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Preface

The most beautiful experience we can have is the mysterious. It is the
fundamental emotion which stands at the cradle of true art and true science.
Whoever does not know it and can no longer wonder, no longer marvel, is as

good as dead, and his eyes are dimmed.

Albert Einstein

In October 2007 I started my work as a PhD student at the Department of
Mathematics at Ghent University. The result of three and a half years of
research is presented in this thesis.

In the first chapter some of the geometric background needed throughout this
thesis is covered. We define several incidence geometries which are important
in view of a good comprehension of the later chapters.

Chapter 2 covers the several known constructions of maximal arcs as well as
some of their characterizations. We discuss these constructions chronologically
while adding necessary information regarding the role of these geometric struc-
tures in this thesis. After having described Mathon’s construction of maximal
arcs we add some results concerning the conics and substructures of the arcs
along with a geometric characterization of the Denniston arcs. Next we for-
mulate a lemma of Aguglia, Giuzzi and Korchmáros which will prove to be of
considerable interest in the following chapters. Finally, we end Chapter 2 by
proving that a maximal arc, consisting of disjoint conics on a common nucleus,
is always of Mathon type.

In april 2009 I enjoyed a first stay in California, where I visited UC San Diego,
the university at which one of my supervisors, Stefaan De Winter, was working
at the time. It was during these two months that we started working on the
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topic of “maximal arcs in projective planes”. The results in Chapter 3 are
based on the findings we obtained in California. More specifically, we were
able to prove some kind of generalization of the lemma of Aguglia, Giuzzi
and Korchmáros which states that two conics on a common nucleus induce a
unique degree-4 maximal arc of Denniston type. This generalization can in
fact be seen as a geometric approach to Mathon’s construction of maximal
arcs. After acquiring enough knowledge about this different approach we were
quite sure it would be possible to solve the enumeration of the non-isomorphic
Mathon 8-arcs in PG(2, 2h), where h is prime. This is, in fact, the main result
in Chapter 3. However, we did face a problem when considering the case h = 7
since the obtained number, using our formula, was not even an integer.

We were determined on solving the intriguing gap that was left in the case
PG(2, 27) and wanted to study this particular family of maximal arcs more
closely. Chapter 4 is dedicated to the maximal arcs of Mathon type that arise
in PG(2, 27). This special class of Mathon arcs, which is described in detail
throughout this chapter, admits a Singer group on the seven conics of these
arcs. The explicit research concerning this class of arcs enabled us to count the
total number of non-isomorphic Mathon maximal arcs of degree 8. Moreover, it
turns out that the specific case we spotted in PG(2, 27) extends to two infinite
families of Mathon arcs of degree 8 in PG(2, 2k), k odd and divisible by 7, that
maintain the nice property of admitting a Singer group.

During a talk I gave regarding the Singer arcs at a seminar at Ghent Univer-
sity J. A. Thas brought up the link between maximal arcs of Mathon type and
partial flocks of the quadratic cone. This relation appeared to be of a rather
algebraic nature. I consulted literature about this particular connection and
considered the possibility of a more geometric link between the two incidence
structures. During a scientific collaboration with my supervisors Frank De
Clerck and Stefaan De Winter at Ohio University, we managed to complete a
projection of a maximal arc of Mathon type onto a partial flock of the quadratic
cone. Chapter 5 deals with this geometric connection. The established pro-
jection helped us when defining a composition on the planes associated to a
partial flock and this allowed us to form an analogue of the synthetic version
of Mathon’s Theorem, obtained in Chapter 3. Furthermore, we worked out
some nice properties regarding the Denniston lines of a Mathon arc as well as
a construction of such a maximal arc of Mathon type of degree 2d, containing
a Denniston arc of degree d, and provided that there is a solution to a certain
given system of trace conditions.



Acknowledgements

It is obvious that I wouldn’t have succeeded in completing this thesis if it
wasn’t for a few people.

I first would like to thank the GOA project Incidence Geometry, financed by
the special research fund (BOF) from Ghent University, with promoters F.
De Clerck, L. Storme, J. A. Thas and H. Van Maldeghem, for their financial
support.

Next, I would like to thank my supervisors Frank De Clerck and Stefaan De
Winter. Although they both have a very busy agenda, they still managed to
find the time to answer my questions, provide new ideas, read my manuscripts
and improve my mathematical writing skills. The memorable months we spent
in San Diego, California, and Athens, Ohio, were wonderful in many ways.

I would also like to express my gratitude to Jacques Verstraete. He made sure
that my stay in San Diego and at UCSD would be as comfortable as possible.

Many colleagues at the department helped me out in some way or another.
Special thanks go to Jef Thas for pointing out the known link between maximal
arcs of Mathon type and additive partial flocks. To Jan De Beule for assisting
me during computer issues, and to Frédéric and Michiel, who I started my
work as a PhD student with, for the pleasant times on many occasions.

Finally, I want to thank my family, mainly my parents, for giving me the
opportunity to study, for their interest and for years of support on so many
levels. Also thanks to my close friends, most of all Anita, for being there.

Thomas Maes

April 2011

iii



iv |



Contents

1 Introduction 1

1.1 Incidence geometries . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Isomorphisms and automorphisms . . . . . . . . . . . . . 2

1.1.2 Partial linear spaces . . . . . . . . . . . . . . . . . . . . 2

1.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Polar spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Ovals and hyperovals . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Maximal arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Generalized Quadrangles . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Partial geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Maximal arcs and partial geometries . . . . . . . . . . . . . . . 15

2 Known constructions of maximal arcs 19

2.1 Denniston maximal arcs . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Maximal arcs constructed by Thas . . . . . . . . . . . . . . . . 23

2.2.1 Thas maximal arcs of type I . . . . . . . . . . . . . . . . 24

2.2.2 Thas maximal arcs of type II . . . . . . . . . . . . . . . 26

2.3 Maximal arcs of Mathon type . . . . . . . . . . . . . . . . . . . 28

v



vi | Contents

3 Geometric approach to Mathon maximal arcs 37

3.1 A synthetic construction of Mathon arcs . . . . . . . . . . . . . 37

3.2 Denniston 4-arcs . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Mathon 8-arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Maximal arcs in PG(2, 32) . . . . . . . . . . . . . . . . . . . . . 54

3.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Singer 8-arcs of Mathon type 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Necessary conditions for the existence of a Singer arc . . . . . . 65

4.2.1 The action on the line x = 0 . . . . . . . . . . . . . . . . 66

4.2.2 From Denniston 4-arc to Singer 8-arc . . . . . . . . . . . 70

4.3 Necessary and sufficient condition . . . . . . . . . . . . . . . . . 71

4.3.1 Extra trace condition . . . . . . . . . . . . . . . . . . . . 79

4.4 The count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Bigger fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Partial flocks of the quadratic cone yielding Mathon arcs 87

5.1 Partial flocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Plane composition . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Analogue of the synthetic theorem . . . . . . . . . . . . . . . . . 98

5.5 Additive group . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Isomorphism between AS(q) and the Payne derivation of W(q)105

A.1 A closer look at both geometries . . . . . . . . . . . . . . . . . . 106

A.2 An actual map between AS(q) and P . . . . . . . . . . . . . . . 108



Contents | vii

B Nederlandstalige samenvatting 111

B.1 Inleiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.2 Gekende constructies van maximale bogen . . . . . . . . . . . . 112

B.3 Meetkundige interpretatie van Mathon maximale bogen . . . . . 116

B.3.1 Een synthetische constructie van Mathonbogen . . . . . 116

B.3.2 Mathon maximale bogen van graad 8 . . . . . . . . . . . 117

B.3.3 Maximale bogen in PG(2, 32) . . . . . . . . . . . . . . . 119

B.4 Singer 8-bogen van Mathontype . . . . . . . . . . . . . . . . . . 119

B.4.1 Inleiding . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.4.2 Nodige en voldoende voorwaarde . . . . . . . . . . . . . 121

B.4.3 De telling in PG(2, 27) . . . . . . . . . . . . . . . . . . . 121

B.4.4 Grotere velden . . . . . . . . . . . . . . . . . . . . . . . 122

B.5 Mathon maximale bogen en partiële flocks van de kwadratische
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Chapter 1

Introduction

This introductory chapter is meant as a quick overview of the geometric back-
ground needed throughout this thesis. We define a few geometric structures
that will appear in later chapters and fix the notation we will use.

1.1 Incidence geometries

Definition 1.1.1. An incidence geometry of rank n is defined as an ordered
set (S, I, ∆, σ), where S is a non-empty set of varieties, I is a binary symmetric
incidence relation between elements of S, ∆ is a finite set of size n and σ is a
surjective type map from S to ∆, such that no ordered pair of elements of S
of the same type is in I.

A point-line geometry , or short geometry , is an incidence geometry of rank 2.
Here the varieties of the two types are called points and lines. Such a geometry
will also be denoted as a triple S = (P ,B, I), where P is the set of points and
B is the set of lines. If (p, b) ∈ P × B or (p, b) ∈ B × P such that p I b we say
that p is incident with b.

In most cases, the lines will be subsets of the point set P and the incidence
relation I will then simply be the symmetrized containment.

The dual of a geometry S = (P ,B, I) is the geometry SD = (B,P , I).

1



2 | Chapter 1. Introduction

We say that two points are collinear if they are contained in a line and, dually,
we say that two lines are concurrent if and only if they have a non-empty
intersection.

Collinear points x and y will be denoted by x ∼ y, concurrent lines L and M
will be denoted by L ∼ M , while x 6∼ y (resp. L 6∼ M) means that x and y
are not collinear (resp. L and M are not concurrent). Note that x ∼ x and
L ∼ L.

1.1.1 Isomorphisms and automorphisms

Definition 1.1.2. An isomorphism from (S, I, ∆, σ) to (S ′, I′, ∆, σ′) is a bijec-
tion φ : S → S ′ such that φ(x) I φ(y) ⇔ x I y and σ(x) = σ(y) ⇔ σ′(φ(x)) =
σ′(φ(y)), ∀x, y ∈ S. An automorphism of (S, I, ∆, σ) is an isomorphism from
(S, I, ∆, σ) into itself.

Whenever there exists an isomorphism from an incidence geometry A to an
incidence geometry B we will refer to A and B as isomorphic.

The automorphisms of an incidence geometry A form a group, called the auto-
morphism group, and will be denoted by Aut(A). A subgroup of Aut(A) will
be called an automorphism group.

1.1.2 Partial linear spaces

Definition 1.1.3. A finite geometry S is called a partial linear space if and
only if two distinct points are incident with at most one line, or equivalently, if
any two distinct lines are incident with at most one point. If every two distinct
points are collinear, then we say that S is a linear space.

In this thesis we will only deal with partial linear spaces satisfying the next
two properties.

• Each point is incident with t + 1 lines (t ≥ 1).

• Each line is incident with s + 1 points (s ≥ 1).

A partial linear space S satisfying these conditions is said to be of order (s, t),
or, if s = t, of order s.
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A spread of a partial linear space S is a set of lines of S partitioning the point
set of S.

1.2 Designs

Definition 1.2.1. Let t, k, v, λ be integers with t < k < v and λ > 0. A
t−(v, k, λ) design, or t-design with parameters (v, k, λ), is a set S of v elements
together with a set of k-subsets of S, called blocks, such that any t distinct
elements of S are contained in exactly λ blocks.

A t− (v, k, 1) design is also called a Steiner system.

Some useful known conditions between the parameters of a t-design are the
following.

• The number b of blocks of a t− (v, k, λ) design is given by

b = λ

(
v

t

)/(
k

t

)
.

• For s ≤ t, a t− (v, k, λ) design is also an s− (v, k, λs) design, where

λs = λ

(
v − s

t− s

)/(
k − s

t− s

)
.

1.3 Projective spaces

Although we assume the reader to be familiar with the basics of projective
geometry and finite classical polar spaces, we will recall some fundamental
notions in order to fix notation and terminology.

Definition 1.3.1. The vector space of dimension n + 1 over the finite field
GF(q), with q = ph, p prime and h ≥ 1, is denoted by V(n + 1, q). Let D(V)
be the set of proper, non-trivial subspaces of V(n+1, q) and define the incidence
relation I as follows: U I W ⇔ U ⊂ W or W ⊂ U . The incidence geometry
(D(V), I, ∆, σ) of rank n, with ∆ = {1, . . . , n}, where σ maps each subspace
onto its vectorial dimension, is called the projective space corresponding to
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V(n + 1, q). This projective space has projective dimension n and is denoted
by PG(n, q).

