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Tamás Szőnyi, the Hungarian food and wine specialist;
For the warm welcome and the hospitality of the research group in Budapest.

Tom De Medts, de latexgoeroe;
Voor de hulp met latexproblemen en het delen van zijn latexlayout.

Geertrui en Beukje, de collega’s van ’bureau 12’;
Voor de lach en de tranen die we deelden, en de toffe sfeer die ’bureau 12’ tot een leuke werkplek
maakte.

i



ii



Preface

During the last three and a bit years, I did research on various finite geometrical structures. The result of this
research is presented in this thesis. I did not focus on one class of objects, since many structures attracted my
attention. I considered minihypers, some applications and intersections of varieties which are connected with
linear codes. Finally, I investigated some special class of blocking sets on finite classical polar spaces.

In the first chapter, we discuss the geometrical background of this thesis. We give the definition of polar
spaces, linear codes, blocking sets and minihypers as well as important results on them which will be used
further in this thesis. Some notations and definitions are left for the chapter in which they will be used.

In Chapter 2, we present characterisation results on non-weighted minihypers. Minihypers correspond to
linear codes meeting the Griesmer bound, so characterisation results on minihypers immediately translate into
classification results on linear codes meeting the Griesmer bound. Until now, non-weighted minihypers which
contain projective spaces and at most one Baer subgeometry are characterised by Ferret and Storme. The
results in this chapter characterise non-weighted minihypers which contain more than one Baer subgeometry.
Results on (multiple) blocking sets are used to obtain this result.

Chapter 3 treats some applications of minihypers. In the first applications, properties of polar spaces are used
to improve results on a special class of minihypers if it is known that they live on a polar space.
Minihypers are not only studied because of their relation with linear codes reaching the Griesmer bound; they
are also used to study other geometrical structures. We start by studying i-tight sets on polar spaces. The
result of the first application together with known results on minihypers gives us some nice characterisation
results of i-tight sets in terms of generators and Baer subgeometries contained in these polar spaces. In the
application that follows we show that Cameron-Liebler line classes correspond with i-tight sets. The link of
i-tight sets with minihypers of the previous applications and the result of the first application is used to prove
a non-existence result on Cameron-Liebler line classes.
In the last application, we observe partialm-ovoids and partialm-covers of generalised quadrangles. Minihypers
can be associated with partial m-covers. The results of the first chapter are used for m-covers on quadrics and
known result for m-covers on other GQ’s give extension results on partial m-covers. By duality, this leads to
extension results on partial m-ovoids and to a new proof of the extendability result of partial caps in Q−(5, 3).

In Chapters 4 and 5 we determine the minimum distance of the functional codes arising from intersections of
varieties. Determining the minimum distance is looking for the small weight codewords. These small weight
codewords correspond with the largest intersections of two varieties. So we investigate the intersection of
varieties in these two chapters. In the case of the code C2(Q), the minimal weight corresponds with the
maximal intersection of a non-singular quadric Q with any quadric Q′. If the intersection of Q and Q′ is large
then there must be a large quadric in the pencil of quadrics defined by Q and Q′. In this way we prove that
the smallest weight codewords of C2(Q) arise from quadrics which are the union of two hyperplanes. That
the minimal weight of the code CHerm(X) arises from non-singular Hermitian varieties that are the union of
q + 1 hyperplanes through a common subspace of codimension 2, is determined by using similar arguments.
For the code C2(X), X a non-singular Hermitian variety, these arguments are no longer valid. The largest
intersections of a non-singular Hermitian variety with a quadric are determined by counting arguments in

iii



iv

dimension 4. We prove by induction that also here the smallest weight codewords arise from quadrics which
are the union of two hyperplanes.

In the last chapter, we study blocking sets of polar spaces which consist themselves of a union of generators.
In the case of Q(4, q), known results on blocking sets immediately translate to the smallest minimal examples
and to a lower bound for other minimal examples. That a pencil is a minimal generator blocking set for all
generalised quadrangles is trivial. In a first theorem, we state some restrictions on the order of the generalised
quadrangle so that another minimal example of the same size as a pencil exists. In the latter case a lower
bound for other minimal examples arises by counting arguments. The results on polar spaces of rank 2 are
then by induction lifted to polar spaces of general rank, where the smallest minimal generator blocking sets
are cones over an example a rank 2 polar space of the same type.
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1 Introduction

1.1 Finite projective spaces

Let GF(q) denote the finite field of order q, q a prime power, and let V(n+1, q) be the (n+1)-dimensional
vector space over GF(q). Denote by D(V) the set of subspaces of V(n+1, q). Define the incidence relation
I as follows: U I W ⇔ U ⊂ W or W ⊂ U . The pair (D(V), I) is then by definition the projective space
corresponding with V(n + 1, q). This projective space has projective dimension n and is denoted by
PG(n, q).

A subspace U of dimension i+1, i ≥ −1, of V(n+1, q) is said to have projective dimension i. It is called
an i-dimensional subspace of PG(n, q). Instead of using the name projective dimension we will simply
use dimension in what follows. Subspaces of dimension 0, resp. 1, 2, 3 and n − 1 of PG(n, q) are called
points resp. lines, planes, solids and hyperplanes. The (−1)-dimensional space is called the empty space.
Subspaces will often be identified with their point set; this will be done without further notice.

Since a point of PG(n, q) corresponds with a vector line in V(n + 1, q), a point P in PG(n, q) can be
represented by a nonzero vector x̄ in V(n + 1, q). This point is denoted by P (x̄). Two nonzero vectors
represent the same point if and only if they are a scalar multiple of each other.

Let U and W be two subspaces of PG(n, q), then 〈U,W 〉 is the subspace generated by U and W . If P
and Q are two points of PG(n, q), then 〈P,Q〉 is a line and will often be denoted by PQ.

The standard Baer subgeometry PG(n,
√
q) of PG(n, q), with q a square, is the projective space contain-

ing the points {(x0, . . . , xn)|xi ∈ GF(
√
q)}. A Baer subgeometry of PG(n, q) is each projective space

PG(i,
√
q), for some 0 ≤ i ≤ n, which is, up to collineations, isomorphic with the standard Baer subge-

ometry of a subspace PG(i, q) of PG(n, q).

The following theorem gives a relation between the dimension of two subspaces U and W and the
dimension of their intersection U ∩ W and of the subspace generated by them 〈U,W 〉. It is known
as the Grassmann identity or Dimension formula.

Theorem 1.1.1. (Dimension formula) Let U and W be two subspaces of a projective space, then

dim(U) + dim(W ) = dim(〈U,W 〉) + dim(U ∩W ). (1.1)

Since many counting arguments will be used in proofs, the following identities will be useful.

1



2 Chapter 1. Introduction

Theorem 1.1.2. Let PG(r)(n, q) denote the set of r-dimensional subspaces in PG(n, q):

|PG(r)(n, q)| =
∏n+1

i=n−r+1(q
i − 1)

∏r+1
i=1 (q

i − 1)
.

Let χ(s, r;n, q) denote the set of r-dimensional subspaces through a fixed s-dimensional subspace of
PG(n, q):

|χ(s, r;n, q)| =
∏n−s

i=r−s+1(q
i − 1)

∏n−r
i=1 (q

i − 1)
.

By the above, |PG0(n, q)| = (qn+1 − 1)/(q − 1). This number will also be denoted by |PG(n, q)| or θn.

Dual spaces

By studying projective structures we often look at their dual structures. Considering a projective plane
it is easy to see that by interchanging the role of points and lines, again a projective plane is obtained.
Duality expresses that the dual of a projective plane is a (possibly different) projective plane. On the
other hand self-dual planes exists, for instance PG2.

Duality of projective spaces of dimension at least 3 is not expressed by interchanging the points and
lines, but by interchanging the i-dimensional spaces by the (n − i − 1)-dimensional spaces. The dual of
a projective space S is denoted by SD.

Polarities

Let S and S ′ be two spaces PG(n, q), n ≥ 2. A collineation is a bijection of the set of subspaces of S on
the set of subspaces of S ′ preserving the incidence relation. Hence if ϕ : S → S ′ is a collineation, then
for any two subspaces πr and πs of S, it holds that πr ⊂ πs if and only if πϕ

r ⊂ πϕ
s .

A collineation from a projective space to itself is called an automorphism.

For n = 1, a collineation is defined as being induced by a semilinear transformation of the underlying
vector spaces. For n ≥ 2, by the Fundamental theorem of projective geometry every collineation of
an n-dimensional projective space PG(n, q) is induced by a bijective semilinear transformation of the
underlying vector spaces. With respect to a given coordinate system in PG(n, q), a collineation ϕ maps
every point P (x̄) to a point P (x̄′). The relation between these two coordinate vectors is determined by
a non-singular (n+ 1)× (n+ 1)-matrix A over GF(q) and an automorphism θ of GF(q):











x′
0

x′
1
...
x′
n











= A











xθ
0

xθ
1
...
xθ
n











. (1.2)

When θ is the identity, then the collineation ϕ is called a projectivity.

Let S be PG(n, q). A correlation ϕ of S is a bijection of the set of r-dimensional subspaces of S on the
set of (n− r − 1)-dimensional subspaces of S reversing the incidence relation. For any two subspaces π1

and π2 of S, it holds that π1 ⊂ π2 if and only if πϕ
2 ⊂ πϕ

1 . Hence, a correlation of S is a collineation
ϕ : S → SD. A correlation ϕ such that ϕ2 is the identity, i.e. an involutory correlation, is called a
polarity.
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Let ϕ be a polarity of PG(n, q). A point P is mapped on a hyperplane Pϕ, called its polar (hyperplane).
A hyperplane π is mapped to a point πϕ called its pole. Two points P,R such that P ∈ Rϕ are called
conjugate; the same can be said about hyperplanes. A point or a hyperplane that is conjugate to itself is
called self-conjugate or absolute.

A polarity is defined as a special kind of collineations from S to SD so with respect to a given coordinate
system in PG(n, q), a polarity can be determined by an automorphism θ of GF(q), which has to be
involutory, and a non-singular (n + 1) × (n + 1)-matrix A over GF(q) satisfying AT = ±A if θ = 1 and
ATθ = A if θ 6= 1. A point P (x̄) is mapped by ϕ on a hyperplane H(ū), which can be represented as











u0

u1

...
un











= A











xθ
0

xθ
1
...
xθ
n











, (1.3)

or shorter ūT = A(x̄T )θ. From the above definitions it can be derived that a point P (x̄) is self-conjugate
if and only if x̄A(x̄T )θ = 0. A self-conjugate subspace is sometimes called totally isotropic.

Note that GF(q) has a non-trivial involutory automorphism if and only if q is a square. If q is a square,
then the unique non-trivial involutory automorphism is θ : x 7→ x

√
q. Note finally that if θ = 1, then a

matrix satisfying AT = −A and all diagonal elements equal to zero, is always singular when n is even.

According to the conditions on θ and A, we distinguish the different types of polarities.

• q odd:

1. If θ = 1, AT = −A and n odd, then ϕ is called a null polarity or a symplectic polarity. All
points of PG(n, q) are self-conjugate.

2. If θ = 1, AT = A, then ϕ is called an orthogonal polarity.

3. If θ 6= 1, ATθ = A, then ϕ is called a Hermitian or unitary polarity.

• q even:

1. If θ = 1, AT = A and n odd and all diagonal elements of A equal to 0, then ϕ is called a null
polarity or a symplectic polarity. All points of PG(n, q) are self-conjugate.

2. If θ = 1, AT = A and not all diagonal elements of A are equal to 0, then ϕ is called a
pseudo-polarity. The set of self-conjugate points forms a hyperplane of PG(n, q).

3. If θ 6= 1, ATθ = A, then ϕ is called a Hermitian or unitary polarity.

Varieties

A quadric in PG(n, q), n ≥ 1, is the set of points for which the coordinates satisfy a quadratic equation
of the form

n
∑

i,j=0

i≤j

aijXiXj = 0,

with not all aij equal to zero. For n = 2, a quadric is called a conic.

A Hermitian variety in PG(n, q2), n ≥ 1, is the set of points for which the coordinates satisfy an equation
of the form
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n
∑

i,j=0

aijXiX
q
j = 0,

with not all aij equal to 0 and aqij = aji for all i, j = 0, 1, . . . , n. For n = 2, a Hermitian variety is called
a Hermitian curve.

For the further definitions which can be given for quadrics as well as for Hermitian varieties, we use
the term variety in general. A variety F in PG(n, q) is called singular if there exists a coordinate
transformation which transforms F to an equation which can be written in less than n+ 1 variables.

If a variety is singular, then it is known that the points of the variety are the points of a cone, i.e. all
the points of the lines spanned by a point of an (n− r)-dimensional subspace π of PG(n, q) and a point
of a non-singular variety F in an (r − 1)-dimensional subspace π′ skew to π. We will denote this cone
with πF . The singular points of the variety are the points of π. The size of a singular variety πF is
|π|+ |F|+ |π||F|(θ1 − 2).

Consider a variety F . The tangent space in a point P ∈ F is the subspace consisting of the set of points
of the lines through P intersecting F only in P or completely contained in F . When P is a non-singular
point of F , the tangent space is a hyperplane and is also called the tangent hyperplane. When P is
singular, then the tangent space is actually the whole projective space PG(n, q). We will denote the
tangent space at the point P ∈ F by TP (F).

Concerning the classification of non-singular varieties, we mention the following results. In PG(2n, q),
there is, up to collineations, only one non-singular quadric, called the parabolic quadric, with standard
equation x2

0 + x1x2 + . . . + x2n−1x2n = 0, denoted by Q(2n, q). There are, up to collineations, exactly
two non-singular quadrics in PG(2n + 1, q). The hyperbolic quadric, with standard equation x0x1 +
x2x3 . . . + x2nx2n+1 = 0, denoted by Q+(2n + 1, q), and the elliptic quadric, with standard equation
f(x0, x1) + x2x3 + . . . + x2nx2n+1 = 0, with f an irreducible quadratic polynomial over GF(q), denoted
by Q−(2n+ 1, q). In PG(n, q2), there is, up to collineations, exactly one non-singular Hermitian variety,
with standard equation xq+1

0 + xq+1
1 + . . .+ xq+1

n = 0, denoted by H(n, q2).

When q is even, every non-singular parabolic quadric Q(2n, q) has a nucleus, i.e. a point on which every
hyperplane is tangent in some point P ∈ Q(2n, q), or, equivalently, every line on the nucleus has exactly
one point in common with Q(2n, q).

Consider a non-singular variety F in the projective space PG(n, q) and consider the tangent hyperplane
in a point P ∈ F . It is known that TP (F)∩F = PF ′, i.e. a cone with vertex P and base a non-singular
variety of the same type in a projective space PG(n− 2, q) not containing the vertex P . The size of the
intersection of such a tangent hyperplane with the variety is by the previous equal to |F ′|(θ1 − 1) + 1.

A variety contains subspaces of the projective space in which it is embedded. A subspace contained in
the variety F is called maximal if it is not contained in an other subspace of the variety. A maximal
subspace is called a generator. All generators have the same dimension; this is called the projective index
of the variety.

Theorem of Bézout

An algebraic variety in PG(n, q) is the set of solutions of a system of homogeneous polynomial equations.
If there is only one equation we call it an algebraic hypersurface.

The theorem of Bézout discusses the intersections of algebraic varieties. In this thesis we will only use
the theorem of Bézout on the intersection of an algebraic variety in a projective space with an algebraic
hypersurface.

We will apply this theorem of Bézout in the following context.
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Corollary 1.1.3. If a quadratic variety V of dimension d at least one intersects a quadratic hypersurface
H in PG(n, q) in more than four irreducible components X1, . . . , Xs of dimension d−1, then this quadratic
variety V is completely contained in the quadratic hypersurface H.

We illustrate this corollary with a particular example. If the intersection of a hyperbolic quadric Q+(3, q)
with a quadric Q in PG(4, q) contains 5 lines, then this hyperbolic quadric Q+(3, q) is contained in Q.

1.2 Finite polar spaces

A finite polar space of rank k, k > 3, consists of a finite set P whose elements are called points and a set
of subsets of P called subspaces, satisfying the following axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional projective space, with
−1 6 d 6 k − 1 (d is called the dimension of the subspace).

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V of dimension k − 1 and a point P ∈ P \ V , there is a unique subspace W such
that P ∈ W and V ∩W has dimension k − 2; W contains all points of V that are joined to P by a
line (a line is a subspace of dimension 1).

(iv) There exist two disjoint subspaces of dimension k − 1.

The integer k − 1 is also referred to as the projective index of the polar space. The subspaces of a finite
polar space are called totally singular or totally isotropic subspaces.

A finite polar space of rank 2 is by definition a generalised quadrangle, also denoted by GQ, that is,
an incidence structure S = (P,B, I) in which P and B are finite nonempty disjoint sets of objects,
respectively called points and lines, and where I is a symmetric incidence relation, I⊂ (P ×B)∪ (B×P),
satisfying the following properties.

(i) Each point is incident with t+1 lines (t > 1) and two distinct points are incident with at most one
line.

(ii) Each line is incident with s+ 1 (s > 1) points and two distinct lines are incident with at most one
point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair (y,M) ∈ P × B for
which x I M I y I L.

The integers s and t are the parameters of the GQ S and S is said to have order (s, t). If s = t, then S
is said to have order s. A GQ of order (s, 1) is also called a grid and a GQ of order (1, t) is called a dual
grid.

There is a point-line duality for finite generalised quadrangles, since by interchanging the role of points
and lines, the incidence relation still satisfies the axioms. The dual of a GQ S (of order (s, t)) is often
denoted by SD and it is a GQ of order (t, s).

Let S = (P,B, I) be a GQ of order (s, t) and denote v = |P| and b = |B|. Restrictions on the parameters
of a GQ are described in the following theorem.

Theorem 1.2.1. (a) v = (s+ 1)(st+ 1) and b = (t+ 1)(st+ 1).
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(b) s+ t divides st(s+ 1)(t+ 1).

(c) (Higman’s inequality [57, 58]) If s > 1 and t > 1, then t ≤ s2, and dually s ≤ t2.

(d) If s 6= 1, t 6= 1, s 6= t2 and t 6= s2, then t ≤ s2 − s and dually s ≤ t2 − t.

Finite classical polar spaces

The finite classical polar spaces of rank at least 2 are:

1. Let ϕ be a symplectic polarity of PG(2n + 1, q). The points of PG(2n + 1, q), together with the
totally isotropic subspaces of ϕ, form a polar space of rank n + 1. It is called a symplectic polar
space and is denoted by W(2n+ 1, q) or W2n+1(q).

2. A non-singular Hermitian variety in PG(n, q2), together with the subspaces entirely contained in
it, gives a polar space of rank b(n+1)/2c. The notation H(n, q2) is used for the Hermitian variety.

3. The point set of a non-singular quadric Q, together with the subspaces consisting entirely of points
of Q, forms a polar space.
In even dimension n = 2k, the parabolic quadric Q(2k, q) defines a polar space of rank k.
If n = 2k + 1 is odd, the hyperbolic quadric Q+(2k + 1, q) and the elliptic quadric Q−(2k + 1, q)
give polar spaces of rank k + 1 and k respectively.

These are the finite classical polar spaces and the finite classical generalised quadrangles if the rank equals
2. There are several generalised quadrangles known that are not classical, see [86], but there exist no
other finite polar spaces of rank k > 2 than the classical ones.

Theorem 1.2.2. (Veldkamp [88], Tits [87]) All finite polar spaces of rank at least three are classical.

Except for the quadrics in even characteristic and even dimension, for each finite classical polar space
P in PG(n, q), there exists a polarity ϕ of PG(n, q) such that P consists of the subspaces π of PG(n, q)
that satisfy π ⊂ πϕ. If P is a non-singular quadric in PG(n, q), n odd and q even, then there exists a
polarity ϕ such that all subspaces of P satisfy π ⊂ πϕ, but they are not the only subspaces of PG(n, q)
that satisfy this property. The polarity corresponding to a finite classical polar space will be denoted by
⊥.

We mention some important isomorphism results on finite classical polar spaces. The parabolic quadric
Q(2n, q) has a nucleus N if q is even. Projecting all points and subspaces of Q(2n, q), q even, from N onto
a hyperplane π of PG(2n, q) not containing N , we find all points of π, together with a set of subspaces of
π. It is a well known result that the points of π together with the projected subspaces of Q(2n, q) form
a symplectic polar space. Isomorphisms in the rank 2 case are given in the next theorem.

Theorem 1.2.3. (Payne and Thas [70])

• (a) The GQ Q(4, q) is isomorphic to the dual of W3(q).

• (b) The GQ Q−(5, q) is isomorphic to the dual of H(3, q2).

• (c) The GQ Q(4, q) (and hence W3(q)) is self-dual if and only if q is even.
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The finite classical polar spaces have the following number of points:

|W2n+1(q)| =
q2n+2 − 1

q − 1
,

|Q(2n, q)| =
q2n − 1

q − 1
,

|Q+(2n+ 1, q)| =
(qn + 1)(qn+1 − 1)

q − 1
,

|Q−(2n+ 1, q)| =
(qn − 1)(qn+1 + 1)

q − 1
,

|H(n, q2)| =
(qn+1 + (−1)n)(qn + (−1)n+1)

q2 − 1
.

A generator of a finite classical polar space P is a maximal totally isotropic subspace of P, i.e. a subspace
of dimension k − 1, where k is the rank of P. The set of all generators is denoted by G(P). The number
of generators of the finite classical polar spaces are as follows:

|G(W2n+1(q))| = (q + 1)(q2 + 1) · · · (qn+1 + 1),

|G(Q(2n, q))| = (q + 1)(q2 + 1) · · · (qn + 1),

|G(Q+(2n+ 1, q))| = 2(q + 1)(q2 + 1) · · · (qn + 1),

|G(Q−(2n+ 1, q))| = (q2 + 1)(q3 + 1) · · · (qn+1 + 1),

|G(H(2n, q2))| = (q3 + 1)(q5 + 1) · · · (q2n+1 + 1),

|G(H(2n+ 1, q2))| = (q + 1)(q3 + 1) · · · (q2n+1 + 1).

1.3 Spreads and ovoids of generalised quadrangles

Spreads and ovoids can be defined on polar spaces in general, but we will only use them in polar spaces
of rank 2, so we restrict us here to the generalised quadrangles.

Let S be a GQ of order (s, t). A spread S of a GQ S is a set of lines partitioning the point set of S and
S has size 1+ st. Not all GQ’s have a spread; an overview of the existence or non-existence can be found
in [85]. In case of non-existence of spreads, research has been done on partial spreads and covers.

A partial spread of S is a set S of mutually disjoint lines of S. A partial spread is called maximal if it
cannot be extended by any line of S.
A cover of S is a set C of lines such that every point of S is contained in at least one element of C. A
cover C is called minimal if no proper subset of C is a cover of S.
An ovoid O of S is a set of points such that every line of S meets O in exactly one point. The size of an
ovoid of S is 1+ st. A partial ovoid O of S is a set of points such that every line meets O in at most one
point.



8 Chapter 1. Introduction

1.4 Blocking sets

A blocking set in PG(2, q) is a set of points B in PG(2, q) that intersects every line. A blocking set B is
minimal if B\{P} is not a blocking set for every P ∈ B. The following lemma is very useful and can for
instance be found in [61].

Lemma 1.4.1. A blocking set B in PG(2, q) is minimal if and only if for every point P ∈ B, there is a
line L such that B ∩ L = {P}.

A blocking set in PG(2, q) has size at least q+1 and a blocking set of size q+1 is necessarily a line [21].
Blocking sets that contain a line are called trivial. The plane PG(2, 2) has no non-trivial blocking sets.

A projective triangle of side n in PG(2, q) is a set B of 3(n− 1) points such that

1. on each side of the triangle p0p1p2 there are n points of B,

2. the vertices p0, p1, p2 are in B,

3. if r0 ∈ p1p2 and r1 ∈ p2p0 are in B, then so is r0r1 ∩ p0p1.

A projective triad of side n is a set B of 3n− 2 points such that

1. on each line of three of the concurrent lines L0, L1, L2, there are n points of B,

2. the vertex p = L0 ∩ L1 ∩ L2 ∈ B,

3. if r0 ∈ L0 and r1 ∈ L1 are in B, then so is r = r0r1 ∩ L2.

Lemma 1.4.2. • In PG(2, q), q odd, there exists a projective triangle of side 1
2 (q + 3) which is a

non-trivial minimal blocking set of size 3
2 (q + 1).

• In PG(2, q), q even, q > 2, there exists a projective triad of side 1
2 (q + 2) which is a non-trivial

minimal blocking set of size 1
2 (3q + 2).

It is obvious that the size of a non-trivial blocking set B in PG(2, q) must lie in the interval [q+2, q2+q+1].
The following theorem gives an upper and a lower bound on the size of a non-trivial minimal blocking
set in PG(2, q).

Theorem 1.4.3. Let B be a minimal non-trivial blocking set in PG(2, q). Then

1. (Bruen [15]) |B| ≥ q +
√
q + 1, with equality if and only if B is a Baer subplane.

2. (Bruen and Thas [20]) |B| ≤ q
√
q + 1, with equality if and only if B is a unital, i.e. a set of

q
√
q + 1 points of PG(2, q) such that every line intersects B in 1 or

√
q + 1 points.

These bounds can only be sharp when q is a square. So one can try to improve the lower bound when
q is not a square and no Baer subplanes are contained in blocking sets. The following theorems give
improvements on the bounds. Let cp = 2−1/3, when p = 2, 3, and cp = 1, when p ≥ 5, p a prime.

Theorem 1.4.4. Let B be a non-trivial minimal blocking set of PG(2, q), q > 2.

1. (Blokhuis [11]) If q is a prime, then |B| > 3(q+1)
2 .

2. (Blokhuis [12], Blokhuis et al. [13]) If q = p2e+1, p prime, e > 1, then |B| > max(q + 1 +

pe+1, q + 1 + cpq
2
3 ).
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Since the projective triangle has size 3(q+1)/2, the above bound is sharp in the first case. In the second
case there exist examples for certain q attaining the bound. Let q + εq denote the size of the smallest
non-trivial blocking sets in PG(2, q). In the next table, we give exact values for εq and lower bounds on
εq. For more details on blocking sets we refer to [46].

q εq Condition
square =

√
q + 1 [15]

odd prime = (q + 3)/2 [11]

q = p3h, p > 7 prime, h > 1 = q2/3 + 1 [73, 74, 75]
q = ph, p prime, h ≥ 4 ≥ q + q/(pe + 1)− 1 e < h [39]

largest divisor of h

Table 1: Exact values and lower bounds on εq

We will introduce multiple blocking sets and blocking sets in higher dimensions. An s-fold blocking set
in PG(2, q) is a set of points that intersects every line in at least s points. It is called minimal if no
proper subset is an s-fold blocking set. A 1-fold blocking set is simply called a blocking set. The following
theorem indicates that, to obtain an s-fold blocking set of small cardinality with s > 1, it is no longer
interesting to include a line in the set. In this way, there exists no such thing as a trivial multiple blocking
set.

Theorem 1.4.5. Let B be an s-fold blocking set of PG(2, q), s > 1.

1. (Bruen [17]) If B contains a line, then |B| > sq + q − s+ 2.

2. (Ball [2]) If B does not contain a line, then |B| > sq +
√
sq + 1.

If s is not too large, substantial improvements to this theorem have been obtained for general q. Also,
for q a square and s not too large, the smallest minimal s-fold blocking sets are classified.

Theorem 1.4.6. (Blokhuis et al. [13]) Let B be an s-fold blocking set in PG(2, q) of size s(q+1)+ c

for some s > 1. For a prime p, let cp = 2
−1

3 for p ∈ {2, 3} and cp = 1 for p > 3.

1. If q = p2d+1 and s < q
2 − cpq

2
3

2 , then c > cpq
2
3 .

2. If q is a square, s < q
1
4

2 and c < cpq
2
3 , then c > s

√
q and B contains the union of s pairwise disjoint

Baer subplanes.

3. If q = p2 and s < q
1
4

2 and c < pd 1
4 +

√

p+1
2 e, then c > s

√
q and B contains the union of s pairwise

disjoint Baer subplanes.

In [2], a table with the sizes of the smallest s-fold blocking sets in PG(2, q), s > 1, q small, can be found.
Many examples of such blocking sets are described in [2, 3, 4].

Finally, we introduce blocking sets in higher dimensional spaces. An (n − k)-blocking set or a blocking
set with respect to k-spaces in PG(n, q) is a set B of points such that every k-dimensional subspace of
PG(n, q) meets B in at least one point.

Theorem 1.4.7. (Bose and Burton [21]) If B is a blocking set with respect to k-spaces in PG(n, q),
then |B| > |PG(n− k, q)|. Equality holds if and only if B is an (n− k)-dimensional subspace.
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Blocking sets in PG(n, q) with respect to k-spaces that contain an (n − k)-space are called trivial. The
smallest non-trivial blocking sets with respect to k-spaces are characterised in the following theorem.

Theorem 1.4.8. (Beutelspacher [10], Heim [56]) In PG(n, q), the smallest non-trivial blocking sets
with respect to k-spaces are cones with vertex an (n− k− 2)-space πn−k−2 and base a non-trivial blocking
set of minimal cardinality in a plane skew to πn−k−2.

In PG(n, q), a blocking set with respect to hyperplanes is simply called a blocking set. For this case,
Theorem 1.4.7 was already proved by A. A. Bruen in [16].

It is interesting to see that to block k-dimensional subspaces of a projective space, cones with base a
planar blocking set can be used. Hence the important concept is still a blocking set of PG(2, q).

The following theorem is an improvement of Theorem 1.4.8.

Theorem 1.4.9. (Storme and Weiner [81]) Let B be a blocking set in PG(n, q), n > 3, q = ph

square, p > 3 prime, of cardinality smaller than or equal to the cardinality of the second smallest non-
trivial blocking sets in PG(2, q). Then B contains a line or a planar blocking set of PG(2, q).

The next theorem is an important result on the intersection of k-dimensional subspaces with a t-fold
(n− k)-blocking set. It generalises the results of [14, 83, 84].

Theorem 1.4.10. (Ferret, Storme, Sziklai and Weiner [39]) Let B be a minimal weighted t-
fold (n − k)-blocking set of PG(n, q), q = ph, p prime, h ≥ 1, of size |B| = tqn−k + t + k′, with
t+ k′ ≤ (qn−k − 1)/2. Then B intersects every k-dimensional subspace in t (mod p) points.

1.5 Linear codes

In this section, we assume that the alphabet Fq is equal to the finite field GF(q), so q is a prime power.

A linear code C over GF(q) is a subspace of the vector space V(n, q). This definition implies that in a
linear code, a linear combination of two codewords is again a codeword.
Let x and y be two elements of the code, one defines the (Hamming) distance d(x, y) between two
codewords x and y as the number of positions in which these two codewords differ. More precisely if
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn), so

d(x, y) = ]{xi 6= yi|1 ≤ i ≤ n}.

The minimum distance of a code d(C), with |C| > 1, is defined by

d(C) = min {d(x, y)|x, y ∈ C, x 6= y}.

We have the following properties related to the minimum distance of a code.

Theorem 1.5.1. 1. If d(C) = s+ 1, the code C can detect up to s errors in a codeword.

2. If d(C) = 2t+ 1 or 2t+ 2, the code C can correct up to t errors using nearest neighbour decoding.

When C is a k-dimensional subspace of V(n, q) with minimum distance d, we write this as C is an
[n, k, d]-code.

The weight w(c) of a codeword c is the number of non-zero positions of c. The minimum weight w(C) of
a linear code C is the minimum of the non-zero weights of all non-zero codewords of C.

The following proposition links the minimum weight to the minimum distance of a linear code.
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Theorem 1.5.2. For every linear code C, d(C)=w(C).

A (k × n)-matrix whose rows form a basis for a linear [n, k, d]-code is called a generator matrix of C.

Between the parameters n, k and d of a linear [n, k, d]-code C, many relations and bounds exist. One of
these bounds is the Griesmer bound. From an economical point of view, it is interesting to use linear
codes having a minimal length n for given k, d and q. The Griesmer bound states that if there exists an
[n, k, d]-code for given values k, d and q, then

n ≥
k−1
∑

i=0

d d
qi
e = gq(k, d),

where dxe denotes the smallest integer greater than or equal to x.

1.6 Functional codes

We define the functional code Ch(X). We recall the construction of the functional codes as it has been
done by G. Lachaud [68].

Let X be a finite set, X = {P1, . . . , PN}. Let F(X, q) be the space of all maps from X to GF(q). F(X, q)
is a vector space and let F̃ ⊂ F(X, q) be a subspace. Let c be the map defined by

c : F(X, q) → GF(q)N :

f 7→ c(f) = (f(P1), · · · , f(PN )).

The functional code defined by F̃ and X, and denoted by C(X, F̃ ), is the image of the map c restricted
to F̃ .

c|F̃ : F̃ → GF(q)N :

f 7→ c|F̃ (f) = (f(P1), · · · , f(PN )).

C(X, F̃ ) = Im c|F̃ .

The functional code we have defined has the following parameters

length C(X, F̃ ) = |X|, dim C(X, F̃ )=dim F̃−dim ker c|F̃
d(C(X, F̃ )) = minf∈F̃ weight(c(f)).

To have a large number of codewords the map c has to be injective.

In this thesis we will work in the case where X is a quadric or a Hermitian variety. To simplify notations
we identify X with its point set, so X = {P1, . . . , PN}, where we normalise the coordinates of the points Pi

with respect to the leftmost non-zero coordinate. In this case F̃ is then the space Fh of certain monomial
homogeneous forms of degree h which define varieties. We denote by Ch(X) the functional code C(X,Fh),
this is the linear code

Ch(X) = {(f(P1), . . . , f(PN ))|f ∈ Fh} ∪ {0}.

Under the condition that the map c|Fh
is injective, we obtain the following dimension of the code

dim Ch(X) =

(

n+ h
h

)

.
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The third parameter of the code is the minimum distance, which is equal to the minimal weight since the
code is linear. In this case the minimum distance of Ch(X) corresponds with the largest intersection of
X with the hypersurfaces of degree h. More precisely

d(Ch(X)) = |X| − maxf∈Fh
|X ∩ f |.

Intuitively this largest intersection will come from the intersection of X with the algebraic hypersurface
containing the largest number of points. Therefore we state the following theorem about the number of
points on a hypersurface in PG(n, q).

Theorem 1.6.1. [77] Let f(x0, · · · , xn) be a homogeneous polynomial of degree h in n+1 variables over
Fq, with h ≤ q. The number of zeros of f in PG(n, q) satisfies:

#Z(f)(Fq) ≤ hqn−1 + πn−2.

This bound is reached when f is the union of h hyperplanes which intersect in a common codimension
2-space.

This theorem implies that the minimum distance of the functional code Ch(X) is probably determined by
the number of points in the intersection of X with h hyperplanes which intersect in a common codimension
2 space. Much research has been done on this topic.

The functional code Ch(X) for h = 2 and X a Hermitian variety was first studied for q = 4. In 1986,
P. Spurr [80] determined the minimum distance and the weight distribution of this code by a computer
search. A. B. Sørensen showed in his PhD thesis [79] that the computer wasn’t necessary for determining
the minimum distance. He described the geometrical structure of the minimum codewords and counted
the number of codewords of minimum weight. He generalised his study on the Hermitian variety and
stated the following conjecture:

In PG(4, q2), for h ≤ q, with q a prime power, if X is a non-singular Hermitian variety and X’ a
hypersurface of degree h, then

|X ∩X′| ≤ h(q3 + q2 − q) + q + 1.

G. Lachaud gave an upper bound, but unfortunately his bound was worse than the one Sørensen gave.
Edoukou investigated in [33, 34] the functional codes C2(X), with X a Hermitian surface in PG(3, q2)
and PG(4, q2) and thus gave a proof of the conjecture in the case h = 2. He showed that the first five
smallest weights come from the intersection of X with two hyperplanes.

The study of the functional code C2(X), with X a quadric has developed in a similar way as the study
for the functional code with X a Hermitian variety. Many researchers tried to find some upper bound on
the number of intersection points of two quadrics. Despite the many improvements, the only minimum
distance found was in PG(3, q), for X a hyperbolic quadric. Edoukou was able to find the minimum dis-
tance for the code C2(Q) in PG(3, q) and PG(4, q) for all non-singular quadrics [34]. He again determined
the geometrical structure of the minimum weight words.

We will improve these results and determine the minimum distance for the code C2(X), with X a quadric
or a Hermitian variety and for the code CHerm(X), X a Hermitian variety in general dimension n ≥ 5.
In all cases the smallest weight codewords come from the intersection of X with h hyperplanes which
intersect in a common codimension 2 space. These hyperplanes can intersect X however in different ways,
so in this way we are able to determine the 4, 5 or 6, depending on the case, smallest weights and the
number of codewords having these weights.
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1.7 Minihypers

Minihypers were introduced by N. Hamada and F. Tamari in [55]. New characterisation results are proven
by P. Govaerts and L. Storme [45, 46], by S. Ferret and L. Storme [41] and by J. De Beule, L. Storme
and K. Metsch [27, 28]. We will define minihypers and explain their context as well as describe results
used in the next sections.

Definition 1.7.1. (Hamada and Tamari [53, 55]) An {f,m;n, q}-minihyper is a pair (F,w), where
F is a subset of the point set of PG(n, q) and w is a weight function w : PG(n, q) → N : P 7→ w(P ),
satisfying

1. w(P ) > 0 ⇔ P ∈ F ,

2.
∑

P∈F w(P ) = f , and

3. min{∑P∈H w(P )|H is a hyperplane} = m.

It is clear that a minihyper (F,w) is uniquely defined by its weight function w. If w maps to {0, 1}, we
can still use the notation (F,w), but then (F,w) is completely determined by F .

Suppose there exists a linear [n, k, d]-code meeting the Griesmer bound, then we can write d in a unique

way as d = λqk−1 −∑k−2
i=0 εiq

i such that λ ≥ 1 and 0 ≤ εi < q. Using this expression for d, the Griesmer
bound for a linear [n, k, d]-code over GF(q) can be expressed as:

n ≥ λθk−1 −
k−2
∑

i=0

εiθi = g(k, d).

Hamada and Helleseth [53] showed that there is a one-to-one correspondence between the set of all non-

equivalent [n, k, d]-codes meeting the Griesmer bound and the set of all projectively distinct {∑k−2
i=0 εiθi,

∑k−2
i=0 εiθi−1; k−

1, q}-minihypers (F,w), such that 1 ≤ w(P ) ≤ λ for every point P ∈ F . More precisely the link is de-
scribed in the following way.

Let G = (g1 · · · gn) be a generator matrix for a linear [n, k, d]-code C meeting the Griesmer bound. We
look at a column of G as being the coordinates of a point in PG(k−1, q). Let the point set of PG(k−1, q)
be {s1, · · · , sθk−1

}. Let mi(G) denote the number of columns in G defining si. Let λ=max{mi(G)|i =
1, 2, · · · , θk−1}. Define the weight function w : PG(k−1, q) → N as w(si) = λ−mi(G), i = 1, 2, · · · , θk−1.

Let F = {si ∈ PG(k − 1, q)|w(si) > 0}, then (F,w) is a {∑k−2
i=0 εiθi,

∑k−2
i=0 εiθi−1; k − 1, q}-minihyper.

In case that d < qk−1, the minihyper associated to a linear [n, k, d]-code is a non-weighted minihyper, so
all columns of G in the construction above are pairwise not a multiple of each other.

An important class of minihypers, so of linear codes meeting the Griesmer bound, is obtained by taking
in PG(k − 1, q) a union of ε0 points, ε1 lines, · · · , εk−2 (k − 2)-dimensional subspaces which are pairwise

disjoint. Then such a set defines a {∑k−2
i=0 εiθi,

∑k−2
i=0 εiθi−1; k − 1, q}-minihyper. The linear codes asso-

ciated to these minihypers are discovered by Belov, Logachev and Sandimirov [9]. Hamada, Helleseth

and Maekawa [52, 54] proved that such a non-weighted minihyper, with
∑k−2

i=0 εi = h <
√
q + 1 is always

of Belov-Logachev-Sandimirov type. The condition h <
√
q + 1 is sharp, because for h =

√
q + 1 there

are examples of minihypers not of Belov-Logachev-Sandimirov type. For example, a Baer subplane is a
{(q + 1) +

√
q, 1; 2, q}-minihyper.

