since we have the 1-or-all axiom all lines through
n in « are full lines. Hence « is a full plane and M is a line of S. So every line
through t intersects S either in 1 or in ¢ 4 1 points. O

Lemma 5.4.29 If S contains singular points, then all lines not intersecting
the subspace 11, formed by the singular points, intersect S in 1, g+1, or ¢>+1
points.

Proof Consider a line L not intersecting II;. Take a singular point p and
consider the plane generated by p and L. Since this plane contains either
P+1, @ +1, ¢ +¢*+1or ¢t 4+ ¢*+1 points of S by assumption, the lemma
is proved. 0
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Lemma 5.4.30 Ifn—k—1 >4, then S is a cone with vertex a k-dimensional
space and base a non-singular Hermitian variety.

Proof If S is degenerate, then look at a complementary space PG (n—k—1, ¢*)
of the space II;. By assumption, this space does not contain singular points of
S. If n—k—1 > 4, then Theorem 5.4.27 shows that S intersects this space in a
non-singular Hermitian variety, hence S is a cone with vertex a k-dimensional
space and base a non-singular Hermitian variety. O

Now, consider all other cases one by one.

(a) If n — k — 1 = —1, then § is the projective space PG(n, ¢?).

(b) If n — k — 1 =0, then S is a hyperplane of PG(n, ¢*).

(c) f n —k —1=1, then the complementary space is a line. If this line
intersects K in one or in ¢* 4 1 points, a contradiction. If it intersects K in
q + 1 points, it is the union of ¢ + 1 hyperplanes.

(d) If n — k — 1 = 2, then the complementary space is a plane 7. By
Lemma 5.4.29 all lines intersect in 1, ¢ + 1 or ¢* + 1 points.

(1) Suppose that 7 intersects S in ¢? + 1 points. Since all lines are
blocked, this intersection has to be a line, but then there are singular points
in the base, a contradiction.

(2) Suppose that 7 intersects S in ¢®>+1 points. Since we assume no lines
intersect K in ¢ points, all lines in 7 intersect S in 1 or in ¢ + 1 points, hence
7 intersects S in a unital. Indeed, if there would be a full line L in 7 then
consider a point p in N S not belonging to L, and consider all lines through
pin m. At least 1+ (¢*> +1)q = ¢* + ¢ + 1 points would be contained in 7N S,
a contradiction.

(3) Suppose that 7 intersects S in ¢ + ¢ + 1 points. Since there is no
line in 7 that intersects K in ¢ points, the 1-axiom for generalized quadrangles
is fulfilled. Hence some point s € S N 7 is collinear with all other points in
S N otherwise we have a generalized quadrangle fully embedded in 7, which
yields a contradiction. But then s is a singular point, which is impossible.

(e) If n — k — 1 = 3, then the complementary space is a solid II.

By assumption, the solid Il does not contain a line intersecting S in ¢
points. If IT contains a full plane then by Lemmas 5.4.15 and 5.4.17 it is either
a (¢* +¢*+ 1)-solid, a (¢° + ¢* + ¢® + 1)-solid or a full solid. In all cases there
are singular points in the base, a contradiction. Hence II does not contain full
planes. Then Lemma 5.4.1 implies that ITN K = H(3, ¢?).

Theorem 5.4.31 If a set K of points in PG(n, ¢?), n > 4, contains no lines
intersecting IC in q points, and if the intersection numbers of IC with planes

and solids are also intersection numbers of planes and solids with a Hermitian
variety in PG(n,q*), then K is either
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(i) the projective space PG(n, ¢?),
(i) a hyperplane in PG(n,¢?),
(iii) a Hermitian variety in PG(n, ¢?).
)

(iv) a cone with vertex an (n — 2)-dimensional space and base a line inter-
secting K in q + 1 points.

(V) a cone with vertex an (n — 3)-dimensional space and base a unital.

5.4.4 Case 2: There is a line intersecting K in ¢ points

In this section it is assumed that there is a line intersecting the set K in ¢
points. Since every line M together with a ¢-line lie in a 4-space A, by Lemma
5.4.25 every line intersects the set K either in 1, ¢, ¢ + 1 or ¢*> + 1 points.
Consequently, by Theorem 1.4.8, a (¢® + 1)-plane intersects K in a line. Again
by Lemma 5.4.25 a line intersecting K in ¢ points is only contained in (¢ + 1)-
planes. The following notations are introduced:

mm =1,
i) = T
Hy(k) = ¢* ' + fj —,
Hy(k) = C]qu;—i_l 1

Lemma 5.4.32 Assume K is contained in 11, = PG(n, ¢%).
(i) Then |K| = Hs(n).

(ii) Next, consider any subspace I1; of dimension | in I1,,, with | > 2. Then
I N K] € {H(l), Ha(l), Hs(l), Ha(D)}-

(iii) If [KNIL| = Hi(l), 1 > 1, then KN 1L, is an (I — 1)-dimensional space.

(iv) If KNI = Hs(l), I > 1, then KN 1L, is a union of ¢+ 1 (I — 1)-
dimensional spaces containing a common space I, o of dimension [ — 2.

(v) If IKNIL| = Hy(l), 1 > 1, then KN 1L, is the l-dimensional space I1;.



5.4. HERMITIAN 179

(vi) If in a space of dimension | + 2 which intersects KC in Ha(l + 2) points
an l-dimensional space I1; is only contained in (I+ 1)-dimensional spaces
which intersect K in Hy(l + 1) points, then 11, intersects K in Hs(l)
points.

Proof (i) Since a g-line of II,, is only contained in (¢* 4 1)-planes, necessarily

) ¢ 2 -1
’Hn ﬂIC’ = (C]3 +1-— q)q2—_1 +q= H2<n)

(ii) Consider a (¢* + 1)-plane o and all solids through « inside II,,. By
Lemma 5.4.14 and Lemma 5.4.19,  can only be contained in (¢°+¢?+1)- and
(¢° + ¢ + ¢* + 1)-solids. An elementary counting yields that only the former
occurs. This also implies that there are no (¢° + ¢* + ¢* + 1)-solids contained
in IT;, since such solids always contain (¢* + 1)-planes by Lemma 5.4.15.

If a (¢* + 1)-plane « is contained in II;, then since all solids through «
inside II; are (¢° + ¢* + 1)-solids, we find that |II; N K| is equal to

20—-4 1

qg—_l(q5 +¢¢ =)+ ¢ +1=Hyl)

If there is no (¢ + 1)-plane contained in II;, then by Lemma 5.4.25 all
lines intersect K in 1,¢ + 1 or ¢*> + 1 points. Now for [ > 4, Lemma 5.4.31
proves (iii), (iv) and (v) of this Lemma.

For [ = 3, (iii) is the statement of Lemma 5.4.14, (iv) is the statement of
Lemma 5.4.19, and (v) is obvious.

To prove (vi), denote the number of points in II; N I by x. Then we get
the following equation

q2l_1

a+3 4
- _|_—
¢ —1

(¢ + 1) (¢ + T)+x=q

Solving yields = = Hj(l). O

Theorem 5.4.33 If there is a line intersecting K in q points, then the set IC
is a cone with vertex an (n — 3)-dimensional space and base a (¢> + 1)-plane.

Proof (1) Suppose K does not contain a hyperplane. In this case, there are
only three types of hyperplane intersections by Lemma 5.4.32. With a standard
counting technique as in Lemma 5.4.23 we can determine that there are exactly
¢® + 1 hyperplanes which intersect K in a space of codimension 2 and there
exists a hyperplane II,,_; which intersects K in H3(n—1) points, and by Lemma
5.4.32 (iv) II,,—; intersects K in a union of ¢ + 1 (n — 2)-dimensional spaces
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II,,_5; through a common (n — 3)-dimensional space II,_3. Let II!,_; be one
of the (¢® 4+ 1) hyperplanes which intersect K in an (n — 2)-dimensional space
II,,—5. Every space II,,_o; intersects II,,_; in at least an (n — 3)-dimensional
space which has to be completely contained in II,, 5. This implies that II,,_o
contains II,_3 completely. Because, either there are two II,_5; which share
the same (n — 3)-dimensional space with I, _, which then must be II,,_3 or all
I1,,_5,; share different (n — 3)-dimensional spaces with II,_». But this implies
that II,,_5 is completely contained in II,,_1, so II,,_3 again is contained in II,, 5.
Hence, in this case, K is a union of ¢* + 1 spaces of dimension (n — 2) which
have an (n — 3)-dimensional space in common. Since for such a cone, the size
is Hy(n), which is also the size of IC, K is necessarily equal to this cone.

(2) Suppose K does contain a hyperplane II,,_;. Consider a point p ¢
II,_;. We claim that p is contained in an (n — 2)-dimensional space II,_o
which is completely contained in K. If this would not be the case, then all
hyperplanes through p would intersect K in Hy(n — 1) points, since cases (iii),
(iv) and (v) of Lemma 5.4.32 are unions of (n — 2)-dimensional spaces and
reasoning inductively using (vi) of Lemma 5.4.32 all lines through p would
intersect IC in ¢ points, a contradiction.

The space I1,,_5 through p intersects II,,_; in an (n—3)-dimensional space
I1,,_3. Take an arbitrary point r € II,,_3, a point s € K\ (II,,_; UTI, _5), and a
point ¢ in IT, 5\IT, 3. Consider the plane 7,4 generated by r, s and ¢. This
plane intersects Il,,_; in a full line. Hence, this plane contains at least two full
lines. If 7,4 is a (¢* + 1)-plane, then due to Lemma 5.4.24 the line s is a full
line. If 7, is a (¢® + ¢+ 1)-plane, then m, intersects K in ¢+ 1 lines through
a common point. Indeed, since 7,4 contains already two full lines, it is easy
to deduce from the fact that all lines intersect K in 1, ¢ + 1 or ¢*> + 1 points
that every point is collinear with the intersection point of these two full lines.
This finishes the proof. U

In the case that there are no lines intersecting K in ¢ points, Theorem
5.4.31 leads us to cases (i), (ii), (iii), (iv) where the base intersects K in ¢ + 1
points and (v) of Theorem 5.2.8. If there is a line intersecting K in ¢ points,
Theorem 5.4.33 shows that K is a cone with vertex an (n — 3)-dimensional
space and base a ¢® + 1-plane .. The plane a necessarily contains a full line
by Lemma 5.4.24. If there is exactly one full line contained in o we have (vi)
of Theorem 5.2.8 and if there are at least two full lines contained in o we are
lead to (iv) of Theorem 5.2.8 where the base contains ¢ points.
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5.5 Proof of Theorem 5.2.10

Below we will handle the four different types of polar spaces one by one. The
basic idea is to study certain structures in the dual projective space. However
the elliptic and parabolic case will turn out to be harder than the other two
cases, and especially the parabolic case will be more complex and interesting
(this is basically due to the fact that there are more intersections with respect
to hyperplanes).

Remark 5.5.1 Throughout this section we will use the usual notations for
non-singular polar spaces. A cone with vertex a point p or a line L over a
non-singular polar space, e.g. over a Q(2n,q) will be denoted by pQ(2n,q),
respectively LQ(2n, q) (a small letter will always indicate that the vertex of the
cone is a point, while a capital letter will indicate that the vertex is a line).
With these conventions, the notations will always immediately tell whether the
considered polar space is singular or non-singular. Only in the statements of
our lemmas and theorems we will explicitly mention the (non-)singular char-
acter of the considered polar spaces.

From here on we always assume that we work in a projective space of
dimension at least four and that ¢ > 2.

5.5.1 Hermitian varieties

Let us first recall the intersections of a Hermitian variety H(n, ¢*) in PG(n, ¢?)
with hyperplanes and subspaces of codimension 2. A hyperplane intersects
H(n,q?) either in H(n — 1,¢%) or in a cone pH(n — 2,¢*). A subspace of
codimension 2 intersects H(n, ¢?) either in H(n—2,¢?), in a cone pH (n—3, ¢*)
or in a cone LH(n — 4,¢*). Hence the intersection numbers with hyperplanes
in PG(n, ¢*) are

(¢" = (=1)") ("~ + (=1)")

¢ (@ + (1)) (" = (<1)")

H, = Hy=1
1 q2 — 1 5 2 + q2 —_ 1
and the intersection numbers with subspaces of codimension 2 are
n—1 n n—2 n 2 (,n—2 n n—3 n
+ (=1 — (-1 — (-1 + (-1
N Ui V0] it VO OOl Ut o V0 L e Vi)
@ —1 ¢ —1
4 ( n—3 n n—4 n
+ (=1 — (-1
=1 LU (=" (g ="

¢ —1
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From now on, let K be a point set in PG(n, ¢*) having the above inter-
section numbers with respect to hyperplanes and subspaces of codimension 2.
We want to prove that K is the point set of a Hermitian variety H(n,q¢*). We
will call subspaces intersecting K in a given number m of points, subspaces of
type m. For obvious reasons a hyperplane intersecting IC in Hy points will also
be called a tangent hyperplane.

Lemma 5.5.2 The set K contains |H(n, ¢*)| points. There are |H(n, ¢*)| tan-
gent hyperplanes.

Proof We count in two ways the pairs (p, @) where p is a point of K and « a
hyperplane such that p € «, respectively the triples (p, 7, a) where p # r are
points of K and « a hyperplane such that p,r € a. Denote by h; the number
of hyperplanes intersecting I in H; points and by x the size of K. We obtain:

2n 2n+-2
qg" —1 q —1
A q2 1 = thl + ((]2—_1 — hl)HQ, (51)
and
q2n72 -1 q2n+2 -1

Solving the first equation for h; and substituting this value in the second
equation yields a quadratic equation in x. The solutions are ¥y = |H(n,¢*)|
and z9, which is a tedious expression in ¢, however easily computed with any
computer algebra package.

We show the latter solution is impossible. So suppose by way of con-
tradiction that the set IC contains x5 points. Consider a subspace II of codi-
mension 2 intersecting the set I in C; points. Denote by k; the number of
non-tangent hyperplanes containing II. We obtain the following equation:

Solving this equation in k; for ¢+ = 1,2, 3 yields respectively
¢" — (=1)"(¢* —q+1) 2¢" — (=1)"(¢* + 1),
qn—l _ (1)n qn—l _ (_1)1@ ’
qn+1 _ 2qn + (_1)n
¢t = (=1
These are not integers if n > 2, proving x5 cannot occur.

The second assertion follows by substituting # = |H (n, ¢?)| in Equation
(5.1). O

ky = kg =

ks = —



5.5. NON-SINGULAR POLAR SPACES 183

Remark 5.5.3 Notice that for n = 2, we would obtain integers and in that
case we have o = ¢*> + q + 1, that is, exactly the number of points of a Baer
subplane, which was to be expected.

Lemma 5.5.4 Through a space of codimension 2 of type Cy, Cy, C3, there pass
respectively Ty = q+ 1, Ty = 1, Ty = ¢*> + 1 tangent hyperplanes.

Proof Let Il be a codimension 2-space intersecting I in C; points and let
T; denote the number of tangent hyperplanes containing II. We obtain the
following equation:

Ci+Ty(Hy — Ci) + (¢ + 1 = T;)(H, — C;) = K]
Solving the equation in 7T; for ¢ = 1,2, 3 yields the result. O

Lemma 5.5.5 Fach tangent hyperplane contains A; subspaces of codimension
2 intersecting K in C; points, where

g (1))
qg+1

(" '+ (=D)")(" = (=1)")
¢>—1 '

n— q
Ay :Q2 27 Ay =

Y

Az =

Proof Consider any tangent hyperplane II. Denote by A; the number of
codimension 2 subspaces of type C; contained in II. Then

2n_1
;Ai:q(f—l'

We count in two ways the pairs (p, A), p € A C II, with p a point of K and A
a subspace of codimension 2. We obtain

2n—2
T .

Next we count in two ways the triples (p,r, A), with p,r € A C II, with p £ r
points of K and A a subspace of codimension 2. We obtain

2n—4 1

> ACHC; = 1) = Hy(H, — 1)qq2—_1

The obtained system of three linear equations in A;, A; and As can easily be
solved, yielding the desired result. O
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Lemma 5.5.6 Fach point of KC is contained in Hy tangent hyperplanes, while
each point not in IC is contained in Hy tangent hyperplanes.