In V(n+1, q), a subspace of dimension i+1, i ≥ −1, is said to have projective
dimension i and will be called an i-dimensional projective subspace. Since we
will generally be working with projective spaces, we will simply use the term
dimension rather than projective dimension. Subspaces of dimension 0, 1, 2 and
n− 1 of PG(n, q) are called points, lines, planes and hyperplanes, respectively.
The (−1)-dimensional projective space is the empty space.

We remark that the dual of a projective space PG(n, q) is again a PG(n, q).
We say that PG(n, q) is self-dual .

Definition 1.3.2. The n-dimensional affine space AG(n, q) over the finite
field GF(q) is obtained from the projective geometry PG(n, q) by designat-
ing a hyperplane H as being “at infinity” and deleting it, together with all the
subspaces it contains.

A projective space can also be defined in an axiomatic way as an incidence
geometry, called axiomatic projective space, satisfying the following axioms.

• For every two distinct points, there is exactly one line incident with both.

• If p1, p2, p3 and p4 are four distinct points, such that the lines p1p2 and
p3p4 intersect, then the lines p1p3 and p2p4 intersect as well.

• Each line contains at least three points.

A subspace of an (axiomatic) projective space is a subset S of points, such that
every line containing at least two points of S, is contained in S. The axiomatic
dimension of a projective space is the largest number n for which there is a
strictly increasing chain of subspaces satisfying ∅ ⊂ S0 ⊂ · · · ⊂ Sn = P , where
P denotes the full set of points.

It can be shown (see for instance [59]) that the only finite axiomatic projective
spaces of dimension at least three are the projective spaces PG(n, q). We recall
that projective spaces can also be defined over infinite (skew) fields, however,
this is beyond the scope of this thesis.

An axiomatic finite projective plane of order q is actually a 2−(q2+q+1, q+1, 1)
design, and an axiomatic finite affine plane of order q, is a 2− (q2, q, 1) design
and conversely.
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We say that a finite projective plane is Desarguesian if it is isomorphic to
a PG(2, q), for some prime power q. Several constructions of finite non-
Desarguesian projective planes are known. The classification however is far
from done (see for instance [36]) and in fact seems to be unfeasable with to-
day’s techniques.

Whenever we say that a projective subspace PG(d, q) is embedded in a pro-
jective space PG(n, q), n > d, we simply mean that PG(d, q) is contained in
PG(n, q).

In Section 1.1.2 we have defined an isomorphism between two incidence geome-
tries. In case the incidence geometries are projective spaces, an isomorpishm
is called a collineation. Actually a collineation ϕ from Σ1

∼= PG(n, q) onto
Σ2

∼= PG(n, q), n ≥ 2, can be defined as a bijection between the points of
Σ1 and the points of Σ2 such that three collinear points of Σ1 are mapped
onto three collinear points of Σ2, which implies that incidence is preserved. If
Σ1 = Σ2, then we will simply say that ϕ is a collineation of Σ1. By the funda-
mental theorem of projective geometry, the collineation group of PG(n, q) is the
group PΓL(n + 1, q), induced by the non-singular semi-linear automorphisms
of the vector space V (n+1, q). Hence, every collineation ϕ of PG(n, q) can be
algebraically described as ϕ : x 7→ Axσ, with A a non-singular (n+1)× (n+1)
matrix and σ a field automorphism of GF(q). We will often write ϕ(σ, A). If
σ = 1, then the collineation ϕ(1, A) = ϕ(A) is called a projectivity and the
group of all projectivities of PG(n, q) is the projective linear group or linear
collineation group PGL(n + 1, q).

A collineation ϕ of PG(n, q) is called a perspectivity if there exists a hyperplane
H of PG(n, q) and a point x, such that every point of H, and every hyperplane
through x, is fixed by ϕ. The point x is called the center and H the axis of
the perspectivity ϕ. If x ∈ H then the perspectivity ϕ is called an elation, if
x 6∈ H then ϕ is called a homolgy .

A collineation from an n-dimensional projective space Σ onto its dual space
ΣD is called a reciprocity of Σ, and hence can also be denoted by ϕ(σ, A). A
reciprocity is also called a correlation, although some authors use this termi-
nology only in the case σ = 1. If this correlation has order 2 it is called a
polarity . The image of a subspace V under a polarity is denoted by V ⊥ and is
called the polar space of V . If V is a subspace such that V ⊂ V ⊥, or V ⊥ ⊂ V ,
then we say that V is absolute. If a subspace V is equal to its polar space V ⊥,
then the subspace V is called totally isotropic.
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We list the different types of polarities (σ, A) of PG(n, q) here.

• If σ = 1, q is odd and A = AT , the polarity (σ, A) is called an orthogonal
polarity.

• If σ = 1, q is even, A = AT and aii 6= 0 for some i, the polarity (σ, A) is
called a pseudo-polarity.

• If σ = 1, A = −AT and aii = 0 for all i, i.e., every point is an absolute
point, then n should be odd, and the polarity (σ, A) is called a symplectic
polarity.

• If σ 6= 1, then σ : x 7→ x
√

q, with q a square, A = AT σ
and (σ, A) is called

a Hermitian or unitary polarity.

1.4 Polar spaces

Since one of the known constructions of a maximal arc, the main topic of this
thesis (see Section 1.6 for the definition), uses classical polar spaces, we cannot
omit a modest introduction to these geometries. Much more information, as
well as the theory of Hermitian forms and Hermitian varieties which will not
be included here, can be found in for instance [12] and [35].

Polar spaces were first axiomatically introduced by Veldkamp [60]. Later on
Tits perfected the theory [58].

Let

Q(X0, . . . , Xn) =
n∑

i,j=0, i≤j

aijXiXj

be a quadratic form over GF(q). The associated quadric Q(n, q) in PG(n, q)
is the set of points p(x0, · · · , xn) whose coordinates, with respect to a fixed
basis, satisfy

Q(x0, . . . , xn) = 0.

A quadric of PG(n, q) is called singular if there is a non-singular coordinate
transformation that reduces the quadratic form to one in fewer variables. Oth-
erwise, the quadric is called non-singular .
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If n = 2m, all non-singular quadrics in PG(2m, q) are projectively equivalent
to the quadric with equation X2

0 +X1X2 + · · ·+X2m−1X2m = 0. These are the
parabolic quadrics and are denoted by Q(2m, q). In PG(2, q) a non-singular
quadric is called a conic. It will soon become clear that conics play a pivotal
role throughout this thesis.

If n = 2m + 1, a non-singular quadric in PG(2m + 1, q) is either projectively
equivalent to the quadric with equation X0X1 + · · ·+X2mX2m+1 = 0, in which
case it is called hyperbolic and denoted by Q+(2m + 1, q), or it is projectively
equivalent to the quadric with equation f(X0, X1)+X2X3 + · · ·+X2mX2m+1 =
0, with f an irreducible homogeneous quadratic form over GF(q), in which case
it is called elliptic and denoted by Q−(2m + 1, q).

Definition 1.4.1 ([58]). A polar space of rank n, n > 2, is a point set P
together with a family of subsets of P called subspaces, satisfying the following
axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional
projective space with −1 ≤ d ≤ n− 1.

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V of dimension n − 1 and a point p ∈ P \ V , there is
a unique subspace W of dimension n − 1 such that p ∈ W and V ∩ W
has dimension n− 2; W contains all points of V that are joined to p by
a subspace of dimension 1, also called a line.

(iv) There exist two disjoint subspaces of dimension n− 1.

The quadrics defined above, together with the subspaces they contain, are
examples of polar spaces.

The points of PG(n, q), n ≥ 3 odd, and the totally isotropic subspaces of a
non-singular symplectic polarity of PG(n, q), (together with all the (projective)
subspaces they contain), form a symplectic polar space, which is denoted by
W (n, q).

These symplectic polar spaces, the quadrics and the Hermitian varieties are
the finite classical polar spaces.

A subspace of maximum dimension contained in a quadric Q is called a genera-
tor of the quadric Q. The dimension of such a generator is called the projective
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index . This projective index is equal to n − 1 for Q(2n, q) and Q−(2n + 1, q)
and is equal to n for Q+(2n + 1, q).

1.5 Ovals and hyperovals

Definition 1.5.1. A k-arc K in PG(2, q) is a set of k points of which no three
are collinear. It can easily be seen that |K| ≤ q + 2. A (q + 2)-arc is called a
hyperoval and can only exist if q is even. A (q + 1)-arc in PG(2, q) is called an
oval .

If O is an oval of PG(2, q), q even, it can be proven that the q + 1 lines,
intersecting O only in one point, are concurrent. This common point is called
the nucleus of O. An example of a hyperoval is a conic C together with its
nucleus n. This is commonly known as a regular hyperoval (or hyperconic).

In a renowned theorem, Segre [45] proved, using some elegant arguments, that
every oval in PG(2, q), with q odd, is a conic. In contrast with the case where
q is odd, the study of hyperovals in PG(2, q), q even, is a deep and complex
field and the subject of much research.

Known hyperovals

A hyperoval O in PG(2, q) (q = 2h, h > 1) contains at least 4 points, no
three of which are collinear. Without any restrictions we may assume that
O passes through the four points (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1), which
implies that it is completely determined by its affine points (x, y, 1). We define
y = f(x) if and only if (x, y, 1) is a point of O. It is easily seen that f(x) is a
permutation polynomial over GF(q) which is called an o-polynomial .

A lot of the known examples can be described by an o-polynomial of the form
f(x) = xk, also called a monomial o-polynomial . Define

D(h) = {k ‖ xk is an o-polynomial over GF(2h)}.

We summarize the known results on D(h), which were observed by numerous
authors ([14],[25],[34],[42]), in the following theorem.
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Theorem 1.5.2. If k ∈ D(h) then 1/k, 1−k, 1/(1−k), k/(k−1) and (k−1)/k
(all taken modulo 2h − 1) are also elements of D(h) and yield projectively
equivalent hyperovals.

We give a short description of the known elements in D(h); the related hyper-
ovals are called monomial hyperovals .

(i) It is clear that 2 ∈ D(h), for all h, and this gives us the regular hyperoval.
Actually it is known that if h ≤ 3, every hyperoval in PG(2, 2h) is a
regular hyperoval.

(ii) It was proved by Segre [46] that 2i ∈ D(h) if and only if gcd(i, h) =
1. These hyperovals are called translation hyperovals since they admit
a group of translations acting transitively on the affine points of the
hyperoval as an automorphism group. When i 6= 1, h−1, these hyperovals
are not equivalent to regular hyperovals and examples exist for h ≥ 5,
but h 6= 6.

(iii) Another class of monomial hyperovals is given by f(x) = x6, in the case
where h is odd. These hyperovals, often called Segre hyperovals, were
also discovered by Segre [47] in 1962, see also [48] for more details.

(iv) Let σ and γ be automorphisms of GF(2h), h odd, such that γ4 ≡ σ2 ≡ 2
(mod 2h − 1) then Glynn [25] proved that γ + σ and 3σ + 4 are elements
of D(h).

Remark 1.5.3. Although there are several hyperovals known that are not of
the monomial type, it would take us too far to go into more detail. However,
for all updated information on hyperovals, we refer to a nice electronic overview
by Cherowitzo (see [13]).

The classification of hyperovals in small order planes

• As mentioned above, in PG(2, 2), PG(2, 4) and PG(2, 8), every hyperoval
must be a regular hyperoval.

• Hall, as well as O’Keefe and Penttila, showed in [26] and [39], respec-
tively, that there are two projectively distinct hyperovals in PG(2, 16):
the regular hyperoval and the Lunelli-Sce hyperoval.
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• In [44] Penttila an Royle showed that there are six projectively distinct
hyperovals in PG(2, 32): the regular hyperoval, the translation hyperoval,
the Segre hyperoval, the Payne hyperoval, the Cherowitzo hyperoval and
the O’Keefe-Penttila hyperoval.

1.6 Maximal arcs

This section contains some definitions as well as some basic properties con-
cerning maximal arcs. The details about the actual known constructions are
investigated in the next chapter.

Barlotti [7] introduced the idea of a maximal arc in a projective plane in 1956.
Originally, maximal arcs were studied as a combinatorial extremal problem and
appeared in the study of algebraic curves. Later it became clear that maximal
arcs give rise to a great deal of interesting geometric structures. Some of these
links are further investigated throughout this thesis.

Definition 1.6.1. A {k; d}-arc K in a finite projective plane of order q is a
non-empty proper subset of k points such that some line of the plane meets K
in d points, but no line meets K in more than d points. For given q and d, k
can never exceed q(d − 1) + d. If equality holds K is called a maximal arc of
degree d, a degree-d maximal arc, a {q(d− 1) + d; d}-arc or shorter, a d-arc.