Ferret and Storme improved these results.
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Theorem 1.7.2. ([41]) Let F be a non-weighted {
k−2
∑

i=0

εiθi,

k−2
∑

i=0

εiθi−1; k − 1, q}-minihyper, q square,

q = ph, p prime, h ≤ 1, where
∑k−2

i=0 εi < min {2√q − 1, cpq
5/9}, cp = 2−1/3, q ≥ 214, when p = 2, 3,

and where
∑k−2

i=0 εi < min {2√q − 1, cpq
6/9/(1 + q1/9)}, q ≥ 212, when p > 3. Then F consists of the

union of pairwise disjoint

1. εk−2 spaces PG(k − 2, q), εk−3 spaces PG(k − 3, q), · · · , ε0 points, or

2. one subgeometry PG(2s+1,
√
q), for some s, 1 ≤ s ≤ k− 2, εk−2 spaces PG(k− 2, q), · · · , εs−

√
q− 1

spaces PG(s, q), · · · , ε0 points, or

3. one subgeometry PG(2s,
√
q), for some s, 1 ≤ s ≤ k − 2, εk−2 spaces PG(k − 2, q), · · · , εs − 1 spaces

PG(s, q), εs−1 −
√
q spaces PG(s− 1, q), · · · , ε0 points.

By staying under the bound of 2
√
q − 1 with the sum of the coefficients εi, one can prove that from

the moment that two Baer subgeometries PG(k,
√
q) and PG(m,

√
q) are contained in F , then there is a

subgeometry PG(l,
√
q), which contains PG(k,

√
q) and PG(m,

√
q), and which is completely contained in

F . We will improve these results and characterise {
s

∑

i=0

εiθi,

s
∑

i=0

εiθi−1;n, q}-minihypers with
∑s

i=0 εi <

q7/12

2 − q1/4

2 for s = 1. These minihypers can contain more than one Baer subgeometry.

The following results discuss the intersections of subspaces with minihypers, which will play a key role in
the induction arguments of the theorems and lemmas which follow. The first part shows the important
link with blocking sets.

Theorem 1.7.3. (Hamada [50]) Let (F,w) be a {∑n−1
i=0 εiθi,

∑n−1
i=1 εiθi−1;n, q}-minihyper, where 0 6

εi 6 q − 1, i = 0, . . . , n− 1, then:

1. Let m be an integer such that 1 ≤ m ≤ n, then |(F,w) ∩ Ω| ≥ ∑n−1
i=m εiθi−m for any (n−m)-space

Ω in PG(n, q) and the equality holds for some (n−m)-space Ω in PG(n, q).

2. |(F,w)∩∆| > ∑n−1
i=2 εiθi−2 for any (n− 2)-space ∆ in PG(n, q) and |(F,w)∩G| = ∑n−1

i=2 εiθi−2 for
some (n− 2)-space G in PG(n, q).

Let Hj , j = 1, 2, . . . , q + 1, be the q + 1 hyperplanes in PG(n, q) that pass through an (n− 2)-space

G intersecting F in
∑n−1

i=2 εiθi−2 points. Then (F,w) ∩Hj is a

{δj +
n−1
∑

i=1

εiθi−1,

n−1
∑

i=1

εiθi−2;n− 1, q}-minihyper

in Hj for j = 1, 2, . . . , q + 1, where the δj are some non-negative integers such that
∑q+1

j=1 δj = ε0.

Hamada and Helleseth investigated in detail the problem of the intersection of a hyperplane with a
minihyper [52]. The next lemma is a generalisation of this.

Lemma 1.7.4. Let (F,w) be a {∑n−1
i=0 εiθi,

∑n−1
i=1 εiθi−1;n, q}-minihyper satisfying n ≥ 1,

∑n−1
i=0 εi = h ≤ q. Then every r-space πr, 1 ≤ r ≤ n, not contained in F intersects F in a

{∑r−1
i=0 εiθi,

∑r−1
i=1 εiθi−1; r, q}-minihyper F ∩ πr satisfying

∑r−1
i−0 mi 6 h.

In the special case of the intersection of a minihyper with a plane, this theorem implies the following.
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Theorem 1.7.5. Let F be a {∑n−1
i=0 εiθi,

∑n−1
i=1 εiθi−1;n, q}-minihyper, where q ≥ h, 0 6 εi 6 q − 1, 0 ≤

i ≤ n − 1,
∑n−1

i=0 εi = h. Then a plane of PG(n, q) is either contained in F or it intersects F in a
{m1(q + 1) +m0,m1; 2, q}-minihyper, where m1 +m0 ≤ h.

A special class of minihypers which is well studied is the class of the {δθµ, δθµ−1;n, q}-minihypers. The
parameters of Hamada’s theorem become very nice in this case. Govaerts and Storme also did a lot of
research on these minihypers. They proved the following results.

Lemma 1.7.6. (Govaerts and Storme [46]) Suppose that F is a {δθµ, δθµ−1;n, q}-minihyper satisfying
0 6 δ 6 (q + 1)/2, 0 6 µ 6 n − 1. If H is a hyperplane containing more than δθµ−1 points of F , then
every (n− µ− 1)-space in H contains at least one point of F .

This implies that H ∩ F is a blocking set with respect to the (n− µ− 1)-spaces in H.

The next result is a very important result to classify these minihypers.

Lemma 1.7.7. (Govaerts and Storme [46]) Let (F,w) be a {δθµ, δθµ−1;n, q}-minihyper satisfying
0 6 δ 6 (q + 1)/2, 0 6 µ 6 n − 1, and containing a µ-space πµ. Then the minihyper (F ′, w′) defined by
the weight function w′, where

• w′(P ) = w(P )− 1, for P ∈ πµ, and

• w′(P ) = w(P ), for P ∈ PG(n, q) \ πµ,

is a {(δ − 1)θµ, (δ − 1)θµ−1;n, q}-minihyper.

Using these lemmas they were able to characterise such minihypers, in which the following definition is
used.

Definition 1.7.8. Denote by A the set of all t-dimensional subspaces of PG(n, q). A sum of t-dimensional
subspaces is a weight function w : A → N : πt 7→ w(πt). Such a sum induces a weight function on
subspaces of smaller dimension. Let πr be a subspace of dimension r < t, then w(πr) =

∑

π∈A,πr⊂π w(π).
In particular, the weight of a point is the sum of the weights of the t-spaces passing through it.

The concept of a sum of µ-spaces was introduced because the µ-spaces need not to be distinct.

Theorem 1.7.9. If (F,w) is a {δ(q + 1), δ;n, q}-minihyper satisfying 0 ≤ δ < εq, with q + εq the size of
the smallest non-trivial blocking set in PG(2, q), then w is the weight function induced on the points of
PG(n, q) by a sum of δ lines. Moreover, this sum is unique.

The next classification result is a result on non-weighted minihypers with q square.

Theorem 1.7.10. [44] A {δθµ, δθµ−1;n, q}-minihyper F , q > 16 square, δ < q5/8/
√
2+ 1, 2µ+1 6 n, is

a union of pairwise disjoint µ-spaces and Baer subgeometries PG(2µ+ 1,
√
q).

These results will be used to study some applications of minihypers such as minihypers that live on polar
spaces, tight sets in classical finite polar spaces, m-covers and m-ovoids of classical finite generalised
quadrangles.
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2 A characterisation result on

minihypers

Linear codes meeting the Griesmer bound are linked to minihypers in projective spaces. Hamada, Helle-
seth and Maekawa showed that a {∑s

i=0 εiθi,
∑s

i=0 εiθi−1;n, q}-minihyper is the union of pairwise disjoint
εi projective subspaces of dimension i, for i = 0, . . . , s, as long as

∑

i εi = h <
√
q + 1 [52, 54]. In their

paper, S. Ferret and L. Storme proved that increasing h to 2
√
q − 1 allows one Baer subgeometry in the

minihyper [41]. In this chapter, we will characterise these minihypers with h < q7/12

2 − q1/4

2 and s = 1.
These minihypers will contain subspaces as well as Baer subgeometries.

2.1 Introduction

We will characterise {ε1(q + 1) + ε0, ε1;n, q}-minihypers F , ε1 + ε0 < q7/12

2 − q1/4

2 , as consisting of a
pairwise disjoint union of A lines, B isolated Baer subplanes and C Baer subgeometries PG(3,

√
q), with

A+B +C(
√
q + 1) = ε1, plus ε0 −B

√
q extra points. This will first be proven in PG(3, q) by projecting

the minihyper F on a plane. This projection of F is a weighted ε1-fold blocking set in this plane. Using
results on weighted blocking sets in a plane will give us arguments to find the lines and Baer subgeometries
contained in F .

Assume F is an {ε1(q + 1) + ε0, ε1;n, q}-minihyper, with ε1 + ε0 < q7/12

2 − q1/4

2 . We will focus on the
existence of the isolated Baer subgeometries PG(2,

√
q) and the Baer subgeometries PG(3,

√
q) contained

in F . Therefore we first want to remove the lines of the minihyper F . The next lemma makes this
possible.

Lemma 2.1.1. Let F be a weighted {ε1(q+1)+ ε0, ε1;n, q}-minihyper, with 2ε1 + ε0 < q+2, containing
a line L. Then F − L is a weighted {(ε1 − 1)(q + 1) + ε0, ε1 − 1;n, q}-minihyper.

Proof. A hyperplane π either intersects L in a point or contains L. We only have to discuss the case
L ⊂ π. If we throw away L from F , then such a hyperplane is still blocked at least ε1 − 1 times, unless
π is blocked at most q + ε1 − 1 times. So from now on we assume that q + 1 6 |π ∩ F | < q + ε1.

Consider an (n − 3)-dimensional space Ω in π skew to F . This space Ω projects F onto a weighted
{ε1(q+1)+ ε0, ε1; 2, q}-minihyper F ′. Then the projection of L is a line L′ contained in F ′. By Theorem
2.2 of [39], we can reduce the weight of every point of L′ by one to obtain an (ε1 − 1)-fold blocking set
F ′′ in this plane. But then L′ is still blocked at least ε1 − 1 times. So π is blocked at least q + ε1 times
by F .
So F − L indeed is a weighted {(ε1 − 1)(q + 1) + ε0, ε1 − 1;n, q}-minihyper.

17
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From now on we assume that F contains no lines.

Lemma 2.1.2. (Ball [2]) A t-fold blocking multiset in PG(2, q) containing no line has size greater than
or equal to tq +

√
tq + 1.

Lemma 2.1.3. Let F be an {ε1(q + 1) + ε0, ε1;n, q}-minihyper, with ε1 + ε0 < q7/12

2 − q1/4

2 , containing

no lines and having at most q1/6/2 multiple points.

If a plane π intersects F in an {m1(q + 1) +m0,m1; 2, q}-minihyper, with m1 ≥ 1, then F ∩ π contains
a sum of m1 Baer subplanes.

Proof. We know that m1 + m0 ≤ ε1 + ε0 < q7/12

2 − q1/4

2 by Theorem 1.7.5. The intersection of π with
F does not contain lines, since F does not contain lines, so |π ∩ F | ≥ m1q +

√
m1q + 1, which implies

√
m1q + 1 < q7/12

2 − q1/4

2 . Hence, m1 < q1/6/2. By Barát and Storme [8], π ∩ F contains a sum of m1

Baer subplanes.

Now we will proceed by first characterising the minihyper F in a 3-dimensional space PG(3, q).

2.1.1 Three dimensions

We first characterise the minihyper F in the projective space of dimension three. We want to characterise
non-weighted minihypers, but for induction on the dimension we will need the characterisation of the
minihyper in PG(3, q) where small weights are allowed. Assume that F is a weighted {ε1(q + 1) +

ε0, ε1; 3, q}-minihyper with total weight of the multiple points at most
2ε21
q and with ε1+ε0 = η(

√
q−q1/6) <

q7/12

2 − q1/4

2 , so η < q1/12

2 .

We assume F does not contain lines, since by Lemma 2.1.1, lines can be removed from F .

Projecting the minihyper F from a point R 6∈ F onto a plane gives a weighted ε1-fold blocking set B in
this plane. We have to deal with two cases: either B does not contain a line or B does contain lines.
First we consider the case that B does not contain a line.

Lemma 2.1.4. If B does not contain a line, then ε1 < q1/6

2 and F is an ε1-fold blocking multiset containing
a sum of ε1 Baer subplanes and lines.

Proof. The set B is a weighted ε1-fold blocking set in a plane of size ε1(q + 1) + ε0 ≤ ε1q +
q7/12

2 − q1/4

2

containing no lines. Lemma 2.1.2 implies that ε1 < q1/6

2 . In this case there are no multiple points since
2ε21
q < 1. So F is an ε1-fold blocking set characterised as a sum of ε1 Baer subplanes and points in [8].

We will use heavily the number of secants to F through a point R not in F , so we count this number in
the next lemma.

Lemma 2.1.5. There is a point not in F lying on at most
ε21+2η2

2 secants to F , containing at least two
points of F of weight one.

Proof. We count the number of points of PG(3, q)\F on secants to F through two points of weight one.
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Here |F | ≤ ε1q + η
√
q, but we subtract q1/6

2 from |F |, since there can be up to q1/6

2 multiple points:

(ε1q + η
√
q − q1/6

2
)(ε1q + η

√
q − q1/6

2
− 1)

(q − 1)

2

≤ ε21q
3 + 2ηε1q

2√q + η2q2 − ε1q
2 − ηq

√
q − ε21q

2 − 2ηε1q
√
q − η2q + ε1q + η

√
q

2

≤ ε21q
3 + 2ε1ηq

2√q

2
.

We can replace this by the upper bound (ε21q
3 + 2η2q3)/2, since ε1 ≤ η

√
q.

There are θ3 − |F | points in PG(3, q)\F ; this is at least q3. Hence, we find a point R, not in F , lying on

at most
ε21+2η2

2 such secants to F .

Lemma 2.1.6. If B does contain lines, then
√
q − q1/6 ≤ ε1.

Proof. Consider a point R of PG(3, q)\F lying on at most
ε21+2η2

2 secants to F , containing at least two
simple points of F . The minihyper F is projected from R onto a weighted point set in a plane containing
a line L. The plane 〈R,L〉 intersects F in at least a 1-fold blocking set. So Lemma 2.1.3 implies that
〈R,L〉 ∩ F contains a Baer subplane having a Baer subline on a line through R. This Baer subline has

at most q1/6

2 distinct multiple points of F , so is counted at least 1
2 (
√
q − q1/6

2 )2 times as a secant in the
previous lemma. This number must be smaller than or equal to the total number of such secants to F
through R, so

(
√
q − q1/6

2
)2 ≤ ε21 + 2η2

⇔ q −√
qq1/6 +

q1/3

4
− q1/6 ≤ ε21, since η ≤ q1/12√

2

⇒ (
√
q − q1/6)2 ≤ q −√

qq1/6 +
q1/3

4
− q1/6 ≤ ε21.

This last equation holds if q ≥ 4 and then we have the assertion.

Lemma 2.1.7. Let R be a point of PG(3, q) \F lying on at most ε21 secants to F , containing at least two
simple points of F . Then R lies on a line containing a Baer subline of F which is contained in at least
ε1
2η2 − q1/6

4η2 Baer subplanes of F, containing at least ε1q
2η2 − q7/6

4η2 +
√
q + 1 points of F .

Proof. The projection of F from R is a weighted ε1-fold blocking set B in a plane, containing lines. Let x
be the number of lines contained in B, where some lines can be counted more than once in this weighted
ε1-fold blocking set. It follows from [39, Theorem 2.2] that the x lines contained in B can be removed
from B to obtain a new weighted (ε1 − x)-fold blocking set B′, containing no lines. Denote ε1 − x by ε′1.

By Lemma 2.1.4, for an ε′1-fold blocking set B of size ε′1(q + 1) + ε0 without lines, necessarily ε′1 < q1/6

2 ,

so B must contain at least ε1 − ε′1 > ε1 − q1/6

2 lines.

For each such line L ⊂ B, let m1 be its multiplicity as a line in the weighted set B. Then the plane

〈R,L〉 intersects F in an {m1(q + 1) +m0,m1; 2, q}-minihyper, with m1 +m0 ≤ ε1 + ε0 < q7/12

2 − q1/4

2 .
This plane 〈R,L〉 contains m1 Baer subplanes of F (Lemma 2.1.3) and for each Baer subplane there is a
line through R containing a Baer subline of this Baer subplane.

A Baer subline is counted at least 1
2 (
√
q − q1/6

2 )2 times as a secant in Lemma 2.1.5. The point R lies on

at most ε21 ≤ η2(q − q2/3 + q1/3

4 ) secants, hence R lies on at most 2η2 different lines containing a Baer
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subline of F . There are at least ε1 − q1/6

2 Baer sublines, in Baer subplanes of F , on lines through R. So

some Baer subline lies in at least ε1
2η2 − q1/6

4η2 Baer subplanes of F . These Baer subplanes contain at least

ε1q
2η2 − q7/6

4η2 +
√
q + 1 points of F .

Remark 2.1.8. We will denote these Baer subplanes, contained in F , through a common Baer subline
on a line through R as flags of Baer subplanes corresponding to R. We can find several flags which leads
to the fact that they must intersect each other in a certain minimum number of points.

Lemma 2.1.9. There are more than 8η2 points of PG(3, q)\F , defining different flags of Baer subplanes,

hence there are two such flags intersecting each other in at least q
16η2 (

ε1
2η2 − q1/6

4η2 ) points.

Proof. Suppose we have already 8η2 points with a corresponding flag of Baer subplanes as in the previous
lemma. Is there another point of PG(3, q) \ F lying on at most ε21 secants to F , containing at least two
simple points of F? The number of points in these 8η2 flags counted over GF(q) is at most

8η2((
ε1
2η2

− q1/6

4η2
)q2 + q + 1) = 4ε1q

2 − 2q1/6q2 + 8η2(q + 1).

We count over GF(q) to assure that the new flag is different from the ones we already have. There are
at least q3 + q2 + q+1− ε1(q+1)− ε0 − 4ε1q

2 +2q1/6q2 − 8η2(q+1) points in PG(3, q) not in F and not
in the extended flags. If all these points lie on more than ε21 secants to F , then the number of incidences
on the remaining secants is larger than (ε21q

3 + 2η2q3)/2, the total number of incidences on secants to F
we had in Lemma 2.1.4. So there is still another point P 6∈ F on at most ε21 secants to F .

Take 8η2 such points R and suppose that the union of the ε1
2η2 − q1/6

4η2 Baer subplanes through the Baer

subline of a flag corresponding to a point R share for two such points at most q
16η2 (

ε1
2η2 − q1/6

4η2 ) points.
Then

|F | ≥
8η2

∑

i=1

(
ε1q

2η2
− q7/6

4η2
+
√
q + 1− (i− 1)

q

16η2
(
ε1
2η2

− q1/6

4η2
))

≥ 8η2(
ε1q

2η2
− q7/6

4η2
+
√
q + 1) +

(8η2)2

2

q

16η2
(
ε1
2η2

− q1/6

4η2
)

≥ 3ε1q −
3

2
q7/6 + 8η2(

√
q + 1).

This is false since ε1 ≥ √
q − q1/6.

We have different points with a corresponding flag of Baer subplanes. We now build with them a Baer
subgeometry PG(3,

√
q) contained in F .

Lemma 2.1.10. The minihyper F contains a Baer subgeometry PG(3,
√
q) if ε1 ≥ √

q − q1/6.

Proof. Let R and R′ be two points corresponding with a flag of ε1
2η2 − q1/6

4η2 Baer subplanes of F and denote

those flags sharing at least q
16η2 (

ε1
2η2 − q1/6

4η2 ) points by fR and fR′ . So some Baer subplane πR′ of fR′

shares at least q
16η2 points with the Baer subplanes of fR. If this Baer subplane πR′ shares at most two

points with every Baer subplane of fR, then
q

16η2 6 2( ε1
2η2 − q1/6

4η2 ), which is false since ε1 < q7/12

2 − q1/4

2 .
So this Baer subplane πR′ shares a Baer subline with some Baer subplane of fR. Denote by l the Baer
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subline of the flag fR. This Baer subplane πR′ cannot pass through l, since then this Baer subplane πR′

only shares this subline l with all these Baer subplanes of the flag fR, but
q

16η2 >
√
q + 1.

We wish to find a lower bound on the number of Baer subplanes of fR, sharing a Baer subline with the

Baer subplane πR′ . We subtract two for every of the ε1
2η2 − q1/6

4η2 Baer subplanes of fR from q
16η2 and divide

by
√
q− 1. The quotient is at least (q1/3 − 8)/8, hence this Baer subplane πR′ shares a Baer subline with

at least (q1/3 − 8)/8 Baer subplanes of fR. Take this Baer subplane πR′ and consider a Baer subplane
πR of the flag fR which shares a Baer subline with πR′ . Together they define a Baer subgeometry Ω
isomorphic to PG(3,

√
q). Every Baer subplane of fR intersecting πR′ in a Baer subline shares l and this

Baer subline with Ω. Two intersecting Baer sublines define a Baer subplane in a unique way, so these
Baer subplanes then lie completely in this Baer subgeometry Ω.

Consider an arbitrary Baer subplane π of Ω not through l. Then π shares at least (q1/3−8)/8 Baer sublines

with F , so shares at least q5/6−8q1/2

8 +1 points with F . Consider the plane over GF(q) of this Baer subplane

π. This plane intersects F in an {m1(q+1)+m0,m1; 2, q}-minihyper, withm1+m0 6 ε1+ε0 < q7/12

2 − q1/4

2 ,
which contains m1 Baer subplanes (Lemma 2.1.3). Suppose this Baer subplane π is not contained in F .

It contains already at least q5/6−8q1/2

8 + 1 points of F . By Lemma 4.4 of [13], we have that

|π ∩ F | 6 m0 +m1(
√
q + 1) 6

√
2q7/12.

But q5/6−8q1/2

8 +1 >
√
2q7/122, so this Baer subplane π lies completely in F . As a consequence, this Baer

subgeometry Ω defined by πR and πR′ lies completely in F .

Lemma 2.1.11. Let F be an {ε1(q + 1) + ε0, ε1; 3, q}-minihyper, with 2ε1 + ε0 < q + 2, containing a
subgeometry PG(3,

√
q). Then F\PG(3,

√
q) is an {(ε1−

√
q− 1)(q+1)+ ε0, ε1−

√
q− 1; 3, q}-minihyper.

Proof. A plane π either intersects a Baer subgeometry PG(3,
√
q) in a subline PG(1,

√
q) or a subplane

PG(2,
√
q). We only have to discuss the case that π∩PG(3,

√
q) is a subplane PG(2,

√
q) of size q+

√
q+1.

If π contains still ε1 −
√
q − 1 other points of F , then removing this Baer subgeometry PG(3,

√
q) from

F causes no problem for the plane π. So from now on, we assume that q +
√
q + 1 6 |π ∩ F | < q + ε1.

We select a point R of π\F . Project π and F from R onto a plane. Then we obtain an ε1-fold blocking
multiset B in this plane containing a line L, which is the projection of π∩F . By Theorem 2.2 of [39], we
can reduce the weight of every point of L by one to obtain an (ε1 − 1)-fold blocking set B′ in this plane.
But then L is still blocked at least ε1 − 1 times by B′. So π is blocked at least q + ε1 times by F .

Theorem 2.1.12. Let F be a weighted {ε1(q + 1) + ε0, ε1; 3, q}-minihyper, having weighted points with

total weight at most
2ε21
q and where ε1+ε0 = η(

√
q−q1/6) < q7/12

2 − q1/4

2 , then F contains a sum of A lines,

B isolated Baer subplanes PG(2,
√
q) and C Baer subgeometries PG(3,

√
q), where A+B+C(

√
q+1) = ε1

and ε0 −B
√
q extra points.

Proof. If F contains A lines, then we can remove these lines from F , and then apply the arguments to F

minus these A lines (Lemma 2.1.1). Let R be a point not in the minihyper F on at most
ε21+2η2

2 secants to
F , containing at least two points of F of weight one. Projecting F from R onto a plane gives a weighted
ε1-fold blocking set B in this plane. If B does not contain lines, Lemma 2.1.4 says that F is the sum of
ε1 lines and Baer subplanes PG(2,

√
q), and possibly some extra points. If B does contain lines, we find

a Baer subgeometry PG(3,
√
q) contained in F , which can be thrown away to obtain a new minihyper,

see Lemma 2.1.11. Repeating the previous arguments with this minihyper gives us the assertion.
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2.1.2 Higher dimensions

We now characterise non-weighted {ε1(q+1)+ ε0, ε1;n, q}-minihypers F , n ≥ 4, where ε1 + ε0 = η(
√
q−

q1/6) < q7/12

2 − q1/4

2 , by induction on the dimension n. We suppose that every {ε1(q+1)+ ε0, ε1;n−1, q}-
minihyper, with n ≥ 4, is a pairwise disjoint union of A lines, B isolated Baer subplanes PG(2,

√
q) and

C Baer subgeometries PG(3,
√
q), with A+ B + C(

√
q + 1) = ε1, and ε0 − B

√
q extra points. As in the

3-dimensional case, we start by using Lemma 2.1.1 to remove the lines contained in F .

We want to project F onto a hyperplane in such a way that the number of multiple points appearing in
the projection is as small as possible.

Lemma 2.1.13. For n = 4, there is a point R 6∈ F lying on at most
ε21
q secants to F . In larger dimensions

there are points R 6∈ F lying only on tangents to F .

Proof. The number of points on secants to F is at most

(ε1(q + 1) + ε0)
2

2
(q − 1) =

ε1(q
3 + q2 − q − 1) + 2ε1ε0(q

2 − 1) + ε20(q − 1)

2
.

Now ε1ε0, ε
2
0 < q7/6

2 . For n ≥ 5, this number is smaller than the number of points in PG(n, q)\F . In this
case there exists at least one point lying only on tangents to F .
For n = 4 we divide by q4 + q3 ≤ θ4 − |F |. This gives a point R lying on at most

ε21
2q

+
2q7/6(q2 − 1)/2 + q7/6(q − 1)/2

2(q4 + q3)
≤ ε21

2q
+

1

2q5/6

secants to F . Either
ε21
2q + 1

2q5/6
< 1 and then R lies on zero secants to F or either

ε21
2q + 1

2q5/6
≥ 1, then

ε21
2q ≥ 1

2q5/6
. In both cases

ε21
q can be used as an upper bound on the number of secants to F through

R.

In the case of n = 4, projecting from a point as in the previous lemma gives a weighted minihyper with

total weight of the multiple points at most
2ε21
q .

Theorem 2.1.14. Let F be a non-weighted {ε1(q + 1) + ε0, ε1;n, q}-minihyper, n ≥ 4, where ε1 + ε0 =

η(
√
q − q1/6) < q7/12

2 − q1/4

2 , then F is the union of pairwise disjoint A lines, B isolated Baer subplanes
PG(2,

√
q) and C Baer subgeometries PG(3,

√
q), with A + B + C(

√
q + 1) = ε1, and ε0 − B

√
q extra

points.

Proof. Project F from a point R, lying only on tangents to F or on at most ε21/q secants to F if n = 4,
onto a hyperplane π. We get a (weighted if n = 4) {ε1(q + 1) + ε0, ε1;n − 1, q}-minihyper F ′ which is
the sum of A′ lines, B′ isolated Baer subplanes PG(2,

√
q) and C ′ Baer subgeometries PG(3,

√
q), with

A′ +B′ + C ′(
√
q + 1) = ε1, and ε0 −B

√
q points.

Case I: F ′ contains a line L.

The plane 〈R,L〉 intersects F in at least a 1-fold blocking set (Lemma 2.1.3), which contains a Baer
subplane. By assumption, F does not contain lines, since lines can be removed from F (Lemma 2.1.1).

Suppose that 〈R,L〉 contains a Baer subplane contained in F , then R lies on a Baer subline to this Baer
subplane, but then R lies on a (

√
q + 1)-secant to F , which is false for n > 4. For n = 4, this line is
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projected onto a point of F ′ with weight up to
√
q + 1 > q1/6

2 , which is false. So this case cannot occur.

Case II: F ′ contains an isolated Baer subplane PG(2,
√
q).

Denote this Baer subplane PG(2,
√
q) by ω. The 3-space 〈R,ω〉 intersects F in an {m1(q + 1) +

m0,m1; 3, q}-minihyper, with m1 ≥ 1 (Lemma 1.7.4), so 〈R,ω〉 ∩F contains by the induction hypothesis
the union of points, isolated Baer subgeometries PG(2,

√
q) and Baer subgeometries PG(3,

√
q), which are

all pairwise disjoint. Assume 〈R,ω〉 contains a Baer subgeometry PG(3,
√
q) and consider the conjugate

point R
√
q of R w.r.t. PG(3,

√
q). The line RR

√
q intersects PG(3,

√
q) in a Baer subline, which is false.

So 〈R,ω〉 ∩ F contains points and isolated Baer subplanes. One of these Baer subplanes PG(2,
√
q) is

projected onto ω.

Case III: F ′ contains a Baer subgeometry PG(3,
√
q).

Consider two Baer subplanes ω1 and ω2 in PG(3,
√
q). By the arguments of case II we find Baer subplanes

ω′
1 and ω′

2 contained in F projected onto ω1 and ω2 respectively. Since there are less than q1/6

2 multiple
points in the intersection line of ω1 and ω2, this projected Baer subline ω1 ∩ ω2 must be the projection
of a Baer subline contained in F , which must be equal to the intersection line of ω′

1 and ω′
2. So ω′

1

and ω′
2 span a Baer subgeometry PG(3,

√
q). The 3-space over GF(q) defined by this Baer subgeometry

shares two intersecting Baer subplanes with F . By the induction hypothesis, they must share a Baer
subgeometry PG(3,

√
q) with F .
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3 Applications of minihypers

In this chapter we will give some applications of minihypers. We start with some new characterisation
results of minihypers contained in quadrics. In the second section we describe the link between minihypers
and i-tight sets of finite classical polar spaces, which gives us some nice characterisation results of i-tight
sets in terms of generators. The results of the first two sections are then used to prove a non-existence
result on Cameron-Liebler line classes. The fourth application is on weighted m-covers and m-ovoids of
quadrics. Characterisation results on minihypers give extension results on partial weighted m-ovoids and
partial weighted m-covers.

The results of this chapter are published in [25, 26].

3.1 Minihypers contained in quadrics

Minihypers in projective spaces are well studied objects, hence a lot of characterisation results are known.
A special class of minihypers are the {xθµ, xθµ−1;n, q}-minihypers, for which we repeat the following
important result.

Theorem 3.1.1. (Govaerts and Storme [44]) A {xθµ, xθµ−1;n, q}-minihyper F , q > 16 square, x <
q5/8/

√
2+1, 2µ+1 6 n, is a union of pairwise disjoint µ-spaces and Baer subgeometries PG(2µ+1,

√
q).

Now we will have a look at {xθµ, xθµ−1;n, q}-minihypers whose point sets are contained in classical
finite polar spaces, more precisely in quadrics. Suppose that Q(n, q) is a quadric of rank k + 1. We
will characterise {xθk, xθk−1;n, q}-minihypers on Q(n, q), where x 6 q/2− 1, as the union of x pairwise
disjoint generators. These results are used in the proofs of the following sections.

Lemma 3.1.2. Let F be an {xθk, xθk−1;n, q}-minihyper, where x ≤ q/2 − 1, on Q(n, q). Let πn−k−1

be a (n− k − 1)-dimensional space containing exactly one point of F . There exists a hyperplane through
πn−k−1 containing more than xθk−1 points of F.

Proof. Suppose that every hyperplane of PG(n, q) through πn−k−1 has exactly xθk−1 points of F . Count
the size of the set

X = {(P,H)|P ∈ F\πn−k−1, H a hyperplane through πn−k−1, P ∈ H}.

Starting with P , we have that |X| = (|F |−1)θk−1, since there are θk−1 hyperplanes through πn−k−1 and
P . Starting with H, we have |X| = θk(xθk−1 − 1). For |F | = xθk, this gives a contradiction.

25
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We apply the theorem of Bézout in the following form.

Lemma 3.1.3. If an s-dimensional space πs intersects a quadric Q in at least three hyperplanes of πs,
then πs ⊂ Q .

Lemma 3.1.4. Let B be a minimal blocking set with respect to the (n − k − 1)-dimensional subspaces
contained in a hyperplane section πn−1 ∩Q(n, q) of Q(n, q), with |B| 6 qk + qk/2. Then every t linearly
independent points of B span a (t− 1)-dimensional subspace πt−1 completely contained in Q(n, q).

Proof. This is true for t = 2. Indeed, let R1, R2 ∈ B be 2 linearly independent points. By Theorem
1.4.10, the line 〈R1, R2〉 must contain at least 1 + p points of B. This means that this line contains at
least 3 points of Q(n, q), so lies completely on Q(n, q).

Suppose that the lemma is true for some t. Let πt−1 be a (t− 1)-dimensional space on Q(n, q), spanned
by t linearly independent points of B. Let R be a point of B\πt−1. Take two sets of t− 1 points of these
t points. By induction, we know that both sets together with R are two sets of t linearly independent
points of B, so they define two (t− 1)-dimensional spaces in Q(n, q). Together with πt−1, this gives three
(t− 1)-dimensional spaces on Q(n, q) that span a t-dimensional space πt. Lemma 3.1.3 implies that πt is
a subspace contained in Q(n, q).

Lemma 3.1.5. Let B be a minimal 1-fold blocking set with respect to the (n−k−1)-dimensional subspaces
contained in a hyperplane section πn−1 ∩ Q(n, q) of Q(n, q), with |B| 6 qk + qk/2. Then B is the point
set of a k-dimensional subspace πk of πn−1.

Proof. Since |B| > θk, we can find at least k + 1 linearly independent points in B. This means by the
previous lemma that 〈B〉 = πr ⊂ Q(n, q), with r > k. But since πr ⊂ Q(n, q), r can be at most k. We
conclude that r = k and that B is the point set of a k-dimensional subspace πk of πn−1.

Lemma 3.1.6. A {xθk, xθk−1;n, q}-minihyper F contained in Q(n, q), with x 6 q/2 − 1, contains a
k-dimensional space.

Proof. Consider a point P ′ of F . There exists an (n− k− 1)-dimensional space πn−k−1 through P ′ only
containing that point of F . To find an (n − 1)-dimensional space πn−1 through πn−k−1 that contains
more than xθk−1 points of F , we use Lemma 3.1.2.

The space πn−1 intersects F in a 1-fold blocking set B with respect to the (n− k− 1)-dimensional spaces
in πn−1 (Lemma 1.7.6). Let B be a minimal blocking set contained in B.

We determine the maximal possible size of B. As the blocking set πn−1 ∩ F is the intersection of a
hyperplane πn−1 with the minihyper F , from Lemma 1.7.4, this is a

{
k

∑

i=0

εiθi,

k
∑

i=0

εiθi−1;n− 1, q}-minihyper,

with
∑k

i=0 εi 6 x.

Every (n− k − 1)-dimensional subspace in πn−1 intersects the minihyper F ∩ πn−1 in at least εk points
(Theorem 1.7.3). Since πn−k−1 contains only one point of F∩πn−1, εk must be equal to 1. So |πn−1∩F | 6
θk + (x− 1)θk−1 6 qk + qk/2. By Lemma 3.1.5, B is the point set of a k-dimensional subspace.

Theorem 3.1.7. (1) An {xθr, xθr−1; 2r + 1, q}-minihyper F contained in Q+(2r + 1, q), with x 6

q/2− 1, consists of x pairwise disjoint r-dimensional spaces, i.e. of x pairwise disjoint generators.

(2) An {xθr−1, xθr−2; 2r, q}-minihyper F contained in Q(2r, q), with x 6 q/2−1, consists of x pairwise
disjoint (r − 1)-dimensional spaces, i.e. of x pairwise disjoint generators.
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(3) An {xθr−1, xθr−2; 2r + 1, q}-minihyper F contained in Q−(2r + 1, q), with x 6 q/2− 1, consists of
x pairwise disjoint (r − 1)-dimensional spaces, i.e. of x pairwise disjoint generators.

Proof. (1) By the previous lemma the minihyper F contains a generator π. From Lemma 1.7.7, it
follows that F\π is an {(x − 1)θr, (x − 1)θr−1; 2r + 1, q}-minihyper F ′. Repeating the previous
arguments x times implies that F consists of x pairwise disjoint r-dimensional subspaces.

(2),(3) This is obtained using the same arguments as for (1).

Corollary 3.1.8. Let F be an {xθr, xθr−1; 2r+1, q}-minihyper on Q+(2r+1, q), with x ≤ q/2− 1. If r
is even, then x 6 2.

Proof. This follows from the fact that at most two r-dimensional spaces of Q+(2r + 1, q), r even, can be
disjoint to each other.

3.2 Minihypers and i-tight sets

We will consider i-tight sets in finite classical polar spaces. We show that i-tight sets can be linked
with minihypers. Lemma 1.7.10, together with the results of the previous section, gives us some nice
characterisation results of i-tight sets in terms of generators and Baer subgeometries contained in the
Hermitian and symplectic polar spaces and in terms of generators for the orthogonal polar spaces. After
the definition we observe an example of a Baer subgeometry contained in H(2r + 1, q2) which forms a
(q + 1)-tight set. It can be shown that the Hermitian polarity induces a symplectic polarity in this Baer
subgeometry.

Definition 3.2.1. (Bamberg, Kelly, Law, and Penttila [5]) A set T of points of a finite polar space
of rank r > 2 over a finite field PG(n, q) is i-tight if for any point P ∈ PG(n, q) holds that

|P⊥ ∩ T | =
{

i q
r−1−1
q−1 + qr−1 if P ∈ T ,

i q
r−1−1
q−1 if P 6∈ T .

Example 3.2.2. A classical example of an i-tight set in a classical finite polar space P is a union of i
pairwise disjoint generators of P.

Example 3.2.3. Consider the Hermitian variety H(2r + 1, q2). A (q + 1)-tight set can be constructed
using a particular example of a Baer subgeometry contained in H(2r + 1, q2).

Up to a projectivity, the Hermitian variety H(2r + 1, q2) consists of the set of points whose coordinates
satisfy the equation

X1X
q
0 −X0X

q
1 +X3X

q
2 − . . .+X2r+1X

q
2r −X2rX

q
2r+1 = 0.

Each hyperplane of PG(2r+1, q2) intersects the standard Baer subgeometry PG(2r+1, q) = {(x0, . . . , x2r+1)|xi ∈
Fq} in either a PG(2r, q) or a PG(2r − 1, q).

For a hyperplane π with equation a0X0+ · · ·+a2r+1X2r+1 = 0, its conjugate hyperplane πq with respect
to the standard Baer subgeometry PG(2r+1, q) has equation aq0X0+ · · ·+ aq2r+1X2r+1 = 0. Now π = πq
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if and only if for some scalar t ∈ F
∗
q2 , ∀i, tai ∈ Fq. Let P = (x0, . . . , x2r+1) ∈ π ∩ PG(2r + 1, q), then P

lies also in πq. So

π ∩ PG(2r + 1, q) = πq ∩ PG(2r + 1, q) (3.1)

= π ∩ πq ∩ PG(2r + 1, q), (3.2)

then π ∩ PG(2r + 1, q) = PG(2r, q), since the intersection is invariant under the conjugation x 7→ xq :
(π ∩ πq)q = πq ∩ π. If π 6= πq, then π ∩ PG(2r + 1, q) = PG(2r − 1, q).

Denote the polarity associated with the Hermitian variety by ⊥. Consider a point P ∈ H(2r + 1, q2), let
P = (x0, x1, . . . , x2r+1). The tangent hyperplane π = P⊥ to H(2r + 1, q2) at P satisfies the equation

X1x
q
0 −X0x

q
1 + · · ·+X2r+1x

q
2r −X2rx

q
2r+1 = 0,

its conjugate, πq satisfies the equation

X1x0 −X0x1 + · · ·+X2r+1x2r −X2rx2r+1 = 0.

They are equal if and only if xi = txq
i , t ∈ GF(q2)∗, i = 0, 1, . . . , 2r + 1, so if P ∈ PG(2r + 1, q). Hence,

P⊥ ∩ PG(2r + 1, q) =

{

PG(2r, q) if P ∈ PG(2r + 1, q),
PG(2r − 1, q) if P /∈ PG(2r + 1, q).

These intersections are of sizes equal to the intersection numbers in the definition of an i-tight set with
i = q+1. So we conclude that this Baer subgeometry PG(2r+1, q) is a (q+1)-tight set in H(2r+1, q2).