Proof We need to show that each point of K is contained in H, tangent
hyperplanes. Set K = {p1,- -+, Dja(n,q2) }- Let a; denote the number of tangent
hyperplanes containing the point p;. Counting pairs (p,7), p € K, p € 7, T a
tangent hyperplane, we obtain:

Zai = |H(n,¢*)|Ho. (5.3)

Next we count triples (p, 71, 72), p € K, p € 74, 7; a tangent hyperplane, i = 1, 2,
71 # To. This yields the following equation:

> ai(a; — 1) = |H(n, ¢°)] (Z A;(T; - 1)Cj> : (5.4)

i

where as before T; denotes the number of tangent hyperplanes containing a
fixed codimension 2-space II of type C; and A; is the number of codimension
2 subspaces of type C; in a tangent hyperplane.

From Equations (5.3) and (5.4), we can compute

|H(n,¢%)| Zaf -~ (Z a;)? =0,

from which we deduce, using the variance trick, that a; is a constant equal to
H,.
The second assertion is proved in a similar way. ([l

Denote by H the set of tangent hyperplanes of K. Let 6 : PG(n, ¢?) —
PG(n, ¢*)P be any fixed chosen duality of PG(n, ¢?).

Lemma 5.5.7 The point set K' :== H° is a (1,q+1,¢*>+1)-set in PG(n, ¢*)P.

Proof As by Lemma 5.5.4, a codimension 2 subspace is contained in either 1,
g+ 1 or ¢*> + 1 tangent hyperplanes, applying § immediately yields the result.
O

Lemma 5.5.8 The set K’ is the point set of a non-singular Hermitian variety
H(n,q¢*) in PG(n,q*)".
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Proof We will check the conditions of Theorem 5.2.2. Since every tangent
hyperplane contains subspaces of type C (by Lemma 5.5.5), we see that every
point of K is contained in lines intersecting X' in exactly ¢ + 1 points. Hence
K is non-singular. As ¢ > 2 also the first condition is satisfied. Now assume
there would be a plane 7 intersecting K in a point set such that every line of
7 would intersect XK' N7 in ¢+ 1 or ¢ + 1 points. Then K’ N 7 would be the
complement of a maximal (¢? — ¢)-arc in 7, implying that ¢? — ¢ divides ¢?, a
contradiction since ¢ > 2. Consequently, also the second condition of Theorem

5.2.2 is satisfied and K’ is the point set of a non-singular Hermitian variety in
PG(n,q¢%). O

Theorem 5.5.9 The set KC is the point set of a non-singular Hermitian variety
H(n,q¢?).

Proof Clearly, K’ is a point set satisfying the same conditions on intersections
with hyperplanes and subspaces of codimension 2 as K in PG(n,¢?). Since
the tangent hyperplanes to K’ are exactly those hyperplanes containing Hs
points of K', we find that if we apply the duality 6! to PG(n, ¢)?, the tangent
hyperplanes to K" are mapped bijectively to the points of K (see Lemma 5.5.6).
Hence, we can now apply Lemma 5.5.8 with K’ in PG(n, ¢*)” replaced by K
in PG(n,q*). We conclude that K is the point set of a Hermitian variety
H(n,q*). O

5.5.2 Hyperbolic quadrics

First of all let us recall what the intersections of a hyperbolic quadric Q*(2n+
1,q) with hyperplanes and spaces of codimension 2 look like. A hyperplane
can intersect Q1 (2n + 1,¢) in Q(2n,q) or in a cone pQ*(2n — 1,q). A space
of codimension 2 can intersect Q% (2n+ 1, ¢) either in @~ (2n — 1, ¢), in a cone
pQ(2n —2,q), in QT (2n —1,¢q) or in a cone LQT(2n — 3, q).

So the intersection numbers with hyperplanes are
q2n -1 (qn _ 1>(qn—1 + 1)

Hy, =1 .
q_17 2 _'_q q—l

The intersection numbers with spaces of codimension 2 are

q(?"*—1)
qg—1

(" +1)(¢" " —
qg—1

1
Cy = ),02:1+

)

(¢ =D+ . ¢l =)+

Ol —
’ q—1 q—1
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From now on let IC be a set of points in PG(2n + 1, ¢) having the same
intersection numbers with hyperplanes and codimension 2-spaces as a Q" (2n+
1,q). We want to prove that K is the point set of a hyperbolic quadric @™ (2n+
1,q). We will call subspaces intersecting K in a given number m of points,
subspaces of type m. For obvious reasons, a hyperplane intersecting K in H,
points will also be called a tangent hyperplane.

Lemma 5.5.10 The set K has size |QT(2n + 1,q)|. Furthermore, there are
Q1 (2n + 1,q)| tangent hyperplanes.

Proof We count in two ways the pairs (p, ), where p is a point of K and «
a hyperplane such that p € «, respectively the triples (p,r, «) where p # r
are points of KL and « a hyperplane such that p,r € a. Call h; the number of
hyperplanes intersecting /C in H; points and x the size of IC. This yields the
following equations

q2n+2 _ 1

pp -, (5.5)

hiHy + (

q2n+2 _ 1

q2n —1
Solving h; in terms of x from the first equation and substituting this in the
second equation yields a quadratic equation in x. The solutions are z; =
|Q*(2n+1,q)| and x9, which is, as in the Hermitian case, an easily computed
but tedious expression in q.

We show that the latter solution cannot occur. So suppose the set IC
contains x5 points. Consider a space II of codimension 2 intersecting the set IC
in C; points. Denote by k; the number of non-tangent hyperplanes containing
II. Then we obtain

hiHy(Hy — 1) + ( (5.6)

ki(Hy — Ci) + (g + 1 — ki) (Hy — Cy) + C = 3.

Solving this equation in k; for ¢ = 1,2, 3,4 yields

These are not integers; the desired contradiction.
The second assertion follows by substituting x = |Q™(2n + 1, ¢)| in Equa-

tion (5.5). O

ks
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Lemma 5.5.11 Through a space of codimension 2 of type Cy, Cy, Cs, Cy, there
pass respectively T =0, To =1, T5 = 2 and Ty = q + 1 tangent hyperplanes.

Proof Let II be a codimension 2 space intersecting K in C; points and let
T; denote the number of tangent hyperplanes containing II. We obtain the
following equation:

Ci+Ti(Hy — Cy) + (¢ + 1 - T,)(H, — C;) = |[K|.
Solving the equation in 7T; for ¢ = 1, 2, 3, 4 yields the result. O

Lemma 5.5.12 FEach tangent hyperplane contains A; subspaces of codimen-
sion 2 intersecting K in C; points, where

A =0, Ay =¢"(q"— 1), Ay =¢"",

"D+

_ (q
Ay = p— .

Proof Consider any tangent hyperplane II. By the previous lemma, A; = 0.
Hence,
q2n+1 -1

4
DoA= T o

We count in two ways the pairs (p, A), p € A C II, with p a point of K and A
a subspace of codimension 2. We obtain

4 2
"o
i=2 q—1

Next we count in two ways the triples (p,r, A), with p,r € A C II, with p # r
points of K and A a subspace of codimension 2. We obtain

4 q2n—1 -1
> ACi(Ci 1) = Hy(H, — 1)(]_—1.
=2

The obtained system of three linear equations in Ay, A3 and A4 can easily be
solved, yielding the desired result. 0

Lemma 5.5.13 FEach point of IC is contained in Hy tangent hyperplanes, while
each point not in K is contained in Hy tangent hyperplanes.
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Proof We need to show that each point of I is contained in H, tangent
hyperplanes. Set K = {pi, -+ ,pjg+@2n+1,)}- Let a; denote the number of
tangent hyperplanes containing the point p;. Counting pairs (p,7), p € K,
p € 7, T a tangent hyperplane, we obtain:

> a;=1Q"(2n+1,q)|Ha. (5.7)

Next we count triples (p, 71, 72), p € K, p € 7;, T; a tangent hyperplane, i = 1, 2,
T1 # To. As before, T; denotes the number of tangent hyperplanes containing
a fixed codimension 2 space II of type C;. We obtain the following equation:

> ai(a;i—1) = |Q"(2n +1,q)| (Z AT — 1)Cj> : (5.8)

i

From Equations (5.7) and (5.8), we can compute

Q*(2n+1.9)| Yt (e =0,

7

from which we deduce that a; is a constant equal to Hs.
The second assertion is proved in a similar way. U

Denote by ‘H the set of tangent hyperplanes of K. Let 6 : PG(2n+1, q¢) —
PG(2n + 1,¢)P be any fixed chosen duality of PG(2n + 1, q).

Lemma 5.5.14 The set K' := H° is the point set of a non-singular hyperbolic
quadric Q*(2n +1,q) in PG(2n + 1,¢)".

Proof This is an immediate consequence of Lemma 5.5.11, Lemma 5.5.12 and
Theorem 5.2.3. U

Theorem 5.5.15 The set K is the point set of a non-singular hyperbolic
quadric QT (2n+1,q) in PG(2n+1,q), ¢ > 2.

Proof Clearly K’ is a point set satisfying the same conditions on intersections
with hyperplanes and subspaces of codimension 2 as K in PG(2n + 1,q).
Since the tangent hyperplanes to K’ are exactly those hyperplanes containing
H, points of K', we find that if we apply the duality 6~ to PG(2n + 1,¢)?,
the tangent hyperplanes to K" are mapped bijectively to the points of I (see
Lemma 5.5.13). Hence, we can now apply Lemma 5.5.14 with X’ in PG(2n +
1,q)P replaced by K in PG(2n +1,q). We conclude that K is the point set of
a hyperbolic quadric QT (2n + 1, q). d
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5.5.3 Elliptic quadrics

First of all, let us recall what the intersections of an elliptic quadric Q@ (2n +
1,q) with hyperplanes and spaces of codimension 2 look like. A hyperplane
of PG(2n + 1,q) can intersect Q@ (2n + 1, q) either in Q(2n,q) or in a cone
pr(QTL -1, Q)

A space of codimension 2 can intersect Q@ (2n + 1, q) either in QT (2n —
1,q), a cone pQ(2n —2,q), @~ (2n —1,q) or a cone L~ (2n — 3,q).

So the intersection numbers with hyperplanes are

Qn_]_ n 1 nfl_]_
i, = ¢ Hy—=11 ¢ )

qg—1 qg—1

The intersection numbers with spaces of codimension 2 are

n_1 n—1+1
@AY |
q—1 q—1

@ +D@ =) o 2D 1)

q—1 q—1

From now on, let K be a set of points in PG(2n+1, ¢), n > 2 having the
same intersection numbers with hyperplanes and codimension 2 spaces as an
elliptic quadric @~ (2n + 1,¢). We want to prove that K is the point set of a
non-singular elliptic quadric. We will call subspaces intersecting K in a given
number m of points, subspaces of type m. For obvious reasons, a hyperplane
intersecting K in Hy points will also be called a tangent hyperplane.

2n—2 1)

o, -

03:

Lemma 5.5.16 The set K has size |Q~(2n + 1,q)|. Furthermore, there are
|Q~(2n + 1, q)| tangent hyperplanes.

Proof This is proved in a similar way as Lemma 5.5.10. |

Lemma 5.5.17 Through a space of codimension 2 of type Cy,Cs, C5, Cy, there
pass respectively T =0, To =1, T3 = 2 and Ty = q + 1 tangent hyperplanes.

Proof This is completely analogous to the proof of Lemma 5.5.11. OJ

Lemma 5.5.18 Fach tangent hyperplane contains A; subspaces of codimen-
siton 2 intersecting K in C; points, where

Al = 07 AZ = Qn_1<qn + 1)a A3 = q2n7

@”+D@“1—U'

A, —
4 q—l
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Proof The proof is similar to the proof of Lemma 5.5.12. U

Lemma 5.5.19 FEach point of IC is contained in Hy tangent hyperplanes, while
each point not in K is contained in Hy tangent hyperplanes.

Proof This is proved as for Lemma 5.5.13. 0

Denote by H the set of tangent hyperplanes of K. Let 6 : PG(2n+1,q) —
PG(2n + 1,q)” be any fixed chosen duality of PG(2n + 1, q).

By Lemma 5.5.17, the set K' := H° is a (0,1,2,q + 1)-set in PG(2n +
1,q)P. We want to show that K’ is the point set of an elliptic quadric. Notice
however that X' does not satisfy the conditions of Theorem 5.2.3. By Lemma
5.5.19, the intersection numbers of K’ with respect to hyperplanes are H; and
HQ.

We define a point-line geometry S, with point set ' and line set those
lines of PG(2n + 1, ¢)? intersecting K’ in ¢ + 1 points (the incidence is the
natural one).

Theorem 5.5.20 The geometry S is a Shult space such that no point of S is
collinear with all other points of S if ¢ > 2.

Proof Consider a point p of § and a line L of §, such that p and L are not
incident. Consider the plane o generated by p and L.

If this plane contains another point r of S, then the fact that X' is a
(0,1,2,q+ 1)-set implies that « intersects S either in two intersecting lines or
is fully contained in S (notice that ¢ > 2 is necessary here). In both cases, the
“l-or-all axiom” holds.

Next suppose that « intersects S only in p and L. Assume that a would
not be contained in a hyperplane of type H;. We count pairs (u, H), with u a
point of S not in & and H a hyperplane containing v and . We obtain

2n—2 1 q2n71 -1

(lo-@n+ g —g=2) = — = =% — (b —g-2)

a contradiction. Hence, « is contained in at least one hyperplane II of type H;.
By Theorem 5.2.3, the (0,1, 2, g+ 1)-set K'NII is the point set of a non-singular
parabolic quadric. We conclude that in S the point p is collinear with 1 or all
points of L. Since each point of S is contained in at least one hyperplane of
type Hy, no point of § is collinear with all other points of S. We still have to
prove that through every point of § there passes a constant number of lines
in order to conclude that S is a Shult space (using our definition from the
introduction of Shult-space which is slightly different from the original one).
Consider first two non-collinear points p and . Then for every line containing
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p there is exactly one line M through r intersecting L. Hence, through p and
r there pass the same number of lines. Next consider two collinear points p
and r. Considering all planes containing the line pr, it is clear that one can
find a point s which is both non-collinear with p and r. By the above, there
pass equally many lines through p and 7. O

Corollary 5.5.21 The point set K' forms the point set of a non-singular el-
liptic quadric @~ (2n+1,q), ¢ > 2.

Proof This is an immediate consequence of |K'| = |Q~(2n + 1, q)|, the previ-
ous lemma and Theorem 1.2.5. O

Theorem 5.5.22 The set K is the point set of a non-singular elliptic quadric
Q 2n+1,9) in PG(2n+1,q), ¢ > 2.

Proof Clearly K’ is a point set satisfying the same conditions on intersections
with hyperplanes and subspaces of codimension 2 as K in PG(2n + 1,q).
Since the tangent hyperplanes to K’ are exactly those hyperplanes containing
H, points of K', we find that if we apply the duality 6! to PG(2n + 1,¢)?,
the tangent hyperplanes to K’ are mapped bijectively to the points of I (see
Lemma 5.5.19). Hence we can now apply Corollary 5.5.21 with £’ in PG(2n+
1,q)P replaced by K in PG(2n +1,q). We conclude that K is the point set of
an elliptic quadric Q~(2n + 1, q). O

5.5.4 Parabolic quadrics

First of all let us recall what the intersections of a parabolic quadric Q(2n, q)
with hyperplanes and spaces of codimension 2 look like. A hyperplane can
intersect Q(2n, q) either in Q@ (2n —1,q), @~ (2n — 1, ¢) or in a cone pQ(2n —
2,q).