Equivalently, a maximal arc can be defined as a non-empty, proper subset of
points of a projective plane, such that every line meets the set in 0 or d points,
for some d. If a line meets K it is said to be secant to K, otherwise it is external
to K.

The following examples are trivial.

• Any single point of a projective plane of order q is a maximal {1; 1}-arc
in that plane.

• The set of points of an affine subplane of order q in a projective plane of
order q is a {q2; q}-arc.

For the rest of this thesis we will neglect these trivial examples.
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Lemma 1.6.2 ([15]). If K is a {q(d − 1) + d; d}-arc in a projective plane π
of order q, the set of lines external to K is a {q(q − d + 1)/d; q/d}-arc in the
dual plane.

Proof. Let KD be the set of points of the dual of π corresponding to the
external lines of K. We will show that every line of the dual plane meets KD

in 0 or in q/d points.

Let p be a point of K. Then every line incident with p is secant to K. It follows
that the line of the dual plane corresponding to p does not meet KD.

On the other hand let p be a point not in K. Since the secant lines incident
with p partition the points of K, it follows that there are |K|/d = q + 1 − q

d
lines through p secant to K, and thus q/d lines through p external to K. We
conclude that the line of the dual plane, corresponding to p, meets KD in q/d
points. 2

It follows that a necessary condition for the existence of a {q(d− 1)+d; d}-arc
in a projective plane of order q is that d divides q. Denniston [20] showed
that this necessary condition is sufficient in the Desarguesian projective plane
PG(2, q) of order q when q is even (see Chapter 2).

Note that if π is a Desarguesian plane of order q which contains a maximal arc
K of degree d, then it also contains a maximal arc of degree q/d, the so-called
dual maximal arc of K.

The following theorem, proved by Barlotti (see [7]), gives information on com-
pleting {k, d}-arcs to maximal arcs.

Theorem 1.6.3 ([7]). If K is a {q(d− 1)+d− 1; d}-arc in a projective plane
π of order q, it is incomplete and can be uniquely completed to a maximal
{q(d− 1) + d; d}-arc.

For projective planes of odd order, no non-trivial constructions of maximal
arcs were known, and so, through the years, several authors conjectured that
non-trivial maximal arcs could not exist in PG(2, q), q odd. Cossu [15] proved
that PG(2, 9) has no {21; 3}-arc and in 1974 J. A. Thas [52] showed that
there are no maximal {2q + 3; 3}-arcs and no maximal {q(q − 2)/3; q/3}-arcs
in PG(2, q), q > 3. Finally, Ball, Blokhuis and Mazzocca used a polynomial
method to prove this more than 25-year-old conjecture.
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Theorem 1.6.4 ([5]). No non-trivial maximal arcs exist in PG(2, q) when q
is odd.

In [3] a second proof of this theorem was given by Ball and Blokhuis.

An overview of the constructions and characterizations of classical sets in
PG(n, q) can be found in [18].

1.7 Generalized Quadrangles

Generalized quadrangles were introduced by Tits [56] and more information
on the subject can be found in for instance [43] and [55].

Definition 1.7.1. A generalized quadrangle (GQ) is a partial linear space S =
(P ,B, I) of order (s, t) satisfying the following axiom.

• If x is a point and L is a line not incident with x, then there is a unique
pair (y, M) ∈ P × B for which x I M I y I L holds.

For x ∈ P , we put x⊥ = {y ∈ P ‖ y ∼ x}, and note that x ∈ x⊥. For x, y ∈ P ,
x 6= y, we have that {x, y}⊥ = x⊥ ∩ y⊥ and hence |{x, y}⊥| = s + 1 or t + 1
according as x ∼ y or x 6∼ y. Further, {x, y}⊥⊥ = {u ∈ P‖u ∈ z⊥, z ∈ x⊥∩y⊥}
and we have that |{x, y}⊥⊥| = s + 1 or |{x, y}⊥⊥| ≤ t + 1 according as x ∼ y
or x 6∼ y, respectively. If x 6∼ y the set {x, y}⊥⊥ is called the hyperbolic line
defined by x and y.

Furthermore, we say that a pair of different points x, x′ is regular, if x ∼ x′,
or if x 6∼ x′ and |{x, x′}⊥⊥| = t + 1. A point x is said to be regular provided
{x, x′} is regular for all x′ ∈ P , x′ 6= x. Regularity for lines is defined dually.

We now introduce the notion of “ovoid” as defined by Tits in [57]. An ovoid
O of PG(3, q) is a set of points of PG(3, q) no three of which are collinear and
such that for any point of O the union of the lines which meet O only in that
point, that is, the tangent lines at that point, is a set of lines of PG(2, q). If O
is an ovoid in PG(3, q), its number of points is q2 + 1. A celebrated theorem,
independently proved by Barlotti [6] and Panella [41], shows us that every
ovoid in PG(3, q), q odd or q = 4, is an elliptic quadric.

To the contrary, in the even case, Tits [57] showed that for any q = 22e+1,
with e ≥ 1, there exists an ovoid which is not an elliptic quadric. These ovoids
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are called Tits ovoids or Suzuki-Tits ovoids , as the automorphism group is the
(simple) Suzuki group Sz(22e+1). So far, for even q, no other ovoids than the
elliptic quadrics and the Tits ovoids are known.

If O is an ovoid in PG(3, q) any plane π of PG(3, q) intersects O in either one
point or in an oval. If |π ∩ O| = 1 we say that π is a tangent plane of O. At
each of its points O has exactly one tangent plane. Finally, a nice result due
to Brown [10] shows us that any ovoid O in PG(3, q) such that at least one
plane intersects O in a conic, is an elliptic quadric.

We have a closer look at a few specific generalized quadrangles which will be
linked later in this thesis. To denote the number of points and the number of
lines of a GQ we will use v and b, respectively.

• The points of PG(3, q), together with the totally isotropic lines with
respect to a symplectic polarity, form a GQ, denoted by W(q), with
parameters

s = t = q, v = b = (q + 1)(q2 + 1).

• Let d = 2 (respectively, d = 3) and let O be an oval (respectively, an
ovoid) of PG(d, q). Furthermore, let PG(d, q) = H be embedded as a
hyperplane in PG(d + 1, q) = P . Define points as

(i) the points of P \H,

(ii) the hyperplanes X of P for which |X ∩ O| = 1, and

(iii) one new symbol (∞).

Lines are defined as

(a) the lines of P which are not contained in H and meet O (necessarily
in a unique point), and

(b) the points of O.

The incidence is defined as follows. A point of type (i) is incident only
with lines of type (a); here the incidence is that of P . A point of type (ii)
is incident with all lines of type (a) contained in it and with the unique
element of O in it. The point (∞) is incident with no line of type (a)
and all lines of type (b).

This GQ is denoted by T2(O) (respectively, T3(O)). The parameters are

s = t = q, v = b = (q + 1)(q2 + 1)
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and
s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1),

when d = 2 and d = 3, respectively.

• Let O be a hyperoval of PG(2, q), so q is even. Embed PG(2, q) = H as
a hyperplane in PG(3, q) = P . Define the points as the points of P \H.
The lines of the GQ are the lines of P not in H which meet O and the
incidence is inherited from P . This GQ is denoted by T ∗

2 (O) and has
parameters

s = q − 1, t = q + 1, v = q3, b = (q + 2)q2.

• The GQ of Ahrens and Szekeres AS(q).
For each odd prime power q there is a generalized quadrangle AS(q) of
order (q − 1, q + 1). The incidence structure AS(q) = (P ,B, I) can be
constructed as follows. Let the elements of P be the points of the affine
3-space AG(3, q) over GF(q). The elements of B are the following curves
of AG(3, q).

(i) x = σ, y = a, z = b

(ii) x = a, y = σ, z = b

(iii) x = cσ2 − bσ + a, y = −2cσ + b, z = σ.

Here the parameter σ ranges over GF(q) and a, b, c are arbitrary elements
of GF(q). The incidence I is the natural one.

• The Payne derived GQ.
Let x be a regular point of a generalized quadrangle S = (P ,B, I) of
order q, q > 1. Define an incidence structure P(S, x) = S ′ = (P ′,B′, I′)
as follows. The point set P ′ is the set P \ x⊥. The lines of B′ are of two
types.

· the lines of B which are not incident with x;

· the hyperbolic lines {x, y}⊥⊥ where y 6∼ x.

The incidence I′ is the natural one. Then S ′ is a GQ of order (q−1, q+1),
which is called the Payne-derived GQ of S with respect to x.
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It is known, see for instance [43], that AS(q) is a Payne-derived GQ. In fact,
AS(q) ∼= P(W(q), x) (q odd). However, an actual map from one to the other
does not seem to appear in the literature. We present such a map, together
with a proof, in Appendix A.

1.8 Partial geometries

Bose [9] introduced partial geometries in 1963. As it turns out one can con-
struct such geometries using maximal arcs. Some details are given here.

A partial geometry can be defined in the following way.

Definition 1.8.1. A partial geometry pg(s, t, α) is a partial linear space S =
(P ,B, I) of order (s, t) such that,

• if p is a point and L is a line not incident with p, there are exactly α > 0
lines of S incident with p and concurrent with L.

If |P| = v and |B| = b, then one finds, using double counting arguments, that

v =
(s + 1)(st + α)

α
and b =

(t + 1)(st + α)

α
. (1.1)

Notice that partial geometries are a generalization of the generalized quadran-
gles, since every partial geometry with α = 1 is clearly a generalized quadran-
gle, and conversely.

1.9 Maximal arcs and partial geometries

Several partial geometries can be constructed using maximal arcs. This was
proved by J. A. Thas ([51]) and for one class independently by Wallis [61] in
1974.

Let K be a maximal {q(d−1)+d; d}-arc, with 1 < d < q, of a projective plane
π of order q, not necessarily Desarguesian. Define the points of the incidence
geometry S as the points of π which are not contained in K. The lines of S
are the lines of π which are incident with d points of K, in other words, all
the lines intersecting K. The incidence is just the incidence of π. It is readily
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seen that the configuration S, so defined, is a partial geometry pg(s, t, α) with
parameters:

• s = q − d

• t = q − q/d

• α = q − q/d− d + 1

• v = (q + 1)(q − d + 1)

• b = (q + 1)(q − q/d + 1).

Suppose that there exists a {q(d − 1) + d; d}-arc K, with 1 < d < q, in the
Desarguesian plane PG(2, q). Then we can define a second partial geometry
denoted by T ∗

2 (K) as follows.

Let PG(2, q) be embedded as a plane H in PG(3, q) = P . Define the points of
the incidence geometry T ∗

2 (K) as the points of P \H. The lines of T ∗
2 (K) are

the lines of P that are not contained in H and meet K, necessarily, in a unique
point. The incidence is that of P . Again, one readily proves, that T ∗

2 (K) is a
partial geometry pg(s, t, α) with parameters:

• s = q − 1

• t = qd− q + d− 1

• α = d− 1

• v = q3

• b = q2(qd− q + d).

This partial geometry is often called the linear representation of the maximal
arc K.

As the existence of the {qd− q + d; d}-arc K in PG(2, q) implies the existence
of a {q(q− d + 1)/d; q/d}-arc K′ in PG(2, q), it follows that there also exists a
partial geometry T ∗

2 (K′) with parameters:

• s = q − 1

• t = q(q − d + 1)/d− 1
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• α = q/d− 1

• v = q3

• b = q3(q − d + 1)/d.
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Chapter 2

Known constructions of
maximal arcs

This second chapter is devoted to the several known constructions of maximal
arcs as well as some of their characterizations. In 1969 Denniston [20] used a
special pencil of conics to construct maximal arcs in Desarguesian planes of
even order. Five years later, a second construction was found by J. A. Thas
[51]. He used ovoids and spreads in the generalized quadrangle W(q) to con-
struct maximal arcs of degree q in planes of order q2. In 1980 it was again
J. A. Thas [53], this time employing quadrics and spreads in projective spaces,
who constructed degree qt−1 maximal arcs in symplectic translation planes of
order qt. Finally, in 2001 Mathon described a construction of maximal arcs
using sets of conics on a common nucleus in PG(2, q). As was proven by Hamil-
ton and Mathon [29], every maximal arc constructed in this way gives rise to
an infinite class of maximal arcs.

In fact, the maximal arcs constructed by Mathon are a generalization of the
maximal arcs introduced by Denniston. However, instead of starting with
Mathon’s construction and extracting the maximal arcs of Denniston we will,
across this chapter, discuss the known constructions chronologically while
adding some useful results related to these geometric structures. A lot of
these results can also be found in [27].