The preceding example was also stated in [5]. Their approach was as follows: they considered the
embedding of W(2r+1, q) in H(2r+1, q2) and proved that this defines a (q+1)-tight set in H(2r+1, q2).
We now prove the converse. The following theorem characterises a Baer subgeometry PG(2r + 1, q)
contained in the Hermitian variety H(2r + 1, q2) defining a (q + 1)-tight set as a symplectic polar space
contained in the Hermitian variety.

Theorem 3.2.4. Suppose that a subgeometry PG(2r + 1, q) ⊂ H(2r + 1, q2) defines a (q + 1)-tight set.
Then the Hermitian polarity of H(2r + 1, q2) induces a symplectic polarity in this Baer subgeometry.

Proof. Since this Baer subgeometry PG(2r + 1, q) defines a (q + 1)-tight set T , we have the following
intersection numbers:

|P⊥ ∩ T | =
{

(q + 1) q
2r−1
q2−1 + q2r = q2r+1−1

q−1 if P ∈ T ,

(q + 1) q
2r−1
q2−1 = q2r−1

q−1 if P /∈ T .

Let H be the set of hyperplanes of PG(2r+1, q). Define η: PG(2r+1, q) → H : P 7→ P⊥∩PG(2r+1, q),
with ⊥ the Hermitian polarity. Note that P⊥ ∩ PG(2r + 1, q) indeed is a hyperplane of PG(2r + 1, q)
since |P⊥ ∩ T | = (q2r+1 − 1)/(q − 1).

Then η is a bijection from the point set of PG(2r + 1, q) to the set of hyperplanes of PG(2r + 1, q) since
the hyperplanes P⊥∩ PG(2r + 1, q) are extendable to hyperplanes of PG(2r + 1, q2), and distinct points
of H(2r + 1, q2) have distinct tangent hyperplanes.

Now η is involutory starting from ⊥. If P, P1, P2 are collinear in PG(2r + 1, q), then P⊥ ∩ P⊥
1 ∩ P⊥

2

is a (2r − 1)-dimensional subspace of PG(2r + 1, q2). In fact, it is a (2r − 1)-dimensional subspace of
PG(2r + 1, q) since P⊥q

= P⊥, P⊥q

1 = P⊥
1 , P⊥q

2 = P⊥
2 . So

P⊥q ∩ P⊥q

1 = P⊥ ∩ P⊥
1 = (P⊥ ∩ P⊥

1 )q.

So η is a polarity of PG(2r + 1, q); since P ∈ P η for all points P of PG(2r + 1, q), η is necessarily
symplectic.
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We now turn to the characterisation problem of i-tight sets in the classical finite polar spaces. These
i-tight sets are linked to minihypers.

In the further part of this section we will use q∗ for q∗ = q2 in case of the Hermitian variety H(2r+1, q2)
and q∗ = q in the case of a symplectic polar space or a quadric.

Theorem 3.2.5. An i-tight set, with i > 1, on W(2r + 1, q),Q+(2r + 1, q), or H(2r + 1, q2) generates
the whole space.

Proof. Let T be this i-tight set. Then

|P⊥ ∩ T | =
{

i q
∗r−1
q∗−1 + q∗r if P ∈ T ,

i q
∗r−1
q∗−1 if P 6∈ T .

So T is not contained in a tangent hyperplane if i > 1. This finishes the proof for W(2r + 1, q).

For Q+(2r + 1, q) and H(2r + 1, q2), a non-degenerate hyperplane section is a ( q
∗r−1
q∗−1 )-ovoid [5]. An

m-ovoid and an i-tight set intersect in mi points [5]. So here they intersect in i( q
∗r−1
q∗−1 ) points. So T is

not contained in a non-degenerate hyperplane.

We obtain that an i-tight set T on one of the classical finite polar spaces W(2r+1, q),Q+(2r+1, q),H(2r+
1, q2) is a set of i(q∗r+1 − 1)/(q∗ − 1) points intersecting every hyperplane in at least i(q∗r − 1)/(q∗ − 1)
points. This means that T is an {i(q∗r+1−1)/(q∗−1), i(q∗r−1)/(q∗−1); 2r+1, q∗}-minihyper (Definition
1.7.1).

We now use known characterisation results on minihypers to get new information on i-tight sets in the
classical finite polar spaces W(2r + 1, q),Q+(2r + 1, q), and H(2r + 1, q2). For the first characterisation
result, we rely on Theorem 3.1.6 and Corollary 3.1.8 from the previous section.

Theorem 3.2.6. An i-tight set on Q+(2r + 1, q), with 2 < i ≤ q/2− 1, can only exist for r odd. When
r is odd, then such an i-tight set is the union of i pairwise disjoint generators of Q+(2r + 1, q).

For every r ≥ 1, a 1-tight or 2-tight set on Q+(2r + 1, q) consists of one generator or of two disjoint
generators.

In Theorems 3.1.6 and 3.1.7 on quadrics, we could exclude the Baer subgeometries, since there are no Baer
subgeometries PG(d,

√
q) contained in a non-singular quadric in PG(d, q). But what can we say about

these Baer subgeometries contained in the Hermitian variety? We will now study the correspondence
between these Baer subgeometries and i-tight sets on the Hermitian variety H(2r + 1, q2).

Lemma 3.2.7. Let P ∈ H(2r + 1, q2), let P⊥ share a PG(2r, q) with H(2r + 1, q2), then P ∈ PG(2r, q).

Proof. Assume that P /∈ PG(2r, q).

Then P lies on the extension of a line of PG(2r, q) (the line PP q) and P projects PG(2r, q) onto a cone
with vertex R and base PG(2r − 2, q).

Now this PG(2r, q) lies on 〈P,H(2r − 1, q2)〉. Since the projection 〈R,PG(2r − 2, q)〉 lies completely on
H(2r + 1, q2), it lies in the tangent hyperplane R⊥ w.r.t. H(2r − 1, q2). But R⊥ w.r.t. H(2r − 1, q2) has
dimension 2r − 2, and 〈R,PG(2r − 2, q)〉 generates a (2r − 1)-space, so we get a contradiction.

Hence, P ∈ PG(2r, q).
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Theorem 3.2.8. Let T be an i-tight set in H(2r + 1, q2), with q2 > 16 and i < q10/8/
√
2 + 1, then

T is a union of pairwise disjoint Baer subgeometries PG(2r + 1, q) and generators PG(r, q2), where the
Hermitian polarity ⊥ induces a symplectic polarity in every Baer subgeometry PG(2r+1, q) contained in
T .

Proof. This i-tight set defines an {i(q2r+2−1)/(q2−1), i(q2r−1)/(q2−1); 2r+1, q2}-minihyper contained
in H(2r + 1, q2).

By Theorem 1.7.10, this minihyper is a union of pairwise disjoint r-dimensional spaces and Baer subge-
ometries PG(2r + 1, q). It is possible to take away an r-dimensional space PG(r, q2) from T and reduce
T to an (i− 1)-tight set (Lemma 1.7.7).

So from now on, we assume that T is a union of δ pairwise disjoint Baer subgeometries PG(2r + 1, q).
This implies that i = δ(q + 1). Denote the Baer subgeometries in T by πi, i = 1, 2, . . . , δ.

Consider a point P of T . Then

|P⊥ ∩ T | = δ(q + 1)

(

q2r − 1

q2 − 1

)

+ q2r (3.3)

= |PG(2r, q)|+ (δ − 1)|PG(2r − 1, q)|. (3.4)

So P⊥ must intersect the pairwise disjoint Baer subgeometries PG(2r + 1, q), contained in T , once in a
PG(2r, q) and δ − 1 times in a PG(2r − 1, q). By the preceding lemma, P ∈ PG(2r, q).

The preceding arguments, including the proof of theorem 3.2.4, now imply that the Hermitian polarity
⊥ induces a symplectic polarity in every Baer subgeometry πi contained in T .

Finally, we investigate the third class of classical finite polar spaces. Let T be an i-tight set on W(2r+1, q),

i < q5/8√
2

+ 1. Then T is a union of pairwise disjoint PG(2r + 1,
√
q) and PG(r, q). We recall that

θr = |PG(r, q)|. We will also use Θr = |PG(r,
√
q)|.

Lemma 3.2.9. Let T be an i-tight set on W(2r + 1, q), i < q5/8√
2
+ 1. If T contains an r-dimensional

subspace U , then U⊥ is also contained in T .

Proof. For P ∈ T , |P⊥ ∩T | = i( q
r−1
q−1 )+ qr. We know that T defines an {iθr, iθr−1; 2r+1, q}-minihyper,

which is a union of pairwise disjoint r-dimensional subspaces πr and Baer subgeometries PG(2r+1,
√
q)

if i < q5/8√
2
+ 1 (Theorem 1.7.10).

Assume that T consists of δ distinct PG(2r + 1,
√
q) and i− δ(

√
q + 1) distinct πr. Then

|P⊥ ∩ T | = Θ2r + (δ − 1)Θ2r−1 + (i− δ(q + 1))θr−1

= δΘ2r−1 + θr + (i− δ(q + 1)− 1)θr−1.

So P⊥ ∩ T either contains

1. one PG(2r,
√
q), δ − 1 distinct PG(2r − 1,

√
q), and i− δ(q + 1) distinct πr−1 of T or,

2. δ distinct PG(2r − 1,
√
q), one πr, and i− δ(q + 1)− 1 distinct πr−1 of T .

Assume that P⊥∩T contains a subgeometry PG(2r,
√
q), then P is the only element of T containing this

PG(2r,
√
q) in its polar hyperplane P⊥ since 〈PG(2r,

√
q)〉GF(q) = π2r. This hyperplane must be P⊥. So

at most δΘ2r+1 points P of T share a subgeometry PG(2r,
√
q) with T in their polar hyperplane P⊥.
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For an r-dimensional subspace U in T , U 6= U⊥, we can remove U from T to obtain an (i − 1)-tight
set. Now dim U⊥ = r, so at most (i − δ(

√
q + 1))θr points of T share a PG(r, q) with T in their polar

hyperplane P⊥.

So at most δ(
√
q + 1)θr + (i − δ(

√
q + 1))θr = iθr points of T share a subgeometry PG(2r,

√
q) or a

subspace πr with T . Since every point of T contains a subgeometry PG(2r,
√
q) or a subspace πr in the

intersection of its polar hyperplane P⊥ with T , we can obtain equality.

So θr points of T lie in U⊥, for U a subspace in T . If U⊥ 6= U ′ for all r-spaces U ′ in T , then all other
r-spaces U ′ of T share at most an (r − 1)-dimensional space with U⊥. This is also true for U itself.
Then for at least |U | − (i − δ(

√
q + 1))θr−1 points P of T , P lies in U⊥, and P lies in a subgeometry

PG(2r + 1,
√
q) of T . This number is at least θr − (i− δ(

√
q + 1))θr−1 > qr/2.

We know that dim U⊥ = r, so U⊥ intersects every subgeometry PG(2r + 1,
√
q) in T in at most a

subgeometry PG(r,
√
q) containing at most

√
qr points of this subgeometry PG(2r+1,

√
q). But T must

then have at least
√
qr/2 distinct (2r + 1)-dimensional Baer subgeometries PG(2r + 1,

√
q). Now r > 1,

so i/(
√
q + 1) >

√
q/2. This is false, since T contains δ ≤ i/(

√
q + 1) distinct Baer subgeometries

PG(2r+1,
√
q). Here, i/(

√
q+1) < (q5/8/

√
2+1)/(

√
q+1) <

√
q/2, so we have a contradiction. We can

conclude that U⊥ also lies in T .

In the next lemma we denote the subgeometries PG(2r + 1,
√
q) contained in T by Π.

Lemma 3.2.10. Let T be an i-tight set on W(2r + 1, q), i < q5/8√
2

+ 1. If T contains subgeometries

PG(2r + 1,
√
q), then they are invariant under the symplectic polarity or they come in disjoint pairs

{Π1,Π2}, where P⊥ ∩Π2 = PG(2r,
√
q) for all P ∈ Π1.

Proof. By using the arguments of the preceding theorem, if T contains r-dimensional subspaces U , then
either U = U⊥, or U 6= U⊥, and then U,U⊥ both lie in T . In the first case, U can be deleted from T
to obtain an (i − 1)-tight set, and in the second case, U and U⊥ can be deleted from T to obtain an
(i−2)-tight set. So, from now on, we assume that T consists of a union of pairwise disjoint subgeometries
PG(2r + 1,

√
q).

Assume that T consists of δ distinct (2r + 1)-dimensional Baer subgeometries PG(2r + 1,
√
q) ≡ Πi, i =

1, . . . , δ. For every point P ∈ Πi, P
⊥ intersects one Πj , j ∈ {1, . . . , δ}, in a subgeometry PG(2r,

√
q) and

intersects all other subgeometries Πj , j ∈ {1, . . . , δ}, in a subgeometry PG(2r − 1,
√
q).

Consider all hyperplanes of Π1. They in fact form a dual subgeometry PG(2r+1,
√
q). Each hyperplane

defines a unique π2r = P⊥. So the points P of T for which P⊥ contains a hyperplane PG(2r,
√
q) of Π1

form themselves a subgeometry PG(2r+ 1,
√
q). This subgeometry PG(2r+ 1,

√
q) is contained in T , so

it is either Π1 itself or it is another subgeometry Π2.

Assume that it is another subgeometry Π2. There are Θ2r hyperplanes of Π1 through a point R in Π1,
so R⊥ contains Θ2r points of Π2. So we get the pairing {Π1,Π2}.

Theorem 3.2.11. Let T be an i-tight set of W(2r + 1, q), i < q5/8√
2

+ 1. Then T is a union of pair-

wise disjoint r-dimensional spaces PG(r, q) and Baer subgeometries PG(2r + 1,
√
q). Moreover, these r-

dimensional spaces PG(r, q) and (2r+1)-dimensional Baer subgeometries PG(2r+1,
√
q) can be described

in the following more detailed way: T is a union of generators of W(2r + 1, q), pairs of r-dimensional
spaces {U,U⊥}, with U ∩U⊥ = ∅, subgeometries PG(2r+1,

√
q) invariant under the symplectic polarity,

and of pairs {PG(2r + 1,
√
q)1,PG(2r + 1,

√
q)2}, where P⊥ ∩ PG(2r + 1,

√
q)2 = PG(2r,

√
q) for all

P ∈ PG(2r + 1,
√
q)1.

Proof. This characterization result follows from the preceding lemmas.
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Remark 3.2.12. The preceding theorem shows that a possible construction for i-tight sets in W(2r+1, q)
is to consider two disjoint Baer subgeometries PG(2r + 1,

√
q), that are each others image under the

symplectic polarity.

It is still an open problem whether such an example exists. An exhaustive search for such a 6-tight set
in PG(3, 4) using Gap and PG [42, 76] gave no such example. We have the following proof for W(3, 4).
We wish to thank the referee of [26] for giving us this proof.

Theorem 3.2.13. The symplectic polar space W(3, 4) does not have a 6-tight set which is the union of
two disjoint Baer subgeometries PG(3, 2) which are each others image under the symplectic polarity.

Proof. The isometry group PSp(4, 4) of W(3, 4) has three orbits on Baer subgeometries PG(3, 2):

1. Those which are invariant under the symplectic polarity (there are 1360 of them);

2. Those which share 11 lines with their perp, 9 of which are totally isotropic (there are 27200 of
them);

3. Those which share 7 lines with their perp, all totally isotropic (there are 20400 of them).

So in the second and third case, there is a line of PG(3, 4) containing 3 points of the first Baer subgeometry
and 3 points of the second Baer subgeometry; these two sets of size 3 necessarily intersect in at least one
point. Hence, there cannot be a 6-tight set in W(3, 4) obtained by two disjoint Baer subgeometries which
are paired by the symplectic polaritiy.

3.3 Cameron-Liebler line classes

Cameron-Liebler line classes are special line sets in PG(3, q) satisfying some properties. Via the Klein cor-
respondence, it can be shown that they form an i-tight set on Q+(5, q) which can be linked to minihypers
as before. We start with an observation on Cameron-Liebler line classes.

Cameron-Liebler line classes were introduced by Cameron and Liebler [22] in an attempt to classify
collineation groups of PG(n, q) that have equally many point orbits and line orbits. In their paper, they
conjectured which groups these are. It is now known [6] that the conjecture is true when the group is
irreducible, but there is no classification yet of Cameron-Liebler line classes.

There are many equivalent definitions for Cameron-Liebler line classes. Following Penttila [71], a clique
in PG(3, q) is either the set of all lines through a point P , denoted by star(P ), or dually the set of all lines
in a plane π, denoted by line(π). The planar pencil of lines in a plane π through a point P is denoted by
pen(P, π).

Definition 3.3.1. (Cameron and Liebler [22], Penttila [71]) Let L be a set of lines in PG(3, q) and
let χL be its characteristic function. Then L is called a Cameron-Liebler line class if one of the following
equivalent conditions is satisfied.
1. There exists an integer x such that |L ∩ S| = x for all spreads S.
2. There exists an integer x such that for every incident point-plane pair (P, π)

|star(P ) ∩ L|+ |line(π) ∩ L| = x+ (q + 1)|pen(P, π) ∩ L|. (3.5)

3. There exists an integer x such that for every line l of PG(3, q)

|{m ∈ L|m meets l,m 6= l}| = (q + 1)x+ (q2 − 1)χL(l). (3.6)
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The parameter x is called the parameter of the Cameron-Liebler line class. We note that the first definition
implies that x ∈ {0, 1, 2, . . . , q2 +1}. Cameron and Liebler [22] showed that a Cameron-Liebler line class
of parameter x consists of x(q2 + q + 1) lines and that the only Cameron-Liebler line classes for x = 1
are the cliques, i.e., all lines through a point or all lines in a plane, and for x = 2 the unions of two
disjoint cliques. They also noted that the complement of a Cameron-Liebler line class with parameter x
is a Cameron-Liebler line class with parameter q2 + 1 − x. So, it suffices to study Cameron-Liebler line
classes with parameter x ≤ b(q2 + 1)/2c. Thus, the case q = 2 was immediately solved. In their paper,
Cameron and Liebler conjectured that no other Cameron-Liebler line classes exist.

Penttila [71] shows that for q 6= 2 there exist no Cameron-Liebler line classes with parameter x = 3 or
x = 4, with possible exception of the cases (x, q) ∈ {(4, 3), (4, 4)}. Bruen and Drudge [18] prove the
non-existence of Cameron-Liebler line classes with parameter 2 < x ≤ √

q. Drudge [30] excludes the
existence of a Cameron-Liebler line class with parameter x = 4 in PG(3,3), and proves that for q 6= 2
there exist no Cameron-Liebler line classes with parameter 2 < x ≤ ε, where q + 1 + ε denotes the size
of the smallest nontrivial blocking sets in PG(2, q). He also gives a counterexample to the conjecture of
Cameron and Liebler: a Cameron-Liebler line class with parameter x = 5 in PG(3,3), in this way settling
the case q = 3. Bruen and Drudge [19] then construct a Cameron-Liebler line class with parameter
x = (q2 + 1)/2 for any odd q. In [43], Govaerts and Penttila completed the study of the case x = 4
by showing that there exists no Cameron-Liebler line class with parameter x = 4 in PG(3,4). In [43],
Govaerts and Penttila also disproved the conjecture of Cameron and Liebler for q even by showing the
existence of a Cameron-Liebler line class with parameter x = 7 in PG(3, 4).

We improve the results of Govaerts and Storme for q not prime. They proved the following two theorems
and corollary [47].

Theorem 3.3.2. In PG(3, q), q prime, q > 2, there exist no Cameron-Liebler line classes with parameter
2 < x ≤ q.

Theorem 3.3.3. (1) In PG(3, q), q square, there exist no Cameron-Liebler line classes with parameter
2 < x ≤ min(ε′, q3/4), where q+1+ ε′ denotes the size of the smallest nontrivial blocking sets in PG(2, q)
not containing a Baer subplane.

(2) Let q = p3h, p ≥ 7 prime, h ≥ 1 odd, and let q+1+ε′′ denote the size of the smallest nontrivial blocking
sets in PG(2, q) containing neither a minimal blocking set of size q+p2h+1, nor one of size q+p2h+ph+1.
In PG(3, q), there exist no Cameron-Liebler line classes with parameter 2 < x ≤ min(ε′′, q5/6).

(3) Let q = p3h, p ≥ 7 prime, h > 1 even, and let q + 1 + ε′′ denote the size of the smallest nontrivial
blocking sets in PG(2, q) containing neither a Baer subplane, nor a minimal blocking set of size q+p2h+1,
nor one of size q+ p2h + ph +1. In PG(3, q), there exist no Cameron-Liebler line classes with parameter
2 < x ≤ min(ε′′, q3/4).

Corollary 3.3.4. (1) Let q be a square, q = ph, p prime.

1. If q > 16, then there exist no Cameron-Liebler line classes in PG(3, q) with parameter 2 < x ≤ cpq
2/3,

where cp equals 2−1/3 when p ∈ {2, 3} and 1 when p ≥ 5.

2. If p > 3 and h = 2, then there exist no Cameron-Liebler line classes in PG(3, q) with parameter
2 < x ≤ q3/4.

(2) Let q = p3, p ≥ 7 prime, then there exist no Cameron-Liebler line classes in PG(3, q) with parameter
2 < x ≤ q5/6.

(3) Let q = p6, p ≥ 7 prime, then there exist no Cameron-Liebler line classes in PG(3, q) with parameter
2 < x ≤ q3/4.

Theorem 3.3.5 gives a new improved bound for general q 6= 2, q not prime. This theorem will be proven
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by studying how the lines of the Cameron-Liebler line class with parameter x correspond with x-tight sets
on Q+(5, q) and {x(q2 + q+1), x(q+1); 5, q}-minihypers contained in the Klein quadric Q+(5, q). Using
Corollary 3.1.8 in the case r = 2 gives us new non-existence results on Cameron-Liebler line classes.

Theorem 3.3.5. In PG(3, q), q > 3, there exist no Cameron-Liebler line classes with parameter 2 <
x < q

2 .

Proof. Let L be a Cameron-Liebler line class with parameter x. A line l intersects x(q + 1) lines of L if
l 6∈ L and l intersects (q + 1)x+ q2 lines of L, including l, if l ∈ L (Definition 3.3.1).

Translated via the Klein correspondence, L defines a set T on Q+(5, q) such that

|P⊥ ∩ T | =
{

x(q + 1) + q2 if P ∈ T
x(q + 1) if P 6∈ T , P ∈ Q+(5, q).

So T defines an x-tight set on Q+(5, q), with |L| = T = x(q2 + q+1). So [5, Theorem 12] implies that T
defines an {x(q2+q+1), x(q+1); 5, q}-minihyper F on Q+(5, q). We only need to check that T generates
PG(5, q).

Since |T | ≥ 3(q2 + q + 1), dim〈T 〉 ≥ 4. If dim〈T 〉 = 4, then 〈T 〉 ∩ Q+(5, q) = Q(4, q) since T is not
contained in a tangent hyperplane to Q+(5, q).

Since |T | < |Q(4, q)|, let R ∈ Q(4, q) \ T . Consider in TR(Q(4, q)) a plane only intersecting Q(4, q) in
R. This plane then lies in the tangent hyperplane TR(Q(4, q)) and in q hyperplanes sharing an elliptic
quadric Q−(3, q) with Q(4, q).

These elliptic quadrics Q−(3, q) define via the Klein correspondence regular spreads of PG(3, q) sharing
x lines with L (Definition 3.3.1), so these elliptic quadrics contain x points of T . Since R⊥ contains
x(q + 1) points of T , we find that, in total, T would contain x(q + 1) + xq = 2xq + x points. But this is
false, since |T | = x(q2 + q + 1).

So, it is indeed true that T defines an {x(q2+q+1), x(q+1); 5, q}-minihyper F on Q+(5, q). But Corollary
3.1.8 states that this minihyper does not exist, so we conclude that the Cameron-Liebler line classes with
parameter 3 ≤ x < q

2 do not exist.

3.4 Weighted m-covers and weighted m-ovoids

The last application of minihypers we study are weighted m-covers and weighted m-ovoids in finite
classical generalised quadrangles. We associate a weight function to the points which are not covered
m times by a partial weighted m-cover. The points with positive weight form a minihyper. Results on
minihypers give extension results on partial weighted m-covers and dual to partial weighted m-ovoids.
We then go more into detail on a (q + 1)/2-ovoid on Q−(5, q). The linear codes associated to it gives us
information on the multiplicity of the points. This enables us to give an alternative proof for the problem
of the complete caps on Q−(5, 3) of [7, 59].

We first repeat some definitions.

Definition 3.4.1. Let S be a finite classical generalised quadrangle. A partial weighted m-ovoid O on
S is a weighted set of points on S such that each line of S contains at most m points of O.

A partial dual weighted m-ovoid O∗ is a set of lines in S such that each point of S is incident with at
most m lines. We will also use the name partial weighted m-cover for a partial dual weighted m-ovoid.

The deficiency δ of a partial (dual) weighted m-ovoid of S is by definition the number of points (lines)
that it lacks to be a (dual) m-ovoid.
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A partial weighted m-ovoid (or m-cover) of S is called maximal when it is not contained in a larger
partial weighted m-ovoid (or m-cover) of S.

An example of a weighted m-ovoid, when ovoids exist, is to simply take a sum of m ovoids.

In the case of m = (q + 1)/2, q odd, we prefer the notion of a weighted hemisystem.

Construction 3.4.2. Consider a conic C in Q(4, q), q odd, such that the perp C⊥ is an external line L of
Q(4, q). Take m 6 (q+1)/2 points P1, . . . , P(q+1)/2 of L such that P⊥

i ∩Q(4, q) = Q−
i (3, q), i = 1, . . . ,m.

We have that C ⊂ Q−
i (3, q), for all i. Since Q−(3, q) is an ovoid of Q(4, q), every line of Q(4, q) has one

point in common with each Q−
i (3, q). Hence, ∪m

i=1 Q−
i (3, q) is a weighted m-ovoid of Q(4, q).

This is an example of a weighted m-ovoid, where the q + 1 points of C have weight m and all the other
points have weight 1. In the case m = (q + 1)/2, q odd, we have constructed a weighted hemisystem.

The dual of an m-ovoid on Q(4, q) is a weighted m-cover of W3(q), so every point of W3(q) is covered m
times. The dual of a Q−(3, q) on Q(4, q) is a regular spread of W3(q). In the dual of Construction 3.4.2,
the lines coming from the points of C will have weight m and the other lines of the weighted m-cover will
have weight 1.

Remark 3.4.3. In PG(3, q), there exist 2-covers which cannot be partitioned into two disjoint spreads
of PG(3, q). The example for q odd is due to Ebert [32], and the example for q even is due to Drudge
[31]. Both examples consist of lines of a symplectic space W3(q), so are in fact 2-covers of W3(q).

Theorem 3.4.4. Suppose that O∗ is a partial weighted m-cover of W3(q), having deficiency δ. Define
as follows a weight function w:

w : PG(3, q) → N : P 7→ m− |star(P ) ∩ O∗|.

If F is the set of points of PG(3, q) with positive weight, then (F,w) is a {δ(q + 1), δ; 3, q}-minihyper.

Proof. The weight of PG(3, q) equals

w(PG(3, q)) =
∑

P∈PG(3,q)

w(P ) = m(q3 + q2 + q + 1)− |O∗|(q + 1)

= δ(q + 1),

since |O∗| = m(q2 + 1)− δ.

A plane π of PG(3, q) intersects W3(q) in a pencil of lines, i.e., in the set of lines in π that pass through
a given point of π. Let α denote the number of lines of O∗ contained in π. Clearly, α ≤ m. So,

w(π) =
∑

P∈π

w(P ) = m(q2 + q + 1)− α(q + 1)− (|O∗| − α)

= δ + q(m− α) ≥ δ.

Theorem 2.2 of [51] shows that (F,w) is a {δ(q+1), δ; 3, q}-minihyper. In [51], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed.

Corollary 3.4.5. If O∗ is a maximal partial weighted m-cover of W3(q) with deficiency δ < εq, then δ
is even.

Proof. If δ < εq, then any {δ(q + 1), δ; 3, q}-minihyper (F,w) can be written as a sum of lines, see [46].
Apply this result to the minihyper (F,w) associated to O∗ (Theorem 3.4.4).
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Suppose that L is a line of this sum. Since O∗ is maximal, L is not a line of W3(q), so L⊥ 6= L. Let
L = {R0, R1, . . . , Rq} and L⊥ = {S0, S1, . . . , Sq}. The lines of W3(q) intersecting L, intersect L⊥, and
vice versa. If w(R0)+ . . .+w(Rq) is the total weight of the points of L, then exactly m(q+1)− (w(R0)+
. . . + w(Rq)) lines of O∗ intersect L, so exactly m(q + 1) − (w(R0) + . . . + w(Rq)) lines of O∗ intersect
L⊥. If s(q+1) ≤ w(R0) + . . .+w(Rq) < (s+1)(q+1), then L occurs exactly s times in the sum (F,w).
So L and L⊥ appear in the sum (F,w) with the same weight, so we get a pairing of the lines contained
in (F,w). Hence, δ is even.

Corollary 3.4.6. If O is a maximal partial weighted m-ovoid of Q(4, q) with deficiency δ < εq, then δ
is even.

Proof. This follows from the duality between Q(4, q) and W3(q).

Theorem 3.4.7. Suppose that O∗ is a weighted partial m-cover of H(3, q2), having deficiency δ. Define
as follows a weight function w:

w : PG(3, q2) → N : P 7→
{

0 when P 6∈ H(3, q2),
m− |star(P ) ∩ O∗| when P ∈ H(3, q2).

If F is the set of points of PG(3, q2) with positive weight, then (F,w) is a {δ(q2 + 1), δ; 3, q2}-minihyper.

Proof. The weight of PG(3, q2) equals

w(PG(3, q2)) =
∑

P∈PG(3,q2)

w(P ) = m|H(3, q2)| − |O∗|(q2 + 1) = δ(q2 + 1),

since |O∗| = m(q3 + 1)− δ.

A plane π of PG(3, q2) intersects H(3, q2) either in a Hermitian curve H(2, q2) or in a cone PH(1, q2). In
the first case, π contains no lines of H(3, q2), and

w(π) =
∑

P∈π

w(P ) = m(q3 + 1)− |O∗| = δ.

In the second case, π contains q+1 lines of H(3, q2) that pass through the common point P . Let α denote
the number of lines of O∗ contained in π. Clearly, α ≤ m. So,

w(π) =
∑

P∈π

w(P ) = m(q3 + q2 + 1)− α(q2 + 1)− (|O∗| − α)

= δ + q2(m− α) ≥ δ.

Theorem 2.2 of [51] shows that (F,w) is a {δ(q2 + 1), δ; 3, q2}-minihyper. In [51], the theorem is proven
for minihypers without weights, but the proof also holds when weights are allowed.

Corollary 3.4.8. If O∗ is a weighted partial m-cover of H(3, q2) with deficiency δ < εq2 = q + 1, then
O∗ can be extended to a weighted m-cover of H(3, q2).

Proof. If δ < εq2 = q+1, then any {δ(q2 +1), δ; 3, q2}-minihyper (F,w) can be written as a sum of lines,
see [46]. Applying this result to the minihyper from the statement of Theorem 3.4.7, it follows that the
set O∗ can be extended to a weighted m-cover of H(3, q2) by adding the lines that constitute the sum
(F,w).

Corollary 3.4.9. If O is a partial weighted m-ovoid of Q−(5, q) with deficiency δ < εq2 = q+1, then O
can be extended to a weighted m-ovoid of Q−(5, q).
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Proof. This follows from the duality between H(3, q2) and Q−(5, q).

Theorem 3.4.10. Let O∗ be a weighted partial m-cover of deficiency δ < q on Q(4, q). Define a weight
function w in the following way:

w : PG(4, q) → N : P 7→
{

0 when P 6∈ Q(4, q),
m− |star(P ) ∩H| when P ∈ Q(4, q).

If F is the set of points of PG(4, q) with positive weight, then (F,w) is a {δ(q + 1), δ; 4, q}-minihyper.

Proof. The weight of PG(4, q) equals

w(PG(4, q)) =
∑

P∈PG(4,q)

w(P ) = m|Q(4, q)| − |O∗|(q + 1) = δ(q + 1),

since |O∗| = m(q2 + 1)− δ.

A hyperplane π of PG(4, q) intersects Q(4, q) in a hyperbolic quadric Q+(3, q), an elliptic quadric Q−(3, q)
or a cone PQ(2, q). In the case of π ∩ Q(4, q) = Q+(3, q), π contains 2(q + 1) lines of Q(4, q). Let α
denote the number of lines of O∗ contained in π. Clearly, α ≤ 2(q + 1). So,

w(π) =
∑

P∈π

w(P ) = m(q + 1)2 − α(q + 1)− (|O∗| − α) = δ + q(2m− α).

Each hyperplane has positive weight, so α ≤ 2m, hence w(π) ≥ δ. In the case of π ∩Q(4, q) = Q−(3, q),
π contains no lines of Q(4, q), so

w(π) =
∑

P∈π

w(P ) = m(q2 + 1)− |O∗| = δ.

In the case of π ∩Q(4, q) = PQ(2, q), π contains q + 1 lines of Q(4, q). Let α denote the number of lines
of O∗ contained in π. Clearly, α ≤ m. So,

w(π) =
∑

P∈π

w(P ) = m(q2 + q + 1)− α− (|O∗| − α)

= δ + q(m− α) ≥ δ.

Theorem 2.2 of [51] shows that (F,w) is a {δ(q+1), δ; 4, q}-minihyper. In [51], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed.

Corollary 3.4.11. If O∗ is a weighted partial m-cover of Q(4, q) with deficiency δ < q/2 − 1, then O∗

can be extended to a weighted m-cover of Q(4, q).

Proof. If δ ≤ q/2 − 1 then a {δ(q + 1), δ; 4, q}-minihyper (F,w) on a parabolic quadric Q(4, q) can be
written as a sum of lines, see Theorem 3.1.7. Applying this result to the minihyper of Theorem 3.4.10,
it follows that O∗ can be extended to a weighted m-cover of Q(4, q) by adding the lines that constitute
the sum of (F,w).

Using the duality between Q(4, q) and W(3, q), also the following corollary holds.

Corollary 3.4.12. If O is a weighted partial m-ovoid of W(3, q) with deficiency δ ≤ q/2−1, then O can
be extended to a weighted m-ovoid of W(3, q).
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Theorem 3.4.13. Let O∗ be a weighted partial m-cover of deficiency δ < q on Q−(5, q). Define a weight
function w in the following way:

w : PG(5, q) → N : P 7→
{

0 when P 6∈ Q−(5, q),
m− |star(P ) ∩ O∗| when P ∈ Q−(5, q).

If F is the set of points of PG(5, q) with positive weight, then (F,w) is a {δ(q + 1), δ; 5, q}-minihyper.

Proof. The weight of PG(5, q) equals

w(PG(5, q)) =
∑

P∈PG(5,q)

w(P ) = m|Q−(5, q)| − |O∗|(q + 1) = δ(q + 1),

since |O∗| = m(q3 + 1)− δ.

A hyperplane π of PG(5, q) intersects Q−(5, q) either in a parabolic quadric Q(4, q) or in a cone PQ−(3, q).
In the case of π ∩ Q−(5, q) = Q(4, q), π contains lines of Q−(5, q). Let α denote the number of lines of
O∗ contained in π. So,

w(π) =
∑

P∈π

w(P ) = m(q2 + 1)(q + 1)− α(q + 1)− (|O∗| − α) = δ + q(mq +m− α).

Each hyperplane has positive weight, so α ≤ m(q + 1), hence w(π) ≥ δ. In the case of π ∩ Q−(5, q) =
PQ−(3, q), π contains q2 + 1 lines of Q(4, q). Let α denote the number of lines of O∗ contained in π.
Clearly, α ≤ m. So,

w(π) =
∑

P∈π

w(P ) = m(q3 + q + 1)− α(q + 1)− (|O∗| − α)

= δ + q(m− α) ≥ δ.

Theorem 2.2 of [51] shows that (F,w) is a {δ(q+1), δ; 5, q}-minihyper. In [51], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed.

Corollary 3.4.14. If O∗ is a weighted partial m-cover of Q−(5, q) with deficiency δ ≤ q/2− 1, then O∗

can be extended to a weighted m-cover of Q−(5, q).

Proof. If δ ≤ q/2 − 1 then a {δ(q + 1), δ; 5, q}-minihyper (F,w) on an elliptic quadric Q−(5, q) can be
written as a sum of lines, see Theorem 3.1.7. Applying this result to the minihyper of Theorem 3.4.13,
it follows that O∗ can be extended to a weighted m-cover of Q−(5, q) by adding the lines that constitute
the sum of (F,w).

Using the duality between Q−(5, q) and H(3, q2), also the following corollary holds.

Corollary 3.4.15. If O is a weighted partial m-ovoid of H(3, q2) with deficiency δ < q/2 − 1, then O
can be extended to a weighted m-ovoid of H(3, q2).

Suppose now that (H, w) is a weighted hemisystem of Q−(5, q), q odd. So (H, w) has
∑

x∈H w(x) =
(q3 +1)(q+1)/2 points. Associate the following linear code C to this hemisystem (H, w) = {g1, . . . , gn},
with n = (q3 + 1)(q + 1)/2.

Consider G = (g1 · · · gn) as the generator matrix of C. This defines a code C of length n = (q3+1)(q+1)/2
and dimension k = 6. Consider the message (u1, . . . , u6). This message defines the codeword x =
(u1, . . . , u6)G = ((u1, . . . , u6)g1, . . . , (u1, . . . , u6)gn).



3.4. Weighted m-covers and weighted m-ovoids 39

Consider the hyperplane π4 : u1X1 + · · · + u6X6 = 0 of PG(5, q), then (u1, . . . , u6)gi = 0 ⇔ gi ∈ π4. So
the weight of x is the number of points of the hemisystem that do not lie in this hyperplane π4. Since
the minimal distance d of C is equal to the minimal weight of the non-zero codewords, we look for all
different kinds of hyperplanes π4 and how many points of H they contain.

a. π4 ∩Q−(5, q) = Q(4, q). Since H induces a weighted (q + 1)/2-ovoid on Q(4, q),

|H ∩Q(4, q)| = (q2 + 1)(
q + 1

2
).

So this gives a codeword of weight

(q3 + 1)(q + 1)

2
− (q2 + 1)(q + 1)

2
= (

q + 1

2
)(q3 − q2).

b. π4∩Q−(5, q) = RQ−(3, q), with R /∈ H. This tangent cone contains q2+1 lines which each contain
(q + 1)/2 points of the hemisystem. This gives a codeword of the same weight as above.

c. π4 ∩Q−(5, q) = RQ−(3, q), with R ∈ H and with w(R) = a. Then this tangent cone contains

a+ (q2 + 1)(
q + 1

2
− a) = (q2 + 1)(

q + 1

2
)− aq2

points, so this gives a codeword of weight (q + 1)(q3 − q2)/2 + aq2.

So d = (q + 1)(q3 − q2)/2, and C is a [(q3 + 1)(q + 1)/2, 6, (q + 1)(q3 − q2)/2]-code.

Now we know the parameters n, k, d of this linear code C, we compare these parameters with the Griesmer
bound:

n =
(q3 + 1)(q + 1)

2
>

(q + 1)(q3 − q2)

2
+

(q + 1)(q2 − q)

2
+

(q + 1)(q − 1)

2

+

⌈

q2 − 1

2q

⌉

+

⌈

q2 − 1

2q2

⌉

+

⌈

q2 − 1

2q3

⌉

>
(q + 1)(q3 − 1)

2
+

q + 1

2
+ 2

>
(q + 1)(q3 + 1)

2
− q − 3

2
.

So the length of C has a difference of (q − 3)/2 with relation to the Griesmer bound gq(k, d). In the
case of q = 3, we reach the Griesmer bound. For the next part, we consider q = 3. We also rely on the
following theorem. Let gq(k, d) be the Griesmer bound for linear [n, k, d]-codes over GF(q).

Theorem 3.4.16. [29] Suppose that C is a [t + gq(k, d), k, d]-code and d 6 sqk−1. Then any generator
matrix of C contains no more than s+ t equivalent columns.

Since for q = 3, the Griesmer bound is reached and also d 6 q5, we have t = 0 and s = 1. This means
that the generator matrix of the code has no equivalent columns. So every point of the hemisystem H
has weight 1. For q = 3, the hemisystem H is a set of (q3+1)(q+1)/2 different points such that each line
of Q−(5, 3) contains exactly (q + 1)/2 = 2 points of H. So we have that the hemisystem is in fact also a
cap on Q−(5, 3). The largest caps on Q−(5, 3) have size 56. This means that we have an extendability
result on partial caps on Q−(5, 3).

