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Preface

During the last three and a bit years, | did research on various finite geometrical structures. The result of this
research is presented in this thesis. | did not focus on one class of objects, since many structures attracted my
attention. | considered minihypers, some applications and intersections of varieties which are connected with
linear codes. Finally, | investigated some special class of blocking sets on finite classical polar spaces.

In the first chapter, we discuss the geometrical background of this thesis. We give the definition of polar
spaces, linear codes, blocking sets and minihypers as well as important results on them which will be used
further in this thesis. Some notations and definitions are left for the chapter in which they will be used.

In Chapter 2, we present characterisation results on non-weighted minihypers. Minihypers correspond to
linear codes meeting the Griesmer bound, so characterisation results on minihypers immediately translate into
classification results on linear codes meeting the Griesmer bound. Until now, non-weighted minihypers which
contain projective spaces and at most one Baer subgeometry are characterised by Ferret and Storme. The
results in this chapter characterise non-weighted minihypers which contain more than one Baer subgeometry.
Results on (multiple) blocking sets are used to obtain this result.

Chapter 3 treats some applications of minihypers. In the first applications, properties of polar spaces are used
to improve results on a special class of minihypers if it is known that they live on a polar space.

Minihypers are not only studied because of their relation with linear codes reaching the Griesmer bound; they
are also used to study other geometrical structures. We start by studying i-tight sets on polar spaces. The
result of the first application together with known results on minihypers gives us some nice characterisation
results of i-tight sets in terms of generators and Baer subgeometries contained in these polar spaces. In the
application that follows we show that Cameron-Liebler line classes correspond with i-tight sets. The link of
i-tight sets with minihypers of the previous applications and the result of the first application is used to prove
a non-existence result on Cameron-Liebler line classes.

In the last application, we observe partial m-ovoids and partial m-covers of generalised quadrangles. Minihypers
can be associated with partial m-covers. The results of the first chapter are used for m-covers on quadrics and
known result for m-covers on other GQ's give extension results on partial m-covers. By duality, this leads to
extension results on partial m-ovoids and to a new proof of the extendability result of partial caps in @~ (5, 3).

In Chapters 4 and 5 we determine the minimum distance of the functional codes arising from intersections of
varieties. Determining the minimum distance is looking for the small weight codewords. These small weight
codewords correspond with the largest intersections of two varieties. So we investigate the intersection of
varieties in these two chapters. In the case of the code C3(Q), the minimal weight corresponds with the
maximal intersection of a non-singular quadric Q with any quadric Q’. If the intersection of Q and Q' is large
then there must be a large quadric in the pencil of quadrics defined by Q and Q’. In this way we prove that
the smallest weight codewords of C2(Q) arise from quadrics which are the union of two hyperplanes. That
the minimal weight of the code Crerm (X) arises from non-singular Hermitian varieties that are the union of
q + 1 hyperplanes through a common subspace of codimension 2, is determined by using similar arguments.

For the code C3(X), X a non-singular Hermitian variety, these arguments are no longer valid. The largest
intersections of a non-singular Hermitian variety with a quadric are determined by counting arguments in
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dimension 4. We prove by induction that also here the smallest weight codewords arise from quadrics which
are the union of two hyperplanes.

In the last chapter, we study blocking sets of polar spaces which consist themselves of a union of generators.
In the case of Q(4, ¢), known results on blocking sets immediately translate to the smallest minimal examples
and to a lower bound for other minimal examples. That a pencil is a minimal generator blocking set for all
generalised quadrangles is trivial. In a first theorem, we state some restrictions on the order of the generalised
quadrangle so that another minimal example of the same size as a pencil exists. In the latter case a lower
bound for other minimal examples arises by counting arguments. The results on polar spaces of rank 2 are
then by induction lifted to polar spaces of general rank, where the smallest minimal generator blocking sets
are cones over an example a rank 2 polar space of the same type.
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Introduction

CHAPTER

1.1 Finite projective spaces

Let GF(q) denote the finite field of order ¢, ¢ a prime power, and let V(n+1, ¢) be the (n+1)-dimensional
vector space over GF(q). Denote by D(V) the set of subspaces of V(n+1, ¢). Define the incidence relation
Tasfollows: UIW < U CW or W CU. The pair (D(V), I) is then by definition the projective space
corresponding with V(n + 1,¢). This projective space has projective dimension n and is denoted by
PG(n, q).

A subspace U of dimension i+ 1, i > —1, of V(n+1,q) is said to have projective dimension i. It is called
an i-dimensional subspace of PG(n, ¢). Instead of using the name projective dimension we will simply
use dimension in what follows. Subspaces of dimension 0, resp. 1,2,3 and n — 1 of PG(n, q) are called
points resp. lines, planes, solids and hyperplanes. The (—1)-dimensional space is called the empty space.
Subspaces will often be identified with their point set; this will be done without further notice.

Since a point of PG(n,q) corresponds with a vector line in V(n + 1,¢), a point P in PG(n,q) can be
represented by a nonzero vector Z in V(n + 1,¢). This point is denoted by P(Z). Two nonzero vectors
represent the same point if and only if they are a scalar multiple of each other.

Let U and W be two subspaces of PG(n, q), then (U, W) is the subspace generated by U and W. If P
and @ are two points of PG(n, q), then (P, @) is a line and will often be denoted by PQ.

The standard Baer subgeometry PG(n, /q) of PG(n, q), with ¢ a square, is the projective space contain-
ing the points {(zo,...,zn)lz; € GF(\/q)}. A Baer subgeometry of PG(n,q) is each projective space
PG(i, /q), for some 0 < i < n, which is, up to collineations, isomorphic with the standard Baer subge-
ometry of a subspace PG(i, q) of PG(n,q).

The following theorem gives a relation between the dimension of two subspaces U and W and the
dimension of their intersection U N W and of the subspace generated by them (U,W). It is known
as the Grassmann identity or Dimension formula.

Theorem 1.1.1. (Dimension formula) Let U and W be two subspaces of a projective space, then

dim(U) + dim(W) = dim(({U, W)) + dim(U N W). (1.1)

Since many counting arguments will be used in proofs, the following identities will be useful.
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2 Chapter 1. Introduction

Theorem 1.1.2. Let PG™ (n,q) denote the set of r-dimensional subspaces in PG(n,q):
1 i
H:‘L:-i_nfrJrl(q - 1)
[ (¢ —1)

Let x(s,rm;m,q) denote the set of r-dimensional subspaces through a fized s-dimensional subspace of

PG(n,q):

PG (n,q)] =

H?:_rs_3+1(qi - 1)
JEEUCIE VI

Ix(s,m5n,q)] =

By the above, [PG%(n,q)| = (¢"*t' —1)/(¢ — 1). This number will also be denoted by [PG(n, q)]| or 6,,.
Dual spaces

By studying projective structures we often look at their dual structures. Considering a projective plane
it is easy to see that by interchanging the role of points and lines, again a projective plane is obtained.
Duality expresses that the dual of a projective plane is a (possibly different) projective plane. On the
other hand self-dual planes exists, for instance PG2.

Duality of projective spaces of dimension at least 3 is not expressed by interchanging the points and
lines, but by interchanging the i-dimensional spaces by the (n — ¢ — 1)-dimensional spaces. The dual of
a projective space S is denoted by SP.

Polarities

Let S and &’ be two spaces PG(n, q), n > 2. A collineation is a bijection of the set of subspaces of S on
the set of subspaces of S’ preserving the incidence relation. Hence if ¢ : § — &’ is a collineation, then
for any two subspaces 7, and 7g of S, it holds that m, C 7, if and only if 77 C 7¥.

A collineation from a projective space to itself is called an automorphism.

For n = 1, a collineation is defined as being induced by a semilinear transformation of the underlying
vector spaces. For n > 2, by the Fundamental theorem of projective geometry every collineation of
an n-dimensional projective space PG(n,q) is induced by a bijective semilinear transformation of the
underlying vector spaces. With respect to a given coordinate system in PG(n, ¢), a collineation ¢ maps
every point P(Z) to a point P(Z'). The relation between these two coordinate vectors is determined by
a non-singular (n + 1) x (n + 1)-matrix A over GF(¢) and an automorphism 6 of GF(q):

/ 6

Lo Lo

@) af
= (1.2)

/ 6

xn x’l’b

When 6 is the identity, then the collineation ¢ is called a projectivity.

Let S be PG(n,q). A correlation ¢ of S is a bijection of the set of r-dimensional subspaces of S on the
set of (n —r — 1)-dimensional subspaces of S reversing the incidence relation. For any two subspaces m;
and m of 8, it holds that m C o if and only if 7§ C 7. Hence, a correlation of S is a collineation
0 : S — SP. A correlation ¢ such that (2 is the identity, i.e. an involutory correlation, is called a
polarity.
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Let ¢ be a polarity of PG(n,¢). A point P is mapped on a hyperplane P?, called its polar (hyperplane).
A hyperplane 7 is mapped to a point 7% called its pole. Two points P, R such that P € R¥ are called
conjugate; the same can be said about hyperplanes. A point or a hyperplane that is conjugate to itself is
called self-conjugate or absolute.

A polarity is defined as a special kind of collineations from S to S” so with respect to a given coordinate
system in PG(n,q), a polarity can be determined by an automorphism 6 of GF(g), which has to be
involutory, and a non-singular (n + 1) x (n + 1)-matrix A over GF(q) satisfying AT = +A4if § = 1 and
AT9 = Aif § # 1. A point P(Z) is mapped by ¢ on a hyperplane H (), which can be represented as

(%) on)

U1 SC?
=AU, (1.3)

6

Unp, Xy,

or shorter 7 = A(zT)?. From the above definitions it can be derived that a point P(%) is self-conjugate
if and only if ZA(z7)? = 0. A self-conjugate subspace is sometimes called totally isotropic.

Note that GF(g) has a non-trivial involutory automorphism if and only if ¢ is a square. If ¢ is a square,
then the unique non-trivial involutory automorphism is 8 :  — 2v9. Note finally that if # = 1, then a
matrix satisfying A7 = —A and all diagonal elements equal to zero, is always singular when n is even.

According to the conditions on 6 and A, we distinguish the different types of polarities.

e ¢ odd:
1. If9 =1, AT = —A and n odd, then ¢ is called a null polarity or a symplectic polarity. All
points of PG(n, q) are self-conjugate.
2. If § =1, AT = A, then ¢ is called an orthogonal polarity.
3. If 0 # 1, AT? = A, then ¢ is called a Hermitian or unitary polarity.

® g even:

1. If§ =1, AT = A and n odd and all diagonal elements of A equal to 0, then ¢ is called a null
polarity or a symplectic polarity. All points of PG(n, q) are self-conjugate.

2.If 9 =1, AT = A and not all diagonal elements of A are equal to 0, then ¢ is called a
pseudo-polarity. The set of self-conjugate points forms a hyperplane of PG(n, q).

3. If @ #1, AT = A, then ¢ is called a Hermitian or unitary polarity.

Varieties

A quadric in PG(n,q), n > 1, is the set of points for which the coordinates satisfy a quadratic equation
of the form

n
E ainin = 0,

i,j=0

1<

with not all a;; equal to zero. For n = 2, a quadric is called a conic.

A Hermitian variety in PG(n, ¢?), n > 1, is the set of points for which the coordinates satisfy an equation
of the form
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n
E q _

ainin = 07
i,j=0

with not all a;; equal to 0 and a?j =ay; for all i,7 =0,1,...,n. For n = 2, a Hermitian variety is called
a Hermitian curve.

For the further definitions which can be given for quadrics as well as for Hermitian varieties, we use
the term wvariety in general. A variety F in PG(n,q) is called singular if there exists a coordinate
transformation which transforms F to an equation which can be written in less than n + 1 variables.

If a variety is singular, then it is known that the points of the variety are the points of a cone, i.e. all
the points of the lines spanned by a point of an (n — r)-dimensional subspace 7 of PG(n, ¢) and a point
of a non-singular variety F in an (r — 1)-dimensional subspace 7’ skew to m. We will denote this cone
with 7. The singular points of the variety are the points of w. The size of a singular variety 7.F is
7| + | F] + || F1(61 — 2).

Consider a variety F. The tangent space in a point P € F is the subspace consisting of the set of points
of the lines through P intersecting F only in P or completely contained in F. When P is a non-singular
point of F, the tangent space is a hyperplane and is also called the tangent hyperplane. When P is
singular, then the tangent space is actually the whole projective space PG(n,q). We will denote the
tangent space at the point P € F by Tp(F).

Concerning the classification of non-singular varieties, we mention the following results. In PG(2n,q),
there is, up to collineations, only one non-singular quadric, called the parabolic quadric, with standard
equation o3 + 2129 + ... + T2,_172, = 0, denoted by Q(2n,q). There are, up to collineations, exactly
two non-singular quadrics in PG(2n + 1,¢q). The hyperbolic quadric, with standard equation zozi +
T2x3 ... + TopTans1 = 0, denoted by QT (2n + 1,q), and the elliptic quadric, with standard equation
f(zo,21) + a3 + ... + TopZant1 = 0, with f an irreducible quadratic polynomial over GF(q), denoted
by Q= (2n + 1,q). In PG(n, ¢?), there is, up to collineations, exactly one non-singular Hermitian variety,
with standard equation zg™" 4+ 29" ... 4+ 29t1 =0, denoted by H(n, ¢?).

When ¢ is even, every non-singular parabolic quadric Q(2n, q) has a nucleus, i.e. a point on which every
hyperplane is tangent in some point P € Q(2n, ¢q), or, equivalently, every line on the nucleus has exactly
one point in common with Q(2n, q).

Consider a non-singular variety F in the projective space PG(n,¢q) and consider the tangent hyperplane
in a point P € F. It is known that Tp(F)NF = PF’, i.e. a cone with vertex P and base a non-singular
variety of the same type in a projective space PG(n — 2, ¢) not containing the vertex P. The size of the
intersection of such a tangent hyperplane with the variety is by the previous equal to |F’|(6; — 1) + 1.

A variety contains subspaces of the projective space in which it is embedded. A subspace contained in
the variety F is called mazimal if it is not contained in an other subspace of the variety. A maximal
subspace is called a generator. All generators have the same dimension; this is called the projective index
of the variety.

Theorem of Bézout

An algebraic variety in PG(n, q) is the set of solutions of a system of homogeneous polynomial equations.
If there is only one equation we call it an algebraic hypersurface.

The theorem of Bézout discusses the intersections of algebraic varieties. In this thesis we will only use
the theorem of Bézout on the intersection of an algebraic variety in a projective space with an algebraic
hypersurface.

We will apply this theorem of Bézout in the following context.
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Corollary 1.1.3. If a quadratic variety V of dimension d at least one intersects a quadratic hypersurface
H inPG(n,q) in more than four irreducible components X1, ..., X of dimension d—1, then this quadratic
variety V' is completely contained in the quadratic hypersurface H.

We illustrate this corollary with a particular example. If the intersection of a hyperbolic quadric Q™ (3, q)
with a quadric Q in PG(4, q) contains 5 lines, then this hyperbolic quadric Q* (3, q) is contained in Q.

1.2 Finite polar spaces

A finite polar space of rank k, k > 3, consists of a finite set P whose elements are called points and a set
of subsets of P called subspaces, satisfying the following axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional projective space, with
—1<d<k—1(dis called the dimension of the subspace).

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V of dimension k — 1 and a point P € P\ V, there is a unique subspace W such
that P € W and V N'W has dimension k — 2; W contains all points of V' that are joined to P by a
line (a line is a subspace of dimension 1).

(iv) There exist two disjoint subspaces of dimension k — 1.

The integer k — 1 is also referred to as the projective index of the polar space. The subspaces of a finite
polar space are called totally singular or totally isotropic subspaces.

A finite polar space of rank 2 is by definition a generalised quadrangle, also denoted by GQ, that is,
an incidence structure S = (P, B, I) in which P and B are finite nonempty disjoint sets of objects,
respectively called points and lines, and where I is a symmetric incidence relation, IC (P x B) U (B x P),
satisfying the following properties.

i) Each point is incident wi +1 lines (¢t > 1) and two distinct points are incident with at most one
i) Each point is incident with ¢+ 1 1i t>1 d two distinct point incident with at t
line.

(ii) Each line is incident with s + 1 (s > 1) points and two distinct lines are incident with at most one
point.

(iii) If = is a point and L is a line not incident with x, then there is a unique pair (y, M) € P x B for
whichx I M Iy IL.

The integers s and ¢ are the parameters of the GQ S and § is said to have order (s,t). If s =t, then S
is said to have order s. A GQ of order (s,1) is also called a grid and a GQ of order (1,t) is called a dual
grid.

There is a point-line duality for finite generalised quadrangles, since by interchanging the role of points
and lines, the incidence relation still satisfies the axioms. The dual of a GQ § (of order (s,t)) is often
denoted by SP and it is a GQ of order (¢, s).

Let S = (P, B, I) be a GQ of order (s,t) and denote v = [P| and b = |B|. Restrictions on the parameters
of a GQ are described in the following theorem.

Theorem 1.2.1. (a) v=(s+1)(st+1) and b= (t+ 1)(st +1).
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(b) s+t divides st(s+1)(t + 1).
(c) (Higman’s inequality [57,58]) If s > 1 and t > 1, then t < s%, and dually s < 2.

(d) If s#1,t#1,s#t> and t # 52, thent < s> — s and dually s < t? —t.

Finite classical polar spaces

The finite classical polar spaces of rank at least 2 are:

1. Let ¢ be a symplectic polarity of PG(2n + 1,q). The points of PG(2n + 1, ¢), together with the
totally isotropic subspaces of ¢, form a polar space of rank n + 1. It is called a symplectic polar
space and is denoted by W(2n + 1,¢q) or Way,11(q).

2. A non-singular Hermitian variety in PG(n, ¢?), together with the subspaces entirely contained in
it, gives a polar space of rank |(n+1)/2]. The notation H(n, ¢?) is used for the Hermitian variety.

3. The point set of a non-singular quadric Q, together with the subspaces consisting entirely of points
of Q, forms a polar space.
In even dimension n = 2k, the parabolic quadric Q(2k, q) defines a polar space of rank k.
If n = 2k + 1 is odd, the hyperbolic quadric QT (2k + 1,¢) and the elliptic quadric Q= (2k + 1, q)
give polar spaces of rank k + 1 and k respectively.

These are the finite classical polar spaces and the finite classical generalised quadrangles if the rank equals
2. There are several generalised quadrangles known that are not classical, see [86], but there exist no
other finite polar spaces of rank k > 2 than the classical ones.

Theorem 1.2.2. (Veldkamp [88], Tits [87]) All finite polar spaces of rank at least three are classical.

Except for the quadrics in even characteristic and even dimension, for each finite classical polar space
P in PG(n, q), there exists a polarity ¢ of PG(n,q) such that P consists of the subspaces 7 of PG(n, q)
that satisfy m C 7. If P is a non-singular quadric in PG(n,q), n odd and ¢ even, then there exists a
polarity ¢ such that all subspaces of P satisfy m C 7%, but they are not the only subspaces of PG(n, q)
that satisfy this property. The polarity corresponding to a finite classical polar space will be denoted by
1.

We mention some important isomorphism results on finite classical polar spaces. The parabolic quadric
Q(2n, ¢) has a nucleus N if ¢ is even. Projecting all points and subspaces of Q(2n, q), ¢ even, from N onto
a hyperplane 7 of PG(2n, ¢) not containing N, we find all points of 7, together with a set of subspaces of
m. It is a well known result that the points of 7 together with the projected subspaces of Q(2n,¢q) form
a symplectic polar space. Isomorphisms in the rank 2 case are given in the next theorem.

Theorem 1.2.3. (Payne and Thas [70])
e (a) The GQ Q(4,q) is isomorphic to the dual of W3(q).
e (b) The GQ Q(5,q) is isomorphic to the dual of H(3,¢?).

e (¢c) The GQ Q(4,q) (and hence Ws(q)) is self-dual if and only if q is even.
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The finite classical polar spaces have the following number of points:

Wonsi(@)] = qq*_l—l
Qg = L1
QT (2n+1,q)| = (q"+1q)(_qnl+1_1)’
Q (2n+1,q)| = (qn_lq)(i]anJrl)’
Hog) = CTF <—1;’;>£q: (-1

A generator of a finite classical polar space P is a maximal totally isotropic subspace of P, i.e. a subspace
of dimension k — 1, where k is the rank of P. The set of all generators is denoted by G(P). The number
of generators of the finite classical polar spaces are as follows:

1G(Wani1(q))] (@+ D@+ (" +1),
1G(Q(2n,q)] = (q+1)(F+1)--(¢" +1),
G(QT(2n+1,9)] = 20+ 1)(*+1)---(¢"+1),
IG(Q 2n+1,9) = (@P+D(@+1)-- (" +1),
IGH2n,¢*)| = (®+1)(@+1)-- (" +1),
IGHE2n+1,¢*)] = (¢+1)(@®+1)-- (> +1).

1.3 Spreads and ovoids of generalised quadrangles

Spreads and ovoids can be defined on polar spaces in general, but we will only use them in polar spaces
of rank 2, so we restrict us here to the generalised quadrangles.

Let S be a GQ of order (s,t). A spread S of a GQ § is a set of lines partitioning the point set of S and
S has size 1+ st. Not all GQ’s have a spread; an overview of the existence or non-existence can be found
in [85]. In case of non-existence of spreads, research has been done on partial spreads and covers.

A partial spread of S is a set S of mutually disjoint lines of S. A partial spread is called mazimal if it
cannot be extended by any line of S.

A cover of § is a set C of lines such that every point of S is contained in at least one element of C. A
cover C'is called minimal if no proper subset of C' is a cover of S.

An ovoid O of S is a set of points such that every line of S meets O in exactly one point. The size of an
ovoid of S is 1+ st. A partial ovoid O of S is a set of points such that every line meets O in at most one
point.
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1.4 Blocking sets

A blocking set in PG(2,q) is a set of points B in PG(2, ¢) that intersects every line. A blocking set B is
minimal if B\{P} is not a blocking set for every P € B. The following lemma is very useful and can for
instance be found in [61].

Lemma 1.4.1. A blocking set B in PG(2,q) is minimal if and only if for every point P € B, there is a
line L such that BN L = {P}.
A blocking set in PG(2, ¢) has size at least ¢+ 1 and a blocking set of size ¢ + 1 is necessarily a line [21].

Blocking sets that contain a line are called t¢rivial. The plane PG(2,2) has no non-trivial blocking sets.

A projective triangle of side n in PG(2,q) is a set B of 3(n — 1) points such that

1. on each side of the triangle popips there are n points of B,
2. the vertices pg, p1, p2 are in B,

3. if rg € p1p2 and ry € papg are in B, then so is ror1 N pops.
A projective triad of side n is a set B of 3n — 2 points such that

1. on each line of three of the concurrent lines Lo, L1, Lo, there are n points of B,
2. the vertex p = LoNLi N Ly € B,
3. if rg € Lo and 71 € Ly are in B, then so is r = rgry N L.

Lemma 1.4.2. e In PG(2,q), q odd, there exists a projective triangle of side %(q + 3) which is a
non-trivial minimal blocking set of size 3(q+1).
e In PG(2,q), q even, q¢ > 2, there exists a projective triad of side %(q + 2) which is a non-trivial
minimal blocking set of size %(3q +2).

It is obvious that the size of a non-trivial blocking set B in PG(2, ¢) must lie in the interval [q+2, ¢*+¢+1].
The following theorem gives an upper and a lower bound on the size of a non-trivial minimal blocking
set in PG(2, q).

Theorem 1.4.3. Let B be a minimal non-trivial blocking set in PG(2,q). Then

1. (Bruen [15]) |B| > g+ \/q + 1, with equality if and only if B is a Baer subplane.
2. (Bruen and Thas [20]) |B| < ¢\/q + 1, with equality if and only if B is a unital, i.e. a set of
qy/q + 1 points of PG(2,q) such that every line intersects B in 1 or \/q+ 1 points.

These bounds can only be sharp when ¢ is a square. So one can try to improve the lower bound when
q is not a square and no Baer subplanes are contained in blocking sets. The following theorems give
improvements on the bounds. Let ¢, = 27/3, when p = 2,3, and ¢, = 1, when p > 5, p a prime.

Theorem 1.4.4. Let B be a non-trivial minimal blocking set of PG(2,q), g > 2.

. . . 3(g+1
1. (Blokhuis [I1]) If g is a prime, then |B| > %.

2. (Blokhuis [12], Blokhuis et al. [13]) If ¢ = p***!, p prime, e > 1, then |B| > max(q + 1 +
P g+ 1+ gh).
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Since the projective triangle has size 3(¢ + 1)/2, the above bound is sharp in the first case. In the second
case there exist examples for certain ¢ attaining the bound. Let ¢ + ¢; denote the size of the smallest
non-trivial blocking sets in PG(2, ¢). In the next table, we give exact values for ¢, and lower bounds on
€q. For more details on blocking sets we refer to [46].

q €q Condition
square =q+1 [15]
odd prime =(q+3)/2 [11]
q=p>", p>7prime, h > 1 =B+ I73, [74, [75)
qg=p", pprime, h > 4 >q+q/(pc+1)—1 e<h [39]
largest divisor of h

Table 1: Exact values and lower bounds on ¢,

We will introduce multiple blocking sets and blocking sets in higher dimensions. An s-fold blocking set
in PG(2,q) is a set of points that intersects every line in at least s points. It is called minimal if no
proper subset is an s-fold blocking set. A 1-fold blocking set is simply called a blocking set. The following
theorem indicates that, to obtain an s-fold blocking set of small cardinality with s > 1, it is no longer

interesting to include a line in the set. In this way, there exists no such thing as a trivial multiple blocking
set.

Theorem 1.4.5. Let B be an s-fold blocking set of PG(2,q), s > 1.

1. (Bruen [17]) If B contains a line, then |B| > sq+q — s + 2.

2. (Ball [2]) If B does not contain a line, then |B| > sq+ /sq+ 1.
If s is not too large, substantial improvements to this theorem have been obtained for general ¢q. Also,
for ¢ a square and s not too large, the smallest minimal s-fold blocking sets are classified.

Theorem 1.4.6. (Blokhuis et al. [13]) Let B be an s-fold blocking set in PG(2,q) of size s(¢+1)+¢
for some s > 1. For a prime p, let ¢, = 2% forpe{2,3} and ¢, =1 forp > 3.

wino

1. Ifq=p** and s < § — 2=, thenc>cpq%.

1
2. If q is a square, s < % and ¢ < cpq%, then ¢ > s\/q and B contains the union of s pairwise disjoint
Baer subplanes.

1
3. Ifq=p? and s < % and ¢ < pfi + L-QHL then ¢ > s,/q and B contains the union of s pairwise
disjoint Baer subplanes.

In [2], a table with the sizes of the smallest s-fold blocking sets in PG(2,¢), s > 1, ¢ small, can be found.
Many examples of such blocking sets are described in [2 3] [4].

Finally, we introduce blocking sets in higher dimensional spaces. An (n — k)-blocking set or a blocking
set with respect to k-spaces in PG(n,q) is a set B of points such that every k-dimensional subspace of
PG(n,q) meets B in at least one point.

Theorem 1.4.7. (Bose and Burton [21]) If B is a blocking set with respect to k-spaces in PG(n,q),
then |B| =2 [PG(n — k, q)|. Equality holds if and only if B is an (n — k)-dimensional subspace.
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Blocking sets in PG(n, q) with respect to k-spaces that contain an (n — k)-space are called trivial. The
smallest non-trivial blocking sets with respect to k-spaces are characterised in the following theorem.

Theorem 1.4.8. (Beutelspacher [10], Heim [56]) In PG(n,q), the smallest non-trivial blocking sets
with respect to k-spaces are cones with vertex an (n —k — 2)-space w,_—o and base a non-trivial blocking
set of minimal cardinality in a plane skew to wp_p_o.

In PG(n,q), a blocking set with respect to hyperplanes is simply called a blocking set. For this case,
Theorem [[L4.17 was already proved by A. A. Bruen in [16].

It is interesting to see that to block k-dimensional subspaces of a projective space, cones with base a
planar blocking set can be used. Hence the important concept is still a blocking set of PG(2, q).

The following theorem is an improvement of Theorem [[.4.§]

Theorem 1.4.9. (Storme and Weiner [81]) Let B be a blocking set in PG(n,q), n > 3, ¢ = p"
square, p > 3 prime, of cardinality smaller than or equal to the cardinality of the second smallest non-
trivial blocking sets in PG(2,q). Then B contains a line or a planar blocking set of PG(2,q).

The next theorem is an important result on the intersection of k-dimensional subspaces with a t¢-fold
(n — k)-blocking set. It generalises the results of [14] [83] [84].

Theorem 1.4.10. (Ferret, Storme, Sziklai and Weiner [39]) Let B be a minimal weighted t-
fold (n — k)-blocking set of PG(n,q), ¢ = p*, p prime, h > 1, of size |B| = tq" % +t + k', with
t+k < (¢" % —1)/2. Then B intersects every k-dimensional subspace in t (mod p) points.

1.5 Linear codes

In this section, we assume that the alphabet Fj is equal to the finite field GF(g), so ¢ is a prime power.

A linear code C over GF(q) is a subspace of the vector space V(n,q). This definition implies that in a
linear code, a linear combination of two codewords is again a codeword.

Let  and y be two elements of the code, one defines the (Hamming) distance d(x,y) between two
codewords = and y as the number of positions in which these two codewords differ. More precisely if
r = (21,72, ,zn) and y = (y1,Y2, " ,Yn), 5O

d(z,y) = t{z: # yill <i<n}.
The minimum distance of a code d(C'), with |C| > 1, is defined by
4(C) = min {d(z, y)lz,y € C,x # y}.
We have the following properties related to the minimum distance of a code.
Theorem 1.5.1. 1. Ifd(C) = s+ 1, the code C can detect up to s errors in a codeword.

2. If d(C) =2t + 1 or 2t + 2, the code C can correct up to t errors using nearest neighbour decoding.

When C is a k-dimensional subspace of V(n,¢) with minimum distance d, we write this as C' is an
[n, k, d]-code.

The weight w(c) of a codeword c is the number of non-zero positions of ¢. The minimum weight w(C') of
a linear code C' is the minimum of the non-zero weights of all non-zero codewords of C.

The following proposition links the minimum weight to the minimum distance of a linear code.
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Theorem 1.5.2. For every linear code C, d(C)=w(C).

A (k x n)-matrix whose rows form a basis for a linear [n, k, d]-code is called a generator matriz of C.

Between the parameters n, k and d of a linear [n, k, d]-code C', many relations and bounds exist. One of
these bounds is the Griesmer bound. From an economical point of view, it is interesting to use linear
codes having a minimal length n for given k,d and gq. The Griesmer bound states that if there exists an
[n, k, d]-code for given values k,d and ¢, then

E
—

| &

nz ) [=1=gqkd),

i

Il
=)
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where [x] denotes the smallest integer greater than or equal to x.

1.6 Functional codes

We define the functional code Cp(X). We recall the construction of the functional codes as it has been
done by G. Lachaud [68].

Let X be a finite set, X = {P,..., Px}. Let F(X, q) be the space of all maps from X to GF(q). F(X,q)
is a vector space and let F' C F(X,q) be a subspace. Let ¢ be the map defined by

c: F(X,q) — GF(q)V:

foeoof) = (f(P), -, f(Pn)).

The functional code defined by F and X, and denoted by C (X, F ), is the image of the map c restricted
to F.

Cf F — GF(q)V :

Foom eplf) = (P, F(PN)).
C(X,F)= Im i

The functional code we have defined has the following parameters

length C(X, F) = |X|, dim C(X, F)=dim F—dim ker T

F)
d(C(X,F)) = min . weight(c(f)).

To have a large number of codewords the map ¢ has to be injective.

In this thesis we will work in the case where X is a quadric or a Hermitian variety. To simplify notations
we identify X with its point set, so X = { Py, ..., Py}, where we normalise the coordinates of the points P;
with respect to the leftmost non-zero coordinate. In this case F is then the space Fj, of certain monomial
homogeneous forms of degree h which define varieties. We denote by Cp,(X) the functional code C(X, F3),
this is the linear code

Cn(X) ={(f(P1),.... f(PN))If € Fr} U {0}

Under the condition that the map ¢z, is injective, we obtain the following dimension of the code

dim O (X) = ( ”Zh )
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The third parameter of the code is the minimum distance, which is equal to the minimal weight since the
code is linear. In this case the minimum distance of C}(X) corresponds with the largest intersection of
X with the hypersurfaces of degree h. More precisely

d(Cr(X)) = [X| = maxser, XN f].

Intuitively this largest intersection will come from the intersection of X with the algebraic hypersurface
containing the largest number of points. Therefore we state the following theorem about the number of
points on a hypersurface in PG(n, q).

Theorem 1.6.1. [77] Let f(xo, - ,x,) be a homogeneous polynomial of degree h in n+ 1 variables over
F,, with h < q. The number of zeros of f in PG(n,q) satisfies:

#2(Fy) < hg" ™' + mp_s.

This bound is reached when f is the union of h hyperplanes which intersect in a common codimension
2-space.

This theorem implies that the minimum distance of the functional code Cj,(X) is probably determined by
the number of points in the intersection of X with A hyperplanes which intersect in a common codimension
2 space. Much research has been done on this topic.

The functional code Cp(X) for h = 2 and X a Hermitian variety was first studied for ¢ = 4. In 1986,
P. Spurr [80] determined the minimum distance and the weight distribution of this code by a computer
search. A. B. Sgrensen showed in his PhD thesis [79] that the computer wasn’t necessary for determining
the minimum distance. He described the geometrical structure of the minimum codewords and counted
the number of codewords of minimum weight. He generalised his study on the Hermitian variety and
stated the following conjecture:

In PG(4,¢%), for h < ¢, with ¢ a prime power, if X is a non-singular Hermitian variety and X’ a
hypersurface of degree h, then

XNX|<h(@®+¢—q) +q+1.

G. Lachaud gave an upper bound, but unfortunately his bound was worse than the one Sgrensen gave.
Edoukou investigated in [33, [34] the functional codes Co(X), with X a Hermitian surface in PG(3,¢?)
and PG(4,¢?) and thus gave a proof of the conjecture in the case h = 2. He showed that the first five
smallest weights come from the intersection of X with two hyperplanes.

The study of the functional code C5(X), with X a quadric has developed in a similar way as the study
for the functional code with X a Hermitian variety. Many researchers tried to find some upper bound on
the number of intersection points of two quadrics. Despite the many improvements, the only minimum
distance found was in PG(3, q), for X a hyperbolic quadric. Edoukou was able to find the minimum dis-
tance for the code C2(Q) in PG(3, ¢) and PG(4, ¢) for all non-singular quadrics [34]. He again determined
the geometrical structure of the minimum weight words.

We will improve these results and determine the minimum distance for the code Cs(X), with X a quadric
or a Hermitian variety and for the code Cyerm(X), X a Hermitian variety in general dimension n > 5.
In all cases the smallest weight codewords come from the intersection of X with A hyperplanes which
intersect in a common codimension 2 space. These hyperplanes can intersect X however in different ways,
so in this way we are able to determine the 4, 5 or 6, depending on the case, smallest weights and the
number of codewords having these weights.
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1.7 Minihypers

Minihypers were introduced by N. Hamada and F. Tamari in [55]. New characterisation results are proven
by P. Govaerts and L. Storme [45] [46], by S. Ferret and L. Storme [41] and by J. De Beule, L. Storme
and K. Metsch [27), 28]. We will define minihypers and explain their context as well as describe results
used in the next sections.

Definition 1.7.1. (Hamada and Tamari [53, [55]) An {f, m;n,¢}-minihyper is a pair (F,w), where
F is a subset of the point set of PG(n,q) and w is a weight function w : PG(n,q) - N: P — w(P),
satisfying

1. w(P) >0 P€F,

2. Y pepw(P)=f, and

3. min{}_ p.y w(P)|H is a hyperplane} = m

It is clear that a minihyper (F,w) is uniquely defined by its weight function w. If w maps to {0,1}, we
can still use the notation (F,w), but then (F,w) is completely determined by F'.

Suppose there exists a linear [n, k, d]-code meeting the Griesmer bound, then we can write d in a unique
way as d = A\¢" 1 — Zi:oz €;q" such that A > 1 and 0 < ¢; < g. Using this expression for d, the Griesmer
bound for a linear [n, k, d]-code over GF(q) can be expressed as:

k-2

n 2 )\0}671 — 26201 = g(k,d)
=0

Hamada and Helleseth [53] showed that there is a one-to-one correspondence between the set of all non-

equivalent [n, k, d]-codes meeting the Griesmer bound and the set of all projectively distinct {Zl 0 % €ib;, ZZ o €l k—
1, ¢}-minihypers (F,w), such that 1 < w(P) < X for every point P € F. More precisely the link is de-

scribed in the following way.

Let G = (g1 -+ gn) be a generator matrix for a linear [n, k, d]-code C' meeting the Griesmer bound. We
look at a column of G as being the coordinates of a point in PG(k—1, ¢). Let the point set of PG(k—1,q)
be {s1, -+ ,s0,_,}. Let m;(G) denote the number of columns in G defining s;. Let A=max{m;(G)|i =
1,2,-++ ,0k_1}. Define the weight function w : PG(k—1,¢q) — N as w(sl) A— mi(G’),i =1,2,-- ,0_1.
Let F = {s; € PG(k — 1,¢)|w(s;) > 0}, then (F,w) is a {ZZ o 619“21 o €ifli—1;k — 1, ¢}-minihyper.

In case that d < ¢!, the minihyper associated to a linear [n, k, d]-code is a non-weighted minihyper, so
all columns of G in the construction above are pairwise not a multiple of each other.

An important class of minihypers, so of linear codes meeting the Griesmer bound, is obtained by taking
in PG(k — 1,¢) a union of ¢ points, €1 lines -+ €k—2 (k — 2)-dimensional subspaces which are pairwise
disjoint. Then such a set defines a {ZZ o elOZ, Zf:_(? €;0;—1;k — 1,q}-minihyper. The linear codes asso-
ciated to these minihypers are discovered by Belov, Logachev and Sandimirov [9]. Hamada, Helleseth
and Maekawa [52] [54] proved that such a non-weighted minihyper, with Zi:oz € = h < ,/q+1 is always
of Belov-Logachev-Sandimirov type. The condition h < /g + 1 is sharp, because for h = /g + 1 there
are examples of minihypers not of Belov-Logachev-Sandimirov type. For example, a Baer subplane is a
{(¢g+1)+ /q,1;2, ¢}-minihyper.