19
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2.1 Denniston maximal arcs

From now on let q = 2h. The usual absolute trace map from the finite field
GF(2h) to GF(2), denoted by Tr, is defined as follows. For x ∈ GF(2h),

Tr(x) = x + x2 + · · ·+ x2h−1

.

We represent the points of the Desarguesian projective plane PG(2, q) as triples
(a, b, c) over the Galois field GF(q) and the lines as triples [u, v, w] over GF(q).
A point (a, b, c) is incident with a line [u, v, w] if and only if au + bv + cw = 0.

Furthermore, let ξ(α) = ξ2 + αξ + 1, α ∈ GF(q) be an irreducible polynomial
over GF(q) and let F denote the set of conics

Fλ : x2 + αxy + y2 + λz2 = 0, λ ∈ GF(q). (2.1)

We see that F0 is a singular conic, i.e., the point (0, 0, 1), and that every other
conic in the pencil is non-degenerate and has nucleus F0. Due to the fact that
ξ2 + αξ + 1 is an irreducible polynomial over GF(q) it is clear that the line
z = 0 is external to all conics of F . Furthermore, we see that this pencil,
being the union of the point F0(0, 0, 1) and the q − 1 non-degenerate conics,
is a partition of the points of the plane, not on the line z = 0. For the rest of
this thesis the pencil above will be referred to as the standard pencil and the
line z = 0, often denoted by F∞, will be called the line at infinity or, when
confusion could occur (see later in this chapter), the Denniston line.

In [1] Abatangelo and Larato showed that the standard pencil F is stabilized
by a cyclic group of order q + 1. The orbits of the group are the conics of the
pencil and the group is given by

Cq+1 =

{a + αb b 0
b a 0
0 0 1

 : a2 + αab + b2 = 1

}
. (2.2)

It turns out (see [1] or [40]) that all the cyclic subgroups of PGL(3, q) of order
q + 1 are conjugate in PGL(3, q). This implies that, up to isomorphism, there
is only one pencil of conics.

In 1969 Denniston [20] proved the following theorem. The maximal arcs arising
from this theorem are called maximal arcs of Denniston type or Denniston
maximal arcs.
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Theorem 2.1.1 ([20]). If A is an additive subgroup of order d of GF(q), then
the union K of the points of all Fλ, with λ ∈ A, is a maximal {q(d−1)+d; d}-
arc in PG(2, q).

Proof. We need to show that every line in the plane meets K in either 0 or d
points. However, since we know that Cq+1 stabilizes K and acts regularly (or
sharply transitively) on the points of the line at infinity, we only need to show
that the lines incident with a given point on the line at infinity intersect K in
0 or d points.

Let p be the point (1, 1, 0). We will prove that every line through p meets K in
0 or d points. These lines through p are {[1, 1, n] : n ∈ GF(q)} ∪ {[0, 0, 1]}. Of
course, the line [0, 0, 1], which is the line at infinity of the pencil, is external
to K. The line [1, 1, 0] contains the nucleus (0, 0, 1). Any line containing the
nucleus is tangent to each of the conics in the pencil. Hence, [1, 1, 0] meets the
set K in |A| = d points.

We still need to consider the lines [1, 1, n], n 6= 0. None of these lines meets
the nucleus of the conics and so they all meet each of the conics in either 0 or
2 points . Since [1, 1, n] is incident with q points not on the line at infinity,
it must meet q/2 of the conics of the pencil in 2 points, and q/2 of them in 0
points.

The points on a line [1, 1, n] are {(x, x+n, 1) : x ∈ GF(q)}∪{p}. So [1, 1, n], n 6=
0, does not meet the conic Fλ, λ ∈ GF(q), if and only if the quadratic equation

x2 + αx(x + n) + (x + n)2 + λ = 0

has no solutions for any x ∈ GF(q). This is equivalent to

Tr

(
n2 + λ

αn2

)
= 1.

Since the trace map is additive and Tr(1/α) = 1, due to the fact that ξ2+αξ+1
is irreducible, we find the condition

Tr

(
λ

αn2

)
= 0.

From this condition we see that, if the line [1, 1, n] does not meet the conics
Fλ1 and Fλ2 , it also does not meet the conic Fλ1+λ2 . Hence, if we define the
set

Hn = {λ ∈ GF(q) : [1, 1, n] ∩ Fλ = ∅},
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then Hn is an additive subgroup of index 2 in GF(q). Define H ′
n = GF(q)\Hn,

then H ′
n is the set of λ ∈ GF(q) such that [1, 1, n] meets Fλ in 2 points. Now,

if A is a subgroup of Hn, then of course A ∩H ′
n = ∅ and so [1, 1, n] ∩ K = ∅.

If A is not a subgroup of Hn, then GF(q) = AHn and so

GF(q)/Hn = AHn/Hn
∼= A/(A ∩Hn).

It follows that, since A∩Hn has index 2 in A, |A∩H ′
n| = |A|/2 = d/2. More-

over, every λ ∈ A∩H ′
n corresponds to [1, 1, n] meeting the conic Fλ in 2 points.

This implies that [1, 1, n] intersects K in d points. 2

We know that additive subgroups of size d of GF(q) exist for all d dividing q.
Hence the previous theorem shows that the necessary condition for a maximal
arc of degree d to exist, more specifically, that d divides q, is indeed sufficient
in PG(2, q).

Abatangelo and Larato proved some other interesting results which charac-
terize the maximal arcs of Denniston type. They show, for instance, that
Denniston maximal arcs, introduced as above, are the only ones arising in this
context.

Theorem 2.1.2 ([1]). If A is a subset of GF(q) such that the union of the
points of all Fλ, λ ∈ A, is a maximal arc, then A is a subgroup of the additive
group of GF(q).

Furthermore, they give a characterization of Denniston maximal arcs in terms
of collineation groups.

Theorem 2.1.3 ([1]). If a maximal arc K in PG(2, q), q even, is invariant
under a linear collineation group of PG(2, q) which is cyclic and has order
q + 1, then K is a maximal arc of Denniston type.

Corollary 2.1.4. The dual of a maximal arc of Denniston type is a maximal
arc of Denniston type.

In the next theorem the full collineation stabilizers of the Denniston maximal
arcs are calculated. This is a result by Hamilton and Penttila.

Theorem 2.1.5 ([32]). In PG(2, 2e), e > 2, let K be a degree-d Denniston
maximal arc, q = 2e, 2 < d < q/2, with additive subgroup A. Define the group
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G acting on GF(2e) by

G = {x 7→ axσ : a ∈ GF(2e)∗, σ ∈ Aut GF(22e)}.

Then the collineation stabilizer of K is isomorphic to C2e+1oGA, the semidirect
product of a cyclic group of order (2e + 1) with the stabilizer of A in G.

In that same paper ([32]) it was shown that there are, up to isomorphism,
exactly two degree-4 maximal arcs of Denniston type in PG(2, 16), while there
is a unique degree-4 Denniston maximal arc, and hence a unique degree-8
Denniston maximal arc in the plane PG(2, 32).

2.2 Maximal arcs constructed by Thas

J. A. Thas has given two constructions of maximal arcs. Before we are able to
discuss these two construction we need to introduce some new notions. More
precisely we will give the general construction of a translation plane, known
as the André-Bruck-Bose construction (see for instance [11]).

Definition 2.2.1. A (t − 1)-spread S of PG(2t − 1, q) is a set of projective
spaces of dimension t− 1 such that every point of PG(2t− 1, q) lies in exactly
one element of S. Equivalently, it is a set of qt + 1 pairwise disjoint (t − 1)-
dimensional projective spaces.

Now, let PG(2t− 1, q) be embedded as a hyperplane H in PG(2t, q) = P , and
let S be a (t− 1)-spread of H. We can construct a new incidence geometry πS

as follows.

The points of πS are the points of P \ H, together with the elements of the
spread. The lines of πS are the t-dimensional subspaces of P which intersect
H in a member of S; together with the line L∞ whose points are the elements
of the spread.

The incidence relation of πS is inherited from P .

One easily proves that πS is a projective plane, known as translation plane of
order qt, with translation line L∞.

A spread that gives rise to a Desarguesian projective plane will be referred to
as a Desarguesian spread .



24 | Chapter 2. Known constructions of maximal arcs

Remark 2.2.2. Let x be an affine point of a translation plane, then the group
of all homologies of the plane with axis L∞ and center x is known to be
isomorphic to the multiplicative group of a field (see for instance [37]). This
field is known to be isomorphic to a structure known as the kernel of the
translation plane. Every translation plane of order qt with kernel containing
GF(q) can be constructed by using the André-Bruck-Bose construction.

2.2.1 Thas maximal arcs of type I

In the beginning of this chapter we mentioned that, in 1974, Thas [51] used
ovoids and spreads to construct maximal arcs of order q in planes of order
q2. In the following a construction of these maximal arcs is given as well as a
characterization result. We will call these arcs Thas maximal arcs of type I .

It is well known, see for instance [19], that any ovoid of PG(3, q), q even,
gives rise to a symplectic polarity of PG(3, q). The totally isotropic lines with
respect to this polarity are the tangent lines to the ovoid. In fact, the points of
PG(3, q) together with the totally isotropic lines form a generalized quadrangle
W(q) ([43] and [50]). In this setting, the ovoid of PG(3, q) is an ovoid of W(q),
and a spread of PG(3, q) of tangent lines to the ovoid is a spread of W(q).

Now, consider an ovoid O and a 1-spread W of PG(3, 2m), m > 0, such that
each line of W has one and only one point in common with O. In other words,
W belongs to the linear complex of lines defined by O. Let PG(3, 2m) be
embedded as a hyperplane H in PG(4, 2m) = P and let x be a point of P \H.

Denote the set of the points of P \H which are collinear with x and a point of
O by C. Remark that x ∈ C. In what follows we will show that the point set
C is a maximal {23m − 22m + 2m; 2m}-arc of the translation plane πW defined
by the 1-spread W .

First of all we remark that |C| = (22m + 1)(2m − 1) + 1 = 23m − 22m + 2m and
that the line at infinity W of πW has no point in common with C. Next, we
consider a plane PG(2, 2m), denoted by P ′, not contained in H = PG(3, 2m),
that contains a line L of the 1-spread W . We now have to distinguish three
cases:

• If x ∈ P ′, then evidently |P ′ ∩ C| = 2m.

• Suppose x 6∈ P ′ and the 3-dimensional space xP ′ intersects H in the
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tangent plane of O at the point y, where {y} = L ∩ O. Since a point
p ∈ P ′ ∩ C would imply that the line xp is contained in P ′, clearly a
contradiction, it follows that, in this case, |P ′ ∩ C| = 0.

• Suppose x 6∈ P ′ and the 3-dimensional space xP ′ contains a point z ∈
O \ {y}, with {y} = L ∩ O. Since it is not a tangent plane at O, the
plane xP ′∩H has exactly 2m +1 points in common with O. Each one of
these points, except for the point y, give rise to a point in the intersection
P ′ ∩ C. It follows immediately that |P ′ ∩ C| = 2m.

From the above we conclude that the plane P ′ intersects the set C in just
2m points or in none at all. In other words, the point set C is a maximal
{23m − 22m + 2m; 2m}-arc of the projective plane πW defined by the 1-spread
W .

These maximal arcs were characterized by Hamilton and Penttila in the fol-
lowing theorem.

Theorem 2.2.3 ([31]). Let π be a translation plane of order q2. Then a non-
trivial maximal arc K in π is a Thas maximal arc of type I if and only if it is
stabilized by a homology of order q − 1 with axis the translation line of π.

Remark 2.2.4. The known ovoids O of PG(3, 2m) are the elliptic quadrics
and the Tits ovoids. As mentioned already in Section 1.7, a Tits ovoid is only
defined in a PG(3, 22s+1), with s ≥ 1. The known 1-spreads W of PG(3, 2m)
which belong to a linear complex of lines are the Desarguesian spreads and
the Lüneburg spreads. The latter is also only defined in a PG(3, 22s+1), with
s ≥ 1 (for more information see [50]). Hence if W is a Lüneburg spread the
above construction of Thas yields maximal arcs in the Lüneburg translation
plane. Assume on the other hand that W is a Desarguesian spread, then
this construction of Thas provides us with a {23m − 22m + 2m; 2m}-arc of the
Desarguesian plane π = PG(2, 22m). However, it was remarked by Thas that
this maximal arc is a Denniston maximal arc (see also [40] and [51]). If O is
the Tits ovoid, hence m = 2s + 1, with s ≥ 1, then up to isomorphism, there
are two Thas maximal arcs of type I arising from the Tits ovoid and these
maximal arcs are not of Denniston type (see [32]). Furthermore, it turns out
(see for instance [29]) that the Thas maximal arcs of type I are isomorphic to
their dual maximal arcs.
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2.2.2 Thas maximal arcs of type II

Thas established a second construction of maximal arcs in 1980 ([53]). Using
quadrics and spreads in projective spaces he managed to construct degree-
qt−1 arcs in symplectic translation planes of order qt. These maximal arcs
will be called Thas maximal arcs of type II . In what follows, we discuss their
construction and give some results concerning the existence and isomorphism
problems.