A space of codimension 2 can intersect a parabolic quadric Q(2n, q) either
in Q(2n—2,q), a cone pQ*(2n—3, q), a cone pQ~ (2n—3, ¢) or a cone LQ(2n—
4, q) (notice that this cone contains the same number of points as Q(2n—2, q)).
So the intersection numbers with hyperplanes are

g, - — (" +1) (" + 1)@ - 1)

7H2: )
q—1 q—1
2n72_1
Hy=1+q¢t— "~
qg—1

The intersection numbers with spaces of codimension 2 are
2n—2

-1 nfl_l n72_|_1
o -4 Oy =14 )4 )
qg—1 qg—1

Y



192 CHAPTER 5. INTERSECTION NUMBERS

(@ + D =)
q—1 '

From now on, let K be a set of points in PG(2n,q) having the same
intersection numbers with hyperplanes and codimension 2 spaces as Q(2n, q).
We want to prove that I is the point set of a parabolic quadric Q(2n,q). We
will call subspaces intersecting K in a given number m of points, subspaces of
type m. For obvious reasons a hyperplane intersecting I in H3 points will also
be called a tangent hyperplane.

Cs3=1+g¢

Lemma 5.5.23 The set K contains |Q(2n, q)| points.

Proof Let h;, respectively ¢;, denote the number of hyperplanes of type H;,
respectively the number of codimension 2 spaces of type C;. By counting pairs
and triples as in Lemma 5.5.10, but now with respect to hyperplanes as well
as with respect to codimension 2 spaces, we obtain

_ 4 _
;hi = (5.9)

S hiH; = 11 K| (5.10)
q12n71 -1
> hiHi(H; 1) = o1 KK = 1), (5.11)

(@ =D -1
2T @y O

Zcz = K] : _1)1()q<;__ . 2 (5.13)
2ty (gt 1)
(¢ =1)(g—1)

%

3 aCi(C - 1) = K| (K] - 1) (4 (5.14)

i

Now consider a hyperplane IT of type H; and denote by mf the number
of codimension 2 spaces of type C; it contains. By counting pairs (p, A) and
triples (p,r,A), with p # r points of K NII, A C II a codimension 2 space,
and p,r € A, we obtain

S~

-1
ZmJC’ H 1
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) q2n—2 -1
> mlCi(Ci = 1) = Hy(H; — 1) I——.
i q-

From these equations, all values m/ can easily be determined. As m3 = 0
we see that the number of hyperplanes of type H; through a codimension 2
space of type Cy is a constant f(|K|) depending only on the size of K.

By counting pairs (H,A), with H a hyperplane of type H;, A C H a
codimension 2 space of type C5, we obtain

hamd = e F(K)). (5.15)

From Equation (5.15) we can solve h; in function of ¢y and ||, say
hy = hi(ca, |K|). From Equations (5.12), (5.13) and (5.14) we can obtain an
expression for ¢y depending only on |K|, say ¢; = ¢2(K). From Equations
(5.9), (5.10) and (5.11) we can now obtain a quadratic equation in || of the
form s |K|* + ¢ |K| + u(hy) = 0, where the Maple calculations show that s
and t are independent of h; and u(h;) is a function of hy. By substitution of
hy = hi(ca, |K|) we obtain

s [KJ* + ¢ 1| + u(hu(ea, K1) = 0, (5.16)
which turns out to be a cubic equation in |K|. One simply checks that || =
qzn__—11 is a solution of Equation (5.16).

We want to exclude the other roots of Equation (5.16) as possible sizes
for the set K.
Though Maple is not able to directly calculate the other roots for general
n and ¢ it is not too hard to determine the product and sum of the roots of
Equation (5.16) with Maple.
One obtains that the three roots have product
u(hi(e2(K))) _ g2+ = 3¢*" ¢ — P2 4 1

s (¢—1)° (21 1) ’
and sum
NV 1)
s qg—1 '

From the above expressions, one can deduce that the other roots are complex,
non-real, numbers, a contradiction. Il

271_1

Lemma 5.5.24 There are exactly qu tangent hyperplanes. Furthermore,

every codimension 2 space of type Cy or C3 is contained in exactly one tangent
hyperplane.
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Proof The first assertion follows from Equations (5.9), (5.10) and (5.11) once
we know || = %
m3 = 0. Hence, if T; denotes the number of tangent hyperplanes containing a

given codimension 2 space of type C;, i = 2,3, then

. To prove the second assertion, we notice that m} =

Ti(H; —Ci)+ (¢+1-T)(Hi-n — C;) + C; = |K] .
We obtain Ty = T35 = 1. O

Lemma 5.5.25 For every codimension 2 space of type Cy, the number of hy-
perplanes of type Hy containing it is equal to the number of hyperplanes of type
Hy in which it s contained.

Proof One notices that |K| = (¢+1)(H;—C1)+Cy and that (H,+Hs)/2 = Hs.
The lemma follows. O

Lemma 5.5.26 Let~y be a codimension 3 space contained in a hyperplane H of
type Hy. Suppose that v is contained in Ny codimension 2 spaces a of type Cy,

such thaty C o C H. Then |yNK| = q¢" 2Ny + (qnflJr;)_('fnle). Furthermore,

if v is also contained in a hyperplane E of type Hy, then Ny < 2.

Proof Let X denote the number of points of K contained in . As m} =0 we
have
It follows that . )
(" + D" -1)
q—1 '
Next let E be a hyperplane of type Hy containing « and let Ng be the number

of codimension 2 spaces 3 of type Cs such that v C  C E. Since m3 = 0 we
obtain that

X = Nan—2 +

(g+1—Ng)(Cy — X)+ Ng(Cs — X)+ X = H,.
Substitution of the higher obtained expression for X in terms of Ny yields
Ng =2— Ny.
As Ng > 0, the lemma follows. O

Lemma 5.5.27 A codimension 3 space that is contained in a hyperplane of

type H, contains Nq" 2+ (qn_1+;)_(‘fn_2_1) points of IC, with N € {0,1,2,q+1}.
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Proof Let v be any codimension 3 space contained in a hyperplane H of type
Hy, and set X = |[yN K| . If v is contained in hyperplanes of type H; as well
as of type Hy there is nothing to prove because of the previous lemma.

If v is contained in no hyperplane of type H,, then v cannot be con-
tained in a codimension 2 space of type C3 (since through each codimension
2 space of type (3, there passes a hyperplane of type Hs, which follows from
m3i = 0). Furthermore, since the number of H, hyperplanes containing a given
codimension 2 space of type C] equals the number of H; hyperplanes contain-
ing it, v cannot be contained in a codimension 2 space « of type C} such that
v C a C H. Hence, in H, all codimension 2 spaces containing v must be of type
n-2 y (@AD" 21

q—1
UJ

(5. By the previous lemma, we obtain that X = (¢+ 1)q

Corollary 5.5.28 Fwvery hyperplane of type Hy intersects K in the point set
of a non-singular hyperbolic quadric QT (2n — 1,q).

Proof By the previous lemma the conditions of Theorem 5.5.15 and Section
5.5.2 are satisfied in each hyperplane of type H;, whenever n > 2. If n = 2,
the corollary follows by the remark after Theorem 5.2.10. 0

Lemma 5.5.29 FEvery point of K is contained in at least one hyperplane of
type Hi.

Proof Let p be any point of K. Assume by way of contradiction that p is only
contained in hyperplanes of type Hy and Hjz. Then, by counting pairs (r, H),
relC,r#p, p,r € H H a hyperplane, we obtain

2n_1 2n_1 2n71_1
12(H2—1)+(q 1 —z2> (Hs—1) = (q _1) EE———

q— qg—1 q—1

with [, the number of hyperplanes of type Hy containing p. It follows that
Iy < 0, an absurdity. O

Theorem 5.5.30 The set K is the point set of a non-singular parabolic quadric.

Proof Let L be any line of PG(2n, q), and suppose that |L N K| = z, with
x > 3. Suppose there would be no hyperplane of type H; containing L. Then,
if ny would be the number of hyperplanes of type H, containing L, we obtain
by counting pairs (r, H), r € K, r ¢ L, H a hyperplane containing r and L,

n—1 2 Mm—2
" —1 " —1 " —1

H—o)+ (L2 ) (Hy—2) = SR I S
ne(Hy — x) (q . ng)( 3—T) (q . :1:) =)
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This implies that ny < 0, a contradiction. Hence, L is contained in a hyper-
plane of type H;. Corollary 5.5.28 implies that x = ¢ + 1. Consequently, IC
is a (0,1,2,q + 1)-set in PG(2n,q). By combining Lemma 5.5.29 and Corol-
lary 5.5.28, we also see that each point of K is contained in a line M such
that |[M N K| = 2. Hence, K is non-singular. It follows that I satisfies the

conditions of Theorem 5.2.3. As |K| = qzn__ll, the theorem follows. O

The Main Theorem 5.2.10 is now an immediate consequence of Theorems
5.5.9, 5.5.15, 5.5.22 and 5.5.30.



Appendix A

Nederlandstalige samenvatting

In de appendix zullen we een overzicht geven van het algemeen wiskundig
kader en van de specifieke resultaten bekomen in deze thesis. De bedoeling is
dus niet om volledig te zijn of in detail te gaan, zo zijn er geen vertalingen
van de bewijzen in de engelstalige tekst, maar wel om summier de gebruikte
methoden en de hoofdstellingen te bespreken. We zullen wel dezelfde structuur
aanhouden als voor de engelstalige tekst. De engelstalige termen waarvoor geen
geijkte nederlandstalige vertaling is gekend, worden onvertaald gelaten, daar
dit enkel kan leiden tot gekunstelde termen en verwarring.

A.1 Inleiding

In het eerste hoofdstuk wordt kort de context geschetst waarin het onderzoek
te situeren is en worden gekende zaken die verder in het werk gebruikt wor-
den vermeld. Zo komen veralgemeende vierhoeken, klassieke polaire ruimten,
blocking sets en de Veroneseanen aan bod. We zullen de begrippen die expliciet
aan bod komen in de nederlandstalige tekst hier vastleggen.

A.1.1 Veralgemeende vierhoeken

Definitie A.1.1 Fen veralgemeende vierhoek V'V van de orde (s,t) is een in-
cidentiestructuur S = (P, B,I) waarin P en B verschillende niet-ledige verza-
melingen van objecten zign die respectieveligk punten en rechten worden ge-
noemd, en waarvoor I een symmetrische punt-rechte incidentierelatie is die
aan volgende axioma’s voldoet:

(VV1) Elk punt is incident met t + 1 rechten (t > 1) en twee verschillende
punten zign incident met hoogstens 1 gemeenschappelijke rechte.

197
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(VV2) Elke rechte is incident met s + 1 punten en twee verschillende rechten
zign incident met hoogstens 1 gemeenschappelijk punt.

(VV3) Als p een punt is en L een rechte niet incident met p, dan bestaat er een
uniek punt-rechte paar (q, M) zodat pT M 1¢q1 L.

Definitie A.1.2 Fen automorfisme van een VV 1is een permutatie van PUB
die P, B en I behoudt. De verzameling automorfismen van een VV' S vormt

een groep, de automorfismengroep van de veralgemeende vierhoek, genoteerd
als Aut(S).

Definitie A.1.3 FEen deelvierhoek &' = (P',B',T') van een veralgemeende
vierhoek S = (P, B, 1) is een veralgemeende vierhoek waarvoor P’ C P, B' C B,
en waarvoor I de restrictie is van I tot (P’ x B')U (B’ x P’).

Definitie A.1.4 Een ovoide van een veralgemeende vierhoek S is een verza-
meling O van punten van S zodat elke rechte van S incident is met een uniek
punt van O.

De klassieke veralgemeende vierhoeken. Beschouw een niet-singuliere
kwadriek met Witt index 2, dus met projectieve index 1, in PG(3, ¢), PG(4, q)
en PG(5, ¢). De punten en rechten van deze kwadrieken vormen veralgemeende
vierhoeken die we noteren als Q1 (3,q), Q(4,¢) en Q@ (5,¢), en zijn van orde
(q,1), (q,q) en (g, q¢*) respectievelijk. Vervolgens, zij H een niet-singuliere
Hermitische variéteit in PG(3, ¢*) of PG(4, ¢?). De punten en rechten van H
vormen een veralgemeende vierhoek H(3,¢%) of H(4,¢?), met orde (g%, q) of
(¢%, ¢®) respectievelijk. De punten van PG(3, ¢) samen met de totaal isotrope
rechten met betrekking tot een symplectische polariteit vormen een V'V, geno-
teerd als W (q), en ze heeft orde (q,q). De hier gedefinieerde veralgemeende
vierhoeken worden de klassieke veralgemeende vierhoeken genoemd.

Definitie A.1.5 Zij V' een vectorruimte over een lichaam, niet noodzakelijk
eindig dimensionaal. FEen veralgemeende vierhoek S = (P,B,1) is volledig
ingebed in de projectieve ruimte PG(V') als er een afbeelding m van P naar de
verzameling punten en van B naar de verzameling rechten van PG(V') bestaat
waarvoor:

(i) w injectief is op de punten,
(i) alsx € P en L € B metx 1L, dan z™ € L™,

(1i1) de verzameling punten x™, met x € P, brengt PG (V') voort,
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() elk punt in PG(V') gelegen op het beeld van een rechte L van de vierhoek
15 ook het beeld van een punt op de rechte L van de vierhoek.

De volgende mooie stelling is van Buekenhout en Lefevre [11].

Theorem A.1.6 Elke eindige veralgemeende vierhoek die volledig is ingebed
in een projectieve ruimte PG(V') is klassiek.

A.1.2 Klassieke polaire ruimten

Polaire ruimten werden voor het eerst axiomatisch beschreven door Veldkamp
[72]. We herhalen de definite van Tits van polaire ruimten.

Een polaire ruimte van rang n, n > 2, is een puntenverzameling P samen
met een familie van deelverzamelingen van P, deelruimten genoemd, die aan
volgende axioma’s voldoen.

(i) Een deelruimte, samen met de deelruimten die ze bevat, is een d-dimensionale
projectieve ruimte waarvoor —1 < d < n — 1; d wordt de dimensie van
de deelruimte genoemd.

(ii) De intersectie van twee deelruimten is een deelruimte.

(iii) Voor een deelruimte van dimensie n — 1 en een punt p € P\V bestaat
er een unieke deelruimte W van dimensie n — 1 zodat p € W en zodat
V N W dimensie n — 2 heeft; W bevat alle punten van V' die verbonden
zijn met p door een deelruimte van dimensie 1, ook rechte genoemd.

(iv) Er bestaan twee disjuncte deelruimten van dimensie n — 1.

De polaire ruimten van rang 2 zijn per definitie de veralgemeende vier-
hoeken.
De eindige klassieke polaire ruimten zijn de volgende structuren.

(i) De niet-singuliere hyperbolische en elliptische kwadrieken in oneven di-
mensie QT (2n + 1,¢),n > 1, en Q@ (2n + 1,q),n > 2, samen met
de deelruimten die ze bevatten, vormen een polaire ruimte van rang
n + 1 en n, respectievelijk. De niet-singuliere parabolische kwadrieken
Q(2n,q),n > 2, in even dimensie, samen met de deelruimten die ze be-
vatten, vormen een polaire ruimte van rang n.

(ii) De niet-singuliere Hermitische variéteiten in PG(2n, ¢?), n > 2, samen
met de deelruimten die ze bevatten, vormen een polaire ruimte van rang
n; de niet-singuliere Hermitische variéteiten in PG(2n + 1,¢%), n > 1,
samen met de deelruimten die ze bevatten, vormen een polaire ruimte
van rang n + 1.
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(iii) De punten van PG(2n + 1,q),n > 1, samen met de totaal isotrope
deelruimten van een niet-singuliere symplectische polariteit van PG (2n+
1,q), vormen een polaire ruimte van rang n + 1.

Door stellingen van Veldkamp en Tits zijn alle polaire ruimten van eindige
rang tenminste drie geclassificeerd. In het eindig geval, dit is als de polaire

ruimte slechts een eindig aantal punten bevat, geldt de volgende stelling, zie
[71].

Stelling A.1.7 Elke eindige polaire ruimte van rang tenminste drie is klassiek.
Buekenhout en Shult beschrijven polaire ruimten als punt-rechte meetkunden.