Ferret and Storme improved these results.
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k—2 k—2
Theorem 1.7.2. ([{1)]) Let F be a non-weighted {Z eiﬂi,ZeiQi_l;k — 1, ¢}-minihyper, q square,
i=0 i=0

q = p", p prime, h < 1, where Ef:_(? € < min {2,/q — 1,epq® %}, ¢y = 2713, ¢ > 214 when p = 2,3,
and where Zi:(? e < min {27 — 1,¢,¢%° /(1 + ¢*/°)}, q¢ > 2'2, when p > 3. Then F consists of the
union of pairwise disjoint

1. ex—o spaces PG(k — 2,q), ex—3 spaces PG(k — 3,q), -+ , e points, or

2. one subgeometry PG(2s41,./q), for some s, 1 <s < k-2, e, spaces PG(k—2,q),---, e, —/q—1
spaces PG(s,q), -+ , e points, or

3. one subgeometry PG(2s,./q), for some s, 1 <s <k—2, e,y spaces PG(k —2,q),---, €, — 1 spaces
PG(s,q), €s—1 —/q spaces PG(s —1,q),--- , € points.

By staying under the bound of 2,/g — 1 with the sum of the coefficients €;, one can prove that from
the moment that two Baer subgeometries PG(k, \/q) and PG(m, ,/q) are contained in F', then there is a
subgeometry PG(l, ,/q), which contains PG(k, \/q) and PG(m f ), and which is completely contained in

F. We will improve these results and characterise {Z €i0;, Zez i—1;n, ¢}-minihypers with Y7 ¢ <

=0 =0
q7/12 g1 /4

5— — 15— for s = 1. These minihypers can contain more than one Baer subgeometry.

The following results discuss the intersections of subspaces with minihypers, which will play a key role in
the induction arguments of the theorems and lemmas which follow. The first part shows the important
link with blocking sets.

Theorem 1.7.3. (Hamada [50]) Let (F,w) be a {317 0:, 51 €,0i_1;n, ¢} -minihyper, where 0 <
€<q—1,1=0,...,n—1, then:

1. Let m be an integer such that 1 < m < n, then |(F,w)NQ| > > 6z i—m for any (n —m)-space
Q in PG(n,q) and the equality holds for some (n —m)-space Q in PG(n q).

2. |(F,w)N Al = " €6, o for any (n—2)-space A in PG(n,q) and |(F,w) NG| = 1" €;_o for
some (n — 2)-space G in PG(n,q).

Let Hj,j =1,2,...,q+1, be the ¢+ 1 hyperplanes in PG(n, q) that pass through an (n — 2)-space
G intersecting F in Z?:_zl €;0;—2 points. Then (F,w)NH; is a

n—1 n—1
{6; + Z €01, Z €;0;_2;n — 1, ¢}-minihyper
j i=1

in Hj forj=1,2,...,q+ 1, where the §; are some non-negative integers such that Zgi} 0j = €g.

Hamada and Helleseth investigated in detail the problem of the intersection of a hyperplane with a
minihyper [52]. The next lemma is a generalisation of this.

Lemma 1.7.4. Let (F,w) be a {> . 6192,21 1 €ibi_1;n, q}-minihyper satisfying n > 1,
ZZL 01 ¢ =nh< q Then every r-space 7., 1 <r <mn, not contamed mn F intersects F in a

D 629“2Z | €bi—1; 7, q}-minihyper F N\ w0, satisfying > . 0 m; < h.

In the special case of the intersection of a minihyper with a plane, this theorem implies the following.
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Theorem 1.7.5. Let F be a {Z?:_Ol €:0;, 2?2—11 €i0i—1;m, q}-minihyper, where ¢ > h,0 <€ < qg—1,0 <
1< n-— 1,2?:_01 €, = h. Then a plane of PG(n,q) is either contained in F or it intersects F in a
{m1(q + 1) + mg, m1; 2, ¢} -minihyper, where my + mg < h.

A special class of minihypers which is well studied is the class of the {d6,,66,_1;n, ¢}-minihypers. The
parameters of Hamada’s theorem become very nice in this case. Govaerts and Storme also did a lot of
research on these minihypers. They proved the following results.

Lemma 1.7.6. (Govaerts and Storme [46]) Suppose that F' is a {360,,,60,,_1; n, ¢}-minihyper satisfying
0<0<(¢g+1)/2,0< u<n—1. If H is a hyperplane containing more than 60,1 points of F, then
every (n — p — 1)-space in H contains at least one point of F'.

This implies that H N F' is a blocking set with respect to the (n — u — 1)-spaces in H.

The next result is a very important result to classify these minihypers.

Lemma 1.7.7. (Govaerts and Storme [46]) Let (F,w) be a {66,,060,_1;n,q}-minihyper satisfying
0<0<(¢g+1)/2,0 < p<n—1, and containing a p-space w,. Then the minihyper (F',w") defined by
the weight function w’, where

e w'(P)=w(P)—1, for P €m,, and
e w'(P) =w(P), for P € PG(n,q) \ 7,

is a {(6 —1)0,, (0 — 1)8,—1;n, q}-minihyper.

Using these lemmas they were able to characterise such minihypers, in which the following definition is
used.

Definition 1.7.8. Denote by A the set of all t-dimensional subspaces of PG(n, q). A sum of t-dimensional
subspaces is a weight function w : A — N : m — w(m). Such a sum induces a weight function on
subspaces of smaller dimension. Let m, be a subspace of dimension r <t, then w(m,) =3 4 o cpw(T).
In particular, the weight of a point is the sum of the weights of the t-spaces passing through it.

The concept of a sum of p-spaces was introduced because the p-spaces need not to be distinct.

Theorem 1.7.9. If (F,w) is a {d(¢+ 1),0;n, q}-minthyper satisfying 0 < § < €,, with q + €, the size of
the smallest non-trivial blocking set in PG(2,q), then w is the weight function induced on the points of
PG(n,q) by a sum of § lines. Moreover, this sum is unique.

The next classification result is a result on non-weighted minihypers with ¢ square.
Theorem 1.7.10. [44] A {66,,,30,,_1;n, q}-minihyper F, ¢ > 16 square, § < ¢°/%/v/2+1,2u+1 < n, is

a union of pairwise disjoint p-spaces and Baer subgeometries PG(2u +1,,/q).

These results will be used to study some applications of minihypers such as minihypers that live on polar
spaces, tight sets in classical finite polar spaces, m-covers and m-ovoids of classical finite generalised
quadrangles.
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Linear codes meeting the Griesmer bound are linked to minihypers in projective spaces. Hamada, Helle-
seth and Maekawa showed that a {d°7_, €;0;, > 7 €;0;—1;n, ¢}-minihyper is the union of pairwise disjoint
€; projective subspaces of dimension 4, for i = 0,...,s, aslong as >_,¢; = h < \/g+ 1 [62,[54]. In their

paper, S. Ferret and L. Storme proved that increasing h to 2,/q — 1 allows one Baer subgeometry in the
q7/12 g/t

minihyper [41]. In this chapter, we will characterise these minihypers with h < 45— — 45— and s = 1.
These minihypers will contain subspaces as well as Baer subgeometries.
2.1 Introduction

7/12 1/4

q

We will characterise {€1(q + 1) + €9, €1;7, ¢}-minihypers F, €; + ¢ < 15 5—, as consisting of a
pairwise disjoint union of A lines, B isolated Baer subplanes and C' Baer subgeometries PG(3,/q), with
A+ B+ C(\/q+1) = e, plus ¢g — B,/q extra points. This will first be proven in PG(3, ¢) by projecting
the minihyper F' on a plane. This projection of F' is a weighted ¢;-fold blocking set in this plane. Using
results on weighted blocking sets in a plane will give us arguments to find the lines and Baer subgeometries
contained in F'.

/12 1/4

Assume F is an {e1(q + 1) + €, €151, ¢}-minihyper, with €; + ¢y < % — 45—, We will focus on the
existence of the isolated Baer subgeometries PG(2, ,/q) and the Baer subgeometries PG(3, ,/q) contained
in F. Therefore we first want to remove the lines of the minihyper F. The next lemma makes this
possible.

Lemma 2.1.1. Let F be a weighted {e1(q+ 1) + €, €1; n, ¢} -minihyper, with 2¢1 + €p < g+ 2, containing
a line L. Then F — L is a weighted {(e1 — 1)(¢ + 1) + €0, €1 — 1;n, ¢}-minihyper.

Proof. A hyperplane 7 either intersects L in a point or contains L. We only have to discuss the case
L C 7. If we throw away L from F, then such a hyperplane is still blocked at least €e; — 1 times, unless
7 is blocked at most ¢ + €3 — 1 times. So from now on we assume that ¢+ 1 < |7 N F| < g+ €.

Consider an (n — 3)-dimensional space Q in m skew to F. This space Q projects F' onto a weighted
{e1(¢+ 1) + €0, €1; 2, g}-minihyper F’. Then the projection of L is a line L’ contained in F’. By Theorem
2.2 of [39], we can reduce the weight of every point of L’ by one to obtain an (e; — 1)-fold blocking set
F" in this plane. But then L’ is still blocked at least e; — 1 times. So 7 is blocked at least g + €1 times
by F.

So F' — L indeed is a weighted {(e; — 1)(¢ + 1) + €9, €1 — 1;n, g}-minihyper. O

17
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From now on we assume that F' contains no lines.

Lemma 2.1.2. (Ball [2]) A t-fold blocking multiset in PG(2,q) containing no line has size greater than
or equal to tq + /Tq + 1.

Lemma 2.1.3. Let F be an {e1(q + 1) + €0, €1; n, ¢} -minihyper, with €1 + €y < q7;12 — #,

containing
no lines and having at most q1/6/2 multiple points.

If a plane 7 intersects F in an {m1(q+ 1) + mo, m1;2, q}-minshyper, with m; > 1, then F N7 contains
a sum of my Baer subplanes.

/ / . . .
Proof. We know that mq +mg < €1 + €9 < q7212 — q124 by Theorem [[L7.5l The intersection of = with

F' does not contain lines, since F' does not contain lines, so |7 N F| > miq + /m1q + 1, which implies
/12

/
vmig+1< q72 %. Hence, m; < ¢'/¢/2. By Barat and Storme [8], 7 N F' contains a sum of m;
Baer subplanes. O

Now we will proceed by first characterising the minihyper F' in a 3-dimensional space PG(3, q).

2.1.1 Three dimensions

We first characterise the minihyper F in the projective space of dimension three. We want to characterise

non-weighted minihypers, but for induction on the dimension we will need the characterisation of the

minihyper in PG(3,q) where small weights are allowed. Assume that F' is a weighted {e;(q + 1) +
2

€0, €1; 3, ¢}-minihyper with total weight of the multiple points at most 2% and with €1+ = n(,/g—¢"/°) <

q7/12 q1/4 1/12

2 20 2

q

son <

We assume F' does not contain lines, since by Lemma 2111 lines can be removed from F'.

Projecting the minihyper F' from a point R ¢ F' onto a plane gives a weighted ¢;-fold blocking set B in
this plane. We have to deal with two cases: either B does not contain a line or B does contain lines.
First we consider the case that B does not contain a line.

Lemma 2.1.4. If B does not contain a line, then e; < ¥ and Fis an €1 -fold blocking multiset containing
a sum of € Baer subplanes and lines.

7/12 B g4

2 2
.. . . . 1/6 . . . .
containing no lines. Lemma ZT.2] implies that e; < 45—. In this case there are no multiple points since

q

Proof. The set B is a weighted €1-fold blocking set in a plane of size €1(¢ + 1) + €9 < €1¢ +

2
2% < 1. So F is an €;-fold blocking set characterised as a sum of €; Baer subplanes and points in [§]. O

We will use heavily the number of secants to F' through a point R not in F, so we count this number in
the next lemma.

2 2
Lemma 2.1.5. There is a point not in F lying on at most #

points of F' of weight one.

secants to F', containing at least two

Proof. We count the number of points of PG(3,¢)\F on secants to F' through two points of weight one.
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ql/s

1/6 . . .
Here |F'| < €1q +1,/q, but we subtract 45— from |F|, since there can be up to 45— multiple points:

1/6 1/6 1
q q q
(e1q +nv/q — T)(Equr??\/a*T*l)( > )
G+ 2ne1® 7+ 12 — e1¢® — a7 — 667 — 2ne1q /7 — n*q + e1q +1/q
= 2
2q® + 2emg>\/q
i 2 .

We can replace this by the upper bound (e2¢3 + 21%¢3)/2, since ¢; < UNGE

There are 03 — |F| points in PG(3, ¢)\F; this is at least ¢3. Hence, we find a point R, not in F, lying on

2 2 2
at most HT" such secants to F. O

Lemma 2.1.6. If B does contain lines, then \/q — g% <.

Proof. Consider a point R of PG(3,¢)\F lying on at most ﬁ secants to F', containing at least two
simple points of F'. The minihyper F' is projected from R onto a weighted point set in a plane containing
a line L. The plane (R, L) intersects F' in at least a 1-fold blocking set. So Lemma 2.1.3] implies that
(R,L) N F contains a Baer subplane having a Baer subline on a line through R. This Baer subline has

/ C . . . . / . .
at most # distinct multiple points of F', so is counted at least %(\/6 — g)Q times as a secant in the
previous lemma. This number must be smaller than or equal to the total number of such secants to F
through R, so

ql/G 2 2 2
(Va— 5 )? < e+ 2n
1/3 1/12
. 176 | 4 . 1/6 2 : q
& + — < €, sincen <
q-4q T 1 "S5
1/642 1/6 q'/® 1/6 2
= (Vi-4¢")?<q-vag"'+ - -4"° < &
This last equation holds if ¢ > 4 and then we have the assertion. O

Lemma 2.1.7. Let R be a point of PG(3,q) \ F lying on at most €3 secants to F, containing at least two

simple points of F'. Then R lies on a line containing a Baer subline of F which is contained in at least
7/6
€1

/ . ,
207 % Baer subplanes of F, containing at least % - 1772 +/q + 1 points of F.

Proof. The projection of F from R is a weighted €;-fold blocking set B in a plane, containing lines. Let x
be the number of lines contained in B, where some lines can be counted more than once in this weighted
€1-fold blocking set. It follows from [39] Theorem 2.2] that the z lines contained in B can be removed
from B to obtain a new weighted (e; — x)-fold blocking set B’, containing no lines. Denote €; — z by €.

. ) . . . /
By Lemma 214 for an €}-fold blocking set B of size €] (¢ + 1) + €9 without lines, necessarily €] < #,

. 1/6 _,
so B must contain at least e; — €] > e; — 45— lines.

For each such line L C B, let m; be its multiplicity as a line in the weighted set B. Then the plane

1 4
(R, L) intersects F' in an {m1(g + 1) + mo, m1;2, ¢}-minihyper, with m; +mg < €1 + € < q7; - q12/ .
This plane (R, L) contains m; Baer subplanes of F' (Lemma [213]) and for each Baer subplane there is a

line through R containing a Baer subline of this Baer subplane.

. . 1/6 . . . .
A Baer subline is counted at least (/g — 45—)? times as a secant in Lemma [ZI.5] The point R lies on

1/3 . . . ..
at most €7 < n%(q — ¢¥/® + £;-) secants, hence R lies on at most 2n? different lines containing a Baer
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subline of F. There are at least €; — # Baer sublines, in Baer subplanes of F', on lines through R. So

. .. 1/6 .
some Baer subline lies in at least ;ﬁ - 317 Baer subplanes of F. These Baer subplanes contain at least

O

€19
2n32

Remark 2.1.8. We will denote these Baer subplanes, contained in F', through a common Baer subline
on a line through R as flags of Baer subplanes corresponding to R. We can find several flags which leads
to the fact that they must intersect each other in a certain minimum number of points.

Lemma 2.1.9. There are more than 877 points 0fPG(3 Q\F, deﬁnmg different flags of Baer subplanes,

(g — 4= 2 =) points.

16n

Proof. Suppose we have already 8n? points with a corresponding flag of Baer subplanes as in the previous
lemma. Is there another point of PG(3,¢q) \ F lying on at most €7 secants to F', containing at least two
simple points of F'? The number of points in these 8n? flags counted over GF(q) is at most

1/6
80%((55 — TN 4 g4 1) = deag? — 25 + 8P (g + 1)
2% 4n?
We count over GF(g) to assure that the new flag is different from the ones we already have. There are
at least ¢* 4+ ¢ +q+1—e€1(q+1) — e — de1q® +2¢"/5¢% — 812 (¢+ 1) points in PG(3,¢) not in F and not
in the extended flags. If all these points lie on more than €7 secants to F', then the number of incidences
on the remaining secants is larger than (e3¢ 4 2n?¢3)/2, the total number of incidences on secants to F'

we had in Lemma T4l So there is still another point P ¢ F on at most €2 secants to F.

. . /
Take 8772 such points R and suppose that the union of the % — ﬁ Baer subplanes through the Baer

1/6 .
1677 (392 — d5z) points.
Then
U e q/°
Pl > Z(ﬁ_ﬂ+\[+l_(l_l)l6n (W—W))
i=1
q7/e 22 1/6
€19 Bn°)* ¢ ;e g
> 11 1
> 8y (277 +f+ D+— 16772(2772 4772)
3
> 3e1q— §q7/6 + 87 (Vg +1).
This is false since €; > /q — q'/s. O

We have different points with a corresponding flag of Baer subplanes. We now build with them a Baer
subgeometry PG(3,,/q) contained in F'.

Lemma 2.1.10. The minihyper F' contains a Baer subgeometry PG(3,./q) if e1 > \/q — q'/0

Proof. Let R and R’ be two points corresponding with a flag of ;ﬁ -

/6

those flags sharmg at least 16 —L (;ﬁ — %) points by fr and fr/. So some Baer subplane 7, of fgr/

shares at least 16—2 points Wlth the Baer subplanes of fg. If this Baer subplane wg shares at most two
7/12 1/4

1/6
points with every Baer subplane of fg, then 16 4 L 2(267;2 — 'i > ), which is false since €; < 4 5 5

So this Baer subplane 7g: shares a Baer bubhne with some Baer subplane of fr. Denote by [ the Baer

q
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subline of the flag fr. This Baer subplane mg/ cannot pass through [, since then this Baer subplane mg:
only shares this subline [ with all these Baer subplanes of the flag fgr, but # >\/q+1.

We wish to find a lower bound on the number of Baer subplanes of fr, sharing a Baer subline with the

/ ..
Baer subplane mr,. We subtract two for every of the ;ﬁ — % Baer subplanes of fr from ﬁ and divide

by /q —1. The quotient is at least (ql/3 —8)/8, hence this Baer subplane 7gs shares a Baer subline with
at least (ql/3 — 8)/8 Baer subplanes of fr. Take this Baer subplane mr/ and consider a Baer subplane
wr of the flag fr which shares a Baer subline with wg/. Together they define a Baer subgeometry €2
isomorphic to PG(3,/q). Every Baer subplane of fr intersecting 7x: in a Baer subline shares | and this
Baer subline with 2. Two intersecting Baer sublines define a Baer subplane in a unique way, so these
Baer subplanes then lie completely in this Baer subgeometry ).

Consider an arbitrary Baer subplane 7 of 2 not through [. Then 7 shares at least (ql/ 3_8)/8 Baer sublines

/6 _gql/ . . . .
with F', so shares at least %JA points with F. Consider the plane over GF(q) of this Baer subplane
7/12 1/4
q

7. This plane intersects F in an {m1(q+1)+mq, m1; 2, ¢}-minihyper, with m;+mgy < e14+€9 < 45 5>
which contains m; Baer subplanes (Lemma 2T.3). Suppose this Baer subplane 7 is not contained in F'.

It contains already at least ‘15/6_%1/2 + 1 points of F. By Lemma 4.4 of [13], we have that

q

TN F| <mo+mi(yg+1) < V2¢7/12

5/6 1/2

But 4 +1 > v/2¢"/122, so this Baer subplane 7 lies completely in F. As a consequence, this Baer
subgeometry 2 defined by mr and wg/ lies completely in F. O

—8¢q
8

Lemma 2.1.11. Let F be an {e1(q + 1) + €0, €1; 3, ¢} -minihyper, with 2¢; + eg < q + 2, containing a
subgeometry PG(3,/q). Then F\PG(3,./q) is an {(e1 — /g —1)(q+ 1) + €0, €1 — \/q — 1; 3, ¢} -minihyper.

Proof. A plane 7 either intersects a Baer subgeometry PG(3,,/q) in a subline PG(1,,/q) or a subplane
PG(2,,/q). We only have to discuss the case that TNPG(3, \/q) is a subplane PG(2, ,/q) of size ¢+,/q+1.

If 7 contains still €, — /g — 1 other points of F, then removing this Baer subgeometry PG(3,,/q) from
F causes no problem for the plane m. So from now on, we assume that ¢+ /g + 1 < [t N F| < g+ €.

We select a point R of 7\ F. Project m and F' from R onto a plane. Then we obtain an ¢;-fold blocking
multiset B in this plane containing a line L, which is the projection of 7 N F. By Theorem 2.2 of [39], we
can reduce the weight of every point of L by one to obtain an (e; — 1)-fold blocking set B’ in this plane.
But then L is still blocked at least €; — 1 times by B’. So 7 is blocked at least ¢ + €1 times by F. O

Theorem 2.1.12. Let F be a weighted {€1(q + 1) + €, €1; 3, ¢} -minihyper, having weighted points with
2
total weight at most % and where €1 +€g = n(\/@—ql/ﬁ) < @ — q12/4 , then F contains a sum of A lines,

B isolated Baer subplanes PG(2,\/q) and C Baer subgeometries PG(3,/q), where A+B+C(,/q+1) = e;
and €g — B,/q extra points.

Proof. If F' contains A lines, then we can remove these lines from F', and then apply the arguments to F’
minus these A lines (Lemma2T.T]). Let R be a point not in the minihyper F on at most 6%22"2 secants to
F, containing at least two points of F' of weight one. Projecting F' from R onto a plane gives a weighted
€1-fold blocking set B in this plane. If B does not contain lines, Lemma 2.1.4] says that F' is the sum of
€1 lines and Baer subplanes PG(2, ,/q), and possibly some extra points. If B does contain lines, we find
a Baer subgeometry PG(3,,/q) contained in F', which can be thrown away to obtain a new minihyper,

see Lemma Z.I.TT] Repeating the previous arguments with this minihyper gives us the assertion. O
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2.1.2 Higher dimensions

We now characterise non-weighted {e1(¢ + 1) + €o, €151, ¢}-minihypers F', n > 4, where €; + €y = 1(,/q —
/ / . . . .
q'/%) < # — #, by induction on the dimension n. We suppose that every {e1(¢+1) +¢€o,€1;n—1,q}-

minihyper, with n > 4, is a pairwise disjoint union of A lines, B isolated Baer subplanes PG(2, ,/q) and
C Baer subgeometries PG(3,/q), with A+ B + C(y/q + 1) = €1, and ¢y — B,/q extra points. As in the
3-dimensional case, we start by using Lemma 211l to remove the lines contained in F.

We want to project F' onto a hyperplane in such a way that the number of multiple points appearing in
the projection is as small as possible.

2
Lemma 2.1.13. Forn =4, there is a point R & F lying on at most %1 secants to F'. In larger dimensions
there are points R € F' lying only on tangents to F.

Proof. The number of points on secants to F' is at most

(e1(g+1) + €)?
2

_al@+@—qg-1)+2ac(e* — 1) +eg(g—1)

(g—1) 5 :

/ . . . .
Now €169, €5 < g For n > 5, this number is smaller than the number of points in PG(n, ¢)\F. In this
case there exists at least one point lying only on tangents to F'.
For n = 4 we divide by ¢* + ¢® < 0, — |F|. This gives a point R lying on at most

1

et 2¢7%(¢* —1)/2+q"5(q - 1)/2
50 245/6

2q 2(¢* + ¢3)

<Gy
=9

2 2
secants to F'. Either ;—j} + Qq% < 1 and then R lies on zero secants to F or either ;—; + 2(1%/6 > 1, then

2 2
;—j} > 2(1%/6. In both cases %1 can be used as an upper bound on the number of secants to F' through
R. O

In the case of n = 4, projecting from a point as in the previous lemma gives a weighted minihyper with
2
total weight of the multiple points at most 2%.

Theorem 2.1.14. Let F be a non-weighted {€1(q + 1) + €9, €1; n, ¢}-minihyper, n > 4, where e; + €9 =
n(\/q — q1/6) < g — #, then F' is the union of pairwise disjoint A lines, B isolated Baer subplanes
PG(2,,/q) and C Baer subgeometries PG(3,./q), with A+ B+ C(\/q+ 1) = €1, and ¢x — B\/q eatra

points.

Proof. Project F from a point R, lying only on tangents to F' or on at most €7 /q secants to F if n = 4,
onto a hyperplane m. We get a (weighted if n = 4) {e1(¢ + 1) + €0, €1;n — 1, ¢}-minihyper F’ which is
the sum of A’ lines, B’ isolated Baer subplanes PG(2,,/q) and C’ Baer subgeometries PG(3,/q), with
A"+ B'+C'(y/q+ 1) = €1, and ¢ — B,/q points.

Case I: F' contains a line L.

The plane (R, L) intersects F' in at least a 1-fold blocking set (Lemma [21.3]), which contains a Baer
subplane. By assumption, F' does not contain lines, since lines can be removed from F (Lemma 21.T).

Suppose that (R, L) contains a Baer subplane contained in F', then R lies on a Baer subline to this Baer
subplane, but then R lies on a (/g + 1)-secant to F', which is false for n > 4. For n = 4, this line is
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. . . . /6 . . .
projected onto a point of F’ with weight up to /g +1 > %, which is false. So this case cannot occur.

Case II: F’ contains an isolated Baer subplane PG(2, ,/q).

Denote this Baer subplane PG(2,,/q) by w. The 3-space (R,w) intersects F' in an {mi(q + 1) +
mg, mq; 3, ¢ }-minihyper, with my > 1 (Lemma [[.74]), so (R,w) N F contains by the induction hypothesis
the union of points, isolated Baer subgeometries PG(2, ,/q) and Baer subgeometries PG(3, \/q), which are
all pairwise disjoint. Assume (R,w) contains a Baer subgeometry PG(3,,/q) and consider the conjugate
point RV? of R w.r.t. PG(3,,/q). The line RRV7 intersects PG(3,,/¢) in a Baer subline, which is false.
So (R,w) N F contains points and isolated Baer subplanes. One of these Baer subplanes PG(2,/q) is
projected onto w.

Case III: F' contains a Baer subgeometry PG(3,/q).

Consider two Baer subplanes w; and ws in PG(3, /g). By the arguments of case II we find Baer subplanes

w} and w) contained in F projected onto w; and wy respectively. Since there are less than # multiple
points in the intersection line of w; and ws, this projected Baer subline w; N ws must be the projection
of a Baer subline contained in F, which must be equal to the intersection line of wj and w}. So w}
and wjy span a Baer subgeometry PG(3,,/q). The 3-space over GF(q) defined by this Baer subgeometry
shares two intersecting Baer subplanes with F. By the induction hypothesis, they must share a Baer

subgeometry PG(3,,/q) with F. O
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CHAPTER

Applications of minihypers

In this chapter we will give some applications of minihypers. We start with some new characterisation
results of minihypers contained in quadrics. In the second section we describe the link between minihypers
and i-tight sets of finite classical polar spaces, which gives us some nice characterisation results of i-tight
sets in terms of generators. The results of the first two sections are then used to prove a non-existence
result on Cameron-Liebler line classes. The fourth application is on weighted m-covers and m-ovoids of
quadrics. Characterisation results on minihypers give extension results on partial weighted m-ovoids and
partial weighted m-covers.

The results of this chapter are published in [25] 26].

3.1 Minihypers contained in quadrics

Minihypers in projective spaces are well studied objects, hence a lot of characterisation results are known.
A special class of minihypers are the {z6,,26,_1;n,¢}-minihypers, for which we repeat the following
important result.

Theorem 3.1.1. (Govaerts and Storme [44]) A {z0,,,20,,_1;n, ¢}-minihyper F, ¢ > 16 square, z <
q5/8/\/§+ L,2u+1 < n, is a union of pairwise disjoint pi-spaces and Baer subgeometries PG(2u+1,,/q).

Now we will have a look at {z6,,x60,_1;n,q}-minihypers whose point sets are contained in classical
finite polar spaces, more precisely in quadrics. Suppose that Q(n,q) is a quadric of rank k + 1. We
will characterise {0y, 20x_1;n, ¢}-minihypers on Q(n,q), where z < ¢/2 — 1, as the union of z pairwise
disjoint generators. These results are used in the proofs of the following sections.

Lemma 3.1.2. Let F be an {x0,20;_1;n, q}-minihyper, where x < q/2 — 1, on Q(n,q). Let mp_—1
be a (n — k — 1)-dimensional space containing exactly one point of F'. There exists a hyperplane through
Tn_k_1 containing more than x0;_1 points of F.

Proof. Suppose that every hyperplane of PG(n, ¢) through m, _;_; has exactly 2:0;_1 points of F. Count
the size of the set

X ={(P,H)|P € F\mp—k—1, H a hyperplane through 7, _y_1,P € H}.

Starting with P, we have that |X| = (|F| —1)0x_1, since there are 1 hyperplanes through 7, _j_; and
P. Starting with H, we have | X| = 0 (x0x_1 — 1). For |F| = 20y, this gives a contradiction. O

25
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We apply the theorem of Bézout in the following form.

Lemma 3.1.3. If an s-dimensional space 75 intersects a quadric Q in at least three hyperplanes of s,
then s C Q .

Lemma 3.1.4. Let B be a minimal blocking set with respect to the (n — k — 1)-dimensional subspaces
contained in a hyperplane section m,_1 N Q(n,q) of Q(n,q), with |B| < ¢* + ¢*/2. Then every t linearly
independent points of B span a (t — 1)-dimensional subspace w1 completely contained in Q(n,q).

Proof. This is true for t = 2. Indeed, let Ry, Ry € B be 2 linearly independent points. By Theorem
[CZT0, the line (R;, R2) must contain at least 1 + p points of B. This means that this line contains at
least 3 points of Q(n, q), so lies completely on Q(n,q).

Suppose that the lemma is true for some ¢. Let ;1 be a (¢ — 1)-dimensional space on Q(n, q), spanned
by ¢ linearly independent points of B. Let R be a point of B\m;_1. Take two sets of ¢ — 1 points of these
t points. By induction, we know that both sets together with R are two sets of ¢ linearly independent
points of B, so they define two (¢ — 1)-dimensional spaces in Q(n, ¢). Together with 7;_1, this gives three
(t — 1)-dimensional spaces on Q(n, ¢) that span a t-dimensional space 7;. Lemma 313 implies that 7 is
a subspace contained in Q(n, q). O

Lemma 3.1.5. Let B be a minimal 1-fold blocking set with respect to the (n—k—1)-dimensional subspaces
contained in a hyperplane section m,_1 N Q(n,q) of Q(n,q), with |B| < ¢* + ¢*/2. Then B is the point
set of a k-dimensional subspace my, of Tp_1.

Proof. Since |B| > 6, we can find at least k + 1 linearly independent points in B. This means by the
previous lemma that (B) = m,. C Q(n,q), with r > k. But since m,, C Q(n,¢q), r can be at most k. We
conclude that » = k and that B is the point set of a k-dimensional subspace 7, of m,_1. O

Lemma 3.1.6. A {x0y,x0;_1;n,q}-minihyper F contained in Q(n,q), with v < ¢/2 — 1, contains a

k-dimensional space.

Proof. Consider a point P’ of F. There exists an (n — k — 1)-dimensional space m,_;_; through P’ only
containing that point of F. To find an (n — 1)-dimensional space 7,_; through m,_j_1 that contains
more than xf,_1 points of F', we use Lemma [3.1.2]

The space 7,1 intersects F in a 1-fold blocking set B with respect to the (n — k — 1)-dimensional spaces
in m,_1 (Lemma [[LT6). Let B be a minimal blocking set contained in B.

We determine the maximal possible size of B. As the blocking set m,_1 N F is the intersection of a
hyperplane 7,,_; with the minihyper F', from Lemma [[.74] this is a

k k
{Z €:0;, Z €;0;—1;n — 1, ¢}-minihyper,
i=0 i=0

with E?:o € < T

Every (n — k — 1)-dimensional subspace in 7,_; intersects the minihyper F N m,_; in at least €; points
(Theorem [[L7.3]). Since m,—k—1 contains only one point of F'N,,_1, €, must be equal to 1. So |m,_1NF| <
0r + (z — 1)0,_1 < ¢* + ¢*/2. By LemmaB.I.5 B is the point set of a k-dimensional subspace. O

Theorem 3.1.7. (1) An {x0,,20,_1;2r + 1,q}-minihyper F contained in Q*(2r + 1,q), with x <
q/2 — 1, consists of x pairwise disjoint r-dimensional spaces, i.e. of x pairwise disjoint generators.

(2) An {x0,_1,20,_2;2r, q}-minihyper F contained in Q(2r,q), with © < q/2—1, consists of x pairwise
disjoint (r — 1)-dimensional spaces, i.e. of x pairwise disjoint generators.
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(3) An {x0,_1,20,_2;2r + 1, q}-minihyper F contained in Q~(2r + 1,q), with x < q/2 — 1, consists of
x pairwise disjoint (r — 1)-dimensional spaces, i.e. of x pairwise disjoint generators.

Proof. (1) By the previous lemma the minihyper F contains a generator m. From Lemma [[T77 it
follows that F\7 is an {(x — 1)0,, (z — 1)0,_1;2r + 1, ¢}-minihyper F’. Repeating the previous
arguments x times implies that F' consists of & pairwise disjoint r-dimensional subspaces.

(2),(3) This is obtained using the same arguments as for (1).
O

Corollary 3.1.8. Let F be an {x0,,20,_1;2r + 1, q}-minihyper on QT (2r +1,q), with x < q/2—1. Ifr
is even, then x < 2.

Proof. This follows from the fact that at most two r-dimensional spaces of Q¥ (2r +1,q), 7 even, can be
disjoint to each other. O

3.2 Minihypers and i-tight sets

We will consider i-tight sets in finite classical polar spaces. We show that i-tight sets can be linked
with minihypers. Lemma [[L7I0, together with the results of the previous section, gives us some nice
characterisation results of i-tight sets in terms of generators and Baer subgeometries contained in the
Hermitian and symplectic polar spaces and in terms of generators for the orthogonal polar spaces. After
the definition we observe an example of a Baer subgeometry contained in H(2r + 1,¢?) which forms a
(g + 1)-tight set. It can be shown that the Hermitian polarity induces a symplectic polarity in this Baer
subgeometry.

Definition 3.2.1. (Bamberg, Kelly, Law, and Penttila [5]) A set T of points of a finite polar space
of rank r = 2 over a finite field PG(n,q) is i-tight if for any point P € PG(n,q) holds that

r—1
i1+ g1 fPeT,
PLAT] = { e v Y

P i— ifPeT.

qg—1

Example 3.2.2. A classical example of an i-tight set in a classical finite polar space P is a union of ¢
pairwise disjoint generators of P.

Example 3.2.3. Consider the Hermitian variety H(2r + 1,¢%). A (¢ + 1)-tight set can be constructed
using a particular example of a Baer subgeometry contained in H(2r + 1, ¢?).

Up to a projectivity, the Hermitian variety H(2r + 1,¢?) consists of the set of points whose coordinates
satisfy the equation

X1 X8 — Xo X+ XaX8 — . 4 Xop 1 XI, — X5, X3, = 0.
Each hyperplane of PG(2r+1, ¢?) intersects the standard Baer subgeometry PG(2r+1,q) = {(zo, ..., Tor11)|7; €

F,} in either a PG(2r,q) or a PG(2r — 1, q).

For a hyperplane 7w with equation agXo+ - - -+ agr1Xo-41 = 0, its conjugate hyperplane 79 with respect
to the standard Baer subgeometry PG(2r + 1, ¢) has equation a{ Xo+---+a  ; Xor11 = 0. Now 7 = 79
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if and only if for some scalar ¢ € F., Vi, ta; € Fq. Let P = (zo,...,Tor+1) €E TNPG(2r +1,¢), then P
lies also in 7?. So

TNPG2r+1,q9) = wNPG((2r+1,q) (3.1)

= aNa?NPG(2r+1,q), (3.2)

then 7 N PG(2r + 1,q) = PG(2r,q), since the intersection is invariant under the conjugation x — 27 :
(rNa)?=xiNg. If 7 # 79, then T NPG(2r +1,q) = PG(2r — 1,¢q).

Denote the polarity associated with the Hermitian variety by L. Consider a point P € H(2r + 1,¢?), let

P = (20,%1,...,T2.41). The tangent hyperplane 7 = P* to H(2r + 1,¢?) at P satisfies the equation
Xlxg — Xo.’Elf + -+ X2r+1$gr - XQT(Eg,,,Jrl = 0,

its conjugate, m? satisfies the equation

Xz — Xoxy + - -+ + Xopp122r — Xopworp1 = 0.

They are equal if and only if z; = tz?,t € GF(¢?)*,i=0,1,...,2r + 1, so if P € PG(2r + 1,¢). Hence,

PG(2r,q) it Pe PG(2r+1,q)
€ _ ) 5 ’
PTOPGEr+1,q9) = { PG(2r —1,q) if P ¢ PG(2r +1,q).
These intersections are of sizes equal to the intersection numbers in the definition of an i-tight set with
i =q+1. So we conclude that this Baer subgeometry PG(2r +1,¢q) is a (¢ + 1)-tight set in H(2r + 1, ¢°).

The preceding example was also stated in [5]. Their approach was as follows: they considered the
embedding of W(2r +1,¢) in H(2r + 1, ¢?) and proved that this defines a (¢ + 1)-tight set in H(2r +1, ¢°).
We now prove the converse. The following theorem characterises a Baer subgeometry PG(2r + 1,q)
contained in the Hermitian variety H(2r + 1,¢?) defining a (g + 1)-tight set as a symplectic polar space
contained in the Hermitian variety.

Theorem 3.2.4. Suppose that a subgeometry PG(2r +1,q) C H(2r + 1,¢%) defines a (q + 1)-tight set.
Then the Hermitian polarity of H(2r + 1,¢?) induces a symplectic polarity in this Baer subgeometry.

Proof. Since this Baer subgeometry PG(2r + 1, ¢) defines a (g + 1)-tight set 7, we have the following
intersection numbers:

Lo [ @S = i PeT,
IPLAT| = [
(q + 1) -1 == 7(1_1 if P ¢ T

Let H be the set of hyperplanes of PG(2r +1,q). Define n: PG(2r+1,q) — H : P+ P-NPG(2r+1,q),
with | the Hermitian polarity. Note that P+ N PG(2r + 1,¢) indeed is a hyperplane of PG(2r + 1, ¢q)
since [P NT|=(¢** —1)/(¢g—1).

Then 7 is a bijection from the point set of PG(2r + 1, q) to the set of hyperplanes of PG(2r + 1, ¢) since
the hyperplanes PN PG(2r + 1, q) are extendable to hyperplanes of PG(2r + 1, ¢?), and distinct points
of H(2r + 1,¢?) have distinct tangent hyperplanes.