Let q be even and let Q− := Q−(2d−1, q) be an elliptic quadric of PG(2d−1, q),
with d ≥ 2, and let S− be a spread of generators of Q− ([54]). The quadric
Q− contains (qd−1− 1)(qd + 1)/(q− 1) points and the set S− consists of qd + 1
subspaces of dimension d − 2 which constitute a partition of Q−. We remark
that these subspaces are generators and that a (d− 1)-spread of PG(2d− 1, q)
also has qd +1 elements. Let us now consider a (d−1)-spread S = {P1, P2, . . .}
of PG(2d − 1, q) such that {P1 ∩ Q−, P2 ∩ Q−, . . .} = S−. Next, we embed
PG(2d− 1, q) as a hyperplane H in PG(2d, q) = P , and we consider a point x
of P \H.

Analogous to the Thas maximal arcs of type I we denote the set of points which
are collinear with x and a point of Q− but are not contained in Q− by C. Again,
notice that x ∈ C. We will prove that C is a maximal {q2d−1−qd +qd−1; qd−1}-
arc of the translation plane πS of order qd defined by S.

First of all we remark that

|C| = (q − 1)
(qd−1 − 1)(qd + 1)

(q − 1)
+ 1 = q2d−1 − qd + qd−1

and that the line at infinity S of πS has no point in common with C. Now
we consider a d-dimensional projective space PG(d, q), denoted by D, not
contained in H = PG(2d − 1, q), which contains an element Pi of S. Again,
we need to distinguish a few cases:

• If x ∈ D, then |D ∩ C| = (q − 1)
qd−1 − 1
q − 1 + 1 = qd−1.

• Suppose x 6∈ D and that xD∩H := D′, a d-dimensional projective space,
is the polar space of Pi ∩Q− = D ∩Q− with respect to Q−. In that case
we find that |D ∩ C| = 0.

• Suppose x 6∈ D and that xD∩H := D′, a d-dimensional projective space,
contains a point z ∈ Q− \ (Pi ∩ Q−). Since D′ ∩ Q− = Q′ contains the
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(d−2)-dimensional space Pi∩Q− and since Pi∩Q′ = Pi∩Q−, the singular
space of Q′ is a hyperplane of Pi ∩Q−. We can now consider Q′ to be a
cone with vertex the (d− 3)-dimensional singular space and base a conic
in the plane. This implies

|Q′| =
qd−2 − 1

q − 1
+ q + 1 +

qd−2 − 1

q − 1
(q + 1)(q − 1)

=
qd−2 − 1

q − 1
+ qd−1 + qd−2

= qd−1 +
qd−1 − 1

q − 1
.

The expression qd−1−1
q−1

is of course associated to the points of the (d− 2)-

dimensional space Pi ∩Q−. Hence we find that |D ∩ C| = qd−1.

It follows that D intersects the set C in exactly qd−1 points or in none at all.
We conclude that C is a maximal {q2d−1−qd +qd−1; qd−1}-arc of the projective
plane π of order qd defined by S.

Remark that, if d = 2 and replacing Q− by an ovoid, the same construction
gives us the Thas maximal arcs of type I.

It is clear from the above that if one can construct a (d−1)-spread S of PG(2d−
1, q) intersecting Q− in a spread S− of generators, then a Thas maximal arc
of type II in the plane defined by S can be constructed. If Q is a non-singular
quadric of a projective space PG(2d, q), q even, then Q always has a spread S∗

that consists of qd+1 subspaces of Q of dimension d−1 ([21]). Let PG(2d−1, q)
be a hyperplane for which PG(2d−1, q)∩Q = Q− is an elliptic quadric. Then
S∗ induces a spread S− of Q−. If n is the nucleus of Q, then n cannot be
contained in PG(2d− 1, q) since PG(2d− 1, q) is not tangent to Q.

Now, we project Q from n onto PG(2d − 1, q). The projection of S∗ is a
(d− 1)-spread S = {P1, P2, . . .} of PG(2d− 1, q), and moreover {P1 ∩Q−, P2 ∩
Q−, . . .} = S−. It is well-known that the maximal totally isotropic subspaces
of Q are projected onto the maximal totally isotropic subspaces of a symplectic
polarity θ of PG(2d−1, q) ([21]). It follows that all elements of S are maximal
totally isotropic with respect to θ. We say that S is a symplectic (d − 1)-
spread of PG(2d − 1, q). Remark that θ is the symplectic polarity defined by
the quadric Q− of PG(2d − 1, q). Furthermore, it turns out that, for q even,
any two spreads S and S−, satisfying the conditions of the beginning of this
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subsection, arise as just described. It follows that, for q even, the construction
of S and S− is reduced to the construction of a spread S∗ of a non-singular
quadric Q of PG(2d, q).

We conclude that it is possible to construct a maximal {q2d−1−qd+qd−1; qd−1}-
arc in any translation plane of order qd, q even, with GF(q) a subfield of the
kernel for which the corresponding (d − 1)-spread is symplectic. A lot of
examples of symplectic spreads are constructed by Dye [21].

The following characterization result was proved by Hamilton and Penttila.

Theorem 2.2.5 ([32]). The Thas maximal arcs of type II that occur in De-
sarguesian planes are of Denniston type.

Remark 2.2.6. The above arguments, once S and S− are constructed, also
hold for q odd. However it was proved in [8] that given a non-degenerate
elliptic quadric in the projective space PG(2d − 1, q), q odd, there does not
exist a spread of PG(2d− 1, q) such that each element of the spread meets the
quadric in a generator.

2.3 Maximal arcs of Mathon type

In [38], Mathon constructed maximal arcs in Desarguesian projective planes
generalizing the previously known construction of Denniston [20]. In this sec-
tion we present conditions for a set of conics on a common nucleus to form a
maximal arc. Such sets can be defined recursively using a special composition
of these conics. Mathon’s construction gives rise to several infinite families
of maximal arcs and will be of great importance throughout this thesis. We
begin by describing his construction here.

From now on let q = 2h and recall that Tr denotes the usual absolute trace
map from the finite field GF(q) onto GF(2). Analogous to Section 2.1, we
represent the points of the Desarguesian projective plane PG(2, q) as triples
(a, b, c) over GF(q), and the lines as triples [u, v, w] over GF(q).

For α, β ∈ GF(q) such that Tr(αβ) = 1, and λ ∈ GF(q) we define Fα,β,λ to be
the conic

Fα,β,λ = {(x, y, z) : αx2 + xy + βy2 + λz2 = 0}.
Remark that the condition Tr(αβ) = 1 is equivalent to demanding that the
quadratic polynomial αξ2 + ξ + β is irreducible over GF(q). Now, let F be
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the set of all such conics. It is clear that all the conics in F have the point
Fα,β,0 := F0(0, 0, 1) as their nucleus and that, due to the trace condition, the
line at infinity, i.e., the line z = 0, is external to all conics. Every other conic
is non-degenerate.

Remark 2.3.1. We mentioned in Section 2.1 that confusion might occur re-
garding the notion “line at infinity”. So far, we introduced the line at infinity
of a Denniston maximal arc, which is the line external to all conics in the
standard pencil that contains the Denniston maximal arc, and the line at in-
finity of a Mathon maximal arc, which is the line external to all conics in F .
Now, as we will see in the next chapters, maximal arcs of Mathon type contain
several maximal arcs of Denniston type. In these cases it will be convenient
to consider the lines at infinity of the corresponding Denniston maximal arcs.
Whenever we do so these lines at infinity will be called the Denniston lines
while the external line of the maximal arc of Mathon type is still called “the
line at infinity”.

For given λ 6= λ′, define a composition

Fα,β,λ ⊕ Fα′,β′,λ′ = Fα⊕α′,β⊕β′,λ⊕λ′

where the operator ⊕ is defined as follows:

α⊕ α′ =
αλ + α′λ′

λ + λ′
, β ⊕ β′ =

βλ + β′λ′

λ + λ′
, λ⊕ λ′ = λ + λ′. (2.3)

Clearly, the operator⊕ is commutative, and since (α⊕α′)⊕α′′ = α⊕(α′⊕α′′) =
(αλ + α′λ′ + α′′λ′′)/(λ + λ′ + λ′′) it is also associative. Moreover, Fα,β,λ ⊕
Fα,β,λ′ = Fα,β,λ+λ′ implies that ⊕ is idempotent in the first two parameters.
The following lemma gives a condition for the disjointness of a composition of
conics.

Lemma 2.3.2 ([38]). Two non-degenerate conics Fα,β,λ, Fα′,β′,λ′, λ 6= λ′ and
their composition Fα,β,λ⊕Fα′,β′,λ′ are mutually disjoint if Tr((α⊕α′)(β⊕β′)) =
1.

In order to state Mathon’s Theorem we need the notion of a closure. Given
some subset C of F , we say C is closed if for every Fα,β,λ 6= Fα′,β′,λ′ ∈ C,
Fα⊕α′,β⊕β′,λ⊕λ′ ∈ C.
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Lemma 2.3.3 ([38]). Suppose that a set C ⊂ F containing N conics is closed
under composition. Let F ′ = Fα′,β′,λ′ ∈ F \ C be a non-degenerate conic with
Tr(α′β′) = 1 and such that Tr((α⊕α′)(β⊕β′)) = 1 for every Fα,β,λ ∈ C. Then
the closure C ′ = 〈C ∪ {F ′}〉 contains 2N + 1 conics and C ′ = {F, F ′, F ⊕ F ′ :
F ∈ C}.

In the next result by Mathon ([38]) it is shown that sets of conics, closed under
composition, can be used to construct maximal arcs. These maximal arcs will
be referred to as maximal arcs of Mathon type or Mathon maximal arcs.

Theorem 2.3.4 ([38]). Suppose C ⊂ F is a closed set of 2d − 1 conics in
PG(2, 2m), 1 ≤ d ≤ m. Then the union of the points on the conics of C
together with their common nucleus F0 is a maximal {2m+d − 2m + 2d; 2d}-arc
K in PG(2, 2m).

Proof. We will show that every line of PG(2, 2m) meets K in 2d points or in
0 points. We know that, since Tr(αβ) = 1, the line at infinity F∞ is external
to K. Of course, every other line of the plane meets F∞ in one of its points,
which are (1, 0, 0) and (a, 1, 0), a ∈ GF(2m), and thus belongs to the set of
lines

{[0, 1, 0], [0, b, 1], [1, a, b] : b ∈ GF(2m)}.
The lines [0, 1, 0] and [1, a, 0] contain the common nucleus F0(0, 0, 1) and are
therefore tangent to every conic in C. It follows that they meet K in |C|+1 = 2d

points. Consequently, any of the remaining lines meets a conic F ∈ C in either
0 or 2 points. A line [0, b, 1] or [1, a, b], with b 6= 0, containing the points (x, 1, b)
or (a + bx, 1, x), x ∈ GF(2m), is disjoint from F = Fα,β,λ if and only if the
quadratic equation αx2 +x+β +λb2 = 0 or α(a+bx)2 +(a+bx)+β +λx2 = 0
has no solutions in GF(2m), respectively. In the first case we find the trace
condition

Tr[α(β + λb2)] = Tr[αβ + αb2λ] = 1.

This is equivalent to the condition Tr(αb2λ) = 0, since Tr(αβ) = 1. The
second case yields the condition

Tr

[
(αa2 + a + β)(αb2 + λ)

b2

]
= Tr

[
(αa2 + a + β)λ

b2
+

(αa2 + a + β)αb2

b2

]
= 1.