Since ε9 = 4, Corollary 3.4.9 show that every (56− 3 = 53)-cap on Q−(5, 3) is extendable to a maximal
56-cap on Q−(5, 3).
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Theorem 3.4.17. Every 53-, 54-, or 55-cap on Q−(5, 3) is extendable to a maximal 56-cap on Q−(5, 3).

The preceding observation gives us an alternative proof for part of the results of [7, 59] where the problem
of the complete caps in PG(5, 3) was studied in detail.
For more information on hemisystem for general q, we refer to A. Cossidente and T. Penttila [24].
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4 The functional code Ch(X), with

X a projective variety

Edoukou determined the geometrical structure of the smallest weight codewords of the functional code
C2(X), X a quadric or a Hermitian variety in 3 and 4-dimensional projective spaces. His approach was
an algebraic one. He determined all possible intersections and then selected the maximal one. The larger
the dimension of the projective space the more exhaustive the research becomes. We will look at it in a
more geometrical way. This allows us to handle all dimensions in general.

First we study the functional code C2(Q), Q a non-singular quadric. We do this by studying pencils of
quadrics λQ +µQ’, which determines q + 1 quadrics. This approach will be repeated for the functional
code CHerm(X), X a Hermitian variety. In this way we determine the smallest weight codewords and
their numbers in both codes.

The results of this chapter are published in [36, 37].

4.1 The functional code C2(Q), Q a non-singular quadric

We study the functional code C2(Q), with Q a non-singular quadric of PG(n, q) and we denote by
Q = {P1, . . . , PN} the point set of Q. Let F be the set of all homogeneous quadratic polynomials
f(X0, . . . , Xn) defined by n+ 1 variables. Every homogeneous quadratic polynomial f in n+ 1 variables
defines a quadric Q′ : f(X0, . . . , Xn) = 0. So, in particular, the functional code C2(Q) is the linear code

C2(Q) = {(f(P1), . . . , f(PN ))|f ∈ F ∪ {0}},

defined over GF(q).

This linear code has length N = |Q| and dimension k =

(

n+ 2
2

)

− 1.

We determine the 5 or 6 smallest weights of C2(Q) via geometrical arguments. The small weight codewords
of C2(Q) correspond to the quadrics of PG(n, q) having the largest intersections with Q. We prove that
these small weight codewords correspond to quadrics Q′ which are the union of two hyperplanes of
PG(n, q).

We note that the size of a singular quadric having a non-singular hyperbolic quadric as base, is always
larger than the size of a singular quadric having a non-singular parabolic quadric as base, which is itself
always larger than the size of a singular quadric having a non-singular elliptic quadric as base.

The quadrics having the largest size are the union of two distinct hyperplanes of PG(n, q), and have

41
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size 2qn−1 + qn−2 + · · · + q + 1. The second largest quadrics in PG(n, q) are the quadrics having an
(n− 4)-dimensional vertex and a non-singular 3-dimensional hyperbolic quadric Q+(3, q) as base. These
quadrics have size qn−1 + 2qn−2 + qn−3 + · · · + q + 1. The third largest quadrics in PG(n, q) have an
(n− 6)-dimensional vertex and a non-singular hyperbolic quadric Q+(5, q) as base. These quadrics have
size qn−1 + qn−2 + 2qn−3 + qn−4 + · · ·+ q + 1.

As we already have mentioned, the smallest weight codewords of the code C2(Q) correspond to the
largest intersections of Q with other quadrics Q′ of PG(n, q). Let V be the intersection of the quadric
Q with the quadric Q′. Two distinct quadrics Q and Q′ define a unique pencil of quadrics λQ + µQ′,
(λ, µ) ∈ F

2
q \ {(0, 0)}.

Let V = Q ∩ Q′, then V also lies in every quadric λQ + µQ′ of the pencil of quadrics defined by Q and
Q′. A large intersection implies that there is a large quadric in the pencil. The sum of the numbers of
points in the q + 1 quadrics of the pencil of quadrics defined by Q and Q′ is |PG(n, q)|+ q|V |, since the
points of V lie in all the quadrics of the pencil and the other points of PG(n, q) lie in exactly one such
quadric. So there is a quadric in the pencil containing at least (|PG(n, q)|+ q|V |)/(q + 1) points.

If there is a quadric in the pencil which is equal to the union of two hyperplanes, then we are at the
desired conclusion that the largest intersections of Q arise from the intersections of Q with the quadrics
which are the union of two hyperplanes. So assume that all q+1 quadrics in this pencil defined by Q and
Q′ are irreducible; we try to find a contradiction. As already mentioned above, the largest irreducible
quadrics are cones with vertex PG(n−4, q) and base Q+(3, q), and the second largest irreducible quadrics
are cones with vertex PG(n− 6, q) and base Q+(5, q).

Theorem 4.1.1. Let Q and Q′ be two quadrics and denote their intersection with V . In PG(n, q), with
n > 6, or n = 5 and Q = Q−(5, q), if |V | > qn−2 + 3qn−3 + 3qn−4 + 2qn−5 + · · · + 2q + 1, then in the
pencil of quadrics defined by Q and Q′, there is a quadric consisting of two hyperplanes.

Proof. Suppose that there is no quadric consisting of two hyperplanes in the pencil of quadrics.

If |V | > qn−2 +2qn−3 +2qn−4 + qn−5 + · · ·+ q+1, then (|PG(n, q)|+ q|V |)/(q+1) > |πn−6Q
+(5, q)|, so

there is a singular quadric πn−4Q
+(3, q) in the pencil of quadrics.

With the lines of one regulus of Q+(3, q), together with πn−4, we form q+1 different (n− 2)-dimensional
spaces πn−2. We wish to have that at least one of these (n − 2)-dimensional spaces intersects Q in two
(n − 3)-dimensional spaces. All points of V appear in at least one of these (n − 2)-dimensional spaces
Πn−2, so for some space πn−2, we have that |πn−2 ∩ V | > |V |/(q + 1).

If |V |/(q + 1) > |πn−6Q
+(3, q)|, then πn−2 ∩ Q is the union of two (n − 3)-dimensional spaces. When

|V | > qn−2 + 3qn−3 + 3qn−4 + 2qn−5 + · · ·+ 2q + 1, then this is valid. So πn−2 ∩Q = π1
n−3 ∪ π2

n−3.

These two (n− 3)-dimensional spaces are contained in V , so belong to Q. This means that Q must have
subspaces of dimension n− 3. The next table shows that this can only occur in small dimensions.

quadric dimension generator property fulfilled
Q=Q+(n = 2n′ + 1, q) n′ n′ ≤ 2
Q=Q−(n = 2n′ + 1, q) n′ − 1 n′ ≤ 1

Q=Q(n = 2n′, q) n′ − 1 n′ ≤ 2

Except for the small cases for n′, we have a contradiction, so there is a quadric consisting of two hyper-
planes in the pencil of quadrics defined by Q and Q′.

Remark 4.1.2. First of all we say something about the sharpness of the bound in Theorem 4.1.1.
Therefore we refer to [23, Theorem 3.6]. In a pencil of q + 1 non-singular elliptic quadrics Q−(n, q) not
containing hyperplanes, the size of the intersection of 2 quadrics is:
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|Q1 ∩Q2| = qn−2 + qn−3 + · · ·+ q
n+1

2 + q
n−5

2 + · · ·+ q + 1.

We notice that the difference between the size of this intersection and the bound mentioned in Theorem
4.1.1 is of order O(qn−3).

Since the problem is solved for dimensions n up to 4 [33, 34], there is still one open case. From now on,
Q will be the hyperbolic quadric Q+(5, q).

If |V | > q3 + 2q2 + 2q + 1, then there is a singular quadric πn−4Q
+(3, q) = LQ+(3, q) in the pencil of

quadrics, if we assume that there is no quadric in the pencil which is the union of two hyperplanes.

We form solids ω1, . . . , ωq+1 with L and the lines of one regulus of the base Q+(3, q). If |V | > q3 +3q2 +
3q+1, |V |/(q+1) > |πn−6Q

+(3, q)|, there is a solid through L of LQ+(3, q) intersecting Q in two planes.

Now we have three different cases:

1. L ⊂ V ,

2. |L ∩ V | = 1,

3. |L ∩ V | = 2.

Lemma 4.1.3. For Q+(5, q), if |V | > q3 + 4q2 + 1 and L ⊂ V , then there is a quadric consisting of two
hyperplanes in the pencil of quadrics defined by Q and Q′.

Proof. Assume that no quadric in the pencil is the union of two hyperplanes. Then we have already a
singular quadric LQ+(3, q) in the pencil and there is a solid ω1 through L intersecting Q in 2 planes.
Now L lies in one or both of these planes, since L ⊂ V .

Every point of V lies in at least one of the q + 1 solids ω1, . . . , ωq+1 through L. Now

|V | − (union of 2 planes) > q3 + 4q2 + 1− (2q2 + q + 1) = q3 + 2q2 − q.

So one of the q remaining solids of ω2, . . . , ωq+1 contains at least

|L|+ q3 + 2q2 − q

q
= q2 + 3q

points.

So one solid ω2 contains more than |Q+(3, q)| points of V , so ω2 intersects Q in the union of two planes.
One of these planes contains L, so L lies already in two planes of Q+(5, q).

Now one of the q − 1 remaining solids ω3, . . . , ωq+1 contains more than

q + 1 + (q3 + 2q2 − q − 2q2)/(q − 1) = q2 + 2q + 1

points of V .

Again this implies that there is a solid ω3 intersecting Q in the union of two planes, with at least one of
them containing L. This gives us at least three planes of Q+(5, q) through L, which is impossible. We
have a contradiction. So there is a quadric consisting of 2 hyperplanes in the pencil of quadrics defined
by Q and Q′.
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Lemma 4.1.4. For Q+(5, q), if |V | > q3 + 5q2 + 1, then the case |L ∩ V | = 1 does not occur.

Proof. Assume that no quadric in the pencil of Q and Q′ is the union of two hyperplanes. Then we have
already a singular quadric LQ+(3, q) in the pencil of quadrics. In this quadric, the line L is skew to the
solid of Q+(3, q).

But L is a tangent line to Q+(5, q) in a point R since L is contained in the cone LQ+(3, q), but L shares
only one point with Q+(5, q).

Using the same arguments as in the preceding lemma, we prove that at least three solids defined by the
line L and lines of one regulus of the base Q+(3, q) intersect Q in two planes. These planes all pass
through R, so they lie in the tangent hyperplane TR(Q), which intersects Q in a cone with vertex R and
base Q+(3, q)′. Two such planes of V in the same solid of LQ+(3, q) through L intersect in a line, so
they define lines of the opposite reguli of the base Q+(3, q)′ of this tangent cone. This shows that the
4-space defined by R and the base Q+(3, q)’ shares already six planes with Q. By Corollary 1.1.3, the
cone RQ+(3, q)’ is contained in V .

Consider a hyperplane through L; this intersects LQ+(3, q) either in a cone LQ(2, q) or in the union of
two solids. So the tangent hyperplane TR(Q) cannot intersect LQ+(3, q) in a cone RQ+(3, q)′.

This gives us a contradiction.

Lemma 4.1.5. For Q+(5, q), if |V | > q3+5q2− q+1 and |L∩V | = 2, then there is a quadric consisting
of two hyperplanes in the pencil of quadrics defined by Q and Q′.

Proof. Assume that no quadric in the pencil defined by Q and Q′ is the union of two hyperplanes. Then
we have already a singular quadric LQ+(3, q) in the pencil and there is a solid ω1 through L intersecting
Q = Q+(5, q) in two planes. Assume that L∩V = {R,R′}. Let Q+(3, q)L be the polar quadric of L with
respect to Q+(5, q) and let Q+(3, q)L lie in the solid π3.

By the same counting arguments as in Lemma 4.1.3, we know that if |V | > q3 + 5q2 − q + 1, then there
are 3 solids 〈L,Li〉, with i = 1, 2, 3, and all Li belonging to the same regulus of Q+(3, q), intersecting
Q in 2 planes. For every solid 〈L,Li〉, we denote by L̃i the line that the 2 planes have in common, and
πi1 = 〈R, L̃i〉, πi2 = 〈R′, L̃i〉. Then L̃i = πi1 ∩ πi2 ⊂ R⊥ ∩ R′⊥ = π3, with ⊥ the polarity with respect
to Q+(5, q). We use the same arguments for the opposite regulus. This gives us again 3 solids 〈L,Mi〉,
i = 1, 2, 3, intersecting Q in 2 planes. We denote by M̃i the line in the intersection of these 2 planes.

These lines L̃i and M̃i belong to the hyperbolic quadric Q+(3, q)L in R⊥ ∩ R′⊥, which is the basis
for RQ+(3, q)L as well as for R′Q+(3, q)L. The quadric RQ+(3, q)L shares 6 planes with LQ+(3, q).
By Bézout, if RQ+(3, q)L 6⊂ LQ+(3, q), then the intersection would be of degree 4, so RQ+(3, q)L ⊂
LQ+(3, q) ∩Q. Similarly, R′Q+(3, q)L ⊂ LQ+(3, q) ∩Q.

The cone LQ+(3, q) intersects Q in 2 tangent cones RQ+(3, q)L and R′Q+(3, q)L. We will now look at
the pencil of quadrics defined by Q and LQ+(3, q) = Q′.

Let P be a point of π3\Q+(3, q)L. The points of PG(5, q)\(Q∩Q′) lie in exactly one quadric of the pencil
defined by Q and Q′. For the point P , this must be the quadric consisting of the two hyperplanes 〈R, π3〉
and 〈R′, π3〉. For 〈R, π3〉 contains a cone RQ+(3, q)L and the point P of this quadric, so this is one point
too much for a quadric.

So one quadric of the pencil consists of the union of 2 hyperplanes.

Corollary 4.1.6. For Q+(5, q), if |V | > q3 + 5q2 + 1, then the intersection of Q+(5, q) with the other
quadric Q′ is equal to the intersection of Q+(5, q) with the union of two hyperplanes.
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4.1.1 Dimension 4

We consider a pencil of quadrics λQ+ µQ′ in PG(4, q), with Q a non-singular parabolic quadric Q(4, q).
Let V = Q ∩Q′ and suppose no quadric in the pencil is the union of 2 hyperplanes. If |V | > q2 + q + 1,
then there is at least one cone PQ+(3, q) in this pencil.

Lemma 4.1.7. If |V | > q2 + (x + 1)q + 1, then x planes through P of the same regulus of PQ+(3, q)
intersect Q in 2 lines.

Proof. Consider one regulus of PQ+(3, q). We wish to have that x planes PL, with L a line of this

regulus, intersect Q in 2 lines. So for the first plane, this means that |V |
q+1 > q+ 1, since every point of V

lies in one of the q + 1 planes PL. For the x-th plane, we have already x− 1 planes which intersect Q in

2 lines. We impose that |V |−(x−1)(2q+1)
q−x+2 > q + 1 to guarantee that the x-th plane also intersects Q in 2

lines. This reduces to |V | > q2 + (x+ 1)q + 1.

Denote by Li the lines of one regulus of Q+(3, q) and by Mi the lines of the opposite regulus of Q+(3, q),
with i = 1, 2, . . . , q + 1. Denote by li1, li2, resp. mi1,mi2, the lines of Q ∩ PLi, resp. Q ∩ PMi.

We have to look at 2 cases now, whether P ∈ V or whether P 6∈ V .

CASE I: P ∈ V

Theorem 4.1.8. For Q(4, q), if |V | > 3q2

2 + 4q + 1 and P ∈ V , then V consists of the union of a cone
PQ(2, q) and a hyperbolic quadric Q+(3, q).

Proof. By the preceding lemma there are at least q+6
2 planes each containing 2 lines of V , of which at

least one goes through P . A point P of Q(4, q) lies on q + 1 lines, so at least 5 planes PLi, i = 1, · · · 5,
contain a line of V not through P . The same is true for the oppossite regulus.
W.l.o.g. we can assume that the lines containing P are li1 and mi1 and so those not containing P are
then li2 and mi2. Consider PL1 and one PMj , such that the intersection line is not the line l11 through
P . The line l12 intersect the plane PMj in a point R. The line PR does not belong to Q, since that
would give to much lines through P . The line mj2 in PMj must contain this point R. We can repeat
the previous for all the planes PMj except the one containing the line l11.
This arguments remain true if we start with another plane PLi. So if we consider 3 planes PL1, PL2

and PL3. Three planes PMj , j = 1, · · · , 5 can contain one of the lines l11, l21 or l31. Without loss of
generality we can assume that the planes PM1, PM2 neither contain the line l11, nor l21, nor l31. The
lines li2 will all intersect the planes PM1 and M2. This means that the lines mi2 all intersect the lines li2.
This gives 5 skew lines which span a hyperbolic quadric Q+(3, q). These 5 lines lie on Q(4, q). By Bézout
this Q+(3, q) must lie on Q(4, q). V has degree 4 and dimension 2 and by the previous V = Q+(3, q)∪Q′.
This Q′ must be a quadric since it has degree 2 and dimension 2 and it contains the remaining lines,
which all contain P . Therefore Q′ = PQ(2, q).

CASE II: P 6∈ V

Theorem 4.1.9. For Q(4, q), if |V | > q2 + 11q + 1 and P 6∈ V , then for q > 7, V consists of the union
of 2 hyperbolic quadrics.

Proof. We use the notations introduced after the proof of Lemma 4.1.7.

Without loss of generality, we can assume that the lines of PLi lying on Q intersected by m11 (resp. m12)
are the lines li1 (resp. li2), i = 1, . . . , x. So m11 and m12 are both intersected by x lines of Q.
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One of the lines m21,m22 will intersect at least dx
2 e of the lines li1. Without loss of generality we can

assume this is the case for m21. This means that m21 has these transversals in common with m11. Assume
that these lines are the lines l11, · · · , ld x

2
e1. Also we can assume that m31 has at least dx

2 e transversals in
common with m11.

Assume that at least 2 of those transversals also intersect m21, then m11,m21,m31 define a 3-dimensional
hyperbolic quadric Q+(3, q) sharing 5 lines with Q(4, q).

Otherwise, at least x−1 transversals out of the x selected transversals to m11 are intersecting one of m21

and m31, but not both. Suppose now that m41 shares at least dx
2 e transversals with m11. One of them

could be skew to m21 and m31, but at least dx
2 e − 1 of them intersect m21 or m31. At least

x
2
−1

2 of them
intersect, for instance, m21. If this is at least 2, then m11,m21,m41 define a 3-dimensional hyperbolic
quadric Q+(3, q) sharing 5 lines with Q(4, q). Therefore, we obtain the same conclusion that V contains
a 3-dimensional hyperbolic quadric when x > 10. Lemma 4.1.7 implies that we need to impose that
|V | > q2 + 11q + 1. Since in both cases, there is a 3-dimensional hyperbolic quadric Q+(3, q) sharing 5
lines with Q(4, q), Corollary 1.1.3 implies that Q+(3, q) ⊂ Q(4, q). So V consists of Q+(3, q) and another
3-dimensional quadric. The remaining lines of V are 10 skew lines of planes PLi and 10 skew lines of
planes PMj , and these lines of V lying in PLi intersect the lines of V lying in PMj . So these lines also
form a 3-dimensional hyperbolic quadric Q+(3, q).

Theorem 4.1.10. For Q(4, q), if |V | > 3q2

2 +4q+1, then there is a union of 2 hyperplanes in the pencil
of quadrics defined by Q and Q′.

Proof. By Theorems 4.1.8 and 4.1.9, V consists of a 3-dimensional hyperbolic quadric Q+(3, q) in a solid
π3 and another 3-dimensional quadric. Let R be a point of π3\V . The points of PG(4, q)\(Q ∩ Q′) lie
in exactly one quadric of the pencil. Let Q′′ be the unique quadric in the pencil defined by Q and Q′

containing R. So π3 shares with Q′′ a quadric and an extra point R, so this is one point too much for a
quadric, hence there is a quadric in the pencil defined by Q and Q′ containing a hyperplane, so a quadric
in the pencil defined by two hyperplanes.

4.1.2 Tables and final results for C2(Q)

The largest intersections of a non-singular quadric Q in PG(n, q) with other quadrics are the intersections
with the quadrics which are the union of two hyperplanes Π1 and Π2. We now discuss all the different
possibilities for the intersections. This then gives the five or six, dependent on the quadric, smallest
weights of the functional code C2(Q), and the numbers of the codewords having these weights. we only
have to take care not to count codewords twice. the next lemma shows this is not the case for n ≥ 4 and
q ≥ 4.

Lemma 4.1.11. No two different unions of hyperplanes can give the same codewords for n ≥ 4 and
q ≥ 4.

Proof. Let Π1 ∪ Π2 and Π3 ∪ Π4 be two different unions of hyperplanes. Suppose they give the same
codewords, then (Π1 ∪Π2) ∩Q = (Π3 ∪Π4) ∩Q. Since Π1 ∪Π2 6= Π3 ∪Π4, we can assume Π3 6= Π1 and
Π3 6= Π2. Then Π3∩Q ⊂ (Π3∩Π1∩Q)∪(Π3∩Π2∩Q), so the hyperplane intersection Π3∩Q is contained
in the union of two (n − 2)-dimensional spaces intersecting Q. Denote the smallest possible intersection
size of a hyperplane with Q by xn−1 and the largest possible intersection size of an (n− 2)-dimensional
space with Q by xn−2, this must then lead to xn−1 ≤ 2xn−2. Counting arguments show this is always
impossible for q ≥ 4 and n ≥ 4.

We start the discussion via the (n− 2)-dimensional space Π1 ∩Π2.
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In the next tables, Q+(n, q), Q−(n, q) and Q(n, q) denote non-singular hyperbolic, elliptic and parabolic
quadrics in PG(n, q), πsQn−s−1 denotes a singular quadric with vertex πs and base a non-singular quadric
in a PG(n− s− 1, q) skew to πs.

The hyperbolic quadric in PG(2l + 1, q)

The intersection of a (2l − 1)-dimensional space with the non-singular hyperbolic quadric Q+(2l + 1, q)
in PG(2l+ 1, q) is either: (1) a non-singular hyperbolic quadric Q+(2l− 1, q), (2) a cone LQ+(2l− 3, q),
(3) a cone PQ(2l − 2, q), or (4) a non-singular elliptic quadric Q−(2l − 1, q).

1. Let PG(2l−1, q) be a (2l−1)-dimensional space intersecting Q+(2l+1, q) in a non-singular (2l−1)-
dimensional hyperbolic quadric Q+(2l − 1, q). Then PG(2l − 1, q) is the polar space of a bisecant
line to Q+(2l + 1, q). Then PG(2l − 1, q) lies in two tangent hyperplanes to Q+(2l + 1, q) and in
q − 1 hyperplanes intersecting Q+(2l + 1, q) in a non-singular parabolic quadric Q(2l, q).

2. Let PG(2l − 1, q) be a (2l − 1)-dimensional space intersecting Q+(2l + 1, q) in a singular quadric
LQ+(2l−3, q), then PG(2l−1, q) lies in the tangent hyperplanes to Q+(2l+1, q) in the q+1 points
P of L.

3. Let PG(2l − 1, q) be a (2l − 1)-dimensional space intersecting Q+(2l + 1, q) in a singular quadric
PQ(2l − 2, q), then PG(2l − 1, q) lies in the tangent hyperplane to Q+(2l + 1, q) in P , and in q
hyperplanes intersecting Q+(2l + 1, q) in non-singular parabolic quadrics Q(2l, q).

4. Let PG(2l−1, q) be a (2l−1)-dimensional space intersecting Q+(2l+1, q) in a non-singular (2l−1)-
dimensional elliptic quadric Q−(2l − 1, q), then PG(2l − 1, q) lies in q + 1 hyperplanes intersecting
Q+(2l + 1, q) in non-singular parabolic quadrics Q(2l, q).

In Table 1, we denote the different possibilities for the intersection of Q+(2l + 1, q) with the union of
two hyperplanes. We describe these possibilities by giving the formula for calculating the size of the
intersection. We mention the sizes of the two quadrics which are the intersection of Π1 and Π2 with
Q+(2l + 1, q), and we subtract the size of the quadric which is the intersection of Π2l−1 = Π1 ∩ Π2 with
Q+(2l + 1, q).

Π2l−1 ∩Q+(2l + 1, q) |Q+(2l + 1, q) ∩ (Π1 ∪Π2)|
(1) (1.1) Q+(2l − 1, q) 2|Q(2l, q)| − |Q+(2l − 1, q)|

(1.2) Q+(2l − 1, q) |PQ+(2l − 1, q)|+ |Q(2l, q)| − |Q+(2l − 1, q)|
(1.3) Q+(2l − 1, q) 2|PQ+(2l − 1, q)| − |Q+(2l − 1, q)|

(2) (2.1) LQ+(2l − 3, q) 2|PQ+(2l − 1, q)| − |LQ+(2l − 3, q)|
(3) (3.1) PQ(2l − 2, q) 2|Q(2l, q)| − |PQ(2l − 2, q)|

(3.2) PQ(2l − 2, q) |PQ+(2l − 1, q)|+ |Q(2l, q)| − |PQ(2l − 2, q)|
(4) (4.1) Q−(2l − 1, q) 2|Q(2l, q)| − |Q−(2l − 1, q)|

Table 1

We now give the sizes of these intersections of Q+(2l + 1, q) with the union of two hyperplanes.
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|Q+(2l + 1, q) ∩ (Π1 ∪Π2)|
(1) (1.1) 2q2l−1 + q2l−2 + · · ·+ ql + ql−2 + · · ·+ q + 1

(1.2) 2q2l−1 + q2l−2 + · · ·+ ql+1 + 2ql + ql−2 + · · ·+ q + 1
(1.3) 2q2l−1 + q2l−2 + · · ·+ ql+1 + 3ql + ql−2 + · · ·+ q + 1

(2) (2.1) 2q2l−1 + q2l−2 + · · ·+ ql+1 + 2ql + ql−1 + · · ·+ q + 1
(3) (3.1) 2q2l−1 + q2l−2 + · · ·+ ql + ql−1 + · · ·+ q + 1

(3.2) 2q2l−1 + q2l−2 + · · ·+ ql+1 + 2ql + ql−1 + · · ·+ q + 1
(4.1) 2q2l−1 + q2l−2 + · · ·+ ql + 2ql−1 + ql−2 + · · ·+ q + 1

Table 2

We now present in the next table the weights of the corresponding codewords of C2(Q
+(2l+1, q)), which

is the size of the intersection subtracted from the length of the code. we also give the numbers of code-
words having these weights.

Weight Number of codewords for q ≥ 4

(1.3) w1 = q2l − q2l−1 − ql + ql−1 (q3l+q2l)(ql+1−1)
2

(2.1)+(3.2) w1 + ql − ql−1 (q2l+1−q)(ql+1−1)(ql−1+1)
2(q−1) + (q3l−1 − ql−1)(ql+2 − q)

(1.2) w1 + ql (q3l + q2l)(ql+1 − 1)(q − 1)

(4.1) w1 + 2ql − 2ql−1 q2l+1(ql+1−1)(ql−1)(q−1)
4

(3.1) w1 + 2ql − ql−1 (q3l−1−ql−1)(ql+1−1)(q2−q)
2

(1.1) w1 + 2ql (q3l+q2l)(ql+1−1)(q2−3q+2)
4

Table 3

Remark 4.1.12. In the case that q = 2, we have that the third weight coincides with the fourth. So in
that special case there are only five different weights.

Theorem 4.1.13. The code C2(Q
+(2l + 1, q)) is a linear code with parameters

N =
(ql + 1)(ql+1 − 1)

q − 1
, k =

(2l + 1)(2l + 4)

2
, d = q2l − q2l−1 − ql + ql−1,

and the minimal weight codewords correspond to quadrics which are a pair of tangent hyperplanes to
Q+(2l+1, q) such that the (2l−1)-dimensional intersection of the two hyperplanes intersects Q+(2l+1, q)
in a non-singular hyperbolic quadric.

The elliptic quadric in PG(2l + 1, q)

We have the following possibilities for the intersection of a (2l − 1)-dimensional space Π2l−1 with the
non-singular elliptic quadric Q−(2l + 1, q) in PG(2l + 1, q):

1. Let PG(2l−1, q) be a (2l−1)-dimensional space intersecting Q−(2l−1, q) in a non-singular (2l−1)-
dimensional elliptic quadric Q−(2l − 1, q). Then PG(2l − 1, q) is the polar space of a bisecant line
to Q−(2l + 1, q). Then PG(2l − 1, q) lies in two tangent hyperplanes to Q−(2l + 1, q) and in q − 1
hyperplanes intersecting Q−(2l + 1, q) in a non-singular parabolic quadric Q(2l, q).

2. Let PG(2l − 1, q) be a (2l − 1)-dimensional space intersecting Q−(2l + 1, q) in a singular quadric
PQ(2l− 2, q), then PG(2l− 1, q) lies in the tangent hyperplane to Q−(2l+1, q) in the point P , and
in q hyperplanes intersecting Q−(2l + 1, q) in non-singular parabolic quadrics Q(2l, q).
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3. Let PG(2l − 1, q) be a (2l − 1)-dimensional space intersecting Q−(2l + 1, q) in a singular quadric
LQ−(2l− 3, q), then PG(2l− 1, q) lies in the tangent hyperplane to Q−(2l+1, q) in the q+1 points
P of L.

4. Let PG(2l−1, q) be a (2l−1)-dimensional space intersecting Q−(2l+1, q) in a non-singular (2l−1)-
dimensional hyperbolic quadric Q+(2l−1, q), then PG(2l−1, q) lies in q+1 hyperplanes intersecting
Q−(2l + 1, q) in non-singular parabolic quadrics Q(2l, q).

In Table 4, we denote the different possibilities for the intersection of Q−(2l+1, q) with the union of two
hyperplanes.

Π2l−1 ∩Q−(2l + 1, q) |Q−(2l + 1, q) ∩ (Π1 ∪Π2)|
(1) (1.1) Q−(2l − 1, q) 2|Q(2l, q)| − |Q−(2l − 1, q)|

(1.2) Q−(2l − 1, q) |PQ−(2l − 1, q)|+ |Q(2l, q)| − |Q−(2l − 1, q)|
(1.3) Q−(2l − 1, q) 2|PQ−(2l − 1, q)| − |Q−(2l − 1, q)|

(2) (2.1) PQ(2l − 2, q) 2|Q(2l, q)| − |PQ(2l − 2, q)|
(2.2) PQ(2l − 2, q) |Q(2l, q)|+ |PQ−(2l − 1, q)| − |PQ(2l − 2, q)|

(3) (3.1) LQ−(2l − 3, q) 2|PQ−(2l − 1, q)| − |LQ−(2l − 3, q)|
(4) (4.1) Q+(2l − 1, q) 2|Q(2l, q)| − |Q+(2l − 1, q)|

Table 4

We now give the sizes of these intersections of Q−(2l + 1, q) with the union of two hyperplanes.

|Q−(2l + 1, q) ∩ (Π1 ∪Π2)|
(1) (1.1) 2q2l−1 + q2l−2 + · · ·+ ql + 2ql−1 + ql−2 + · · ·+ q + 1

(1.2) 2q2l−1 + q2l−2 + · · ·+ ql+1 + 2ql−1 + ql−2 + · · ·+ q + 1
(1.3) 2q2l−1 + q2l−2 + · · ·+ ql+1 − ql + 2ql−1 + ql−2 + · · ·+ q + 1

(2) (2.1) 2q2l−1 + q2l−2 + · · ·+ ql+1 + ql + ql−1 + · · ·+ q + 1
(2.2) 2q2l−1 + q2l−2 + · · ·+ ql+1 + ql−1 + · · ·+ q + 1

(3) (3.1) 2q2l−1 + q2l−2 + · · ·+ ql+1 + ql−1 + · · ·+ q + 1
(4) (4.1) 2q2l−1 + q2l−2 + · · ·+ ql + ql−2 + · · ·+ q + 1

Table 5

We now present in the next table the weights of the corresponding codewords of C2(Q
−(2l+1, q)), which

is the size of the intersection subtracted from the length of the code. We also give the numbers of code-
words having these weights.

Weight Number of codewords for q ≥ 4

(1.1) w1 = q2l − q2l−1 − ql − ql−1 (q3l+1+q2l)(ql−1)(q2−3q+2)
4

(2.1) w1 + ql−1 (q2l+1+ql)(q2l−1)(q−1)
2

(4.1) w1 + 2ql−1 q2l+1(ql+1+1)(ql+1)(q−1)
4

(1.2) w1 + ql (q3l+1 + q2l)(ql − 1)(q − 1)

(2.2)+(3.1) w1 + ql + ql−1 (q2l + ql−1)(q2l − 1)q + (ql+2+q)(q2l−1)(ql−1−1)
2(q−1)

(1.3) w1 + 2ql (q3l+1+q2l)(ql−1)
2

Table 6
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Remark 4.1.14. In the case that q = 2, we have that the third weight coincides with the fourth. So in
that special case there are only five different weights.

Theorem 4.1.15. The code C2(Q
−(2l + 1, q)) is a linear code with parameters

N =
(ql − 1)(ql+1 + 1)

q − 1
, k =

(2l + 1)(2l + 4)

2
, d = q2l − q2l−1 − ql − ql−1,

and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q−(2l+1, q) such that the (2l−1)-dimensional intersection of the two hyperplanes intersects Q−(2l+1, q)
in a non-singular elliptic quadric.

In the next theorem we will use the theorem of Ax-Katz[63]

Theorem 4.1.16. Let S be a non-empty finite set of variables and let T be a collection of polynomials
belonging to GF(q)[S]. We put di =degree(fi), fi ∈ T . The number of common zeros N of the polynomials
of T satisfy N ≡ 0 modulo qµ, where

µ =
Card(S)−∑

fi∈T di

supfi∈T (di)
.

Theorem 4.1.17. Let X be a non-degenerate quadric (hyperbolic or elliptic) in PG(2l+1, q) where l ≥ 1.
All the weights wi of the code C2(X ) defined on X are divisible by ql−1.

Proof. Let F and f be two forms of degree 2 in 2l + 2 indeterminates with l ≥ 1 and N the number of
common zeros of F and f in GF(q)2l+2. By the theorem of Ax-Katz [63, p. 85], N is divisible by ql−1

since 2l+2−(2+2)
2 = l − 1.

On the other hand, F and f are homogeneous polynomials, therefore N − 1 is divisible by q − 1. Let X
and Q be the projective quadrics associated to F and f , one has |X ∩Q| = N−1

q−1 . Let M = N−1
q−1 , one has

M =
kql−1 − 1

q − 1
= k

ql−1 − 1

q − 1
+

k − 1

q − 1
= k′ql−1 + πl−2 (4.1)

where k, k′ ∈ Z and k = k′(q − 1) + 1. By the theorem of Ax-Katz [63, p. 85] again, we get that the
number of zeros of the polynomial F in GF(q)2l+2 is divisible by ql, so that

|X | = tql − 1

q − 1
= t

ql − 1

q − 1
+

t− 1

q − 1
= t′ql + πl−1 (4.2)

where t, t′ ∈ Z and t = t′(q − 1) + 1. The weight of a codeword associated to the quadric X is equal to:

w = |X | − |X ∩ Q| = |X | −M. (4.3)

Therefore, from (4.1), (4.2), and (4.3), we deduce that w = t′ql − k′ql−1 + ql−1.

The parabolic quadric in PG(2l, q)

The intersection of a (2l − 2)-dimensional space with the non-singular parabolic quadric Q(2l, q) in
PG(2l, q) is either: (1) a non-singular parabolic quadric Q(2l−2, q), (2) a cone PQ+(2l−3, q), (3) a cone
PQ−(2l − 3, q), or (4) a cone LQ(2l − 4, q).

For q odd, we can make the discussion via the orthogonal polarity corresponding to the non-singular
parabolic quadric Q(2l, q). For q even, we need to use another approach, since then Q(2l, q) has a nucleus
N . This implies that we need to make a distinction between the (2l − 2)-dimensional spaces Π2l−2

intersecting Q(2l, q) in a parabolic quadric Q(2l− 2, q) or a quadric LQ(2l− 4, q), containing the nucleus
N of Q(2l, q), and those not containing the nucleus N of Q(2l, q). In [62, p. 43], these (2l−2)-dimensional
spaces are respectively called nuclear and non-nuclear.

We first discuss the case q odd.
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1. Let PG(2l − 2, q) be a (2l − 2)-dimensional space intersecting Q(2l, q) in a non-singular (2l − 2)-
dimensional parabolic quadric Q(2l − 2, q). Then PG(2l − 2, q) is the polar space of a bisecant or
external line to Q(2l, q). In the first case, PG(2l− 2, q) lies in two tangent hyperplanes to Q(2l, q),
(q − 1)/2 hyperplanes intersecting Q(2l, q) in a non-singular hyperbolic quadric Q+(2l − 1, q), and
in (q − 1)/2 hyperplanes intersecting Q(2l, q) in a non-singular elliptic quadric Q−(2l − 1, q). In
the second case, PG(2l − 2, q) lies in (q + 1)/2 hyperplanes intersecting Q(2l, q) in a non-singular
hyperbolic quadric Q+(2l−1, q), and in (q+1)/2 hyperplanes intersecting Q(2l, q) in a non-singular
elliptic quadric Q−(2l − 1, q).

2. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric PQ+(2l−
3, q), then PG(2l − 2, q) lies in the tangent hyperplane to Q(2l, q) in P and in q hyperplanes
intersecting Q(2l, q) in non-singular hyperbolic quadrics Q+(2l − 1, q).

3. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric PQ−(2l−
3, q), then PG(2l − 2, q) lies in the tangent hyperplane to Q(2l, q) in P , and in q hyperplanes
intersecting Q(2l, q) in non-singular elliptic quadrics Q−(2l − 1, q).

4. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric LQ(2l−
4, q), then PG(2l − 2, q) lies in the tangent hyperplanes to Q(2l, q) in the q + 1 points P of L.

In Table 7, we denote the different possibilities for the intersection of Q(2l, q) with the union of two
hyperplanes.

Π2l−2 ∩Q(2l, q) |Q(2l, q) ∩ (Π1 ∪Π2)|
(1) (1.1) Q(2l − 2, q) 2|Q+(2l − 1, q)| − |Q(2l − 2, q)|

(1.2) Q(2l − 2, q) |Q+(2l − 1, q)|+ |Q−(2l − 1, q)| − |Q(2l − 2, q)|
(1.3) Q(2l − 2, q) |PQ(2l − 2, q)|+ |Q+(2l − 1, q)| − |Q(2l − 2, q)|
(1.4) Q(2l − 2, q) |PQ(2l − 2, q)|+ |Q−(2l − 1, q)| − |Q(2l − 2, q)|
(1.5) Q(2l − 2, q) 2|Q−(2l − 1, q)| − |Q(2l − 2, q)|
(1.6) Q(2l − 2, q) 2|PQ(2l − 2, q)| − |Q(2l − 2, q)|

(2) (2.1) PQ+(2l − 3, q) 2|Q+(2l − 1, q)| − |PQ+(2l − 3, q)|
(2.2) PQ+(2l − 3, q) |Q+(2l − 1, q)|+ |PQ(2l − 2, q)| − |PQ+(2l − 3, q)|

(3) (3.1) PQ−(2l − 3, q) 2|Q−(2l − 1, q)| − |PQ−(2l − 3, q)|
(3.2) PQ−(2l − 3, q) |Q−(2l − 1, q)|+ |PQ(2l − 2, q)| − |PQ−(2l − 3, q)|

(4) (4.1) LQ(2l − 4, q) 2|PQ(2l − 2, q)| − |LQ(2l − 4, q)|

Table 7

We now give the sizes of these intersections of Q(2l, q) with the union of two hyperplanes.
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|Q(2l, q) ∩ (Π1 ∪Π2)|
(1) (1.1) 2q2l−2 + q2l−3 + · · ·+ ql + 3ql−1 + ql−2 + · · ·+ q + 1

(1.2) 2q2l−2 + q2l−3 + · · ·+ ql + ql−1 + ql−2 + · · ·+ q + 1
(1.3) 2q2l−2 + q2l−3 + · · ·+ ql + 2ql−1 + ql−2 + · · ·+ q + 1
(1.4) 2q2l−2 + q2l−3 + · · ·+ ql + ql−2 + · · ·+ q + 1
(1.5) 2q2l−2 + q2l−3 + · · ·+ ql − ql−1 + ql−2 + · · ·+ q + 1
(1.6) 2q2l−2 + q2l−3 + · · ·+ ql + ql−1 + ql−2 + · · ·+ q + 1

(2) (2.1) 2q2l−2 + q2l−3 + · · ·+ ql + 2ql−1 + ql−2 + · · ·+ q + 1
(2.2) 2q2l−2 + q2l−3 + · · ·+ ql + ql−1 + ql−2 + · · ·+ q + 1

(3) (3.1) 2q2l−2 + q2l−3 + · · ·+ ql + ql−2 + · · ·+ q + 1
(3.2) 2q2l−2 + q2l−3 + · · ·+ ql + ql−1 + ql−2 + · · ·+ q + 1

(4) (4.1) 2q2l−2 + q2l−3 + · · ·+ ql + ql−1 + ql−2 + · · ·+ q + 1

Table 8

We now present in the next table the weights of the corresponding codewords of C2(Q(2l, q)) and the
numbers of codewords having these weights.