Now 7 is involutory starting from L. If P, P;, P, are collinear in PG(2r + 1,q), then P+ N Pi- N Pi
is a (2r — 1)-dimensional subspace of PG(2r + 1,¢?). In fact, it is a (2r — 1)-dimensional subspace of
PG(2r +1,q) since P+* = P+ P-* = P, P = Ps-. So

P NPt =Ptnpt=(Ptnph)L.

So n is a polarity of PG(2r + 1,q); since P € P" for all points P of PG(2r + 1,q), n is necessarily
symplectic. O
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We now turn to the characterisation problem of i-tight sets in the classical finite polar spaces. These
i-tight sets are linked to minihypers.

In the further part of this section we will use ¢* for ¢* = ¢2 in case of the Hermitian variety H(2r + 1, ¢?)
and ¢* = ¢ in the case of a symplectic polar space or a quadric.

Theorem 3.2.5. An i-tight set, with i > 1, on W(2r +1,q), Q" (2r + 1,q), or H(2r + 1,¢?) generates
the whole space.

Proof. Let T be this i-tight set. Then

g™ —1 *r s
ol i PeET,
praT)=4 te T
=] iFPET.

q

So T is not contained in a tangent hyperplane if ¢ > 1. This finishes the proof for W(2r +1,q).

For Q*(2r + 1,q) and H(2r + 1,¢?), a non-degenerate hyperplane section is a ( — —L)-ovoid [5]. An
m-ovoid and an i-tight set intersect in mi points [5]. So here they intersect in Z(q ) points. So 7 is
not contained in a non-degenerate hyperplane. O

We obtain that an i-tight set 7 on one of the classical finite polar spaces W(2r+1,q), Q" (2r+1,q), H(2r +
1,¢%) is a set of i(¢*"*1 — 1)/(¢* — 1) points intersecting every hyperplane in at least i(¢*" — 1)/(¢* — 1)
points. This means that 7 is an {i(¢*"** —1)/(¢* —1),4i(¢"" —1)/(¢* —1);2r+1, ¢* }-minihyper (Definition
7).

We now use known characterisation results on minihypers to get new information on i-tight sets in the
classical finite polar spaces W(2r + 1,q), Q" (2r + 1,q), and H(2r + 1,¢?). For the first characterisation
result, we rely on Theorem B.1.6 and Corollary B.1.8] from the previous section.

Theorem 3.2.6. An i-tight set on QT (2r +1,q), with 2 < i < q/2 — 1, can only exist for r odd. When
r is odd, then such an i-tight set is the union of i pairwise disjoint generators of Q*(2r +1,q).

For every r > 1, a 1-tight or 2-tight set on Q" (2r + 1,q) consists of one generator or of two disjoint
generators.

In Theorems[B.I.6land BT on quadrics, we could exclude the Baer subgeometries, since there are no Baer
subgeometries PG(d, ,/q) contained in a non-singular quadric in PG(d,q). But what can we say about
these Baer subgeometries contained in the Hermitian variety? We will now study the correspondence
between these Baer subgeometries and i-tight sets on the Hermitian variety H(2r + 1, ¢?).

Lemma 3.2.7. Let P € H(2r + 1,¢?), let Pt share a PG(2r,q) with H(2r + 1,¢%), then P € PG(2r,q).

Proof. Assume that P ¢ PG(2r,q).

Then P lies on the extension of a line of PG(2r, ¢) (the line PP?) and P projects PG(2r, ¢) onto a cone
with vertex R and base PG(2r — 2,q).

Now this PG(2r, q) lies on (P,H(2r — 1,¢?)). Since the projection (R, PG(2r — 2,q)) lies completely on
H(2r + 1,¢?%), it lies in the tangent hyperplane R* w.r.t. H(2r — 1,¢%). But R+ w.r.t. H(2r — 1,¢%) has
dimension 2r — 2, and (R,PG(2r — 2,q)) generates a (2r — 1)-space, so we get a contradiction.

Hence, P € PG(2r,q). O
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Theorem 3.2.8. Let T be an i-tight set in H(2r + 1,¢%), with ¢> > 16 and i < ¢*°/8/\/2 + 1, then
T is a union of pairwise disjoint Baer subgeometries PG(2r + 1,q) and generators PG(r,q?), where the
Hermitian polarity L induces a symplectic polarity in every Baer subgeometry PG(2r + 1,q) contained in

T.
Proof. This i-tight set defines an {i(¢*"*2—1)/(¢?—1),i(¢*" —1)/(¢*> —1); 2r +1, ¢* }-minihyper contained
in H2r + 1, ¢%).

By Theorem [L7.I0, this minihyper is a union of pairwise disjoint r-dimensional spaces and Baer subge-
ometries PG(2r + 1,¢q). It is possible to take away an r-dimensional space PG(r, ¢?) from 7 and reduce
T to an (i — 1)-tight set (Lemma [[7.7).

So from now on, we assume that 7 is a union of § pairwise disjoint Baer subgeometries PG(2r + 1, q).
This implies that ¢ = (¢ + 1). Denote the Baer subgeometries in 7 by m;,i =1,2,...,0.

Consider a point P of 7. Then

2r
PtnT| = 5(q+1)(qu_11)+q2T (3.3)

= |PG(2r,q)| + (6 — 1)|PG(2r — 1,q)|. (3.4)

So P+ must intersect the pairwise disjoint Baer subgeometries PG(2r + 1,¢), contained in 7, once in a
PG(2r,q) and § — 1 times in a PG(2r — 1,¢). By the preceding lemma, P € PG(2r,q).

The preceding arguments, including the proof of theorem [3.2.4] now imply that the Hermitian polarity
1 induces a symplectic polarity in every Baer subgeometry 7; contained in 7. O

Finally, we investigate the third class of classical finite polar spaces. Let T be an i-tight set on W(2r+1, q),
5/

1< % + 1. Then 7 is a union of pairwise disjoint PG(2r + 1,,/q) and PG(r,q). We recall that
0, = |PG(r,q)|. We will also use ©, = [PG(r,/q)|.

Lemma 3.2.9. Let T be an i-tight set on W(2r +1,q), i < % + 1. If T contains an r-dimensional

subspace U, then UL is also contained in T .

Proof. For P T, |[PtNT| = i(q;__ll) +¢". We know that T defines an {if,.,i6,._1;2r + 1, ¢}-minihyper,

which is a union of pairwise disjoint r-dimensional subspaces m, and Baer subgeometries PG(2r + 1, /q)
4578

ifi < e +1 (Theorem [[710).

Assume that 7 consists of ¢ distinct PG(2r 4+ 1,,/¢) and i — d(,/q + 1) distinct 7. Then

|PLNT] O + (6 — 1)Og—1 + (i — 5(q + 1))0,—1

= 6091+ 0, + (i — (g + 1) — 1)6,_.

So PL N T either contains

1. one PG(2r,,/q), 6 — 1 distinct PG(2r — 1, ,/q), and i — 0(q + 1) distinct 7,._; of T or,
2. ¢ distinct PG(2r —1,,/q), one 7, and i — (¢ + 1) — 1 distinct .1 of 7.
Assume that P+ N7 contains a subgeometry PG(2r, /q), then P is the only element of 7 containing this

PG(2r, \/q) in its polar hyperplane P+ since (PG(2r, V@))GF(q) = T2r- This hyperplane must be P+ So
at most 003,41 points P of T share a subgeometry PG(2r, ,/g) with 7 in their polar hyperplane Pt
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For an r-dimensional subspace U in T, U # U~, we can remove U from 7 to obtain an (i — 1)-tight
set. Now dim U+ = 7, so at most (i — §(\/g + 1))6, points of T share a PG(r,q) with T in their polar
hyperplane Pt.

So at most 0(y/q + 1)0, + (i — 6(,/q + 1))0, = 6, points of T share a subgeometry PG(2r,,/q) or a
subspace m, with 7. Since every point of 7 contains a subgeometry PG(2r, /q) or a subspace m, in the
intersection of its polar hyperplane P+ with 7", we can obtain equality.

So @, points of T lie in U, for U a subspace in 7. If U+ # U’ for all r-spaces U’ in T, then all other
r-spaces U’ of T share at most an (r — 1)-dimensional space with U+. This is also true for U itself.
Then for at least |U| — (i — 6(,/q + 1))0,—1 points P of T, P lies in U+, and P lies in a subgeometry
PG(2r +1,,/q) of T. This number is at least 6, — (1 — 0(\/q +1))0,—1 > ¢" /2.

We know that dim U+ = r, so Ut intersects every subgeometry PG(2r + 1, V@) in T in at most a
subgeometry PG(r, ,/q) containing at most /q" points of this subgeometry PG(2r +1,,/q). But 7 must
then have at least ,/q" /2 distinct (2r 4 1)-dimensional Baer subgeometries PG(2r +1,,/q). Now r > 1,
so i/(y/q+ 1) = /q/2. This is false, since 7 contains 6 < i/(,/q + 1) distinct Baer subgeometries
PG(2r+1,,/q). Here, i/(,/g+1) < (¢°/8/v2+1)/(\/gd+1) < /q/2, so we have a contradiction. We can
conclude that U+ also lies in 7. O

In the next lemma we denote the subgeometries PG(2r + 1, ,/q) contained in 7 by II.

Lemma 3.2.10. Let T be an i-tight set on W(2r + 1,q), i < % + 1. If T contains subgeometries
PG(2r + 1,./q), then they are invariant under the symplectic polarity or they come in disjoint pairs

{I1;, I}, where P N1y = PG(2r, \/q) for all P € I1;.

Proof. By using the arguments of the preceding theorem, if 7 contains r-dimensional subspaces U, then
either U = U™+, or U # U™, and then U, U™ both lie in 7. In the first case, U can be deleted from 7
to obtain an (i — 1)-tight set, and in the second case, U and UL can be deleted from 7 to obtain an
(i —2)-tight set. So, from now on, we assume that 7 consists of a union of pairwise disjoint subgeometries
PG(2r +1,/q).

Assume that 7 consists of § distinct (27 + 1)-dimensional Baer subgeometries PG(2r + 1, ,/q) = I1;,i =
1,...,6. For every point P € II;, PT intersects one II;,5 € {1,...,0}, in a subgeometry PG(2r, ,/q) and
intersects all other subgeometries II;,j € {1,...,4}, in a subgeometry PG(2r — 1, /7).

Consider all hyperplanes of II;. They in fact form a dual subgeometry PG(2r + 1,,/g). Each hyperplane
defines a unique my, = P*. So the points P of T for which P+ contains a hyperplane PG(2r, \/q) of II;
form themselves a subgeometry PG(2r + 1, ,/g). This subgeometry PG(2r 4+ 1, /) is contained in T, so
it is either II; itself or it is another subgeometry Ils.

Assume that it is another subgeometry Ils. There are ©2, hyperplanes of II; through a point R in Iy,
so Rt contains Oy, points of ITy. So we get the pairing {II;, II,}. O
qs/g

Theorem 3.2.11. Let T be an i-tight set of W(2r + 1,q), i < 5 + 1. Then T is a union of pair-

wise disjoint r-dimensional spaces PG(r,q) and Baer subgeometries PG(2r 4+ 1,,/q). Moreover, these r-
dimensional spaces PG(r,q) and (2r+1)-dimensional Baer subgeometries PG(2r+1,,/q) can be described
in the following more detailed way: T is a union of generators of W(2r + 1,q), pairs of r-dimensional
spaces {U, UL}, with UNU* = 0, subgeometries PG(2r + 1, V@) invariant under the symplectic polarity,
and of pairs {PG(2r + 1,,/q)1,PG(2r + 1,,/q)2}, where P-NPG2r +1, V@)2 = PG(2r,\/q) for all
P cPG(2r+1,,/q):.

Proof. This characterization result follows from the preceding lemmas. O
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Remark 3.2.12. The preceding theorem shows that a possible construction for i-tight sets in W(2r+1, q)
is to consider two disjoint Baer subgeometries PG(2r + 1,,/g), that are each others image under the
symplectic polarity.

It is still an open problem whether such an example exists. An exhaustive search for such a 6-tight set
in PG(3,4) using Gap and PG [42] [76] gave no such example. We have the following proof for W(3,4).
We wish to thank the referee of [26] for giving us this proof.

Theorem 3.2.13. The symplectic polar space W(3,4) does not have a 6-tight set which is the union of
two disjoint Baer subgeometries PG(3,2) which are each others image under the symplectic polarity.

Proof. The isometry group PSp(4,4) of W(3,4) has three orbits on Baer subgeometries PG(3,2):

1. Those which are invariant under the symplectic polarity (there are 1360 of them);

2. Those which share 11 lines with their perp, 9 of which are totally isotropic (there are 27200 of
them);

3. Those which share 7 lines with their perp, all totally isotropic (there are 20400 of them).

So in the second and third case, there is a line of PG(3,4) containing 3 points of the first Baer subgeometry
and 3 points of the second Baer subgeometry; these two sets of size 3 necessarily intersect in at least one
point. Hence, there cannot be a 6-tight set in W(3,4) obtained by two disjoint Baer subgeometries which
are paired by the symplectic polaritiy. O

3.3 Cameron-Liebler line classes

Cameron-Liebler line classes are special line sets in PG(3, ¢) satisfying some properties. Via the Klein cor-
respondence, it can be shown that they form an i-tight set on Q% (5, q) which can be linked to minihypers
as before. We start with an observation on Cameron-Liebler line classes.

Cameron-Liebler line classes were introduced by Cameron and Liebler [22] in an attempt to classify
collineation groups of PG(n, ¢) that have equally many point orbits and line orbits. In their paper, they
conjectured which groups these are. It is now known [6] that the conjecture is true when the group is
irreducible, but there is no classification yet of Cameron-Liebler line classes.

There are many equivalent definitions for Cameron-Liebler line classes. Following Penttila [71], a clique
in PG(3, q) is either the set of all lines through a point P, denoted by star(P), or dually the set of all lines
in a plane 7, denoted by line(r). The planar pencil of lines in a plane m through a point P is denoted by
pen(P, 7).

Definition 3.3.1. (Cameron and Liebler [22], Penttila [71]) Let £ be a set of lines in PG(3,q) and
let x ¢ be its characteristic function. Then L is called a Cameron-Liebler line class if one of the following
equivalent conditions is satisfied.

1. There exists an integer x such that |[L N S| = x for all spreads S.

2. There ezists an integer x such that for every incident point-plane pair (P, )

|star(P) N L] + [line(m) N L] =z + (¢ + 1)|pen(P, ) N L]. (3.5)
3. There exists an integer © such that for every line I of PG(3,q)

{m € L|m meets I,m #1}| = (¢ + Dz + (¢* — D)xc(1). (3.6)
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The parameter x is called the parameter of the Cameron-Liebler line class. We note that the first definition
implies that x € {0,1,2,...,¢* +1}. Cameron and Liebler [22] showed that a Cameron-Liebler line class
of parameter z consists of 2(¢? + ¢ + 1) lines and that the only Cameron-Liebler line classes for x = 1
are the cliques, i.e., all lines through a point or all lines in a plane, and for x = 2 the unions of two
disjoint cliques. They also noted that the complement of a Cameron-Liebler line class with parameter x
is a Cameron-Liebler line class with parameter ¢ + 1 — z. So, it suffices to study Cameron-Liebler line
classes with parameter x < |(¢? 4+ 1)/2]. Thus, the case ¢ = 2 was immediately solved. In their paper,
Cameron and Liebler conjectured that no other Cameron-Liebler line classes exist.

Penttila [71] shows that for ¢ # 2 there exist no Cameron-Liebler line classes with parameter = 3 or
x = 4, with possible exception of the cases (x,q) € {(4,3),(4,4)}. Bruen and Drudge [18] prove the
non-existence of Cameron-Liebler line classes with parameter 2 < z < ,/g. Drudge [30] excludes the
existence of a Cameron-Liebler line class with parameter x = 4 in PG(3,3), and proves that for ¢ # 2
there exist no Cameron-Liebler line classes with parameter 2 < = < €, where ¢ + 1 + € denotes the size
of the smallest nontrivial blocking sets in PG(2, ¢). He also gives a counterexample to the conjecture of
Cameron and Liebler: a Cameron-Liebler line class with parameter © = 5 in PG(3,3), in this way settling
the case ¢ = 3. Bruen and Drudge [19] then construct a Cameron-Liebler line class with parameter
x = (¢* + 1)/2 for any odd ¢. In [43], Govaerts and Penttila completed the study of the case z = 4
by showing that there exists no Cameron-Liebler line class with parameter = 4 in PG(3,4). In [43],
Govaerts and Penttila also disproved the conjecture of Cameron and Liebler for ¢ even by showing the
existence of a Cameron-Liebler line class with parameter z = 7 in PG(3,4).

We improve the results of Govaerts and Storme for ¢ not prime. They proved the following two theorems
and corollary [7].

Theorem 3.3.2. In PG(3,q), q prime, ¢ > 2, there exist no Cameron-Liebler line classes with parameter
2<x<q.

Theorem 3.3.3. (1) In PG(3,q), q square, there exist no Cameron-Liebler line classes with parameter
2 < 2 < min(€, ¢**), where ¢+ 1+ ¢ denotes the size of the smallest nontrivial blocking sets in PG(2, q)
not containing a Baer subplane.

(2) Let ¢ = p3*, p > 7 prime, h > 1 odd, and let g+1+¢€" denote the size of the smallest nontrivial blocking
sets in PG(2,q) containing neither a minimal blocking set of size q+p*"+1, nor one of size g+p?" +p+1.
In PG(3,q), there exist no Cameron-Liebler line classes with parameter 2 < x < min(e”, ¢°/%).

(3) Let g = p*", p > 7 prime, h > 1 even, and let ¢+ 1+ €’ denote the size of the smallest nontrivial
blocking sets in PG(2,q) containing neither a Baer subplane, nor a minimal blocking set of size q+p?" 41,
nor one of size g+ p*" +p" +1. In PG(3,q), there exist no Cameron-Liebler line classes with parameter
2 < x < min(e”, ¢>*).

Corollary 3.3.4. (1) Let q be a square, ¢ = p", p prime.

1. If ¢ > 16, then there exist no Cameron-Liebler line classes in PG(3,q) with parameter 2 < x < cpq2/3,
where ¢, equals 2-1/3 when p € {2,3} and 1 when p > 5.

2. If p > 3 and h = 2, then there exist no Cameron-Liebler line classes in PG(3,q) with parameter
2 << g,

(2) Let ¢ = p®, p > 7 prime, then there exist no Cameron-Liebler line classes in PG(3,q) with parameter
2<x< q5/6.

(3) Let ¢ = p®, p > 7 prime, then there exist no Cameron-Liebler line classes in PG(3,q) with parameter
2 <x < g3

Theorem [B.3.7] gives a new improved bound for general g # 2, ¢ not prime. This theorem will be proven
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by studying how the lines of the Cameron-Liebler line class with parameter x correspond with z-tight sets
on Q*(5,q) and {z(¢®> + ¢+ 1),2(q + 1);5, ¢}-minihypers contained in the Klein quadric Q* (5, ¢q). Using
Corollary in the case r = 2 gives us new non-existence results on Cameron-Liebler line classes.

Theorem 3.3.5. In PG(3,q), ¢ > 3, there exist no Cameron-Liebler line classes with parameter 2 <
r <.

Proof. Let £ be a Cameron-Liebler line class with parameter . A line [ intersects (¢ + 1) lines of £ if
| ¢ £ and [ intersects (¢ + 1)x + ¢2 lines of £, including [, if [ € £ (Definition B.3.1]).

Translated via the Klein correspondence, £ defines a set 7 on Q7 (5, ¢) such that

D+q® ifPeT

pL _ [ e+ .

[PENT] { 2(q+1) itPgT,PeQt,q).

So T defines an a-tight set on Q*(5,q), with |£] = T = 2(¢®> + ¢+ 1). So [5, Theorem 12] implies that 7T~
defines an {z(¢®>+q+1),z(q¢+1); 5, ¢}-minihyper F on Q*(5,¢). We only need to check that 7~ generates
PG(5,q).

Since |T| > 3(¢* + ¢ + 1), dim(7) > 4. If dim(7) = 4, then (T) N QT (5,q) = Q(4,¢) since T is not
contained in a tangent hyperplane to Q" (5, q).

Since |T| < |Q(4,9)]|, let R € Q(4,q9) \ 7. Consider in Tr(Q(4,q)) a plane only intersecting Q(4, q) in
R. This plane then lies in the tangent hyperplane Tr(Q(4,¢)) and in ¢ hyperplanes sharing an elliptic
quadric Q™ (3, q) with Q(4, q).

These elliptic quadrics Q™ (3, ¢) define via the Klein correspondence regular spreads of PG(3, ¢) sharing
x lines with £ (Definition B3.1]), so these elliptic quadrics contain x points of 7. Since R* contains
x(q+ 1) points of T, we find that, in total, 7 would contain x(q + 1) + £q = 22q + = points. But this is
false, since |T| = x(¢*> + ¢ + 1).

So, it is indeed true that 7 defines an {x(¢*+q+1),2(q+1);5, ¢}-minihyper F on Q* (5, ¢). But Corollary
B L8 states that this minihyper does not exist, so we conclude that the Cameron-Liebler line classes with
parameter 3 < z < % do not exist. O

3.4 Weighted m-covers and weighted m-ovoids

The last application of minihypers we study are weighted m-covers and weighted m-ovoids in finite
classical generalised quadrangles. We associate a weight function to the points which are not covered
m times by a partial weighted m-cover. The points with positive weight form a minihyper. Results on
minihypers give extension results on partial weighted m-covers and dual to partial weighted m-ovoids.
We then go more into detail on a (g + 1)/2-ovoid on Q7 (5, ¢). The linear codes associated to it gives us
information on the multiplicity of the points. This enables us to give an alternative proof for the problem
of the complete caps on Q™ (5,3) of [7, 59].

We first repeat some definitions.

Definition 3.4.1. Let S be a finite classical generalised quadrangle. A partial weighted m-ovoid O on
S is a weighted set of points on S such that each line of S contains at most m points of O.

A partial dual weighted m-ovoid O* is a set of lines in S such that each point of S is incident with at
most m lines. We will also use the name partial weighted m-cover for a partial dual weighted m-ovoid.

The deficiency § of a partial (dual) weighted m-ovoid of S is by definition the number of points (lines)
that it lacks to be a (dual) m-ovoid.
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A partial weighted m-ovoid (or m-cover) of S is called maximal when it is not contained in a larger
partial weighted m-ovoid (or m-cover) of S.

An example of a weighted m-ovoid, when ovoids exist, is to simply take a sum of m ovoids.

In the case of m = (¢ + 1)/2, ¢ odd, we prefer the notion of a weighted hemisystem.

Construction 3.4.2. Consider a conic C in Q(4,q), q odd, such that the perp C* is an external line L of
Q(4,q). Take m < (¢+1)/2 points P, ..., Pigy1)/2 of L such that PrNnQ(4,9) =Q; (3,9),i=1,...,m.
We have that C C Q; (3,q), for alli. Since Q@ (3,q) is an ovoid of Q(4,q), every line of Q(4,q) has one
point in common with each Q; (3,q). Hence, UX; Q; (3,q) is a weighted m-ovoid of Q(4,q).

This is an example of a weighted m-ovoid, where the ¢ + 1 points of C have weight m and all the other
points have weight 1. In the case m = (¢ + 1)/2, q odd, we have constructed a weighted hemisystem.

The dual of an m-ovoid on Q(4,q) is a weighted m-cover of Ws3(q), so every point of W3(q) is covered m
times. The dual of a Q™ (3,q) on Q(4,q) is a regular spread of W3(q). In the dual of Construction[3.4.3,
the lines coming from the points of C will have weight m and the other lines of the weighted m-cover will
have weight 1.

Remark 3.4.3. In PG(3, q), there exist 2-covers which cannot be partitioned into two disjoint spreads
of PG(3,q). The example for ¢ odd is due to Ebert [32], and the example for ¢ even is due to Drudge
[31]. Both examples consist of lines of a symplectic space W3(q), so are in fact 2-covers of W3(q).

Theorem 3.4.4. Suppose that O* is a partial weighted m-cover of W3(q), having deficiency 6. Define
as follows a weight function w:

w:PG(3,q) > N: P— m— |star(P) N O7|.

If F is the set of points of PG(3, q) with positive weight, then (F,w) is a {d(q + 1), d; 3, ¢}-minihyper.
Proof. The weight of PG(3,q) equals

wPGB,9)= > wP) = m@+¢+q+1)—|0%(g+1)
PePG(3,q9)
= 0(g+1),

since |O*| = m(q® + 1) — 4.

A plane 7 of PG(3, ¢) intersects W3(g) in a pencil of lines, i.e., in the set of lines in 7 that pass through
a given point of m. Let a denote the number of lines of O* contained in 7. Clearly, a < m. So,

w(m) =Y wP) = m@®+q+1)—alg+1) - (0] -a)

d+qgim—a) > 4.

Theorem 2.2 of [51] shows that (F,w) is a {d(¢+ 1), J; 3, ¢}-minihyper. In [51], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed. O
Corollary 3.4.5. If O* is a mazimal partial weighted m-cover of W3(q) with deficiency 6 < ¢4, then §

1S even.

Proof. If § < €4, then any {d(¢ + 1), d; 3, ¢}-minihyper (F,w) can be written as a sum of lines, see [40].
Apply this result to the minihyper (F,w) associated to O* (Theorem BZ4.4)).
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Suppose that L is a line of this sum. Since O* is maximal, L is not a line of W5(q), so L+ # L. Let
L ={Ro,R1,...,R,} and L+ = {Sy,S1,...,5,}. The lines of W3(g) intersecting L, intersect LL, and
vice versa. If w(Ry)+...+w(R,) is the total weight of the points of L, then exactly m(g+1) — (w(Ro) +
...+ w(Ry)) lines of O* intersect L, so exactly m(q + 1) — (w(Rp) + ... + w(R,)) lines of O* intersect
Lt I s(g+1) <w(Ro) + ... +w(Ry) < (s+1)(g+ 1), then L occurs exactly s times in the sum (F,w).
So L and L+ appear in the sum (F,w) with the same weight, so we get a pairing of the lines contained
in (F,w). Hence, § is even. O

Corollary 3.4.6. If O is a mazimal partial weighted m-ovoid of Q(4, q) with deficiency 6 < €, then ¢
s even.

Proof. This follows from the duality between Q(4,q) and W3(q). O

Theorem 3.4.7. Suppose that O* is a weighted partial m-cover of H(3,q?), having deficiency §. Define
as follows a weight function w:

0 when P ¢ H(3,q?),

. 2 .
w:PG(3,q )%N'PH{ m — [star(P) N O| when P € H(3,q%).

If F is the set of points of PG(3,q?) with positive weight, then (F,w) is a {5(¢*> + 1), 8; 3, ¢*}-minihyper.

Proof. The weight of PG(3,¢?) equals

wPGEB,¢*) = > wP) = mHE3,¢)|-]0"(¢*+1) =0d(¢>+ 1),
PEPG(3,q?)

since |0*| = m(¢® +1) — 4.

A plane 7 of PG(3, ¢?) intersects H(3, ¢?) either in a Hermitian curve H(2,¢?) or in a cone PH(1,¢?). In
the first case, m contains no lines of H(3, ¢?), and

w(r)=> w(P) = m(+1)-|0%| =0

Pen

In the second case, 7 contains ¢+ 1 lines of H(3, ¢) that pass through the common point P. Let a denote
the number of lines of O* contained in 7. Clearly, o < m. So,

wim) =Y wP) = m@+¢@+1)—al®+1)— (|07 —a)

S+q*(m—a) > 6.

Theorem 2.2 of [51] shows that (F,w) is a {§(¢® + 1), d; 3, ¢*}-minihyper. In [51], the theorem is proven
for minihypers without weights, but the proof also holds when weights are allowed. O

Corollary 3.4.8. If O* is a weighted partial m-cover of H(3,¢?) with deficiency 6 < €2 = q+ 1, then
O* can be extended to a weighted m-cover of H(3, ¢?).

Proof. If § < €,2 = g+ 1, then any {§(¢* + 1), 8; 3, ¢*}-minihyper (F,w) can be written as a sum of lines,
see [46]. Applying this result to the minihyper from the statement of Theorem B4 it follows that the
set O* can be extended to a weighted m-cover of H(3,4?) by adding the lines that constitute the sum
(F,w). O

Corollary 3.4.9. If O is a partial weighted m-ovoid of Q™ (5, q) with deficiency 6 < e,z = g+ 1, then O
can be extended to a weighted m-ovoid of Q™ (5,q).
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Proof. This follows from the duality between H(3,¢?) and Q= (5, q). O

Theorem 3.4.10. Let O* be a weighted partial m-cover of deficiency 6 < q on Q(4,q). Define a weight
function w in the following way:

0 when P & Q(4,q),

w:PG(4,q) > N: P { m — |star(P) NH| when P € Q(4,q).

If F is the set of points of PG(4,q) with positive weight, then (F,w) is a {d(q + 1), J;4, q}-minihyper.

Proof. The weight of PG(4, q) equals

wPG(4,q) = > w(P) = mQ4,q)]|—]0"(g+1)=d(g+1),
PEPG(4,q)

since |0*| =m(¢* +1) — 4.

A hyperplane 7 of PG(4, q) intersects Q(4, ¢) in a hyperbolic quadric Q*(3, q), an elliptic quadric Q™ (3, q)
or a cone PQ(2,q). In the case of 7 N Q(4,q) = QT (3,q), m contains 2(q + 1) lines of Q(4,q). Let o
denote the number of lines of O* contained in 7. Clearly, o < 2(¢+ 1). So,

wim) =Y w(P) = mg+1)%—alg+1)— (0] —a) =6+ q(2m — a).
Pem

Each hyperplane has positive weight, so a < 2m, hence w(m) > §. In the case of TN Q(4,¢) = Q™ (3,¢),
7 contains no lines of Q(4, ), so

w(m) = Z w(P) = m(¢*+1)—|0* =6.

Pem

In the case of TN Q(4,q) = PQ(2,q), 7 contains ¢ + 1 lines of Q(4,q). Let a denote the number of lines
of O* contained in 7. Clearly, a < m. So,

w(m) =Y w(P) = m(@+q+1)—a- (|0 -a)
= d04+¢glm—a) > 4.

Theorem 2.2 of [51] shows that (F,w) is a {d(¢+ 1), d; 4, ¢}-minihyper. In [51], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed. O

Corollary 3.4.11. If O* is a weighted partial m-cover of Q(4,q) with deficiency § < q/2 — 1, then O*
can be extended to a weighted m-cover of Q(4,q).

Proof. If § < q/2 — 1 then a {0(q + 1), ;4, ¢}-minihyper (F,w) on a parabolic quadric Q(4,¢) can be
written as a sum of lines, see Theorem B.I.7l Applying this result to the minihyper of Theorem B.4T0
it follows that O* can be extended to a weighted m-cover of Q(4,¢q) by adding the lines that constitute
the sum of (F,w). O

Using the duality between Q(4, ¢) and W(3, q), also the following corollary holds.

Corollary 3.4.12. If O is a weighted partial m-ovoid of W(3, q) with deficiency § < q/2—1, then O can
be extended to a weighted m-ovoid of W(3,q).
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Theorem 3.4.13. Let O* be a weighted partial m-cover of deficiency 6 < q on Q™ (5,q). Define a weight
function w in the following way:

0 when P & Q™ (5, q),

““PG(MHN:PH{ m — |star(P) N O%| when P € Q(5,q).

If F is the set of points of PG(5,q) with positive weight, then (F,w) is a {d(q¢ + 1),9;5, q¢}-minihyper.
Proof. The weight of PG(5, ¢q) equals

wPGG,q)= > wP) = mQ (59)—0%|(¢g+1)=d(g+1),
PEPG(5,q)

since |O*| =m(¢g® +1) — 4.

A hyperplane 7 of PG(5, ¢) intersects Q™ (5, ¢) either in a parabolic quadric Q(4, ¢) or in a cone PQ™ (3, q).
In the case of TN Q™ (5,9) = Q(4,q), m contains lines of Q™ (5,¢). Let a denote the number of lines of
O* contained in 7. So,

w(r) = Z w(P) = m(@+1)(g+1)—a(g+1)— (|0 —a) =6 +qlmg+m — a).
Per

Each hyperplane has positive weight, so @ < m(q + 1), hence w(w) > ¢. In the case of TN Q™ (5,¢q) =
PQ~(3,q), © contains ¢® + 1 lines of Q(4,q). Let a denote the number of lines of O* contained in 7.
Clearly, a < m. So,

wim) =Y wP) = mlg®+q+1)—alg+1) - (|0 - a)
= d+qgm—a) > 4.

Theorem 2.2 of [51] shows that (F,w) is a {§(¢+ 1), d; 5, ¢}-minihyper. In [5I], the theorem is proven for
minihypers without weights, but the proof also holds when weights are allowed. O

Corollary 3.4.14. If O* is a weighted partial m-cover of Q™ (5,q) with deficiency 6 < q/2 — 1, then O*
can be extended to a weighted m-cover of Q™ (5,q).

Proof. If 6 < q/2 — 1 then a {d(q + 1),9;5, g}-minihyper (F,w) on an elliptic quadric Q~(5,¢) can be
written as a sum of lines, see Theorem B.1.71 Applying this result to the minihyper of Theorem B.4.13]
it follows that O* can be extended to a weighted m-cover of Q™ (5, ¢) by adding the lines that constitute
the sum of (F,w). O

Using the duality between Q= (5, ¢) and H(3, ¢?), also the following corollary holds.

Corollary 3.4.15. If O is a weighted partial m-ovoid of H(3,¢*) with deficiency 6 < q/2 — 1, then O
can be extended to a weighted m-ovoid of H(3,¢?).

Suppose now that (H,w) is a weighted hemisystem of Q7 (5,¢), ¢ odd. So (H,w) has >, w(r) =
(¢ +1)(g+ 1)/2 points. Associate the following linear code C' to this hemisystem (H,w) = {g1,...,gn},
with n = (¢® +1)(¢ +1)/2.

Consider G = (gj - - - g ) as the generator matrix of C. This defines a code C of length n = (¢3+1)(g+1)/2
and dimension k& = 6. Consider the message (u1,...,ug). This message defines the codeword z =

(ul,...,uf;)(} = ((ul,...,ug)gl,...,(ul,...,ug)gn).
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Consider the hyperplane 74 : u1 X1 + -+ - + ugXg = 0 of PG(5, q), then (uq,...,ug)g; =0 < g; € m4. So
the weight of x is the number of points of the hemisystem that do not lie in this hyperplane m4. Since
the minimal distance d of C is equal to the minimal weight of the non-zero codewords, we look for all
different kinds of hyperplanes 7, and how many points of H they contain.

a. 1y N Q™ (5,9) = Q(4,q). Since H induces a weighted (¢ + 1)/2-ovoid on Q(4,q),

q+1
MNQMg) = (¢ + (o).
So this gives a codeword of weight
(@+1)@+1) (+1@+1) _ g+]1

)@ —q?).

- = (

2 2 2

b. m4NQ~(5,q9) = RQ™(3,q), with R ¢ H. This tangent cone contains ¢> + 1 lines which each contain
(¢ + 1)/2 points of the hemisystem. This gives a codeword of the same weight as above.

c. ;NQ (5,9) =RQ (3,q9), with R € H and with w(R) = a. Then this tangent cone contains
atl g+1

5 a) = (qz‘i‘l)(T)—an

points, so this gives a codeword of weight (¢ + 1)(¢* — ¢2)/2 + ag®.

a+(q¢* +1)(

Sod=(q+1)(¢>—¢*)/2,and Cis a [(¢° + 1)(¢ + 1)/2,6, (¢ + 1)(¢* — ¢°) /2]-code.

Now we know the parameters n, k, d of this linear code C, we compare these parameters with the Griesmer
bound:

o @D+ o (et D@ -¢®) @D’ —a)  (a+D@=1
2 - 2 2 2

2 2 2
q“—1 q-—1 q“—1
+{ 2q W*[ 24> WJF{ 2¢3 W
(q+1)(q3*1)+q+1
2 2
g+ +1) q-3
2 2

+ 2

\%

So the length of C has a difference of (¢ — 3)/2 with relation to the Griesmer bound g4(k,d). In the
case of ¢ = 3, we reach the Griesmer bound. For the next part, we consider ¢ = 3. We also rely on the
following theorem. Let g,(k,d) be the Griesmer bound for linear [n, k, d]-codes over GF(g).

Theorem 3.4.16. [29] Suppose that C is a [t + g,(k,d), k,d)-code and d < sq*~1. Then any generator
matriz of C contains no more than s+t equivalent columns.

Since for ¢ = 3, the Griesmer bound is reached and also d < ¢°, we have t = 0 and s = 1. This means
that the generator matrix of the code has no equivalent columns. So every point of the hemisystem H
has weight 1. For ¢ = 3, the hemisystem # is a set of (¢ +1)(¢+1)/2 different points such that each line
of Q7 (5,3) contains exactly (¢ + 1)/2 = 2 points of H. So we have that the hemisystem is in fact also a
cap on Q7 (5,3). The largest caps on Q~(5,3) have size 56. This means that we have an extendability
result on partial caps on Q~ (5, 3).

Since €9 = 4, Corollary show that every (56 — 3 = 53)-cap on Q~ (5, 3) is extendable to a maximal
56-cap on Q~ (5, 3).
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Theorem 3.4.17. Every 53-, 54-, or 55-cap on Q™ (5, 3) is extendable to a mazimal 56-cap on Q™ (5, 3).

The preceding observation gives us an alternative proof for part of the results of [7), [59] where the problem
of the complete caps in PG(5, 3) was studied in detail.
For more information on hemisystem for general q, we refer to A. Cossidente and T. Penttila [24].



The functional code Cp(X), with
X a projective variety

CHAPTER

Edoukou determined the geometrical structure of the smallest weight codewords of the functional code
C3(X), X a quadric or a Hermitian variety in 3 and 4-dimensional projective spaces. His approach was
an algebraic one. He determined all possible intersections and then selected the maximal one. The larger
the dimension of the projective space the more exhaustive the research becomes. We will look at it in a
more geometrical way. This allows us to handle all dimensions in general.

First we study the functional code C2(Q), Q a non-singular quadric. We do this by studying pencils of
quadrics AQ +pQ’, which determines g + 1 quadrics. This approach will be repeated for the functional
code Cherm(X), X a Hermitian variety. In this way we determine the smallest weight codewords and
their numbers in both codes.

The results of this chapter are published in [36] [37].

4.1 The functional code (C5(Q), Q a non-singular quadric

We study the functional code C5(Q), with Q a non-singular quadric of PG(n,q) and we denote by
Q = {P1,...,Pn} the point set of Q. Let F be the set of all homogeneous quadratic polynomials
f(Xo, ..., X,) defined by n + 1 variables. Every homogeneous quadratic polynomial f in n+ 1 variables
defines a quadric Q' : f(Xo,...,X,) = 0. So, in particular, the functional code C5(Q) is the linear code

Co(Q) = {(f(P1), ..., f(Pn))|f € FU{0}},
defined over GF(q).