Since Tr(α2a2 + aα + αβ) = 1 + Tr(αa + α2a2) = 1 + Tr(αa) + Tr(αa)2 = 1
we find the trace condition Tr((αa2 + a + β)λ/b2) = 0. In other words, we can
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say that the condition of disjointness of a line [0, b, 1] with Fα,β,λ is equivalent
to the condition

Tr(αb2λ) = 0, (2.4)

while the condition of disjointness of a line [1, a, b] is equivalent to

Tr

(
(αa2 + a + β)λ

b2

)
= 0. (2.5)

To simplify notation we will refer to both these conditions by Tr(α, β, λ) = 0.
Using (2.3) it is easily verified that in the two cases

Tr(α⊕ α′, β ⊕ β′, λ⊕ λ′) = Tr(α, β, λ) + Tr(α′, β′, λ′). (2.6)

Hence, if a line L does not meet both F and F ′ then it also does not meet the
conic F ⊕F ′. Now, there are two ways for L to interact with the conics of C. If
Tr(α, β, λ) = 0 for all F ∈ C then L is of course disjoint from K. On the other
hand, if Tr(α, β, λ) = 1 for some F ∈ C then we can use the recursive doubling
argument of Lemma 2.3.3 and the identity (2.6) to see that there are exactly
2d−1 conics in C with trace 1. Given Lemma 2.3.2 we know that the conics are
mutually disjoint. It follows that the line L intersects K in 2d points. 2

As we mentioned above, Mathon’s construction is actually a generalization of
the previously known construction of Denniston. This can be seen as follows.

Choose α ∈ GF(q) such that Tr(α) = 1. Let A be a subset of GF(q)? =
GF(q) \ {0} such that A ∪ {0} is closed under addition. Then the point set of
the conics

KA = {Fα,1,λ : λ ∈ A}

together with the nucleus F0(0, 0, 1) is the set of points of a maximal arc of
degree |A| + 1 in PG(2, q). This construction is exactly the definition of a
maximal arc of Denniston type. The conics in KA are a subset of the standard
pencil of conics which, in this notation, is given by

{Fα,1,λ : λ ∈ GF(q)}.

As we already know, this pencil partitions the points of the plane, not on
the line z = 0 into q − 1 disjoint conics on the common nucleus F0(0, 0, 1).
More generally, a pencil of conics may be obtained as follows. Suppose F1
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and F2 are non-degenerate quadratic forms over GF(q) that have no common
zeros, i.e., the conics that they define have no common points. Then the set
of polynomials

{µF1 + νF2 : µ, ν ∈ GF(q), µ, ν not both zero}

determines q+1 quadratic forms: q−1 pairwise disjoint non-degenerate conics,
an exterior line to those conics and a point that is the nucleus of all conics.

Next we consider a closed set of conics C = {Fα,β,λ} with parameters α, β
which are polynomials in λ. In other words, we will describe closed sets of
conics using functions p : A → GF(q) and r : A → GF(q), with A the set of
values that λ ranges over, such that the closed set of conics C is given by the
equations

{p(λ)x2 + xy + r(λ)y2 + λz2 = 0 : λ ∈ A}. (2.7)

More formally we get the following theorem.

Theorem 2.3.5 ([38]). Let p(λ) =
∑d−1

i=0 aiλ
2i−1 and r(λ) =

∑d−1
i=0 biλ

2i−1 be
polynomials with coefficients in GF(2m). For an additive subgroup A of order
2d in GF(2m) let C = {Fp(λ),r(λ),λ : λ ∈ A \ {0}} ⊂ F be a set of conics with
common nucleus F0. If Tr(p(λ)r(λ)) = 1 for every λ ∈ A \ {0} then the set of
points of all conics in C together with F0 forms a maximal {2m+d−2m+2d; 2d}-
arc K in PG(2, 2m). If both p(λ) and r(λ) have d ≤ 2 then K is a Denniston
maximal arc.

From these preceding results it follows that a maximal arc of degree d of
Mathon type contains Mathon sub-arcs of degree d′ for all d′ dividing d. An-
other important consequence of the previous findings is that a degree-4 Mathon
arc is necessarily of Denniston type. These conclusions can be found in [38],
where Mathon also used his construction to present several new infinite families
of maximal arcs in PG(2, q).

A few examples

Next, let us have a quick look at two examples of maximal arcs that are induced
by polynomials, as described in Theorem 2.3.5. For more information, see [38].
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• The dual of the Lunelli-Sce hyperoval in PG(2, 16) is a degree-8 maximal
arc which is formed by

{x2 + xy + (w11 + w10λ + λ3)y2 + λz2 : λ ∈ 〈1, w, w2〉 \ {0}},

where w is a primitive element in GF(16) satisfying w4 + w = 1.

• In GF(32), let w be a primitive element satisfying w18 + w = 1. The set
of 15 conics

{p(λ)x2 + xy + r(λ)y2 + λz2 : λ ∈ 〈1, w, w7, w9〉 \ {0}},

with p(λ) = w25 +w16λ+w10λ3 +w30λ7 and r(λ) = w27 +w5λ+w11λ3 +
w3λ7, forms a maximal arc of degree 16 in PG(2, 32) which is the dual of
Cherowitzo’s hyperoval.

Given a closed set of conics, the following theorem ([29]) can be used to con-
struct more examples. It shows us that any closed set of conics is still a closed
set of conics in an odd order extension of the underlying field.

Theorem 2.3.6 ([29]). Let C be a closed set of conics in PG(2, q). Then the
equations of the conics of C give a closed set of conics in PG(2, qm), for any
m ≥ 1, m odd.

It immediately follows from the theorem that given a degree-d maximal arc K
in PG(2, q) arisen from a closed set of conics, then there exist degree-d maximal
arcs Km in PG(2, qm) for all odd positive integers m. Furthermore, the arc Km

contains K in the subplane PG(2, q) of PG(2, qm).

The following theorem is also interesting in this context.

Theorem 2.3.7 ([29]). Let C be a closed set of conics giving rise to a degree-d
maximal arc K, 8 ≤ d < q/2, in PG(2, q) that is not of Denniston type. Then
there exist maximal arcs of degree r of Mathon type that are not of Denniston
type in PG(2, q) for all r ≥ 8, r dividing d.

Concerning the conics and substructures within the maximal arcs of Mathon
type the next theorems were proved.

Theorem 2.3.8 ([29]). Let K be a degree-d maximal arc in PG(2, q), d <
q/2, constructed from a closed set of conics C with nucleus F0. Then the point
set of K contains no non-degenerate conics apart from those of C.
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An easy geometric characterization of the Denniston maximal arc, regarding
its dual, is found here.

Theorem 2.3.9 ([29]). Let K be a degree-d maximal arc in PG(2, q), con-
structed from a closed set of conics C with nucleus F0. Then K is of Denniston
type if and only if its dual contains a regular hyperoval.

Corollary 2.3.10 ([29]). The dual of a Mathon maximal arc, not of Dennis-
ton type, constructed from a closed set of conics cannot be constructed from a
closed set of conics.

On a side note, regarding the Thas maximal arcs of type I, it was proven that
if they arise from a spread of tangent lines to a Tits ovoid, then they cannot
be constructed from a closed set of conics ([29]).

There are various families of Mathon maximal arcs known that are not of
Denniston type. Every Mathon arc that is not of Denniston type will be called
a proper Mathon arc. Actually, the most difficult part in checking that a
given subset of conics of F is a maximal arc lies in checking whether the trace
condition of Lemma 2.3.2 holds. In Chapter 3 we will present a more geometric
approach to these maximal arcs of Mathon type that helps us to cope with
this problem.

At this stage it might be good to give an account of the known maximal arcs
in Desarguesian projective planes of small order.

Maximal arcs in small Desarguesian planes

(i) The plane PG(2, 8) has up to isomorphism only one maximal arc of degree
4; it is of Denniston type and is the dual of the regular hyperoval.

(ii) The plane PG(2, 16) has up to isomorphism two maximal arcs of degree
8: the dual of the regular hyperoval which is of Denniston type, and the
dual of the Lunelli-Sce hyperoval which is of proper Mathon type. It has
two non-isomorphic maximal arcs of degree 4, both of Denniston type
and both self-dual. Actually, as a consequence of a more general treatise
on maximal arcs for small parameters, it has been proved in [4] that in
PG(2, 16) no other maximal arcs exist than the known ones.

(iii) The plane PG(2, 32) has six non-isomorphic hyperovals and hence the
same number of maximal arcs of degree 16. The dual of the regular
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hyperoval of course yields the Denniston maximal arc of degree 16. The
dual of the Cherowitzo hyperoval is a proper Mathon arc in PG(2, 32).
None of the other hyperovals yield a Mathon maximal arc, this is due to
private communication with Bamberg. As far as the other maximal arcs
of Denniston type are concerned, there is one of degree 4 and its dual
of degree 8. In his original paper ([38]), Mathon gives a construction
of three maximal arcs of degree 8 (and hence of three maximal arcs of
degree 4 that are not of Mathon type, but of “dual Mathon type”), which
are not of Denniston type. In the next chapter we will prove that there
are no other maximal arcs of Mathon type of degree 8.

The following important lemma was proved by Aguglia, Giuzzi and Korchmáros
in [2]. It shows that two conics on the same nucleus can uniquely be extended
to a maximal arc of degree 4 of Denniston type.

Lemma 2.3.11 ([2]). Given any two disjoint conics C1 and C2 on a com-
mon nucleus. Then there is a unique degree-4 maximal arc of Denniston type
containing C1 ∪ C2.

This lemma will be of critical importance throughout the upcoming chapters
and it will be one of the key elements in a more geometric approach to the
maximal arcs of Mathon type.

Using especially the previous lemma we were able to prove that a maximal arc
consisting of conics on a common nucleus, always has to be of Mathon type.

Theorem 2.3.12. A maximal arc K consisting of disjoint conics on a common
nucleus is a maximal arc of Mathon type.

Proof. If all compositions of all conics in K are contained in K, then the
maximal arc K is of Mathon type. Now, suppose dat K is not a maximal arc of
Mathon type. This implies that there are two conics C1 and C2 in K of which
the composition C1⊕C2 is not contained in K. In other words, there is a point
p ∈ C1 ⊕ C2 that is not contained in K, i.e., p is an external point. However,
due to Lemma 2.3.11, we know that the three conics C1, C2 and C1⊕C2 induce
a unique degree-4 maximal arc of Denniston type. Hence, every line incident
with p should intersect either C1 or C2. This means that p is not an external
point, contradiction. 2
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Chapter 3

Geometric approach to Mathon
maximal arcs

In the previous chapter we introduced Mathon’s construction of maximal arcs
which in fact generalizes the construction of Denniston. Clearly, various fam-
ilies of Mathon maximal arcs are known that are not of Denniston type, the
so called proper Mathon arcs (see Chapter 2). As mentioned before, the most
difficult part in checking that a given subset of conics is a maximal arc lies in
checking whether the trace condition of Lemma 2.3.2 holds. In Section 3.1 we
will present a more geometric approach to these arcs that allows us to over-
come this problem. Furthermore, this geometric approach will be the key to
the main result of this chapter, which is the enumeration of the non-isomorphic
Mathon 8-arcs in PG(2, 2h), h > 4 and h 6= 7 prime.

The enumeration problem for Mathon arcs was first studied in [30], where
bounds were derived for the number of isomorphism classes of Mathon arcs of
“big” degree. The techniques of [30] however failed for small degree arcs, and
the enumeration of such arcs was left as an open problem.

The results in this chapter are published in the paper [17].

3.1 A synthetic construction of Mathon arcs

First we recall Lemma 2.3.11 which states that any two disjoint conics C1 and
C2 on a common nucleus induce a unique degree-4 maximal arc of Denniston

37
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type containing C1 ∪ C2.

We intent to generalize this result to a synthetic version of Mathon’s construc-
tion. In order to do so we need to make sure that there exists a line external to
the given set of conics. More precisely, we need to prove that there is at least
one line that can be used as the line at infinity of the constructed maximal arc
of Mathon type.

Lemma 3.1.1. Given a degree-d maximal arc M of Mathon type, d < q/2,
consisting of d−1 conics on a common nucleus n, and a conic C disjoint from
M with the same nucleus n, there exists a line external to M ∪ C.

Proof. First we count the number of secants to M . Since (q +1)(q/d−1)+1
is the number of external lines to M , the number of secants to M is equal to

q2 + q + 1− ((q + 1)

(
q

d
− 1

)
+ 1) =

(
d− 1

d

)
q2 +

(
2d− 1

d

)
q + 1.

Next we count the number of lines that intersect both M and C. At first we
will disregard the q+1 tangents to C, they will be added at the end. Since the
tangents to C are disregarded, a secant line l to both C and M must intersect
C in 2 points and M in d points. This implies that the total number of secants
to both M and C is equal to

1

2

(
(q + 1)(d− 1) + 1

d
− 1

)
(q + 1) + q + 1 =

(
d− 1

2d

)
q2 +

(
3d− 1

2d

)
q + 1.