Weight Number of codewords for q ≥ 4

(1.1) w1 = q2l−1 − q2l−2 − 2ql−1 (q2l−1)q2l−1(q−1)(q−3)
16

+ q2l−1(q2l−1)(q−1)2

16

(1.3)+(2.1) w1 + ql−1 (q2l−1)q2l−1(q−1)
2 +

ql(ql−1+1)(q2l−1)(q−1)
4

(1.2) w1 + 2ql−1 (q2l−1)q2l−1(q−1)2

8 +

+ q2l−1(q2l−1)(q2−1)
8

+(1.6)+(2.2) + (q2l−1)q2l−1

2 + ql(ql−1+1)(q2l−1)
2

+(3.2)+(4.1) + ql(ql−1−1)(q2l−1)
2 + (q2l−1)(q2l−2−1)q

2(q−1)

(1.4)+(3.1) w1 + 3ql−1 (q2l−1)q2l−1(q−1)
2 + ql(ql−1−1)(q2l−1)(q−1)

4

(1.5) w1 + 4ql−1 (q2l−1)q2l−1(q−1)(q−3)
16 + q2l−1(q2l−1)(q−1)2

16

Table 9: Weights and number of codewords for q odd

Theorem 4.1.18. The code C2(Q(2l, q)), q odd, is a linear code with parameters

N =
q2l − 1

q − 1
, k =

2l(2l + 3)

2
, d = q2l−1 − q2l−2 − 2ql−1,

and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q(2l, q) intersecting Q(2l, q) in hyperbolic quadrics Q+(2l − 1, q) and such that the (2l − 2)-dimensional
intersection of the two hyperplanes intersects Q(2l, q) in a non-singular parabolic quadric.

We now discuss the case q even. Here Q(2l, q) has a nucleus N .

1. Let PG(2l − 2, q) be a (2l − 2)-dimensional space intersecting Q(2l, q) in a non-singular (2l − 2)-
dimensional parabolic quadric Q(2l− 2, q). If PG(2l− 2, q) is non-nuclear, then PG(2l− 2, q) lies in
one tangent hyperplane, the hyperplane 〈PG(2l− 2, q), N〉, in q/2 hyperplanes intersecting Q(2l, q)
in a non-singular hyperbolic quadric Q+(2l − 1, q), and in q/2 hyperplanes intersecting Q(2l, q) in
a non-singular elliptic quadric Q−(2l − 1, q). If PG(2l − 2, q) is nuclear, then PG(2l − 2, q) lies in
q + 1 tangent hyperplanes to Q(2l, q).
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2. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric PQ+(2l−
3, q), then PG(2l − 2, q) lies in the tangent hyperplane to Q(2l, q) in P , and in q hyperplanes
intersecting Q(2l, q) in non-singular hyperbolic quadrics Q+(2l − 1, q).

3. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric PQ−(2l−
3, q), then PG(2l − 2, q) lies in the tangent hyperplane to Q(2l, q) in P , and in q hyperplanes
intersecting Q(2l, q) in non-singular elliptic quadrics Q−(2l − 1, q).

4. Let PG(2l−2, q) be a (2l−2)-dimensional space intersecting Q(2l, q) in a singular quadric LQ(2l−
4, q), then PG(2l − 2, q) lies in the tangent hyperplanes to Q(2l, q) in the q + 1 points P of L.

In Table 7, we denoted the different possibilities for the intersection of Q(2l, q) with the union of two
hyperplanes, and in Table 8, the corresponding sizes for the intersections. We now present in Table 10
the number of codewords having the corresponding weights.

Weight Number of codewords for q ≥ 4

(1.1) w1 = q2l−1 − q2l−2 − 2ql−1 (q2l−1)q2l−1(q−2)(q−1)
8

(1.3)+(2.1) w1 + ql−1 (q2l−1)q2l−1(q−1)
2 + ql(ql−1+1)(q2l−1)(q−1)

4

(1.2)+(1.6) w1 + 2ql−1 (q2l−1)q2l(q−1)
4 + q2l−1(q2l−1)

2 +

+(4.1) q(q2l−2−1)(q2l−1)
2(q−1) +

+(2.2)+(3.2) ql(ql−1+1)(q2l−1)
2 + ql(ql−1−1)(q2l−1)

2

(1.4)+(3.1) w1 + 3ql−1 (q2l−1)q2l−1(q−1)
2 + ql(ql−1−1)(q2l−1)(q−1)

4

(1.5) w1 + 4ql−1 (q2l−1)q2l−1(q−1)(q−2)
8

Table 10: Weights and number of codewords for q even

Theorem 4.1.19. The code C2(Q(2l, q)), q even, is a linear code with parameters

N =
q2l − 1

q − 1
, k =

2l(2l + 3)

2
, d = q2l−1 − q2l−2 − 2ql−1,

and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q(2l, q) intersecting Q(2l, q) in hyperbolic quadrics Q+(2l − 1, q) and such that the (2l − 2)-dimensional
intersection of the two hyperplanes intersects Q(2l, q) in a non-singular parabolic quadric.

Theorem 4.1.20. Let X be a non-degenerate parabolic quadric in PG(2l, q) where l ≥ 1. All the weights
wi of the code C2(X ) defined on X are divisible by ql−1.

Proof. It is analogous to the one of Theorem 4.1.17.

4.2 The functional code CHerm(X), X a non-singular Hermitian
variety

In the previous section, we extended the results of Edoukou to the functional codes arising from non-
singular quadrics in PG(n, q) [36]. Since the Hermitian varieties are the natural analogues of the quadrics
in finite projective spaces, the similar study of the functional codes corresponding to the non-singular
Hermitian varieties now will be performed.
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Consider a non-singular Hermitian variety X in PG(n, q2). We denote the point set of X by {P1, . . . , PN},
where we normalize the coordinates of the points Pi with respect to the leftmost non-zero coordinate.
Let F be the set of all homogeneous polynomials (X0, . . . , Xn)A(X

q
0 , . . . , X

q
n) of degree q + 1 in n + 1

variables, with A = (aij), 0 6 i, j 6 n, aqij = aji, aij ∈ GF(q2), defining Hermitian varieties of PG(n, q2).
The functional code CHerm(X) is the linear code

CHerm(X) = {(f(P1), . . . , f(Pn))|f ∈ F} ∪ {0},

defined over GF(q).

This linear code has length |X|. Not all homogeneous polynomials of degree q + 1 define Hermitian
varieties, so we cannot use the same formula for the dimension as in the previous section. This dimen-
sion is determined in the following way. A Hermitian variety in PG(n, q2) is defined by an equation
∑n

i=0 aijXiX
q
j = 0, where aqij = aji. There are ((n + 1)2 − (n + 1))/2 = (n2 + n)/2 elements aij , with

i < j. They belong to GF(q2), so they define an (n2 + n)-dimensional vector space over GF(q). The
elements a00, . . . , ann belong to GF(q), so they contribute additionally n + 1 to this dimension. So the
vector space over GF(q) defined by all the Hermitian varieties of PG(n, q2) has dimension n2 + 2n + 1.
Since we take the intersection of all Hermitian varieties with X, the dimension of CHerm(X) is n2 + 2n.

The smallest weight codewords of the code CHerm(X) correspond to the largest intersections of X with
the other Hermitian varieties X′ of PG(n, q2). We prove that these small weight codewords correspond
to Hermitian varieties X′ which are the union of q + 1 hyperplanes of PG(n, q2) through a common
(n− 2)-dimensional space Π, defining a Baer subline in the quotient geometry of Π.

We note that the size of the singular Hermitian variety having a non-singular Hermitian variety of odd
dimension as base is always larger than the size of a singular Hermitian variety having a non-singular
Hermitian variety of even dimension as base.

The Hermitian varieties having the largest size are the union of q + 1 distinct hyperplanes of PG(n, q2)
and have size q2n−1 + q2n−2 + q2n−4 + q2n−6 + · · · + q2 + 1. The second largest Hermitian varieties in
PG(n, q2), n ≥ 3, are the Hermitian varieties having an (n − 4)-dimensional vertex and a non-singular
3-dimensional Hermitian variety as base. These Hermitian varieties have size q2n−1 + q2n−3 + q2n−4 +
q2n−6 + · · ·+ q2 +1. The third largest Hermitian variety in PG(n, q2), n ≥ 5, has an (n− 6)-dimensional
vertex and a non-singular 5-dimensional Hermitian variety as base. These Hermitian varieties have size
q2n−1 + q2n−3 + q2n−5 + q2n−6 + q2n−8 + · · ·+ q2 + 1.

Let V be the intersection of the Hermitian variety X with the Hermitian variety X′. Two distinct
Hermitian varieties X and X′ define a unique pencil of Hermitian varieties λX + µX′, (λ, µ) ∈ GF(q)2 \
{(0, 0)}.
Let V = X ∩X′. The sum of the numbers of points in the q + 1 Hermitian varieties of the pencil defined
by X and X′ is |PG(n, q2)| + q|V |, since the points of V lie in all the q + 1 Hermitian varieties of the
pencil and the other points of PG(n, q2) lie in exactly one such Hermitian variety. So there is a Hermitian
variety in the pencil containing at least (|PG(n, q2)|+ q|V |)/(q+1) points. Hence, a large intersection V
implies that there is a large Hermitian variety in the pencil of Hermitian varieties defined by X and X′.

Remark 4.2.1. Consider a fixed line T of H(3, q2). Then the q3 + q lines of H(3, q2) intersecting T in
one point form a minimal cover of H(3, q2). This cover is the smallest cover of H(3, q2) [69].

There are exactly (q + 1)(q3 + 1) such covers since this is the total number of lines of H(3, q2) [62, Table
23.1].

Theorem 4.2.2. In PG(n, q2), with n > 6, if |V | > q2n−2+2q2n−4+ q2n−5+ q2n−6+2q2n−7+2q2n−9+
· · ·+ 2q3 + q, then in the pencil of Hermitian varieties defined by X and X′, there is a Hermitian variety
consisting of the union of q + 1 hyperplanes.
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Proof. Suppose that there is no Hermitian variety in the pencil of Hermitian varieties defined by X and
X′ equal to the union of q + 1 hyperplanes.

Since |V | > q2n−2+q2n−4+2q2n−6+q2n−8+· · ·+q2+1, then (|PG(n, q2)|+q|V |)/(q+1) > |πn−6H(5, q
2)|,

so there is a singular Hermitian variety πn−4H(3, q
2) in the pencil of Hermitian varieties defined by X and

X′. With the lines of the cover of H(3, q2) of Remark 4.2.1, together with πn−4, we form q3 + q different
(n− 2)-dimensional spaces πn−2. We wish to have that at least one of these (n− 2)-dimensional spaces
πn−2 intersects V in q + 1 (n − 3)-dimensional spaces. All points of V appear in at least one of these

πn−2, so for at least one of these spaces we have that |πn−2 ∩ V | > |V |
q3+q . If

|V |
q3+q > |πn−6H(3, q

2)|, then
πn−2 ∩X is the union of q+1 (n− 3)-dimensional spaces. When |V | > q2n−2 +2q2n−4 + q2n−5 + q2n−6 +

2q2n−7 + 2q2n−9 + · · ·+ 2q3 + q, then this is valid. So πn−2 ∩X =
⋃q+1

i=1 π
(i)
n−3.

This means that X must have generators of dimension n− 3.

Hermitian variety dimension generator property fulfilled
X=H(2n′, q2) n′ − 1 n′ 6 2

X=H(2n′ + 1, q2) n′ n′ 6 2

Table 11

Except for the small cases for n′, see Table 11, we have a contradiction, so there is a Hermitian variety
consisting of the union of hyperplanes in the pencil of Hermitian varieties defined by X and X′.

To compare with the intersection of two Hermitian varieties X and X′ in PG(n, q2), where the pencil of
Hermitian varieties defined by X and X′ does not contain a singular Hermitian variety which is the union
of q + 1 hyperplanes, we refer to the following results of Kestenband.

Theorem 4.2.3. (1) ([64, Lemma 2]) There exists a pencil of q + 1 non-singular Hermitian varieties in
PG(n, q2), n even, intersecting in

(qn−1 − 1)(qn+1 + 1)

q2 − 1
= q2n−2 + q2n−4 + · · ·+ q2 + 1− qn−1

points.

(2) ([65, Lemma 3]) There exists a pencil of q + 1 non-singular Hermitian varieties in PG(n, q2), n odd,
intersecting in

(qn+1 − 1)(qn−1 + 1)

q2 − 1
= q2n−2 + q2n−4 + · · ·+ qn+3 + qn+1 + 2qn−1 + qn−3 + · · ·+ q2 + 1

points.

We now discuss the case that X is the Hermitian variety H(5, q2) in 5 dimensions. Let V be the intersection
of X with another Hermitian variety X′ in PG(5, q2).

If |V | > q8 + q6 + 2q4 + q2 + 1, then (|PG(5, q2)| + q|V |)/(q + 1) > |H(5, q2)|, so there is a cone
πn−4H(3, q

2) = LH(3, q2) in the pencil of Hermitian varieties defined by X and X′, if we assume that no
Hermitian variety in the pencil of Hermitian varieties defined by X and X′ is the union of q+1 hyperplanes.
We form solids π1, . . . , πq3+q with L and the lines of a cover of H(3, q2), as defined in Remark 4.2.1. If
|V | > q8 + 2q6 + q5 + q4 + 2q3 + q, then there is a solid through L intersecting X in q + 1 planes. Now
we have 3 different cases:

1. L ⊂ V ,
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2. |L ∩ V | = q + 1,

3. |L ∩ V | = 1.

Lemma 4.2.4. For X = H(5, q2), if |V | > q8 + 2q6 + q5 + q4 + 2q3 + q and L ⊂ V , then there must
be a Hermitian variety consisting of the union of q + 1 hyperplanes in the pencil of Hermitian varieties
defined by X and X′.

Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by X and X′ is the
union of q + 1 hyperplanes. Since (|PG(5, q2)|+ q|V |)/(q + 1) > |H(5, q2)|, there is a singular Hermitian
variety LH(3, q2) in the pencil of Hermitian varieties defined by X and X′.

By Remark 4.2.1, we know that we can cover H(3, q2) by q3+q lines. Considering the q3+q solids defined
by L and the lines of this cover of H(3, q2), we cover LH(3, q2) by q3 + q solids. Since |V |/(q3 + q) >
|H(3, q2)|, there is a solid π1 through L intersecting V in q+ 1 planes. Now L lies in one of these planes,
since L ⊂ V .

Every point of V lies in at least one of these q3 + q solids through L, defining the cover of LH(3, q2).

In H(5, q2), a line L is contained in q + 1 planes completely lying in H(5, q2). Now we want to have a
bound on |V | so that we are sure that the line L lies in more than q + 1 planes contained in H(5, q2),
because then a contradiction is obtained to our assumption that no Hermitian variety in the pencil of
Hermitian varieties defined by X and X′ is the union of q + 1 hyperplanes.

To find at least q + 2 planes of V through L, an inductive argument stating that if L lies in x planes of
V , then it lies in x + 1 planes of V needs to be used. To simplify the calculations, we describe how the
existence of q+1 planes of V through L implies the existence of q+2 planes of V through L, in case |V |
is large enough.

Assume that we know that q + 1 of the solids of the cover of size q3 + q of LH(3, q2) intersect V in the
union of q + 1 planes, where these q + 1 solids have distinct planes through L in common with V . We
want to have another solid which fulfills this condition, so that the desired contradiction is obtained.

The desired contradiction is obtained when

|L|+ |V | − (q + 1)((q + 1)q4 + q2 + 1)

q3 − 1
> |H(3, q2)|. (4.4)

For, the q + 1 solids through L intersecting V in q + 1 planes each contain (q + 1)q4 + q2 + 1 points of
V . We subtract this from |V |. There remain q3 − 1 solids for the cover of LH(3, q2). So there is a solid
containing at least

|L|+ |V | − (q + 1)((q + 1)q4 + q2 + 1)

q3 − 1
> |H(3, q2)|

points of V . Since the only Hermitian variety in PG(3, q2) containing more than |H(3, q2)| points consists
of the union of q + 1 planes, we have found the desired (q + 2)-th plane of V through L.

The only problem that remains is that this (q+ 2)-th plane must be different from all the previous q+ 1
planes of V through L. We achieve this goal as follows. The cover of H(3, q2) that is defined in Remark
4.2.1 consists of all the lines of H(3, q2) intersecting a given line T of H(3, q2); this line T not included.
For finding the (q + 2)-th plane of V through L, we select for the line T , which defines the cover of
H(3, q2), a line T skew to the q + 1 points of H(3, q2) defining the q + 1 planes of V through L. This is
possible since these q + 1 points lie in total on at most (q + 1)2 lines of H(3, q2). So there is certainly a
line T of H(3, q2) skew to these q + 1 points. Then we use the cover of H(3, q2) of size q3 + q defined by
this line T . The particular property of the corresponding cover of LH(3, q2) is that the q+1 planes of V
through L, already determined, lie in exactly one of those solids, so when we perform the division in the
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left hand side of (4.4), the (q + 2)-th solid through L intersecting V in q + 1 planes cannot contain one
of the already determined q + 1 planes of V through L.

This gives us at least q + 2 planes of H(5, q2) through L; which is impossible. So there is a Hermitian
variety consisting of q + 1 hyperplanes in the pencil of Hermitian varieties defined by X and X′. The
condition in (4.4) is equivalent to

|V | > q8 + 2q6 + q5 + q4 + q2 + q + 1.

The most severe condition on |V | arises from the fact that |V |/(q3 + q) > |H(3, q2)|; which implies
|V | > q8 + 2q6 + q5 + q4 + 2q3 + q.

Lemma 4.2.5. For X = H(5, q2), if |V | > q8 + 4q6 + q5 − 3q4 + 4q3 + 3q2 + q − 1 and |L ∩ V | = q + 1,
then there must be a Hermitian variety consisting of q+1 hyperplanes in the pencil of Hermitian varieties
defined by X and X′.

Proof. Assume that no Hermitian variety in this pencil is the union of q + 1 hyperplanes. Then, since
the lower bound on |V | of the beginning of this section is valid, there is a cone LH(3, q2) in the pencil of
Hermitian varieties defined by X and X′. Assume that L ∩ V = {R1, . . . , Rq+1}. Let the polar space of
the secant line L w.r.t. X = H(5, q2) be the 3-dimensional space intersecting H(5, q2) in the non-singular
Hermitian variety H(3, q2)L.

Suppose that we are sure that x+1 lines of a cover of size q3 + q on H(3, q2), as defined in Remark 4.2.1,
define solids through L intersecting H(5, q2) in a union of q + 1 planes. We are sure of this when

q + 1 +
|V | − x((q + 1)q4 + q2 + 1)

q3 + q − x
> |H(3, q2)|. (4.5)

This is equivalent to |V | > q8 + 2q6 + q5 + q3 − q2 + x(q4 − q3 + q + 1).

Consider all covers of size q3 + q on H(3, q2) defined by Remark 4.2.1. There are (q + 1)(q3 + 1) of such
covers. Then we get at least (q + 1)(q3 + 1)(x + 1) lines of H(3, q2) defining solids of LH(3, q2) through
L intersecting V in q + 1 planes. But every such line could be counted up to q3 + q times. Nevertheless,

we get at least (1+q)(q3+1)(x+1)
q3+q > q(x+1) distinct lines of H(3, q2) defining solids of LH(3, q2) through L

intersecting V in q + 1 planes.

But then for more than q(x+1) lines ` of the base H(3, q2), we know that the solid 〈L, `〉 contains a plane
of H(3, q2) through R1, . . . , Rq+1. So R1 lies in planes contained in the intersection V . These planes lie
in TR1

(X) = 〈R1,H(3, q
2)L〉, where 〈R1,H(3, q

2)L〉 denotes the 4-dimensional space spanned by R1 and
the 3-dimensional Hermitian variety H(3, q2)L. We prove that the cones RiH(3, q

2)L, i = 1, . . . , q+ 1, lie
completely in the intersection V if x is large enough.

Consider again the cone LH(3, q2) in the pencil of Hermitian varieties defined by X and X′. Let ` be a
line of the base H(3, q2) defining a solid 〈L, `〉 intersecting V in the union of q+1 planes, which pass one
by one through R1, . . . , Rq+1. Then these q + 1 planes intersect in a line `′ lying on H(3, q2)L. This line
`′ is skew to L, so determines 〈L, `〉 uniquely. Hence, different lines ` of H(3, q2) define different lines `′

of H(3, q2)L.

So, we find more than q(x+1) lines of H(3, q2)L completely lying in V . We can now prove that the cones
RiH(3, q

2)L, i = 1, . . . , q + 1, lie completely on V .

Consider a point P of the base H(3, q2)L and assume that P does not lie on one of these q(x+1) lines `′

of H(3, q2)L lying in V . Then they all intersect TP (H(3, q
2)L) in a point. If q(x+1) > 2(q+1)q2, there is

a point of H(3, q2)L in TP (H(3, q
2)L) on at least 3 of those lines. Denote this point by S and these three

lines by `1, `2, `3. Then the three planes 〈Ri, `1〉, 〈Ri, `2〉, 〈Ri, `3〉 lie completely in V . Then TS(H(3, q
2)L)
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shares already 3 lines with the intersection V , so it intersects V in all q + 1 lines `j , j = 1, . . . , q + 1, of
H(3, q2)L through S, and similarly, all q + 1 planes 〈Ri, `j〉, j = 1, . . . , q + 1, lie completely in V . But
one of these lines `j is the line SP , so the line RiP belongs to the intersection V . So every point of the
cone RiH(3, q

2)L lies in V .

The tangent cones RiH(3, q
2)L to H(5, q2) lie in q+1 hyperplanes through the polar space Π3 of L w.r.t.

X, and these q+1 hyperplanes define a Hermitian variety X′′. Let Q be a point of Π3 \H(3, q2)L. There
is a unique Hermitian variety X′′′, containing Q, in the pencil of Hermitian varieties defined by X and X′.
This Hermitian variety must be the union of the q+1 hyperplanes 〈Ri,H(3, q

2)L〉, but then we find that
the pencil of Hermitian varieties defined by X and X′ contains a Hermitian variety which is the union of
q + 1 hyperplanes.

We have the desired results.

The only condition q(x + 1) > 2(q + 1)q2 implies that |V | > q8 + 4q6 + q5 − 3q4 + 4q3 + 3q2 + q − 1 is
required to have these results.

Lemma 4.2.6. For X = H(5, q2), if |V | > q8 + 2q6 + 2q5 + 2q4 − q3 + q + 2, then the case |L ∩ V | = 1
does not occur.

Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by X and X′ is the
union of q + 1 hyperplanes. Then again there is a singular Hermitian variety LH(3, q2) in the pencil and
in this Hermitian variety the line L is skew to the solid of H(3, q2).

Suppose that we are sure that x+1 lines of a cover of size q3 + q on H(3, q2), as defined in Remark 4.2.1,
define solids through L intersecting H(5, q2) in a union of q + 1 planes. We are sure of this when

1 +
|V | − x((q + 1)q4 + q2 + 1)

q3 + q − x
> |H(3, q2)|. (4.6)

This is equivalent to |V | > q8 + 2q6 + q5 + q4 + q3 + x(q4 − q3 + 1).

Similarly as in the preceding proof, for more than q(x+1) lines ` of the base H(3, q2) of the cone LH(3, q2),
the solid 〈L, `〉 contains q + 1 planes of V , so of H(5, q2); they all pass through the unique intersection
point R of L with H(5, q2), so they all lie in the tangent hyperplane TR(X) to X in R. Hence, this solid
〈L, `〉, and so in particular the line `, lies completely in TR(X).

If x ≥ q + 2, then the base H(3, q2) of LH(3, q2) lies completely in TR(X). But also L lies in TR(X) since
L shares only one point with X. However, this implies that L and the base H(3, q2) of the cone LH(3, q2)
share a point, but this is false.

So we obtain a contradiction if x ≥ q + 2, which is valid if |V | > q8 + 2q6 + 2q5 + 2q4 − q3 + q + 2.

Corollary 4.2.7. Let X be a non-singular Hermitian variety in PG(5, q2), and let V be the intersection
of X with another Hermitian variety X′.

If |V | > q8 +4q6 + q5 − 3q4 +4q3 +3q2 + q− 1, then this intersection V is also the intersection of X with
a Hermitian variety which is the union of q + 1 4-dimensional spaces.

We again check with the result of Kestenband to have an idea of the sharpness of the bound of the
preceding corollary.

Theorem 4.2.8. ([65, Lemma 3]) There exists a pencil of q + 1 non-singular Hermitian varieties in
PG(5, q2) intersecting in

(q6 − 1)(q4 + 1)

q2 − 1
= q8 + q6 + 2q4 + q2 + 1.

points.
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4.2.1 A divisibility condition on the weights

We now show that the weights of the code CHerm(X) are divisible by qn−1 in case X is a non-singular
Hermitian variety in PG(n, q2). This result is a particular case of a more general result on the divisibility
of the functional codes Ch(X), defined on the non-singular Hermitian variety X of PG(n, q2) by the
hypersurfaces of degree h [35].

To achieve this goal, we first mention the known result that a Hermitian variety X in PG(n, q2) can be
made to correspond to a quadric in PG(2n+ 1, q).

Let X :
∑n

i,j=0 aijXiX
q
j = 0, aij ∈ Fq2 , a

q
ij = aji.

Define GF(q2) as a quadratic extension of GF(q) via an element e ∈ Fq2 \GF(q), satisfying a quadratic
equation X2 −X − b = 0, so e2 = e+ b, eq = −e+ 1, and eq+1 = −b.

For Xi = Yi + eZi, Xi ∈ Fq2 , Yi, Zi ∈ GF(q), substituting Xi = Yi + eZi in the equation of X, and using
the above description for e2, eq, eq+1, and using that Y q

i = Yi and that Zq
i = Zi, we obtain the following

equation in the variables Yi and Zi:

X :

n
∑

i=0

(aiiY
2
i + aiiYiZi − baiiZ

2
i ) +

n
∑

i,j=0;i<j

((2α+ β)YiYj +

(α− 2βb)YiZj + (α+ β(2b+ 1))ZiYj − (2α+ β)bZiZj) = 0,

which defines a quadric in PG(2n+ 1, q).

Theorem 4.2.9. For a non-singular Hermitian variety X in PG(n, q2), the weights of the code CHerm(X)
are divisible by qn−1.

Proof. We use the theorem of Ax-Katz [63, Theorem 1.0].

The intersection points of the Hermitian variety X in PG(n, q2) with another Hermitian variety X′ in
PG(n, q2) correspond to the intersection points of two corresponding quadrics Q and Q′ in PG(2n+1, q),
or alternatively in the vector space V (2n+ 2, q).

In this vector space V (2n+2, q), in the notations of [63, Theorem 1.0], the number of intersection points
is n(S, T, f) ≡ 0 (mod qµ(S,T,f)), where

µ(S, T, f) ≥ Card(S)−∑

i∈T di

supi∈T (di)
.

Here Card(S) = 2n+ 2, since there are 2n+ 2 variables Yi, Zi, i = 0, . . . , n, and d1 = d2 = 2 since we are
investigating the intersection of two quadrics.

So

µ(S, T, f) ≥ 2n+ 2− 4

2
= n− 1.

So in V (2n+ 2, q), the number of elements in X ∩X′ is 0 (mod qn−1), and in PG(2n+ 1, q),

|X ∩X′| = kqn−1 − 1

q − 1
,

for some k ∈ N
∗.

Rewriting, this is equivalent to
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|X ∩X′| = kqn−1 − 1

q − 1
= k′qn−1 +

qn−1 − 1

q − 1
, (4.7)

with k = k′(q − 1) + 1, for some k′ ∈ N.

So
|X ∩X′| = k′qn−1 + qn−2 + qn−3 + · · ·+ q + 1

in PG(2n+ 1, q).

By making the change of the setting PG(n, q2) to the setting PG(2n + 1, q), the points of PG(n, q2)
correspond to the lines of a 1-spread of PG(2n+ 1, q), i.e., a partitioning of the points of PG(2n+ 1, q)
into (q2n+2 − 1)/(q2 − 1) pairwise disjoint lines.

Consequently, since every intersection point of X ∩ X′ in PG(n, q2) defines q + 1 collinear intersection
points of one of those lines of this 1-spread of PG(2n + 1, q), |X ∩ X′| ≡ 0 (mod q + 1) in the setting of
PG(2n+ 1, q).

We now apply the Ax-Katz theorem to the Hermitian variety X itself in the setting of PG(2n+1, q). This
gives µ(S, T, f) ≥ (2(n+1)− 2)/2 = n. So |X| ≡ 0 (mod qn) in V (2n+2, q). Hence, over PG(2n+1, q),
|X| = (jqn − 1)/(q − 1) = j′qn + qn−1 + qn−2 + · · ·+ q + 1, with j = j′(q − 1) + 1 for some j′ ∈ N.

Case 1. Assume that n is even. Then

k′qn−1 + qn−2 + · · ·+ q + 1 ≡ 0 (mod q + 1)

in PG(2n+ 1, q), which implies that
k′ ≡ 1 (mod q + 1).

So k′ = k′′(q + 1) + 1, which implies that

|X ∩X′| = k′′(q + 1)qn−1 + qn−1 + qn−2 + · · ·+ q + 1

in PG(2n+ 1, q).

Similarly, in PG(2n+ 1, q),

|X| = j′qn + qn−1 + · · ·+ q + 1 ≡ 0 (mod q + 1),

which implies that j′ = j′′(q + 1) for some j′′ ∈ N.

Then, in PG(2n+ 1, q),
|X| = j′′(q + 1)qn + qn−1 + · · ·+ q + 1.

So the weight of a codeword of CHerm(X) in the setting of PG(2n+ 1, q) is

j′′(q + 1)qn − k′′(q + 1)qn−1 ≡ 0 (mod qn−1).

But one point of X ∩ X′ in PG(n, q2) corresponds to q + 1 collinear intersection points of X ∩ X′ in
PG(2n+ 1, q), so in the setting of PG(n, q2), the weight of a codeword of CHerm(X) is

j′′qn − k′′qn−1 ≡ 0 (mod qn−1).

This shows that the weight of this codeword of CHerm(X) is a multiple of qn−1.

Case 2. Assume that n is odd.

This case is treated in the same way as the case n even.
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4.2.2 Tables and final results for CHerm(X)

We determine the 4 smallest weights of CHerm(X). These small weight codewords correspond to the
intersection of the non-singular Hermitian variety X in PG(n, q2) with Hermitian varieties which are the
union of q + 1 hyperplanes. These latter q + 1 hyperplanes have an (n − 2)-dimensional space πn−2 in
common. The polar space of πn−2 w.r.t. X is a line L, which can be tangent, secant to, or contained in
X. We will make a discussion depending on the position of L with respect to the Hermitian variety X.

If L is secant to X, then πn−2 intersects X in a non-singular Hermitian variety Hn−2 in PG(n − 2, q2),
and then q+1, 0, 2 or one of the q+1 hyperplanes through πn−2 can contain a point of L∩X, resp. cases
(1), (2), (3) and (4) in Table 12. In the case that L is tangent to X, then πn−2 intersects X in a singular
Hermitian variety PHn−3 in PG(n− 2, q2), and then one or none of the q + 1 hyperplanes through πn−2

can contain the intersection point of L with X, resp. cases (6) and (7) in Table 12. In the case that L
is contained in X, then πn−2 intersects X in a singular Hermitian variety LHn−4 in PG(n − 2, q2), and
then all the q+1 hyperplanes are tangent hyperplanes to X; this is case (5) in Table 12. In Table 12, Hi

denotes a non-singular Hermitian variety in PG(i, q2).

|X ∩X′|
(1) (q + 1)|PHn−2| − q|Hn−2|
(2) (q + 1)|Hn−1| − q|Hn−2|
(3) 2|PHn−2|+ (q − 1)|Hn−1| − q|Hn−2|
(4) |PHn−2|+ q|Hn−1| − q|Hn−2|
(5) (q + 1)|PHn−2| − q|LHn−4|
(6) |PHn−2|+ q|Hn−1| − q|PHn−3|
(7) (q + 1)|Hn−1| − q|PHn−3|

Table 12

Also for this code we have to be sure not to count codewords double. Using the same arguments as for
the previous code we find the next lemma.

Lemma 4.2.10. No two unions of hyperplanes can give the same codewords if n ≥ 4.

Proof. Let
⋃q+1

i=1 Πi and
⋃q+1

i=1 Π′
i be the two unions of hyperplanes. Suppose they give the same codewords,

then (
⋃q+1

i=1 Πi)∩X = (
⋃q+1

i=1 Π′
i)∩X. Since

⋃q+1
i=1 Πi 6=

⋃q+1
i=1 Π′

i, we can assume Π′
1 6= Πi, i = 1, · · · , q+1.

Then Π′
1∩X ⊂ ⋃q+1

i=1 (Πi∩Π′
1∩X), so the hyperplane intersection Π′

1∩X is contained in the union of q+1
(n− 2)-dimensional spaces intersecting X. Denote the smallest possible intersection size of a hyperplane
with X by xn−1 and the largest possible intersection size of an(n− 2)-dimensional space with X by xn−2,
this must then lead to xn−1 ≤ (q + 1)xn−2. Counting arguments show this is always impossible for
q ≥ 4.

Case I: n even
For n even, Table 13 gives for the corresponding intersections of Table 12 the sizes of these intersections.
Then Table 14 gives the corresponding weights in the code CHerm(X). We note that (2) gives the smallest
weight w1, (4) and (7) give the second smallest weight w1 + qn−1, cases (3), (5), and (6) give the third
smallest weight w1+2qn−1, while case (1) gives the fourth smallest weight w1+qn−1(q+1). We also give
the number of codewords having these weights. When there are different cases leading to the same weight,
in the rightmost column of Table 14, we have written the total number of codewords of that weight as a
sum of the corresponding numbers of codewords corresponding to the respective cases of Table 12.
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|X ∩X′|
(1) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+1 − qn + qn−1 + qn−2 + qn−4 + · · ·+ q2 + 1
(2) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+1 + 2qn−1 + qn−2 + qn−4 + · · ·+ q2 + 1
(3) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+1 + qn−2 + qn−4 + · · ·+ q2 + 1
(4) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn−1 + qn−2 + qn−4 + · · ·+ q2 + 1
(5) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+1 + qn−2 + qn−4 + · · ·+ q2 + 1
(6) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+1 + qn−2 + qn−4 + · · ·+ q2 + 1
(7) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn−1 + qn−2 + qn−4 + · · ·+ q2 + 1

Table 13

Weight Number of codewords

(2) w1 = qn−1(qn − qn−1 − 2) (qn+1+1)(qn−1)q2n−1(q−1)(q−2)
2(q+1)2

(4)+(7) w1 + qn−1 (qn+1+1)(qn−1)q2n−2(q−1)
q+1 +

(qn+1+1)(qn−1)qn(qn−1+1)(q−1)
(q+1)2

(3)+(5)+(6) w1 + 2qn−1 (qn+1+1)(qn−1)q2n

2(q+1) +
q(qn+1+1)(qn−1)(qn−1+1)(qn−2−1)

(q2−1)(q+1) +
(qn+1+1)(qn−1)qn−1(qn−1+1)

q+1

(1) w1 + qn−1(q + 1) (qn+1+1)(qn−1)q2n−2

(q+1)2

Table 14

Theorem 4.2.11. The code CHerm(H(n, q2)), n even, is a linear code with parameters

N =
(qn+1 + 1)(qn − 1)

q2 − 1
, k = n(n+ 2), d = qn−1(qn − qn−1 − 2),

and the minimal weight codewords correspond to Hermitian varieties which are the union of q + 1 non-
tangent hyperplanes to H(n, q2) such that the (n − 2)-dimensional intersection of the q + 1 hyperplanes
intersects H(n, q2) in a non-singular Hermitian variety.

Case II: n odd
For n odd, Table 15 gives for the corresponding intersections of Table 12 the sizes of these intersections.
Then Table 16 gives the corresponding weights in the code CJerm(X). We note that (1) gives the smallest
weight w1, (3), (5), and (6) give the second smallest weight w1+qn−qn−1, cases (4) and (7) give the third
smallest weight w1+qn, while case (2) gives the fourth smallest weight w1+qn−1(q+1). We also give the
number of codewords having these weights. When there are different cases leading to the same weight,
in the rightmost column of Table 16, we have written the total number of codewords of that weight as a
sum of the corresponding numbers of codewords corresponding to the respective cases of Table 12.

|X ∩X′|
(1) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn+2 + 2qn + qn−3 + qn−5 + · · ·+ q2 + 1
(2) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn − qn−1 + qn−3 + qn−5 + · · ·+ q2 + 1
(3) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn + qn−1 + qn−3 + · · ·+ q2 + 1
(4) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn + qn−3 + qn−5 + · · ·+ q2 + 1
(5) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn + qn−1 + qn−3 + · · ·+ q2 + 1
(6) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn + qn−1 + qn−3 + · · ·+ q2 + 1
(7) q2n−2 + q2n−3 + q2n−5 + · · ·+ qn + qn−3 + qn−5 + · · ·+ q2 + 1

Table 15
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Weight Number of codewords

(1) w1 = qn−1(qn−1 − 1)(q − 1) (qn+1−1)(qn+1)q2n−2

(q+1)2

(3) + (5) + (6) w1 + qn − qn−1 (qn+1−1)(qn+1)q2n

2(q+1) +
q(qn+1−1)(qn+1)(qn−1−1)(qn−2+1)

(q2−1)(q+1) +
qn−1(qn+1−1)(qn+1)(qn−1−1)

q+1

(4)+(7) w1 + qn (qn+1−1)(qn+1)q2n−2(q−1)
q+1 +

qn(qn+1−1)(qn+1)(qn−1−1)(q−1)
(q+1)2

(2) w1 + qn−1(q + 1) q2n−1(qn+1−1)(qn+1)(q−1)(q−2)
2(q+1)2

Table 16

Theorem 4.2.12. The code CHerm(H(n, q2)), n odd, is a linear code with parameters

N =
(qn+1 + 1)(qn − 1)

q2 − 1
, k = n(n+ 2), d = qn−1(qn−1 − 1)(q − 1),

and the minimal weight codewords correspond to Hermitian varieties which are the union of q+1 tangent
hyperplanes to H(n, q2) such that the (n− 2)-dimensional intersection of the q+ 1 hyperplanes intersects
H(n, q2) in a non-singular Hermitian variety.
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5 The functional code C2(X), with

X a Hermitian variety

In this chapter we investigate the functional code C2(X), X a Hermitian variety. In [33], F. Edoukou
solved the conjecture of Sørensen [79] on the minimum distance of this code for a Hermitian variety X
in PG(3, q2). We will answer the question about the minimum distance in general dimension n, with
n < O(q2). We also prove that the small weight codewords correspond to the intersection of X with the
union of 2 hyperplanes.

The results of this chapter can be found in [49].

5.1 Introduction

The third functional code we studied is a combination of the functional codes studied in the previous
chapter: The functional code C2(X) in PG(n, q2), where X is a non-singular Hermitian variety H(n, q2).
The functional code C2(X) is the linear code

C2(X) = {(f(P1), . . . , f(PN ))|f ∈ F ∪ {0}},

with F the set of all homogeneous quadratic polynomials f(X0, . . . , Xn) defined by n+ 1 variables.

This linear code has length N = |X| and dimension k =

(

n+ 2
2

)

.