This linear code has length N = |Q] and dimension k = ( " _2|_ 2 ) -1

We determine the 5 or 6 smallest weights of C5(Q) via geometrical arguments. The small weight codewords
of C3(Q) correspond to the quadrics of PG(n, ¢) having the largest intersections with Q. We prove that
these small weight codewords correspond to quadrics Q' which are the union of two hyperplanes of
PG(n, q).

We note that the size of a singular quadric having a non-singular hyperbolic quadric as base, is always
larger than the size of a singular quadric having a non-singular parabolic quadric as base, which is itself
always larger than the size of a singular quadric having a non-singular elliptic quadric as base.

The quadrics having the largest size are the union of two distinct hyperplanes of PG(n,q), and have

41
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size 2¢" 1 4+ ¢""2 +--- + ¢+ 1. The second largest quadrics in PG(n,q) are the quadrics having an
(n — 4)-dimensional vertex and a non-singular 3-dimensional hyperbolic quadric Q" (3, q) as base. These
quadrics have size ¢" = 4+ 2¢" 2 + ¢" "3 4+ --- + ¢+ 1. The third largest quadrics in PG(n,q) have an
(n — 6)-dimensional vertex and a non-singular hyperbolic quadric Q™ (5, ¢) as base. These quadrics have
size qn—l + qn—2 + 2qn—3 + qn—4 4+t q + 1.

As we already have mentioned, the smallest weight codewords of the code Cs(Q) correspond to the
largest intersections of Q with other quadrics Q" of PG(n,q). Let V be the intersection of the quadric
Q with the quadric Q’. Two distinct quadrics Q and Q' define a unique pencil of quadrics AQ + pQ’,
(A, 1) € F3\ {(0,0)}.

Let V.= QN Q, then V also lies in every quadric AQ + pQ’ of the pencil of quadrics defined by Q and
Q’. A large intersection implies that there is a large quadric in the pencil. The sum of the numbers of
points in the ¢ + 1 quadrics of the pencil of quadrics defined by Q and Q' is |[PG(n, q)| + ¢|V], since the
points of V lie in all the quadrics of the pencil and the other points of PG(n, ¢) lie in exactly one such
quadric. So there is a quadric in the pencil containing at least (|[PG(n,q)| + ¢|V])/(q + 1) points.

If there is a quadric in the pencil which is equal to the union of two hyperplanes, then we are at the
desired conclusion that the largest intersections of Q arise from the intersections of Q with the quadrics
which are the union of two hyperplanes. So assume that all ¢+ 1 quadrics in this pencil defined by Q and
Q' are irreducible; we try to find a contradiction. As already mentioned above, the largest irreducible
quadrics are cones with vertex PG(n—4,q) and base Q% (3, ¢), and the second largest irreducible quadrics
are cones with vertex PG(n — 6,¢q) and base Q™ (5, q).

Theorem 4.1.1. Let Q and Q' be two quadrics and denote their intersection with V. In PG(n,q), with
n>=6,orn=>5and Q=Q (54q), if |[V]|>q¢g"2+3¢"3+3¢"*+2¢"°+---+2¢+ 1, then in the
pencil of quadrics defined by Q and Q', there is a quadric consisting of two hyperplanes.

Proof. Suppose that there is no quadric consisting of two hyperplanes in the pencil of quadrics.

IV >q¢" % +2¢" 2 +2¢" " +¢" " + -+ q+1, then (|PG(n, q)[ +¢[V])/(¢+1) > |m0—6Q7(5,9)], s0
there is a singular quadric m, 4Q%(3,q) in the pencil of quadrics.

With the lines of one regulus of Q1 (3, q), together with m, 4, we form g+ 1 different (n — 2)-dimensional
spaces T,_2. We wish to have that at least one of these (n — 2)-dimensional spaces intersects @ in two
(n — 3)-dimensional spaces. All points of V appear in at least one of these (n — 2)-dimensional spaces
I1,,_2, so for some space m,_3, we have that |m,_o N V| > |V|/(¢+ 1).

If|V|/(g+1) > |m_6Q7(3,q)|, then m,_5 N Q is the union of two (n — 3)-dimensional spaces. When
V| > g2 +3¢" 3 +3¢""*+2¢"5+ - +2¢ + 1, then this is valid. So 7, 2N Q=7}_sUm2_5.

n—3

These two (n — 3)-dimensional spaces are contained in V', so belong to Q. This means that Q must have
subspaces of dimension n — 3. The next table shows that this can only occur in small dimensions.

quadric dimension generator | property fulfilled
Q=Q"(n=2n"+1,q) n' n <2
Q=Q (n=2n"+1,q) n —1 n <1
Q=Q(n =2n',q) n —1 n <2

Except for the small cases for n’, we have a contradiction, so there is a quadric consisting of two hyper-
planes in the pencil of quadrics defined by Q and Q'. O

Remark 4.1.2. First of all we say something about the sharpness of the bound in Theorem ATl
Therefore we refer to [23] Theorem 3.6]. In a pencil of ¢ + 1 non-singular elliptic quadrics Q™ (n, ¢) not
containing hyperplanes, the size of the intersection of 2 quadrics is:
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— — ntl n—>5
|Q10Q2| = qn 2_|_qn 3_|_,_,_|_q2 +q 2z +---+qg+1.

We notice that the difference between the size of this intersection and the bound mentioned in Theorem
AT is of order O(q"~3).

Since the problem is solved for dimensions n up to 4 [33] 34], there is still one open case. From now on,
Q will be the hyperbolic quadric Q" (5, q).

If |V| > ¢® + 2¢® + 2q + 1, then there is a singular quadric m,_4Q%(3,¢9) = LQ*(3,¢) in the pencil of
quadrics, if we assume that there is no quadric in the pencil which is the union of two hyperplanes.

We form solids wy, ..., wy+1 with L and the lines of one regulus of the base Q¥ (3,q). If |V| > ¢* +3¢* +
3¢+ 1, |V|/(qg+1) > |m_6QT(3,q)]|, there is a solid through L of LQ™¥(3,q) intersecting Q in two planes.

Now we have three different cases:

1. LCV,
2. [ILNV|=1,
3. [LNV|=2.

Lemma 4.1.3. For Q*(5,q), if |V| > ¢® +4¢®> + 1 and L C V, then there is a quadric consisting of two
hyperplanes in the pencil of quadrics defined by Q and Q'.

Proof. Assume that no quadric in the pencil is the union of two hyperplanes. Then we have already a
singular quadric LQ™(3,¢) in the pencil and there is a solid w; through L intersecting Q in 2 planes.
Now L lies in one or both of these planes, since L C V.

Every point of V' lies in at least one of the ¢ + 1 solids wy, ..., wq4+1 through L. Now

|V| — (union of 2 planes) > ¢* +4¢> +1— (2¢* +q+1) = ¢* +2¢* — q.

So one of the ¢ remaining solids of wy,...,we41 contains at least

3 2
+ 2¢° —
q q q:q2+3q

points.

So one solid wy contains more than |Q™ (3, ¢)| points of V, so wy intersects Q in the union of two planes.
One of these planes contains L, so L lies already in two planes of QT (5, q).

Now one of the ¢ — 1 remaining solids ws, . ..,wq41 contains more than
g+1+(*+2¢° —q—2¢") /(- 1) =" +2¢+1
points of V.

Again this implies that there is a solid w3 intersecting Q in the union of two planes, with at least one of
them containing L. This gives us at least three planes of Q™ (5,¢) through L, which is impossible. We
have a contradiction. So there is a quadric consisting of 2 hyperplanes in the pencil of quadrics defined
by Q and Q. O



44 Chapter 4. The functional code C},(X), with X a projective variety

Lemma 4.1.4. For QT (5,q), if |V| > ¢* + 5¢*> + 1, then the case |[LNV| =1 does not occur.

Proof. Assume that no quadric in the pencil of Q and Q' is the union of two hyperplanes. Then we have
already a singular quadric LQ™ (3, ¢) in the pencil of quadrics. In this quadric, the line L is skew to the
solid of Q1 (3, q).

But L is a tangent line to Q7 (5, ¢) in a point R since L is contained in the cone LQ™ (3, q), but L shares
only one point with Q*(5, q).

Using the same arguments as in the preceding lemma, we prove that at least three solids defined by the
line L and lines of one regulus of the base Q1 (3,q) intersect Q in two planes. These planes all pass
through R, so they lie in the tangent hyperplane Tr(Q), which intersects Q in a cone with vertex R and
base Q1 (3,¢)’. Two such planes of V in the same solid of LQ"(3,q) through L intersect in a line, so
they define lines of the opposite reguli of the base QT (3,¢q)’" of this tangent cone. This shows that the
4-space defined by R and the base Q7 (3,¢q)” shares already six planes with Q. By Corollary [LT.3} the
cone RQ™(3,q)’ is contained in V.

Consider a hyperplane through L; this intersects LQ™ (3, ¢) either in a cone LQ(2,¢q) or in the union of
two solids. So the tangent hyperplane Tg(Q) cannot intersect LQ™(3,¢) in a cone RQ™(3,q)’.

This gives us a contradiction. O

Lemma 4.1.5. For QT (5,q), if |V| > ¢® +5¢*> —q+1 and |LNV| = 2, then there is a quadric consisting
of two hyperplanes in the pencil of quadrics defined by Q and Q'.

Proof. Assume that no quadric in the pencil defined by Q and Q' is the union of two hyperplanes. Then
we have already a singular quadric LQ'(3,q) in the pencil and there is a solid wy through L intersecting
Q = Q™ (5,¢q) in two planes. Assume that LNV = {R, R'}. Let Q*(3,q), be the polar quadric of L with
respect to QT (5,¢) and let Q1 (3,¢). lie in the solid 7.

By the same counting arguments as in Lemma B3] we know that if |V| > ¢3 4+ 5¢® — ¢ + 1, then there
are 3 solids (L, L;), with i = 1,2,3, and all L; belonging to the same regulus of Q¥ (3,q), intersecting
Q in 2 planes. For every solid (L, L;), we denote by L, the line that the 2 planes have in common, and
mi1 = (R, Ei>,wi2 = (RQL}-). Then L; = 1 N2 C RN R+ = 75, with L the polarity with respect
to QT (5,q). We use the same arguments for the opposite regulus. This gives us again 3 solids (L, M),
i =1,2,3, intersecting Q in 2 planes. We denote by M; the line in the intersection of these 2 planes.

These lines L; and M; belong to the hyperbolic quadric Q*(3,q9)z in Rt N R*, which is the basis
for RQ™(3,q)r, as well as for R'Q%(3,q)r. The quadric RQ™(3,q)s, shares 6 planes with LQ™ (3, q).
By Bézout, if RQT(3,q9)r, ¢ LQ1(3,q), then the intersection would be of degree 4, so RQ™(3,q); C
LQ™(3,¢9) N Q. Similarly, Q" (3,¢)r, € LQ™(3,¢9) N Q.
The cone LQT(3,q) intersects Q in 2 tangent cones RQ1(3,q);, and R'Q"(3,q)r. We will now look at
the pencil of quadrics defined by Q and LQ*(3,¢) = Q'.

Let P be a point of m3\Q™ (3, ¢)r. The points of PG(5,¢)\(QNQ’) lie in exactly one quadric of the pencil
defined by Q and Q’. For the point P, this must be the quadric consisting of the two hyperplanes (R, 73)
and (R',73). For (R, m3) contains a cone RQ™ (3, ¢) and the point P of this quadric, so this is one point
too much for a quadric.

So one quadric of the pencil consists of the union of 2 hyperplanes. O

Corollary 4.1.6. For Q*(5,q), if |V| > ¢ + 5¢% + 1, then the intersection of Q*(5,q) with the other
quadric Q' is equal to the intersection of Q1 (5,q) with the union of two hyperplanes.
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4.1.1 Dimension 4

We consider a pencil of quadrics AQ + pQ’ in PG(4, ¢), with Q a non-singular parabolic quadric Q(4, q).
Let V = QN Q' and suppose no quadric in the pencil is the union of 2 hyperplanes. If |V| > ¢* + ¢ + 1,
then there is at least one cone PQ™(3,¢) in this pencil.

Lemma 4.1.7. If |[V| > ¢*> + (v + 1)qg + 1, then x planes through P of the same requlus of PQ*(3,q)
intersect Q in 2 lines.

Proof. Consider one regulus of PQ%(3,q). We wish to have that x planes PL, with L a line of this

regulus, intersect @ in 2 lines. So for the first plane, this means that (l% > g+ 1, since every point of V

lies in one of the ¢ + 1 planes PL. For the z-th plane, we have already x — 1 planes which intersect Q in

2 lines. We impose that W > g + 1 to guarantee that the xz-th plane also intersects Q in 2

lines. This reduces to |[V| > ¢* + (z + 1)g + 1. O

Denote by L; the lines of one regulus of Q*(3,¢q) and by M; the lines of the opposite regulus of Q¥ (3, q),
with ¢ = 1,2,...,q+ 1. Denote by I;1,l;2, resp. m;1, M2, the lines of Q N PL;, resp. QN PM;.

We have to look at 2 cases now, whether P € V or whether P € V.

CASEI: PcV

Theorem 4.1.8. For Q(4,q), if |V| > % +4q+1 and P € V, then V consists of the union of a cone
PQ(2,q) and a hyperbolic quadric Q*(3,q).

Proof. By the preceding lemma there are at least % planes each containing 2 lines of V', of which at

least one goes through P. A point P of Q(4,q) lies on ¢ + 1 lines, so at least 5 planes PL;, i = 1,---5,
contain a line of V not through P. The same is true for the oppossite regulus.

W.l.o.g. we can assume that the lines containing P are l;; and m;; and so those not containing P are
then l;2 and m;2. Consider PL; and one PM;, such that the intersection line is not the line /;; through
P. The line lyo intersect the plane PMj; in a point R. The line PR does not belong to @, since that
would give to much lines through P. The line mj2 in PM; must contain this point R. We can repeat
the previous for all the planes PM; except the one containing the line /1;.

This arguments remain true if we start with another plane PL;. So if we consider 3 planes PLy, PLo
and PLs. Three planes PMj, j = 1,---,5 can contain one of the lines l11,ls; or l3;. Without loss of
generality we can assume that the planes PM;, PMs neither contain the line /11, nor I3y, nor l3;. The
lines l;5 will all intersect the planes PM; and M. This means that the lines m;s all intersect the lines I;5.
This gives 5 skew lines which span a hyperbolic quadric QT (3,¢q). These 5 lines lie on Q(4, ¢q). By Bézout
this Q™ (3, ¢) must lie on Q(4,q). V has degree 4 and dimension 2 and by the previous V = Q*(3,q)UQ".
This @’ must be a quadric since it has degree 2 and dimension 2 and it contains the remaining lines,
which all contain P. Therefore Q' = PQ(2,q). O

CASEIL: P¢V

Theorem 4.1.9. For Q(4,q), if [V| > ¢*+11q¢+1 and P ¢ V, then for ¢ > 7, V consists of the union
of 2 hyperbolic quadrics.

Proof. We use the notations introduced after the proof of Lemma ET.7

Without loss of generality, we can assume that the lines of PL; lying on Q intersected by my; (resp. mis2)
are the lines ;1 (resp. l;2), i =1,...,2. So my1 and mqy are both intersected by z lines of Q.
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One of the lines moy, mos will intersect at least f%l of the lines ;1. Without loss of generality we can
assume this is the case for mqy;. This means that mq; has these transversals in common with mq;. Assume
that these lines are the lines l;1, - - - ,l(%]l. Also we can assume that ms; has at least [%1 transversals in
common with mqq.

Assume that at least 2 of those transversals also intersect mo1, then mq1, mo1, ms1 define a 3-dimensional
hyperbolic quadric Q1 (3, q) sharing 5 lines with Q(4, q).

Otherwise, at least © — 1 transversals out of the x selected transversals to mq; are intersecting one of ms;
and mg;, but not both. Suppose now that m4; shares at least [§] transversals with m;;. One of them
could be skew to mo; and msq, but at least f%l — 1 of them intersect mo; or ms;. At least # of them
intersect, for instance, mop. If this is at least 2, then mq1,ma1,my; define a 3-dimensional hyperbolic
quadric Q7 (3, q) sharing 5 lines with Q(4, ¢). Therefore, we obtain the same conclusion that V' contains
a 3-dimensional hyperbolic quadric when z > 10. Lemma [T7 implies that we need to impose that
|V| > ¢* + 11qg + 1. Since in both cases, there is a 3-dimensional hyperbolic quadric Q*(3,¢) sharing 5
lines with Q(4, q), Corollary [LT.3 implies that Q1 (3,q) C Q(4,q). So V consists of QT (3, ¢) and another
3-dimensional quadric. The remaining lines of V are 10 skew lines of planes PL; and 10 skew lines of
planes PMj;, and these lines of V' lying in PL; intersect the lines of V' lying in PM;. So these lines also

form a 3-dimensional hyperbolic quadric Q¥ (3, q). O

Theorem 4.1.10. For Q(4,q), if |V| > % +4q+1, then there is a union of 2 hyperplanes in the pencil
of quadrics defined by Q and Q.

Proof. By Theorems 1.8 and EET.9] V' consists of a 3-dimensional hyperbolic quadric Q™ (3, ¢) in a solid
73 and another 3-dimensional quadric. Let R be a point of m3\V. The points of PG(4,¢)\(Q N Q') lie
in exactly one quadric of the pencil. Let Q” be the unique quadric in the pencil defined by Q and Q’
containing R. So 73 shares with Q” a quadric and an extra point R, so this is one point too much for a
quadric, hence there is a quadric in the pencil defined by Q and Q’ containing a hyperplane, so a quadric
in the pencil defined by two hyperplanes. O

4.1.2 Tables and final results for C(Q)

The largest intersections of a non-singular quadric Q in PG(n, ¢) with other quadrics are the intersections
with the quadrics which are the union of two hyperplanes I1; and IIs. We now discuss all the different
possibilities for the intersections. This then gives the five or six, dependent on the quadric, smallest
weights of the functional code C2(Q), and the numbers of the codewords having these weights. we only
have to take care not to count codewords twice. the next lemma shows this is not the case for n > 4 and
q =>4

Lemma 4.1.11. No two different unions of hyperplanes can give the same codewords for n > 4 and
q=4.

Proof. Let II; UIl; and II3 U II4 be two different unions of hyperplanes. Suppose they give the same
codewords, then (IT; UTI;) N Q = (TIs UII,) N Q. Since II; UTly # I3 UTl,, we can assume I3 # I1; and
I3 # IIs. Then II3NQ C (IIsNII; NQ)U (IIsNII2NQ), so the hyperplane intersection I3 NQ is contained
in the union of two (n — 2)-dimensional spaces intersecting Q. Denote the smallest possible intersection
size of a hyperplane with Q by x,_1 and the largest possible intersection size of an (n — 2)-dimensional
space with Q by z,,_o, this must then lead to z,_1 < 2z,,_5. Counting arguments show this is always
impossible for ¢ > 4 and n > 4. O

We start the discussion via the (n — 2)-dimensional space II; N ITs.
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In the next tables, Q% (n,q), Q™ (n,q) and Q(n,q) denote non-singular hyperbolic, elliptic and parabolic
quadrics in PG(n, q), msQn—s—1 denotes a singular quadric with vertex 7 and base a non-singular quadric
ina PG(n—s—1,q) skew to ms.

The hyperbolic quadric in PG(2l + 1,q)

The intersection of a (2] — 1)-dimensional space with the non-singular hyperbolic quadric Q* (2l + 1,q)
in PG(2l + 1, q) is either: (1) a non-singular hyperbolic quadric QT (2] — 1, ¢), (2) a cone LQ* (2] — 3, q),
(3) a cone PQ(2l —2,q), or (4) a non-singular elliptic quadric Q™ (2] — 1, q).

1. Let PG(2]—1,q) be a (2] —1)-dimensional space intersecting Q* (2041, ¢) in a non-singular (2] —1)-
dimensional hyperbolic quadric Q*(2{ — 1,¢). Then PG(2l — 1, q) is the polar space of a bisecant
line to QT (2] + 1,q). Then PG(2l — 1,q) lies in two tangent hyperplanes to QT (2] + 1,¢) and in
q — 1 hyperplanes intersecting QT (2] + 1, ¢) in a non-singular parabolic quadric Q(2l, q).

2. Let PG(2] — 1,q) be a (2] — 1)-dimensional space intersecting QT (2] + 1,¢) in a singular quadric
LQ™T (21 -3, q), then PG(2] —1, ) lies in the tangent hyperplanes to QT (2/+1,¢) in the ¢+ 1 points
P of L.

3. Let PG(2l — 1,q) be a (2] — 1)-dimensional space intersecting QT (2] + 1,¢) in a singular quadric
PQ(21 — 2,q), then PG(2] — 1,q) lies in the tangent hyperplane to Q*(2] + 1,q) in P, and in ¢
hyperplanes intersecting Q* (2] + 1, ¢) in non-singular parabolic quadrics Q(21, q).

4. Let PG(20—1,q) be a (2 —1)-dimensional space intersecting QT (2/+1, ¢) in a non-singular (2] —1)-
dimensional elliptic quadric Q™ (2] — 1, ), then PG(2l — 1, ¢) lies in ¢ + 1 hyperplanes intersecting
Q% (2l + 1,q) in non-singular parabolic quadrics Q(21, q).

In Table 1, we denote the different possibilities for the intersection of Q* (2l + 1,q) with the union of
two hyperplanes. We describe these possibilities by giving the formula for calculating the size of the
intersection. We mention the sizes of the two quadrics which are the intersection of II; and Il; with
Q1 (20 +1,q), and we subtract the size of the quadric which is the intersection of g1 = IT; N Ty with
QT (2l +1,q).

H21_10Q+(2l+1,q) \Q+(21+1,q)ﬂ(ﬂl UH2)|
(1) | (1.1) Q*(21—1,q) 21Q(21,¢)| — QT (20— 1,q)|
(1 2) Q+(2l_1aq) |PQ+(2Z_17Q)|+|Q(217(])|_|Q+(2l_1’q)‘
(1.3) QF(21—1,q) 21PQT(21—1,¢)| - 1QT(21 — 1, )|
(2) | (2.1) LQ"(21—3,q) 2[PQT (20— 1, q)| — [LQT (21— 3,q)|
(3) | (3.1) PQ(2l - 2,q) 2|Q(2L, ¢)| — [PQ(2l - 2,q)|
(3 2) PQ(2Z — 27(]) ‘PQJF(QZ — 17(1)‘ + |Q(2Z7Q)| — |PQ(2I — 2,C])|
(4) | (41) Q (20—-1,q) 2(Q(2L, ¢)| = [Q7(20 —1,4)|

Table 1

We now give the sizes of these intersections of Q* (2] + 1,¢) with the union of two hyperplanes.
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QT (20 +1,¢) N (I UTI)|
1) | (1.1) 27 T+ + -+ + P+ g+
(12) [ 26 T+ 24+ ¢ 42 + ¢ 2+ g +1
(13) 2q2l71 4 q2l72 RN ql+1 =+ 3ql + q172 + g+ 1
@) [2" " +¢" 7+ -+ +2¢ + ¢ "+ g+
(3) | (3.1) 27 T+ 7+ + T+ g+
B2 [2¢7 T+ 2+ +¢TT+2( +¢ T+ +q+1
(41 (27 T+ 2+ + ¢ +2¢" T +qd 7+ g +1

Table 2

We now present in the next table the weights of the corresponding codewords of Co(Q™ (2] +1,¢)), which
is the size of the intersection subtracted from the length of the code. we also give the numbers of code-
words having these weights.

Weight Number of codewords for ¢ > 4

(1.3) wy = g% — 21 — gl 4 ¢! %

2T TF1T =T — —

(2.1)+(3.2) wy + ¢ — ¢! (g ‘”(S(q,l)”(q Dy (31 — =) (¢!*2 — q)
(1.2) wi +4' @+ )@ - D(g -1
(4.1) wy + 2¢" — 2¢1 (T 1) (g=1)
: 4
(3.1) wy + qu - ql—l (q3l71_q171)(gl+1_1)(q2_q)
I ] AW s T

(1.1) w1 + 2¢* (¢@+a7)(q . 1)(q°—3q+2)

Table 3

Remark 4.1.12. In the case that ¢ = 2, we have that the third weight coincides with the fourth. So in
that special case there are only five different weights.

Theorem 4.1.13. The code Co(Q1 (20 + 1,q)) is a linear code with parameters

l +1
¢ +1)(¢gm -1 204+1)(20+4
N ( q)( : ),k ( )2( ),d q2l q2l 1 ql ql 1,

and the minimal weight codewords correspond to quadrics which are a pair of tangent hyperplanes to
Q1 (2041, q) such that the (21 —1)-dimensional intersection of the two hyperplanes intersects QT (2141, q)
in a non-singular hyperbolic quadric.

The elliptic quadric in PG(2] + 1,q)

We have the following possibilities for the intersection of a (2! — 1)-dimensional space IIy;_; with the
non-singular elliptic quadric Q™ (21 4+ 1,¢) in PG(2] + 1, q):

1. Let PG(2{—1, q) be a (2] —1)-dimensional space intersecting Q~ (2l —1, ¢) in a non-singular (2 —1)-
dimensional elliptic quadric Q~ (2] — 1,q). Then PG(2!l — 1, q) is the polar space of a bisecant line
to Q (20 4+ 1,q). Then PG(2l — 1, ¢) lies in two tangent hyperplanes to Q™ (20 + 1,¢) and in ¢ — 1
hyperplanes intersecting Q™ (2] 4 1, ¢) in a non-singular parabolic quadric Q(2l, q).

2. Let PG(2l — 1,q) be a (2] — 1)-dimensional space intersecting Q~ (2] + 1,¢) in a singular quadric
PQ(20—2,q), then PG(2] — 1, ¢) lies in the tangent hyperplane to Q™ (2l +1, ¢) in the point P, and
in ¢ hyperplanes intersecting Q (2] 4+ 1, ¢) in non-singular parabolic quadrics Q(2l, q).
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3. Let PG(2] — 1,q) be a (2] — 1)-dimensional space intersecting Q™ (20 + 1,¢) in a singular quadric
LQ™(21-3,q), then PG(2l — 1, ) lies in the tangent hyperplane to Q™ (2l + 1, ¢) in the ¢+ 1 points
Pof L.

4. Let PG(21—1, q) be a (2] —1)-dimensional space intersecting Q~ (20 +1, ¢) in a non-singular (2{ —1)-
dimensional hyperbolic quadric QT (21 —1, ), then PG(2[—1, ¢) lies in ¢+ 1 hyperplanes intersecting
Q™ (21 4 1,q) in non-singular parabolic quadrics Q(2l, ).

In Table 4, we denote the different possibilities for the intersection of Q™ (2] + 1, ¢) with the union of two
hyperplanes.

Hy 1NQ (20+1,q) Q™ (20 +1,¢) N (I1; UTTy)|
(1) | (1.1) Q (20—-1,q) 21Q(2L,¢)| —1Q~ (2l - 1,4)|
(1.2) Q (20 —1,q) 1PQ~ (20— 1,¢)| +1Q(2],¢)| — Q™ (20 — 1,9)|
(1.3) Q (20—-1,q) 21PQ”(21—1,¢)| —|Q (20 —1,4)|
(2) | (2.1) PQ(2l—-2,q) 2|1Q(2,¢)| — [PQ(2] - 2,q9)|
(2.2) PQ(20—-2,q) 1Q(21,¢)[ + [PQ™ (2l — 1,9)[ — [PQ(2] — 2,q)|
(3) | (3.1) LQ (21 -3,q) 2[PQ™ (20 —1,9)| — [LQ™ (2l —3,9)|
(4) | (4.1) Qr(2l-1,9) 2(Q(2L, ¢)| — QT (21 - 1,9)|
Table 4

We now give the sizes of these intersections of Q™ (2! + 1, ¢) with the union of two hyperplanes.

Q™ (20 +1,¢) N (I UTl,)|

(1) | (1.1) 27 T+ -+ 2 T+ T gt
(12) | 2" " +¢" 2+ 4+ 20 1P gt
13) [ 27 " +¢" 7+ 44T =" +2¢" T+ gt

2 ] (21) 27 T+ P24+ T+ T gt
(2.2) DY e BT S £ SIe o B

(3) | (3.1) i Y A T B

(4) (41) 2q2l_1 +q2l_2+...+ql_~_ql—2_~_._._~_q+1

Table 5

We now present in the next table the weights of the corresponding codewords of Co(Q~(21+1, ¢)), which
is the size of the intersection subtracted from the length of the code. We also give the numbers of code-
words having these weights.

Weight Number of codewords for ¢ > 4
(1.1) wy = g2l — @21 — gl — g1 (qa’“+q2’)<q;—1>(q2—3q+2)
(2.1) wy + ¢! <q"’+1+q’><g2171><q71>
(4.1) wy + 2¢' ! q21+1(qt+1+2<qz+1>(q,1)
(1.2) wi + ¢ @+ - -1
22+E1) witg 47 (¢ + ¢ ) (@ — 1)g + 0D )
(1.3) wy + 2¢ %

Table 6
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Remark 4.1.14. In the case that ¢ = 2, we have that the third weight coincides with the fourth. So in
that special case there are only five different weights.

Theorem 4.1.15. The code Co(Q~ (21 + 1,q)) is a linear code with parameters

l 1+1
¢ — (g +1 20+ 1)(20+4 _ _
N @ D@D D@D
qg—1 2
and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q™ (2141, q) such that the (2l —1)-dimensional intersection of the two hyperplanes intersects Q~ (21+1,q)

in a non-singular elliptic quadric.

In the next theorem we will use the theorem of Ax-Katz[63]

Theorem 4.1.16. Let S be a non-empty finite set of variables and let T be a collection of polynomials
belonging to GF(q)[S]. We put d; =degree(f;), fi € T. The number of common zeros N of the polynomials
of T satisfy N =0 modulo g*, where

Card(S) — 3 j.cr di
p= Sy
supy,er(di)

Theorem 4.1.17. Let X be a non-degenerate quadric (hyperbolic or elliptic) in PG(21+1, q) wherel > 1.
All the weights w; of the code Cy(X) defined on X are divisible by ¢~ 1.

Proof. Let F and f be two forms of degree 2 in 2] 4+ 2 indeterminates with [ > 1 and N the number of

common zeros of I and f in GF(q)?*2. By the theorem of Ax-Katz [63, p. 85], N is divisible by ¢'~!

. 204+2—(242) _

since =————= =1—1.

On the other hand, F' and f are homogeneous polynomials, therefore N — 1 is divisible by ¢ — 1. Let &
N—1

and Q be the projective quadrics associated to F' and f, one has | ¥ N Q| = 1 Let M = %, one has

kg=' —1 ¢ 1-1 k-1
M = =k =k ! _ 4.1
po T T o1 e e (4.1)
where k, k' € Z and k = k'(¢ — 1) + 1. By the theorem of Ax-Katz [63, p. 85] again, we get that the

number of zeros of the polynomial F in GF(¢)?'*2 is divisible by ¢!, so that
L1 g1 -1

M= e e = v (42)
where t, ' € Z and t = t'(q¢ — 1) + 1. The weight of a codeword associated to the quadric X is equal to:

w=|X|-]xNQ|=|X|- M. (4.3)
Therefore, from (&I, #2), and [@3)), we deduce that w = t'¢' — k'¢'~! + ¢!~ L. O

The parabolic quadric in PG(2,q)

The intersection of a (2] — 2)-dimensional space with the non-singular parabolic quadric Q(2l,¢) in
PG(21, q) is either: (1) a non-singular parabolic quadric Q(2l —2, ), (2) a cone PQ™ (2] —3,q), (3) a cone
PQ (21 —3,q), or (4) a cone LQ(2] — 4, q).

For ¢ odd, we can make the discussion via the orthogonal polarity corresponding to the non-singular
parabolic quadric Q(21, ¢). For ¢ even, we need to use another approach, since then Q(2l, ¢) has a nucleus
N. This implies that we need to make a distinction between the (2! — 2)-dimensional spaces Iy
intersecting Q(2l, ¢) in a parabolic quadric Q(2l — 2, q) or a quadric LQ(2] — 4, ¢), containing the nucleus
N of Q(21, q), and those not containing the nucleus N of Q(2l,¢). In [62, p. 43], these (2] —2)-dimensional
spaces are respectively called nuclear and non-nuclear.

We first discuss the case ¢ odd.
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1. Let PG(2] — 2,q) be a (2] — 2)-dimensional space intersecting Q(2l,¢) in a non-singular (2] — 2)-
dimensional parabolic quadric Q(2] — 2,¢). Then PG(2] — 2, q) is the polar space of a bisecant or
external line to Q(2l,¢). In the first case, PG(2l — 2, ¢) lies in two tangent hyperplanes to Q(2l, q),
(¢ — 1)/2 hyperplanes intersecting Q(2l,¢q) in a non-singular hyperbolic quadric Q™ (2] — 1, ¢), and
in (¢ — 1)/2 hyperplanes intersecting Q(2l,¢) in a non-singular elliptic quadric Q~ (2l — 1,¢). In
the second case, PG(2] — 2, q) lies in (¢ + 1)/2 hyperplanes intersecting Q(2l,¢) in a non-singular
hyperbolic quadric Q*(21—1, ¢), and in (¢+1)/2 hyperplanes intersecting Q(2, q) in a non-singular
elliptic quadric Q™ (21 — 1, q).

2. Let PG(21—2, q) be a (2] —2)-dimensional space intersecting Q(2, q) in a singular quadric PQ™ (2] —
3,q), then PG(2l — 2,q) lies in the tangent hyperplane to Q(2l,¢q) in P and in ¢ hyperplanes
intersecting Q(2[, ¢) in non-singular hyperbolic quadrics Q1 (2] — 1, ).

3. Let PG(2{—2, q) be a (21 —2)-dimensional space intersecting Q(2l, ¢) in a singular quadric PQ~ (2] —
3,q), then PG(2l — 2,q) lies in the tangent hyperplane to Q(2l,q) in P, and in ¢ hyperplanes
intersecting Q(2l, ¢) in non-singular elliptic quadrics Q~ (2l — 1, ¢q).

4. Let PG(21 -2, q) be a (2] — 2)-dimensional space intersecting Q(2, ¢) in a singular quadric LQ(2] —
4,q), then PG(2] — 2, q) lies in the tangent hyperplanes to Q(2[, ¢) in the ¢ + 1 points P of L.

In Table 7, we denote the different possibilities for the intersection of Q(2l,¢) with the union of two
hyperplanes.

Iy 2 N Q2L q) 1Q(21,¢) N (IT; UTI,)|

(D) [ 1) | Q21-2,q) 21Q* (20 = 1,9)| — Q20 = 2,9)|

(1.2) | Q2 —2,9) QT (21 -1,¢)| +1Q~ (21 = 1,¢9)[ = [Q(2] — 2,9)|

(1.3) | Q(2l—2,9) [PQ(21 —2,¢)| +1QT (2l — 1,¢)| — |Q(2] — 2,q)|

(1.4) | Q(l—-2,9) [PQ(21 —2,¢)[ +1Q~ (2l — 1,9)[ — [Q(21 - 2,q)|

(1.5) | Q(2l—2,9) 21Q" (21 - 1,¢)| = Q21 — 2,9)|

(1.6) Q21 - 2,q) 2|PQ(2l —2,q)| — [Q(21 — 2,q)|
(2) | (21) | PQT(20—-3,q) 2[Q* (2l —1,¢)| — [PQ* (2] = 3,9)|

(2.2) | PQT(21-3,q) | QT2 —1,9)[ +[PQ(2l - 2,q)| — [PQT (2] - 3, 9)|
(3) | 31) | PQ™(20-3,q) 21Q7 (21— 1,¢)| = [PQ™ (21 - 3,9)|

(32) | PQ(21-3,q9) [ Q21 —1,¢9)| +[PQ(2l —2,q)| — [PQ™ (2l = 3,9)]
(4) | 41) | LQ(21—-4,q) 2|PQ(21 —2,q)| — [LQ(2] — 4, q)|

Table 7

We now give the sizes of these intersections of Q(2[,¢) with the union of two hyperplanes.
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(Q(2L, ) N (I UTL,)|
WO [2" 2 +¢" 7+ +¢+3¢ "+¢ 7+ +q+1
12) [ 272+ ¢+ + ¢ +¢ T+¢ 2+ +q+1
(13) [2¢ 2+ ¢ 5+ + ¢ +2¢" " +¢" 7+ +q+1
(1.4) 272+ 4+ g+
15) | 2¢" 7+ ¢ P+ + ¢ =g+ ¢+ g+
(16) [ 27" 2+ +d+d T+ 2+ +q+1
@Y 2"+ +- - +d+2¢ "+¢ >+ +q+1
22) [ 272+ 3+ 4+ + T+ g
(3) | (3.1) 22+ 4+ P g+
B2 [ 27 2+ 3+ +d+d T+ P+ g+
@ (@D 2"+ P+ 4+ P+ gt

Table 8

We now present in the next table the weights of the corresponding codewords of Cy(Q(2l,¢q)) and the
numbers of codewords having these weights.

Weight Number of codewords for ¢ > 4
21 202 o i-1 (@@-1)¢""" " (¢—1)(g—3)
1 ( 2l_1) 2l161( _1)
(13)+(2.1) wn + g CUSmI
q’(q’*“rl)(f’*l)(q*l)
(1.2) wy + 2471 (@D T(g-1)7 |
8
+(1.6)+(2.2) +<q2’712>q2’-1 4 q‘<q’-1+21>(q2’—1>
+(32)+(41) +ql(q"_1721)(q2171) 4 (q21712)(q21,1_)271)q
P
(1.4)+(3.1) wy 4 3¢1 (q”—l)q;’”(q—l) N ql(q“l—l)(f’—l)(q—l)
(1'5) w1 +4ql—1 (q2171)q21—116(q,1)(q73) n q2l_1(q211;31)(q71)2

Table 9: Weights and number of codewords for ¢ odd

Theorem 4.1.18. The code C2(Q(2l,q)), q odd, is a linear code with parameters

N — ¢ — 1,k _ 2020+ 3)7d e
q—1 2
and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q(21, q) intersecting Q(21,q) in hyperbolic quadrics QT (2l — 1,q) and such that the (21 — 2)-dimensional

intersection of the two hyperplanes intersects Q(2l,q) in a non-singular parabolic quadric.

We now discuss the case ¢ even. Here Q(2l,¢) has a nucleus N.