Definitie A.1.8 Fen Shult ruimte is een punt-rechte meetkunde

S = (P,B,I), met B een niet-ledige verzameling van deelverzamelingen van
P van cardinaliteit tenminste 2, zodat de incidentierelatie 1, die hier bevatten
18, aan het volgende axioma voldoet. Voor elke rechte L € B en voor elk punt
p € P\L is het punt p collineair met ofwel één punt van L of met alle punten
van L.

Een Shult ruimte is niet-singulier als geen enkel punt collineair is met
alle andere punten.
Een deelruimte van een Shult ruimte S = (P, B,I) is een deelverzameling W
van P zodat elke twee punten van W op een gemeenschappelijke rechte liggen
en zodat elke rechte die verschillende punten van W bevat volledig bevat is in
W. Een Shult ruimte is lineair als twee rechten in ten hoogste 1 punt snijden.
Buekenhout en Shult bewezen de volgende fundamentele stelling [12].

Stelling A.1.9 (i) Elke niet-singuliere Shult ruimte is lineair.

(i) Als S een niet-singuliere Shult ruimte is van eindige rang tenminste 3,
en als alle rechten tenminste drie punten bevatten, dan is de Shult ruimte
samen met al haar deelruimten een polaire ruimte.

We hebben dus de volgende stelling.

Stelling A.1.10 Veronderstel dat S een eindige niet-singuliere Shult ruimte
van rang tenminste 3 is, en zodat elke rechte tenminste drie punten bevat. Dan
1s S isomorf aan de punt-rechte meetkunde van een eindige klassieke polaire
ruimte.

Als een Shult ruimte volledig is ingebed in een projectieve ruimte, dan
volgt volgende stelling uit Buekenhout en Lefevre [11], en Leféevre-Percsy [37,
38].
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Theorem A.1.11 Veronderstel dat S een niet-singuliere eindige Shult ruimte
1s. Als S wvolledig is ingebed in een projectieve ruimte, dan bestaat S wit de pun-
ten en rechten van een eindige klassieke polaire ruimte. Hier betekent volledig
ingebed dat de verzameling rechten van S een deelverzameling is van de verza-
meling rechten van een projectieve ruimte en dat de puntenverzameling van S
de verzameling is van alle punten bevat in deze rechten.

A.1.3 Veroneseanen en veralgemeende (duale) bogen

In deze deelsectie definiéren we veralgemeende (duale) bogen en een algebraisch
object waarmee ze kunnen geconstrueerd worden, de veralgemeende Verone-
seaan.

Definitie A.1.12 FEen veralgemeende duale boog F van graad d met dimen-
siesn =mng > ny > nNg > -+ > ngy > —1 in PG(n,q) is een verzameling
ni-dimensionale deelruimten van PG(n,q) waarvoor:

1. elke j van deze deelruimten snijden in een deelruimte van dimensie n;,
l<j<d+1,

2. elke d + 2 van deze deelruimten hebben een ledige intersectie.

We noemen (n = ng,ni,...,nqs1) het type van de veralgemeende duale
boog.

Verder in de tekst is er sprake van reguliere en sterk reguliere veral-
gemeende duale bogen. Dit zijn bijkomende technische voorwaarden die we
stellen aan veralgemeende duale bogen. Ze zijn echter niet essentieel om het
hoofdidee te volgen.

Definitie A.1.13 Fen veralgemeende boog A wvan graad d met dimensies
ny < ng < -+ < ngp1 in PG(n,q) is een verzameling ni-dimensionale deel-
ruimten van PG(n, q) waarvoor:

1. elke j van deze deelruimten brengen een deelruimte van dimensie n;j,
1<53<d+1, voort,

2. elke d + 2 van deze deelruimten brengen PG(n, q) voort.

We noemen (n,nq,...,nq1) het type van de veralgemeende boog.

De kwadratische Veroneseaan wordt als volgt gedefinieerd.
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Definitie A.1.14 De Veronese variéteit V" van alle kwadrieken van
PG(n,q), n > 1, is de variéteit

Vin = {p(ff(%al'%, e 12 Tox1, Lola, " axn—lxn) || (:U()a T 71'77,) S PG(”)Q)}

) n’

mn PG(@,(]); deze variéteit heeft dimensie n en orde 2". Het natuurligk

getal n wordt de index van V2" genoemd.

Het beeld van een willekeurig hypervlak van PG(n, ¢) onder de Veronese
afbeelding is een kwadratische Veroneseaan VELZI, en de deelruimte erdoor

voortgebracht heeft dimensie N, ; = (”_1)2& Zo een deelruimte wordt
een V,_i-deelruimte genoemd. In het bijzonder voor n = 2 worden de V-
deelruimten kegelsnedeviakken genoemd.

Het beeld van een rechte van PG(n,q) is een kegelsnede, en als ¢ even
is, dan vormt de verzameling van kernen van al deze kegelsneden een Grass-
manniaan van rechten van PG(n,¢) en brengt bijgevolg een ruimte voort van

(

. ) 1 2 . . .
dimensie =22 " die we de kernruimte van V2" noemen, zie [65].

Definitie A.1.15 De raakruimte aan V" in p € V2" is de unie van alle
raaklijnen in p aan de kegelsneden op V*" door p (voor q = 2 beschouwt men
de kegelsneden die het beeld zijn van rechten van PG(n,2)).

Deze kwadratische Veroneseaan kan ook aan de hand van matrices wor-
den bestudeerd, zie [28].

Stelling A.1.16 De kwadratische Veroneseaan V" in PG(n,q) bestaat uit

alle punten p(Yo.o, -+ »Ynms Yo1s -+ > Yn-1n) 0 PG q) waarvoor [y; ),

met y;; = Yj; als i # j, een symmetrische matriz is van rang 1.

Een uitbreiding van deze definitie kan als volgt bekomen worden. Zij
PG(V) een n-dimensionale ruimte met basis e; (0 < i < n). Zij PG(W) een
((n;rﬁrl) - 1)—dimensionale ruimte met basis e;,_;, (0 <ip <iyp < -+ <ig <

Definitie A.1.17 De veralgemeende Veroneseaan s de puntenverzameling die

het beeld is van de volgende afbeelding. Definieer ¢ : PG(V) — PG(W) als

n
Q: [Z zie;] = | Z Tig " TigCi,...,ia-
i=0

0<ig<-+<ig<n
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Aan een veralgemeende Veroneseaan kunnen we veralgemeende bogen en
veralgemeende duale bogen hechten. We starten met de constructie van de
veralgemeende duale bogen.

Noteer het standaard scalair product van V en W als b en B respec-

tievelijk, i.e.,
b(z LiCi, Z yiei) = Z Liliy
i=0 i=0 i=0

B( E Tig,....iqCi0,...iq> E yio,...,ideio,...,id> =

0<ig<-+<ig<n 0<ig<--<ig<n

E : Lig,...igYi0,..riq-

0<ip<-+-<ig<n

en

Constructie A.1.18 Voor elke x € V noteren we de deelruimte van V die
orthogonaal staat op x met betrekking tot b als x. Met andere woorden

- ={y eV | bz,y) =0}

Voor elk punt p = [x] van PG(V) definiéren we een deelruimte D(p) van
PG(W) door

D(p) = {z € W || B(z,¢(y)) = 0 voor alle y € x*}. (A.1)
We noteren deze verzameling deelruimten {D(p) || p € PG(V)} als D.
Hieronder geven we een voorbeeld van deze algemene constructie.

Voorbeeld A.1.19 Beschouw de afbeelding ¢ : PG(2,q) — PG(5, q) waarbij

C([zo, 21, 22]) = [:c?),xf,xi,xoxl,xoxz,xlxg]
de kwadratische Veroneseaan Vi definieert.
Als p = [a,b,c|, dan hebben de vlakken D(p) volgende voorstelling:

D(p) = {lazo, bwy, 2, azy + bwo, azs + cxo, bz + cx1] || wo, 21,22 € Fy}

Deze vlakken vormen een sterk requliere veralgemeende boog van ¢*+q+1
vlakken van type (5,2,0).

Een alternatieve beschrijving van D(p) is de volgende.
Voor elke permutatie o, stel €y oyrrmrio(a) gelijk aan e;, ;,, 0 <ip <13 <
< <.
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Zij 0 : VA1 — W de multilineaire afbeelding
0 : (Z $§0)€i7 e Z xl(-d)ei) — Z xgg) S ajgj)eio ,,,,, ey- (A.2)
i=0 i=0 0<ig<--<ig<n
Eenvoudige controle leert ons dat als b(z,y) = 0, dan geldt
B(Q(.I, U1y .- 7Ud)7 C(y)) =0

voor alle vectoren vy, ...,vg van V.
Dus voor p = (x) hebben we

<9(l',’U1,--.,Ud) || V1y-- -5, Ud €V> gD(p) :

Aangezien de vectorruimte (6(z,vq,...,vq) || v1,...,vq € V) dimensie (";d)
heeft (kies vq,..., vy als eenheidsvectoren), vinden we
O(x,v1,...,09) || v1,...,04 € V)= D(p) . (A.3)

In [36] bewezen we de volgende stelling.

Stelling A.1.20 De verzameling D = {D(p) || p € PG(V)} is een sterk
requliere veralgemeende duale boog met dimensies n; = ("Zﬁi:l) — 1,4
0,---,d+1.

De verzameling D gedefinieerd door Constructie A.1.18 noemen we een
duale Veronese boog.

Duaal aan Constructie A.1.18 hebben we volgende constructie van ver-
algemeende bogen.

Constructie A.1.21 We behouden de notaties van Constructie A.1.18. Voor
elke v € V, zij 2+ de deelruimte van V die orthogonaal is ten opzichte van x
met betrekking tot b. Met andere woorden

vt ={y e V| b(z,y) =0}
Voor elk punt p = () van PG(V') definiéren we een deelruimte A(p) van
PG(W) door
Alp) ={CW) [y e x™). (A4)

Stelling A.1.22 De verzameling A = {A(p) || p € PG(n, q)} wit Constructie
. , , n+d+1 ntd41—i
A.1.21, is een veralgemeende boog met dimensies n; = ( er;f ) — ( Lii ) -1,
i=1,....d+1.
De wveralgemeende duale boog beschreven in Constructie A.1.18 is het
duale van deze boog.

Opmerking A.1.23 De elementen A(p) zijn precies de V,,_1-deelruimten hoger
gedefinieerd. Bijgevolg is de verzameling D uit Constructie A.1.18 het duale
van deze verzameling V), _1-deelruimten.
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A.2 Authenticatiecodes

Hier bespreken we belangrijke toepassingen van de meetkunden bestudeerd in
deze thesis, namelijk authenticatiecodes en secret sharing schemes. Authen-
tiecatiecodes werden ingevoerd door Simmons in [53]. Voor een goed overzicht
van de huidige status verwijzen we naar Pei [42].

We starten met de beschrijving van authenticatiecodes met of zonder
arbitrage en vermelden enkele van hun belangrijke eigenschappen. Deze con-
cepten worden geillustreerd aan de hand van enkele eenvoudige schema’s in
de engelstalige tekst. In deze samenvatting zullen we vooral ons eigen werk
toelichten, in het bijzonder tonen we aan dat veralgemeende duale bogen
geschikt zijn om authenticatiecodes te construeren. Tot slot bespreken we
enkele andere meetkundige constructies van authenticatiecodes en de perfor-
mantie van onze schema’s met betrekking tot de in het begin vermelde eigen-
schappen.

A.2.1 Authenticatie zonder arbitrage

In bepaalde situaties waar informatie wordt uitgewisseld, zoals overschrijvin-
gen, wil men zekerheid hebben over de identiteit van de andere persoon. Daar-
toe kunnen zender en ontvanger op voorhand een sleutel afspreken die toe-
laat elkaar te herkennen. Dit model heet authenticatie zonder arbitrage. In
bepaalde situaties faalt dit model als zender en ontvanger elkaar niet kunnen
vertrouwen, bijvoorbeeld op de beurs als er zich hevige koersschommelingen
voordoen. In dit geval dient het model uitgebreid te worden tot een model
met een onafhankelijke betrouwbare derde partij, de scheidsrechter.

Meer formeel definieert men een message authentication code (MAC) als
volgt.

Definitie A.2.1 Fen message authentication code (MAC) is een 4-tal (S, A, K, E)
met

1. § een eindige verzameling bronboodschappen,
2. A een eindige verzameling geéncodeerde boodschappen (authenticatiezegels),
3. K een eindige verzameling sleutels,

4. wvoor elke sleutel K € KC is er een encodeerregel e € € met e+ S — A.

We veronderstellen steeds een uniforme distributie voor de encodeer-
regels. Dit is geen essentiéle beperking, maar het vermijdt ingewikkelder
berekeningen waardoor de hoofdideeén van de schema’s beter naar voor komen.
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Bovendien is er geen enkele reden om a priori bepaalde regels boven andere te
verkiezen.

Een belangrijk aspect bij MAC’s is de veiligheid gemeten aan de hand
van volgende aanvalswaarschijnlijkheden.

Definitie A.2.2 Zij P; de kans voor een tegenstander om een paar (s,ex(s))
te construeren zonder de sleutel K te kennen, nadat hij i paren (s;j,ex(s;))
heeft gezien. De kleinste waarde r waarvoor P..1 = 1 is de orde van het
schema.

Voor r =1 is Py de waarschignligkheid van een impersonation attack, het
zich voordoen als itemand anders, genoemd en P, de waarschijnlijkheid van een
substitution attack, het vervangen van een geziene boodschap door een andere.
We veronderstellen steeds dat een replay attack, dit is het opnieuw sturen van
een reeds gezien paar (boodschap, authenticatiezegel), zich niet kan voordoen.

In volgende stelling wordt formeel duidelijk gemaakt dat men niet kan
verwachten dat de aanvalswaarschijnlijkheden laag zijn als men niet over vol-
doende sleutels beschikt. Voor r =1 en Py = P; werd dit bewezen in [24], en
voor willekeurige » met Py = P, = --- = P,, in [20].

Stelling A.2.3 Als een MAC aanvalswaarschijnlijkheden P; = 1/n; (0 <1 <
r) heeft, dan geldt |KC| > ng---n,.

Een MAC die gelijkheid bereikt in bovenstaande stelling wordt perfect
genoemd.
Volgende stelling toont aan dat ook het aantal boodschappen beperkt is.

Stelling A.2.4 Zij P, = 1/n; met n; € N. Als voor een MAC geldt dat
K| =mng-... n,, dan |S] < %—l—r—l.

Een MAC wordt Cartesisch genoemd als elke geéncodeerde boodschap
het beeld is van een unieke bronboodschap.

Het blijkt dat veralgemeende duale bogen uitermate geschikt zijn om
MAC’s te construeren. Hier vermelden we enkel de stelling; in de sectie hi-
eronder over authenticatie met arbitrage geven we meer uitleg.

Stelling A.2.5 Zij I een hyperviak van PG(n + 1,q) en zij D een veralge-
meende duale boog van graad 1 in 11 van het type (n,nq,...,ng1).

De elementen van D zijn de boodschappen en de punten van PG(n+1,q)
niet in I1 zign de sleutels. De encodering van een boodschap met een sleutel
is de (ny + 1)-dimensionale deelruimte voortgebracht door de boodschap en de
sleutel.

Dit definieert een perfecte MAC van orde r = [+ 1 met aanvalswaarschi-
gnligkheden

P, = qni+1_ni.
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A.2.2 Authenticatie met arbitrage

Zoals reeds vermeld in voorgaande deelsectie zijn er situaties waarin de commu-
nicatoren elkaar niet vertrouwen. In het geval van een geschil tussen beiden
dienen we een mechanisme ter beschikking te hebben om uit deze impasse
te geraken. Een integere scheidsrechter wordt aan het systeem toegevoegd.
Meer formeel gesproken is een MAC met arbitrage of een A%-code als volgt
gedefinieerd.