In the previous chapter we determined the minimum weight of the functional codes C2(Q), Q a non-
singular quadric and CHerm(X), X a non-singular Hermitian variety. For the code C2(Q), the crucial
element was the fact that the intersection V of two quadrics Q and Q′ lies in all the q + 1 quadrics
λQ + µQ′, (λ, µ) ∈ F

2
q \ {(0, 0)}, of the pencil of quadrics defined by Q and Q’. The same arguments

hold for the code CHerm(X). This enabled us to obtain results for general dimensions n. We cannot
use this fact in this section. A quadric and a Hermitian variety do not define a pencil of quadrics or of
Hermitian varieties. This implies that different arguments have to be used, enabling us to obtain results
up to dimension n < O(q2) for the Hermitian variety X in PG(n, q2).

First of all, we will investigate the different intersections of quadrics Q in PG(4, q2) with H(4, q2); leading
to a lower bound on the intersection size guaranteeing that any quadric having more than this number
of points in common with H(4, q2) must be the union of two hyperplanes. We use this result to find a
bound on the intersection sizes of absolutely irreducible quadrics with the non-singular Hermitian variety
H(n, q2). Here this lower bound on the intersection size guarantees that Q is the union of 2 hyperplanes.

65
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Using this bound, we prove that the small weight codewords correspond to quadrics which are the union
of 2 hyperplanes. There are several possibilities for the intersection of such a quadric with a non-singular
Hermitian variety X. So we can construct tables with the 5 smallest weights of the functional code C2(X),
X a non-singular Hermitian variety in H(n, q2), n < O(q2).

5.2 Dimension 4

The goal is to look for a bound W4 on the intersection size of an absolutely irreducible quadric Q with
the Hermitian variety X (=H(4, q2)), so that we know that if the intersection size Q ∩ X is larger than
this bound, the quadric Q has to be the union of 2 hyperplanes. Therefore we search for the largest
intersection size of an absolutely irreducible quadric with X. This problem was investigated by Edoukou
[33]. We present here an alternative approach, giving in a number of cases the same bounds on the
intersection sizes of [33] and in the other cases improvements.

Case I: The quadric Q is the non-singular quadric Q(4, q2)

Lemma 5.2.1. If Q+(3, q2) ∩ H(3, q2) contains 3 skew lines, then the intersection consists of 2(q + 1)
lines forming a hyperbolic quadric Q+(3, q) and |Q+(3, q2) ∩H(3, q2)| = 2q3 + q2 + 1.

Proof. This is [60, Lemma 19.3.1]. Let L1, L2, L3 be 3 skew lines contained in the intersection Q+(3, q2)∩
H(3, q2). Now {L1, L2, L3}⊥ = {M1, . . . ,Mq+1} w.r.t. H(3, q2). The lines Mj , j = 1, 2, . . . , q + 1, share
already 3 points with Q+(3, q2), so they are contained in this quadric. Take 3 lines M1,M2,M3, then
{M1,M2,M3}⊥ defines q + 1 lines of H(3, q2) totally contained in Q+(3, q2).

These 2(q+1) lines in Q+(3, q2)∩H(3, q2) form an algebraic curve of degree 2(q+1), and Q+(3, q2)∩H(3, q2)
is an algebraic curve of exactly degree 2(q + 1). So there are no other points in the intersection.

This implies that

|Q+(3, q2) ∩H(3, q2)| = (q + 1)(q2 + 1) + (q2 − q)(q + 1)

= 2q3 + q2 + 1.

Lemma 5.2.2. If Q+(3, q2) ∩ H(3, q2) contains at most 2 skew lines, then |Q+(3, q2) ∩ H(3, q2)| 6

q3 + 3q2 − q + 1.

Proof. (see also [33]) We count according to the lines of one regulus of Q+(3, q2):

|Q+(3, q2) ∩H(3, q2)| 6 2(q2 + 1) + (q2 − 1)(q + 1)

6 q3 + 3q2 − q + 1.

Lemma 5.2.3. Let L be a line of Q(4, q2) containing at most q points of Q(4, q2) ∩ H(4, q2), then
|Q(4, q2) ∩H(4, q2)| 6 q5 + 3q4 + 2q2 + q + 1.

Proof. Let P ∈ L with P /∈ Q(4, q2) ∩ H(4, q2). Take a line M of Q(4, q2) intersecting L in P . Consider
the plane 〈L,M〉. Then 〈L,M〉 lies in the tangent hyperplane P⊥ to Q(4, q2) and on q2 solids sharing
a hyperbolic quadric Q+(3, q2) with Q(4, q2). No Q+(3, q2) can intersect H(4, q2) in q + 1 lines of both
reguli, since L has only q points of the intersection Q(4, q2) ∩H(4, q2). So |Q(4, q2) ∩H(4, q2)| 6 q2(q3 +
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3q2 − q + 1) + |P⊥ ∩Q(4, q2) ∩H(4, q2)|.
If P /∈ Q(4, q2) ∩H(4, q2), then |P⊥ ∩Q(4, q2) ∩H(4, q2)| 6 (q + 1)(q2 + 1).
So |Q(4, q2) ∩H(4, q2)| 6 q5 + 3q4 + 2q2 + q + 1.

Remark 5.2.4. From now on, we assume that every line of Q(4, q2) shares at least q + 1 points with
H(4, q2). So all lines of Q(4, q2) share q + 1 or q2 + 1 points with H(4, q2), since a line having more than
q + 1 points of H(4, q2) is contained in H(4, q2).

Lemma 5.2.5. Let P ∈ Q(4, q2) ∩H(4, q2), then TP (Q(4, q2)) 6= TP (H(4, q
2)).

Proof. Assume that TP (Q(4, q2)) = TP (H(4, q
2)). Let Q(2, q2) be the base of TP (Q(4, q2))∩Q(4, q2) and

let H(2, q2) be the base of TP (H(4, q
2))∩H(4, q2). Take a line L through P to a point of Q(2, q2)\H(2, q2).

This line L only shares P with H(4, q2), while it should contain at least q + 1 points of H(4, q2).

Lemma 5.2.6. Assume that all lines of Q(4, q2) share q+1 or q2+1 points with H(4, q2), then |Q(4, q2)∩
H(4, q2)| 6 q5 + 3q4 − 4q2 + 3q + 1.

Proof. Let P be a point of Q(4, q2) not lying in the intersection Q(4, q2)∩H(4, q2), and take 2 lines L and
M of Q(4, q2) through P . All q2+1 lines of Q(4, q2) through P contain q+1 points of Q(4, q2)∩H(4, q2),
so |TP (Q(4, q2)) ∩Q(4, q2) ∩H(4, q2)| = (q + 1)(q2 + 1).

Consider the q + 1 points P1, . . . , Pq+1 of L ∩ Q(4, q2) ∩ H(4, q2). They lie on at most 2 lines contained
in Q(4, q2) ∩H(4, q2) (Lemma 5.2.5). For, such a line through a point Pi lies in the tangent hyperplanes
TP (Q(4, q2)) and TP (H(4, q

2)). But these tangent hyperplanes only have a plane in common and this
plane has at most two lines through Pi contained in Q(4, q2)∩H(4, q2). So at most two of the q2 distinct
hyperbolic quadrics Q+(3, q2) of Q(4, q2) through 〈L,M〉 can intersect H(4, q2) in 2(q + 1) lines, so we
get at most twice 2q3 + q2 + 1 − 2(q + 1) = 2q3 + q2 − 2q − 1 extra intersection points. At least q2 − 2
times, we get at most q3 + 3q2 − q + 1− 2(q + 1) = q3 + 3q2 − 3q − 1 extra intersection points.

So in total there are at most q5 + 3q4 − 4q2 + 3q + 1 intersection points.

Case II: The quadric cone Q = π0Q
−(3, q2)

If H(4, q2) ∩ π0Q
−(3, q2) does not contain a line, then the q4 + 1 lines through π0 on Q−(3, q2) have at

most q + 1 points of H(4, q2). So

|H(4, q2) ∩ π0Q
−(3, q2)| 6 (q + 1)(q4 + 1) (5.1)

6 q5 + q4 + q + 1. (5.2)

This upper bound is also determined in [34].
So we assume H(4, q2) ∩ π0Q

−(3, q2) contains at least one line.

Lemma 5.2.7. If H(4, q2)∩π0Q
−(3, q2) contains at least one line L, then H(4, q2)∩π0Q

−(3, q2) contains
at most 2(q + 1) lines.

Proof. Since L ⊂ H(4, q2) ∩ π0Q
−(3, q2), necessarily π0 ⊂ H(4, q2) ∩ π0Q

−(3, q2). Every line L′ of
H(4, q2) ∩ π0Q

−(3, q2) passes through π0, so lies in the tangent solid Tπ0
(H(4, q2)). This solid intersects

π0Q
−(3, q2) in a cone π0Q(2, q2) if there are at least two lines contained in H(4, q2) ∩ π0Q

−(3, q2).
Since L ⊂ H(4, q2) ∩ π0Q

−(3, q2), it defines a point of H(2, q2) ∩ Q(2, q2), with H(2, q2) and Q(2, q2)
the basis of the tangent cone Tπ0

(H(4, q2)) and of π0Q
−(3, q2) ∩ Tπ0

(H(4, q2)). By Bézout’s theorem,
|H(2, q2) ∩Q(2, q2)| ≤ 2(q + 1). So at most 2(q + 1) lines of π0Q

−(3, q2) lie completely on H(4, q2).
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By the previous lemma, we have:

|H(4, q2) ∩ π0Q
−(3, q2)| 6 2(q + 1)(q2 + 1) + (q4 − 2q − 1)(q + 1) (5.3)

6 q5 + q4 + 2q3 − q + 1. (5.4)

Case III: The quadric cone Q = π0Q
+(3, q2)

We can describe π0Q
+(3, q2) by q2 +1 planes defined by π0 and the lines of one regulus of Q+(3, q2). No

plane lies completely on H(4, q2), so every plane shares at most q3 + q2 + 1 points, of a cone PH(1, q2),
with H(4, q2). Hence,

|H(4, q2) ∩ π0Q
+(3, q2)| 6 (q2 + 1)(q3 + q2 + 1) (5.5)

6 q5 + q4 + q3 + 2q2 + 1. (5.6)

Case IV: The quadric cone Q = π1Q(2, q2)

Also this quadric can be described by q2 + 1 planes, so as above

|H(4, q2) ∩ π1Q(2, q)| 6 q5 + q4 + q3 + 2q2 + 1.

Case V: The quadric cone Q = π2Q
−(1, q2)

Then we have in fact the intersection of a plane with H(4, q2). So this intersection size will be smaller
than the previous bounds.

Conclusion

Let Q be a quadric in PG(4, q2).

Theorem 5.2.8. If |Q ∩H(4, q2)| > q5 + 3q4 + 2q2 + q + 1, then Q is the union of 2 hyperplanes.

Proof. From Lemmata 5.2.3 and 5.2.6, we know that the intersection size of the non-singular quadric
Q(4, q2) with H(4, q2) is at most q5 + 3q4 + 2q2 + q + 1. For the different intersection sizes of other
quadrics with H(4, q2), (2), (4), and (6) learn us that they are smaller than the previous one. So this
proves the theorem.

From now on, we will denote this bound by W4 = q5 + 3q4 + 2q2 + q + 1.

5.3 General case

Let Q be a quadric in PG(n, q2).

Theorem 5.3.1. If |Q∩H(n, q2)| > (q2+2)n−4W4, then Q is the union of two hyperplanes, for dimension
n < O(q2).

Proof. Part 1. Denote (q2 + 2)n−4W4 by Wn. The bound is valid for n = 4 (Theorem 5.2.8).
Suppose that the lemma holds for dimension n − 1. By induction, we show that the bound is true for
dimension n.

Select (q2 + 2)n−4W4 points P of Q ∩ H(n, q2) and count the incidences (P,H), with P ∈ Q ∩ H(n, q2)
and H a tangent hyperplane to H(n, q2). This gives

((q2 + 2)n−4W4)|PH(n− 2, q2)| = |H(n, q2)|Xn,
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with Xn the average number of those (q2 + 2)n−4W4 points of Q ∩ H(n, q2) in a tangent hyperplane to
H(n, q2).

So some tangent hyperplane P⊥, P ∈ H(n, q2), contains at most

Xn 6
((q2 + 2)n−4W4)((q

n−1 + (−1)n−2)(qn−2 + (−1)n−1)q2 + q2 − 1)

(qn+1 + (−1)n)(qn + (−1)n+1)

6 Wn−1(1 +
3

q2 − 1
),

of those points.

There remain more than (q2 +2)Wn−1 −Wn−1(1 +
3

q2−1 ) = (q2 +1− 3
q2−1 )Wn−1 points in Q∩H(n, q2),

not lying in this tangent hyperplane P⊥. Take an arbitrary H(n − 3, q2) on the base H(n − 2, q2) of
P⊥ ∩ H(n, q2). We do not know |H(n − 3, q2) ∩ Q ∩ H(n, q2)|, but we know that the q2 + 1 hyperplanes
through 〈P,H(n−3, q2)〉 are P⊥, the only tangent hyperplane through 〈P,H(n−3, q2)〉, and q2 hyperplanes
intersecting H(n, q2) in a non-singular Hermitian variety H(n− 1, q2).

So one of them, denoted by π, contains more than
(q2+1− 3

q2−1
)Wn−1

q2 ≥ Wn−1 points of the intersection.

Then in this hyperplane π, since |π∩Q∩H(n−1, q2)| > Wn−1, π∩Q is the union of two (n−2)-dimensional
spaces.

Part 2. The only quadrics containing (n− 2)-dimensional spaces are πn−4Q
+(3, q2), πn−2Q

+(1, q2), and
πn−3Q(2, q2).

We wish to eliminate the quadrics πn−4Q
+(3, q2) and πn−3Q(2, q2). They both can be described as

the union of q2 + 1 (n − 2)-dimensional spaces πn−2. The largest intersection of πn−2 ∩ H(n, q2) comes
from a Hermitian variety which is the union of q + 1 distinct (n − 3)-dimensional spaces sharing an
(n− 4)-dimensional space and this has size

(q + 1)q2n−6 + q2n−8 + · · ·+ q2 + 1 = q2n−5 + q2n−6 + q2n−8 + · · ·+ q2 + 1.

If this would be the case for all these q2+1 distinct πn−2, we would get an intersection size (q2+1)(q2n−5+
q2n−6 + q2n−8 + · · · + q2 + 1) of these quadrics with H(n, q2). Since (q2 + 2)n−4W4 > (q2 + 1)(q2n−5 +
q2n−6 + q2n−8 + · · ·+ q2 + 1), these quadrics cannot occur.

So Q = πn−2Q
+(1, q2) which is the union of two hyperplanes.

Remark 5.3.2. The condition n < O(q2) arises from the fact that only for n < O(q2), the value
(q2 + 2)n−4W4 is smaller than or equal to the intersection size of two hyperplanes with a non-singular
Hermitian variety H(n, q2). Here, necessarily n < q2/3.

5.4 Tables and final results for C2(X)

We proved in Theorem 5.3.1 that the small weight codewords of C2(X), X a non-singular Hermitian
variety in PG(n, q2), O(q2) > n ≥ 4, correspond to the intersections of X with the quadrics consisting of
the union of two hyperplanes. We now count the number of codewords obtained via the intersections of
X with the union of two hyperplanes.

Lemma 5.4.1. No two distinct unions of two hyperplanes can give the same codeword for n ≥ 4.

Proof. Let Π1 ∪Π2 and Π3 ∪Π4 be two unions of two hyperplanes defining the same codeword of C2(X).
Then (Π1 ∪ Π2) ∩ X = (Π3 ∪ Π4) ∩ X. We can assume that Π3 6= Π1,Π2, since Π1 ∪ Π2 6= Π3 ∪ Π4.
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Then the hyperplane intersection Π3 ∩X must be contained in the two (n− 2)-dimensional intersections
Π3 ∩Π1 ∩X and Π3 ∩Π2 ∩X. But the smallest possible intersection size of a hyperplane with X is larger
than twice the largest possible intersection size of an (n− 2)-dimensional space with X. So this case does
not occur.

Hence, to calculate the number of codewords arising from the unions of two hyperplanes, we simply check
which unions of two hyperplanes determine codewords of a particular weight (Tables 1, 2 and 3); we then
count how many such pairs of hyperplanes there are in PG(n, q2), and then we multiply this number by
q2 − 1 since a union of two hyperplanes defines q2 − 1 non-zero codewords which are a scalar multiple of
each other. For n ≥ 4, this determines the precise number of codewords of the smallest weights in C2(X)
(Table 3).

We determine the geometrical construction of the smallest weight codewords. They correspond to the
intersection of X=H(n, q2) with πn−2Q

+(1, q2). The quadric πn−2Q
+(1, q2) consists of two hyperplanes

Π1 and Π2 through an (n − 2)-dimensional space πn−2. This πn−2 can intersect H(n, q2) in different
ways and this gives us different weight codewords. Starting from the intersection of πn−2 ∩ H(n, q2), we
determine the different intersection sizes and small weights of C2(X).

For the intersection of πn−2 with H(n, q2), there are three possibilities. This intersection is either a
non-singular Hermitian variety H(n − 2, q2), a singular Hermitian variety π0H(n − 3, q2), or a singular
Hermitian variety LH(n− 4, q2). The hyperplanes of PG(n, q2) intersect H(n, q2) either in a non-singular
Hermitian variety H(n− 1, q2) or in a singular Hermitian variety π0H(n− 2, q2).

In Table 1, we denote the different possibilities for the intersection of X with the union of two hyperplanes
Π1 and Π2.

πn−2 ∩H(n, q2) |X ∩ (Π1 ∪Π2)|
(1) (1.1) H(n− 2, q2) 2|H(n− 1, q2)| − |H(n− 2, q2)|

(1.2) H(n− 2, q2) |H(n− 1, q2)|+ |π0H(n− 2, q2)| − |H(n− 2, q2)|
(1.3) H(n− 2, q2) 2|π0H(n− 2, q2)| − |H(n− 2, q2)|

(2) (2.1) π0H(n− 3, q2) |H(n− 1, q2)|+ |π0H(n− 2, q2)| − |π0H(n− 3, q2)|
(2.2) π0H(n− 3, q2) 2|H(n− 1, q2)| − |π0H(n− 3, q2)|

(3) (3.1) LH(n− 4, q2) 2|π0H(n− 2, q2)| − |LH(n− 4, q2)|

Table 1

In the second table, we give the intersection sizes: we split the table up into the cases n even and n odd.

|X ∩ (Π1 ∪Π2)|
(1) (1.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 + qn−1 + 2qn−2 + qn−4 + · · ·+ q2 + 1

(1.2) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 + 2qn−2 + qn−4 + · · ·+ q2 + 1
(1.3) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 − qn−1 + 2qn−2 + qn−4 + · · ·+ q2 + 1

(2) (2.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 + qn−2 + qn−4 + · · ·+ q2 + 1
(2.2) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 + qn−1 + qn−2 + qn−4 + · · ·+ q2 + 1

(3) (3.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+1 + qn−2 + qn−4 + · · ·+ q2 + 1

Table 2 (a): n even
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|X ∩ (Π1 ∪Π2)|
(1) (1.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn+2 + qn − qn−2 + qn−3 + · · ·+ q2 + 1

(1.2) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn + qn−1 − qn−2 + qn−3 + · · ·+ q2 + 1
(1.3) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn + 2qn−1 − qn−2 + qn−3 + · · ·+ q2 + 1

(2) (2.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn + qn−1 + qn−3 + · · ·+ q2 + 1
(2.2) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn + qn−3 + · · ·+ q2 + 1

(3) (3.1) 2q2n−3 + q2n−5 + q2n−7 + · · ·+ qn + qn−1 + qn−3 + · · ·+ q2 + 1

Table 2 (b): n odd

From the intersection sizes listed in Table 2, we now determine the smallest weights for C2(X) by sub-
tracting the size of the intersection Q ∩ X from the length of the code C2(X). In the same table, we list
the number of such codewords. We again split up the table into the cases n even and n odd.

Weight Number of codewords for n ≥ 4

(1.1) w1 = qn−2(qn+1 − qn−1 − q − 1) (qn+1+1)(qn−1)q2n−1(q−1)(q2−q−1)
2(q+1)

(2.2) w1 + qn−2 (qn+1+1)(qn−1)qn(q−1)(qn−1+1)
2

(1.2) w1 + qn−1 (qn+1 + 1)(qn − 1)q2n−1(q − 1)

(2.1)+(3.1) w1 + qn−1 + qn−2 (qn+1+1)(qn−1)qn(qn−1+1)
q+1 +

(qn+1+1)(qn−1)q2(qn−1+1)(qn−2−1)
2(q4−1)

(1.3) w1 + 2qn−1 (qn+1+1)(qn−1)q2n−1

2

Table 3 (a): n even, n < O(q2)

Weight Number of codewords for n ≥ 5

(1.3) w1 = qn−2(qn+1 − qn−1 − q + 1) (qn+1−1)(qn+1)q2n−1

2

(2.1)+(3.1) w1 + qn−1 − qn−2 (qn+1−1)(qn+1)qn(qn−1−1)
q+1 +

(qn+1−1)(qn+1)(qn−1−1)(qn−2+1)q2

2(q2−1)

(1.2) w1 + qn−1 (qn+1 − 1)(qn + 1)q2n−1(q − 1)

(2.2) w1 + 2qn−1 − qn−2 (qn+1−1)(qn+1)qn(qn−1−1)(q−1)
2

(1.1) w1 + 2qn−1 (qn+1−1)(qn+1)q2n−1(q−1)(q2−q−1)
2(q+1)

Table 3 (b): n odd, n < O(q2)

Theorem 5.4.2. 1. The code C2(H(n, q
2)), n even, is a linear code with parameters

N =
(qn+1 + 1)(qn − 1)

q2 − 1
, k = (n+ 2)(n+ 1)/2, d = qn−2(qn+1 − qn−1 − q − 1),

and the minimal weight codewords correspond to quadrics which are the union of two non-tangent
hyperplanes to H(n, q2) such that the (n− 2)-dimensional intersection of the two hyperplanes inter-
sects H(n, q2) in a non-singular Hermitian variety.

2. The code C2(H(n, q
2)), n odd, is a linear code with parameters

N =
(qn+1 − 1)(qn + 1)

q2 − 1
, k = (n+ 2)(n+ 1)/2, d = qn−2(qn+1 − qn−1 − q + 1),

and the minimal weight codewords correspond to quadrics which are the union of two tangent hyper-
planes to H(n, q2) such that the (n − 2)-dimensional intersection of the two hyperplanes intersects
H(n, q2) in a non-singular Hermitian variety.
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To conclude this chapter, we restate the conjecture of Edoukou [33] regarding the smallest weights of the
functional codes C2(X), X a non-singular Hermitian variety of PG(n, q2); a conjecture which we have
proven to be true for small dimensions n.

Conjecture 5.4.3. The smallest weights of the functional codes C2(X), X a non-singular Hermitian
variety of PG(n, q2), arise from the quadrics Q which are the union of two hyperplanes of PG(n, q2).
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6
Sets of generators blocking all

generators in finite classical polar

spaces

We introduce generator blocking sets of finite classical polar spaces. We show what the smallest minimal
examples are in rank 2. Then we give a lower bound on the size of the next minimal example in Q(4, q),
Q−(5, q) and H(4, q2). This is used to prove a characterisation of the smallest examples of these generator
blocking sets of the polar spaces Q(2n, q), Q−(2n + 1, q) and H(2n, q2), in terms of cones with base an
example in a polar space of rank 2.

6.1 Introduction

Consider the projective space PG(3, q). It is well known that a line of PG(3, q) is the smallest blocking
set with relation to the planes of PG(3, q) [21]. It is also well known that any blocking set B in PG(3, q)
with relation to the planes, such that |B| < q +

√
q + 1, contains a line [15].

Consider now any symplectic polarity ϕ of PG(3, q). The points of PG(3, q), together with the totally
isotropic lines with relation to ϕ, constitute the generalised quadrangle W3(q). If B is a blocking set with
relation to the planes of PG(3, q), then B is a set of points of W3(q) such that any point of W3(q) is
collinear with at least one point of B. Dualizing to the generalised quadrangle Q(4, q), we find a set L
of lines of Q(4, q) such that every line of Q(4, q) meets at least one line of L. Together with the known
bounds on blocking sets of PG(2, q), we observe the following proposition.

Proposition 6.1.1. Suppose that L is a set of lines of Q(4, q) with the property that every line of Q(4, q)
meets at least one line of L. If |L| is smaller than the size of the smallest non-trivial blocking set of
PG(2, q), then L contains a pencil of q + 1 lines through a point of Q(4, q) or L contains a regulus
contained in Q(4, q).

This proposition motivates the study of small sets of generators of finite classical polar spaces, meeting
every generator.

We will study small sets L of generators of a polar space S, where S is Q(2n, q), Q−(2n+1, q) or H(2n, q2),
all of rank n, with the property that every generator of the polar space meets at least one generator of
L. Such a set L will be called a generator blocking set. We call an element π of L essential if and only
if there exists a generator of S not in L meeting the elements of L only in π. We call L minimal if and
only if all of its elements are essential.

The following theorems, inspired by Proposition 6.1.1, will be proved in Section 6.2.

73
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Theorem 6.1.2. Let L be a generator blocking set of a finite generalised quadrangle of order (s, t), with
|L| = t + 1. Then L consists of a pencil of t + 1 lines through a point, or t ≥ s and L is a spread of a
subquadrangle of order (s, t/s).

Theorem 6.1.3. a) Let L be a minimal generator blocking set of Q−(5, q), with |L| = q2 + 1 + δ. If
δ < 0.381q, then L contains a pencil of q2+1 lines through a point or L contains a cover of Q(4, q)
embedded as a hyperplane section in Q−(5, q).

b) Let L be a minimal generator blocking set of H(4, q2), with |L| = q3 + 1 + δ. If δ < q − 3, then L
contains a pencil of q3 + 1 lines through a point.

Section 6.3 is devoted to a generalisation of Proposition 6.1.1 and Theorem 6.1.3.

6.2 Generalised quadrangles

In this section, we study minimal generator blocking sets L of generalised quadrangles of order (s, t). After
general observations and the proof of Theorem 6.1.2, we devote two subsections to the particular cases
S = Q−(5, q) and S = H(4, q2). We remind that for a GQ S = (P,G, I) of order (s, t), |P| = (st+1)(s+1)
and |G| = (st+ 1)(t+ 1).

We denote by M the set of points of P covered by the lines of L. No two lines on a point outside M can
meet the same line. Considering a point P 6∈ M, it follows that at least t + 1 lines of L are required to
block all lines on P , so |L| = t+ 1 + δ, δ ≥ 0. For each point P ∈ M, we define w(P ) as the number of
lines of L on P . Also, we define

W :=
∑

P∈M
(w(P )− 1),

then clearly |M| = |L|(s+ 1)−W .

We denote by bi the number of lines of G \ L that meet exactly i lines of L, 0 ≤ i. Derived from this
notation, we denote by bi(P ) the number of lines on P 6∈ M that meet exactly i lines of L, 1 ≤ i. Remark
that there is no priori upper bound on the number of lines of L that meet a line of G \ L. In the next
lemmas however, we will search for completely covered lines not in L, and therefore we denote by b̃i the
number of lines of G \ L that contain exactly i covered points, 0 ≤ i ≤ s+ 1, and we denote by b̃i(P ) the
number of lines on P 6∈ M containing exactly i covered points, 0 ≤ i ≤ s+ 1.

Lemma 6.2.1. Suppose that δ < s− 1.

a) Let the point P ∈ P \M. Then
∑

i bi(P )(i− 1) = δ and
∑

X∈P⊥∩M
(w(X)− 1) ≤ δ.

b) A line not contained in M can meet at most δ + 1 lines of L. In particular b̃i = bi = 0 for i = 0
and for δ + 1 < i < s+ 1.

c)
δ+1
∑

i=2

b̃i(i− 1) ≤
δ+1
∑

i=2

bi(i− 1).

d) If P0 is a point of M that lies on a line l meeting M only in P0, then
∑

P /∈P⊥

0
,P∈M

(w(P )− 1) ≤ δs.
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e)

(s− δ)
δ+1
∑

i=1

bi(i− 1) ≤ (st− t− δ)(s+ 1)δ +Wδ.

f) If not all lines on a point P belong to L, then at most δ + 1 lines on P belong to L.

Proof. a) Each point P 6∈ M lies on t + 1 lines, and every line of L meets exactly one of these lines.
Hence

∑

i bi(P ) = t + 1 and
∑

i bi(P )i = |L|, which proves the first part. So δ lines of L are left
over to meet the lines on P in extra points. The second part now follows immediately.

b) From the definition of L, b̃0 = b0 = 0 follows. For the second part, consider any line l ∈ G \ L
containing a point P 6∈ M. The t lines different from l on P are blocked by at least t lines of L not
meeting l. So at most |L| − t = δ + 1 lines of L can meet l.

c) Consider a line l containing i covered points with 0 < i ≤ δ + 1. Then l must meet at least i lines
of L. On the left hand side, this line is counted exactly i− 1 times and on the right hand side, this
line is counted at least i− 1 times. This gives the inequality.

d) Each point P with P 6∈ P⊥
0 is collinear to exactly one point X 6= P0 of l. For P0 6= X ∈ l, the

second part of (a) gives
∑

P∈X⊥∩M(w(P )− 1) ≤ δ. Summing over the s points on l different from
P0 gives the expression.

e) It follows from (b) that every line with a point not in M has at least s− δ points not in M. Taking
the sum over all points P not in M and using (a), one finds

δ+1
∑

i=1

bi(s− δ)(i− 1) ≤
∑

P 6∈M

δ+1
∑

i=1

bi(P )(i− 1) = (|P| − |M|)δ.

As |M| = |L|(s+ 1)−W , the assertion follows.

f) Suppose that the point P lies on exactly x lines not in L. If all these are contained in M, then
|L| ≥ t + 1 − x + xs, so x = 0, or we find a point P0 ∈ P⊥ \M. Then the t lines on P0 must be
blocked by a line of L not on P , hence at most δ + 1 lines of L can contain P .

Lemma 6.2.2. Suppose that δ = 0. If two lines of L meet, then L is a pencil of t + 1 lines through a
point P .

Proof. Suppose that l1, l2 ∈ L meet in the point P . We may suppose that t > 1. Assume that 2 ≤ x ≤ t
lines of L pass through P , and the remaining t+ 1− x lines are completely covered by lines of L. Then
x+ (t+ 1− x)s ≤ t+ 1. This is equivalent to (t+ 1)(s− 1) ≤ x(s− 1); so x ≥ t+ 1. so at least one line
l3 through P contain a hole P ′. The t lines different from l3 on P ′ meet all a different line of L \ {l1, l2},
a contradiction with |L| = t+ 1. Hence all lines on P belong to L.

Lemma 6.2.3. Suppose that δ = 0. If L is not a pencil, then t ≥ s and L is a spread of a subquadrangle
of order (s, t/s).

Proof. We may suppose that L is not a pencil, so that the lines of L are pairwise skew by Lemma 6.2.2.
Consider the set G′ of all lines completely contained in M. If l ∈ G′ and P ∈ M\l, then there is a
unique line g ∈ G on P meeting l. As this line contains already two points of M, it is contained in M
by Lemma 6.2.1 (b), that is g ∈ G′. This shows that (M,G′) is a GQ of some order (s, t′) and hence it
has (t′s+ 1)(s+ 1) points. As |M| = (t+ 1)(s+ 1), then t′s = t, that is t′ = t/s and hence t ≥ s.

This lemma proves Theorem 6.1.2.
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6.2.1 The case S = Q−(5, q)

In this subsection, S = Q−(5, q), so (s, t) = (q, q2), and |L| = q2 + 1+ δ. We suppose that L contains no
pencil and we will show for small δ that L contains a cover of a parabolic quadric Q(4, q) ⊆ S.
The set M of covered points blocks all the lines of Q−(5, q). Therefore, |M| ≥ q3 + q (see [69]). Using
W = |L|(q + 1)− |M|, we find W ≤ q2 + 1 + δ(q + 1).

Lemma 6.2.4. If δ ≤ q−1
2 , then W ≤ δ(q + 2).

Proof. It follows from Lemma 6.2.1 (e) that

δ+1
∑

i=2

bii ≤ 2

δ+1
∑

i=1

bi(i− 1) ≤ 2 · (q
3 − q2 − δ)(q + 1)δ +Wδ

q − δ

≤ 2(q3 − q2 − δ)(q + 1) + 2W =: c.

If B is the set of all lines not in L meeting exactly i lines of L for some i, with 2 ≤ i ≤ δ + 1, then it
follows that some line l of L meets at most bc/|L|c lines of B. If a point P of l lies only on lines of L∪B,
then P lies on at least q2 − δ lines of B (by Lemma 6.2.1 (f) since L contains no pencil). Hence, at most

⌊bc/|L|c
q2 − δ

⌋

points of l can have this property. As W ≤ q2 + 1 + δ(q + 1), then c ≤ 2(q4 + 1), so bc/|L|c < 2(q2 − δ)
and thus l has at most one such point P . Suppose the lines through P are z lines of M\L, y lines of L
and q2 + 1 − z − y lines of B. Then qz + y + (q2 + 1 − z − y) ≤ q2 + 1 + δ. This implies z = 0. Thus l
has x ≥ q points P0 that lie on some line meeting M only in P0 (in fact meeting no line of L except for
l). So these x points satisfy the inequality of Lemma 6.2.1 (d). As every point not on l is collinear with
at most one of these x points, it follows that

∑

P /∈l,P∈M
(w(P )− 1) ≤ xδq

x− 1
≤ δq +

δq

q − 1

= δ(q + 1) +
δ

q − 1
< δ(q + 1) + 1.

Hence
∑

P /∈l,P∈M(w(P )− 1) ≤ δ(q + 1).

As all but at most one point of l lie on a line that meets no other line of L, then these points are covered
exactly once. The at most one point on l that is contained in more than one line of L, is contained in at
most δ + 1 lines of L by Lemma 6.2.1 (f). Hence

∑

P∈l(w(P )− 1) ≤ δ, and therefore W ≤ δ(q + 2).

Lemma 6.2.5. If δ ≤ q−1
2 , then

b̃q+1 ≥ q3 + q − δ − (q3 + q2 − qδ − q + 1)δ

q − δ
.

Proof. As Q−(5, q) has (q2 + 1)(q3 + 1) lines, then

|L|q +
q+1
∑

i=1

b̃i(i− 1) = |L|(q + 1) +

q+1
∑

i=1

b̃ii− (q2 + 1)(q3 + 1)

= |M|(q2 + 1)− (q2 + 1)(q3 + 1)

= (q2 + 1)(q + 1)(q + δ)−W (q2 + 1).

≥ (q2 + 1)(q + 1)q − δ(q2 + 1),
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where we used W ≤ δ(q + 2). From Lemmas 6.2.1 (c) and (e) and Lemma 6.2.4, we have

(q − δ)
δ+1
∑

i=2

b̃i(i− 1) ≤ (q − δ)
δ+1
∑

i=2

bi(i− 1) ≤ (q3 − q2)(q + 1)δ + δ2.

Together this gives

(|L|+ b̃q+1)q ≥ (q2 + 1)(q + 1)q − δ(q2 + 1)− (q3 − q2)(q + 1)δ + δ2

q − δ
.

Using |L| = q2 + 1 + δ, the assertion follows.

Lemma 6.2.6. If δ < 0.381q, then there exists a hyperbolic quadric Q+(3, q) contained in M.

Proof. Count triples (l1, l2, g), where l1, l2 are skew lines of L and g 6∈ L is a line meeting l1 and l2 and
being completely contained in M. Then

|L|(|L| − 1)z ≥ b̃q+1(q + 1)q

where z is the average number of transversals contained in M but not in L of two skew lines of L. The
bound on b̃q+1 (cf. Lemma 6.2.5) together with the assumption in the lemma guarantees that z > δ.
Hence, we find two skew lines l1, l2 ∈ L such that δ+1 of their transversals are contained in M. The lines
l1 and l2 generate a hyperbolic quadric Q+(3, q) contained in Q−(5, q), denoted by Q+. If some point P
of Q+ is not contained in M, then the line on it meeting l1, l2 has two points in M and the second line
of Q+ on P has at least δ + 1 points in M. This is not possible (cf. Lemma 6.2.1 (a)). Hence, Q+ is
contained in M.

Lemma 6.2.7. If δ < 0.381q, then M contains a parabolic quadric Q(4, q).

Proof. The condition of this lemma implies the condition of Lemma 6.2.6, so we already know that
M contains a hyperbolic quadric Q+(3, q), denote this hyperbolic quadric by Q+. We also know that
|M| = |L|(q+1)−W ≥ θ3 − δ by Lemma 6.2.4. Hence, there exists a parabolic quadric Q(4, q), denoted
by Q, containing Q+, and containing

c ≥ |M| − (q + 1)2

q + 1
> q2 − q − 1

points of M other than those in Q+. Hence, c ≥ q2 − q. Each of the q3 − q − c holes of Q can be
perpendicular to at most δ of the c non-holes of Q \Q+ (cf. Lemma 6.2.1 (a)). Thus we find a non-hole
P in Q \Q+ that is perpendicular to at most

(q3 − q − c)δ

c
≤ qδ

holes of Q. The point P lies on q+1 lines of Q and if a line on P contains a hole, then it contains at least
q− δ holes (cf. Lemma 6.2.1 (b)). Thus, the number of lines of Q on P with a hole is at most qδ/(q− δ).
In other words, at least

q + 1− qδ

q − δ

of the lines of Q on P are contained in M. By the hypothesis in the present lemma, this number is larger
than δ. Thus, P lies on δ + 1 lines of Q that are contained in M; call this set of lines PM. These lines
meet Q+ in δ + 1 points of the conic C := P⊥ ∩Q+. Denote this set of δ + 1 points by C ′.

Consider now a hole R ∈ Q \ P⊥. Suppose that R⊥ ∩ Q+ ∩ C ′ = ∅. Each line of PM is hit by exactly
one line on R, and such a line cannot hit two lines of PM. Also, each line on R hits a point of Q+, and
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thus a line of L. Lines of L cannot meet two lines on R, so we find δ + 1 different lines of Q through R
containing at least 2 points of M, a contradiction. Hence, each hole R ∈ Q \ P⊥ is perpendicular with
at least one point of C ′.

This implies that Q contains at most (δ + 1)(q − 2)q holes not in P⊥. So Q contains in total at most
(δ + 1)(q − 2)q + (q − δ)(q − 1) holes. This number is less than 1

2q(q
2 − 1) and hence c ≥ |Q| − |Q+| −

1
2q(q

2 − 1) = 1
2q(q

2 − 1). Repeating the arguments, we may then assume that P is connected to at most
δ holes of Q, which in turn implies that all q + 1 lines on P of Q must be contained in M. Then every
hole of Q must be connected to at least q+1− δ and thus all points of the conic C. Apart from P , there
is only one such point in Q, so Q has at most one hole. Then clearly, it has no hole.

Lemma 6.2.8. If M contains a parabolic quadric Q(4, q), denoted by Q, and |L| ≤ q2 + q, then all lines
of L are contained in this parabolic quadric Q.

Proof. Suppose that some line l of L is not contained in Q. As L is minimal, then no other line of L
contains the point P := l ∩ Q. Then the q2 + q + 1 points of Q perpendicular to P must all be covered
by different lines of L. Hence, |L| ≥ q2 + q + 1.

The assumption in this subsection that L contains no pencil, implies that L contains a cover of Q(4, q)
for small enough δ. Hence, we may conclude with the following theorem.

Theorem 6.2.9. If L is a minimal generator blocking set of Q−(5, q), |L| = q2 +1+ δ, δ < 0.381q, then
L contains a pencil of q2 + 1 lines through a point or L contains a cover of an embedded Q(4, q).

There are no minimal covers of Q(4, q) of size smaller than q2 + 1 + 0.381q and q odd [66].

Corollary 6.2.10. If L is a minimal generator blocking set of Q−(5, q), |L| = q2+1+ δ, δ < 0.381q and
q odd, then L contains a pencil of q2 + 1 lines through a point.
If L is a minimal generator blocking set of Q−(5, q), |L| = q2 + 1 + δ, δ < 0.381q and q even, then L
contains a pencil of q2 +1 lines through a point or L contains a minimal cover of an embedded Q(4, q) of
size at least q2 + 1 + q+4

6 [72].

6.2.2 The case S = H(4, q2)

In this subsection, S = H(4, q2), so (s, t) = (q2, q3). We suppose that L contains no pencil and show in a
series of lemmas that this implies that δ ≥ q − 3.

The set M of covered points must block all the lines of H(4, q2). Therefore, |M| ≥ q5 + q2 (see [38]).
Using W = |L|(q2 + 1)− |M|, we find W ≤ q3 + 1 + δ(q2 + 1).