1. Let PG(2] — 2,q) be a (2] — 2)-dimensional space intersecting Q(2l,¢) in a non-singular (2] — 2)-
dimensional parabolic quadric Q(2] — 2, q). If PG(2] — 2, ¢) is non-nuclear, then PG(2[ — 2, ¢) lies in
one tangent hyperplane, the hyperplane (PG(2] — 2, q), N), in ¢/2 hyperplanes intersecting Q(2, q)
in a non-singular hyperbolic quadric QT (2] — 1, ¢), and in q/2 hyperplanes intersecting Q(2[, q) in
a non-singular elliptic quadric Q™ (2l — 1,¢). If PG(2] — 2, ¢) is nuclear, then PG(2] — 2, ¢) lies in
g + 1 tangent hyperplanes to Q(21, q).
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2. Let PG(21—2, q) be a (2] —2)-dimensional space intersecting Q(21, ¢) in a singular quadric PQ™ (2] —
3,q), then PG(2] — 2,q) lies in the tangent hyperplane to Q(2l,¢) in P, and in ¢ hyperplanes
intersecting Q(2[, ¢) in non-singular hyperbolic quadrics Q¥ (2] — 1, ).

3. Let PG(20—2, q) be a (2 —2)-dimensional space intersecting Q(2l, ¢) in a singular quadric PQ~ (21—
3,q), then PG(2] — 2,q) lies in the tangent hyperplane to Q(2l,¢) in P, and in ¢ hyperplanes
intersecting Q(2l, ¢) in non-singular elliptic quadrics Q~ (21 — 1, q).

4. Let PG(2]—2,q) be a (2 — 2)-dimensional space intersecting Q(2!, ¢) in a singular quadric LQ(2] —
4,q), then PG(2l — 2, ¢) lies in the tangent hyperplanes to Q(2l,¢) in the ¢ + 1 points P of L.

In Table 7, we denoted the different possibilities for the intersection of Q(2l,¢) with the union of two
hyperplanes, and in Table 8, the corresponding sizes for the intersections. We now present in Table 10
the number of codewords having the corresponding weights.

Weight Number of codewords for ¢ > 4
(1.1) T s R e R (qzl—l)qz“;(q—z)(q_m
(1.3)+(2.1) wy + ¢! (qz’fl)q;’_l(qfl)jL ql(ql_lﬂ)(fl*l)(q*l)
(1.2)+(1.6) wy +2¢'! @0 (a=1) D)
21—2 21
+(4.1) %—F
+(2.2)+(3.2) ql(ql’1+21)(q2’—1) n q’(ql’l—;)(q”—l)
(1.4)+(3.1) wy + 3¢ 1 (qQ’fl)qZ’_l(qfl) I ql(ql_lfl)(f’*l)(qfl)
Ty 2—T —
(1.5) wy + 4¢ 1 (" =1)q 8(q 1)(g=2)

Table 10: Weights and number of codewords for ¢ even

Theorem 4.1.19. The code C5(Q(2l,q)), q even, is a linear code with parameters

N = g% _11,k _ 21(212+ 3),d e
q—

and the minimal weight codewords correspond to quadrics which are a pair of non-tangent hyperplanes to
Q(2l, q) intersecting Q(2L,q) in hyperbolic quadrics QT (20 — 1,q) and such that the (21 — 2)-dimensional
intersection of the two hyperplanes intersects Q(2l,q) in a non-singular parabolic quadric.

Theorem 4.1.20. Let X be a non-degenerate parabolic quadric in PG(2l, q) where I > 1. All the weights
w; of the code Ca(X) defined on X are divisible by ¢'~*.

Proof. It is analogous to the one of Theorem EIT.T7l O

4.2 The functional code Cpy.,(X), X a non-singular Hermitian
variety

In the previous section, we extended the results of Edoukou to the functional codes arising from non-
singular quadrics in PG(n, ¢) [36]. Since the Hermitian varieties are the natural analogues of the quadrics
in finite projective spaces, the similar study of the functional codes corresponding to the non-singular
Hermitian varieties now will be performed.
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Consider a non-singular Hermitian variety X in PG(n, ¢?). We denote the point set of X by {P, ..., Px},
where we normalize the coordinates of the points P; with respect to the leftmost non-zero coordinate.
Let F be the set of all homogeneous polynomials (X, ..., X,)A(X{,..., X2) of degree ¢+ 1 in n+ 1
variables, with A = (a;;),0 < 4,5 < n, af; = aji, a;; € GF(¢?), defining Hermitian varieties of PG(n, ¢?).
The functional code Crerm(X) is the linear code

OHerm(X) = {(f(Pl)a . af(Pn))‘f S ‘F} U {O}a

defined over GF(q).

This linear code has length |X|. Not all homogeneous polynomials of degree ¢ + 1 define Hermitian
varieties, so we cannot use the same formula for the dimension as in the previous section. This dimen-
sion is determined in the following way. A Hermitian variety in PG(n,q?) is defined by an equation
YoigaijXiX] =0, where af; = a;j;. There are ((n+1)* — (n+1))/2 = (n® + n)/2 elements a;;, with
i < j. They belong to GF(q?), so they define an (n? + n)-dimensional vector space over GF(g). The
elements aqo, - . ., ann belong to GF(g), so they contribute additionally n + 1 to this dimension. So the
vector space over GF(q) defined by all the Hermitian varieties of PG(n, ¢?) has dimension n? + 2n + 1.
Since we take the intersection of all Hermitian varieties with X, the dimension of Crepm (X) is n2 + 2n.

The smallest weight codewords of the code Cyerm (X) correspond to the largest intersections of X with
the other Hermitian varieties X’ of PG(n, ¢?). We prove that these small weight codewords correspond
to Hermitian varieties X’ which are the union of ¢ + 1 hyperplanes of PG(n,q?) through a common
(n — 2)-dimensional space II, defining a Baer subline in the quotient geometry of II.

We note that the size of the singular Hermitian variety having a non-singular Hermitian variety of odd
dimension as base is always larger than the size of a singular Hermitian variety having a non-singular
Hermitian variety of even dimension as base.

The Hermitian varieties having the largest size are the union of ¢ + 1 distinct hyperplanes of PG(n, ¢?)
and have size ¢?" 1 + ¢> 2 + ¢4 4+ ¢> % + ... 4+ ¢®> + 1. The second largest Hermitian varieties in
PG(n,q?), n > 3, are the Hermitian varieties having an (n — 4)-dimensional vertex and a non-singular
3-dimensional Hermitian variety as base. These Hermitian varieties have size ¢®" =1 + ¢®* 3 4+ ¢®" 4 +
@®" %4 ... +¢*>+ 1. The third largest Hermitian variety in PG(n, ¢?), n > 5, has an (n — 6)-dimensional
vertex and a non-singular 5-dimensional Hermitian variety as base. These Hermitian varieties have size
q2n71 + q2n73 + q2n75 + q2n76 + q2n78 4+ q2 + 1.

Let V be the intersection of the Hermitian variety X with the Hermitian variety X’. Two distinct
Hermitian varieties X and X’ define a unique pencil of Hermitian varieties AX + uX’, (A, ) € GF(q)? \

{(0,0)}.

Let V = XNX'. The sum of the numbers of points in the ¢ + 1 Hermitian varieties of the pencil defined
by X and X’ is [PG(n,¢?)| + q|V], since the points of V lie in all the ¢ + 1 Hermitian varieties of the
pencil and the other points of PG(n, ¢?) lie in exactly one such Hermitian variety. So there is a Hermitian
variety in the pencil containing at least (|[PG(n,¢*)|+q|V|)/(q¢+ 1) points. Hence, a large intersection V
implies that there is a large Hermitian variety in the pencil of Hermitian varieties defined by X and X'.

Remark 4.2.1. Consider a fixed line T of H(3,¢?). Then the ¢® + ¢ lines of H(3,¢?) intersecting 7" in
one point form a minimal cover of H(3,¢?). This cover is the smallest cover of H(3,¢?) [69].

There are exactly (g + 1)(¢® + 1) such covers since this is the total number of lines of H(3, ¢?) [62, Table
23.1].

Theorem 4.2.2. In PG(n,q?), withn =6, if |V]| > ¢*" 2 +2¢°" "+ ¢*" 5+ ¢*>" 0 +2¢>" 7 4+ 2¢*" % +
-+ 2¢% + q, then in the pencil of Hermitian varieties defined by X and X', there is a Hermitian variety
consisting of the union of ¢+ 1 hyperplanes.
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Proof. Suppose that there is no Hermitian variety in the pencil of Hermitian varieties defined by X and
X’ equal to the union of g + 1 hyperplanes.

Since |V| > ¢*" 2 4+¢*" 4 4+2¢*" 04 ¢*" ¥ 4.+ ¢>+1, then ([PG(n, ¢*)|+q|V])/(g+1) > |m,_6H(5,¢%)],
so there is a singular Hermitian variety m,,_4H(3, ¢?) in the pencil of Hermitian varieties defined by X and
X’. With the lines of the cover of H(3,¢?) of Remark 2.1} together with , 4, we form ¢® + ¢ different
(n — 2)-dimensional spaces m,_. We wish to have that at least one of these (n — 2)-dimensional spaces
Tn—o intersects V in ¢ + 1 (n — 3)-dimensional spaces. All points of V' appear in at least one of these

Tn—2, S0 for at least one of these spaces we have that |m,_o NV] > qL‘:qu. If qL‘ilq > |m,_6H(3,4?)|, then

T2 N X is the union of ¢+ 1 (n — 3)-dimensional spaces. When |V| > ¢?"~2 4 2¢?" =4 4 ¢?"=5 + ¢?7 6 +

22777 4+ 2¢°" % + ... + 2¢° 4 ¢, then this is valid. So m,_2 NX = Uf:ll 71'7(513.

This means that X must have generators of dimension n — 3.

Hermitian variety | dimension generator | property fulfilled
X=H(27/, ¢%) n —1 n' <2
X=H(2n' + 1,¢%) n’ n <2
Table 11

Except for the small cases for n’, see Table 11, we have a contradiction, so there is a Hermitian variety
consisting of the union of hyperplanes in the pencil of Hermitian varieties defined by X and X'. O

To compare with the intersection of two Hermitian varieties X and X’ in PG(n, ¢?), where the pencil of
Hermitian varieties defined by X and X’ does not contain a singular Hermitian variety which is the union
of ¢ + 1 hyperplanes, we refer to the following results of Kestenband.

Theorem 4.2.3. (1) ([64, Lemma 2]) There exists a pencil of g+ 1 non-singular Hermitian varieties in
PG(n, q?),n even, intersecting in

("' =1 (" +1) = 22

> +q2n74+._.+q2+1_qn71
q¢ —1

points.

(2) (|65, Lemma 3]) There exists a pencil of ¢ + 1 non-singular Hermitian varieties in PG(n,q?),n odd,
intersecting in

(@ =D +1) — P2

q2_1 +q2n74+‘”+qn+3+qn+1+2qn71+qn73+.”+q2+1

points.

We now discuss the case that X is the Hermitian variety H(5, ¢?) in 5 dimensions. Let V be the intersection
of X with another Hermitian variety X’ in PG(5, ¢?).

If [V| > ¢® + ¢+ 2¢* + ¢* + 1, then (|[PG(5,¢)| + ¢q|V|)/(¢g + 1) > |H(5,¢%)|, so there is a cone
Tn_aH(3,¢?) = LH(3,¢?) in the pencil of Hermitian varieties defined by X and X', if we assume that no
Hermitian variety in the pencil of Hermitian varieties defined by X and X’ is the union of ¢+1 hyperplanes.
We form solids 7y, ..., T4 with L and the lines of a cover of H(3, q?), as defined in Remark A2l If
V| > ¢® +2¢° + ¢® + ¢* + 2¢° + g, then there is a solid through L intersecting X in ¢ + 1 planes. Now
we have 3 different cases:

1. LCV,



56 Chapter 4. The functional code C},(X), with X a projective variety

2. [LNV|=¢q+1,
3. |LNV]=1.

Lemma 4.2.4. For X = H(5,¢%), if [V| > ¢® +2¢° + ¢® + ¢* +2¢® + ¢ and L C V, then there must
be a Hermitian variety consisting of the union of g + 1 hyperplanes in the pencil of Hermitian varieties

defined by X and X'.

Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by X and X’ is the
union of g + 1 hyperplanes. Since (|PG(5,¢%)| +¢q|V])/(¢ + 1) > [H(5,¢?)|, there is a singular Hermitian
variety LH(3,¢?) in the pencil of Hermitian varieties defined by X and X'.

By Remark L.2.T] we know that we can cover H(3, ¢?) by ¢°+ ¢ lines. Considering the ¢* + ¢ solids defined
by L and the lines of this cover of H(3,¢?), we cover LH(3,¢?) by ¢* + ¢ solids. Since |V|/(¢* + q) >
|H(3, ¢?)|, there is a solid 7; through L intersecting V in ¢ + 1 planes. Now L lies in one of these planes,
since L C V.

Every point of V lies in at least one of these ¢ + ¢ solids through L, defining the cover of LH(3,¢?).

In H(5,¢?), a line L is contained in q + 1 planes completely lying in H(5,¢?). Now we want to have a
bound on |V| so that we are sure that the line L lies in more than q + 1 planes contained in H(5, ¢?),
because then a contradiction is obtained to our assumption that no Hermitian variety in the pencil of
Hermitian varieties defined by X and X’ is the union of ¢ + 1 hyperplanes.

To find at least ¢ + 2 planes of V' through L, an inductive argument stating that if L lies in « planes of
V', then it lies in = 4+ 1 planes of V needs to be used. To simplify the calculations, we describe how the
existence of ¢+ 1 planes of V through L implies the existence of ¢+ 2 planes of V through L, in case |V|
is large enough.

Assume that we know that ¢ + 1 of the solids of the cover of size ¢® + q of LH(3,¢?) intersect V in the
union of ¢ + 1 planes, where these g + 1 solids have distinct planes through L in common with V. We
want to have another solid which fulfills this condition, so that the desired contradiction is obtained.

The desired contradiction is obtained when

V= (g+D((g+Dg" +¢*+1)
¢ -1

L] + > [H(3,4°)]. (4.4)

For, the g + 1 solids through L intersecting V in ¢ + 1 planes each contain (¢ + 1)g* + ¢ + 1 points of

V. We subtract this from |V|. There remain ¢® — 1 solids for the cover of LH(3,¢?). So there is a solid

containing at least

VI—(g+D((@+Dg" +¢*+1)
¢ -1

points of V. Since the only Hermitian variety in PG(3, ¢?) containing more than [H(3, ¢?)| points consists

of the union of ¢ 4+ 1 planes, we have found the desired (g + 2)-th plane of V' through L.

L]+ > [H(3,¢%)

The only problem that remains is that this (¢ + 2)-th plane must be different from all the previous g + 1
planes of V through L. We achieve this goal as follows. The cover of H(3, ¢?) that is defined in Remark
.27 consists of all the lines of H(3,¢?) intersecting a given line T' of H(3,¢?); this line T not included.
For finding the (¢ + 2)-th plane of V through L, we select for the line T', which defines the cover of
H(3,¢%), a line T skew to the ¢ + 1 points of H(3, ¢?) defining the ¢ + 1 planes of V through L. This is
possible since these g + 1 points lie in total on at most (¢ + 1)? lines of H(3,¢?). So there is certainly a
line T of H(3,¢?) skew to these g + 1 points. Then we use the cover of H(3,¢?) of size ¢® + ¢ defined by
this line 7. The particular property of the corresponding cover of LH(3,¢?) is that the ¢+ 1 planes of V'
through L, already determined, lie in exactly one of those solids, so when we perform the division in the
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left hand side of (@), the (¢ + 2)-th solid through L intersecting V' in g + 1 planes cannot contain one
of the already determined ¢ + 1 planes of V' through L.

This gives us at least ¢ + 2 planes of H(5,¢?) through L; which is impossible. So there is a Hermitian
variety consisting of ¢ + 1 hyperplanes in the pencil of Hermitian varieties defined by X and X’. The
condition in (4] is equivalent to

V> +2¢ ++¢* +*+q+1.

The most severe condition on |V| arises from the fact that |V|/(¢® + q) > |H(3,¢?)|; which implies
V> +2¢°+¢° +¢* +2¢° + ¢ O

Lemma 4.2.5. For X = H(5,¢%), if |V| > ¢® +4¢° +¢®* —=3¢* + 4> + 3> +q—1 and |[LNV| =g+ 1,
then there must be a Hermitian variety consisting of ¢+ 1 hyperplanes in the pencil of Hermitian varieties
defined by X and X'.

Proof. Assume that no Hermitian variety in this pencil is the union of ¢ + 1 hyperplanes. Then, since
the lower bound on |V| of the beginning of this section is valid, there is a cone LH(3,¢?) in the pencil of
Hermitian varieties defined by X and X'. Assume that LNV = {Ry,...,Ry+1}. Let the polar space of
the secant line L w.r.t. X = H(5, ¢?) be the 3-dimensional space intersecting H(5, ¢?) in the non-singular
Hermitian variety H(3,¢%)r.

Suppose that we are sure that o + 1 lines of a cover of size ¢® + ¢ on H(3, ¢?), as defined in Remark EZ.1]
define solids through L intersecting H(5, ¢?) in a union of ¢ + 1 planes. We are sure of this when

V|—z((g+1)¢* +¢*+1)
¢Prq-a

g+ 1+ > |H(3,¢%)|. (4.5)

This is equivalent to [V| > ¢® +2¢° +¢® + ¢ — ¢®* + z(¢* — ¢* + ¢+ 1).

Consider all covers of size ¢® + ¢ on H(3, ¢?) defined by Remark 221l There are (¢ + 1)(¢® + 1) of such
covers. Then we get at least (¢ + 1)(¢> + 1)(z + 1) lines of H(3, ¢?) defining solids of LH(3, ¢?) through
L intersecting V in ¢ + 1 planes. But every such line could be counted up to ¢® + ¢ times. Nevertheless,

we get at least MX%% > q(x +1) distinct lines of H(3, ¢?) defining solids of LH(3, ¢?) through L
intersecting V' in ¢ 4+ 1 planes.

But then for more than g(z +1) lines £ of the base H(3, ¢?), we know that the solid (L, ¢) contains a plane
of H(3,¢?) through Ry,...,Ry41. So R lies in planes contained in the intersection V. These planes lie
in Tr, (X) = (R1,H(3,¢%)1), where (R1,H(3,¢%)L) denotes the 4-dimensional space spanned by R; and
the 3-dimensional Hermitian variety H(3,¢?)r. We prove that the cones R;H(3,¢*)r, i =1,...,q¢+1, lie
completely in the intersection V' if x is large enough.

Consider again the cone LH(3,¢?) in the pencil of Hermitian varieties defined by X and X’. Let £ be a
line of the base H(3, ¢?) defining a solid (L, £) intersecting V' in the union of ¢ + 1 planes, which pass one
by one through Ry,..., R;1. Then these ¢ + 1 planes intersect in a line ¢ lying on H(3,¢?)z. This line
" is skew to L, so determines (L, £) uniquely. Hence, different lines £ of H(3, ¢?) define different lines ¢’
of H(?)7 qz)L.

So, we find more than q(x + 1) lines of H(3, ¢?)1, completely lying in V. We can now prove that the cones
RH(3,¢*)r,i=1,...,q+ 1, lie completely on V.

Consider a point P of the base H(3, ¢?);, and assume that P does not lie on one of these g(z + 1) lines ¢’
of H(3,¢?), lying in V. Then they all intersect Tp(H(3,¢?)r) in a point. If g(x +1) > 2(q+ 1)¢?, there is
a point of H(3,¢?)r, in Tp(H(3,q?)1) on at least 3 of those lines. Denote this point by S and these three
lines by 61, €2, Kg. Then the three planes <R1, €1>, <Rz, fg), <R“ 53> lie completely in V. Then Ts(H(3, q2)L)
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shares already 3 lines with the intersection V, so it intersects V in all ¢ 4+ 1 lines ¢;, j =1,...,¢+ 1, of
H(3,4¢%)r through S, and similarly, all ¢ + 1 planes (R;,¢;), j = 1,...,q + 1, lie completely in V. But
one of these lines ¢; is the line SP, so the line R; P belongs to the intersection V. So every point of the
cone R;H(3,¢%)y lies in V.

The tangent cones R;H(3,¢?)r to H(5,¢?) lie in ¢+ 1 hyperplanes through the polar space I3 of L w.r.t.
X, and these ¢ + 1 hyperplanes define a Hermitian variety X”. Let Q be a point of IT3 \ H(3, ¢?)r. There
is a unique Hermitian variety X", containing @, in the pencil of Hermitian varieties defined by X and X'.
This Hermitian variety must be the union of the ¢ + 1 hyperplanes (R;, H(3,¢?)1), but then we find that
the pencil of Hermitian varieties defined by X and X’ contains a Hermitian variety which is the union of
q + 1 hyperplanes.

We have the desired results.

The only condition q(x + 1) > 2(q + 1)¢? implies that |V| > ¢® +4¢° + ¢® — 3¢* +4¢> + 3¢®> + ¢ — 1 is
required to have these results. O

Lemma 4.2.6. For X = H(5,¢%), if |V| > ¢® +2¢°% + 2¢° + 2¢* — ¢ + ¢+ 2, then the case |[LNV| =1
does not occur.

Proof. Assume that no Hermitian variety in the pencil of Hermitian varieties defined by X and X’ is the
union of ¢ + 1 hyperplanes. Then again there is a singular Hermitian variety LH(3, ¢?) in the pencil and
in this Hermitian variety the line L is skew to the solid of H(3, ¢?).

Suppose that we are sure that  + 1 lines of a cover of size ¢® +q on H(3, ¢?), as defined in Remark 2.1]
define solids through L intersecting H(5,¢?) in a union of ¢ + 1 planes. We are sure of this when

1+ V] —2((g+Dg* +¢° +1)
¢Ptqg-a

> [H(3,¢%)]- (4.6)

This is equivalent to |V| > ¢ +2¢° +¢® + ¢* + ¢ + 2(¢* — ¢* + 1).

Similarly as in the preceding proof, for more than g(z+1) lines £ of the base H(3, ¢?) of the cone LH(3, ¢?),
the solid (L, ¢) contains ¢ + 1 planes of V, so of H(5,¢?); they all pass through the unique intersection
point R of L with H(5,¢?), so they all lie in the tangent hyperplane Tr(X) to X in R. Hence, this solid
(L, /), and so in particular the line ¢, lies completely in Tr(X).

If x > g + 2, then the base H(3, ¢?) of LH(3, ¢?) lies completely in Tr(X). But also L lies in Tr(X) since
L shares only one point with X. However, this implies that L and the base H(3, ¢?) of the cone LH(3, ¢?)
share a point, but this is false.

So we obtain a contradiction if z > ¢ + 2, which is valid if |[V| > ¢® +2¢° + 2¢° + 2¢* —¢®* + ¢+ 2. O

Corollary 4.2.7. Let X be a non-singular Hermitian variety in PG(5,¢%), and let V be the intersection
of X with another Hermitian variety X'.

If V| > ¢®+4¢° + ¢® — 3¢* + 4¢3 + 3¢> + ¢ — 1, then this intersection V is also the intersection of X with
a Hermitian variety which is the union of ¢ + 1 4-dimensional spaces.

We again check with the result of Kestenband to have an idea of the sharpness of the bound of the

preceding corollary.
Theorem 4.2.8. ([65, Lemma 3]) There exists a pencil of ¢ + 1 non-singular Hermitian varieties in
PG (5, q?) intersecting in
6 _ 1 4 + 1
(q q2)£q1 ):q8+q6+2q4+q2_’_1.

points.
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4.2.1 A divisibility condition on the weights

We now show that the weights of the code Cprerm(X) are divisible by ¢"~! in case X is a non-singular

Hermitian variety in PG(n, ¢?). This result is a particular case of a more general result on the divisibility
of the functional codes Cj(X), defined on the non-singular Hermitian variety X of PG(n,q¢?) by the
hypersurfaces of degree h [35].

To achieve this goal, we first mention the known result that a Hermitian variety X in PG(n, ¢?) can be
made to correspond to a quadric in PG(2n + 1, ¢).

Let X : ZZj:O aininq =0, a4 € qu, afj = Qj;.
Define GF(¢?) as a quadratic extension of GF(q) via an element e € F 2 \ GF(q), satisfying a quadratic
equation X2 — X —b=0,50e2=e+b, el =—e+1, and et = —p.

For X; =Y; +eZ;, X; € F2, Yy, Z; € GF(q), substituting X; = Y; + eZ; in the equation of X, and using
the above description for e?,e?, %™ and using that Y;? =Y; and that Z! = Z,, we obtain the following
equation in the variables Y; and Z;:

X 0 Y (@iYP +anYiZi —bai Z7) + Y ((2a+ B)YiY; +
=0 i,j=05i<j

(@ =26b)Y;Z; + (a+ B(20+ 1)) Z;Y; — 2+ B)bZ; Z;) = 0,
which defines a quadric in PG(2n + 1, q).
Theorem 4.2.9. For a non-singular Hermitian variety X in PG(n, ¢%), the weights of the code C'rerm(X)
are divisible by ¢" 1.
Proof. We use the theorem of Ax-Katz [63] Theorem 1.0].

The intersection points of the Hermitian variety X in PG(n,¢?) with another Hermitian variety X’ in
PG(n, ¢%) correspond to the intersection points of two corresponding quadrics Q and Q' in PG(2n+1, q),
or alternatively in the vector space V(2n + 2, q).

In this vector space V(2n+ 2, q), in the notations of [63], Theorem 1.0], the number of intersection points

is n(S, T, f) =0 (mod ¢"3T1)), where

Card(S) — > ,cr di
sup;er(di)

u(S, T, f) >

Here Card(S) = 2n + 2, since there are 2n + 2 variables Y;, Z;,i = 0,...,n, and d; = ds = 2 since we are

investigating the intersection of two quadrics.

So

n+2-4
5 =

w(S, T, f) > n—1.

So in V(2n + 2,q), the number of elements in X N X’ is 0 (mod ¢"~ '), and in PG(2n + 1, q),

kg™ 1 —1

XNnX|=
XX = ~—,

for some k € N*.

Rewriting, this is equivalent to
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n—l_l
-1

n—l_l

XNX'|= 1
XX/ —

=Kq" + (4.7)
with k = k¥'(¢ — 1) + 1, for some k' € N.

So
|XﬂX’\:k’q"71+q"72+q"73+--~+q+1

in PG(2n + 1, q).

By making the change of the setting PG(n,q¢?) to the setting PG(2n + 1,q), the points of PG(n,¢?)
correspond to the lines of a 1-spread of PG(2n + 1, q), i.e., a partitioning of the points of PG(2n + 1, q)
into (¢?"*2 —1)/(¢® — 1) pairwise disjoint lines.

Consequently, since every intersection point of X N X’ in PG(n,¢?) defines ¢ + 1 collinear intersection
points of one of those lines of this 1-spread of PG(2n + 1,¢), XN X'| =0 (mod g + 1) in the setting of
PG(2n + 1,q).

We now apply the Ax-Katz theorem to the Hermitian variety X itself in the setting of PG(2n+1, ¢). This
gives (S, T, f) > (2(n+1)—2)/2 =n. So |X| =0 (mod ¢") in V(2n + 2, q). Hence, over PG(2n + 1, q),
X|=(Gg"—1)/(g=1)=4¢"+¢" ' +¢" >+ +q+1, with j = j'(¢g — 1) + 1 for some j’ € N.

Case 1. Assume that n is even. Then
Kq" ' +¢" %+ +q+1=0 (modg+1)

in PG(2n 4 1, ¢), which implies that
K'=1 (modgq+1).

So k' = k"(q+ 1) + 1, which implies that
XNX|=K'(g+ )" +¢" " " P+t g L
in PG(2n + 1, q).
Similarly, in PG(2n + 1, ¢),
X|=J'¢"+¢""+-+q+1=0 (modg+1),
which implies that ;' = j”(¢ + 1) for some j” € N.

Then, in PG(2n + 1, ¢),
X|=j"(¢+1)q" +¢" "+ g+ 1L

So the weight of a codeword of Cerm (X) in the setting of PG(2n 4+ 1,q) is

§"(g+1)g" =K' (g+1)¢" "' =0 (mod ¢" 7).
But one point of X N X’ in PG(n,¢?) corresponds to g + 1 collinear intersection points of X N X’ in
PG(2n + 1,q), so in the setting of PG(n, ¢?), the weight of a codeword of Crerm (X) is

j//qn _ k”qn71 =0 (mod qnfl).

This shows that the weight of this codeword of Cepm (X) is a multiple of ¢» 1.
Case 2. Assume that n is odd.

This case is treated in the same way as the case n even. O
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4.2.2 Tables and final results for Cyepm(X)

We determine the 4 smallest weights of Cyerm(X). These small weight codewords correspond to the
intersection of the non-singular Hermitian variety X in PG(n, ¢?) with Hermitian varieties which are the
union of g + 1 hyperplanes. These latter ¢ + 1 hyperplanes have an (n — 2)-dimensional space 7,2 in
common. The polar space of m,_o w.r.t. X is a line L, which can be tangent, secant to, or contained in
X. We will make a discussion depending on the position of L with respect to the Hermitian variety X.

If L is secant to X, then 7, _» intersects X in a non-singular Hermitian variety H, _o in PG(n — 2, ¢?),
and then g+ 1,0, 2 or one of the ¢+ 1 hyperplanes through m,,_s can contain a point of L N X, resp. cases
(1),(2),(3) and (4) in Table 12. In the case that L is tangent to X, then m,_2 intersects X in a singular
Hermitian variety PH,,_3 in PG(n — 2, ¢?), and then one or none of the ¢ + 1 hyperplanes through 7, o
can contain the intersection point of L with X, resp. cases (6) and (7) in Table 12. In the case that L
is contained in X, then 7, _» intersects X in a singular Hermitian variety LH,,_4 in PG(n — 2,¢?), and
then all the ¢ 4+ 1 hyperplanes are tangent hyperplanes to X; this is case (5) in Table 12. In Table 12, H;
denotes a non-singular Hermitian variety in PG (i, ¢%).

X NX|
(1) (¢ +1)|PH, | — q[Hn o
(2) (g +1)[Hp—1] — g/Hn—o|
(3) | 2[PHp—2| + (¢ — 1)[Hp—1] — g[Hn—2|
(4) |PH,, 2| + q[Hp 1| — q|Hpn 2|
(5> (q + 1)|PHn72| — Q‘Lanél‘
(6) |PHp 2| + q/Hp—1| — q[PHp 3|
() (¢ +1)[Hn—1| — q|PH; 5|

Table 12

Also for this code we have to be sure not to count codewords double. Using the same arguments as for
the previous code we find the next lemma.

Lemma 4.2.10. No two unions of hyperplanes can give the same codewords if n > 4.

Proof. Let Uf:ll II; and Ufill IT; be the two unions of hyperplanes. Suppose they give the same codewords,
then (U™ T,)NX = (UX] ) NX. Since Y, TI; # JZF IT;, we can assume IT; # Il;,i = 1,--- ¢+ 1.
Then I NX C Ufill (I1; NI1{ NX), so the hyperplane intersection IT; NX is contained in the union of ¢+ 1
(n — 2)-dimensional spaces intersecting X. Denote the smallest possible intersection size of a hyperplane
with X by z,_; and the largest possible intersection size of an(n — 2)-dimensional space with X by z,,_a,
this must then lead to z,—1 < (¢ + 1)z,—2. Counting arguments show this is always impossible for

q>4. O

Case I: n even

For n even, Table 13 gives for the corresponding intersections of Table 12 the sizes of these intersections.
Then Table 14 gives the corresponding weights in the code Cerm (X). We note that (2) gives the smallest
weight wy, (4) and (7) give the second smallest weight w; + ¢" ™!, cases (3), (5), and (6) give the third
smallest weight w; +2¢"~!, while case (1) gives the fourth smallest weight w; +¢"!(¢+1). We also give
the number of codewords having these weights. When there are different cases leading to the same weight,
in the rightmost column of Table 14, we have written the total number of codewords of that weight as a
sum of the corresponding numbers of codewords corresponding to the respective cases of Table 12.
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X NX'|
(1) q2n72 + q2n73 + q2n75 4+t q’rLJrl q + qnfl + qn72 + qn74 RN q2 11
(2) q2n—2 + q2n—3 1 q2n—5 4+t qn+1 4 2qn 1 + qn 2 i qn i N q 11
(3) q2n 2+q2n 3+q2n 5+_,_’_qn+l+qn 2+qn 4++q +1
(4) q2n 2_|_q2n 3_|_q2n 5++qn 1+qn 2+qn 4_|_+q _|_1
(5) q2n—2 + q2n—3 + q2n—5 4+t qn+1 + qn—2 + qn—4 et q2 +1
(6) q2n72 1 q2n73 T q2n75 4+ qn+1 + qan 1 qn74 EN q2 11
(7) q2n—2 + q2n—3 + q2n—5 4ot qn—l + qn—2 + qn—4 + oot q2 + 1
Table 13
Weight Number of codewords
(2) wy = qn—l(qn _ qn—l _ 2) (QV'L+1+1)(<1"5(1)‘127;71(q—l)(q—Q)
q+1)2
e T D (0" — 1022 (g—1
(4)+(7) wy + ¢ T R
(¢"* +1)(qn—(1)qn)(2q7“ +1)(g—1)
g+l
(3)+(5)+(6) wy + 2" O
alg" M +1)(g" (" 41 (") |
(®>=1)(q+1)
(@ 4 1) (q"—1)g" L (¢ 1)
g+l
e T ) (¢ — 12" 2
(1) w1 + ¢ 1((] + 1) (g (21(21)2 Ja
Table 14

Theorem 4.2.11. The code Cerm(H(n,q?)), n even, is a linear code with parameters

(@' +1)(¢" — 1)
¢ —1
and the minimal weight codewords correspond to Hermitian varieties which are the union of ¢ + 1 non-

tangent hyperplanes to H(n, q?) such that the (n — 2)-dimensional intersection of the q + 1 hyperplanes
intersects H(n, ¢?) in a non-singular Hermitian variety.

N =

k=n(n+2),d=q¢""(q" —¢""" - 2),

Case II: n odd

For n odd, Table 15 gives for the corresponding intersections of Table 12 the sizes of these intersections.
Then Table 16 gives the corresponding weights in the code Cjeppm (X). We note that (1) gives the smallest
weight wy, (3), (5), and (6) give the second smallest weight w; +¢" —¢™ 1, cases (4) and (7) give the third
smallest weight w; +¢", while case (2) gives the fourth smallest weight w; +¢"~1(g+1). We also give the
number of codewords having these weights. When there are different cases leading to the same weight,
in the rightmost column of Table 16, we have written the total number of codewords of that weight as a
sum of the corresponding numbers of codewords corresponding to the respective cases of Table 12.

XN X
RN L BN Lo SN S A VR N N E R |
q2n—2+q2n—3+q2n—5+__,+qn_qn—l +qn—3+qn—5+_._+q2_~_1
R SR S S i e
N R e SR L Lt e R |
R N i I N R |
R Y el SRR L L L R N |
R SR S . i A o e B o e

)

w

(S

===~
=) >
| NN | —

QIR (R (R

Table 15
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Weight Number of codewords
_ _ n+1_1 nq 2n—2
(1) wi=q""' (" - 1)(g—-1) “ - Gyt )q2
n n— T -1)(¢"+1)g""
(3) + (5) + (6) wi+q" =g Rty
2@ =) (¢"+D)(¢" 1) (¢"241) |
*—1)(g+1)
A Ul VUl D C et V)
n+1 n q+1 2n—2
(4)+(7) wy + q" ("7 =1)(q qill)q (¢=1)
¢"(@" T =D (" +D)(¢" " ~1)(¢=1)
2n—1/ n+1 §q+}1.)21 1 2
(2) wy + ¢ Mg+ 1) " (q —2()(511;; Ng=1)(g=2)
Table 16

Theorem 4.2.12. The code Crerm(H(n,q?)), n odd, is a linear code with parameters

n+1 n
N 1 -1 n— n—
(q q2 _)(f )7k n(n 2)7d q l(q 1 1)((]_ 1)3

and the minimal weight codewords correspond to Hermitian varieties which are the union of ¢+ 1 tangent
hyperplanes to H(n, q?) such that the (n — 2)-dimensional intersection of the q + 1 hyperplanes intersects
H(n, q?) in a non-singular Hermitian variety.
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The functional code C3(X), with
X a Hermitian variety

CHAPTER

In this chapter we investigate the functional code C3(X), X a Hermitian variety. In [33], F. Edoukou
solved the conjecture of Sgrensen [79] on the minimum distance of this code for a Hermitian variety X
in PG(3,¢%). We will answer the question about the minimum distance in general dimension n, with
n < O(g?). We also prove that the small weight codewords correspond to the intersection of X with the
union of 2 hyperplanes.

The results of this chapter can be found in [49].

5.1 Introduction

The third functional code we studied is a combination of the functional codes studied in the previous
chapter: The functional code Co(X) in PG(n, ¢?), where X is a non-singular Hermitian variety H(n, ¢?).
The functional code Cy(X) is the linear code

Co(X) ={(f(Pr),.... fF(PN)If € FU{0}},

with F the set of all homogeneous quadratic polynomials f(Xq, ..., X,) defined by n + 1 variables.

This linear code has length N = |X| and dimension k = < " —2|— 2 )

In the previous chapter we determined the minimum weight of the functional codes C3(Q), Q a non-
singular quadric and Cperm(X), X a non-singular Hermitian variety. For the code C3(Q), the crucial
element was the fact that the intersection V of two quadrics Q and Q’ lies in all the ¢ + 1 quadrics
AQ 4 1Q’, (M, 1) € F2\ {(0,0)}, of the pencil of quadrics defined by Q and Q’. The same arguments
hold for the code Cperm(X). This enabled us to obtain results for general dimensions n. We cannot
use this fact in this section. A quadric and a Hermitian variety do not define a pencil of quadrics or of
Hermitian varieties. This implies that different arguments have to be used, enabling us to obtain results
up to dimension n < O(¢?) for the Hermitian variety X in PG(n, ¢?).

First of all, we will investigate the different intersections of quadrics Q in PG(4, ¢%) with H(4, ¢?); leading
to a lower bound on the intersection size guaranteeing that any quadric having more than this number
of points in common with H(4, ¢?) must be the union of two hyperplanes. We use this result to find a
bound on the intersection sizes of absolutely irreducible quadrics with the non-singular Hermitian variety
H(n,¢?). Here this lower bound on the intersection size guarantees that Q is the union of 2 hyperplanes.

65
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Using this bound, we prove that the small weight codewords correspond to quadrics which are the union
of 2 hyperplanes. There are several possibilities for the intersection of such a quadric with a non-singular
Hermitian variety X. So we can construct tables with the 5 smallest weights of the functional code Cy(X),
X a non-singular Hermitian variety in H(n, ¢%), n < O(¢?).