Definitie A.2.6 FEen authenticatiecode met arbitrage of A2-code bestaat uit:

e S: een verzameling bronboodschappen,
o M: een verzameling geéncodeerde boodschappen,

o Er: een verzameling encodeerregels: bijecties van S naar M,

Er: een verzameling decodeerregels: afbeeldingen van M naar S of een
afwijzing.

Dit schema wordt in twee stappen opgezet. De ontvanger Bob kiest een
decodeerregel en overhandigt deze aan de scheidsrechter. Voor elke gekozen de-
codeerregel heeft de scheidsrechter een aantal encodeerregels ter beschikking.
Hij kiest er één uit en overhandigt deze aan de zender Alice. Bob aanvaardt
een geéncodeerde boodschap als geldig als hij niet wordt afgewezen door zijn
decodeerregel. In het geval van betwisting tussen Alice en Bob beslist de
scheidsrechter dat Alice de geéncodeerde boodschap heeft gestuurd indien deze
boodschap correspondeert met de encodeerregel die hij aan haar heeft over-
handigd.

In dit schema hebben we de aanvalswaarschijnlijkheden Py, voor een
tegenstander, die gedefinieerd zijn zoals in het model zonder scheidsrechter.
Daarnaast zijn er nog de aanvalswaarschijnlijkheden voor de ontvanger Ppg,,
dit is de kans dat de ontvanger erin slaagt na het observeren van r paren die
bestaan uit een bronboodschap en een geéncodeerde boodschap, de scheid-
srechter te doen beslissen dat de zender een bericht heeft gestuurd terwijl dit
niet het geval is en de aanvalswaarschijnlijkheid Pr, dit is de kans dat de zen-
der erin slaagt om de ontvanger een boodschap die niet aan zijn encodeerregels
voldoet als geldig te laten aanzien.

Net als bij de authenticatiecodes zonder arbitrage zijn er grenzen op het
aantal encodeerregels en hier bovendien ook op het aantal decodeerregels.

Stelling A.2.7 We hebben de volgende benedengrenzen voor het aantal encodeer-
en decodeerregels:
|gR| > (Poopol e POt—IPT)_17

|ET| > (POOP01 e Pot—IPROPRl e PRt—l)_l'
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Als de gelijkheid optreedt in beide ongelijkheden, dan is het arbitrageschema
t-voudig perfect.

Hieronder tonen we aan dat veralgemeende duale bogen geschikt zijn om
een MAC met arbitrage te construeren.

Beschouw de ruimte II,, opgespannen door een veralgemeende duale boog
van type (n = ng,nq,...,n;11) en bed deze ruimte in een (n + 2)-dimensionale
ruimte Il,,5 in. De bronboodschappen zijn de ni-dimensionale deelruimten
die element zijn van de veralgemeende duale boog, de decodeerregels zijn de
punten in I, 5\IL,, de encodeerregels zijn de rechten in II,, 5 scheef aan II,,,
en de boodschappen zijn de (n; 4+ 2)-dimensionale ruimten voortgebracht door
een bronboodschap en een sleutel. We veronderstellen hierbij dat zender Alice
en ontvanger Bob elkaar niet vertrouwen. Wanneer Alice en Bob wensen te
communiceren, kiest Bob een punt p in I1,, 1o \IT,, als decodeerregel en stuurt dit
door naar de integere scheidsrechter. Deze kiest een rechte L door p scheef aan
I1,, als encodeerregel en stuurt L naar Alice. Als Bob een (n; +2)-dimensionale
ruimte II,, o ontvangt, controleert Bob als p € Il,, 5. Als dit het geval is,
dan aanvaardt hij de boodschap; in het andere geval verwerpt hij ze.

Het doel voor een opponent is dus om een paar (I1,,,, I1,, 12) te produceren
zodat p € 1L, 1o.

Als er een discussie ontstaat tussen Alice en Bob over een geldige bood-
schap, dan controleert de scheidsrechter als de encodeerregel L die hij aan Alice
overhandigde, bevat is in I, o. Als dit het geval is wordt er van uitgegaan
dat Alice de boodschap heeft gestuurd, anders niet.

Als Alice Bob wil bedriegen, moet ze dus een ruimte II,, ;o construeren
die p bevat maar niet L. Als Bob Alice wil bedriegen dient hij een ruimte
IT,,, +2 te construeren die de rechte L bevat.

Het aantal encodeerregels voor de zender is het aantal rechten scheef aan
I1,; dit is gelijk aan |Eg| = ¢*"™2. Het aantal decodeerregels is het aantal
punten in I, 5\IT,; dit is (¢ + 1)g™ .

Als een opponent wil bedriegen, dan moet hij een (n; + 2)-dimensionale
ruimte produceren die het punt p bevat. Zijn kansen om dit te doen na het
zien van i paren zijn Pp, = ¢ ™-'. Als Alice Bob wil bedriegen, moet ze
raden welk punt op de rechte L de decodeerregel van Bob vormt. Dus haar
kans is Py = qi—l. Tot slot is de kans voor Bob om vals te spelen na het zien

Nni—Nni—1

van ¢ paren gelijk aan ¢

Dit schema is dus perfect met betrekking tot de benedengrenzen hoger
gegeven.
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A.2.3 Schema’s atkomstig van veralgemeende vierhoeken

In deze deelsectie illustreren we dat ook veralgemeende vierhoeken geschikt
zijn om authenticatiecodes te construeren. We starten met het eerste gekende
voorbeeld van een authenticatiecode gebaseerd op veralgemeende vierhoeken
van De Soete [16]; vervolgens beschrijven we twee schema’s die we samen met
K. Thas hebben gevonden [46].

Het schema van De Soete

Neem een vast punt p in een veralgemeende vierhoek van de orde (s,t). De
bronboodschappen zijn de t 4+ 1 rechten van de veralgemeende vierhoek door
p, de encodeerregels (sleutels) zijn de punten die niet-collineair zijn met p,
en de boodschappen de punten collineair met p maar verschillend van p. Als
Alice een boodschap stuurt naar Bob dan kiest ze een rechte L door p als
bronboodschap. Vanuit de afgesproken sleutel & is er juist 1 rechte M die
L snijdt in een punt r. Alice stuurt het punt-rechte paar (r, L) door naar
Bob die vervolgens controleert als r incident is met L en k. Dit geeft een
Cartesische authenticatiecode waarbij |S| =t + 1, M| = (t +1)s, € =ts* en
Po = P1 = 1/8

Schema’s gebaseerd op deelvierhoeken

Eerst stellen we een schema zonder arbitrage voor gebaseerd op ovoides in
deelvierhoeken. Dit schema levert een zeer lage F,. Zij S een veralgemeende
vierhoek van de orde (s,t). Veronderstel dat 8" een deelvierhoek is van de
orde (s,t/s) van §. Dan toont een eenvoudige telling aan dat elke rechte van
S de deelvierhoek S’ snijdt in 1 of s + 1 punten. Zij z een punt in S\S'. Dan
vormen de ¢t + 1 punten van &’ collineair met x een ovoide O, van S§’. We
zeggen dat de ovoide O, ondersteund wordt door x.

Veronderstel nu dat {S;,Ss, - - - , S, } een verzameling verschillende deelvier-
hoeken van orde (s, t/s) is van de vierhoek van de orde (s, t), waarbij s # 1 # t.
Zij ¥ het aantal punten in U]_;S;. De §;’s zijn de bronboodschappen. De
sleutels zijn de punten in S\ Ul_; S; en de boodschappen zijn de ovoides in de
deelvierhoeken S; die ondersteund worden door een punt buiten de unie. Zij k
het maximaal aantal punten buiten de unie dat dezelfde ovoide van een zekere
S; ondersteunt. Dan geldt

s?/t+1
(s+1)(st+1)—%

Py <

Op deze manier krijgen we Cartesische schema’s die bovendien perfect
zijn als elke ovoide door hetzelfde aantal punten wordt ondersteund. In de
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engelstalige tekst staan dergelijke situaties beschreven.

Nu beschrijven we een schema met arbitrage: beschouw {§;,8s,--- 8.},
een verzameling verschillende Q(4, ¢)-deelvierhoeken in een niet-singuliere el-
liptische kwadriek Q~ (5, ¢). Zij x een punt van Q= (5, ¢) buiten de unie van de
deelvierhoeken gekozen door Bob. Voor een dergelijk punt x en een bronbood-
schap §;, zij O, de ovoide op §; ondersteund door z. De scheidsrechter kiest
een punt ¢; van §; op de ovoide gelegen.

Voor het systeem kiezen we een lijst H van deelgroepen van Aut(Q~(5, q)),
zijnde O~ (6, ¢) x Gal(F,./F,) (¢ is een macht van het priemgetal p). Bob ki-
est een vaste deelgroep H in H. Bob geeft H en zijn gekozen punt x aan
de scheidsrechter. De deelgroep H heeft verschillende banen op Q(5,¢). De
scheidsrechter overhandigt ¢; en de baan onder H van ¢;, genoteerd cf , als
encodeerregel aan Alice voor een gegeven bronboodschap S;. Als Alice een
boodschap naar Bob stuurt, dan kiest ze een bronboodschap S; en stuurt ze
het drietal (S;, ¢;, ') naar Bob.

Als hij een tripel (a, b, ¢) ontvangt, dan beschouwt Bob dit als geldig als
b op de ovoide van a gelegen is en ¢ de baan onder H van b is.

In geval van een geschil aangaande een tripel (a, b, ¢), controleert de schei-
dsrechter als b het punt is horende bij a dat hij Alice overhandigde en als ¢ de
baan is onder H van b. Als dit zo is, beslist hij dat Alice de boodschap heeft
gestuurd, anders niet.

Als Bob wil valsspelen, moet hij het punt ¢; raden.

Als Alice wil valsspelen, dan moet ze de goede baan raden. Het is vrijwel
onmogelijk voor Alice om dit te doen, behalve misschien door een exhaustieve
zoektocht doorheen alle deelgroepen van Aut(Q~(5,¢)) in het geval er slechts
een beperkt aantal deelgroepen zijn die dezelfde baan leveren als diegene die
ze observeert. De scheidsrechter kan dit echter voorkomen door de gepaste
punten op de ovoides te kiezen.

Een opponent moet zowel het punt ¢; als de groep H raden, een schier
onmogelijke taak.

We maken geen expliciete berekeningen, maar door de lijst van deel-
groepen gepast te kiezen kan men dit schema naar zijn eigen behoeften aan-
passen en zo bijvoorbeeld de lengte van de banen regelen.

A.3 Secret sharing schemes

Definitie A.3.1 FEen secret sharing scheme is een systeem om een geheim te
verspreiden onder een groep deelnemers door elke deelnemer een share te geven
op een dusdanige manier dat enkel welbepaalde gespecificerde deelverzamelin-
gen van deelnemers (vastgelegd door de toegangsstructuur) het geheim kunnen
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terugvinden door hun shares samen te leggen.

Secret sharing schemes worden gebruikt in situaties waar het niet raadzaam
is om één enkele persoon een geheim volledig toe te vertrouwen, bijvoorbeeld
een code om nucleaire wapens af te vuren of voor bankrekeningen van grote
organisaties. In dergelijke omstandigheden is het beter om een geheim over
verschillende mensen te verspreiden zodat de kans op crimineel gedrag wordt
beperkt.

De toegangsstructuur van een secret sharing scheme bepaalt welke deelverza-
melingen van deelnemers toegelaten zijn om een geheim te reconstrueren; de
zogenaamde authorised sets. De andere deelverzamelingen van deelnemers wor-
den unauthorised genoemd. Een goed secret sharing scheme bezit de volgende
twee eigenschappen:

(i) Privaatheid: unauthorised verzamelingen mogen het geheim niet terugvin-
den.

(ii) Herconstrueerbaarheid: authorised deelverzamelingen moeten een meth-
ode ter beschikking hebben om het geheim te reconstrueren aan de hand
van hun shares.

De meeste secret sharing schemes worden verondersteld te beschikken
over een monotone toegangsstructuur, dit wil zeggen dat als een verzamel-
ing deelnemers A een geheim kan reconstrueren dat dan ook elke verzameling
deelnemers die A volledig bevat het geheim kan reconstrueren. De dealer van
het secret sharing scheme is een volledig vertrouwde instantie, die verantwo-
ordelijk is voor het opstarten van het systeem, wat inhoudt dat hij het geheim
en de shares genereert, en elke deelnemer zijn of haar shares toevertrouwt. De
combiner is de persoon die de shares van een gegeven verzameling deelnemers
verzamelt en tracht het geheim te reconstrueren.

Een secret sharing scheme wordt perfect genoemd als unauthorised verza-
melingen niets te weten komen over het geheim, dus ook geen partiéle infor-
matie.

Het meest natuurlijk voorbeeld van een secret sharing scheme is het
(k,n)-threshold scheme, ook k wuit n secret sharing scheme genoemd. Hier-
bij hebben we een monotone toegangsstructuur met n deelnemers waarbij elke
k deelnemers het geheim kunnen reconstrueren en geen enkele groep van k — 1
deelnemers dit kan.

A.3.1 Meetkundige secret sharing schemes

We onderzoeken hier toepassingen van veralgemeende bogen in secret sharing
schemes. Een uitstekend overzicht van secret sharing en de verbanden met
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meetkunde is terug te vinden in [32].

Stelling A.3.2 Kies in PG(n+1,q) een n-dimensionale ruimte 11 als geheim.
Kies in I1 een veralgemeende boog A van graad k —2 met n’ elementen en type
(n,ny,...,nk_1). De elementen van A zijn de shares. Dit beschrijft een (k,n’)-
threshold scheme met aanvalswaarschignlijkheden

__gq-1
Pi_qn+1fni_1

voor 0 < i < k (formeel stellen we ng = —1).

Stelling A.3.3 Kies in PG(n + 1,q) een (ny + 1)-dimensionale deelruimte
7' en maak deze publick. Kies verder een ni-dimensionale deelruimte m in
7' als geheim. Kies om het even welk hypervlak 11 van PG(n + 1,q) dat 7
bevat maar niet w'. Zij verder A een veralgemeende boog van I1 van de orde
k —2 met n' + 1 elementen en met type (n,ny,...,ng_1). De deelruimte 7
wordt verondersteld een element van de boog A te zijn. De n' elementen van
A werschillend van 7 zijn de shares. Dit beschrijft een k wit n secret sharing
scheme met aanvalswaarschignlijkheden

__a—1
Pi - qni+1*ni+1 —1

voor 0 <i < k—1 (formeel stellen we ng = —1 en ny =n).

A.4 Minimale codewoorden

A.4.1 Probleemstelling

In het derde hoofdstuk bestuderen we minimale codewoorden. Deze zijn in-
gevoerd door Massey [40] voor cryptografische doeleinden. Ze worden gebruikt
in welbepaalde secret sharing schemes, om de toegangsstructuur te modelleren.
We bestuderen minimale codewoorden in binaire Reed-Muller codes. Een clas-
sificatieresultaat van Kasami, Tokura en Azumi [34] over Booleaanse functies
zal ons toelaten om ons probleem in een equivalent meetkundig probleem te
vertalen. In deze meetkundige context zullen we het aantal niet-minimale code-
woorden berekenen. Dit laat ons toe om in de gevallen waar de gewichtsdis-
tributie van de code gekend is het aantal minimale codewoorden te vinden. De
bekomen resultaten verbeteren theoretische resultaten bekomen door Borissov,

Manev en Nikova [5], en computerondersteunde resultaten van Borissov en
Manev [4].
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Eerst en vooral geven we de definities en stellingen nodig voor een goede
formulering van het probleem. We zullen een meetkundige interpretatie geven
aan de codewoorden, en vervolgens ons probleem vertalen naar een equivalent
probleem in eindige meetkunde.

Definitie A.4.1 Voor elke m en r, 0 < r < m, wordt de binaire r-de orde
Reed-Muller code RM(r,m) gedefinieerd als de verzameling van alle binaire
vectoren f van lengte n = 2™ geassocieerd aan Booleaanse veeltermen

f(z1, 29, ..., 2) van graad ten hoogste r.

Definitie A.4.2 Als f(x1,...,x,,) een Booleaanse functie is, dan is T(f) de
verzameling vectoren X = (x1, ..., Z,) zodat f(X) = 1.