We know that the number of lines intersecting C is (q + 1)q/2 + q + 1. This
means that the number of lines that intersect C but do not intersect M is

(q + 1)q

2
+ q + 1−

((
d− 1

2d

)
q2 +

(
3d− 1

2d

)
q + 1

)
=

q2

2d
+

q

2d
.

Finally we are able to count the number of secants to M ∪ C. We find(
d− 1

d

)
q2 +

(
2d− 1

d

)
q + 1 +

q2

2d
+

q

2d
=

(
2d− 1

2d

)
q2 +

(
4d− 1

2d

)
q + 1

< q2 + q + 1.

This proves that there exists an external line to M ∪ C. 2

Using Lemma 3.1.1 we are able to prove the following result, which can be
seen as a synthetic version of Mathon’s construction.
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Theorem 3.1.2 (Synthetic version of Mathon’s theorem). Let M be a
maximal arc of degree d, d < q/2, of Mathon type, consisting of d−1 conics on a
common nucleus n, and let Cd be a conic disjoint from M with the same nucleus
n, then there is a unique degree-2d maximal arc of Mathon type containing
M ∪ Cd.

Proof. Denote the d− 1 conics in the maximal arc M by C1, C2, C3, ..., Cd−1.
Due to Lemma 3.1.1 we know there exists an external line r to M ∪ Cd. We
recoordinatize the plane PG(2, q) in such a way that the line r now has equation
z = 0 and the common nucleus n has coordinates (0, 0, 1). This provides us
with the setting in which the conic Ci has equation αix

2 +xy+βiy
2 +λiz

2 = 0.
Next we define Ci := αiβi. It is clear that Tr(Ci) = 1, ∀i = 1, ..., d. We can now
construct the degree-2d maximal arc containing M ∪ Cd. Let Ci ⊕ Cd := Ci+d

∀i = 1, ..., d − 1. The construction used in the proof of Lemma 2.3.11, which
is based on Mathon, implies that Tr(Ci+d) = 1. Due to Lemma 2.3.2 it follows
that Ci, Cd and Ci+d are mutually disjoint.
Next we need to check that the conics Ci and Cj+d, ∀i, j = 1, ..., d − 1, are
disjoint, i.e., Tr(Ci ⊕ Cj+d) = 1. Let Ci ⊕ Cj = Ck be another conic which is
defined in the closed set M , then

Tr(Ci ⊕ Cj+d) = Tr(Ci ⊕ Cj ⊕ Cd)

= Tr(((αi ⊕ αj)⊕ αd)((βi ⊕ βj)⊕ βd))

= Tr((αk ⊕ αd)(βk ⊕ βd))

= Tr(Ck ⊕ Cd)

= Tr(Ck+d)

= 1.

Also the conics Ci+d, ∀i = 1, ..., d−1, have to be mutually disjoint. This holds
since

Tr(Ci+d ⊕ Cj+d) = Tr(Ci ⊕ Cd ⊕ Cj ⊕ Cd)

= Tr(Ci ⊕ Cj)

= Tr(Ck)

= 1,

where again Ck = Ci ⊕ Cj is a conic in the original degree-d maximal arc

M of Mathon type. It now follows that
⋃2d−1

i=1 Ci is a closed set of conics on
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a common nucleus n which, due to Theorem 2.3.4, gives rise to a degree-2d
maximal arc of Mathon type. 2

3.2 Denniston 4-arcs

In Chapter 2, Theorem 2.1.5, we saw how Hamilton and Penttila ([32]) deter-
mined the collineation stabiliser of a degree-d Denniston maximal arc.

In the next lemma we will show, using the same notation, that the order of
GA is 2 in GF(22h+1), 2h + 1 prime and 2h + 1 6= 2, 3, with A the additive
subgroup used to construct a degree-4 Denniston maximal arc.

Lemma 3.2.1. In PG(2, 22h+1), 2h + 1 prime, and 2h + 1 6= 3, let D be a
degree-4 Denniston maximal arc defined by an additive subgroup A. Define the
group G acting on GF(22h+1) by

G = {x 7→ axσ : a ∈ GF(22h+1)∗, σ ∈ Aut GF(24h+2)}.

Then |GA| = 2.

Proof. First we remark that the plane PG(2, 22h+1) can be coordinatized
in such a way that the additive subgroup A = {0, 1, w, w + 1}, with w ∈
GF(22h+1) \ {0, 1}, is associated to the maximal arc D of Denniston type. We
will denote the multiplicative order of the element w ∈ A in GF(22h+1) by
o(w).
Let ϕ ∈ GA. Since ϕ(0) = 0 we can restrict the action of ϕ on A to its action
on {1, w, w + 1}. The action of ϕ on each element of {1, w, w + 1} has either
order 1, 2 or 3.
First we suppose σ = 1.

• If a = 1 then ϕ = id in G.

• If a 6= 1 then the action of ϕ on 1 has either order 2 or 3.

· If the order is 2 then

ϕ(ϕ(1)) = a2 = 1

which implies that a = 1, clearly a contradiction.
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· If the order is 3 then

ϕ(ϕ(ϕ(1))) = a3 = 1

which implies that 3|22h+1 − 1. But since

22h+1−1 = 22h+22h−1+ · · ·+1 = 22h+22h−23+22h−43+ · · ·+223+3,

we again find a contradiction.

From now on suppose σ 6= 1.

(1.) Assume ϕ acts trivially on {1, w, w + 1}. Then ϕ(1) = 1 implies a = 1.
Furthermore ϕ(w) = awσ = wσ. Since the action of ϕ on each element of
{1, w, w + 1} has order 1 there has to follow that wσ = w, which implies
wσ−1 = 1. This means o(w)|σ − 1 but of course we know o(w)|22h+1 − 1.
Now suppose σ = 2l, l ∈ N∗. Note that l < 4h + 2. Then:

o(w)| gcd(2l − 1, 22h+1 − 1),

which implies that
o(w)|2gcd(l,2h+1) − 1.

Now two possibilities can occur.

• If l = 2h + 1 then ϕ : x 7→ x22h+1
, and so ϕ indeed acts trivially on

A.

• If l 6= 2h + 1, 0 then gcd(l, 2h + 1) = 1. It follows that o(w) = 1 and
so w = 1, which is clearly a contradiction.

(2.) Assume the orbit on some element of {1, w, w + 1} has length 2 under
the action of ϕ. We consider two cases.

(a) If ϕ(1) = 1 then of course a = 1 holds again. This implies ϕ(w) = wσ

and ϕ(wσ) = wσ2
but since the action of ϕ has order 2 it follows that

wσ2
= w, implying wσ2−1 = 1. We find that o(w)|σ2 − 1 and also

o(w)|22h+1− 1. Using σ = 2l as we did above, we find, as 2 6 | 2h + 1
and 2h + 1 is prime,

o(w)| gcd(22l − 1, 22h+1 − 1) ⇒ o(w)|2gcd(2l,2h+1) − 1

⇒ o(w)|2gcd(l,2h+1) − 1.

Now the same two possibilities as in (1.) can occur, hence ϕ acts
trivially on A, clearly a contradiction.
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(b) Without loss of generality we can assume that ϕ(1) = w. In this case
we find that a = w. Furthermore ϕ(ϕ(1)) = ϕ(w) = wσ+1 and so

wσ+1 = 1 since the action of ϕ has order 2. This implies wσ2−1 = 1
which gives us o(w)|σ2−1 and again we know o(w)|22h+1−1. Using
the same arguments as we did in (a), we see that

o(w)|2gcd(l,2h+1) − 1.

Again the two possibilities we encountered in (1.) can occur.

• If l = 2h + 1, then ϕ : x 7→ wx22h+1
and again

ϕ(ϕ(1)) = w2 = 1,

a contradiction.

• If l 6= 2h + 1, 0 then gcd(l, 2h + 1) = 1. It follows that o(w) = 1
and so w = 1, a contradiction.

(3.) Now assume the orbit length is 3 under the action ϕ. Without loss of
generality we can assume that ϕ(1) = w, then a = w. From this we find

that ϕ(ϕ(ϕ(1))) = wσ2+σ+1, which of course has to be equal to 1. We

deduce that wσ3−1 = 1, implying that o(w)|σ3 − 1 while o(w)|22h+1 − 1
still holds. If we again set σ = 2l, l ∈ N∗ and l < 4h + 2, we find that
o(w)|2gcd(l,2h+1) − 1, since 36 | 2h + 1. Remark that in case 2h + 1 = 3 the
degree-4 maximal arc would be a dual hyperoval of PG(2, 8). The same
two possibilities as in (1.) can occur.

• If l = 2h + 1, then ϕ : x 7→ wx22h+1
and again

ϕ(ϕ(ϕ(1))) = w3 = 1,

a contradiction.

• If l 6= 2h + 1, 0 then gcd(l, 2h + 1) = 1. It follows that o(w) = 1 and
so w = 1, a contradiction.

We have proven that ϕ either is id ∈ G or ϕ : x 7→ x22h+1
, hence |GA| = 2. 2

Remark 3.2.2. We have just shown that if q = 2p, p prime, p 6= 2, 3, then the
full automorphism group G of a degree-4 Denniston arc has size 2(q+1) and is
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isomorphic to Cq+1 o C2. Let us have a closer look at the action of this group
on the arc. It is well known ([1]) that in G there is a cyclic subgroup of order
q + 1 stabilizing all three conics of the arc and acting sharply transitively on
the points of each of these conics. Furthermore this group stabilizes the line
at infinity L of the pencil determined by the arc and acts sharply transitively
on the points of this line. The group G also contains q + 1 involutions. These
involutions are exactly the q + 1 elations with axis a line through the nucleus,
and center the intersection of this line with the Denniston line L, stabilizing
each of the three conics of the arc. There is exactly one such involution for
each line through the nucleus.

In the following lemma we count the number of isomorphism classes of degree-4
maximal arcs of Denniston type.

Lemma 3.2.3. The number of isomorphism classes of degree-4 maximal arcs
of Denniston type in PG(2, 22h+1), 2h + 1 prime, 2h + 1 6= 3 is

N =
22h − 1

3(2h + 1)
.

Proof. Since, by recoordinatizing the plane, we can always assume that a
degree-4 maximal arc of Denniston type is contained in the standard pencil,
it suffices to calculate the number of isomorphism classes of degree-4 maximal
arcs in the standard pencil.

First of all we count the total number of degree-4 maximal arcs of Denniston
type in the standard pencil. We have (22h+1 − 1) choices to pick a first conic
and (22h+1 − 2) choices to pick a second conic. Since Lemma 2.3.11 states
that there is a unique degree-4 maximal arc containing these 2 conics the total
number of degree-4 maximal arcs in the standard pencil is

(22h+1 − 1)(22h+1 − 2)

6
.

Let D be a degree-4 maximal arc of Denniston type. Due to Theorem 2.1.5
and Lemma 3.2.1 we know that

|Aut(D)| = 2(22h+1 + 1).

Using this along with the fact that the order of the collineation stabiliser of
the standard pencil is 2(2h + 1)(24h+2 − 1) (see proof of Theorem 2.1.5), we
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can count the number of degree-4 maximal arcs of Denniston type that are
isomorphic to D. We obtain

2(2h + 1)(24h+2 − 1)

2(22h+1 + 1)
= (2h + 1)(22h+1 − 1).

Finally the number of isomorphism classes of degree-4 maximal arcs of Den-
niston type in the pencil is

(22h+1 − 1)(222h+1−2)

6(2h + 1)(22h+1 − 1)
=

22h − 1

3(2h + 1)
.

2

Lemma 3.2.4. The number of degree-4 maximal arcs of Denniston type in the
standard pencil in PG(2, 22h+1), 2h+1 prime, 2h+1 6= 3 which are isomorphic
to a given one and contain a given conic C equals 3(2h + 1).

Proof. Let D be any degree-4 maximal arc. The result follows immediately
from the facts that the standard pencil contains (2h+1)(22h+1−1) isomorphic
copies of D, the standard pencil contains 22h+1 − 1 conics, and D contains 3
conics, keeping in mind that Aut(D) acts as described in Remark 3.2.2. 2

Remark 3.2.5. Before moving on to the next section we quickly show that the
number N of isomorphism classes of degree-4 maximal arcs found in Lemma
3.2.3 is indeed an integer.

If p is an odd prime and p 6= 3, then we have to show that 3p | 2p−1− 1. Since
3 and p are coprime we prove that both 3 | 2p−1 − 1 and p | 2p−1 − 1 are
satisfied.