5.2 Dimension 4

The goal is to look for a bound W, on the intersection size of an absolutely irreducible quadric Q with
the Hermitian variety X (=H(4,¢?)), so that we know that if the intersection size Q N X is larger than
this bound, the quadric Q has to be the union of 2 hyperplanes. Therefore we search for the largest
intersection size of an absolutely irreducible quadric with X. This problem was investigated by Edoukou
[33]. We present here an alternative approach, giving in a number of cases the same bounds on the
intersection sizes of [33] and in the other cases improvements.

Case I: The quadric Q is the non-singular quadric Q(4, ¢?)

Lemma 5.2.1. If Q*(3,¢%) NH(3,¢%) contains 3 skew lines, then the intersection consists of 2(q + 1)
lines forming a hyperbolic quadric Q% (3,q) and |Q*(3,¢%) NH(3,¢%)| = 2¢° + ¢* + 1.

Proof. This is [60, Lemma 19.3.1]. Let L1, L, L3 be 3 skew lines contained in the intersection Q™ (3, ¢?)N
H(3,¢?). Now {Li, Lo, L3}*+ = {M,...,Myi1} wrt. H(3,¢%). The lines M;,j =1,2,...,q+ 1, share
already 3 points with Q¥ (3,¢?), so they are contained in this quadric. Take 3 lines M;, My, M3, then
{My, My, M3}+ defines q + 1 lines of H(3, ¢?) totally contained in Q*(3,¢?).

These 2(g+1) lines in Q™ (3, ¢>)NH(3, ¢?) form an algebraic curve of degree 2(g+1), and Q™ (3, ¢*)NH(3, ¢?)
is an algebraic curve of exactly degree 2(q 4+ 1). So there are no other points in the intersection.

This implies that

QT(3,¢*)NHB,¢%)| = (@+1)(@+1)+(*—qlg+1)
2q3 + q2 + 1.

Lemma 5.2.2. If Q*(3,¢%) N H(3,¢?) contains at most 2 skew lines, then |QT(3,¢?) N H(3,¢%)| <
¢ +3¢> —q+1.

Proof. (see also [33]) We count according to the lines of one regulus of QT (3, ¢?):

Q" (3,¢%) NH(3,¢%)] 20>+ 1)+ (¢ = (g +1)

<
< @437 —q+1
O

Lemma 5.2.3. Let L be a line of Q(4,q¢%) containing at most q points of Q(4,q¢%) N H(4,q¢?), then
Q(4,¢*) NH(4,¢*)| < ¢® +3¢* +2¢° + ¢+ 1.

Proof. Let P € L with P ¢ Q(4,¢*) N H(4,¢?). Take a line M of Q(4,¢?) intersecting L in P. Consider
the plane (L, M). Then (L, M) lies in the tangent hyperplane P+ to Q(4,¢?) and on ¢ solids sharing
a hyperbolic quadric Q*(3,¢%) with Q(4,¢?). No QT (3,¢?) can intersect H(4,¢?) in ¢ + 1 lines of both
reguli, since L has only ¢ points of the intersection Q(4, ¢?) NH(4,¢?). So |Q(4,¢*) NH(4,¢%)| < ¢*(¢® +
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3¢ —q+ 1)+ [P NQ4,¢*) NH(4,¢?)|.
If P¢Q(4,¢*) NH(4,¢?), then IPL ﬂQ(4 ?)NH(4,¢*)| < (g+1)(¢* +1).
So |Q(4,¢*) NH(4,¢*)| < ¢° +3¢* +2¢* + ¢ + 1. O

Remark 5.2.4. From now on, we assume that every line of Q(4,¢?) shares at least ¢ + 1 points with
H(4,¢?). So all lines of Q(4, ¢?) share ¢ + 1 or ¢®> + 1 points with H(4, ¢?), since a line having more than
q + 1 points of H(4,¢?) is contained in H(4, ¢?).

Lemma 5.2.5. Let P € Q(4,¢%) NH(4,¢?), then Tp(Q(4,¢%)) # Tr(H(4,4?)).

Proof. Assume that Tp(Q(4,q?)) = Tp(H(4, q2)) Let Q(2,¢?) be the base of Tp(Q(4,¢%)) N Q(4,¢?) and
let H(2, ¢?) be the base of Tp( (4,4%))NH(4,¢?). Take a line L through P to a point of Q(2 ¢*)\H ( 7).
This line L only shares P with H(4,¢?), while it should contain at least ¢ + 1 points of H(4, ¢?). O

Lemma 5.2.6. Assume that all lines of Q(4,q¢?) share g+1 or ¢>+1 points with H(4,¢?), then |Q(4,¢*)N
H(4,¢%)| < ¢® +3¢* —4¢> + 3¢ + 1.

Proof. Let P be a point of Q(4,¢?) not lying in the intersection Q(4, ¢*>)NH(4, ¢?), and take 2 lines L and
M of Q(4,¢?) through P. All ¢*> +1 lines of Q(4, ¢*) through P contain ¢+ 1 points of Q(4, ¢*) NH(4, ¢?),
so [Tp(Q(4,4%) NQ4,¢*) NH(4,¢%)| = (¢ +1)(¢* +1).

Consider the ¢ + 1 points P, ..., Pyi1 of LN Q(4,¢%) NH(4,¢%). They lie on at most 2 lines contained
in Q(4,¢*) NH(4,¢?) (Lemma E.235). For, such a line through a point P; lies in the tangent hyperplanes
Tp(Q(4,q?%)) and Tp(H(4,¢%)). But these tangent hyperplanes only have a plane in common and this
plane has at most two lines through P; contained in Q(4,¢?) NH(4,¢?). So at most two of the ¢* distinct
hyperbolic quadrics Q*(3,¢?) of Q(4,¢?) through (L, M) can intersect H(4, ¢?) in 2(q + 1) lines, so we
get at most twice 2¢3 + ¢ +1 — 2(g+1) = 2¢% + ¢ — 2¢ — 1 extra intersection points. At least ¢ — 2
times, we get at most ¢® +3¢%2 — ¢+ 1 —2(q+ 1) = ¢® + 3¢%> — 3¢ — 1 extra intersection points.

So in total there are at most ¢° + 3¢* — 4¢® + 3¢ + 1 intersection points. O

Case II: The quadric cone Q = 79Q (3, ¢?)

If H(4,¢%) N mQ~ (3, ¢%) does not contain a line, then the ¢* + 1 lines through my on Q~(3,¢?) have at
most g + 1 points of H(4, ¢?). So

(g+1)(¢"+1) (5.1)
CHqt g+l

‘H(47q2) |’-]71-0(97(37q2)| <
<

This upper bound is also determined in [34].
So we assume H(4, ¢?) N Q™ (3, ¢?) contains at least one line.

Lemma 5.2.7. IfH(4,¢?)NmoQ~(3,q?) contains at least one line L, then H(4, ¢*)NmoQ~(3,¢?) contains
at most 2(q + 1) lines.

Proof. Since L C H(4,¢*) N mQ~(3,¢?), necessarily 79 C H(4,¢?) N 1Q~(3,¢%). Every line L’ of
H(4,¢%) N mQ~ (3, q?) passes through m, so lies in the tangent solid T}, (H(4, ¢?)). This solid intersects
70Q7(3,¢°) in a cone mQ(2,¢?) if there are at least two lines contained in H(4,¢%) N moQ~(3,¢?).
Since L C H(4,¢%) N moQ~(3,4?), it defines a point of H(2,¢%) N Q(2,¢?), with H(2,¢?) and Q(2,4¢?)
the basis of the tangent cone Ty, (H(4,4?)) and of moQ~(3,¢?) N Ty, (H(4,¢?)). By Bézout’s theorem,
[H(2,¢*) NQ(2,¢%)] <2(q+1). So at most 2(q + 1) lines of m10Q~ (3, ¢?) lie completely on H(4,¢*). O
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By the previous lemma, we have:

[H(4,¢%) N m0Q ™ (3,¢%)] 2q+ 1)@ +1)+(¢* —2¢—1)(g+1) (5.3)

<
< @+t +2¢3 —qg+1. (5.4)

Case III: The quadric cone Q = Q™ (3, ¢?)

We can describe moQ7" (3, ¢?) by ¢® + 1 planes defined by 7y and the lines of one regulus of Q*(3,4?). No
plane lies completely on H(4, ¢?), so every plane shares at most ¢> + ¢® + 1 points, of a cone PH(1,¢?),
with H(4,¢?). Hence,

@+ (@ +a*+1) (5.5)

[H(4,¢*) N QT (3,¢%)] <
< P+ HE+247+ 1. (5.6)

Case IV: The quadric cone Q = 1 Q(2, ¢?)

Also this quadric can be described by ¢ + 1 planes, so as above

H(4,¢*) NmQ(2,9)| < ¢ +¢* + ¢ +2¢° + 1.

Case V: The quadric cone Q = mQ (1, ¢?)

Then we have in fact the intersection of a plane with H(4,¢?). So this intersection size will be smaller
than the previous bounds.

Conclusion

Let Q be a quadric in PG(4, ¢?).

Theorem 5.2.8. If QN H(4,¢%)| > ¢® + 3¢* + 2¢®> + g + 1, then Q is the union of 2 hyperplanes.
Proof. From Lemmata [5.2.3] and £.2.6] we know that the intersection size of the non-singular quadric
Q(4,¢?) with H(4,4?) is at most ¢ + 3¢* + 2¢*> + ¢ + 1. For the different intersection sizes of other

quadrics with H(4,¢?), (2), (4), and (6) learn us that they are smaller than the previous one. So this
proves the theorem. O

From now on, we will denote this bound by Wy = ¢° + 3¢* 4+ 2¢®> + ¢ + 1.

5.3 General case

Let Q be a quadric in PG(n, ¢?).
Theorem 5.3.1. If |QNH(n, ¢?)| > (¢>+2)" 4 Wy, then Q is the union of two hyperplanes, for dimension
n < O(¢?).

Proof. Part 1. Denote (¢* + 2)"~*W, by W,,. The bound is valid for n = 4 (Theorem 5.2.8).
Suppose that the lemma holds for dimension n — 1. By induction, we show that the bound is true for
dimension n.

Select (¢® + 2)"~*W, points P of Q N H(n,q?) and count the incidences (P,H), with P € Q N H(n, ¢?)
and H a tangent hyperplane to H(n, ¢?). This gives

((¢* +2)"*Wy)|PH(n — 2,¢°)| = [H(n, ¢*)| Xy,
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with X,, the average number of those (¢? + 2)"~*W, points of Q N H(n,¢?) in a tangent hyperplane to
H(n,¢?).

So some tangent hyperplane P+, P € H(n,¢?), contains at most

(> + 2" W)@ + (=)™ 2)(g"? + ()" e + ¢~ 1)
(@ T+ D@+ (D)

Xn <

3

< Woaa(l+ 5—),
1(+q2_1)

of those points.

There remain more than (g% +2)W,,_y — W, _1(1+ q23—_1) =(®+1- (ﬁ%)Wn—l points in Q N H(n, ¢?),
not lying in this tangent hyperplane P1. Take an arbitrary H(n — 3,¢?) on the base H(n — 2,¢?) of
P+ N H(n,q?). We do not know |[H(n — 3,¢%) N Q N H(n, ¢?)|, but we know that the ¢ + 1 hyperplanes
through (P, H(n—3, ¢?)) are P+, the only tangent hyperplane through (P, H(n—3, ¢?)), and ¢* hyperplanes
intersecting H(n, ¢*) in a non-singular Hermitian variety H(n — 1, ¢?).

2412 W, o
So one of them, denoted by 7, contains more than w > W,,_1 points of the intersection.
Then in this hyperplane 7, since |[TNQNH(n—1,4¢%)| > W,,_1, 7NQ is the union of two (n—2)-dimensional

spaces.

Part 2. The only quadrics containing (n — 2)-dimensional spaces are m,_4Q7"(3,¢?), m,_2Q*(1,¢?), and
7Tn73Q(2a q2)

We wish to eliminate the quadrics 7, 4Q7(3,¢?) and 7, _3Q(2,¢?). They both can be described as
the union of ¢? + 1 (n — 2)-dimensional spaces m,_5. The largest intersection of 7, _» N H(n,¢?) comes
from a Hermitian variety which is the union of ¢ + 1 distinct (n — 3)-dimensional spaces sharing an
(n — 4)-dimensional space and this has size

(q+1)q2n76+q2n78_~_._.+q2_’_1:q2n75+q2n76+q2n78+”'+q2+1.

If this would be the case for all these ¢?+1 distinct 7, _o, we would get an intersection size (g% +1)(¢*" >+
"0+ ¢? 8 + ...+ ¢% + 1) of these quadrics with H(n,¢?). Since (¢® + 2)"4Wy > (¢* + 1)(¢*"~° +
"0 4 > 8 + ...+ ¢%2 + 1), these quadrics cannot occur.

So Q = m,_2Q™ (1, ¢?) which is the union of two hyperplanes. O

Remark 5.3.2. The condition n < O(g?) arises from the fact that only for n < O(q?), the value
(% + 2)"~*Wj is smaller than or equal to the intersection size of two hyperplanes with a non-singular
Hermitian variety H(n, ¢?). Here, necessarily n < ¢2/3.

5.4 Tables and final results for C5(X)

We proved in Theorem [.3]] that the small weight codewords of C3(X), X a non-singular Hermitian
variety in PG(n, ¢?), O(¢?) > n > 4, correspond to the intersections of X with the quadrics consisting of
the union of two hyperplanes. We now count the number of codewords obtained via the intersections of
X with the union of two hyperplanes.

Lemma 5.4.1. No two distinct unions of two hyperplanes can give the same codeword for n > 4.

Proof. Let II; UTI, and II3 UTI4 be two unions of two hyperplanes defining the same codeword of Cs(X).
Then (Hl U Hg) NX = (Hg U H4) N X. We can assume that Hg 7é 1_[1,1_[27 since H1 ] H2 7& H3 U H4.
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Then the hyperplane intersection I3 N X must be contained in the two (n — 2)-dimensional intersections
I3 NI N X and II3NIIs N X. But the smallest possible intersection size of a hyperplane with X is larger
than twice the largest possible intersection size of an (n — 2)-dimensional space with X. So this case does
not occur. O

Hence, to calculate the number of codewords arising from the unions of two hyperplanes, we simply check
which unions of two hyperplanes determine codewords of a particular weight (Tables 1, 2 and 3); we then
count how many such pairs of hyperplanes there are in PG(n,¢?), and then we multiply this number by
¢®> — 1 since a union of two hyperplanes defines ¢> — 1 non-zero codewords which are a scalar multiple of
each other. For n > 4, this determines the precise number of codewords of the smallest weights in C(X)
(Table 3).

We determine the geometrical construction of the smallest weight codewords. They correspond to the
intersection of X=H(n, ¢?) with 7, _2Q%(1,¢?). The quadric m, >Q%*(1,¢?) consists of two hyperplanes
II; and II, through an (n — 2)-dimensional space 7, 5. This 7, _» can intersect H(n,¢?) in different
ways and this gives us different weight codewords. Starting from the intersection of 7, o N H(n, ¢?), we
determine the different intersection sizes and small weights of C5(X).

For the intersection of m,_» with H(n,¢?), there are three possibilities. This intersection is either a
non-singular Hermitian variety H(n — 2,¢?), a singular Hermitian variety moH(n — 3,¢?), or a singular
Hermitian variety LH(n — 4, ¢?). The hyperplanes of PG(n, ¢?) intersect H(n, ¢?) either in a non-singular
Hermitian variety H(n — 1,¢?) or in a singular Hermitian variety moH(n — 2, ¢?).

In Table 1, we denote the different possibilities for the intersection of X with the union of two hyperplanes
H1 and Hg.

ﬂn_zﬂH(n,QQ) ‘XQ(H1UH2)|
(D) | Q1) | H(n-—2,¢°) 2[H(n — 1,¢*)[ - [H(n — 2,¢°)]
(1.2) | H(n—2,¢°) [H(n —1,¢*)[ + [moH(n — 2,¢°)] — [H(n — 2,¢%)]
(1.3) H(n —2,¢%) 2lmoH(n — 2,¢%)| — [H(n — 2, ¢%)
(2) | (2.1) | moH(n -3, q2) [H(n —1,¢*)[ + [moH(n — 2,¢%)] — [moH(n — 3,¢°)]
(2.2) | mH(n - 3,4¢°) 2[H(n — 1,¢°)| — [moH(n — 3, ¢°)]
)| 31| LH(n—4,¢°) 2lmoH(n — 2,¢°)| — [LH(n — 4,¢%)|

In the second table, we give the intersection sizes: we split the table up into the cases n even and n odd.

Table 1

X' N (I1; UTI,)]
(1) (11) 2q2n—3 + q2n—5 + q2n—7 R qn+1 + qn—l + 2qn—2 + qn—4 N q2 +1
(1.2) 27" T+ P T T+ T 2" P T P
13) [ 2" P+ ¢ "+ ¢ T+ 4+ " 2" P " P
2) [ (21) 27" P+ T AT Tt
(2.2) 2q2n—3 + q2n—5 + q2n—7 Tt q7n+1 + qn—l -+ qn—2 + qn—4 L q2 F1
ERNERY) D R S G S S et S S Sk

Table 2 (a

): n even
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XN (I UIL,)|
(1) (11) 2q2n73+q2n75+q2n77++qn+2+qn_qn72+qn73_’_+q2+1
(12) 2q2n—3_|_q2n—5_~_q2n—7+_..+qn+qn—l _qn—2_|_qn—3_|__”_|_q2_'_1
(13) 2q2n73+q2n75+q2n77_~_._.+qn+2qn71 _qn72_~_qn73+._._~_q2+1
(2) (21) 2q2n—3+q2n—5+q2n—7_|___._|_qn_|_qn—l_|_qn—3_|__.__|_q2+1
(22) 2q2n—3+q2n—5+q2n—7+_.._’_qn_’_qn—?;_’__.__’_q?_;'_l
(3) (31) 2q2n73+q2n75+q2n77+._'_|_qn_|_qn71_|_qn73_|__“_|_q2+1

Table 2 (b): n odd

From the intersection sizes listed in Table 2, we now determine the smallest weights for Cy(X) by sub-
tracting the size of the intersection Q N X from the length of the code Co(X). In the same table, we list
the number of such codewords. We again split up the table into the cases n even and n odd.

Weight Number of codewords for n > 4
n+T n_ on—1,__ T
(L1) | wi =g (¢ =gt —g— 1) | e Sl el
(2.2) wy + ¢" 2 (q"“Jrl)(q"71)3"(q71)(q"’1+1)
(1.2) wi +¢"" (" + D" — g™ g~ 1)
n n n ¢ n—1
(2,1)+(3,1) wy + qn—l + qn—2 (¢" T 4+1)(q q_+11)q (g +1)+
(¢"*+1)(¢"=Dg*(¢" "1 +1)(¢""*—1)
n+T 2(44’:1) 2n—1
(1.3) wy + 271 (g -5-1)(112 —1)q
Table 3 (a): n even, n < O(q?)
Weight Number of codewords for n > 5
(1.3) wy =q" (" —¢" T —q+1) (D)
(2.1)+(3.1) wy + gt — g2 (‘1”'“*1)(¢I"+11)q"(q”’171)_|_
' ' a+
(tz"“—1)(q"+12)((q;’11)—1)((1”’2-5-1)112
=
(1.2) R (" = D" + )¢ (g —1)
(2.2 wy +2¢" " — "2 (DG )¢ - D(e-1)
(1.1 wy + 2¢" <q”“71><q"+1%z(z2:—1;<q71><q27q71>
q

Theorem 5.4.2.

N =

and the minimal weight codewords correspond to quadrics which are the union of two non-tangent
hyperplanes to H(n, q?) such that the (n — 2)-dimensional intersection of the two hyperplanes inter-

Table 3 (b): n odd, n < O(q?)

1. The code Co(H(n,q?)), n even, is a linear code with parameters

(" +1)(¢" - 1)

¢>—1

sects H(n, ¢%) in a non-singular Hermitian variety.

k= (n+2)(n+1)/2,d=q""2(¢"" —¢" —q 1),

2. The code Co(H(n,q?)), n odd, is a linear code with parameters

N =

("' =1)(¢" +1)

o k=m+2)(n+1)/2,d=q¢""2(¢" =g —q+1),
Q2 —

and the minimal weight codewords correspond to quadrics which are the union of two tangent hyper-
planes to H(n, q?) such that the (n — 2)-dimensional intersection of the two hyperplanes intersects
H(n, ¢?) in a non-singular Hermitian variety.
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To conclude this chapter, we restate the conjecture of Edoukou [33] regarding the smallest weights of the
functional codes Co(X), X a non-singular Hermitian variety of PG(n,q?); a conjecture which we have
proven to be true for small dimensions n.

Conjecture 5.4.3. The smallest weights of the functional codes C3(X), X a non-singular Hermitian
variety of PG(n,q?), arise from the quadrics Q which are the union of two hyperplanes of PG(n,q?).



Sets of generators blocking all
generators in finite classical polar
spaces

CHAPTER

We introduce generator blocking sets of finite classical polar spaces. We show what the smallest minimal
examples are in rank 2. Then we give a lower bound on the size of the next minimal example in Q(4, q),
Q= (5,q) and H(4, ¢%). This is used to prove a characterisation of the smallest examples of these generator
blocking sets of the polar spaces Q(2n,q), Q= (2n + 1,q) and H(2n, ¢?), in terms of cones with base an
example in a polar space of rank 2.

6.1 Introduction

Consider the projective space PG(3,¢). It is well known that a line of PG(3,¢) is the smallest blocking
set with relation to the planes of PG(3,¢q) [21]. It is also well known that any blocking set B in PG(3, q)
with relation to the planes, such that [B| < ¢ 4+ /g + 1, contains a line [15].

Consider now any symplectic polarity ¢ of PG(3,¢q). The points of PG(3,¢q), together with the totally
isotropic lines with relation to ¢, constitute the generalised quadrangle Ws(gq). If B is a blocking set with
relation to the planes of PG(3,¢), then B is a set of points of W3(g) such that any point of W3(q) is
collinear with at least one point of B. Dualizing to the generalised quadrangle Q(4,q), we find a set £
of lines of Q(4, ¢) such that every line of Q(4, ¢) meets at least one line of £. Together with the known
bounds on blocking sets of PG(2, q), we observe the following proposition.

Proposition 6.1.1. Suppose that L is a set of lines of Q(4, q) with the property that every line of Q(4,q)
meets at least one line of L. If |L| is smaller than the size of the smallest non-trivial blocking set of
PG(2,q), then L contains a pencil of ¢ + 1 lines through a point of Q(4,q) or L contains a requlus
contained in Q(4,q).

This proposition motivates the study of small sets of generators of finite classical polar spaces, meeting
every generator.

We will study small sets £ of generators of a polar space S, where S is Q(2n, q), Q~(2n+1, ¢) or H(2n, ¢?),
all of rank n, with the property that every generator of the polar space meets at least one generator of
L. Such a set £ will be called a generator blocking set. We call an element 7 of L essential if and only
if there exists a generator of S not in £ meeting the elements of £ only in 7. We call £ minimal if and
only if all of its elements are essential.

The following theorems, inspired by Proposition 6.1 will be proved in Section

73
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Theorem 6.1.2. Let L be a generator blocking set of a finite generalised quadrangle of order (s,t), with
|L| =t+ 1. Then L consists of a pencil of t + 1 lines through a point, or t > s and L is a spread of a
subquadrangle of order (s,t/s).

Theorem 6.1.3.  a) Let L be a minimal generator blocking set of Q= (5,q), with |L] = ¢* +1+ . If
§ < 0.381q, then L contains a pencil of ¢* + 1 lines through a point or L contains a cover of Q(4,q)
embedded as a hyperplane section in Q™ (5,q).

b) Let L be a minimal generator blocking set of H(4,¢?), with |L| = ¢> +1+3. If 6 < q¢— 3, then L
contains a pencil of ¢ + 1 lines through a point.

Section is devoted to a generalisation of Proposition [6.1.1] and Theorem [6.1.3]

6.2 Generalised quadrangles

In this section, we study minimal generator blocking sets £ of generalised quadrangles of order (s,t). After
general observations and the proof of Theorem [6.1.2] we devote two subsections to the particular cases
S=Q (5¢) and S = H(4, ¢?). We remind that for a GQ S = (P, G,]) of order (s,t), |P| = (st+1)(s+1)
and |G| = (st + 1)(t+ 1).

We denote by M the set of points of P covered by the lines of £. No two lines on a point outside M can
meet the same line. Considering a point P ¢ M, it follows that at least ¢t 4+ 1 lines of £ are required to
block all lines on P, so |£] =t+ 1+ 4, § > 0. For each point P € M, we define w(P) as the number of
lines of £ on P. Also, we define

W= " (w(P)-1),

PeM
then clearly M| = |L|(s+ 1) — W.
We denote by b; the number of lines of G \ £ that meet exactly ¢ lines of £, 0 < i. Derived from this
notation, we denote by b;(P) the number of lines on P ¢ M that meet exactly ¢ lines of £, 1 < i. Remark
that there is no priori upper bound on the number of lines of £ that meet a line of G\ £. In the next
lemmas however, we will search for completely covered lines not in £, and therefore we denote by b; the

number of lines of G \ £ that contain exactly ¢ covered points, 0 < i < s+ 1, and we denote by BZ(P) the
number of lines on P ¢ M containing exactly i covered points, 0 <17 < s+ 1.

Lemma 6.2.1. Suppose that 6 < s — 1.
a) Let the point P € P\ M. Then ), b;j(P)(i —1) =46 and
S wx) -1 <6

XeprPlnm

b) A line not contained in M can meet at most § + 1 lines of L. In particular bi=0b; =0 fori=0
and for 0 +1<i<s+1.

¢)

5+1 B 5+1
D bi(i—1) <Y bi(i—1).
=2 1=2

d) If Py is a point of M that lies on a line | meeting M only in Py, then

> (w(P)-1)<6s.

P¢Pg,PeM
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¢)

6+1
(s—08)> bi(i—1) < (st —t—0)(s+1)5 + Wd.

f) If not all lines on a point P belong to L, then at most § + 1 lines on P belong to L.

Proof.  a) Each point P ¢ M lies on ¢t 4 1 lines, and every line of £ meets exactly one of these lines.
Hence ), b;(P) =t+1 and ), b;(P)i = |L£|, which proves the first part. So ¢ lines of £ are left
over to meet the lines on P in extra points. The second part now follows immediately.

b) From the definition of L, bo = by = 0 follows. For the second part, consider any linel € G\ L
containing a point P ¢ M. The ¢t lines different from [ on P are blocked by at least t lines of £ not
meeting [. So at most |£| —¢ = J + 1 lines of £ can meet .

¢) Consider a line ! containing ¢ covered points with 0 < ¢ < § 4+ 1. Then ! must meet at least i lines
of L. On the left hand side, this line is counted exactly ¢ — 1 times and on the right hand side, this
line is counted at least ¢ — 1 times. This gives the inequality.

d) Each point P with P ¢ Py is collinear to exactly one point X # Py of I. For Py # X € [, the
second part of (a) gives Y pc x 1 (w(P) —1) < 6. Summing over the s points on [ different from
Py gives the expression.

e) It follows from (b) that every line with a point not in M has at least s — points not in M. Taking
the sum over all points P not in M and using (a), one finds

541 o+1
D obi(s=8)(i—1) < Y D bi(P)(i —1) = (|P| - |M]|)s.
i=1 PgM i=1

As (M| = |L|(s+ 1) — W, the assertion follows.

f) Suppose that the point P lies on exactly x lines not in £. If all these are contained in M, then
|IL| >t+1—x+zs 50 x =0, or we find a point Py € P~ \ M. Then the ¢ lines on Py must be
blocked by a line of £ not on P, hence at most § + 1 lines of £ can contain P.

O

Lemma 6.2.2. Suppose that § = 0. If two lines of L meet, then L is a pencil of t + 1 lines through a
point P.

Proof. Suppose that l;,ls € £ meet in the point P. We may suppose that ¢ > 1. Assume that 2 < x <t
lines of £ pass through P, and the remaining ¢ + 1 — x lines are completely covered by lines of £. Then
x4+ (t+1—2x)s <t+ 1. This is equivalent to (t+ 1)(s — 1) < x(s —1); so x > ¢t + 1. so at least one line
I3 through P contain a hole P’. The ¢ lines different from I3 on P’ meet all a different line of £\ {I1,12},
a contradiction with |£| =t + 1. Hence all lines on P belong to L. O

Lemma 6.2.3. Suppose that 6 = 0. If L is not a pencil, then t > s and L is a spread of a subquadrangle
of order (s,t/s).

Proof. We may suppose that £ is not a pencil, so that the lines of £ are pairwise skew by Lemma [6.2.2]
Consider the set G’ of all lines completely contained in M. If I € G’ and P € M\, then there is a
unique line ¢ € G on P meeting [. As this line contains already two points of M, it is contained in M
by Lemma [6.2.1] (b), that is g € G’. This shows that (M, G’) is a GQ of some order (s,t¢') and hence it
has (t's +1)(s + 1) points. As |[M| = (t+ 1)(s+ 1), then t's = ¢, that is ¢’ = t/s and hence t > s. O

This lemma proves Theorem [6.1.2
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6.2.1 The case S =Q (5,q)

In this subsection, S = Q™ (5,q), so (s,t) = (¢,¢?), and |£| = ¢*> + 1+ §. We suppose that £ contains no
pencil and we will show for small ¢ that £ contains a cover of a parabolic quadric Q(4,¢) C S.

The set M of covered points blocks all the lines of Q~(5,q). Therefore, |M| > ¢* + ¢ (see [69]). Using
W =ILl(g+1) — M|, we find W < ¢®+1+8(qg+1).

Lemma 6.2.4. If 6 < q;—l, then W < 6(q + 2).

Proof. Tt follows from Lemma [6.2T] (e) that

AR 8+l 3 2

D b < 2Zbi(i—1)§2.(q q 5)(Q(;r1)5+W5
: : -

1=2 i=1

< 2 —¢*=0)(g+ 1) +2W =:c.

If B is the set of all lines not in £ meeting exactly ¢ lines of £ for some i, with 2 <4 < § + 1, then it
follows that some line [ of £ meets at most |¢/|L|] lines of B. If a point P of [ lies only on lines of LU B,
then P lies on at least ¢> — 6 lines of B (by Lemma [6.2.] (f) since £ contains no pencil). Hence, at most

44

points of [ can have this property. As W < ¢* + 1+ (g + 1), then ¢ < 2(¢* + 1), so |¢/|L]] < 2(¢* — )
and thus ! has at most one such point P. Suppose the lines through P are z lines of M\ L, y lines of £
and ¢> +1 — 2z — y lines of B. Then gz +y + (¢> +1— 2z —y) < ¢*> + 1+ 6. This implies z = 0. Thus !
has x > ¢ points Py that lie on some line meeting M only in P, (in fact meeting no line of £ except for
1). So these x points satisfy the inequality of Lemma [6.21] (d). As every point not on [ is collinear with
at most one of these x points, it follows that
xdq 0q
Z (w(P)—-1) x—lgéquq—il
P¢l,PeM

IN

1)

Hence 3°pg) pep(w(P) —1) < 6(q+1).

As all but at most one point of [ lie on a line that meets no other line of £, then these points are covered
exactly once. The at most one point on [ that is contained in more than one line of £, is contained in at
most ¢ + 1 lines of £ by Lemma B.2.T] (f). Hence ) 5, (w(P) — 1) <6, and therefore W < é(¢ +2). O

Lemma 6.2.5. If 6 < q;—l, then

bor > qP +q—0— (@°+4° g5 —q+1)0

q—20
Proof. As Q™ (5,q) has (¢% +1)(¢® + 1) lines, then
q+1 ~ q+1 ~
Llg+) bi(i—1) = [Llg+1)+ Y bi — (¢ +1)(¢* + 1)
i=1 i=1

IM|(¢® +1) = (" +1)(¢* + 1)
(@®+1)(g+1)(q+68) — W(g* +1).
(¢® +1)(q+1)g —8(¢° + 1),

Y
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where we used W < §(q + 2). From Lemmas (¢) and (e) and Lemma [6.2.4] we have
5+1 541
(q—5)Zb(z—1 (g—¢ Zb (i—1)< (¢ =g+ 1)5 + 62
Together this gives

(¢ —®)(q+ 1) + 62
q—9 '

(L] + bgs1)a > (@ + 1)(g+ 1)g — 6(¢* + 1) —

Using |£] = ¢® + 1 + §, the assertion follows. O

Lemma 6.2.6. If § < 0.381q, then there erists a hyperbolic quadric QT (3,q) contained in M.

Proof. Count triples (I,l2, g), where lq,ls are skew lines of £ and g ¢ L is a line meeting [; and [y and
being completely contained in M. Then

ILI(1£] = 1)z > bgy1(q + 1)g

where z is the average number of transversals contained in M but not in £ of two skew lines of £. The
bound on l;q“ (cf. Lemma [6220]) together with the assumption in the lemma guarantees that z > .
Hence, we find two skew lines Iy, [l € £ such that 6 + 1 of their transversals are contained in M. The lines
I1 and Iy generate a hyperbolic quadric Q*(3,¢q) contained in Q™ (5, ¢), denoted by Q. If some point P
of QT is not contained in M, then the line on it meeting I, s has two points in M and the second line
of QT on P has at least § + 1 points in M. This is not possible (cf. Lemma (a)). Hence, QT is
contained in M. O

Lemma 6.2.7. If§ < 0.381q, then M contains a parabolic quadric Q(4,q).

Proof. The condition of this lemma implies the condition of Lemma [E.2.6] so we already know that
M contains a hyperbolic quadric Q™ (3, ¢), denote this hyperbolic quadric by Q*. We also know that
M| =|L|(g+1)—W > 03 — ¢ by Lemma[6.2.4] Hence, there exists a parabolic quadric Q(4, ¢), denoted
by Q, containing QT, and containing

o M= (g + +1)°
ST T I 2
q+1 71

points of M other than those in Q1. Hence, ¢ > ¢> — q. Each of the ¢3 — ¢ — ¢ holes of Q can be
perpendicular to at most § of the ¢ non-holes of Q \ Q* (cf. Lemma (a)). Thus we find a non-hole
P in Q\ Q7 that is perpendicular to at most

(¢* —q—c)d
C

<qé

holes of Q. The point P lies on g+ 1 lines of QQ and if a line on P contains a hole, then it contains at least
g — 9 holes (cf. Lemma[62ZT] (b)). Thus, the number of lines of Q on P with a hole is at most ¢d/(q — J).
In other words, at least

.
q+ pra—

of the lines of Q on P are contained in M. By the hypothesis in the present lemma, this number is larger

than §. Thus, P lies on § + 1 lines of Q that are contained in M; call this set of lines Pys. These lines

meet QT in § 4+ 1 points of the conic C':= P+ N Q*t. Denote this set of § + 1 points by C".

Consider now a hole R € Q \ P*. Suppose that R- N Q* NC’ = (). Each line of Py is hit by exactly
one line on R, and such a line cannot hit two lines of Py,. Also, each line on R hits a point of QT, and
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thus a line of £. Lines of £ cannot meet two lines on R, so we find § + 1 different lines of Q through R
containing at least 2 points of M, a contradiction. Hence, each hole R € Q\ P+ is perpendicular with
at least one point of C”.

This implies that Q contains at most (§ + 1)(¢ — 2)g holes not in P~. So Q contains in total at most
(64 1)(q —2)g + (g — 0)(g — 1) holes. This number is less than $¢(¢*> — 1) and hence ¢ > |Q| — [QT| —
%q(q2 -1) = %q(q2 —1). Repeating the arguments, we may then assume that P is connected to at most
0 holes of QQ, which in turn implies that all ¢ + 1 lines on P of Q must be contained in M. Then every
hole of Q must be connected to at least g+ 1 —  and thus all points of the conic C. Apart from P, there
is only one such point in @Q, so Q has at most one hole. Then clearly, it has no hole. O

Lemma 6.2.8. If M contains a parabolic quadric Q(4,q), denoted by Q, and |L| < ¢* + q, then all lines
of L are contained in this parabolic quadric Q.

Proof. Suppose that some line [ of £ is not contained in Q. As £ is minimal, then no other line of £
contains the point P := [N Q. Then the ¢?> + ¢ + 1 points of Q perpendicular to P must all be covered
by different lines of £. Hence, |£| > ¢ + ¢+ 1. O

The assumption in this subsection that £ contains no pencil, implies that £ contains a cover of Q(4,q)
for small enough §. Hence, we may conclude with the following theorem.

Theorem 6.2.9. If £ is a minimal generator blocking set of Q= (5,q), |£| = ¢> +1+6, 6 < 0.381¢, then
L contains a pencil of ¢*> + 1 lines through a point or L contains a cover of an embedded Q(4,q).

There are no minimal covers of Q(4, q) of size smaller than ¢* + 1 + 0.381¢ and ¢ odd [66].

Corollary 6.2.10. If £ is a minimal generator blocking set of Q= (5,q), |£] = ¢*+1+6, § < 0.381q and
q odd, then L contains a pencil of ¢*> + 1 lines through a point.

If £ is a minimal generator blocking set of Q= (5,q), |£] = ¢* + 1+ 6, § < 0.381q and q even, then L
contains a pencil of ¢* + 1 lines through a point or L contains a minimal cover of an embedded Q(4,q) of
size at least ¢* + 1+ % [72].

6.2.2 The case S = H(4, ¢*)

In this subsection, S = H(4, ¢?), so (s,t) = (¢%, ¢*). We suppose that £ contains no pencil and show in a
series of lemmas that this implies that § > ¢ — 3.

The set M of covered points must block all the lines of H(4,¢?). Therefore, |IM| > ¢° + ¢* (see [38]).
Using W = |£|(¢*? + 1) — M|, we find W < ¢ + 1 +6(¢® + 1).

Lemma 6.2.11. If§ < q— 1, then W < 6(¢ + 3).

Proof. Tt follows from Lemma [6:271] (e) and 6 < ¢ — 1 that

o+1 o+1
. . 2(¢° — ¢ = 8)(¢> + 1)d +2W§
bii < 2 bi(i—1)<
22— =)@+ ) +2W 20T+
q T g

If B is the set of all lines not in £ meeting exactly 4 lines of £ for some i with 2 < i < § + 1, then it
follows that some line [ of £ meets at most |¢/|L|] lines of B. If a point P of [ lies only on lines of LU B,



6.2. Generalised quadrangles 79

then P lies on at least ¢3 — § lines of B (Lemma [6.21] (f)). Hence, at most
Le/1£]]
¢ =0

points of [ can have this property. We have ¢ = @, so |¢/|L]] < 3(¢® — &) and thus [ has at most

two such points. Suppose the lines through P are z lines of M\L, y lines of £ and ¢3 + 1 — z — y lines
of B. Then gz +vy+ (¢ +1 — 2z —y) < ¢*+ 1+ . This implies z = 0. Thus [ has x > ¢ — 1 points P
satisfying the inequality of Lemma (d). It follows that

x5q>

<6(*+1)+ <0 +1)+1.