Definitie A.4.3 De drager van een codewoord ¢, genoteerd als supp(c), is de
verzameling van posities in het codewoord ¢ die een niet-nul symbool bevatten.

Definitie A.4.4 Zij C' een q-aire lineaire code. Fen niet-nul codewoord c € C
wordt minimaal genoemd als zijn meest linkse niet-nul component een 1 is en
als hij een drager heeft die geen enkele drager van een ander niet-nul codewo-
ord met als meest linkse niet-nul component een 1 als echte deelverzameling
bevat. De drager van een minimaal codewoord wordt minimaal genoemd met
betrekking tot de code C'.

Het verband met het vorige hoofdstuk wordt gelegd door de volgende
stelling van Massey [40], en geeft aan waarom het interessant is om minimale
codewoorden te bestuderen.

Stelling A.4.5 De toegangsstructuur van een secret sharing scheme dat cor-
respondeert met een lineaire g-aire [n,k|-code C'" wordt gespecifieerd door de
minimale codewoorden in de duale code C*+ waarvoor de eerste component een
1 4s, in de zin dat de verzameling shares bepaald door elk dergelijk minimaal
codewoord in de duale code de verzameling shares is corresponderend met de
posities na de eerste waar het minimaal codewoord een niet-nul element bezit.

Volgende eigenschappen zijn te vinden in [1]; de tweede is diegene die
essentieel is voor ons resultaat.

Lemma A.4.6 Zij C een binaire lineaire [n, k,d|-code.

(i) De drager van een codewoord van gewicht < 2d — 1 is minimaal met
betrekking tot C'.
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(ii) Het codewoord c is een niet-minimaal codewoord in C als en slechts als
er een paar niet-nul codewoorden ci,co bestaat, met onderling disjuncte
dragers beide bevat in de drager van c, zodat ¢ = ¢y + 5.

(iii) Als ¢ een minimaal codewoord is in C, dan geldt wt(c) <n —k+ 1.

De natuurlijke vraag die opduikt, is wat er gebeurt tussen deze grenzen. Het
kleinste niet-triviale geval is wt(c) = 2d. Dit werd opgelost door Borissov,
Manev, en Nikova [5] voor RM(r,m), door een meetkundige interpretatie van
de minimale codewoorden. Eerst voeren we enkele notaties in om hun resultaat
compact te kunnen noteren.

Definitie A.4.7 De g-aire Gaussiaanse coéfficiént wordt als volgt gedefinieerd:

[T} :H;.;B‘g—g,{%l} =1,vo0ri=1,2--- . m.

Verder gebruiken we de volgende notaties:

__or—1 m
Arm =2 [m—r—i—l]'

2r+1_4 2T‘+1 m
== (0 )]

Spm = (27T — 1) A, + 3B, .

m—r

_ (m—r—k)(m—r—k+1) | T —T r
Erm Z 2 [ k }{m—r—k}'

k=max{0,m—2r}

Py =2""" { I } (2" { i ] — Epm).

—r —r
De hoofdstelling van Borissov, Manev en Nikova [5] luidt als volgt.

Stelling A.4.8 Het aantal niet-minimale codewoorden van gewicht 2d = 2m~"+1
in RM(r,m) is Aym + Brm + Pron — Srm.-

We vermelden het volgende classificatieresultaat van Kasami, Tokura en
Azumi [34] over Booleaanse functies dat de sleutel vormt voor onze meetkundige
vertaling van het probleem.

Stelling A.4.9 Zij f(xy,...,x,,) een Booleaanse functie van graad ten hoogste
r, metr > 2, zodat |T(f)| < 2™ "1, Dan kan f affien getransformeerd worden
naar één van de volgende vormen:

f =Ty xr—Q(x'r—lxr + o+ Ir+2,u,—3xr+2,u,—2)7 2 S 2M S m—r+ 2)

f=o1 w1 T+ Togr - Tpiy), 3< < r,p<m—r.
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We zullen codewoorden van de vormen hierboven respectievelijk codewoorden
van eerste en tweede type noemen. Het is welbekend dat de vectoren van
kleinste gewicht 2" in RM(r, m) geinterpreteerd kunnen worden als de inci-
dentievectoren van (m — r)-dimensionale affiene ruimten.

Met een codewoord van het eerste type correspondeert meetkundig een
kwadriek W met als top een (m — r + 1 — 2u)-dimensionale ruimte PG(m —
r+ 1 — 2u,2) volledig op oneindig gelegen en als basis een 2u-dimensionale
niet-singuliere parabolische kwadriek Q(2u,¢q) die de ruimte op oneindig in
een niet-singuliere hyperbolische kwadriek Q7 (2 — 1, ¢) snijdt.

Met een codewoord van het tweede type correspondeert meetkundig een
verzameling affiene punten die exact gelijk is aan de verzameling affiene punten
bevat in de unie van twee (m — r)-dimensionale ruimten, maar niet in hun
doorsnede. We noemen dit een symmetrisch verschil.

A.4.2 De meetkundige context

Hier beschrijven we welke verschillende meetkundige situaties zich voordoen.
In deze nederlandstalige samenvatting zullen we ons tot deze beschrijving
beperken, aangezien zowel de uitwerking van de beschrijving als de formules
zeer lang en technisch zijn, en weinig verhelderend. Voor de precieze formules
verwijzen we de lezer naar de engelstalige tekst.

We bestuderen de gevallen ¢ = ¢; + ¢o uit Lemma A.4.6, met wt(c) <
3-2™77. Dit impliceert dat we kunnen onderstellen dat wt(c;) = 2™ " en
wt(ecy) = %2’""“. Eerst en vooral maken we onderscheid tussen twee gevallen
naargelang de keuze van het codewoord c,.

Het codewoord c¢; is een kwadriek V¥

Zij IT de (m — r + 2)-dimensionale projectieve ruimte die de kwadriek ¥ bevat
en zij a de projectieve sluiting van de (m — r)-dimensionale affiene ruimte die
correspondeert met het codewoord van kleinste gewicht ¢;. De doorsnijding
van Il met de ruimte op oneindig wordt genoteerd als Il,,. Merk op dat ¥
een (m —r — 2u + 1)-dimensionale top I' op oneindig bezit. Noteer de 2pu-
dimensionale ruimte die de basis vormt van de kwadriek ¥ met B, en de
doorsnijding van B met I, als By.

Eerst en vooral beschrijven we de verschillende situaties in AG(m, q)
die zich voordoen indien we de paren (¥, «) die geen affiene punten gemeen
hebben willen tellen, waar ¥ de kwadriek is en waar « een projectieve ruimte
PG(m — r,q) is, niet volledig op oneindig gelegen. Merk op dat in het geval
q = 2, het affien gedeelte van a het codewoord c¢; definieert en het affien
gedeelte van W het codewoord c,.
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Geval 1) De ruimten « en II hebben geen punten gemeenschappelijk.
Dan heeft « zeker geen affiene punten gemeen met W.

Geval 2) De ruimten « en II snijden in een z-dimensionale ruimte, x >
0, die compleet op Il ligt. Al deze ruimten o hebben geen affiene punten
gemeen met W. Om het aantal dergelijke ruimten te vinden, beschouwen we een
vaste z-dimensionale ruimte I1,, gelegen in I, en tellen we hoeveel (m — r)-
dimensionale ruimten een projectieve sluiting hebben die II exact in II, snijdt.

Geval 3) De ruimten « en II snijden in een [-dimensionale ruimte II;,
[ > 0, niet compleet op Il gelegen. Als [ = 0, dan tellen we hoeveel (m —
r)-dimensionale affiene ruimten een projectieve sluiting hebben die IT exact
snijden in een affien punt niet gelegen op W.

Veronderstel dus vanaf nu dat [ > 0, dan komen we tot volgende twee
gevallen.

Lemma A.4.10 Zij a een (m — r)-dimensionale affiene ruimte in AG(m,q)
die een niet-ledige intersectie heeft met de (m — r + 2)-dimensionale affiene
rutmte I1 die de kwadriek U bevat. Veronderstel dat oo N 11 scheef is aan W,
dan is o N Il ofwel bevat in W N1l ofwel is a N1l NV een hyperviak in
aNlly.

Bij alle berekeningen vertrekken we van de doorsnijding in IlI,,. Deze
doorsnijding moet de ruimte op oneindig vormen van een affiene ruimte die
geen punten gemeen heeft met de kwadriek ¥. Om dergelijke affiene ruimten
te bekomen, dienen we externe rechten aan de kwadriek te beschouwen door
een punt p op oneindig gelegen. Het aantal dergelijke rechten hangt af van de
verschillende specifieke situaties die we hier niet in detail behandelen.

Het codewoord ¢, is een symmetrisch verschil

Noteer de twee (m — r)-dimensionale ruimten die het symmetrisch verschil ¢,
vormen als (3 en v, en zij a de (m — r)-dimensionale projectieve ruimte cor-
responderend met het codewoord c;. We starten van een vast symmetrisch
verschil en tellen hoeveel (m — r)-dimensionale affiene ruimten a geen affiene
punten gemeen hebben met dit symmetrisch verschil. We onderscheiden vol-
gende gevallen.

Geval 1) Er zijn geen snijpunten van o met 3 of 7. Dan zijn er zeker ook
geen affiene snijpunten.

Geval 2) De enige snijpunten van « met 3 of v liggen in 5 N ~. Dus de
doorsnijding is een k-dimensionale ruimte gelegen in 3N .

Geval 3) Er zijn snijpunten van « met [ of 7 niet gelegen in 5 N 7.
Bijgevolg liggen alle snijpunten van a met 3 U~ op oneindig, anders krijgen
we affiene snijpunten niet gelegen in 5N ~.
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De gevallen 2) en 3) worden op analoge wijze opgelost gebruikmakend
van projecties. We starten van gegeven snijruimten oo N 3 en a N ~y. Dit noe-
men we een startconfiguratie. We tellen hoe vaak elke startconfiguratie kan
voorkomen. Dan breiden we zo een startconfiguratie geleidelijk uit tot we een
(m —r)-dimensionale affiene ruimte o bekomen. In elke stap projecteren we op
een ruimte complementair aan de ruimte tot dusver geconstrueerd. We tellen
hoeveel uitbreidingsmogelijkheden er zijn bij elke stap. Dit levert een induc-
tieve formule op, waaruit we het gevraagde aantal (m —r)-dimensionale affiene
ruimten die geen affiene punten gemeen hebben met het gegeven symmetrisch
verschil kunnen berekenen.

Verwisselingen

Nadat al deze tellingen zijn gebeurd, dienen we nog de situaties te beschouwen
die we eventueel meerdere malen hebben geteld. Om uit te zoeken wanneer dit
gebeurt, veronderstellen we dat we een gegeven niet-minimaal codewoord ¢ op
twee verschillende wijzen kunnen schrijven als een paar niet-nul codewoorden
met disjuncte drager, dus we veronderstellen dat

C=2C + Cy = C3 + C4.

Hierbij veronderstellen we de codewoorden c¢; en ¢3 van minimaal gewicht.
Zij stemmen dus overeen met (m—r)-dimensionale affiene ruimten in AG(m, q).
We veronderstellen dat c; en c3 in een ¢-dimensionale ruimte snijden. Deze
parameter ¢ legt onmiddellijk sterke restricties op voor de intersectiemogeli-
jkheden.

In het geval dat ¢, een kwadriek W is, bewijzen we eerst dat de projectieve
sluiting van de (m —r)-dimensionale affiene ruimte c3 de top I' van de kwadriek
co, dus W, volledig moet bevatten, opdat een verwisseling zou mogelijk zijn.
In een zeer beperkt aantal gevallen, voor de waarden ¢ = 2 en ¢ = 3, treedt er
ook effectief een verwisseling op. In al deze gevallen blijkt ¢, ook een kwadriek
te zijn.

Als ¢y een symmetrisch verschil is, zijn er ook in een beperkt aantal
situaties paren dubbelgeteld waarbij wegens voorgaande paragraaf c; terug
een symmetrisch verschil moet zijn.

A.5 Karakteriseringen van Veroneseanen

In [65] wordt een karakterisering van de eindige kwadratische Veroneseaan V2"
aan de hand van de V,,_;-deelruimten gegeven. Deze V), _1-deelruimten vormen
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een sterk reguliere veralgemeende boog. In [35] en [36] bewezen we een exten-
sieresultaat voor sterk reguliere veralgemeende bogen, dat ons toelaat om een
vergelijkbare karakterisering van de veralgemeende Veroneseaan te bekomen.

A.5.1 Gekende verwante resultaten

In 1947 bestudeerde Bose ovalen en hyperovalen in [6]. Daar bewees hij dat
elke verzameling punten in PG(2, ¢), waarvan er geen drie op een rechte liggen,
ten hoogste ¢+ 1 punten bezit als ¢ oneven is en ten hoogste ¢+ 2 als ¢ even is.
Verzamelingen waarvoor deze grenzen worden bereikt worden respectievelijk
ovalen en hyperovalen genoemd.

Speciale gevallen van veralgemeende duale bogen hebben een lange
voorgeschiedenis. Zo is een veralgemeende duale boog van graad 0 een (partiéle)
spread van PG(n, q). De veralgemeende boog van graad n — 1 in PG(n, ¢) en
van type (n,n—1,...,1,0) is niets anders dan het duale van een gewone boog
in PG(n,q).

Veralgemeende duale bogen van graad 1 met ny = 0 zijn bekend als
ni-dimensionale duale bogen. Het is welbekend dat de dimensie n van de
omgevende ruimte PG(n, ¢) van een n;-dimensionale duale boog voldoet aan
2n1 <n < sny(ng + 3) (zie [73)).

We hebben volgende stelling over deze duale Veronese boog nodig.

Stelling A.5.1 Voor q oneven is de duale Veronese boog maximaal, en voor q
even kan ze uitgebreid worden met de kernruimte tot een duale boog van grootte
P +q+2

De verzameling F van ¢*>+q+1 vlakken in PG(5, ¢) uit Voorbeeld A.1.19
bezit de volgende eigenschappen:

(P1) elke twee van deze vlakken snijden in een punt,
(P2) elke drie van deze vlakken bezitten een ledige doorsnede.

Als q oneven is, dan is D(p) het raakvlak aan V3 in p.

In 1958 toonde Tallini [60] (zie ook [28]) dat elke verzameling van ¢* +
q + 1 vlakken in PG(5,¢), ¢ oneven, die voldoet aan (P1) en (P2), isomorf is
aan de verzameling F uit Voorbeeld A.1.19, dus isomorf met de verzameling
raakvlakken van V3.

Bovendien zijn raakvlakken gerelateerd aan kegelsnedevlakken, dit is
Stelling 25.1.18 uit [28].

Stelling A.5.2 Als q oneven is, dan bezit PG(5, q) een polariteit die de kegel-
snedevlakken van Vi op de verzameling raakvlakken aan Vi afbeeldt.
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Dit laat toe om een duale versie van de stelling van Tallini te formuleren.

Stelling A.5.3 Zij L een verzameling van ¢* + q + 1 vlakken van PG(5,q), q
oneven, die volgende eigenschappen heeft.

(i) Elke twee verschillende elementen uit L hebben juist 1 punt gemeen.
(ii) Elke drie verschillende elementen uit L brengen PG(5, q) voort.
(i) Geen enkel punt behoort tot alle elementen wit L.

Dan is L de verzameling kegelsnedeviakken aan een Veroneseaan V.

Dit resultaat werd veralgemeend naar hogere dimensies en naar ¢ even
in [65]. Zij bekwamen de volgende karakterisering van de eindige kwadratische
Veroneseaan V2.

qn+1

Stelling A.5.4 Zij F een verzameling van q—l_l deelruimten van dimensie

w in PG(N = @, q) met de volgende eigenschappen:

(VS1) Elke twee elementen van F brengen een hyperviak van PG(n,q) voort.
(VS2) Elke drie elementen van F brengen PG(N, q) voort.
(VS3) Geen enkel punt is bevat in elk element van F.