Lemma 6.2.11. If δ ≤ q − 1, then W ≤ δ(q2 + 3).

Proof. It follows from Lemma 6.2.1 (e) and δ ≤ q − 1 that

δ+1
∑

i=2

bii ≤ 2

δ+1
∑

i=1

bi(i− 1) ≤ 2(q5 − q3 − δ)(q2 + 1)δ + 2Wδ

q2 − δ

<
2(q5 − q3 − δ)(q2 + 1) + 2W

q
≤ 2(q7 + 1)

q
=: c

If B is the set of all lines not in L meeting exactly i lines of L for some i with 2 ≤ i ≤ δ + 1, then it
follows that some line l of L meets at most bc/|L|c lines of B. If a point P of l lies only on lines of L∪B,
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then P lies on at least q3 − δ lines of B (Lemma 6.2.1 (f)). Hence, at most

⌊bc/|L|c
q3 − δ

⌋

points of l can have this property. We have c = 2(q7+1)
q , so bc/|L|c < 3(q3 − δ) and thus l has at most

two such points. Suppose the lines through P are z lines of M\L, y lines of L and q3 + 1 − z − y lines
of B. Then qz + y + (q3 + 1− z − y) ≤ q3 + 1 + δ. This implies z = 0. Thus l has x ≥ q2 − 1 points P0

satisfying the inequality of Lemma 6.2.1 (d). It follows that

∑

P /∈l

(w(P )− 1) ≤ xδq2

x− 1
≤ δ(q2 + 1) +

2δ

q2 − 2
< δ(q2 + 1) + 1.

Hence,
∑

P /∈l(w(P )− 1) ≤ δ(q2 + 1).

As all but at most two points of l lie on a line that meets no other line of L, then these points are
covered exactly once. The at most two points on l that are contained in more than one line of L, are
contained in at most δ + 1 lines of L by Lemma 6.2.1 (f). Hence

∑

P∈l(w(P ) − 1) ≤ 2δ, and therefore
W ≤ δ(q2 + 3).

Lemma 6.2.12. If δ ≤ q − 1, then

b̃q2+1 ≥ q4 + q − δ − (q5 + 2q3 − 2qδ − q + 2)δ

q2 − δ
.

Proof. As H(4, q2) has (q3 + 1)(q5 + 1) lines, then

|L|q2 +
q2+1
∑

i=1

b̃i(i− 1) = |L|(q2 + 1) +

q2+1
∑

i=1

b̃ii− (q3 + 1)(q5 + 1)

= |M|(q3 + 1)− (q5 + 1)(q3 + 1)

= (q3 + 1)(q3 + q2 + δ(q2 + 1))−W (q3 + 1)

≥ (q3 + 1)(q + 1)q2 − 2δ(q3 + 1).

From Lemmas 6.2.1 (c) and (e) and Lemma 6.2.11, we have

(q2 − δ)
δ+1
∑

i=2

b̃i(i− 1) ≤ (q2 − δ)
δ+1
∑

i=2

bi(i− 1) ≤ (q5 − q3)(q2 + 1)δ + 2δ2.

Together this gives

(|L|+ b̃q2+1)q
2 ≥ (q3 + 1)(q + 1)q2 − 2δ(q3 + 1)− (q5 − q3)(q2 + 1)δ + 2δ2

q2 − δ
.

Using |L| = q3 + 1 + δ, the assertion follows.

Lemma 6.2.13. If L contains no pencil, then δ ≥ q − 3.

Proof. Assume that δ < q−3. Consider a Hermitian variety H(3, q2), denoted by H, contained in H(4, q2).
A cover of H contains at least q3 + q lines by [69], so H contains at least one hole P . Of all lines through
P in H(4, q2), q3−q are not contained in H. They must all meet a line of L, so at most q+1+δ lines of L
can be contained in H. Hence, at most |L|+(q+1+ δ)q2 = 2q3+ q2+1+ δ(q2+1) < (q2+1)(2q+ δ+1)
points of H are covered.
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polar space example dimension
Q(2n, q) πn−2Q(2, q) n+ 1

πn−3R, R a regulus n+ 1
Q−(2n+ 1, q) πn−2Q

−(3, q) n+ 2
πn−3C, C a cover of Q(4, q) n+ 2

H(2n, q2) πn−2H(2, q
2) n+ 1

Table 6.1: small examples in rank n

Now count triples (l1, l2, g), where l1, l2 are skew lines of L and g 6∈ L is a line meeting l1 and l2 and
being completely contained in M. Then

|L|(|L| − 1)z ≥ b̃q2+1(q
2 + 1)q2

where z is the average number of transversals contained in M but not in L of two skew lines of L. The
bound on b̃q2+1 together with the assumption of the lemma guarantees that z > 3q. So there exists
a Hermitian variety H′ = H(3, q2), containing z lines not belonging to L, completely contained in M,
giving more than (q2 + 1)(2q + δ + 1) points of H′ covered, a contradiction.

We have shown that δ ≥ q − 3 if L contains no pencil. Hence, we have proven the following result.

Theorem 6.2.14. If L is a minimal generator blocking set of H(4, q2), |L| = q3 + 1+ δ, δ < q − 3, then
L contains a pencil of q3 + 1 lines through a point.

6.3 Polar spaces of higher rank

In this section, we denote a polar space of rank r by Sr. We will characterise small generator blocking sets
of the polar spaces Q(2n, q), Q−(2n+1, q) and H(2n, q2). The parameters (s, t) refer in this section always
to (q, q), (q, q2), (q2, q3) respectively for the polar spaces Q(2n, q), Q−(2n + 1, q), H(2n, q2). These are
the parameters of the corresponding generalised quadrangles Q(4, q), Q−(5, q) and H(4, q2). We always
suppose that L is a generator blocking set of size |L| = t + 1 + δ and that Sn ∈ {Q(2n, q),Q−(2n +
1, q),H(2n, q2)}.
A minimal generator blocking set L of Sn can be constructed as a set of generators through a point P
that meet Sn−1 in a generator blocking set of Sn−1 of the same size, hence L is a cone over an example
in a polar space of the same type of rank n− 1. We give a short overview for the mentioned polar spaces
in Table 6.1, and we will prove that the examples in Table 6.1 are the smallest generator blocking sets.
To obtain these results, the following theorem will be proved, by induction on n.

Theorem 6.3.1. a) Let L be a minimal generator blocking set of Q(2n, q), with |L| = q + 1 + δ. If
q+1+ δ is smaller than the size of the smallest non-trivial blocking set of PG(2, q) and δ < q

2 , then
L contains a cone πn−2Q(2, q) or a cone πn−3R, with R a regulus.

b) Let L be a minimal generator blocking set of Q−(2n + 1, q), with |L| = q2 + 1 + δ. If δ < 0.381q,
then L contains a cone πn−2Q

−(3, q) or a cone πn−3C, C a cover of Q(4, q).

c) Let L be a minimal generator blocking set of H(2n, q2), with |L| = q3 + 1 + δ. If δ < q − 3, then L
contains a cone πn−2H(2, q

2).

Section 6.2 was devoted to the case n = 2 of Theorem 6.3.1 and this case serves as the induction basis.
The induction hypothesis is that if L is a minimal generator blocking set of size t + 1 + δ, with δ ≤ δ0,
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of Sn−1, then L contains one of the corresponding examples listed in Table 6.1 for Sn−1. The number δ0
can be derived from the case n = 2 in Theorem 6.3.1.

Call a point P of Sn a hole if it is not covered by a generator of L. If P is a hole, then P⊥ meets every
generator of L in an (n − 2)-dimensional subspace. In the polar space Sn−1, which is induced in the
quotient space of P by projecting from P , the projection of these (n−2)-dimensional subspaces induces a
generator blocking set L′, |L′| ≤ |L|. Applying the induction hypothesis, L′ contains one of the examples
of Sn−1 described in Table 6.1; we will denote this example by LP . Hence, the space on P containing the
(n− 2)-dimensional subspaces that are projected from P on the elements of LP , is a cone with vertex P
and base an example in Sn−1. We denote this space on P by SP .

Lemma 6.3.2. a) If a quadric πn−4Q
+(3, q) or πn−3Q(2, q) in PG(n, q) is covered by generators, then

for any hyperplane T of PG(n, q), at least q − 1 of the generators in the cover are not contained in
T .

b) If a quadric πn−4Q(4, q) or πn−3Q
−(3, q) in PG(n + 1, q) is covered by generators, then for any

hyperplane T , at least q2 − q of the generators in the cover are not contained in T .

c) If a Hermitian variety πn−3H(2, q
2) in PG(n, q2) is covered by generators, then for any hyperplane

T of PG(n, q2), at least q3 − q of the generators in the cover are not contained in T .

Proof. a) This is clear if T does not contain the vertex of the quadric (i.e. the subspace πn−4, πn−3

respectively). If T contains the vertex, then going to the quotient space of the vertex, it is sufficient
to discuss the cases Q(2, q) and Q+(3, q). The case Q(2, q) is degenerate but obvious, since any line
contains at most two points of Q(2, q). So suppose that C is a cover of Q+(3, q) ⊂ PG(3, q). Then
T is a plane. If T ∩Q+(3, q) contains lines, then it contains exactly two lines of Q+(3, q). Since at
least q + 1 lines are required to cover Q+(3, q), at least q − 1 lines in C do not lie in T .

b) Again, we only have to consider the case that T contains the vertex, and so it is sufficient to consider
the two cases Q−(3, q) and Q(4, q) in the quotient geometry of T . For Q−(3, q), the assertion is
obvious. Suppose finally that C is a cover of Q(4, q) ⊂ PG(4, q). Then T has dimension three. If
T ∩Q(4, q) contains lines at all, then T ∩Q(4, q) is a hyperbolic quadric Q+(3, q) or a cone over a
conic Q(2, q). Lines of Q(4, q) not contained in Q+(3, q) cover q points of Q(4, q)\Q+(3, q). Hence
at least q2 − 1 ≥ q2 − q lines are required to block the points of Q(4, q)\Q+(3, q). As a cone over a
conic Q(2, q) can be covered by q + 1 lines and since a cover of Q(4, q) needs at least q2 + 1 lines,
the assertion is obvious also in this case.

c) Now we only have to discuss the case H(2, q2). Since all lines of PG(2, q2) contain at most q + 1
points of H(2, q2), the assertion is obvious.

Lemma 6.3.3. a) Let S = Q(2n, q). If P is a hole and T an n-dimensional space π on P and in SP ,
then at least q− 1 generators of L meet SP in an (n− 2)-dimensional subspace not contained in T .

b) Let S = Q−(2n+ 1, q). If P is a hole and T an (n+ 1)-dimensional space π on P and in SP , then
at least q2 − q generators of L meet SP in an (n− 2)-dimensional subspace not contained in T .

c) Let S = H(2n, q2). If P is a hole and T an n-dimensional space π on P and in SP , then at least
q3 − q generators of L meet SP in an (n− 2)-dimensional subspace not contained in T .

Proof. This assertion follows by going to the quotient space of P , and using Lemma 6.3.2 and the induction
hypothesis of this section.



82 Chapter 6. Sets of generators blocking all generators in finite classical polar spaces

The different cases will be treated separately from now on, although the main idea remains the same.
We try to find a space containing a lot of elements of L. This will be done by starting with a point lying
in many elements of L.

6.3.1 The polar space H(2n, q2)

In this subsection S = H(2n, q2) and L is a minimal generator blocking set of S with |L| = q3 + 1 + δ,
with δ < q − 3. In this subsection we denote θr for the number of points in PG(r, q2).

Lemma 6.3.4. If an (n+1)-dimensional subspace U of PG(2n, q2) contains more than q+1+δ generators
of L, then L is a cone πn−2H(2, q

2).

Proof. First we show that U ∩ H(2n, q2) is covered by the generators of L. Assume not and let P be a
hole of U . If U ∩H(2n, q2) is degenerate, then its radical is contained in all generators of U , so P is not
in the radical of U ∩H(2n, q2). Hence, P⊥ ∩U has dimension n and thus SP ∩U has dimension at most
n. Lemma 6.3.3 shows that at least q3 − q generators of L meet SP in an (n − 2)-subspace that is not
contained in U . Hence, U contains at most q + 1 + δ generators of L. This contradiction shows that U
is covered by the generators of L.
The subspace U is an (n+1)-dimensional subspace containing generators of S, hence U∩S ∈ {πn−3H(3, q

2), πn−2H(2, q
2)}.

Case 1: U ∩ S = πn−2H(2, q
2).

A generator of L contained in U contains the vertex πn−2. If one of the q3 + 1 generators on πn−2 is
not contained in L, then at least q2 generators of L are required to cover its points outside of πn−2.
Hence, if x of the q3 + 1 generators on πn−2 are not contained in L, then |L| ≥ q3 + 1− x+ xq2. Since
|L| = q3+1+δ, with δ < q−3, this implies x = 0. So L contains the pencil of generators of πn−2H(2, q

2),
and by the minimality of L, it is equal to this pencil.

Case 2: U ∩ S = πn−3H(3, q
2).

All generators of L contained in U must contain the vertex πn−3. Assume that some point P of U ∩ S
does not lie on any generator of L contained in U . As all generators of L contained in U contain the
vertex πn−3, then P is not on this vertex. Hence, P⊥ ∩U ∩S is a pencil of q+1 generators g0, . . . , gq on
the subspace πn−2 = 〈P, πn−3〉. None of the generators gi is contained in L. Therefore, at least q2 + 1
generators of L are required to cover gi. One such generator of L may contain the vertex πn−2 and then
counts for each generator gi, but this still leaves at least (q+ 1)q2 + 1 generators in L necessary to cover
all the generators gi. But |L| < q3 + q2, a contradiction. Hence, U ∩ S is covered by generators of L
contained in U , but then in the quotient of the vertex of U ∩S, we see a cover of H(3, q2), which has size
at least q3 + q2 (see [69]). This is in contradiction with the maximum size for L, so this case does not
occur.

Lemma 6.3.5. If there exists a hole P that projects L on a generator blocking set containing a minimal
generator blocking set of Sn−1 that has a non-trivial vertex, then L is a cone πn−2H(2, q

2).

Proof. Let P be the hole that projects L, and denote the vertex in Sn−1 by α. Hence there exists a line
l on P in SP meeting at least q3 + 1 of the generators of L. We have l⊥ ∩ S = lSn−2. The number of
totally isotropic planes herein on l equals |Sn−2|.
Suppose that a generator g of L meets such a plane π on l in a line, then this line intersects l in a point
P ′ 6= P . But then l⊥ ∩ g has dimension n− 2, so θn−3 planes of Sn on l meet g in a line.

Consequently, we find a plane π meeting the vertex of SP only in l, and meeting at most m := |L| ·
θn−3/(|Sn−2| − λ) generators gi in a line, where λ denotes the number of lines in α through the point
l∩α. A calculation shows that m < 2 if n ≥ 3. Hence, from the at least q3+1 generators of L that meet
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l, at most one of them meets π in a line, and the at most δ generators of L that do not meet l can meet
π in at most one point. Hence, π contains a hole Q not on l.

At least q3 +1 generators of L meet SP in an (n− 2)-dimensional subspace, and the same is true for SQ.
Hence, at least 2(q3+1)−|L| = q3+1−δ generators of L meet both SP and SQ in an (n−2)-dimensional
subspace.

Call lQ the projection of l from Q. The q3 + 1 − δ generators of L meeting both SP and SQ in an
(n − 2)-dimensional space, all meet l in a point. If lQ is not contained in SQ, then all these q3 + 1 − δ
generators of L meet l in the same point X. If lQ is contained in SQ, it cannot be contained in the base
of LQ, since this is a Hermitian curve H(2, q2). Hence, lQ is a line meeting the vertex α′ of LQ and there
exists a line l′ 6= l in π connecting Q and a point of α′. The q3 + 1 − δ generators of L meeting both
SP and SQ in an (n − 2)-dimensional subspace also meet l′ in a point. At most one of these generators
meets π in π\l, so at least q3 − δ of these generators of L must meet in the common point X := l ∩ l′.
Hence, we have a point X being contained in at least q3 − δ generators of L.
Now consider a hole R not in the perp of X. Then SR meets at least q3 − 2δ of the generators on X in
an (n − 2)-subspace. These generators are therefore contained in T := 〈SR, X〉. Finally consider a hole
R′ not in T and not in the perp of X. Then at least q3 − 3δ > q+1+ δ of the generators that contain X
and are contained in T meet SR′ in an (n− 2)-subspace. These generators lie therefore in 〈SR′ ∩ T,X〉,
which has dimension n+ 1. Now Lemma 6.3.4 completes the proof.

Corollary 6.3.6. Theorem 6.3.1 (c) is true for H(2n, q2), n ≥ 3.

Proof. Theorem 6.2.14 guarantees that the assumption of Lemma 6.3.5 is true for Sn = H(2n, q2) and
n = 3. Theorem 6.3.1 (c) then follows from the induction hypothesis.

6.3.2 The polar space Q−(2n+ 1, q)

In this subsection S = Q−(2n+1, q) and L is a minimal generator blocking set of S with |L| = q2+1+ δ,
with δ < 0.381q.

Lemma 6.3.7. If an (n + 2)-dimensional subspace U of PG(2n + 1, q) contains more than q + 1 + δ
generators of L, then L is a cone πn−2Q

−(3, q) or a cone πn−3C, C a minimal cover of Q(4, q).

Proof. First we show that U ∩ Q−(2n + 1, q) is covered by the generators of L. Assume not and let P
be a hole of U ∩ Q−(2n + 1, q). If U ∩ Q−(2n + 1, q) is degenerate, then its radical is contained in all
generators of U , so P is not in the radical of U ∩Q−(2n+1, q). Hence, P⊥ ∩U has dimension n+1 and
thus SP ∩ U has dimension at most n+ 1. Lemma 6.3.3 shows that at least q2 − q generators of L meet
SP in an (n− 2)-subspace that is not contained in U . Hence, U contains at most q + 1+ δ generators of
L. This contradiction shows that U is covered by the generators of L.
The subspace U is an (n+2)-dimensional subspace containing generators of S, hence U∩S ∈ {πn−4Q

+(5, q), πn−3Q(4, q), πn

Case 1: U ∩ S = πn−2Q
−(3, q).

A generator of L contained in U contains the vertex πn−2. If one of the q2 + 1 generators on πn−2 is not
contained in L, then at least q generators of L are required to cover its points outside of πn−2. Hence, if x
of the q2+1 generators on πn−2 are not contained in L, then |L| ≥ q2+1−x+xq. Since |L| = q2+1+ δ,
with δ < q − 1, this implies x = 0. So L contains the pencil of generators of πn−2Q

−(3, q), and by the
minimality of L, it is equal to this pencil.

Case 2: U ∩ S = πn−3Q(4, q).
All generators of L contained in U must contain the vertex πn−3. We will show that the generators of L
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contained in U already cover U ∩ S; then L contains (by minimality) no further generator and thus L is
a cone πn−3C, C a minimal cover of Q(4, q).

Assume that some point P of U ∩S does not lie on any generator of L contained in U . As all generators
of L contained in U contain the vertex πn−3, then P is not on this vertex. Hence, P⊥ ∩U ∩S is a pencil
of q+1 generators g0, . . . , gq on the subspace πn−2 = 〈P, πn−3〉. None of the generators gi is contained in
L. Therefore, at least q+1 generators of L are required to cover gi. One such generator of L may contain
the vertex πn−2 and counts for each generator gi but this still leaves at least (q + 1)q + 1 generators in
L necessary to cover all the generators gi. But |L| < q2 + q, a contradiction.

Case 3: U ∩ S = πn−4Q
+(5, q).

As in Case 2, mutatis mutandis, we can show that all points of U ∩ S must be covered by generators of
L in U . But then in the quotient of the vertex of U ∩ S, we see a cover of Q+(5, q), which has size at
least q2 + q (see [38]). This is in contradiction with the assumed upper bound on |L|. So this case does
not occur.

Lemma 6.3.8. Suppose that C is a line cover of Q(4, q) with q2+1+ δ lines. Then each conic of Q(4, q)
and each line of Q(4, q) meets at most (δ + 1)(q + 1) lines of C.

Proof. If w(P )+ 1 is defined as the number of lines of C on a point P , then the sum of the weights w(P )
over all points P of Q(4, q) is δ(q + 1). Hence, a conic of Q(4, q) can meet at most (δ + 1)(q + 1) lines of
C, and the same holds for lines of Q(4, q).

Lemma 6.3.9. If there exists a hole P of Q−(2n + 1, q) that projects L on a generator blocking set
containing a minimal generator blocking set of Sn−1 that has a non-trivial vertex, then L is a cone
πn−2Q

−(3, q) or a cone πn−3C, C a minimal cover of Q(4, q).

Proof. Let P be the hole that projects L on an example with a vertex α. Hence, there exists a line l
on P in SP meeting at least q2 + 1 of the generators of L, and the vertex of SP equals 〈P, α〉. We have
l⊥ ∩ Sn = lSn−2. The number of totally isotropic planes herein on l equals |Sn−2|.
Suppose that a generator g of L meets such a plane π on l in a line, then this line intersects l in a point
P ′ 6= P . But then l⊥ ∩ g has dimension n− 2, so θn−3 planes of Sn on l meet g in a line.

Consequently, we find a plane π of Q(2n, q) through l meeting the vertex of SP only in l, and meeting
at most m := |L| · θn−3/(|Sn−2| − λ) generators gi in a line, where λ denotes the number of lines in α
through the point l ∩ α. A calculation shows that m < 2 if n ≥ 3. Hence, from the at least q2 + 1
generators of L that meet l, at most one of them meets π in a line, and the at most δ generators of L
that do not meet l can meet π in at most one point. Hence, π contains a hole Q not on l.

At least q2 +1 generators of L meet SP in an (n− 2)-dimensional subspace, and the same is true for SQ.
Hence, at least 2(q2+1)−|L| = q2+1−δ generators of L meet both SP and SQ in an (n−2)-dimensional
subspace.

Call lQ the projection of l from Q. The q2 + 1 − δ generators of L meeting both SP and SQ in an
(n − 2)-dimensional space, all meet l in a point. If lQ is not contained in SQ, then all these q2 + 1 − δ
generators of L meet l in the same point X. Suppose lQ is contained in SQ. The base of LQ is an elliptic
quadric Q−(3, q) or a parabolic quadric Q(4, q). If lQ is contained in the base, then lQ must be a line of
Q(4, q) meeting at least q2 + 1− δ lines of the cover of Q(4, q), a contradiction with Lemma 6.3.8, since
q2 +1− δ > (δ+1)(q+1) if δ ≤ 0.381q. Hence, lQ cannot be contained in the base and in both cases for
LQ, lQ contains a point of the vertex of LQ.

So the projection of L from Q contains an example with a non-trivial vertex α′ and there exists a line
l′ 6= l in π connecting Q and a point of α′.
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The q2 + 1 − δ generators of L meeting both SP and SQ in an (n − 2)-dimensional subspace also meet
l′ in a point. At most one of these generators meets π in π\l, so at least q2 − δ of these generators of L
must meet in the common point X := l ∩ l′. Hence, we have a point X being contained in at least q2 − δ
generators of L.
Now consider a hole R not in the perp of X. Then SR meets at least q2 − 2δ of the generators on X in
an (n − 2)-subspace. These generators are therefore contained in T := 〈SR, X〉. Finally consider a hole
R′ not in T and not in the perp of X. Then at least q2 − 3δ > q+1+ δ of the generators that contain X
and are contained in T meet SR′ in an (n− 2)-subspace. These generators lie therefore in 〈SR′ ∩ T,X〉,
which has dimension n+ 2. Now Lemma 6.3.7 completes the proof.

Hence, we will assume from now on that S = Q−(7, q), and that every hole sees in its quotient the
example that is a minimal cover of Q(4, q). As n = 3, then L is a set of planes.

Lemma 6.3.10. If a hyperplane T contains more than q + 1 + 3δ elements of L, then L is a cone
π1Q

−(3, q) or a cone π0C, C a minimal cover of Q(4, q).

Proof. Denote by L′ the set of the generators of L that are contained in T . If P is a hole outside of T ,
then SP meets all except at most δ planes of L in a line, and hence more than q + 1+ 2δ of these planes
are contained in T . Here SP is a cone with vertex P over SP ∩ T , and SP ∩ T has dimension 4. As all
but at most δ of the planes of L meet SP in a line, then this is true for at least |L′| − δ planes of L′.

Note that P⊥ ∩ Q−(7, q) = PQ−(5, q), and we may suppose that Q−(5, q) ⊆ T . The intersection of SP

with T is a parabolic quadric Q(4, q) contained in Q−(5, q). Consider any point Q ∈ (Q−(7, q) ∩ P⊥) \
(SP ∪ Q−(5, q)). Clearly W := Q⊥ ∩ T ∩ SP meets Q−(7, q) in an elliptic quadric Q−(3, q). There are
(q4− q2)(q− 1) such points Q, and at most (q2− q)(q+1) of them are covered by elements of L, since we
assumed that q+1+3δ elements of L are contained in T . So at least q5 − q4 − 2q3 + q2 + q > 0 points of
(Q−(7, q)∩P⊥)\ (SP ∪Q−(5, q)) are holes and have the property that W := Q⊥∩T ∩SP meets Q−(7, q)
in an elliptic quadric Q−(3, q). As before, SQ ∩T has dimension four and meets at least |L′|− δ planes of
L′ in a line. Then at least |L′| − 2δ planes of L′ meet SP ∩ T and SQ ∩ T in a line. As SP ∩SQ ∩ T ⊆ W
does not contain totally isotropic lines, it follows that these |L′| − 2δ planes of L′ are contained in the
subspace H := 〈SP ∩ T, SQ ∩ T 〉.
We have W ∩Q−(7, q) = Q−(3, q), so the |L′|−2δ lines we see in the quotient of P all meet this Q−(3, q).
Now P sees a cover of a parabolic quadric Q(4, q) with at most q2+1+ δ lines. Then |L′|−2δ > q+1+ δ
lines of the cover must meet more than q+1 points of this Q−(3, q). It follows that SQ∩T contains more
than q + 1 points of the Q−(3, q) in W and hence W ⊆ SQ. Then SP ∩ T and SQ ∩ T meet in W , so the
subspace H they generate has dimension five. As |L′| − 2δ > q+1+ δ planes of L lie in H, Lemma 6.3.7
completes the proof.

Lemma 6.3.11. Suppose that L is a minimal generator blocking set of size q2 + 1 + δ of Q−(7, q),
δ ≤ 0.381q. If there exists a hole P that projects L on a generator blocking set containing a cover of
Q(4, q), then L is one of the examples in Table 6.1.

Proof. Consider a hole P . Then SP contains a cone with vertex P over a parabolic quadric Q(4, q). In
the projection, we see a cover of this base Q(4, q). Take a point S0 of this base Q(4, q) being on just one
line of the cover. Then the perp of this point meets a Q(4, q) in a cone S0Q(2, q) and this cone meets at
least q2 + 1 lines of the cover.

The cover of the base Q(4, q) corresponds to a set C of lines π ∩ SP , with π a plane of L. Thus the line
h = PS0 of SP on P meets exactly one line of C and such that h⊥ ∩ SP , which contains a cone hQ(2, q),
meets at least q2 + 1 lines of C. Choose a hole Q on h with Q 6= P . From the q2 + 1 lines in C that meet
hQ(2, q), at least q2+1− δ come from planes π ∈ L with π∩Q⊥ ⊂ SQ. For these lines, their intersection
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with hQ(2, q) lies in SQ. Thus either SP ∩ SQ = h⊥ ∩ SP or SP ∩ SQ is a 3-subspace of h⊥ ∩ SP that
contains a cone S0Q(2, q).

In the second case, the vertex S0 must be the point Q (as Q ∈ SQ ∩ SP ); but then from Q we see a
cover of Q(4, q) containing a conic meeting at least q2 + 1− δ of the lines of the cover. In this situation,
Lemma 6.3.8 gives q2 + 1− δ ≤ (δ + 1)(q + 1), that is δ > q − 3, a contradiction.

Hence, SP ∩ SQ has dimension four, so T = 〈SP , SQ〉 is a hyperplane. At least q2 planes of L meet SP

in a line that is not contained in SP ∩ SQ. At least q
2 − δ of these also meet SQ in a line and hence are

contained in T . It follows from δ < q/2 that q2 − δ > q + 1 + 3δ, and then Lemma 6.3.10 completes the
proof.

Corollary 6.3.12. Theorem 6.3.1 (b) is true for Q−(2n+ 1, q), n ≥ 3.

Proof. Theorem 6.2.9 guarantees that for Sn = Q−(7, q) and n = 3 the assumption of either Lemma 6.3.9
or Lemma 6.3.11 is true. Hence Theorem 6.3.1 (b) follows for n = 3. But then the assumption of
Lemma 6.3.9 is true for Sn = Q−(2n + 1, q) and n = 4, and then Theorem 6.3.1 (b) follows from the
induction hypothesis.

Remark 6.3.13. There are no minimal covers of Q(4, q) of size smaller than q2 + 1+ 0.381q and q odd.
So Theorem 6.3.1 (b) implies that L is a cone πn−2Q

−(3, q) or πn−3S, with S a spread of a Q(4, q) if q
is even. If q is odd L has to be a cone πn−2Q

−(3, q), since Q(4, q) has no spread in this case.

6.3.3 The polar space Q(2n, q)

Suppose now that L is a generator blocking set of Q(2n, q), n ≥ 3, of size q+1+ δ. Recall that LR is the
minimal generator blocking set of Q(2n− 2, q) contained in the projection of L from a hole R. So when
n = 3 and S = Q(6, q), it is possible that LR is a generator blocking set of Q(4, q) with a trivial vertex.
We start with this case, so we suppose that for any hole R, LR has trivial vertex.

So let R be a hole such that LR is a regulus. Let gi, i = 1, . . ., q+1+ δ, be the elements of L and denote
by li the intersection of R⊥ ∩ gi. Without loss of generality we can assume that the lines l1, . . . , lq+1 are

projected onto the lines of the regulus LR, which we call l̃i, for i = 1, . . . , q+1. The opposite lines of the
regulus LR are called m̃i, i = 1, . . . , q+1. We suppose that δ <min{ q−1

2 , δ0}, with δ0 such that q+1+ δ0
is the size of the smallest non-trivial blocking set of PG(2, q).

Lemma 6.3.14. Suppose that m̃j is a line of the opposite regulus and that 〈R, m̃j〉 is a plane not
containing a line li, i = q+2, . . . , q+1+ δ. Let B be the set of points that are the intersection of all the
lines li with 〈R, m̃j〉, then B contains a line.

Proof. We show that B is a blocking set in 〈R, m̃j〉. Assume that a line in 〈R, m̃j〉 is skew to B and take
a point R′ on this line. The projection of L from R′ contains one of the 2 minimal examples, but the
projection of 〈R, m̃j〉 is a line m which has at least q + 1 projected points of B but also a hole.

If the projection from R′ contains a pencil, then m cannot contain its vertex since it contains a hole, but
then it has at most δ + 2 intersection points with the pencil.

If the projection from R′ contains a regulus, then m cannot be contained in this regulus or its opposite
regulus, since these are both completely covered. But then it contains at most δ + 2 intersection points
with the projection.

So B is a blocking set in 〈R, m̃j〉 and by the assumption on δ, it contains a line.
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We denote the line contained in the set B by mj if it is projected on m̃j . Now we consider again the hole
R and the regulus in the projection LR.

Lemma 6.3.15. The regulus contained in the projection LR arises from a regulus of lines contained in
planes of L.

Proof. At least q+1− δ planes 〈R, m̃j〉 do not contain a line li, so we have at least q+1− δ transversals
mi to the lines of L ∩ R⊥. Suppose that l1, l2, . . . , lq+1 are transversal to m1. Since δ ≤ q−1

2 , a second

transversal m2 has at least q+3
2 common transversals with m1. So we find lines l1, . . . , l q+3

2

lying in the

same 3-space 〈m1,m2〉. A third transversal mi has at least 2 common transversals with m1 and m2, so
all transversals mi lie in 〈m1,m2〉. Suppose that we find at most q lines l1, . . . , lq which are transversal
to m1, . . . ,mq+1−δ. Then the remaining points on the lines mi must be covered by the remaining lines
li, but q + 1− δ > δ + 1, so we find a regulus of lines l1, . . . , lq+1 in planes of L giving a complementary
regulus in the planes 〈R, m̃i〉.

Lemma 6.3.16. Suppose that there is a second hole R′ such that LR′

is a different regulus. Then the
set L is a cone PR, P a point and R a regulus.

Proof. By the previous lemma we have a regulus R of q + 1 lines l1, . . . , lq+1 contained in the planes of
L. Consider a second hole R′ such that R′ ∈ Q(6, q)\R⊥, giving a second regulus in the planes of L. The
lines of these two reguli lie in the planes of L, so these 2 reguli intersect at least q+1− δ > q+3

2 common

planes, since δ < q−1
2 . In at most one plane the intersection line can be the same. These 2 reguli define

a 4- or a 5-space. In the case of a 4-space this 4-space contains a hyperbolic quadric and planes of L,
so it intersects Q(6, q) in a cone PQ+(3, q). Consider the planes Pl1, . . . , P lq+1. At least q+1

2 of these
planes contain a line of the second regulus and hence are planes of L. Suppose some plane Pli is not a
plane of L. We find a hole Q in this plane which projects at least q+1

2 lines of L∩Q⊥ onto the same line.
The projection must contain one of the 2 minimal examples in Q(4, q), so at least q + 1 distinct lines, a
contradiction since δ < q−1

2 .

A 5-space can give a cone PQ(4, q) or a hyperbolic quadric Q+(5, q). In the first case we immediately
have the desired example using the same arguments as for the cone PQ+(3, q) in the previous case. So
assume that the planes lie in a hyperbolic quadric Q+(5, q). Then half of the planes lie in the same
equivalence class and so intersect mutually in a point. We can assume that π1 and π2 intersect in a point
P .

We have at least q+1
2 planes π1, . . . , π q+1

2

of L containing different lines of both reguli. Both reguli span

a 3-space. The planes π3, . . . , π q+1

2

contain a line of both reguli and so lie in the space spanned by these

reguli. Hence, π3, . . . , π q+1

2

⊂ 〈π1, π2〉. Hence, we find q+1
2 planes through P .

So P lies on at least q+1
2 planes of L which lie in a cone PQ+(3, q). Using again the same arguments as

before proves the assertion.

From now on, we assume that L is a minimal generator blocking set of Q(2n, q), n ≥ 3, of size q2 +1+ δ,
and that there exists always a hole R such that LR has a non-trivial vertex of dimension n− 3.

Lemma 6.3.17. If an (n+1)-dimensional subspace U of PG(2n, q) contains more than δ+2 generators
of L, then L is a cone πn−2Q(2, q) or a cone πn−3R, R a regulus.

Proof. First we show that U ∩ Q(2n, q) is covered by the generators of L. Assume not and let P be a
hole of U ∩ Q(2n, q). If U ∩ Q(2n, q) is degenerate, then its radical is contained in all the generators
of U ∩ Q(2n, q), so P is not in the radical of U ∩ Q(2n, q). Hence, P⊥ ∩ U has dimension n and thus
SP ∩ U has dimension at most n. Lemma 6.3.3 (a) shows that at least q − 1 generators of L meet SP in
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an (n − 2)-subspace that is not contained in U . Hence, U contains at most δ + 2 generators of L. This
contradiction shows that U is covered by the generators of L.
The subspace U is an (n+1)-dimensional subspace containing generators of S, hence U∩S ∈ {πn−3Q

+(3, q), πn−2Q(2, q)}.
Case 1: U ∩ S = πn−2Q(2, q).
A generator of L contained in U contains the vertex πn−2. If one of the q + 1 generators on πn−2 is not
contained in L, then at least q generators of L are required to cover its points outside of πn−2. Hence, if
x of the q+1 generators on πn−2 are not contained in L, then |L| ≥ q+1−x+xq. Since |L| = q+1+ δ,
with δ < q−1

2 , this implies x = 0. So L contains the pencil of generators of πn−2Q(2, q), and by the
minimality of L, it is equal to this pencil.

Case 2: U ∩ S = πn−3Q
+(3, q).

All generators of L contained in U must contain the vertex πn−3. We will show that the generators of L
contained in U already cover U ∩ S; then L contains (by minimality) no further generator and thus L is
a cone πn−3Q

+(3, q).

Assume that some point P of U ∩S does not lie on any generator of L contained in U . As all generators
of L contained in U contain the vertex πn−3, then P is not on this vertex. Hence, P⊥ ∩U ∩S is a pencil
of two generators g0, g1 on the subspace πn−2 = 〈P, πn−3〉. None of the two generators gi is contained
in L. Therefore, at least q + 1 generators of L are required to cover gi. One such generator of L may
contain the vertex πn−2 and counts for both generators gi but this still requires at least 2q+1 generators
in L to cover all the generators gi. But |L| < 2q, a contradiction.

A nice point is a point of Q(2n, q) that lies in at least q − δ elements of L.

Lemma 6.3.18. Let R be a hole. Call α the vertex of LR. Then there exists a nice point N , on every
line through R meeting α.

Proof. Let l be a line on R projecting to a point of α, and consider the planes of Q(2n, q) on l We have
l⊥ ∩ Sn = lSn− 2. The number of singular planes herein on l equals |Sn− 2| = θ2n−5.

Suppose that a generator g of L meets such a plane π in a line, then this line intersects l in a point
R′ 6= R. But then l⊥ ∩ g has dimension n − 2, so θn−3 planes of Sn on l meet g in a line. Consider
now an element of L not meeting the line l and meeting two planes on l in the points P and P ′. The
line l projects the line PP ′ on a line of Q(2n− 4, q). Since this space has generators of dimension n− 3,
we conclude that an element of L meets at most θn−3 planes on l in a point. Hence, we find a plane π,
meeting the vertex of SR only in l, and meeting at most m := |L| · θn−3/(|Q(2n − 4, q)| − λ) generators
gi, where λ denotes the number of lines through a point of α. An easy calculation shows that m < 2 if
n ≥ 3. This implies that there exists a plane π on l meeting at most one element of L, in a point or in a
line different from l. Call v this unique element. It is clear that π contains a second hole Q not on l. If
v ∩ π is a point P , choose Q such that P does not ly on QR.

Call lQ the projection of l from Q. The generator blocking set LQ has (possible trivial) vertex α′. It is
not possible that lQ lies in α′ since then all elements of L meeting SQ in an (n−2)-dimensional subspace,
would meet π in a line, a contradiction. The base of LQ is either a conic Q(2, q) or a hyperbolic quadric
Q+(3, q). So suppose now that lQ is contained in Q+(3, q). We see a regulus R in LQ, and lQ meets at
least q− δ lines of LQ in a point, so lQ is a line of the opposite regulus of R. If the element v∩π is a line,
it is projected from Q onto lQ. But the projection RQ of R from Q must also be covered by an element
of LQ which lies in the opposite regulus of lQ; so RQ is also covered by the projection of an element of
L\{v}. Hence, the line 〈R,Q〉 must meet an element of L\{v} in a point, a contradiction. So lQ is a line
spanned by a point in α′ and a point in the base of the minimal generator blocking set in the projection
from Q. This also implies that α′ is non-trivial. Consider the line l′ 6= l in π connecting Q and a point
of α′. The q+1− δ generators meeting both SR and SQ in an (n− 2)-dimensional subspace also meet l′
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in a point. At most one of these generators meets π in π\l, so at least q − δ of the generators of L must
meet in the common point X := l ∩ l′. This point X is the desired nice point.

Corollary 6.3.19. If R is a hole and N ∈ R⊥ is a nice point, then N lies in the vertex of SR.

Proof. A nice point lies on q − δ generators of L and at least q − 2δ ≥ 2 of them must belong to LR. As
two elements of LR necessarily meet in a point of the vertex of SR, the assertion follows.

Lemma 6.3.20. Let n ≥ 4. If β denotes the subspace generated by all nice points, then dim(β) ≥ n− 3.

Proof. Suppose that R is a hole. If n ≥ 4, then by the induction hypothesis, for a hole R the vertex of
LR has dimension at least n − 4. Hence, using Lemma 6.3.18, the nice points generate a subspace γ of
dimension at least n−4. Suppose that dim(γ) = n−4, then dim(γ⊥) = n+3 < 2n, and so we find a hole
P 6∈ γ⊥. Consider this hole P , then the same argument gives us a subspace γ′ spanned by nice points in
P⊥ of dimension at least n− 4, different from γ. So dim(β) ≥ n− 3.