Sw(p)-1) <

P¢l

Hence, > pg(w(P) — 1) < 5% +1).

As all but at most two points of [ lie on a line that meets no other line of £, then these points are
covered exactly once. The at most two points on [ that are contained in more than one line of L, are
contained in at most § 4 1 lines of £ by Lemma B.2.1] (f). Hence ) pc,(w(P) — 1) < 26, and therefore
W < 4(q* + 3). O

r—1 g% -2

Lemma 6.2.12. If§ < q—1, then

(¢° +2¢° —2q6 — q +2)0

5q2+12q4+q—5—

> =9
Proof. As H(4,¢?) has (¢* + 1)(¢° + 1) lines, then
41 41
Ll + Y bii—1) = L@+ + D bi— (¢*+1)(¢° +1)
i=1 i=1

= M@ +1)— (¢ + 1)@ +1)
(@ + (¢ +¢* +8(¢* +1)) = W(g* +1)
> (¢° +1)(g+1)g” - 20(¢° +1).
From Lemmas (c) and (e) and Lemma G211l we have

5+1 5+1
(@@ =0 bi(i—1) < (¢* = 0) ) _bi(i — 1) < (¢° — ¢°)(¢* + 1)6 + 20°.
i=2 i=2
Together this gives

(@ =) (@® +1)d +26°
¢> =0 '

(1] + bg241)a” > (¢° + 1) (g + 1)g® — 26(¢® + 1)

Using |£] = ¢® + 1 + §, the assertion follows. O

Lemma 6.2.13. If L contains no pencil, then § > q — 3.

Proof. Assume that § < ¢—3. Consider a Hermitian variety H(3, ¢?), denoted by H, contained in H(4, ¢?).
A cover of H contains at least ¢> + ¢ lines by [69], so H contains at least one hole P. Of all lines through
P in H(4,¢?), ¢ — q are not contained in . They must all meet a line of £, so at most ¢+ 1+§ lines of £
can be contained in H. Hence, at most |£|+ (¢+14+38)¢> =2¢3 + > +1+5(¢> +1) < (¢*+1)(2¢+5+1)
points of H are covered.
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polar space example dimension

Q(2n7 (]) 7Tn72Q(2a q) n+1
Tn—3R, R a regulus n+1

Q (2n+1,q9) | m—2Q (3,9) n-+2
mn—3C, C a cover of Q(4,q) | n+2

H(2n,¢%) mn2H(2,¢°) n+1

Table 6.1: small examples in rank n

Now count triples (l1,1l2,g), where 1,1l are skew lines of £ and g ¢ L is a line meeting /; and [y and
being completely contained in M. Then

LI(1£] = 1)z > bgea(a® + 1)g

where z is the average number of transversals contained in M but not in £ of two skew lines of £. The
bound on I;qzﬂ together with the assumption of the lemma guarantees that z > 3¢. So there exists
a Hermitian variety H' = H(3,¢?), containing z lines not belonging to £, completely contained in M,
giving more than (¢? + 1)(2¢ + & + 1) points of H’ covered, a contradiction. O

We have shown that 6 > ¢ — 3 if £ contains no pencil. Hence, we have proven the following result.

Theorem 6.2.14. If £ is a minimal generator blocking set of H(4,¢?), || =¢*+1+3, § < q—3, then
L contains a pencil of ¢> + 1 lines through a point.

6.3 Polar spaces of higher rank

In this section, we denote a polar space of rank r by S,.. We will characterise small generator blocking sets
of the polar spaces Q(2n, q), Q™ (2n+1, q) and H(2n, ¢?). The parameters (s, t) refer in this section always
to (q,9), (q,4%), (¢, ¢®) respectively for the polar spaces Q(2n,q), Q= (2n + 1,q), H(2n,¢?). These are
the parameters of the corresponding generalised quadrangles Q(4,q), Q™ (5,¢) and H(4, ¢?). We always
suppose that £ is a generator blocking set of size |£| = t + 1+ ¢ and that S, € {Q(2n,q),Q™ (2n +

1,q),H(2n,¢*)}.

A minimal generator blocking set £ of S,, can be constructed as a set of generators through a point P
that meet S,,_1 in a generator blocking set of S,,_; of the same size, hence L is a cone over an example
in a polar space of the same type of rank n — 1. We give a short overview for the mentioned polar spaces
in Table [6.I and we will prove that the examples in Table are the smallest generator blocking sets.
To obtain these results, the following theorem will be proved, by induction on n.

Theorem 6.3.1. a) Let L be a minimal generator blocking set of Q(2n,q), with |£] =q+1+4+4. If
q+1+6 is smaller than the size of the smallest non-trivial blocking set of PG(2,q) and 6 < £, then
L contains a cone m,—2Q(2,q) or a cone m,_3R, with R a regulus.

b) Let L be a minimal generator blocking set of Q= (2n + 1,q), with |£| = ¢*> + 1+ 6. If § < 0.381q,
then L contains a cone m,_2Q~ (3,q) or a cone m,_3C, C a cover of Q(4,q).

¢) Let L be a minimal generator blocking set of H(2n,q?), with |L] = ¢®+1+6. If§ < q— 3, then L

contains a cone m,_2H(2,q?).

Section was devoted to the case n = 2 of Theorem [6.3.1] and this case serves as the induction basis.
The induction hypothesis is that if £ is a minimal generator blocking set of size t + 1 + §, with § < g,
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of S;,—1, then £ contains one of the corresponding examples listed in Table for S,,_1. The number dq
can be derived from the case n = 2 in Theorem [6.3.1

Call a point P of S,, a hole if it is not covered by a generator of £. If P is a hole, then P+ meets every
generator of £ in an (n — 2)-dimensional subspace. In the polar space S,,—1, which is induced in the
quotient space of P by projecting from P, the projection of these (n —2)-dimensional subspaces induces a
generator blocking set £, |£'| < |£|. Applying the induction hypothesis, £’ contains one of the examples
of S,_1 described in Table[6.1t we will denote this example by £F. Hence, the space on P containing the
(n — 2)-dimensional subspaces that are projected from P on the elements of £, is a cone with vertex P
and base an example in S,,_;. We denote this space on P by Sp.

Lemma 6.3.2.  a) If a quadric m,_4Q%(3,q) or m,_3Q(2,q) in PG(n, q) is covered by generators, then
for any hyperplane T' of PG(n,q), at least ¢ — 1 of the generators in the cover are not contained in
T.

b) If a quadric m,—4Q(4,q) or m1,—3Q7(3,q) in PG(n + 1,q) is covered by generators, then for any
hyperplane T, at least g> — q of the generators in the cover are not contained in T.

¢) If a Hermitian variety m,_3H(2,¢?) in PG(n, ¢?) is covered by generators, then for any hyperplane
T of PG(n,q?), at least ¢ — q of the generators in the cover are not contained in T.

Proof.  a) This is clear if T does not contain the vertex of the quadric (i.e. the subspace m,_4, Tp_3
respectively). If T' contains the vertex, then going to the quotient space of the vertex, it is sufficient
to discuss the cases Q(2,q) and QT (3, q). The case Q(2, q) is degenerate but obvious, since any line
contains at most two points of Q(2,q). So suppose that C' is a cover of QT (3,q) C PG(3,q). Then
T is a plane. If TN Q™ (3, q) contains lines, then it contains exactly two lines of Q™ (3, q). Since at
least ¢ + 1 lines are required to cover Q* (3, q), at least ¢ — 1 lines in C do not lie in 7T

b) Again, we only have to consider the case that T contains the vertex, and so it is sufficient to consider
the two cases Q7 (3,¢) and Q(4,¢) in the quotient geometry of T. For Q™ (3,¢), the assertion is
obvious. Suppose finally that C is a cover of Q(4,¢) C PG(4,¢q). Then T has dimension three. If
T N Q(4,q) contains lines at all, then T'N Q(4, ¢) is a hyperbolic quadric Q¥ (3, ¢q) or a cone over a
conic Q(2,q). Lines of Q(4,q) not contained in Q7 (3,q) cover ¢ points of Q(4,¢)\Q" (3, ¢). Hence
at least ¢ — 1 > ¢ — ¢ lines are required to block the points of Q(4,¢)\Q7(3,q). As a cone over a
conic Q(2,q) can be covered by ¢ + 1 lines and since a cover of Q(4,¢q) needs at least ¢® + 1 lines,
the assertion is obvious also in this case.

¢) Now we only have to discuss the case H(2,¢?). Since all lines of PG(2,¢?) contain at most g + 1
points of H(2, ¢?), the assertion is obvious.
O

Lemma 6.3.3. a) Let S = Q(2n,q). If P is a hole and T an n-dimensional space m on P and in Sp,
then at least ¢ — 1 generators of L meet Sp in an (n — 2)-dimensional subspace not contained in T.

b) Let S=Q (2n+1,q). If P is a hole and T an (n + 1)-dimensional space © on P and in Sp, then
at least ¢*> — q generators of L meet Sp in an (n — 2)-dimensional subspace not contained in T.

c) Let S = H(2n,q?). If P is a hole and T an n-dimensional space ™ on P and in Sp, then at least
q® — q generators of L meet Sp in an (n — 2)-dimensional subspace not contained in T.

Proof. This assertion follows by going to the quotient space of P, and using Lemmal[6.3.2]1and the induction
hypothesis of this section. O
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The different cases will be treated separately from now on, although the main idea remains the same.
We try to find a space containing a lot of elements of £. This will be done by starting with a point lying
in many elements of L.

6.3.1 The polar space H(2n, ¢?)

In this subsection & = H(2n,¢?) and £ is a minimal generator blocking set of S with |£] = ¢ + 1 + 4,
with 6 < ¢ — 3. In this subsection we denote 6, for the number of points in PG(r, ¢?).

Lemma 6.3.4. If an (n+1)-dimensional subspace U of PG(2n, ¢*) contains more than q+1+3 generators
of L, then L is a cone m,_oH(2,¢?).

Proof. First we show that U N H(2n, ¢?) is covered by the generators of £. Assume not and let P be a
hole of U. If U N H(2n, ¢?) is degenerate, then its radical is contained in all generators of U, so P is not
in the radical of U N H(2n, ¢?). Hence, P~ N U has dimension n and thus Sp N U has dimension at most
n. Lemma shows that at least ¢® — ¢ generators of £ meet Sp in an (n — 2)-subspace that is not
contained in U. Hence, U contains at most ¢ + 1 + ¢ generators of £. This contradiction shows that U
is covered by the generators of L.

The subspace U is an (n+1)-dimensional subspace containing generators of S, hence UNS € {m,_3H(3,¢?), m,_2H(2,¢?)}.

Case 1: UNS = m, 2H(2,¢?).

A generator of £ contained in U contains the vertex m,_o. If one of the ¢ + 1 generators on m,_s is
not contained in £, then at least ¢® generators of £ are required to cover its points outside of ,_s.
Hence, if = of the ¢3 + 1 generators on 7, _» are not contained in £, then |£]| > ¢ + 1 — x + x¢®. Since
|£] = ¢+ 144, with 6 < ¢—3, this implies 2 = 0. So £ contains the pencil of generators of m, _oH(2, ¢),
and by the minimality of £, it is equal to this pencil.

Case 2: UNS = 7, _3H(3,¢?).

All generators of £ contained in U must contain the vertex m,_s. Assume that some point P of UNS
does not lie on any generator of £ contained in U. As all generators of £ contained in U contain the
vertex m,_3, then P is not on this vertex. Hence, P- NU NS is a pencil of g+ 1 generators go, ..., g, on
the subspace m,_o = (P,m,_3). None of the generators g; is contained in £. Therefore, at least ¢ + 1
generators of L are required to cover g;. One such generator of £ may contain the vertex m,_5 and then
counts for each generator g;, but this still leaves at least (q + 1)¢? + 1 generators in £ necessary to cover
all the generators g;. But |£]| < ¢® + ¢?, a contradiction. Hence, U NS is covered by generators of £
contained in U, but then in the quotient of the vertex of U NS, we see a cover of H(3,¢?), which has size
at least ¢> + ¢2 (see [69]). This is in contradiction with the maximum size for £, so this case does not
occur. O

Lemma 6.3.5. If there exists a hole P that projects L on a generator blocking set containing a minimal
generator blocking set of S,,_1 that has a non-trivial vertez, then L is a cone m,_oH(2,¢?).

Proof. Let P be the hole that projects £, and denote the vertex in S,,_1 by a. Hence there exists a line
I on P in Sp meeting at least ¢ + 1 of the generators of £. We have I- NS = [S,,_5. The number of
totally isotropic planes herein on [ equals |S,,—_2|.

Suppose that a generator g of £ meets such a plane 7 on [ in a line, then this line intersects [ in a point
P’ # P. But then [+ N g has dimension n — 2, so #,,_3 planes of S,, on [ meet g in a line.

Consequently, we find a plane 7 meeting the vertex of Sp only in [, and meeting at most m := || -
Orn—3/(|Sn—2] — A) generators g; in a line, where A\ denotes the number of lines in « through the point
INa. A calculation shows that m < 2 if n > 3. Hence, from the at least ¢® 4 1 generators of £ that meet
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I, at most one of them meets 7 in a line, and the at most § generators of £ that do not meet [ can meet
7 in at most one point. Hence, 7 contains a hole () not on [.

At least ¢® + 1 generators of £ meet Sp in an (n — 2)-dimensional subspace, and the same is true for Sq.
Hence, at least 2(¢®>+1) —|£| = ¢+ 1— 4§ generators of £ meet both Sp and Sg in an (n — 2)-dimensional
subspace.

Call lg the projection of [ from Q. The ¢* + 1 — § generators of £ meeting both Sp and Sg in an
(n — 2)-dimensional space, all meet [ in a point. If I is not contained in Sg, then all these ¢> +1 —§
generators of £ meet [ in the same point X. If lg is contained in Sq, it cannot be contained in the base
of L@, since this is a Hermitian curve H(2, ¢?). Hence, lg is a line meeting the vertex o’ of L£® and there
exists a line I’ # [ in 7 connecting @ and a point of o’. The ¢3 + 1 — § generators of £ meeting both
Sp and Sg in an (n — 2)-dimensional subspace also meet !’ in a point. At most one of these generators
meets 7 in 7\[, so at least ¢° — § of these generators of £ must meet in the common point X :=1N1'.
Hence, we have a point X being contained in at least g3 — & generators of L.

Now consider a hole R not in the perp of X. Then Sgr meets at least g3 — 24 of the generators on X in
an (n — 2)-subspace. These generators are therefore contained in T := (Sg, X). Finally consider a hole
R’ not in T and not in the perp of X. Then at least ¢ — 35 > ¢+ 1+ 6 of the generators that contain X
and are contained in T meet Sr/ in an (n — 2)-subspace. These generators lie therefore in (Spr N T, X),
which has dimension n + 1. Now Lemma completes the proof. O

Corollary 6.3.6. Theorem[6.31 (c) is true for H(2n,q¢?), n > 3.

Proof. Theorem [6.2Z.14] guarantees that the assumption of Lemma B.3.5] is true for S, = H(2n, ¢?) and
n = 3. Theorem (¢) then follows from the induction hypothesis. O

6.3.2 The polar space Q~(2n + 1,q)

In this subsection S = Q~(2n+1,¢) and £ is a minimal generator blocking set of S with |£| = ¢®+ 1+,
with § < 0.381q.

Lemma 6.3.7. If an (n + 2)-dimensional subspace U of PG(2n + 1,q) contains more than ¢ + 1+ 0
generators of L, then L is a cone m,—2Q~(3,¢q) or a cone m,_3C, C a minimal cover of Q(4,q).

Proof. First we show that U N Q™ (2n + 1,¢q) is covered by the generators of £. Assume not and let P
be a hole of UN Q™ (2n 4+ 1,q9). U NQ (2n + 1,q) is degenerate, then its radical is contained in all
generators of U, so P is not in the radical of U N Q™ (2n + 1, ¢). Hence, P- N U has dimension n + 1 and
thus Sp NU has dimension at most n + 1. Lemma shows that at least g2 — ¢ generators of £ meet
Sp in an (n — 2)-subspace that is not contained in U. Hence, U contains at most ¢ + 1 + 0 generators of
L. This contradiction shows that U is covered by the generators of L.

The subspace U is an (n+2)-dimensional subspace containing generators of S, hence UNS € {m,_4Q"(5,q), m,_3Q(4, q), T,

Case 1: UNS =m,-2Q7(3,9).

A generator of £ contained in U contains the vertex m,,_g. If one of the ¢ + 1 generators on m,_» is not
contained in £, then at least g generators of £ are required to cover its points outside of m,_o. Hence, if
of the ¢* + 1 generators on 7, _» are not contained in £, then |£| > ¢ +1—x +zq. Since |£| = ¢*> +1+6,
with § < ¢ — 1, this implies z = 0. So £ contains the pencil of generators of 7,_2Q~(3,¢), and by the
minimality of £, it is equal to this pencil.

Case 2: UNS =m,-3Q(4,q).
All generators of £ contained in U must contain the vertex 7, 3. We will show that the generators of L
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contained in U already cover U N'S; then £ contains (by minimality) no further generator and thus £ is
a cone m,_3C, C a minimal cover of Q(4,q).

Assume that some point P of U NS does not lie on any generator of £ contained in U. As all generators
of £ contained in U contain the vertex m,_3, then P is not on this vertex. Hence, P* NUNS is a pencil
of ¢+ 1 generators go, . . ., g, on the subspace m,_2 = (P, m,_3). None of the generators g; is contained in
L. Therefore, at least ¢+ 1 generators of L are required to cover g;. One such generator of £ may contain
the vertex m,_o and counts for each generator g; but this still leaves at least (¢ + 1)g + 1 generators in
L necessary to cover all the generators g;. But |£| < ¢® + ¢, a contradiction.

Case 3: UNS =7, 4Q"(5,q).

As in Case 2, mutatis mutandis, we can show that all points of U N'S must be covered by generators of
L in U. But then in the quotient of the vertex of U NS, we see a cover of Q¥ (5,q), which has size at
least ¢ + ¢ (see [38]). This is in contradiction with the assumed upper bound on |£|. So this case does
not occur. U

Lemma 6.3.8. Suppose that C is a line cover of Q(4,q) with ¢> +1+6 lines. Then each conic of Q(4, q)
and each line of Q(4,q) meets at most (6 + 1)(q + 1) lines of C.

Proof. If w(P)+1 is defined as the number of lines of C' on a point P, then the sum of the weights w(P)
over all points P of Q(4, ¢) is (¢ + 1). Hence, a conic of Q(4, ¢) can meet at most (6 + 1)(g + 1) lines of
C, and the same holds for lines of Q(4, q). O

Lemma 6.3.9. If there exists a hole P of Q~(2n + 1,q) that projects L on a generator blocking set
containing a minimal generator blocking set of S,_1 that has a non-trivial vertex, then L is a cone
Tn—2Q7(3,q) or a cone m,_3C, C a minimal cover of Q(4,q).

Proof. Let P be the hole that projects £ on an example with a vertex a. Hence, there exists a line [
on P in Sp meeting at least ¢? + 1 of the generators of £, and the vertex of Sp equals (P, a). We have
I+ NS, =18,_2. The number of totally isotropic planes herein on [ equals |S,,_2|.

Suppose that a generator g of £ meets such a plane 7 on [ in a line, then this line intersects [ in a point
P’ # P. But then [+ N g has dimension n — 2, so #,,_3 planes of S,, on [ meet g in a line.

Consequently, we find a plane 7 of Q(2n,¢q) through [ meeting the vertex of Sp only in I, and meeting
at most m := |L| - 0,,—3/(|Sn—2| — A) generators g; in a line, where A denotes the number of lines in o
through the point I N . A calculation shows that m < 2 if n > 3. Hence, from the at least ¢® + 1
generators of £ that meet [, at most one of them meets 7 in a line, and the at most § generators of £
that do not meet [ can meet 7 in at most one point. Hence, 7 contains a hole ) not on [.

At least ¢> + 1 generators of £ meet Sp in an (n — 2)-dimensional subspace, and the same is true for Sq.
Hence, at least 2(¢%+1) —|£| = ¢> +1— 4 generators of £ meet both Sp and Sg in an (n —2)-dimensional
subspace.

Call lg the projection of [ from Q. The ¢? + 1 — § generators of £ meeting both Sp and Sp in an
(n — 2)-dimensional space, all meet [ in a point. If I is not contained in Sg, then all these ¢> +1 —§
generators of £ meet [ in the same point X. Suppose g is contained in Sg. The base of L is an elliptic
quadric Q™ (3, ¢) or a parabolic quadric Q(4, q). If lg is contained in the base, then lg must be a line of
Q(4, q) meeting at least ¢> + 1 — § lines of the cover of Q(4,q), a contradiction with Lemma [6.3.8] since
@?+1—-0>(0+1)(g+1)if § <0.381¢. Hence, Iy cannot be contained in the base and in both cases for
L] g contains a point of the vertex of L.

So the projection of £ from () contains an example with a non-trivial vertex o’ and there exists a line
" # 1 in 7 connecting @ and a point of a’.
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The ¢* + 1 — § generators of £ meeting both Sp and Sg in an (n — 2)-dimensional subspace also meet
I’ in a point. At most one of these generators meets 7 in 7\, so at least ¢ — § of these generators of £
must meet in the common point X := [ N{’. Hence, we have a point X being contained in at least ¢> — §
generators of L.

Now consider a hole R not in the perp of X. Then Sgr meets at least g2 — 2 of the generators on X in
an (n — 2)-subspace. These generators are therefore contained in T := (Sg, X). Finally consider a hole
R’ not in T and not in the perp of X. Then at least g2 — 35 > ¢+ 1+ 6 of the generators that contain X
and are contained in 7" meet Sg/ in an (n — 2)-subspace. These generators lie therefore in (Spr NT, X),
which has dimension n + 2. Now Lemma completes the proof. O

Hence, we will assume from now on that S = Q7 (7,¢), and that every hole sees in its quotient the
example that is a minimal cover of Q(4,q). As n = 3, then L is a set of planes.

Lemma 6.3.10. If a hyperplane T contains more than q + 1 + 30 elements of L, then L is a cone
mQ7(3,q) or a cone woC, C a minimal cover of Q(4,q).

Proof. Denote by L’ the set of the generators of £ that are contained in 7. If P is a hole outside of T,
then Sp meets all except at most § planes of £ in a line, and hence more than g + 1 + 26 of these planes
are contained in T. Here Sp is a cone with vertex P over Sp NT, and Sp N'T has dimension 4. As all
but at most § of the planes of £ meet Sp in a line, then this is true for at least |£'| — ¢ planes of L.

Note that PN Q~(7,q) = PQ(5,q), and we may suppose that Q~(5,q) C T. The intersection of Sp
with 7" is a parabolic quadric Q(4,q) contained in Q~(5,¢). Consider any point Q € (Q~(7,¢) N P+) \
(SpUQ(5,q)). Clearly W := Q+ NT N Sp meets Q(7,q) in an elliptic quadric Q~(3,¢). There are
(¢* — ¢®)(g— 1) such points Q, and at most (¢> — q)(q+ 1) of them are covered by elements of £, since we
assumed that ¢ + 1 + 36 elements of £ are contained in T. So at least ¢° — ¢* — 2¢® + ¢% + ¢ > 0 points of
(Q(7,9)NPH\ (SpUQ~(5,q)) are holes and have the property that W := Q- NT'NSp meets Q~(7,q)
in an elliptic quadric Q (3, ¢). As before, Sg NT has dimension four and meets at least |£’| — ¢ planes of
L’ in a line. Then at least |£’| — 2§ planes of £’ meet SpNT and SgNT in aline. As SpNSeNT C W
does not contain totally isotropic lines, it follows that these |£'| — 2§ planes of £’ are contained in the
subspace H := (SpNT,SoNT).

We have WNQ™(7,q) = Q(3,q), so the |L'| — 26 lines we see in the quotient of P all meet this Q~ (3, q).
Now P sees a cover of a parabolic quadric Q(4, ¢) with at most g2 +1+6 lines. Then |£'| -2 > g+ 1+§
lines of the cover must meet more than ¢+ 1 points of this Q (3, ¢). It follows that Sg NT contains more
than ¢+ 1 points of the Q7 (3,¢) in W and hence W C Sg. Then SpNT and Sg NT meet in W, so the
subspace H they generate has dimension five. As |£'| —26 > ¢+ 1+ 6 planes of L lie in H, Lemma
completes the proof. O

Lemma 6.3.11. Suppose that L is a minimal generator blocking set of size ¢> + 1+ 6 of Q= (7,q),
0 < 0.381q. If there exists a hole P that projects L on a generator blocking set containing a cover of
Q(4,q), then L is one of the examples in Table [l

Proof. Consider a hole P. Then Sp contains a cone with vertex P over a parabolic quadric Q(4,¢q). In
the projection, we see a cover of this base Q(4, ¢). Take a point Sy of this base Q(4, ¢) being on just one
line of the cover. Then the perp of this point meets a Q(4, ¢) in a cone SyQ(2, ¢) and this cone meets at
least g% + 1 lines of the cover.

The cover of the base Q(4, q) corresponds to a set C of lines 7 N Sp, with 7 a plane of £. Thus the line
h = PSy of Sp on P meets exactly one line of C and such that k- N Sp, which contains a cone hQ(2, q),
meets at least ¢? 4 1 lines of C. Choose a hole Q on h with Q # P. From the ¢ + 1 lines in C that meet
hQ(2,q), at least ¢2 +1 —§ come from planes 7 € £ with 7N Q+ C Sg. For these lines, their intersection
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with hQ(2,¢) lies in Sq. Thus either Sp N Sg = htnNSpor SpN Sg is a 3-subspace of h*t N Sp that
contains a cone SpQ(2,q).

In the second case, the vertex Sp must be the point @ (as @ € Sg N Sp); but then from @ we see a
cover of Q(4,q) containing a conic meeting at least ¢* + 1 — & of the lines of the cover. In this situation,
Lemma 638 gives ¢> + 1 — 6 < (6 + 1)(g + 1), that is § > ¢ — 3, a contradiction.

Hence, Sp N Sg has dimension four, so T = (Sp, Sg) is a hyperplane. At least ¢* planes of £ meet Sp
in a line that is not contained in Sp N Sq. At least ¢> — § of these also meet Sg in a line and hence are
contained in T'. Tt follows from & < ¢/2 that ¢ —§ > ¢+ 1 + 36, and then Lemma [6.3.10] completes the
proof. O

Corollary 6.3.12. Theorem[G.31 (b) is true for Q~(2n+1,q), n > 3.

Proof. Theorem [6.2.9] guarantees that for S,, = Q (7, ¢) and n = 3 the assumption of either Lemma [6.3.9]
or Lemma [633TT] is true. Hence Theorem B3] (b) follows for n = 3. But then the assumption of
Lemma is true for S,, = Q7 (2n + 1,q9) and n = 4, and then Theorem [631] (b) follows from the
induction hypothesis. O

Remark 6.3.13. There are no minimal covers of Q(4, q) of size smaller than ¢? + 1 +0.381¢ and ¢ odd.
So Theorem (b) implies that £ is a cone 7,_2Q~(3,q) or m,_3S, with S a spread of a Q(4,q) if ¢
is even. If ¢ is odd L has to be a cone m,_2Q (3, ¢q), since Q(4, ¢) has no spread in this case.

6.3.3 The polar space Q(2n,q)

Suppose now that £ is a generator blocking set of Q(2n,q), n > 3, of size ¢ + 1+ 6. Recall that L is the
minimal generator blocking set of Q(2n — 2, ¢q) contained in the projection of £ from a hole R. So when
n=3and S = Q(6,q), it is possible that L is a generator blocking set of Q(4,q) with a trivial vertex.
We start with this case, so we suppose that for any hole R, £ has trivial vertex.

So let R be a hole such that £ is a regulus. Let g;, i = 1,..., ¢+ 146, be the elements of £ and denote
by I; the intersection of R N g;. Without loss of generality we can assume that the lines [, .. ., lg41 are
projected onto the lines of the regulus £%, which we call l;,fori=1,...,q+ 1. The opposite lines of the
regulus £ are called m;, i =1,...,q+1. We suppose that § <rnin{%7 0o}, with dg such that ¢+ 1+ dg
is the size of the smallest non-trivial blocking set of PG(2, q).

Lemma 6.3.14. Suppose that m; is a line of the opposite regulus and that (R,m;) is a plane not
containing a line l;, i =q+2,...,q+ 1+ 0. Let B be the set of points that are the intersection of all the
lines l; with (R, m;), then B contains a line.

Proof. We show that B is a blocking set in (R, ;). Assume that a line in (R, m;) is skew to B and take
a point R’ on this line. The projection of £ from R’ contains one of the 2 minimal examples, but the
projection of (R,m;) is a line m which has at least ¢ 4+ 1 projected points of B but also a hole.

If the projection from R’ contains a pencil, then m cannot contain its vertex since it contains a hole, but
then it has at most § + 2 intersection points with the pencil.

If the projection from R’ contains a regulus, then m cannot be contained in this regulus or its opposite
regulus, since these are both completely covered. But then it contains at most é + 2 intersection points
with the projection.

So B is a blocking set in (R, ;) and by the assumption on J, it contains a line. O
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We denote the line contained in the set B by m; if it is projected on 7;. Now we consider again the hole
R and the regulus in the projection £F.

Lemma 6.3.15. The regulus contained in the projection L arises from a regulus of lines contained in
planes of L.

Proof. At least ¢+ 1 — 4§ planes (R, ;) do not contain a line /;, so we have at least ¢+ 1 — ¢ transversals
m; to the lines of £ N R*. Suppose that 1,1, ..., lq4+1 are transversal to m;. Since ¢ < %, a second
transversal my has at least %3 common transversals with m;. So we find lines {1, ..., 33 lying in the
same 3-space (mi,mo). A third transversal m; has at least 2 common transversals with m; and ma, so
all transversals m; lie in (mq, mg). Suppose that we find at most ¢ lines [y, ...,[l, which are transversal
to m1,...,Mge1—5. Then the remaining points on the lines m; must be covered by the remaining lines
l;, but g+1—0 >+ 1, so we find a regulus of lines l;,...,l;41 in planes of £ giving a complementary
regulus in the planes (R, m;). O

Lemma 6.3.16. Suppose that there is a second hole R’ such that LR isa different regulus. Then the
set L is a cone PR, P a point and R a regqulus.

Proof. By the previous lemma we have a regulus R of ¢ + 1 lines Iy, ...,l;41 contained in the planes of
L. Consider a second hole R’ such that R’ € Q(6,¢)\R™*, giving a second regulus in the planes of £. The
lines of these two reguli lie in the planes of £, so these 2 reguli intersect at least ¢+1—9 > % common
planes, since § < %1. In at most one plane the intersection line can be the same. These 2 reguli define
a 4- or a 5-space. In the case of a 4-space this 4-space contains a hyperbolic quadric and planes of L,
so it intersects Q(6,¢) in a cone PQ™(3,q). Consider the planes Ply,...,Ply41. At least %1 of these
planes contain a line of the second regulus and hence are planes of £. Suppose some plane Pl; is not a
plane of £. We find a hole @ in this plane which projects at least %1 lines of £NQ~+ onto the same line.
The projection must contain one of the 2 minimal examples in Q(4, ¢), so at least g + 1 distinct lines, a
contradiction since § < %1.

A 5-space can give a cone PQ(4,q) or a hyperbolic quadric QT (5,¢). In the first case we immediately
have the desired example using the same arguments as for the cone PQ™(3,q) in the previous case. So
assume that the planes lie in a hyperbolic quadric Q" (5,¢). Then half of the planes lie in the same
equivalence class and so intersect mutually in a point. We can assume that m; and 75 intersect in a point
P.

We have at least %1 planes 7, ...,mgs1 of L containing different lines of both reguli. Both reguli span
2
a 3-space. The planes 73, ..., Tq+1 contain a line of both reguli and so lie in the space spanned by these
2
reguli. Hence, 73, ... (T C (71, m2). Hence, we find % planes through P.

So P lies on at least %1 planes of £ which lie in a cone PQ™(3,¢). Using again the same arguments as
before proves the assertion. O

From now on, we assume that £ is a minimal generator blocking set of Q(2n, q), n > 3, of size ¢> + 1+,
and that there exists always a hole R such that £ has a non-trivial vertex of dimension n — 3.

Lemma 6.3.17. If an (n+ 1)-dimensional subspace U of PG(2n,q) contains more than § +2 generators
of L, then L is a cone m,—2Q(2,q) or a cone m,_3R, R a regulus.

Proof. First we show that U N Q(2n,q) is covered by the generators of £. Assume not and let P be a
hole of U N Q(2n,q). If UN Q(2n,q) is degenerate, then its radical is contained in all the generators
of U N Q(2n,q), so P is not in the radical of U N Q(2n,q). Hence, PX N U has dimension n and thus
Sp NU has dimension at most n. Lemma (a) shows that at least ¢ — 1 generators of £ meet Sp in
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an (n — 2)-subspace that is not contained in U. Hence, U contains at most § + 2 generators of £. This
contradiction shows that U is covered by the generators of L.

The subspace U is an (n+1)-dimensional subspace containing generators of S, hence UNS € {m,_3Q7(3,q), mn_2Q(2,9)}.

Case 1: UNS =m,-2Q(2,9).

A generator of £ contained in U contains the vertex m,_o. If one of the ¢ + 1 generators on 7,_» is not
contained in £, then at least ¢ generators of £ are required to cover its points outside of m,_o. Hence, if
x of the ¢+ 1 generators on ,_o are not contained in £, then |£| > ¢+ 1 —x + zq. Since |L] = ¢+ 1+,
with 0 < q%l, this implies x = 0. So L contains the pencil of generators of m,_2Q(2,¢), and by the
minimality of £, it is equal to this pencil.

Case 2: UNS =7, 3Q%(3,q).

All generators of £ contained in U must contain the vertex m,_3. We will show that the generators of £
contained in U already cover U N'S; then £ contains (by minimality) no further generator and thus L is
a cone m,_3Q7(3,q).

Assume that some point P of U NS does not lie on any generator of £ contained in U. As all generators
of £ contained in U contain the vertex 7,_3, then P is not on this vertex. Hence, PX NUNS is a pencil
of two generators gg, g1 on the subspace m,_2 = (P, m,—3). None of the two generators g; is contained
in L. Therefore, at least ¢ + 1 generators of £ are required to cover g;. One such generator of £ may
contain the vertex m,_o and counts for both generators g; but this still requires at least 2¢ + 1 generators
in £ to cover all the generators g;. But |£| < 2¢, a contradiction. O

A nice point is a point of Q(2n,¢q) that lies in at least ¢ — J elements of L.

Lemma 6.3.18. Let R be a hole. Call o the vertex of LF. Then there exists a nice point N, on every
line through R meeting a.

Proof. Let [ be a line on R projecting to a point of «, and consider the planes of Q(2n,q) on I We have
I+ NS, =1Sn — 2. The number of singular planes herein on I equals |Sn — 2| = 0a,,_s.

Suppose that a generator g of £ meets such a plane 7 in a line, then this line intersects [ in a point
R’ # R. But then [+ N g has dimension n — 2, so 6,,_3 planes of S,, on I meet g in a line. Consider
now an element of £ not meeting the line I and meeting two planes on [ in the points P and P’. The
line [ projects the line PP’ on a line of Q(2n — 4, ¢). Since this space has generators of dimension n — 3,
we conclude that an element of £ meets at most 6,,_3 planes on [ in a point. Hence, we find a plane 7,
meeting the vertex of S only in [, and meeting at most m := |L| - 0,,_3/(]Q(2n — 4,¢)| — ) generators
gi, where A denotes the number of lines through a point of . An easy calculation shows that m < 2 if
n > 3. This implies that there exists a plane 7 on | meeting at most one element of £, in a point or in a
line different from [. Call v this unique element. It is clear that m contains a second hole Q) not on [. If
v N7 is a point P, choose @ such that P does not ly on QR.

Call lg the projection of [ from Q. The generator blocking set £? has (possible trivial) vertex o’. It is
not possible that g lies in ¢ since then all elements of £ meeting Sg in an (n —2)-dimensional subspace,
would meet 7 in a line, a contradiction. The base of L is either a conic Q(2,¢) or a hyperbolic quadric
Q*(3,9). So suppose now that I is contained in Q*(3,q). We see a regulus R in £, and lg meets at
least ¢ — & lines of £% in a point, so lg is a line of the opposite regulus of R. If the element v N is a line,
it is projected from @ onto lg. But the projection Rg of R from @) must also be covered by an element
of £ which lies in the opposite regulus of lg; so Rq is also covered by the projection of an element of
L\ {v}. Hence, the line (R, Q) must meet an element of £\ {v} in a point, a contradiction. So lq is a line
spanned by a point in o/ and a point in the base of the minimal generator blocking set in the projection
from . This also implies that o’ is non-trivial. Consider the line I’ # [ in 7 connecting ) and a point
of o/. The g+ 1 — ¢ generators meeting both Sg and S¢ in an (n — 2)-dimensional subspace also meet !’
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in a point. At most one of these generators meets 7 in w\l, so at least ¢ — § of the generators of £ must
meet in the common point X :=1N1{’. This point X is the desired nice point. O

Corollary 6.3.19. If R is a hole and N € R* is a nice point, then N lies in the vertex of Sg.

Proof. A nice point lies on ¢ — § generators of £ and at least ¢ — 26 > 2 of them must belong to LE. As
two elements of £ necessarily meet in a point of the vertex of Sg, the assertion follows. O

Lemma 6.3.20. Letn > 4. If 8 denotes the subspace generated by all nice points, then dim(8) > n — 3.

Proof. Suppose that R is a hole. If n > 4, then by the induction hypothesis, for a hole R the vertex of
L% has dimension at least n — 4. Hence, using Lemma the nice points generate a subspace v of
dimension at least n — 4. Suppose that dim(y) = n —4, then dim(y*) = n+3 < 2n, and so we find a hole
P & v%. Consider this hole P, then the same argument gives us a subspace 7/ spanned by nice points in
P~ of dimension at least n — 4, different from 7. So dim(3) >n — 3. O

Lemma 6.3.21. There exists a generator g on the vertex of Sg such that g meets exactly one element
of L in an (n — 2)-dimensional subspace and such that all other elements of L do not meet g or meet g
only in points of the vertex of Sg.