(VS4) De doorsnede van elke niet-ledige verzameling van elementen van F is een
deelruimte van dimensie N; = @ voor een i € {—1,0,1,-+- ,n—1}.

(VS5) Er zign drie elementen Qy, Qo, Q3 in F waarvoor Q1 N Qs = Oy N Q3 =
Q3N Q.

Dan is F ofwel de verzameling V,,_1-deelruimten aan een kwadratische Verone-
seaan V2", of q is even, er bestaan twee elementen Q;,Qy € F zodat de

n ’

w;nm—dimensionale doorsnede 21 Ny in geen enkel element van F is be-

vat en er is een unieke deelruimte 2 van dimensie w zodat FU{Q} de
verzameling V,_1-deelruimten samen met de kernruimte is van een kwadratis-
che Veroneseaan V2" .

In het bijzonder, als n = 2, dan is de stelling geldig zonder dat we (V S4)

hoeven te onderstellen.

Voor d = 1 en ¢ even zijn er niet-Veronese duale bogen met de eigen-
schap dat elke ruimte opgespannen door twee elementen van F enkel deze twee
elementen van F bevat. Voor n = 2 is het mogelijk om alle voorbeelden te
classificeren die niet aan (VS5) voldoen door een resultaat uit [15]; het blijkt
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dat er enkel mogelijkheden zijn voor ¢ = 2 en ¢ = 4. De classificatie blijft
een open probleem voor n > 3, hoewel een oneindige klasse aan voorbeelden
is gekend, beschreven in [65].
Wij werken in de duale ruimte. In Opmerking A.1.23 zagen we dat de
duale Veronese boog het duale is van de verzameling van V,,_; deelruimten.
De duale formulering van bovenstaande stelling luidt als volgt. Wij be-
wijzen een uitbreiding van deze duale versie.

Stelling A.5.5 Zij F een verzameling van qn;_ll_l n-dimensionale ruimten in

PG(@, q) die voldoen aan
(VS1) Elke twee elementen uit F snijden in een punt.
(VS2) Elke drie elementen uit F hebben een ledige doorsnede.

(VS3) De elementen uit F brengen PG(@, q) voort.

(VS4) Elke eigenlijke deelruimte van PG(" (n+3) ,q) opgespannen door een verza-

i(2n—i+3)
2

meling elementen uit F is een deelrmmte van dimensie - — 1, voor

een zekere i € {0,...,n}.

(VS5) Als q even is, dan bestaat er tenminste een deelruimte voortgebracht door
twee elementen wit F die meer dan twee elementen van F bevat.

Dan is F de duale Veronese boog gedefinieerd door Constructie A.1.18 of q is
even, en er zign twee elementen 1, € F zodat de 2n-dimensionale ruimte
(Q4,Q0) slechts twee elementen van F bevat en er is een unieke deelruimte
Q wvan dimensie n zodat {Q} U F de unie is van een Veroneseane duale boog
gedefinieerd in Constructie A.1.18 samen met zijn kernruimte. In het bijzon-
der, als n = 2, is de stelling geldig onder de zwakkere voorwaarden dat F
voldoet aan (V.S1), (VS2), (V.S3) en (V.S5).

A.5.2 Algebraische karakterisering van duale bogen

Het hoofdresultaat van deze deelsectie is het volgende. Het bewijs van deze
stelling is sterk geinspireerd op de methode gebruikt in [65].

Stelling A.5.6 Veronderstel dat d+0 < q;25 als q oneven is en dat d+6 < q;26
als q even 1is.

Zyy F een sterk reguliere veralgemeende duale boog van grootte qn;_l_l -0

1
en van type (no, ..., Ngy1) waarbij n; = ("+d;’1_i) — 1.

Daarenboven veronderstellen we dat elke eigenlijke deelruimte opgespan-

. . . . 1 1—s
nen door een verzameling elementen uit F een dimensie (";ﬁr ) — ("t‘ﬁl ’) —1
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voor een i € {0,...,n} heeft. Deze veronderstelling noemen we eigenschap
(P).
Als q even is, veronderstellen we daarenboven dat er twee elementen
O, Q1 € F bestaan zodat (g, 1) tenminste drie elementen van F bevat.
Dan is F wuitbreidbaar tot een sterk reguliere veralgemeende duale boog

van grootte 7;_11_1
Als q,even 1s end =1, dan is de duale boog zelfs uitbreidbaar tot één van
grootte qnq__l_1 + 1. In alle gevallen is de duale boog een deelverzameling van de

mazximale duale boog beschreven in 1.3.5 of van de duale Veronese boog plus de
kernruimte in het geval d =1, q even.

Hoewel eigenschap (P) ietwat gekunsteld lijkt, kunnen we aantonen dat
als ¢ voldoende groot is, meer precies als ¢ > n, dat eigenschap (P) dan voldaan
is voor elke sterke reguliere veralgemeende duale boog.

Het bewijs van Stelling A.5.6 bestaat uit twee grote delen, die we iets
nader zullen toelichten in de twee volgende deelsecties. Hieronder geven we
eerst een ruwe schets van het bewijs.

Voor het geval d = 1 bewijzen we dat voor een deficiéntie 6 > 0, met ¢
klein een duale boog van graad 2 met type (ng, n1, n2) en van grootte qn;l; L)
niet maximaal is.

Voor d > 1 gebruiken we inductie op d. Het hoofdidee van dit stuk
is het volgende. In Constructie A.1.18 hadden we n + 1 speciale elementen
van de boog, namelijk die van de vorm D((0,...,0,1,0,...,0)). In elk van
deze elementen induceren de andere elementen van de boog een duale boog
van grootte qn;jfl — 1. Dus elk element (n,n4,...,ny) van de boog bevat een
extensieruimte. Binnen deze extensieruimte kunnen we opnieuw kijken naar
de geinduceerde boog om opnieuw een extensieruimte te vinden, enzovoort.

Het idee van het bewijs is om n+1 elementen van de duale boog te vinden
die de ruimte volledig opspannen. Deze elementen zullen blijken de elementen
van de vorm (n,ni,...,ng) te zijn. Daarnaast kiezen we nog een (n + 2)-
de element dat intuitief correspondeert met een eenheidspunt van PG(n, q).
Vervolgens gebruiken we inductief de gekende algebraische karakterisering van
de duale bogen van graad d — 1 om de Veroneseaan terug te vinden.

A.5.3 Het geval d=1

Voor d = 1 reduceert onze hoofdstelling zich tot de volgende stelling. Bemerk
hierbij dat de voorwaarden exact dezelfde zijn als die van Stelling A.5.4.

Stelling A.5.7 Veronderstel dat § < (1;—5 als g oneven is en dat § < % als q
n+1_1
q _

q) met de volgende eigenschappen:

— & verschillende n-dimensionale

even is, en zij F een verzameling van

n(n+3)

ruimten in PG (=5,
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(VS1) Elke twee elementen van F snijden in een punt.

(VS2) Elke drie elementen van F hebben een ledige intersectie.
(VS3) De elementen van F spannen de ruimte PG(®5- n+3),q) op.

(VS4) Elke eigenlijke deelruimte van PG(" (n+3) ,q) opgespannen door een verza-
meling elementen wit F is een deelruzmte van dimensie “2n=3) 2Z+3)

eeni € {0,...,n}.

— 1, voor

(VS5) Als q even is, dan bestaal er tenminste één ruimte opgespannen door twee
elementen wit F die meer dan twee elementen uit F bevat.

Dan is F een sterk requliere veralgemeende duale boog van grootte <~ = 71 -9
van graad 2 en type (ng,ny1,ng), waarbij n; = (”Jf Z) — 1, uitbreidbaar tot een

L In het geval q even

-1
1

sterk reguliere veralgemeende duale boog van grootte qn;;

witbreidbaar s

is het bovendien geweten dat elke duale boog van grootte qn;_l
-1
+ 1.

tot een duale boog van grootte 4

Opnieuw geldt dat als ¢ > n dat dan (VS4) automatisch volgt uit (VS1),
(VS2) en (VS3).

In het geval van de Veroneseaan geldt dat elk element van F correspon-
deert met een punt van de projectieve ruimte PG(n, q). De 2n-dimensionale
ruimten opgespannen door twee elementen van F corresponderen met rechten
van PG(n,q). In dit geval zijn de mogelijkheden voor het aantal elementen
van F bevat in een 2n-ruimte dus beperkt.

Volgend lemma vormt een eerste stap in deze richting en toont ook al
een eerste keer aan dat er een verschil zal optreden tussen de gevallen ¢ even
en g oneven. Het geval ¢ even vraagt wat meer werk omdat daar een kern kan
optreden; deze kan geidentificeerd worden waarna we kunnen verder werken
zoals in het geval ¢ oneven. We zullen in deze appendix hier niet op ingaan.

Lemma A.5.8 Elke 2n- dimensionale ruimte bevat 0,1,2 of tenminste ¢ — o
(6 < - T als q oneven is en § < = 8 als q even is) elementen van F. Als q
oneven 1s, kan het geval 2 zich bovendien niet voordoen.

We zullen een 2n-ruimte groot noemen als het tenminste ¢ — 9 elementen
van F bevat. Een volgend lemma legt in elke grote 2n-ruimte een speciaal vlak
vast, dat heel wat structurele informatie in zich draagt.

Lemma A.5.9 Zij1l een grote 2n-dimensionale ruimte. Dan bevat 11 een vlak
7 dat de elementen van F in Il in rechten snijdt. De elementen van F, niet
in 11, snigden I1 in een rechte die ® niet snijdt.
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Het volgend lemma is een eerste aanwijzing van het feit dat de contact-
punten, dit zijn de punten bevat in exact één element van F, die we her en der
zien, gestructureerd liggen.

Lemma A.5.10 Zij 7 € F. Beschouw alle grote 2n-dimensionale ruimten
door w. Dan snijden de vlakken 7 bevat in deze ruimten de ruimte m in ver-
schillende rechten door een zelfde punt.

We slaan hier in de appendix enkele technische stappen over. Hierin
wordt bewezen dat de rechten die we zien in de vlakken 7 de gewenste structuur
bezitten. Na dit technisch stuk zijn we in staat om het volgende te doen.

We definiéren een lineaire ruimte £ met als punten de elementen van F
en de 2n-dimensionale ruimten voortgebracht door twee elementen van F als
rechten. Als vlakken definiéren we de (3n — 1)-dimensionale ruimten voortge-
bracht door drie elementen van F.

Lemma A.5.11 FElk vlak van L is een projectief vlak van de orde ¢ met enkele
gaten.

Onderstaand lemma vervolledigt het bewijs van Stelling A.5.7.

Lemma A.5.12 Zij F een duale boog die aan de veronderstellingen van Stelling
A.5.7 voldoet. Als 6 > 0, dan is F niet mazimaal.

A.5.4 Het geval d > 2

We geven een summiere schets van de structuur van het bewijs voor het geval
d > 2 zonder volledig te willen zijn. Zo zullen we bijvoorbeeld de technische
moeilijkheden voor het geval ¢ even met een eventuele kern niet aankaarten. In
het eerste deel van deze deelsectie tonen we aan dat bepaalde onderstellingen
over F blijven gelden in deelstructuren; dit is noodzakelijk om inductie te
kunnen toepassen. Fixeer een element 2 € F en definiecer Fo = {Q N Q|| €
F\{2}}. We vatten deze resultaten samen in onderstaande lemmata.

Lemma A.5.13 Als F sterk regulier is, dan is Fq sterk regulier. Hieruit
volgt dat als F een sterk requliere veralgemeende duale boog is met ¢ > n dat
F dan voldoet aan eigenschap (P). Bovendien geldt als F sterk regulier is en
aan eigenschap (P) voldoet, dat dan ook Fq aan eigenschap (P) voldoet.

Lemma A.5.14 Zij q even en veronderstel dat F een sterk requliere veral-
gemeende duale boog is, die voldoet aan eigenschap (P) en drie speciale el-
ementen €, Q4 bevat met Qf C (Q),Q). Dan bezit Fq drie elementen
Q1 NQ, QN A NQ zodat Q3 NQ bevat is in (3 N Q, Ny N Q).
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De volgende stelling toont aan dat de boog geconstrueerd aan de hand
van de Veroneseaan niet kan uitgebreid worden.

Stelling A.5.15 Zij d > 2. Dan s de sterk requliere veralgemeende duale
boog gedefinieerd via Constructie A.1.18 mazimaal.

Hiermee is het bewijs van Stelling A.5.6 voltooid.

A.5.5 Open problemen

Voor sommige van onze onderstellingen zijn ons geen tegenvoorbeelden gekend.
Het is heel interessant om te weten of dergelijke voorbeelden bestaan of anders
of het mogelijk is om deze onderstellingen uit de andere onderstellingen te
bewijzen. In het bijzonder krijgen we volgende vragen:

e Er zijn ons geen voorbeelden bekend van reguliere duale bogen die niet
sterk regulier zijn. Bestaan dergelijke voorbeelden?

e Voor d = 1 hebben we voorbeelden van niet-Veronese duale bogen waar-
voor geen enkele 2n-ruimte meer dan twee elementen van de boog bevat.
Wat gebeurt er in het geval d > 17

e We hebben eigenschap (P) bewezen voor g > n. Bestaan er tegenvoor-
beelden van eigenschap (P) als ¢ < n?

A.5.6 Een karakterisering van de Veroneseaan aan de
hand van intersectiegetallen

In deze sectie bekomen we een combinatorische karakterisering van de Verone-
seaan aan de hand van intersectiegetallen. Het resultaat steunt op een geli-
jkaardig resultaat voor de Veroneseaan Vy door Ferri [22], Hirschfeld en Thas
[28], en Thas en Van Maldeghem [66], en een structurele karakterisering van
de Veroneseaan door Thas en Van Maldeghem [65].

We starten met de karakterisering van V4 aan de hand van intersectiege-
tallen met vlakken en 4-ruimten.

Stelling A.5.16 Zij K een verzameling van k punten in PG(5,q), ¢ # 2,4,
die aan volgende voorwaarden voldoet:

(i) MaN K| =1, g+ 1, 2¢ + 1 voor elk hyperviak 11y van PG(5,q) en er
bestaat een hyperviak 11y waarvoor |11, N K| = 2q + 1.

(11) Elk vlak van PG(5, q) dat vier punten van IC bevat, bevat tenminste g+ 1
punten van K.
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Dan is K de puntenverzameling van een Veroneseaan Vs.

Een stelling van Zanella [76] levert een bovengrens op het aantal punten
van de kwadratische Veroneseaan dat kan bevat zijn in een k-dimensionale
ruimte. Ze luidt als volgt.

Stelling A.5.17 Beschouw de Veroneseaan V), gedefinieerd door de afbeelding

n(n+ 3
(:PG(n,q) — PG(%&) :
(-rOaxl?"' 7xn) = (3387 ,fl?i,$0£€1"‘ 7xn71$n)-

(a+3)(a+2)

5 , dan bevatten de

Zij k, n, a natuurlijke getallen zodat k + 1 <
doorsnedes 1y NV, ten hoogste

atl _ 1 (a+2)(at+1)
: q—1 + qk_f

punten.

Toegepast op lage dimensies levert dit de bovengrenzen g+ 1, ¢+ 2, 2g+ 1 en
@ +q+1voor k=2 k=23, k=4en k=5 respectievelijk.

De volgende structuurstelling werd bewezen door Thas en Van Maldeghem
in [66].

Stelling A.5.18 Zij X een verzameling punten in Il := PG(M,q), M > 2,
die 11 opspant, en zij P een verzameling vlakken zodat voor elke m € P de
doorsnede X N een ovaal is in w. Voor elke m € P en elke x € X N1 noteren
we de raaklijn in x aan XN als T, (7). Onderstel volgende drie eigenschappen:

(i) Elke twee punten x,y € X zijn bevatl in een uniek element van P, geno-
teerd als [x,y].

(i) Als m,m € P en m Ny is niet leeg, dan geldt T Nmy C X.

(i) Alsx € X enm € P waarbijx ¢ m, dan is elk van de rechten T, ([x,y]),y €
X N, bevat in een vast vlak van 11, genoteerd T(x, ).