Lemma 6.3.21. There exists a generator g on the vertex of SR such that g meets exactly one element
of L in an (n − 2)-dimensional subspace and such that all other elements of L do not meet g or meet g
only in points of the vertex of SR.

Proof. If n = 3 then we know that there is at least one hole R for which the vertex of LR has dimension
n− 3. If n ≥ 4, we project from a hole R lying in the perp of the (n− 3)-dimensional subspace β of nice
points of Lemma 6.3.20, so R ∈ β⊥. Hence, the vertex of SR is the subspace 〈R, πn−3〉, with πn−3 the
vertex of LR. Consider only the (n − 2)-dimensional intersections πi of the elements of L and R⊥. At
least q+1 of these are projected from R on a generator of Q(2n− 2, q) through πn−3, so at least q+1 of
these intersections πi intersect 〈R, πn−3〉 in an (n− 3)-dimensional subspace. So every generator through
〈R, πn−3〉 contains at least one of the spaces πi. If on the other hand a space πi does not lie in a generator
through 〈R, πn−3〉, then it either intersects at most one generator in points outside 〈R, πn−3〉 (and this
intersection can have dimension n − 2), either it intersects only in 〈R, πn−3〉, but this intersection has
dimension at most n − 3 since R is a hole. Since there are at most δ spaces πi left, we find a suitable
generator g.

Lemma 6.3.22. There exists an (n− 3)-dimensional subspace contained in at least q elements of L.

Proof. Call M := 〈R, πn−3〉 the vertex of SR, with πn−3 the vertex of LR. Denote the elements of L
intersecting SR in an (n− 2)-dimensional subspace by πi. By Lemma 6.3.21, we find a generator g on M
intersected by a unique element of L in an (n− 2)-dimensional subspace, denoted by π1, and intersected
by further elements πi of L in at most (n− 3)-dimensional subspaces contained in M . So we find a hole
Q 6= P , Q ∈ g \M .

Clearly, at least q− δ elements of L that meet SR in an (n−2)-dimensional subspace, also meet SQ in an
(n−2)-dimensional subspace and are projected on elements of LQ. Consider now the hole Q, and suppose
that LQ is a cone πn−4R, R a regulus. The subspace π1 is projected from Q on a subspace π̃1 not in LQ,
since π̃1 meets at least q − δ of the spaces πi, i 6= 1, in an (n − 3)-dimensional space, which has larger
dimension than the vertex of LQ. Hence, π̃1 meets the q + 1 elements of LQ in different (n − 3)-spaces
and is completely covered. So the projection of R from Q is covered by elements of LQ, and hence, the
line l = 〈R,Q〉 must meet an element of L \ {π1}, a contradiction. So LQ is a cone π′

n−3Q(2, q).

It follows that π̃1 ∈ LQ, so π′
n−3 ⊂ π̃1, and π1 and M are projected from Q on π̃1. Before projection

from R, the elements πi meet M in (n− 3)-dimensional subspaces contained in M .

The subspace π′
n−3 lies in the projection from Q of elements of L meeting 〈π′

n−3, Q〉 in an (n − 3)-
dimensional subspace. But the choice of g implies that there is only a unique element of L meeting
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Polar space Lower bound
Q−(2n+ 1, q) n ≥ 3 : q2 + 0.381q + 1
Q+(4n+ 3, q) q ≥ 7 : 2q + 1

Q(2n, q) n ≥ 3 : q + 1 + δ0, the size of the smallest non-trivial
blocking set in PG(2, q) or δ0 ≤ q/2

W2n+1(q) q ≥ 5 and n ≥ 2 : 2q + 1
H(2n, q2) n ≥ 3 : q3 + q − 2

H(2n+ 1, q2) q ≥ 13 and n ≥ 2 : 2q + 3

Table 6.2: Bounds on the size of small maximal partial spreads

〈π′
n−3, Q〉 in an (n− 3)-dimensional subspace and in points outside M (the element meeting g in π1), so,

at least q other elements of L intersect M in the same (n− 3)-dimensional subspace.

Lemma 6.3.23. Suppose that L is a minimal generator blocking set of size q+1+ δ of Q(2n, q), δ ≤ δ0.
If there exists a hole P that projects L on a generator blocking set containing a minimal generator blocking
set of Q(2n − 2, q) that has a non-trivial vertex, then L is a cone πn−2Q(2, q) or a cone πn−3R, R a
regulus.

Proof. By Lemma 6.3.22, we can find an (n− 3)-dimensional subspace α of Q(2n, q) that is contained in
at least q elements of L. Consider now a hole H 6∈ α⊥. Then H⊥ ∩ α⊥ is an (n + 1)-dimensional space
containing at least q − δ intersections of H⊥ with elements of L on α through the (n − 4)-dimensional
subspace H⊥ ∩ α. Since SH is (n+ 1)-dimensional, these q − δ (n− 2)-dimensional subspaces lie in the
n-dimensional space SH ∩ α⊥. Hence, we find in the (n + 1)-dimensional space 〈α, SH ∩ α⊥〉 at least
q − δ > δ + 2 elements of L. Lemma 6.3.17 assures that L is one of the examples listed in Table 6.1.

Lemma 6.3.24. Theorem 6.3.1 (a) is true for Q(2n, q), n ≥ 3.

Proof. Proposition 6.1.1 guarantees that for Q(2n, q) and n = 3 the assumption of either Lemma 6.3.16
or Lemma 6.3.23 is true. Hence Theorem 6.3.1 (a) follows for n = 3. But then the assumption of
Lemma 6.3.23 is true for Q(2n, q) and n = 4, and then Theorem 6.3.1 (a) follows from the induction
hypothesis.

The results of Theorem 6.3.1 imply an improvement of the lower bound on the size of maximal partial
spreads in the polar spaces Q−(2n + 1, q), Q(2n, q) and H(2n, q2). A maximal partial spread of a polar
space S is also a generator blocking set, since if this is not the case, there is a generator not blocked by
the partial spread, hence this generator can be added to the spread, which is in contradiction with the
maximality. The bounds stated in Theorem 6.3.1 are lower bounds on the size of maximal partial spreads
of Q−(2n + 1, q), Q(2n, q) and H(2n, q2). In Table 6.2, we present the known results on small maximal
partial spreads of polar spaces. The results for Q+(2n+ 1, q), W2n+1(q) and H(2n+ 1, q2) are proved in
[67].
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A Nederlandstalige samenvatting

In deze thesis bestuderen we een aantal structuren uit de eindige meetkunde. We beschouwen minihypers
die verwant zijn met lineaire codes die de Griesmer grens bereiken, waarna we een aantal toepassingen
hiervan nader bekijken. Daarna bepalen we de parameters van de functionele codes die een specifieke
klasse van lineaire codes vormen. Als laatste zoeken we naar de kleinste minimale voorbeelden van
generator blokkerende verzamelingen in polaire ruimten.

In deze appendix geven we een samenvatting van dit onderzoek. Het is niet de bedoeling in detail te
treden en we geven ook geen bewijzen. De structuur van de engelse tekst is wel behouden.

A.1 Inleiding

We bestuderen objecten in de n-dimensionale projectieve ruimte PG(n, q) over het eindig veld GF(q).
We herhalen kort de belangrijkste definities en resultaten.

Variëteiten

Een kwadriek in PG(n, q), n ≥ 1, is een puntenverzameling die voldoet aan de volgende vergelijking:

n
∑

i,j=0

i≤j

aijXiXj = 0,

met niet alle aij gelijk aan nul.

Een Hermitische variëteit in PG(n, q2), n ≥ 1, is een puntenverzameling die voldoet aan de volgende
vergelijking:

n
∑

i,j=0

aijXiX
q
j = 0,

met niet alle aij gelijk aan nul en aqij = aji voor alle i, j = 0, 1, . . . , n.

Kwadrieken en Hermitische variëteiten duiden we in het vervolg aan met de term variëteit. Een variëteit
F in PG(n, q) is singulier als F door een transformatie kan geschreven worden in minder dan n + 1
coördinaten. De punten van een singuliere variëteit zijn de punten van een kegel πF met top een (n− r)-
dimensionale ruimte π en als basis een niet-singuliere variëteit F in een (r−1)-dimensionale ruimte scheef
aan π.
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De raakruimte van F aan een punt P ∈ F is de verzameling punten op de rechten door P die F enkel
in P snijden of volledig bevat zijn in F . Als F niet-singulier is, dan is de raakruimte een hypervlak dat
het raakhypervlak van F in P genoemd wordt, in een singulier punt van F is de raakruimte de volledige
ruimte PG(n, q). We noteren de raakruimte van F in P als TP (F).

Polaire ruimten

Definitie A.1.1. De eindige klassieke polaire ruimten zijn:

(i) De niet-singuliere kwadrieken in oneven dimensie, Q+(2n + 1, q), n ≥ 1, en Q−(2n + 1, q), n ≥ 2,
samen met de deelruimten erin bevat; dit zijn polaire ruimten van rang n+ 1 en n.

(ii) De niet-singuliere parabolische kwadriek in even dimensie, Q(2n, q), n ≥ 2, samen met de deel-
ruimten erin bevat; dit is een polaire ruimte van rang n.

(iii) De punten van PG(2n+1, q), n ≥ 1, samen met de totaal isotrope deelruimten van een niet-singuliere
symplectische polariteit van PG(2n+ 1, q); dit is een polaire ruimte van rang n+ 1.

(iv) De niet-singuliere Hermitische variëteit in PG(2n, q), samen met de deelruimten erin bevat, n ≥ 2
(respectievelijk, PG(2n + 1, q), n ≥ 1); dit is een polaire ruimte van rang n (respectievelijk rang
n+ 1).

Zij S een polaire ruimte van rang n, dan worden de deelruimten van S van dimensie n−1 ook generatoren
genoemd.

Definitie A.1.2. Een eindige veralgemeende vierhoek VV van de orde (s, t) is een punt-rechte meetkunde
S=(P, B, I), P en B disjuncte verzamelingen, I ⊂ (P × B) ∪ (B × P), waarbij I voldoet aan de volgende
axioma’s:

(i) Elk punt is incident met 1 + t rechten (t > 1) en twee verschillende punten zijn incident met ten
hoogste 1 gemeenschappelijke rechte.

(ii) Elke rechte is incident met 1+ s punten (s > 1) en twee verschillende rechten zijn incident met ten
hoogste 1 gemeenschappelijk punt.

(iii) Als x een punt is en L een rechte niet incident met x, dan bestaat er een uniek paar (y,M) ∈ P ×B,
zodat x I M I y I L.

De natuurlijke getallen s en t zijn de parameters van de veralgemeende vierhoek S en S is een veralge-
meende vierhoek van orde (s, t). Wanneer s = t, dan is S een veralgemeende vierhoek van de orde s. We
merken tenslotte op dat eindige klassieke polaire ruimten van rang 2 veralgemeende vierhoeken zijn.

Blokkerende verzamelingen

Een blokkerende verzameling in PG(2, q) is een puntenverzameling B in PG(2, q) die elke rechte snijdt. Een
blokkerende verzameling die een rechte bevat, noemen we triviaal. De kleinste niet-triviale blokkerende
verzameling is een Baer deelvlak met grootte q +

√
q + 1, die enkel bestaat als q een kwadraat is. De

grootte van de kleinste bestaande niet-triviale blokkerende verzameling van PG(2, q) wordt aangeduid
met q + εq + 1.

Lineaire codes

Een lineaire code C over GF(q) is een deelruimte van V(n, q). Door de definitie is een lineaire combinatie
van twee codewoorden ook een codewoord. Beschouw twee codewoorden x en y. De (Hamming) afstand
d(x, y) wordt gedefinieerd als het aantal posities waarin x en y verschillen. De minimum afstand d(C)
van een code C is dan het minimum van alle afstanden tussen twee verschillende codewoorden. Het
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gewicht van een codewoord x is het aantal posities waarin x verschillend is van nul. Het gewicht w(C)
van een code C is het minimum van de gewichten van de niet-nul codewoorden. Voor een lineare code
geldt w(C) = d(C).

Een karakteriserings resultaat van minihypers

Definitie A.1.3. (Hamada and Tamari [53, 55]) Een {f,m;n, q}-minihyper is een koppel (F,w),
waarbij F een deelverzameling is van de puntenverzameling van PG(n, q) en w een gewichtsfunctie is
w : PG(n, q) → N : P 7→ w(P ), die voldoet aan

1. w(P ) > 0 ⇔ P ∈ F ,

2.
∑

P∈F w(P ) = f ,

3. min{∑P∈H w(P )|H is een hypervlak} = m.

We geven nog een belangrijk resultaat over minihypers dat we vaak zullen gebruiken.

Stelling A.1.4. [44] Een {δθµ, δθµ−1;n, q}-minihyper F , met q > 16 een kwadraat en δ < q5/8/
√
2 +

1, 2µ+1 6 n, is de unie van onderling disjuncte µ-dimensionale ruimten en Baer deelmeetkundes PG(2µ+
1,
√
q).

A.2 Minihypers

Het doel is om een karakterisering van {∑s
i=0 εiθi,

∑s
i=0 εiθi−1;n, q}-minihypers, met s = 1 te bekomen.

Zolang
∑

i εi = h <
√
q + 1 is de minihyper de unie van ε0 punten, ε1 rechten, · · · , εs (s)-dimensionale

ruimten die onderling disjunct zijn [9]. Ferret en Storme verbeterden dit resultaat waarbij de minihyper
nu ook één Baer deelmeetkunde kan bevatten. Ons doel is om dit resultaat te verbeteren en de minihypers
te karakteriseren die meer dan één Baer deelmeetkunde kunnen bevatten.

We beschouwen dus een {ε1(q+1)+ ε0, ε1;n, q}-minihyper. De karakterisering van die minihyper gebeurt
via inductie op de dimensie van de ruimte PG(n, q) waarin de minihyper bevat is. We willen niet gewogen
minihypers karakteriseren maar door de inductie is het noodzakelijk om in de eerste stap ook een klein
aantal gewogen punten toe te laten.

Onderstel dat F een {ε1(q + 1) + ε0, ε1; 3, q}-minihyper is met het totaal gewicht van de meervoudige

punten hoogstens gelijk aan
ε21
q en ε1 + ε0 = η(

√
q− q1/6) ≤ q7/12

2 − q1/4

2 en η < q1/12

2 . De argumenten om
deze minihyper te karakteriseren gaan als volgt.

We kunnen de rechten van F verwijderen uit de minihyper, dus we kunnen onderstellen dat F geen
rechten bevat. Neem een punt R dat niet tot de minihyper F behoort. Als we F projecteren vanuit
R, krijgen we een gewogen ε1-blokkerende verzameling B in het vlak. Als B geen rechte bevat, geven
resultaten op blokkerende verzamelingen een bovengrens op ε1. De minihyper F met die bovengrens op
ε1 is al gekarakteriseerd, dus we moeten enkel het geval onderzoeken dat B rechten bevat. Stel l is zo’n
rechte. Het vlak 〈R, l〉 moet een Baer deelvlak bevatten en R ligt op een rechte die een Baer deelrechte
hiervan bevat. We kunnen een punt R kiezen dat op weinig secanten van F ligt. Doordat elke rechte van
B leidt tot een rechte door R die een Baer deelrechte bevat, vinden we een Baer deelrechte die bevat is

in minstens ε1
2η2 − q1/6

4η2 Baer deelvlakken van F . Nemen we een tweede dergelijk punt R′ dan vinden we
weer zo’n Baer deelrechte. We tonen aan dat een zorgvuldig gekozen Baer deelvlak behorende bij R een
Baer deelvlak behorende bij R′ snijdt in een Baer deelrechte. Deze twee Baer deelvlakken spannen een
Baer deelmeetkunde PG(3,

√
q) op bevat in F . Dit geeft de volgende stelling.

Stelling A.2.1. Onderstel F is een gewogen {ε1(q + 1) + ε0, ε1; 3, q}-minihyper, met ε1 + ε0 = η(
√
q −

q1/6) ≤ q7/12

2 − q1/4

2 en met het totale gewicht van de meervoudige punten hoogstens gelijk aan
ε21
q , dan
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is F de som van A rechten, B gëısoleerde Baer deelmeetkundes PG(2,
√
q) en C Baer deelmeetkundes

PG(3,
√
q), met A+B + C(

√
q + 1) = ε1, en ε0 −B

√
q punten.

Om de karakterisering in algemene dimensies te bewijzen projecteren we de minihyper F vanuit een punt
dat op weinig secanten ligt. De projectie van F is dan een minihyper in een hypervlak. Door de inductie
hypothese toe te passen, krijgen we het volgende resultaat.

Stelling A.2.2. Onderstel F is een niet-gewogen {ε1(q + 1) + ε0, ε1;n, q}-minihyper, waarbij ε1 + ε0 =

η(
√
q−q1/6) ≤ q7/12

2 − q1/4

2 , dan is F de unie van A rechten, B gëısoleerde Baer deelmeetkundes PG(2,
√
q)

en C Baer deelmeetkundes PG(3,
√
q), met A+B + C(

√
q + 1) = ε1, en ε0 −B

√
q punten.

A.3 Toepassing van minihypers

Minihypers worden niet alleen bestudeerd vanwege hun verband met lineaire codes die de Griesmer
grens bereiken, maar ook omdat ze nuttig zijn in het bekomen van nieuwe resultaten voor objecten in
de eindige meetkunde zoals i-strakke verzamelingen, Cameron-Liebler rechtenverzamelingen en gewogen
m-bedekkingen en m-ovöıden. We beginnen met een karakterisering van minihypers die op kwadrieken
liggen.

A.3.1 Minihypers op kwadrieken

We bestuderen {xθµ, xθµ−1;n, q}-minihypers waarvan de punten gelegen zijn op kwadrieken. Stel dat
Q(n, q) een kwadriek is van rang k+1. We bewijzen dat een {xθk, xθk−1;n, q}-minihyper op Q(n, q), met
x 6 q/2− 1, de unie is van x onderling disjuncte generatoren.

Stelling A.3.1. (1) Een {xθr, xθr−1; 2r + 1, q}-minihyper F bevat in Q+(2r + 1, q), met x 6 q/2− 1,
bestaat uit x onderling disjuncte r-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

(2) Een {xθr−1, xθr−2; 2r, q}-minihyper F bevat in Q(2r, q), met x 6 q/2 − 1, bestaat uit x onderling
disjuncte (r − 1)-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

(3) Een {xθr−1, xθr−2; 2r + 1, q}-minihyper F bevat in Q−(2r + 1, q), met x 6 q/2 − 1, bestaat uit x
onderling disjuncte (r − 1)-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

Gevolg A.3.2. Beschouw de {xθr, xθr−1; 2r+1, q}-minihyper F op Q+(2r+1, q), met x ≤ q/2− 1. Als
r even is, dan x 6 2.

Deze resultaten worden gebruikt in de volgende toepassingen.

A.3.2 Minihypers en i-strakke verzamelingen

We beschouwen i-strakke verzamelingen in eindige klassieke polaire ruimten.

Definitie A.3.3. (Bamberg, Kelly, Law, en Penttila [6]) Een verzameling T van punten van een
eindige klassieke polaire ruimte van rang r > 2 over het eindig veld van de orde q is i-tight als

|P⊥ ∩ T | =
{

i q
r−1−1
q−1 + qr−1 als P ∈ T ,

i q
r−1−1
q−1 als P 6∈ T .
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We tonen aan dat een i-strakke verzameling op één van de volgende polaire ruimten W2r+1(q),Q
+(2r +

1, q),H(2r+ 1, q2) een {i(q∗r+1 − 1)/(q∗ − 1), i(q∗r − 1)/(q∗ − 1); 2r+ 1, q∗}-minihyper is, waarbij q∗ = q
in het geval van W2r+1(q) en Q+(2r + 1, q) en q∗ = q2 in het geval van H(2r + 1, q2). Door dit verband
met minihypers kunnen we bestaande resultaten over minihypers gebruiken om i-strakke verzamelingen
te karakteriseren. Om i-strakke verzamelingen op de kwadriek Q+(2r + 1, q) te beschrijven, kunnen we
het resultaat uit de voorgaande toepassing gebruiken.

Stelling A.3.4. Een i-strakke verzameling op Q+(2r + 1, q), met 2 < i ≤ q/2 − 1, kan alleen maar
bestaan voor r oneven. Als r oneven is, dan is een i-strakke verzameling de unie van i onderling disjuncte
generatoren van Q+(2r + 1, q).

Voor r ≥ 1 bestaat een 1-strakke of 2-strakke verzameling op Q+(2r + 1, q) uit één of twee disjuncte
generatoren.

Een i-strakke verzameling op H(2r + 1, q2) kan gekarakteriseerd worden als de unie van generatoren en
Baer deelmeetkundes, waarbij de Hermitische polariteit een symplectische polariteit induceert in elke
Baer deelmeetkunde.

Stelling A.3.5. Beschouw een i-strakke verzameling T in H(2r+1, q2), met q2 > 16 en i < q10/8/
√
2+1,

dan is T de unie van onderling disjuncte Baer deelmeetkundes PG(2r + 1, q) en generatoren PG(r, q2),
waarbij de Hermitische polariteit ⊥ een symplectische polariteit induceert in elke Baer deelmeetkunde
PG(2r + 1, q) bevat in T .

Een i-strakke verzameling in de symplectische ruimte W2r+1(q) wordt als volgt gekarakteriseerd.

Stelling A.3.6. Beschouw een i-strakke verzameling T van W(2r + 1, q), met i < q5/8√
2

+ 1, dan is

T de unie van onderling disjuncte r-dimensionale ruimten PG(r, q) en Baer deelmeetkundes PG(2r +
1,
√
q). Daarbij kunnen de r-dimensionale ruimten PG(r, q) en de Baer deelmeetkundes PG(2r + 1,

√
q)

beschreven worden op de volgende manier: T is de unie van generatoren van W(2r+1, q) die voorkomen
in paren {U,U⊥}, waarbij U ∩ U⊥ = ∅, en van deelmeetkundes PG(2r + 1,

√
q) die invariant zijn onder

de corresponderende symplectische polariteit of voorkomen in paren {PG(2r+1,
√
q)1,PG(2r+1,

√
q)2},

waarbij P⊥ ∩ PG(2r + 1,
√
q)2 = PG(2r,

√
q) voor alle P ∈ PG(2r + 1,

√
q)1.

A.3.3 Cameron-Liebler rechtenverzamelingen

Cameron-Liebler rechtenverzamelingen zijn speciale klassen van rechten in PG(3, q) die voldoen aan
een aantal eigenschappen. Via de Klein correspondentie kan aangetoond worden dat die een i-strakke
verzameling vormen op Q+(5, q) die dan weer kan in verband gebracht worden met minihypers zoals
hiervoor. We starten met een vereenvoudigde definitie van Cameron-Liebler rechtenverzamelingen.

Definitie A.3.7. (Cameron en Liebler [22], Penttila [71]) Neem een verzameling rechten L in
PG(3, q) en beschouw haar karakteristieke functie χL. Dan is L een Cameron-Liebler rechten verzameling
als er een natuurlijk getal x bestaat zodat voor elke rechte l van PG(3, q) geldt dat:

|{m ∈ L|m snijdt l,m 6= l}| = (q + 1)x+ (q2 − 1)χL(l). (A.1)

De parameter x wordt de parameter van de Cameron-Liebler rechtenverzameling genoemd, waarvoor geldt
dat x ∈ {0, 1, 2, . . . , q2 +1}. We verbeterden bestaande resultaten door via de Klein correspondentie aan
te tonen dat een Cameron-Liebler rechtenverzameling met parameter x overeenkomt met een x-strakke
verzameling op Q+(5, q). Uit voorgaande weten we dat dit een {x(q2 + q + 1), x(q + 1); 5, q}-minihyper
is bevat in Q+(5, q). Gebruik makend van gevolg A.3.2 krijgen we dan het volgende resultaat.

Stelling A.3.8. Er bestaat geen Cameron-Liebler rechtenverzameling in PG(3, q), q > 3, met parameter
2 < x < q

2 .
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A.3.4 Gewogen m-bedekkingen en gewogen m-ovöıden

In deze toepassing bestuderen we gewogen m-bedekkingen en gewogen m-ovöıden op veralgemeende
vierhoeken.

Definitie A.3.9. Een partiële gewogen m-ovöıde O op een veralgemeende vierhoek S is een gewogen
verzameling punten op S zodat elke rechte van S maximaal m punten van O bevat.

Een partiële gewogen m-bedekking O∗ op een veralgemeende vierhoek is een verzameling rechten van S
zodat elk punt van S incident is met maximaal m rechten. Dit is dus het duale van een partiële gewogen
m-ovöıde.

De deficiëntie δ van een partiële (duale) gewogen m-ovöıde van S is het aantal punten (rechten) dat
ontbreekt om een (duale) m-ovöıde te zijn.

We kennen een gewicht toe aan de punten die geen m keer bedekt worden door een partiële gewogen
m-bedekking. De punten met strikt positief gewicht vormen dan een minihyper. Het toekennen van de
gewichten verloopt als volgt:

Beschouw een gewogen partiële m-bedekking O∗ met deficiëntie δ < q op een veralgemeende vierhoek S
in PG(n, q∗). We definiëren een gewichtsfunctie w op de volgende manier:

w : PG(n, q∗) → N : P 7→
{

0 als P 6∈ S,
m− |star(P ) ∩ O∗| als P ∈ S.

Zij F de verzameling punten met strikt positief gewicht van PG(n, q∗), dan is (F,w) een {δ(q∗ +
1), δ;n, q∗}-minihyper.

We gebruiken een stelling ([46]) die zegt dat zo’n minihyper de som van rechten is om uitbreidingsre-
sultaten van partiële m-bedekkingen en hun duale m-ovöıden te bewijzen. In het geval dat S = W3(q)
weten we niet zeker dat die rechten ook effectief rechten van de veralgemeende vierhoek zijn. We kunnen
wel aantonen dat als een rechte van de som geen rechte van W3(q) is dat de poolrechte van zo’n rechte
dan ook tot de som behoort.

Gevolg A.3.10. Is O∗ een maximale partiële m-bedekking van W3(q) met deficiëntie δ < εq, dan is δ
even.
Is O een maximale partiële m-ovöıde van Q(4, q) met deficiëntie δ < εq, dan is δ even.

Gevolg A.3.11. Is O∗ een maximale partiële m-bedekking van H(3, q2) met deficiëntie δ < εq2 = q + 1,
dan kan O∗ uitgebreid worden tot een gewogen m-bedekking van H(3, q2).
Is O een maximale partiële m-ovöıde van Q−(5, q) met deficiëntie δ < εq2 = q + 1, dan kan O uitgebreid
worden tot een gewogen m-ovöıde van H(3, q2).

In de gevallen dat S = Q(4, q) of Q−(5, q) kunnen we stelling A.3.1 gebruiken.

Gevolg A.3.12. Is O∗ een maximale partiële m-bedekking van Q(4, q) met deficiëntie δ < q/2− 1, dan
kan O∗ uitgebreid worden tot een gewogen m-bedekking van Q(4, q).
Is O een maximale partiële m-ovöıde van W3(q) met deficiëntie δ < q/2−1, dan kan O uitgebreid worden
tot een gewogen m-ovöıde van W3(q).

Gevolg A.3.13. Is O∗ een maximale partiële m-bedekking van Q−(5, q) met deficiëntie δ < q/2−1, dan
kan O∗ uitgebreid worden tot een gewogen m-bedekking van Q−(5, q).
Is O een maximale partiële m-ovöıde van H(3, q2) met deficiëntie δ < q/2 − 1, dan kan O uitgebreid
worden tot een gewogen m-ovöıde van H(3, q2).
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Als m = (q+1)/2 spreken we van een hemisysteem in plaats van een m-ovöıde. Beschouw nu een gewogen
hemisysteem H op Q−(5, q). We kunnen een lineaire code C associëren met H door de punten van H
te beschouwen als de kolommen van de generator matrix van C. In het geval dat q = 3 voldoen de
parameters van de code C aan de Griesmer grens. Daaruit volgt dat er geen equivalente kolommen in de
generator matrix voorkomen, dit wil zeggen dat elk punt van het hemisysteem H gewicht 1 heeft. Een
hemisysteem op Q−(5, 3) voldoet aan de eigenschappen van een kap. Dit leidt tot een alternatief bewijs
voor volgend uitbreidingsresultaat op kappen.

Stelling A.3.14. Elke 53-, 54-, of 55-kap op Q−(5, 3) is uitbreidbaar tot een maximale 56-kap op
Q−(5, 3).

A.4 De functionele code Ch(X)

We onderzoeken de functionele code Ch(X), waarbij X een niet-singuliere kwadriek of Hermitische variëteit
is. We geven eerst de definitie.

Beschouw een niet-singuliere kwadriek of Hermitische variëteit en noem X= {P1, . . . , PN} de puntenverza-
meling van deze variëteit. De verzameling Fh is de verzameling van homogene polynomen van graad h.
De functionele code Ch(X) is de lineaire code

Ch(X) = {(f(P1), . . . , f(PN ))||f ∈ Fh} ∪ {0}.

De lengte en de dimensie van de code bepalen is geen probleem, maar we zijn vooral gëınteresseerd in de
minimum afstand van de code.

A.4.1 De functionele code C2(Q)

Om de minimum afstand van de functionele code C2(Q), Q een niet-singuliere kwadriek, te bepalen
baseren we ons op het volgende gegeven. De minimum gewichten komen van kwadrieken die een grote
doorsnede hebben met Q, zodat het codewoord veel nullen bevat. De doorsnede V van Q met een
willekeurige kwadriek Q’ is bevat in elke kwadriek van de bundel van kwadrieken λQ+ µQ′. Als V veel
punten bevat, dan moet de bundel ook een kwadriek met veel punten bevatten. We bewijzen dat als de
grootte van V boven een bepaalde waarde is, dat de bundel dan een kwadriek bevat die de unie van twee
hypervlakken is. Zo bewijzen we dat de minimum gewichtswoorden komen van kwadrieken die de unie
van twee hypervlakken zijn.

Twee hypervlakken van PG(n, q) snijden elkaar in een (n−2)-dimensionale ruimte Πn−2. Afhankelijk van
hoe deze ruimte de kwadriek Q snijdt zijn er nog meerdere mogelijkheden voor de intersectie van de twee
hypervlakken met de kwadriek Q. Hierdoor hebben we meteen de 5 of 6 kleinste gewichten gevonden,
afhankelijk van de aard van de kwadriek Q.

Stelling A.4.1. De code C2(Q) heeft lengte N = |Q| en dimensie k = n(n+3)
2 . De minimum gewichtswo-

orden komen van kwadrieken Q’ die de unie van 2 hypervlakken zijn. Het kleinste gewicht correspondeert
met 2 hypervlakken waarvan de intersectie Q altijd snijdt in een niet-singuliere kwadriek van het zelfde
type als Q en waarbij de hypervlakken zelf snijden zoals aangegeven in de tabel. In de tabel geven we de
minimum afstand van de code afhankelijk van het type van Q.

Q d hypervlakken ∩Q
Q+(2l + 1, q) q2l − q2l−1 − ql + ql−1 rakend
Q−(2l + 1, q) q2l − q2l−1 − ql − ql−1 niet-rakend

Q(2l, q), q even q2l−1 − q2l−2 − 2ql−1 niet-rakend
Q(2l, q), q oneven q2l−1 − q2l−2 − 2ql−1 niet-rakend
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A.4.2 De functionele code ChermX

Om de minimum afstand van de functionele code ChermX, X een Hermitische variëteit te bepalen ge-
bruiken we de zelfde technieken als hierboven. Twee Hermitische variëteiten bepalen ook een bundel van
q+1 Hermitische variëteiten. We tonen zo aan dat de minimum gewichtswoorden komen van de Hermitis-
che variëteiten die de unie zijn van q+1 hypervlakken door een gemeenschappelijke (n− 2)-dimensionale
ruimte. Ook nu weer zijn er afhankelijk van de ligging van die (n− 2)-dimensionale ruimte ten opzichte
van X verschillende gewichten.

Stelling A.4.2. De code Cherm(X) heeft lengte N = (qn+1+(−1)n)(qn+(−1)n+1)
q2−1 en dimensie k = n(n+2).

De minimum gewichten komen van Hermitische variëteiten die de unie zijn van q + 1 hypervlakken door
een gemeenschappelijke (n − 2)-dimensionale ruimte. Het kleinste gewicht correspondeert met hyper-
vlakken waarvan de intersectie X altijd snijdt in een niet-singuliere Hermitische variëteit en waarbij de
hypervlakken zelf X snijden zoals aangegeven in de volgende tabel. In de tabel geven we de minimum
afstand van de code in functie van n.

X d hypervlakken ∩ X
H(n, q2), n even qn−1(qn − qn−1 − 2) niet-rakend

H(n, q2), n oneven qn−1(qn−1 − 1)(q − 1) rakend

A.4.3 De functionele code C2(X)

We willen de minimum afstand van de code C2(X), X een Hermitische variëteit, bepalen. De technieken
uit de vorige secties zijn nu niet meer toepasbaar, daar een kwadriek en een Hermitische variëteit geen
bundel definiëren. We onderzoeken de verschillende mogelijkheden waarop een willekeurige kwadriek
een niet-singuliere Hermitische variëteit in PG(4, q2) kan snijden. Dit resulteert in een ondergrens W4

die garandeert dat elke kwadriek die meer dan W4 punten gemeen heeft met H(4, q2) de unie van twee
hypervlakken moet zijn. We gebruiken die grens om een ondergrens te vinden in PG(n, q2) zodat inter-
secties die groter zijn dan die grens noodzakelijk moeten komen van een kwadriek die de unie van twee
hypervlakken is.

Net zoals in voorgaande gevallen zorgt de ligging van de gemeenschappelijke (n− 2)-dimensionale ruimte
van de twee hypervlakken ten opzichte van de Hermitische variëteit ervoor dat we onmiddelijk de 5
kleinste gewichten van de code C2(X) vinden.

Stelling A.4.3. De code C2(X) heeft lengte N = |X| en dimensie k = (n+2)(n+1)
2 . De minimum

gewichtswoorden komen van kwadrieken Q′ die de unie van 2 hypervlakken zijn. In de tabel geven we
de minimum afstand van de code. Het kleinste gewicht correspondeert met 2 hypervlakken waarvan de
gemeenschappelijke (n − 2)-dimensionale doorsnede van de hypervlakken X snijdt in een niet-singuliere
Hermitische variëteit en die X zelf snijden zoals aangegeven in de volgende tabel.

dimensie d hypervlakken ∩Q
n even w1 = qn−2(qn+1 − qn−1 − q − 1) niet-rakend

n oneven qn−2(qn+1 − qn−1 − q + 1) rakend

A.5 Generator blokkerende verzamelingen in polaire ruimten

Het is gekend dat een rechte van PG(3, q) de kleinste blokkerende verzameling ten opzichte van vlakken
is. Elke blokkerende verzameling van vlakken in PG(3, q) met grootte kleiner dan q +

√
q + 1 bevat een

rechte.
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Als B een blokkerende verzameling is ten opzichte van vlakken in PG(3, q), dan is B een puntenverza-
meling van W3(q), zodat elk punt van W3(q) collinear is met ten minste 1 punt van de verzameling
B. Gedualiseerd wordt dit dan een verzameling rechten L van Q(4, q) zodat elke rechte van Q(4, q) ten
minste 1 rechte van L snijdt. Met de gekende grenzen op blokkerende verzamelingen in PG(2, q) krijgen
we het volgende.

Gevolg A.5.1. Onderstel L een verzameling rechten van Q(4, q) zodat elke rechte van Q(4, q) ten minste
1 van de rechten van L snijdt. Als |L| kleiner is dan de grootte van de kleinste niet-triviale blokkerende
verzameling van PG(2, q), dan bevat L q + 1 rechten door een punt van Q(4, q) of L bevat een regulus
bevat in Q(4, q).

Dit motiveerde ons om de kleinste voorbeelden te onderzoeken van verzamelingen generatoren die alle
generatoren van een polaire ruimte blokkeren. Een verzameling generatoren L die aan deze eigenschap
voldoet noemen we een generator blokkerende verzameling. We noemen Lminimaal als er voor elk element
van L een generator bestaat die L enkel in dat element snijdt.

We starten het onderzoek met generator blokkerende verzamelingen op veralgemeende vierhoeken. On-
derstel S een veralgemeende vierhoek van orde (s, t). We tonen aan dat een waaier van t+1 rechten door
een punt een kleinste minimale generator blokkerende verzameling is voor elke veralgemeende vierhoek.
De vraag is of er nog andere voorbeelden zijn. Voor een minimale blokkerende verzameling L van grootte
t+ 1 in een veralgemeende vierhoek van orde (s, t) tonen we aan dat er enkel een tweede voorbeeld kan
bestaan als s|t; dit voorbeeld is dan een spread van een deelvierhoek van orde (s, t/s).

Deze voorwaarde zorgt ervoor dat we ons enkel moeten richten op de elliptische kwadriek Q−(5, q) en de
Hermitische variëteit H(4, q2). We beschouwen een minimale generator blokkerende verzameling L, met
|L| = t+ 1 + δ en δ < s− 1, op één van beide veralgemeende vierhoeken.

Gevolg A.5.2. Als een punt P op meer dan δ + 1 rechten van L ligt, dan is L de waaier door P.

We onderstellen vanaf nu dat een punt op maximaal δ+1 rechten van L ligt. De verzameling van punten
die bedekt worden door L noemen we M. We willen aantonen dat L een bedekking van een deelvierhoek
is zolang δ onder een bepaalde grens blijft. Zo een deelvierhoek is dan bevat in M, daarom gaan we op
zoek naar rechten die volledig bevat zijn in M, maar die niet tot L behoren. We vinden een ondergrens op
het aantal volledig bedekte rechten in M. Hierdoor kunnen we aantonen dat er in het geval van Q−(5, q)
een volledig bedekte deelvierhoek Q(4, q) in M bevat zit. In het geval van H(4, q2) leidt het bestaan van
een deelvierhoek H(3, q2) in M dan weer tot een contradictie.

Stelling A.5.3. a) Stel dat L een minimale generator blokkerende verzameling van Q−(5, q) is, met
|L| = q2 + 1 + δ. Als δ < 0.381q, dan bevat L een waaier van q2 + 1 generatoren door een punt of
een minimale bedekking van een deelvierhoek Q(4, q) in Q−(5, q).

b) Stel dat L een minimale generator blokkerende verzameling van H(4, q2) is, met |L| = q3 + 1 + δ.
Als δ < q − 3, dan bevat L de waaier van q3 + 1 generatoren door een punt.

We gebruiken de resultaten in de polaire ruimten van rang 2 om de kleinste minimale voorbeelden van
generator blokkerende verzamelingen te vinden in polaire ruimten van algemene rang. We noteren een
polaire ruimte van rang n als Sn. Een minimale generator blokkerende verzameling L van Sn kan gecon-
strueerd worden met een verzameling generatoren door een punt die Sn−1 in een generator blokkerende
verzameling van dezelfde grootte snijdt. Bijgevolg is L dus een kegel over een voorbeeld in een polaire
ruimte van hetzelfde type van rang n − 1. We bewijzen door inductie op n dat de kleinste minimale
generator blokkerende verzamelingen kegels zijn met als basis een voorbeeld in rang 2.
Hierbij gebruiken we de inductie als volgt. Als een punt P niet bedekt is door L, dan snijdt P⊥ elke
generator van L in een (n− 2)-dimensionale ruimte. De projectie van die (n− 2)-dimensionale ruimte op
de quotiëntruimte Sn−1 van P induceert een generator blokkerende verzameling L′, met |L′| ≤ |L|. De
inductiehypothese zegt dat L′ een kegel is over een voorbeeld van rang 2.
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Stelling A.5.4. a) Stel dat L een minimale generator blokkerende verzameling van Q(2n, q) is, met
|L| = q + 1 + δ. Als q + 1 + δ kleiner is dan de grootte van de kleinste niet-triviale blokkerende
verzameling van PG(2, q) en δ < q−1

2 , dan bevat L een kegel πn−2Q(2, q) of een kegel πn−3R, met
R een regulus.

b) Stel dat L een minimale generator blokkerende verzameling van Q−(2n+1, q) is, met |L| = q2+1+δ.
Als δ < 0.381q, dan bevat L een kegel πn−2Q

−(3, q) of een kegel πn−3C, met C een minimale
bedekking van Q(4, q).

c) Stel dat L een minimale generator blokkerende verzameling van H(2n, q2) is, met |L| = q3 + 1 + δ.
Als δ < q − 3, dan bevat L een kegel πn−2H(2, q

2).
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