Proof. If n = 3 then we know that there is at least one hole R for which the vertex of £ has dimension
n—3. If n > 4, we project from a hole R lying in the perp of the (n — 3)-dimensional subspace 8 of nice
points of Lemma [6.3.20] so R € 3+. Hence, the vertex of Sg is the subspace (R, 7, _3), with m,_3 the
vertex of LE. Consider only the (n — 2)-dimensional intersections m; of the elements of £ and R*. At
least ¢ + 1 of these are projected from R on a generator of Q(2n — 2, q) through m,_3, so at least ¢ + 1 of
these intersections 7; intersect (R, m,_3) in an (n — 3)-dimensional subspace. So every generator through
(R, m,—3) contains at least one of the spaces 7;. If on the other hand a space m; does not lie in a generator
through (R, m,_3), then it either intersects at most one generator in points outside (R, m,_3) (and this
intersection can have dimension n — 2), either it intersects only in (R, m,_3), but this intersection has
dimension at most n — 3 since R is a hole. Since there are at most § spaces 7; left, we find a suitable
generator g. O

Lemma 6.3.22. There exists an (n — 3)-dimensional subspace contained in at least q elements of L.

Proof. Call M := (R, m,_3) the vertex of Sg, with 7,_3 the vertex of £L%. Denote the elements of £
intersecting Sg in an (n — 2)-dimensional subspace by 7;. By Lemma [6.3.21] we find a generator g on M
intersected by a unique element of £ in an (n — 2)-dimensional subspace, denoted by 71, and intersected
by further elements 7; of £ in at most (n — 3)-dimensional subspaces contained in M. So we find a hole

Q#P,Qeg\ M.

Clearly, at least ¢ — d elements of £ that meet Sg in an (n — 2)-dimensional subspace, also meet Sg in an
(n—2)-dimensional subspace and are projected on elements of £?. Consider now the hole ), and suppose
that £% is a cone m,_4R, R a regulus. The subspace 7, is projected from @ on a subspace 7; not in £,
since 71 meets at least ¢ — ¢ of the spaces m;, @ # 1, in an (n — 3)-dimensional space, which has larger
dimension than the vertex of £?. Hence, 7; meets the ¢ 4 1 elements of £% in different (n — 3)-spaces
and is completely covered. So the projection of R from Q is covered by elements of £2, and hence, the
line [ = (R, Q) must meet an element of £\ {7}, a contradiction. So L? is a cone 7/,_5Q(2, q).

It follows that 7; € £?, so 7/,_5 C 71, and 71 and M are projected from @ on 7;. Before projection
from R, the elements m; meet M in (n — 3)-dimensional subspaces contained in M.

The subspace 7],_5 lies in the projection from @ of elements of £ meeting (n,_5,Q) in an (n — 3)-
dimensional subspace. But the choice of ¢ implies that there is only a unique element of £ meeting
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Polar space | Lower bound
Q (2n+1,9) [ n>3:¢>+0.381g+ 1
QT(An+3,q) | ¢q>T7:2¢+1
Q(2n,q) n >3 :q+ 1+ g, the size of the smallest non-trivial
blocking set in PG(2,q) or 6y < g/2
Want1(q) g>b5andn>2:2¢q+1
H(2n, ¢%) n>3:¢ +q—2
H2n +1,¢%) [ ¢>13andn>2:2¢+3

Table 6.2: Bounds on the size of small maximal partial spreads

(7], _s,@Q) in an (n — 3)-dimensional subspace and in points outside M (the element meeting ¢ in 1), so,
at least ¢ other elements of £ intersect M in the same (n — 3)-dimensional subspace. O

Lemma 6.3.23. Suppose that L is a minimal generator blocking set of size g+ 1+ 46 of Q(2n,q), 6 < do.
If there exists a hole P that projects L on a generator blocking set containing a minimal generator blocking
set of Q(2n — 2,q) that has a non-trivial vertez, then L is a cone mp_2Q(2,q) or a cone m,_3R, R a
requlus.

Proof. By Lemma [6.3:22] we can find an (n — 3)-dimensional subspace a of Q(2n, ¢) that is contained in
at least ¢ elements of £. Consider now a hole H ¢ a*. Then H+ Na® is an (n + 1)-dimensional space
containing at least ¢ — J intersections of H+ with elements of £ on a through the (n — 4)-dimensional
subspace H+ N a. Since Sy is (n + 1)-dimensional, these ¢ — § (n — 2)-dimensional subspaces lie in the
n-dimensional space Sy N at. Hence, we find in the (n + 1)-dimensional space (o, Sy N at) at least
q—0 > 6+ 2 elements of £. Lemma [6.3.T7 assures that £ is one of the examples listed in Table O

Lemma 6.3.24. Theorem[6231] (a) is true for Q(2n,q), n > 3.

Proof. Proposition [6.1.1] guarantees that for Q(2n,q) and n = 3 the assumption of either Lemma [6.3.16]
or Lemma [6:323] is true. Hence Theorem [631] (a) follows for n = 3. But then the assumption of
Lemma [63323) is true for Q(2n,q) and n = 4, and then Theorem [631] (a) follows from the induction
hypothesis. O

The results of Theorem [B.3.1] imply an improvement of the lower bound on the size of maximal partial
spreads in the polar spaces Q™ (2n + 1,q), Q(2n,q) and H(2n,¢?). A maximal partial spread of a polar
space S is also a generator blocking set, since if this is not the case, there is a generator not blocked by
the partial spread, hence this generator can be added to the spread, which is in contradiction with the
maximality. The bounds stated in Theorem are lower bounds on the size of maximal partial spreads
of Q= (2n +1,q), Q(2n,q) and H(2n,¢?). In Table 6.2] we present the known results on small maximal
partial spreads of polar spaces. The results for QT (2n + 1,q), Wa,41(q) and H(2n + 1, ¢?) are proved in
[67].
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APPENDIX

In deze thesis bestuderen we een aantal structuren uit de eindige meetkunde. We beschouwen minihypers
die verwant zijn met lineaire codes die de Griesmer grens bereiken, waarna we een aantal toepassingen
hiervan nader bekijken. Daarna bepalen we de parameters van de functionele codes die een specifieke
klasse van lineaire codes vormen. Als laatste zoeken we naar de kleinste minimale voorbeelden van
generator blokkerende verzamelingen in polaire ruimten.

In deze appendix geven we een samenvatting van dit onderzoek. Het is niet de bedoeling in detail te
treden en we geven ook geen bewijzen. De structuur van de engelse tekst is wel behouden.

A.1 Inleiding

We bestuderen objecten in de n-dimensionale projectieve ruimte PG(n,q) over het eindig veld GF(q).
We herhalen kort de belangrijkste definities en resultaten.

Variéteiten
Een kwadriek in PG(n,q), n > 1, is een puntenverzameling die voldoet aan de volgende vergelijking:
n
Z ainin = 07
4,j=0
1<
met niet alle a;; gelijk aan nul.

Een Hermitische variéteit in PG(n,q?), n > 1, is een puntenverzameling die voldoet aan de volgende
vergelijking:

n
Z aZlequ = O7
i,j=0
met niet alle a;; gelijk aan nul en afj = a;; voor alle i,7 =0,1,...,n.
Kwadrieken en Hermitische variéteiten duiden we in het vervolg aan met de term wvariéteit. Een variéteit
F in PG(n,q) is singulier als F door een transformatie kan geschreven worden in minder dan n + 1
coordinaten. De punten van een singuliere variéteit zijn de punten van een kegel 7F met top een (n—r)-

dimensionale ruimte 7 en als basis een niet-singuliere variéteit F in een (r — 1)-dimensionale ruimte scheef
aan .
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De raakruimte van F aan een punt P € F is de verzameling punten op de rechten door P die F enkel
in P snijden of volledig bevat zijn in F. Als F niet-singulier is, dan is de raakruimte een hypervlak dat
het raakhypervlak van F in P genoemd wordt, in een singulier punt van F is de raakruimte de volledige
ruimte PG(n, ¢). We noteren de raakruimte van F in P als Tp(F).

Polaire ruimten

Definitie A.1.1. De eindige klassieke polaire ruimten zijn:

(i) De niet-singuliere kwadrieken in oneven dimensie, Q™ (2n + 1,q), n > 1, en Q™ (2n + 1,q), n > 2,
samen met de deelruimten erin bevat; dit zijn polaire ruimten van rang n + 1 en n.

(ii) De niet-singuliere parabolische kwadriek in even dimensie, Q(2n,q), n > 2, samen met de deel-
ruimten erin bevat; dit is een polaire ruimte van rang n.

(iii) De punten van PG(2n+1,q), n > 1, samen met de totaal isotrope deelruimten van een niet-singuliere
symplectische polariteit van PG(2n + 1, ¢); dit is een polaire ruimte van rang n + 1.

(iv) De niet-singuliere Hermitische variéteit in PG(2n, q), samen met de deelruimten erin bevat, n > 2
(respectievelijk, PG(2n + 1,q), n > 1); dit is een polaire ruimte van rang n (respectievelijk rang
n+1).

Zij S een polaire ruimte van rang n, dan worden de deelruimten van S van dimensie n— 1 ook generatoren
genoemd.

Definitie A.1.2. Een eindige veralgemeende vierhoek VV van de orde (s,t) is een punt-rechte meetkunde
S=(P, B, I), P en B disjuncte verzamelingen, I C (P x B) U (B x P), waarbij I voldoet aan de volgende
axioma’s:

(i) Elk punt is incident met 1 + ¢ rechten (¢ > 1) en twee verschillende punten zijn incident met ten
hoogste 1 gemeenschappelijke rechte.

(ii) Elke rechte is incident met 1 + s punten (s > 1) en twee verschillende rechten zijn incident met ten
hoogste 1 gemeenschappelijk punt.

(iii) Als x een punt is en L een rechte niet incident met x, dan bestaat er een uniek paar (y, M) € P x B,
zodat t IM Iy 1L.

De natuurlijke getallen s en t zijn de parameters van de veralgemeende vierhoek S en S is een veralge-
meende vierhoek van orde (s,t). Wanneer s = ¢, dan is § een veralgemeende vierhoek van de orde s. We
merken tenslotte op dat eindige klassieke polaire ruimten van rang 2 veralgemeende vierhoeken zijn.

Blokkerende verzamelingen

Een blokkerende verzameling in PG(2, q) is een puntenverzameling B in PG(2, q) die elke rechte snijdt. Een
blokkerende verzameling die een rechte bevat, noemen we triviaal. De kleinste niet-triviale blokkerende
verzameling is een Baer deelvlak met grootte ¢ + /g + 1, die enkel bestaat als ¢ een kwadraat is. De
grootte van de kleinste bestaande niet-triviale blokkerende verzameling van PG(2,q) wordt aangeduid
met g + ¢4 + 1.

Lineaire codes

Een lineaire code C over GF(q) is een deelruimte van V(n, q). Door de definitie is een lineaire combinatie
van twee codewoorden ook een codewoord. Beschouw twee codewoorden z en y. De (Hamming) afstand
d(x,y) wordt gedefinieerd als het aantal posities waarin z en y verschillen. De minimum afstand d(C)
van een code C is dan het minimum van alle afstanden tussen twee verschillende codewoorden. Het
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gewicht van een codewoord x is het aantal posities waarin 2 verschillend is van nul. Het gewicht w(C)
van een code C' is het minimum van de gewichten van de niet-nul codewoorden. Voor een lineare code
geldt w(C) = d(C).

Een karakteriserings resultaat van minihypers

Definitie A.1.3. (Hamada and Tamari [53, 55]) Een {f, m;n,q}-minihyper is een koppel (F,w),
waarbij F een deelverzameling is van de puntenverzameling van PG(n,q) en w een gewichtsfunctie is

w:PG(n,q) - N: P— w(P), die voldoet aan

1. w(P)>0& PeF,

2. Yperw(P) =1,
3. min{} pcy w(P)|H is een hyperviak} = m.

We geven nog een belangrijk resultaat over minihypers dat we vaak zullen gebruiken.

Stelling A.1.4. [44] Een {06,,00,_1;n,q}-minthyper F, met ¢ > 16 een kwadraat en § < P2 +
1,2u+1 < n, is de unie van onderling disjuncte p-dimensionale ruimten en Baer deelmeetkundes PG(2pu+

1,\/a)-

A.2 Minihypers

Het doel is om een karakterisering van {Zf:o €i0;, Zf:o €;0;—1;n, ¢}-minihypers, met s = 1 te bekomen.
Zolang >, €; = h < \/q+ 1 is de minihyper de unie van ¢y punten, €; rechten, --- , e, (s)-dimensionale
ruimten die onderling disjunct zijn [9]. Ferret en Storme verbeterden dit resultaat waarbij de minihyper
nu ook één Baer deelmeetkunde kan bevatten. Ons doel is om dit resultaat te verbeteren en de minihypers
te karakteriseren die meer dan één Baer deelmeetkunde kunnen bevatten.

We beschouwen dus een {e;(q+ 1)+ €, €1; n, ¢}-minihyper. De karakterisering van die minihyper gebeurt
via inductie op de dimensie van de ruimte PG(n, ¢) waarin de minihyper bevat is. We willen niet gewogen
minihypers karakteriseren maar door de inductie is het noodzakelijk om in de eerste stap ook een klein
aantal gewogen punten toe te laten.

Onderstel dat F een {e1(q + 1) + €o, €153, ¢}-minihyper is met het totaal gewicht van de meervoudige
.. 2 / / /
punten hoogstens gelijk aan %1 en e; +eo = 1(\/q— q1/6) < il % enn < g. De argumenten om

2
deze minihyper te karakteriseren gaan als volgt.

We kunnen de rechten van F' verwijderen uit de minihyper, dus we kunnen onderstellen dat F' geen
rechten bevat. Neem een punt R dat niet tot de minihyper F' behoort. Als we F' projecteren vanuit
R, krijgen we een gewogen e€1-blokkerende verzameling B in het vlak. Als B geen rechte bevat, geven
resultaten op blokkerende verzamelingen een bovengrens op €;. De minihyper F' met die bovengrens op
€1 is al gekarakteriseerd, dus we moeten enkel het geval onderzoeken dat B rechten bevat. Stel [ is zo'n
rechte. Het vlak (R,[) moet een Baer deelvlak bevatten en R ligt op een rechte die een Baer deelrechte
hiervan bevat. We kunnen een punt R kiezen dat op weinig secanten van F' ligt. Doordat elke rechte van
B leidt tot een rechte door R die een Baer deelrechte bevat, vinden we een Baer deelrechte die bevat is
in minstens 5% — q41—/26 Baer deelvlakken van F. Nemen we een tweede dergelijk punt R’ dan vinden we
weer zo'n Baer deelrechte. We tonen aan dat een zorgvuldig gekozen Baer deelvlak behorende bij R een
Baer deelvlak behorende bij R’ snijdt in een Baer deelrechte. Deze twee Baer deelvlakken spannen een
Baer deelmeetkunde PG(3,,/q) op bevat in F. Dit geeft de volgende stelling.

Stelling A.2.1. Onderstel F is een gewogen {e1(q + 1) + o, €1; 3, ¢} -minihyper, met €1 + g = 1(\/q —

/ / . . . 2
q'/%) < g — q124 en met het totale gewicht van de meervoudige punten hoogstens gelijk aan %1, dan
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is F' de som van A rechten, B geisoleerde Baer deelmeetkundes PG(2,./q) en C Baer deelmeetkundes
PG(3,./q), met A+ B+ C(\/q+ 1) = €1, en g — B\/q punten.

Om de karakterisering in algemene dimensies te bewijzen projecteren we de minihyper F' vanuit een punt
dat op weinig secanten ligt. De projectie van F' is dan een minihyper in een hypervlak. Door de inductie
hypothese toe te passen, krijgen we het volgende resultaat.

Stelling A.2.2. Onderstel F is een niet-gewogen {e1(q+ 1) + €, €1;n, ¢}-minihyper, waarbij e; + €9 =

n(v/a—q'/%) < # - #, dan is ' de unie van A rechten, B geisoleerde Baer deelmeetkundes PG(2,/q)

en C Baer deelmeetkundes PG(3,./q), met A+ B+ C(\/q+1) = e1, en ¢g — B,/q punten.

A.3 Toepassing van minihypers

Minihypers worden niet alleen bestudeerd vanwege hun verband met lineaire codes die de Griesmer
grens bereiken, maar ook omdat ze nuttig zijn in het bekomen van nieuwe resultaten voor objecten in
de eindige meetkunde zoals i-strakke verzamelingen, Cameron-Liebler rechtenverzamelingen en gewogen
m-bedekkingen en m-ovoiden. We beginnen met een karakterisering van minihypers die op kwadrieken
liggen.

A.3.1 Minihypers op kwadrieken

We bestuderen {z0,,x6,_1;n,q}-minihypers waarvan de punten gelegen zijn op kwadrieken. Stel dat
Q(n, q) een kwadriek is van rang k+ 1. We bewijzen dat een {z6y, x0x_1;n, ¢}-minihyper op Q(n, ¢), met
x < ¢/2 — 1, de unie is van x onderling disjuncte generatoren.

Stelling A.3.1. (1) Een {z0,,20,_1;2r + 1,q}-minihyper F bevat in Q*(2r +1,q), met v < q/2 — 1,
bestaat uit x onderling disjuncte r-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

(2) Een {x0,_1,20,_2;2r, q}-minihyper F bevat in Q(2r,q), met x < q/2 — 1, bestaat uit x onderling
disjuncte (r — 1)-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

(3) Fen {x0,_1,20,_2;2r + 1, q}-minihyper F bevat in Q~(2r + 1,q), met x < ¢q/2 — 1, bestaat uit x
onderling disjuncte (r — 1)-dimensionale ruimten, i.e. x onderling disjuncte generatoren.

Gevolg A.3.2. Beschouw de {20,,x0,_1;2r + 1,q}-minihyper F op QT (2r+1,q), met x < q/2—1. Als
r even is, dan r < 2.

Deze resultaten worden gebruikt in de volgende toepassingen.

A.3.2 Minihypers en i-strakke verzamelingen

We beschouwen i-strakke verzamelingen in eindige klassieke polaire ruimten.

Definitie A.3.3. (Bamberg, Kelly, Law, en Penttila [6]) Een verzameling T van punten van een
eindige klassieke polaire ruimte van rang r > 2 over het eindig veld van de orde q is i-tight als

i r—1
+ IsPeT,
praT|={ 't T
i als P& T.
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We tonen aan dat een i-strakke verzameling op één van de volgende polaire ruimten Wa,.y1(q), QT (2r +
1,q),H(2r +1,¢%) een {i(¢*" ™t —1)/(¢* — 1),i(¢*" — 1)/(¢* — 1);2r + 1, ¢* }-minihyper is, waarbij ¢* = q
in het geval van Wa,11(q) en QT (2r + 1,¢) en ¢* = ¢ in het geval van H(2r + 1,¢?). Door dit verband
met minihypers kunnen we bestaande resultaten over minihypers gebruiken om ¢-strakke verzamelingen
te karakteriseren. Om 4-strakke verzamelingen op de kwadriek QT (2r + 1,q) te beschrijven, kunnen we
het resultaat uit de voorgaande toepassing gebruiken.

Stelling A.3.4. Een i-strakke verzameling op QT (2r + 1,q), met 2 < i < q/2 — 1, kan alleen maar
bestaan voor r oneven. Alsr oneven is, dan is een i-strakke verzameling de unie van i onderling disjuncte
generatoren van QF (2r+1,q).

Voor r > 1 bestaat een 1-strakke of 2-strakke verzameling op QT (2r + 1,q) wit één of twee disjuncte
generatoren.

Een i-strakke verzameling op H(2r + 1,¢?) kan gekarakteriseerd worden als de unie van generatoren en
Baer deelmeetkundes, waarbij de Hermitische polariteit een symplectische polariteit induceert in elke
Baer deelmeetkunde.

Stelling A.3.5. Beschouw een i-strakke verzameling T in H(2r+1,¢%), met ¢*> > 16 eni < ¢'%/%/v/2+1,
dan is T de unie van onderling disjuncte Baer deelmeetkundes PG(2r + 1,q) en generatoren PG(r,q?),

waarbij de Hermitische polariteit 1 een symplectische polariteit induceert in elke Baer deelmeetkunde
PG(2r+1,q) bevat in T.

Een i-strakke verzameling in de symplectische ruimte Wy, 1(q) wordt als volgt gekarakteriseerd.

% + 1, dan is

T de unie van onderling disjuncte r-dimensionale ruimten PG(r,q) en Baer deelmeetkundes PG(2r +
1,./q). Daarbij kunnen de r-dimensionale ruimten PG(r,q) en de Baer deelmeetkundes PG(2r + 1, /q)
beschreven worden op de volgende manier: T is de unie van generatoren van W(2r +1,q) die voorkomen
in paren {U, UL}, waarbij UNUL =0, en van deelmeetkundes PG(2r + 1, V@) die invariant zijn onder
de corresponderende symplectische polariteit of voorkomen in paren {PG(2r +1,,/q)1,PG(2r +1,,/q)2},
waarbij P+ NPG(2r + 1,,/9)2 = PG(2r, \/q) voor alle P € PG(2r + 1, ,/q)1.

Stelling A.3.6. Beschouw een i-strakke verzameling T van W(2r + 1,q), met i <

A.3.3 Cameron-Liebler rechtenverzamelingen

Cameron-Liebler rechtenverzamelingen zijn speciale klassen van rechten in PG(3,¢) die voldoen aan
een aantal eigenschappen. Via de Klein correspondentie kan aangetoond worden dat die een i-strakke
verzameling vormen op Q7 (5,¢) die dan weer kan in verband gebracht worden met minihypers zoals
hiervoor. We starten met een vereenvoudigde definitie van Cameron-Liebler rechtenverzamelingen.

Definitie A.3.7. (Cameron en Liebler [22], Penttila [7T1]) Neem een verzameling rechten L in
PG(3,q) en beschoww haar karakteristieke functie x . Dan is L een Cameron-Liebler rechten verzameling
als er een natuurlijk getal x bestaat zodat voor elke rechte | van PG(3,q) geldt dat:

{{m € Llm snijdt I,m # 1} = (g4 Dz + (¢ — V)xc(l). (A1)

De parameter x wordt de parameter van de Cameron-Liebler rechtenverzameling genoemd, waarvoor geldt
dat r € {0,1,2,...,¢> +1}. We verbeterden bestaande resultaten door via de Klein correspondentie aan
te tonen dat een Cameron-Liebler rechtenverzameling met parameter x overeenkomt met een z-strakke
verzameling op Q% (5, ¢q). Uit voorgaande weten we dat dit een {x(¢®> + ¢ + 1), 2(q + 1); 5, ¢}-minihyper
is bevat in Q*(5,q). Gebruik makend van gevolg krijgen we dan het volgende resultaat.

Stelling A.3.8. Er bestaat geen Cameron-Liebler rechtenverzameling in PG(3,q), ¢ = 3, met parameter
2<z< i
2
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A.3.4 Gewogen m-bedekkingen en gewogen m-ovoiden

In deze toepassing bestuderen we gewogen m-bedekkingen en gewogen m-ovoiden op veralgemeende
vierhoeken.

Definitie A.3.9. Fen partiéle gewogen m-ovoide O op een veralgemeende vierhoek S is een gewogen
verzameling punten op S zodat elke rechte van S mazimaal m punten van O bevat.

Een partiéle gewogen m-bedekking O* op een veralgemeende vierhoek is een verzameling rechten van S
zodat elk punt van S incident is met mazximaal m rechten. Dit is dus het duale van een partiéle gewogen
m-ovoide.

De deficiéntie § van een partiéle (duale) gewogen m-ovoide van S is het aantal punten (rechten) dat
ontbreekt om een (duale) m-ovoide te zijn.

We kennen een gewicht toe aan de punten die geen m keer bedekt worden door een partiéle gewogen
m-bedekking. De punten met strikt positief gewicht vormen dan een minihyper. Het toekennen van de
gewichten verloopt als volgt:

Beschouw een gewogen partiéle m-bedekking O* met deficiéntie § < ¢ op een veralgemeende vierhoek S
in PG(n,¢*). We definiéren een gewichtsfunctie w op de volgende manier:

0 als P& S,

w:PG(naq )%NPH{ m_lstar(P)ﬂO*| als P € S.

Zij F de verzameling punten met strikt positief gewicht van PG(n,¢*), dan is (F,w) een {0(¢* +
1), ; n, ¢* }-minihyper.

We gebruiken een stelling ([46]) die zegt dat zo'n minihyper de som van rechten is om uitbreidingsre-
sultaten van partiéle m-bedekkingen en hun duale m-ovoiden te bewijzen. In het geval dat S = W3(q)
weten we niet zeker dat die rechten ook effectief rechten van de veralgemeende vierhoek zijn. We kunnen
wel aantonen dat als een rechte van de som geen rechte van W3(q) is dat de poolrechte van zo’n rechte
dan ook tot de som behoort.

Gevolg A.3.10. Is O* een mazximale partiéle m-bedekking van Ws(q) met deficiéntie § < €,, dan is §
even.
Is O een mazimale partiéle m-ovoide van Q(4,q) met deficiéntie § < €, dan is § even.

Gevolg A.3.11. Is O* een mazimale partiéle m-bedekking van H(3,q?) met deficiéntie § < €2 =q+1,
dan kan O* witgebreid worden tot een gewogen m-bedekking van H(3, ¢?).

Is O een mazimale partiéle m-ovoide van Q™ (5,q) met deficiéntie 6 < €2 = q+ 1, dan kan O uitgebreid
worden tot een gewogen m-ovoide van H(3, ¢?).

In de gevallen dat S = Q(4, q) of Q™ (5, ¢) kunnen we stelling [A_3.7] gebruiken.

Gevolg A.3.12. Is O* een mazimale partiéle m-bedekking van Q(4,q) met deficiéntie 6 < q/2 — 1, dan
kan O* witgebreid worden tot een gewogen m-bedekking van Q(4,q).

Is O een mazimale partiéle m-ovoide van Ws(q) met deficiéntie 6 < q/2—1, dan kan O uitgebreid worden
tot een gewogen m-ovoide van Ws(q).

Gevolg A.3.13. Is O* een mazimale partiéle m-bedekking van Q™ (5, q) met deficiéntie 6 < q/2—1, dan
kan O* wuitgebreid worden tot een gewogen m-bedekking van Q™ (5,q).

Is O een mazimale partiéle m-ovoide van H(3,¢*) met deficiéntie § < q/2 — 1, dan kan O wuitgebreid
worden tot een gewogen m-ovoide van H(3,¢?).



A.4. De functionele code C(X) 97

Als m = (q+1)/2 spreken we van een hemisysteem in plaats van een m-ovoide. Beschouw nu een gewogen
hemisysteem H op Q™ (5,¢). We kunnen een lineaire code C associéren met H door de punten van H
te beschouwen als de kolommen van de generator matrix van C. In het geval dat ¢ = 3 voldoen de
parameters van de code C' aan de Griesmer grens. Daaruit volgt dat er geen equivalente kolommen in de
generator matrix voorkomen, dit wil zeggen dat elk punt van het hemisysteem H gewicht 1 heeft. Een
hemisysteem op Q~ (5, 3) voldoet aan de eigenschappen van een kap. Dit leidt tot een alternatief bewijs
voor volgend uitbreidingsresultaat op kappen.

Stelling A.3.14. Elke 53-, 54-, of 55-kap op Q~(5,3) is uitbreidbaar tot een mazimale 56-kap op
Q(5,3).

A.4 De functionele code Cj(X)

We onderzoeken de functionele code C,(X), waarbij X een niet-singuliere kwadriek of Hermitische variéteit
is. We geven eerst de definitie.

Beschouw een niet-singuliere kwadriek of Hermitische variéteit en noem X= { Py, ..., Py} de puntenverza-
meling van deze variéteit. De verzameling F}, is de verzameling van homogene polynomen van graad h.
De functionele code Cp,(X) is de lineaire code

Cn(X) ={(f(Pr),..., F(PN))IIf € Fn} U{0}.

De lengte en de dimensie van de code bepalen is geen probleem, maar we zijn vooral geinteresseerd in de
minimum afstand van de code.

A.4.1 De functionele code C5(Q)

Om de minimum afstand van de functionele code C5(Q), Q een niet-singuliere kwadriek, te bepalen
baseren we ons op het volgende gegeven. De minimum gewichten komen van kwadrieken die een grote
doorsnede hebben met Q, zodat het codewoord veel nullen bevat. De doorsnede V van Q met een
willekeurige kwadriek Q’ is bevat in elke kwadriek van de bundel van kwadrieken AQ + pQ’. Als V' veel
punten bevat, dan moet de bundel ook een kwadriek met veel punten bevatten. We bewijzen dat als de
grootte van V boven een bepaalde waarde is, dat de bundel dan een kwadriek bevat die de unie van twee
hypervlakken is. Zo bewijzen we dat de minimum gewichtswoorden komen van kwadrieken die de unie
van twee hypervlakken zijn.

Twee hypervlakken van PG(n, ¢) snijden elkaar in een (n—2)-dimensionale ruimte II,,_5. Afhankelijk van
hoe deze ruimte de kwadriek Q snijdt zijn er nog meerdere mogelijkheden voor de intersectie van de twee
hypervlakken met de kwadriek Q. Hierdoor hebben we meteen de 5 of 6 kleinste gewichten gevonden,
afhankelijk van de aard van de kwadriek Q.

Stelling A.4.1. De code C5(Q) heeft lengte N = |Q| en dimensie k = w De minimum gewichtswo-
orden komen van kwadrieken Q’ die de unie van 2 hypervlakken zijn. Het kleinste gewicht correspondeert
met 2 hypervlakken waarvan de intersectie Q) altijd snijdt in een niet-singuliere kwadriek van het zelfde
type als Q en waarbij de hyperviakken zelf snijden zoals aangegeven in de tabel. In de tabel geven we de

minimum afstand van de code afhankelijk van het type van Q.

Q d hypervlakken NQ
QT (21 +1,q) -+ rakend
Q (2l+1,q) =P T niet-rakend
Q(21,q), q even T — 272 9y T niet-rakend
Q(21,q), q oneven | ¢?77T —¢?=2 — 2471 niet-rakend
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A.4.2 De functionele code Cj.p;mX

Om de minimum afstand van de functionele code ChermX, X een Hermitische variéteit te bepalen ge-
bruiken we de zelfde technieken als hierboven. Twee Hermitische variéteiten bepalen ook een bundel van
q+ 1 Hermitische variéteiten. We tonen zo aan dat de minimum gewichtswoorden komen van de Hermitis-
che variéteiten die de unie zijn van ¢+ 1 hypervlakken door een gemeenschappelijke (n — 2)-dimensionale
ruimte. Ook nu weer zijn er athankelijk van de ligging van die (n — 2)-dimensionale ruimte ten opzichte
van X verschillende gewichten.

Stelling A.4.2. De code Cherm/(X) heeft lengte N = (qn“+(71):2)£q1n+(71)n+1) en dimensie k = n(n+ 2).
De minimum gewichten komen van Hermitische variéteiten die de unie zijn van q + 1 hypervliakken door
een gemeenschappelijke (n — 2)-dimensionale ruimte. Het kleinste gewicht correspondeert met hyper-
vliakken waarvan de intersectie X altijd snijdt in een niet-singuliere Hermaitische variéteit en waarbij de
hyperviakken zelf X snijden zoals aangegeven in de volgende tabel. In de tabel geven we de minimum

afstand van de code in functie van n.

d hypervliakken N X
H(n,¢%), n even N ) niet-rakend
H(n,q?), n oneven | ¢"~Y(¢" 1 —1)(¢—1) rakend

A.4.3 De functionele code Cy(X)

We willen de minimum afstand van de code Cy(X), X een Hermitische variéteit, bepalen. De technieken
uit de vorige secties zijn nu niet meer toepasbaar, daar een kwadriek en een Hermitische variéteit geen
bundel definiéren. We onderzoeken de verschillende mogelijkheden waarop een willekeurige kwadriek
een niet-singuliere Hermitische variéteit in PG(4,¢?) kan snijden. Dit resulteert in een ondergrens W,
die garandeert dat elke kwadriek die meer dan W, punten gemeen heeft met H(4,¢?) de unie van twee
hypervlakken moet zijn. We gebruiken die grens om een ondergrens te vinden in PG(n, ¢?) zodat inter-
secties die groter zijn dan die grens noodzakelijk moeten komen van een kwadriek die de unie van twee
hypervlakken is.

Net zoals in voorgaande gevallen zorgt de ligging van de gemeenschappelijke (n — 2)-dimensionale ruimte
van de twee hypervlakken ten opzichte van de Hermitische variéteit ervoor dat we onmiddelijk de 5
kleinste gewichten van de code C5(X) vinden.

Stelling A.4.3. De code C3(X) heeft lengte N = |X| en dimensie k = % De minimum
gewichtswoorden komen van kwadrieken Q' die de unie van 2 hypervlakken zijn. In de tabel geven we
de minimum afstand van de code. Het kleinste gewicht correspondeert met 2 hypervlakken waarvan de
gemeenschappelijke (n — 2)-dimensionale doorsnede van de hyperviakken X snijdt in een niet-singuliere
Hermitische variéteit en die X zelf snijden zoals aangegeven in de volgende tabel.

dimensie d hypervlakken NQ
neven | w; =q" ("t —¢" T —q—1) niet-rakend
n oneven 2Tt —q+1) rakend

A.5 Generator blokkerende verzamelingen in polaire ruimten

Het is gekend dat een rechte van PG(3, q) de kleinste blokkerende verzameling ten opzichte van vlakken
is. Elke blokkerende verzameling van vlakken in PG(3,q) met grootte kleiner dan ¢ + /g + 1 bevat een
rechte.



A.5. Generator blokkerende verzamelingen in polaire ruimten 99

Als B een blokkerende verzameling is ten opzichte van vlakken in PG(3,¢), dan is B een puntenverza-
meling van W3(q), zodat elk punt van W3(gq) collinear is met ten minste 1 punt van de verzameling
B. Gedualiseerd wordt dit dan een verzameling rechten £ van Q(4,q) zodat elke rechte van Q(4,q) ten
minste 1 rechte van £ snijdt. Met de gekende grenzen op blokkerende verzamelingen in PG(2, ¢) krijgen
we het volgende.

Gevolg A.5.1. Onderstel L een verzameling rechten van Q(4,q) zodat elke rechte van Q(4,q) ten minste
1 van de rechten van L snigdt. Als |L| kleiner is dan de grootte van de kleinste niet-triviale blokkerende
verzameling van PG(2,q), dan bevat L g+ 1 rechten door een punt van Q(4,q) of L bevat een regulus
bevat in Q(4,q).

Dit motiveerde ons om de kleinste voorbeelden te onderzoeken van verzamelingen generatoren die alle
generatoren van een polaire ruimte blokkeren. Een verzameling generatoren £ die aan deze eigenschap
voldoet noemen we een generator blokkerende verzameling. We noemen £ minimaal als er voor elk element
van L een generator bestaat die £ enkel in dat element snijdt.

We starten het onderzoek met generator blokkerende verzamelingen op veralgemeende vierhoeken. On-
derstel S een veralgemeende vierhoek van orde (s,t). We tonen aan dat een waaier van ¢+ 1 rechten door
een punt een kleinste minimale generator blokkerende verzameling is voor elke veralgemeende vierhoek.
De vraag is of er nog andere voorbeelden zijn. Voor een minimale blokkerende verzameling £ van grootte
t + 1 in een veralgemeende vierhoek van orde (s,t) tonen we aan dat er enkel een tweede voorbeeld kan
bestaan als s|t; dit voorbeeld is dan een spread van een deelvierhoek van orde (s,t/s).

Deze voorwaarde zorgt ervoor dat we ons enkel moeten richten op de elliptische kwadriek Q™ (5, ¢) en de
Hermitische variéteit H(4, ¢?). We beschouwen een minimale generator blokkerende verzameling £, met
|IL|=t+1+0end <s—1, op één van beide veralgemeende vierhoeken.

Gevolg A.5.2. Als een punt P op meer dan § + 1 rechten van L ligt, dan is L de waaier door P.

We onderstellen vanaf nu dat een punt op maximaal é + 1 rechten van £ ligt. De verzameling van punten
die bedekt worden door £ noemen we M. We willen aantonen dat £ een bedekking van een deelvierhoek
is zolang & onder een bepaalde grens blijft. Zo een deelvierhoek is dan bevat in M, daarom gaan we op
zoek naar rechten die volledig bevat zijn in M, maar die niet tot £ behoren. We vinden een ondergrens op
het aantal volledig bedekte rechten in M. Hierdoor kunnen we aantonen dat er in het geval van Q™ (5, q)
een volledig bedekte deelvierhoek Q(4,q) in M bevat zit. In het geval van H(4, ¢?) leidt het bestaan van
een deelvierhoek H(3,¢?) in M dan weer tot een contradictie.

Stelling A.5.3. a) Stel dat L een minimale generator blokkerende verzameling van Q~(5,q) is, met
L] =q¢®>+1+6. Als § < 0.381q, dan bevat L een waaier van ¢*> + 1 generatoren door een punt of
een minimale bedekking van een deelvierhoek Q(4,q) in Q™ (5,q).

b) Stel dat L een minimale generator blokkerende verzameling van H(4,q?) is, met |L| = ¢> + 1+ 6.
Als 6 < q — 3, dan bevat L de waaier van ¢* + 1 generatoren door een punt.

We gebruiken de resultaten in de polaire ruimten van rang 2 om de kleinste minimale voorbeelden van
generator blokkerende verzamelingen te vinden in polaire ruimten van algemene rang. We noteren een
polaire ruimte van rang n als S,,. Een minimale generator blokkerende verzameling £ van S,, kan gecon-
strueerd worden met een verzameling generatoren door een punt die S,,_1 in een generator blokkerende
verzameling van dezelfde grootte snijdt. Bijgevolg is £ dus een kegel over een voorbeeld in een polaire
ruimte van hetzelfde type van rang n — 1. We bewijzen door inductie op n dat de kleinste minimale
generator blokkerende verzamelingen kegels zijn met als basis een voorbeeld in rang 2.

Hierbij gebruiken we de inductie als volgt. Als een punt P niet bedekt is door £, dan snijdt P+ elke
generator van L in een (n — 2)-dimensionale ruimte. De projectie van die (n — 2)-dimensionale ruimte op
de quotiéntruimte S,,—1 van P induceert een generator blokkerende verzameling £’, met [£'| < |£|. De
inductiehypothese zegt dat £’ een kegel is over een voorbeeld van rang 2.
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Stelling A.5.4. a) Stel dat L een minimale generator blokkerende verzameling van Q(2n,q) is, met
L] =q+1+4+95. Als q+ 14§ kleiner is dan de grootte van de kleinste niet-triviale blokkerende
verzameling van PG(2,q) en 6 < q;—l, dan bevat L een kegel m,_2Q(2,q) of een kegel 7,_3R, met
R een regulus.

b) Stel dat L een minimale generator blokkerende verzameling van Q™ (2n+1, q) is, met |£| = ¢*>+1+4.
Als § < 0.381¢q, dan bevat L een kegel m,_2Q (3,q) of een kegel m,_3C, met C een minimale
bedekking van Q(4,q).

c) Stel dat L een minimale generator blokkerende verzameling van H(2n, ¢?) is, met |L] = ¢® + 1+ 4.
Als 6 < q— 3, dan bevat L een kegel m, _oH(2,¢?).
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