Dan bestaat er een natuurligk getal n > 2 (dat de index van X wordt genoemd),
een projectieve ruimte I := PG(@,(]) die 11 bevat, en een kwadratische
Veroneseaan V,, van index n in IU', met RNV, = 0, zodat X de (bijectieve)
projectie van V, vanuit R op Il is. De deelruimte R kan leeg zign; in dit geval

is X projectief equivalent met V,,.

Onze karakterisering wordt hieronder beschreven. Zij I een verzameling van

qn;ll_ ! punten die PG("(";r 3 ), met n > 2, opspant waarvoor geldt:




226 APPENDIX A. NEDERLANDSTALIGE SAMENVATTING

(i) Als een vlak 7 minstens vier punten van K bevat, dan bevat het exact
g+ 1 punten van K. Bovendien onderstellen we dat elke twee punten van
KC bevat zijn in een vlak dat K in ¢ + 1 punten snijdt.

(ii) Als in een 3-ruimte II3 geldt dat |[II3 N K| > 5, dan zijn er vier punten
van K bevat in een vlak gelegen in Il3. In het bijzonder volgt hier wegens
(i) uit dat als |[TI3 N K| > 4, dan |TI3 N K| > ¢+ 1.

(iii) Als een 5-ruimte II5 de verzameling IC in meer dan 2¢ + 2 punten snijdt,
dan snijdt ze K in exact ¢> + ¢ + 1 punten.

Opmerking A.5.19 Bemerk dat voor n = 2 de derde voorwaarde ledig is.

Als K aan bovenstaande voorwaarden voldoet, dan geldt de volgende
stelling.

Stelling A.5.20 Als ¢ > 5, dan is de verzameling KC de puntenverzameling
van de Veroneseaan van alle kwadrieken van PG(n, q).

Een tegenvoorbeeld voor ¢ = 2, n > 2, voor bovenstaande stelling wordt
gegeven door een punt in een Veronese variéteit te vervangen door een punt
dat correspondeert met een matrix van maximale rang, gebruikmakende van
de correspondentie gegeven in Stelling A.1.16.

Een tegenvoorbeeld voor ¢ = 3, n = 2, wordt gegeven door de punten-
verzameling van een elliptische kwadriek € in een 3-ruimte II3 C PG(5,3)
gelegen en 3 punten op een rechte L C PG(5,3) die II3 niet snijdt.

Het bewijs verloopt in verschillende stappen. Eerst wordt bewezen dat
een 4-ruimte voldoet aan de grenzen van Stelling A.5.17 van Zanella. Vervol-
gens tonen we aan dat elke 5-ruimte die K in ¢? + ¢ + 1 punten snijdt een
kwadratische Veroneseaan V is. Dit laat toe om Stelling A.5.18 toe te passen.

Voorwaarde (i) is een sterke voorwaarde aangezien ze a priori al de kegel-
snedes’ de structuur laat binnen sluipen. Als n > 2, dan kunnen we echter
onze voorwaarden afzwakken tot de volgende:

Zij K een verzameling van - — L punten die PG("(”+3 ,q), met n > 2,
opspant en waarvoor geldt:

(i’) Een vlak 7 snijdt K in hoogstens ¢ + 1 punten.

(ii") Als in een 3-ruimte II3 geldt dat |13 N K| > 5, dan geldt dat |13 N K| >
g+ 1 en er is een vlak in I3 dat minstens 4 punten van K bevat.
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(iii’) Als een 5-ruimte II5 de verzameling I in meer dan 2¢ + 2 punten snijdt,
dan snijdt ze K in exact ¢+ ¢+ 1 punten. Bovendien geldt dat elke twee
punten pi, ps van K bevat zijn in een 5-ruimte die ¢> + ¢ + 1 punten van
IC bevat.

Een tegenvoorbeeld voor n = 2 is het volgende. Beschouw in PG(5, q)
een punt p op een ovoide O in I3 = PG(3,¢q) en een raaklijn L aan O in p.
Bekijk vervolgens een vlak 7 dat II3 exact in L snijdt en een ovaal O’ bevat
die L in p snijdt. Dan voldoet O U @' aan (1), (ii’) en (iii’), maar het is geen
kwadratische Veroneseaan V.

A.6 Karakteriseringen van klassieke polaire
ruimten door intersectiegetallen

A.6.1 Inleiding

Het beroemde resultaat van Segre [51] dat elke ¢ + 1 punten in PG(2,q), ¢
oneven, waarvan geen drie punten collineair zijn, een kegelsnede vormen, stond
aan de wieg van de combinatorische meetkunde en sindsdien hebben combi-
natorische karakteriseringen van objecten die klassiek algebraisch gedefinieerd
worden de interesse gewekt van velen; niet alleen omwille van de estheticiteit
maar ook omdat deze karakteriseringen vele nuttige toepassingen hebben in
aanverwante disciplines zoals bijvoorbeeld de codeertheorie.

Het volgende karakteriseringsresultaat van Ferri en Tallini [23] van de
parabolische kwadriek Q(4,¢) vormde de start van ons onderzoek.

Stelling A.6.1 FEen verzameling punten K in PG(n,q), metn >4 en |K| >
¢+ ¢+ q+1, die elk viak in 1, a of b punten snijdt, met b > 2q + 1, en die
elke 3-dimensionale ruimte in c, ¢+ q of ¢+ 2q punten snijdt, met ¢ < ¢* +1,
zodat er 3-dimensionale ruimten bestaan die K in ¢ en ¢+ q punten snijden,
is een niet-singuliere kwadriek van PG(4,q).

Via eenvoudige telargumenten kan men volgende stelling bewijzen als
gevolg van het voorgaande. Dit gevolg vormt het uitgangspunt van de resul-
taten bekomen in dit hoofdstuk.

Gevolg A.6.2 Als een verzameling punten in PG(n,q), n > 4, elk viak in
1, g+1, of 2¢+1 punten snijdt en elke 3-dimensionale ruimte in ¢>+1, ¢*+q+1
of ¢*+2q+1 punten snijdt, dan is K de puntenverzameling van een parabolische

kwadriek Q(4, q).

Deze stelling roept natuurlijkerwijze de volgende vragen op.
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Is het mogelijk om andere eindige klassieke polaire ruimten te
karakteriseren aan de hand van hun intersectiegetallen ten opzichte
van vlakken en 3-dimensionale ruimten, respectievelijk, is het mo-
gelijk om ze te karakteriseren aan de hand van hun intersectiege-
tallen ten opzichte van hypervlakken en ruimten van codimensie
2.

Merk hierbij op dat deze vragen uiteraard weinig zin hebben voor de
symplectische polaire ruimte W, 11(q), daar deze polaire ruimte alle punten
bevat van de projectieve ruimte die zij opspant.

De eerste vraag werd positief beantwoord in [47] voor kwadrieken, en
in [49] voor Hermitische variéteiten, de tweede in [17]. De bewijsmethode
om de eerste vraag te beantwoorden bestaat erin uit de intersectiegetallen
de voorwaarden van de Stellingen A.1.6, A.1.7, A.1.9, A.1.10 en A.1.11 die
veralgemeende vierhoeken, Shult ruimten en polaire ruimten karakteriseren af
te leiden. Voor de tweede vraag wordt een dualiteit gebruikt, en voorgaande
karakteriseringen van polaire ruimten aan de hand van intersectiegetallen.

Hoewel het mogelijk is om polaire ruimten enkel en alleen aan de hand
van hun intersectiegetallen met rechten te karakteriseren, is het onmogelijk om
enkel de intersectiegetallen met hypervlakken te gebruiken voor een karakteris-
ering van polaire ruimten. Dit omdat er een vrije constructie bestaat waarmee
men in overvloed quasi-kwadrieken en quasi-Hermaitische variéteiten kan con-
strueren. Hierbij definiéren we een quasi-kwadriek, respectievelijk een quasi-
Hermitische variéteit als een deelverzameling van de puntenverzameling van
de projectieve ruimte die dezelfde intersectiegetallen heeft met hypervlakken
als een niet-singuliere kwadriek, respectievelijk, een niet-singuliere Hermitische
variéteit. In het parabolisch geval is er een lichte afwijking van de originele
definitie zoals gegeven in [14]. In dit laatste artikel worden quasi-Hermitische
variéteiten niet gedefinieerd, maar met zeer analoge constructies als diegene
die daar aangewend worden voor quasi-kwadrieken kan men deze objecten con-
strueren.

A.7 Resultaten

Volgende karakteriseringen van kwadrieken en Hermitische variéteiten, die men
kan vinden in [28], zijn van groot belang voor de resultaten later bekomen in
het hoofdstuk. Op zich vormen ze ook mooie voorbeelden van Segre-type
stellingen.

Definitie A.7.1 Een puntenverzameling K in PG(n,q) is van
type (r1, 72, -+ ,75) als |[LOK| € {ry,re, -+, rs} voor alle rechten L in PG(n, q).
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Een punt p € K is singulier ten opzichte van IC als alle rechten door p de verza-
meling KC in 1 of g+ 1 punten snijden. Als de verzameling K een singulier punt
bevat, dan wordt KC singulier genoemd.

Volgende stelling is een amalgaam van resultaten bekomen door Tallini-Scafati
[61], Hirschfeld en Thas [27], en Glynn [25].

Stelling A.7.2 Zij K een niet-singuliere puntenverzameling van type (1,7, ¢+
1) in PG(n,q?), n >4 en q > 2, die voldoet aan volgende eigenschappen.:

e 3<r<¢g*—1;

o [Lris geen vlak m zodat elke rechte bevat in w de verzameling K in r of
q* + 1 punten snijdt.

Dan is de verzameling K de puntenverzameling van een niet-singuliere Hermi-
tische variéteit H(n, q?).

Het resultaat hieronder werd bekomen door Tallini in [58] en [59].

Stelling A.7.3 Zij K een niet-singuliere puntenverzameling van type (0, 1,2, g+
1) in PG(n,q) metn >4 en q > 2.

Als =1
qg—1

> K| > q:T_ll, dan geldt één van de volgende gevallen:

(i) |K| = qqn%ll, n is even, en K is de puntenverzameling van een parabolische
kwadriek Q(n, q).

(1) |K| = q;%ll + an_l, n is oneven, en K is de puntenverzameling van een
hyperbolische kwadriek Q*(n,q).

(1ii) |K| = q;__ll +1, q is even, en KK = ILK'U{N} waarbij I, een PG(t,q) C
PG(n,q) is, en met K' de puntenverzameling van een parabolische kwadriek
Q(n—t—1,q) in een (n —t — 1)-dimensionale deelruimte van PG(n,q)
scheef aan PG(t,q) (bijgevolg isn—t—1 even) of waarbij K' een (g+1)-
boog is in een vlak scheef aan PG(t,q) als t = n — 3. In beide gevallen
is N de kern van een vooraf gekozen basis K'.

De volgende stelling geeft een karakterisering van kwadrieken aan de
hand van de intersectiegetallen met vlakken en 3-dimensionale ruimten.

Stelling A.7.4 Als elk intersectiegetal van een puntenverzameling IC in PG(n, q),n >
4, met viakken en 3-dimensionale ruimten ook een intersectiegetal is van kwadrieken
met vlakken en 3-dimensionale ruimten, dan is IC één van de volgende verza-
melingen:
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(i) de projectieve ruimte PG(n, q),
(11) een hypervlak in PG(n, q),
(111) een kwadriek in PG(n, q),
(iv) met g even,
(iv.1) een kegel met top een (n — 3)-dimensionale ruimte en basis een ovaal.
(iv.2) een kegel met top een (n — 4)-dimensionale ruimte en basis een ovoide.

Voor Hermitische variéteiten bewezen we volgende twee stellingen, die
nuttig zijn als hulpmiddel voor de algemene karakterisering van Hermitis-
che variéteiten aan de hand van hun intersectiegetallen met vlakken en 3-
dimensionale ruimten, waarbij de tweede stelling het analogon is van Stelling
A.6.2 voor kwadrieken.

Stelling A.7.5 Als elk intersectiegetal met viakken en 3-dimensionale ruimten
van een puntenverzameling K in PG(3, ¢*) ook een intersectiegetal met vlakken

en 3-dimensionale ruimten van H(3,q?) is, dan is K een Hermitische variéteit
H(3,q%).

Stelling A.7.6 Als elk intersectiegetal met vliakken en 3-dimensionale ruimten
van een puntenverzameling K in PG(4, ¢*) ook een intersectiegetal met vlakken
en 3-dimensionale ruimten van H(4,q*) is, dan is K een niet-singuliere Her-
mitische variéteit H(4,q%).

Bovenstaande hulpresultaten leiden mede tot de volgende karakterisering
aan de hand van intersectiegetallen met vlakken en 3-dimensionale ruimten.

Stelling A.7.7 Als elk intersectiegetal met viakken en 3-dimensionale ruimten
van een puntenverzameling K in PG(n, ¢*), n > 4, ook een intersectiegetal met
vlakken en 3-dimensionale ruimten van een Hermitische variéteit is, dan is IC
één van de volgende verzamelingen:

(i) de projectieve ruimte PG(n,q?*),

(i

)

(i) een hyperviak in PG(n,¢?),
) een Hermitische variéteit in PG(n,q*),
)

(iv) een kegel met top een (n—2)-dimensionale ruimte en basis een rechte die
K in q of ¢+ 1 punten snijdt,



A.7. RESULTATEN 231

(v) een kegel met top een (n — 3)-dimensionale ruimte en basis een unitaal,

(vi) een kegel met top een (n — 3)-dimensionale ruimte en basis een verza-
meling K van PG(2,q¢?) die elke rechte van PG(2,¢%) in 1, ¢, ¢ + 1 of
q*> + 1 punten snijdt en exact één rechte volledig bevat.

Opmerking A.7.8 Zij M een maximale {¢* — ¢*> + ¢; ¢}-boog in PG(2, ¢?),
dit is een puntenverzameling M van grootte ¢* — ¢*> + q in PG(2,¢*) die elke
rechte van PG(2,¢%) in 0 of ¢ punten snijdt; een dergelijke verzameling bestaat
voor elke ¢ = 2", zie [30]. Zij M een rechte van PG(2,¢?) die M in q punten
snijdt and zij L een rechte van PG(2,q¢*) die geen punten van M bevat. Dan
kan K = (M\M)UL als basis genomen worden voor de kegel in Stelling A.7.7

(vi).

Tot dusver hebben we het gevolg van Stelling A.6.1 van Ferri en Tallini
uitgebreid tot hoger-dimensionale kwadrieken en Hermitische variéteiten waar-
bij we extra intersectiegetallen voor vlakken en 3-dimensionale ruimten hebben
toegelaten. Een andere richting is om intersecties met vlakken en 3-dimensionale
ruimten in een 4-dimensionale ruimte meer algemeen te zien als intersecties
met hypervlakken en ruimten van codimensie 2 in hoger-dimensionale ruimten.
Deze richting leidt tot een karakterisering van niet-singuliere klassieke polaire
ruimten, uiteraard met uitzondering van de symplectische polaire ruimten.

We tonen aan dat niet-singuliere kwadrieken en niet-singuliere Hermitis-
che variéteiten volledig gekarakteriseerd worden door hun intersectiegetallen
met hypervlakken en ruimten van codimensie 2. Dit veralgemeent sterk Stelling
A.6.1 van Ferri en Tallini en bezorgt nodige en voldoende voorwaarden voor
quasi-kwadrieken (quasi-Hermitische variéteiten) om niet-singuliere kwadrieken
(niet-singuliere Hermitische variéteiten) te zijn.

Dit wordt precies gemaakt in de volgende stelling.

Stelling A.7.9 Als een puntenverzameling K in PG(n,q), n > 4, ¢ > 2,
dezelfde intersectiegetallen heeft met hypervliakken en ruimten van codimensie
2 als een polaire ruimte P € {H(n,q),Q"(n,q),Q (n,q),Q(n,q)}, dan is K
de puntenverzameling van een dergeligke niet-singuliere polaire ruimte P.
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