It is easy to see that, putting p− 1 = 2h,

3 | 2p−1 − 1 ⇔ 3 | 4h − 1 ⇔ 4− 1 | 4h − 1,

which proves the first part. On the other hand p |2p−1−1 is the so-called little
theorem of Fermat.
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3.3 Mathon 8-arcs

Let us first have a look at the geometric structure of a maximal 8-arc of Mathon
type; this is based on [28]. Note that if K is a maximal arc constructed from
a closed set of conics C on a common nucleus, then the point set of that arc
contains no non-degenerate conics apart from those of C (see Theorem 2.3.8).
From Lemma 2.3.11 it immediately follows that every Mathon 8-arc contains
exactly seven Denniston 4-arcs, and each two of these seven 4-arcs have exactly
one conic in common. One in fact easily sees that the structure with as point
set the conics of K, line set the degree-4 subarcs of Denniston type, and the
natural incidence is isomorphic to PG(2, 2), the Fano plane. In accordance
with Chapter 2 the lines at infinity of each of the pencils determined by the
degree-4 subarcs are called the Denniston lines of K. If K is of Denniston type
there is a unique such line, otherwise there are exactly seven distinct Denniston
lines (see Theorem 2.2 of [28] and the remark preceding it). Suppose namely
that two subarcs K1 and K2 would have the same Denniston line. Let C be the
conic belonging to both K1 and K2. Since a conic and a line uniquely determine
a pencil, it follows that K1 and K2 belong to the same pencil, yielding that K
is of Denniston type. Note that it is essential here that any two of the degree-4
arcs have a conic in common. In [28] it is noticed that all known Mathon 8-arcs
seem to have an involution stabilizing K and all of its conics. Theorem 2.3
of [28] gives a sufficient condition for such an involution to exist. In the next
lemma we show that such an involution always exists.

Lemma 3.3.1. Let K be a proper Mathon 8-arc. Then the seven Denniston
lines of K are concurrent and there exists a unique involution stabilizing K and
all conics contained in K. This involution is the elation with center the point
of intersection of the Denniston lines and axis the line containing the nucleus
of K and the center.

Proof. Denote the seven degree-4 Denniston subarcs of K by Di, i = 1, . . . , 7.
Let n be the nucleus of (the conics of) K. Let Li be the Denniston line of Di.
Let c be the intersection of L1 and L2. Consider the unique involution ι with
center c and axis nc that stabilizes the conic C that is the intersection of D1

and D2. It is well known that ι will stabilize all conics in D1 and D2 (see
e.g. the proof of Theorem 2.1.5). Now let D3 be the unique third 4-arc that
contains C. As K is uniquely determined by D1 and D2 (see Theorem 3.1.2)
it follows that ι must stabilize D3. Hence it must stabilize the Denniston line
of D3, implying that L3 contains c. It now also follows that ι stabilizes all
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conics of K and that all Denniston lines have to be stabilized; we deduce that
all Denniston lines are concurrent at c. 2

Corollary 3.3.2. Let K be a proper Mathon 8-arc in PG(2, 2p), p prime, p 6=
2, 3, 7. Then Aut(K) ∼= C2.

Proof. Let φ be a non-trivial automorphism of K. Clearly φ has to fix the
intersection point c of the Denniston lines of K.

First suppose that φ stabilizes one of the degree-4 maximal subarcs of K. From
Remark 3.2.2 and the fact that cφ = c it follows that φ is the unique involution
ι described in the previous lemma.

So, suppose that φ does not stabilize any of the Denniston subarcs. Hence no
orbit of φ on the subarcs has length 1. As there are seven subarcs, the set O of
orbit lengths has to be one of the following: {7}, {5, 2}, {4, 3}, {3, 2}. Suppose
O = {3, 2}. Then φ2 stabilizes some subarc and hence has to be the involution
ι. It follows that φ cannot have an orbit of length 3, contradiction. The cases
O = {5, 2} and O = {4, 3} are excluded in an analogous way.

Hence φ cyclically permutes the seven subarcs. Suppose that φ would belong
to PGL(3, 2p). As φ fixes the line nc containing the nucleus and c, and 2p is
not divisible by 7, we see that φ must fix a second line through c. If φ would
fix a third line through c it would fix all lines through c, a contradiction as φ
cyclically permutes the Denniston lines of K. Hence 7 divides 2p − 1, which
implies that 3 divides p, a contradiction. Hence φ ∈ PΓL(3, 2p) \ PGL(3, 2p).
As 7 is prime it follows that 7 divides the prime p, yielding that p = 7, the
final contradiction. 2

In order to be able to count the number of isomorphism classes of degree-8
maximal arcs of Mathon type we need to know how many isomorphic images
of a given degree-8 maximal Mathon arc there are. The following technical
lemma will play a key role in our final calculations.

Lemma 3.3.3. Let K be a proper Mathon 8-arc in PG(2, 22h+1), 2h+1 prime,
and h 6= 1, 3. Then the number of degree-8 maximal arcs isomorphic to K that
have one of their degree-4 maximal subarcs in the standard pencil, contain a
fixed given conic C from the standard pencil and have the same intersection
point for their Denniston lines is 21(2h + 1).
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Proof. Let C be a conic in the standard pencil. It is well known that
G := Aut(C) ∼= PΓL(2, 22h+1). Hence |G| = |PΓL(2, 22h+1)| = (2h+1)(22h+1+
1)(24h+2 − 22h+1), which is the number of group elements that stabilize C and
its nucleus n. The group G acts transitively on the points not on C and distinct
from n. From this we can deduce that

|GC,n,(0,1,0)| =
(2h + 1)(22h+1 + 1)(24h+2 − 22h+1)

(22h+1 + 1)(22h+1 − 1)
= (2h + 1)22h+1.

The group GC,n,(0,1,0) acts transitively on the lines through (0, 1, 0) that do not

intersect C. Since 22h+1

2
is the number of such lines, this implies that

|GC,[X=0],[Z=0]| =
|GC,n,(0,1,0)|

22h+1

2

= 4h + 2.

Now suppose K is a proper Mathon arc of degree 8. Let Di, i = 1 . . . , 7 denote
the seven 4-arcs of Denniston type contained in K, and let C1 = C, . . . , C7

denote the seven conics of K. Without loss of generality we may suppose that
D1 belongs to the standard pencil and that C is the conic belonging to both
D1,D2 and D3. Furthermore we may assume that (0, 1, 0) is the intersection
point of the Denniston lines of K. We want to count the number of isomorphic
images of K that contain C, have a degree-4 subarc in the standard pencil,
and that have (0, 1, 0) as intersection point of the Denniston lines. Recall that
|Aut(K)| = 2. Let φ be an automorphism of the plane mapping K onto an
isomorphic image of the desired type. First suppose φ stabilizes C and the
standard pencil. From the above we know that there are 4h + 2 choices for φ.
Also, there are exactly 4h + 2 choices for φ that would map the pencil deter-
mined by Di, i = 2, 3, onto the standard pencil and stabilize C. We obtain
3(4h+2) choices for φ that stabilize C. Now let Ci, i 6= 1 be any other conic of

K. Suppose that Cφ
i = C. As one of the three pencils determined by Ci and K

has to be mapped onto the standard pencil, we see in an analogous way that
there are 3(4h + 2) choices for φ such that Cφ

i = C. We obtain that in total
there are 21(4h + 2) choices for φ. It follows that there are exactly 21(2h + 1)
isomorphic images of K of the desired type. 2

Given a degree-4 maximal arc of Denniston type D1 in the standard pencil
consisting of the conics C1, Ck, Ck+1. Due to Lemma 2.3.11 each conic C dis-
joint from D1 together with C1 will give rise to another degree-4 maximal arc
of Denniston type which will be isomorphic to one of the degree-4 maximal
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arcs of Denniston type in the standard pencil. In what follows we will establish
the trace conditions that express the disjointness of the conic C with respect
to D1.
Let D1 and D2 be 2 non-isomorphic degree-4 maximal arcs of Denniston type.
Without loss of generality we can assume that both arcs are contained in
the standard pencil and that both contain a common conic C1. Let the
additive subgroups {0, 1, k, k + 1} and {0, 1, l, l + 1}, with k 6= l, l + 1 and
k, l ∈ GF(22h+1) \ {0, 1}, be the ones associated to the maximal arcs D1

and D2 respectively. In other words we assume D1 consists of the conics
Ci, i = 1, k, k + 1 given by the equation

Ci : x2 + xy + y2 + iz2 = 0

and D2 consists of the conics Cj, j = 1, l, l + 1 given by

Cj : x2 + xy + y2 + jz2 = 0.

Consider the automorphisms θ of PG(2, 22h+1) determined by the matrix


√

λ
−σ

0 0

t
√

λ
−σ

0√√
λ
−σ

t + t2 0 1

 , (3.1)

and the field automorphism σ, with λ = 1, l, l + 1 and t ∈ GF(22h+1). These
automorphisms will map Cλ onto C1 while (0, 0, 1)θ = (0, 0, 1) and (0, 1, 0)θ =
(0, 1, 0). In fact all automorphisms of PG(2, 22h+1) which fix (0, 0, 1) and
(0, 1, 0) and map Cλ onto C1 are of the form θ. There are 3 possibilities
for θ that we have to take into account: Cθ

1 = C1, Cθ
l = C1 and Cθ

l+1 = C1.
We will look at the case where Cl is mapped onto C1 and examine what values
for t satisfy the conditions

Cθ
1 ∩ Ck = ∅

and
Cθ

1 ∩ Ck+1 = ∅.

Analogous results can be found in the cases Cθ
1 = C1 and Cθ

l+1 = C1. First we
construct the image of C1 under θ. It is clear that the point (0, 1, 1), which

is the intersection of C1 and the x-axis, is mapped onto the point (0,
√

l
−σ

, 1).
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Next, we know that (0,
√

l
−σ

, 1) 6= (0,
√

k, 1), or equivalently, that l−σ 6= k
since this would immediately imply that Cθ

1 ∩ Ck 6= ∅, a contradiction. Anal-

ogously (0,
√

l
−σ

, 1) 6= (0,
√

k + 1, 1), i.e., l−σ 6= k + 1, since in this case the
contradiction Cθ

1 ∩ Ck+1 6= ∅ would hold.

Furthermore we look at the image of a general point (1, y, z) of C1, y, z ∈
GF(22h+1), where of course 1 + y + y2 + z2 = 0 holds. We find

√
l
−σ

0 0

t
√

l
−σ

0√√
l
−σ

t + t2 0 1


1

y
z

σ

=


√

l
−σ

t +
√

l
−σ

yσ√√
l
−σ

t + t2 + zσ

 ,

with σ ∈ Aut(GF(22h+1)). The condition Cθ
1 ∩ Ck = ∅ is satisfied if and only

if the equation

l−σ +
√

l
−σ

t + l−σyσ + t2 + l−σy2σ + k
√

l
−σ

t + kt2 + kz2σ = 0

has no solutions in GF(22h+1). Equivalently, since 1 + yσ + y2σ = z2σ, we find

(l−σ + k)z2σ +
√

l
−σ

t + t2 + k
√

l
−σ

t + kt2 = 0

⇔ z2σ =
(1 + k)t(

√
l
−σ

+ t)

(l−σ + k)
.

Hence the conics Cθ
1 and Ck will be disjoint if and only if the equation

1 + yσ + (yσ)2 +
(1 + k)t(

√
l
−σ

+ t)

(l−σ + k)
= 0.

has no solutions in yσ, or equivalently if and only if

Tr
[
1 +

(1 + k)t(
√

l
−σ

+ t)

(l−σ + k)

]
= 1.

Since Tr(1) = 1 in GF(22h+1) we find the condition

Tr
[(1 + k)t(

√
l
−σ

+ t)

(l−σ + k)

]
= 0. (3.2)
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Analogously, the trace condition

Tr
[ kt(

√
l
−σ

+ t)

(l−σ + k + 1)

]
= 0 (3.3)

is necessary and sufficient for Cθ
1 ∩ Ck+1 = ∅.

It is clear that also the conic Cθ
l+1 has to be disjoint from both Ck and Ck+1.

However, due to Lemma 2.3.11, we know that the two conics C1 and Cθ
1 give rise

to a unique degree-4 maximal arc of Denniston type. The third conic contained
in this 4-arc has to be Cθ

l+1, since we are actually looking at the image of D2

under θ. Using Theorem 3.1.2 we know that the degree-4 maximal arc D1 and
the conic Cθ

1 induce a unique degree-8 maximal arc in which of course all conics
are mutually disjoint. Since Dθ

2 is contained in this 8-arc we can conclude that
Cθ

l+1 will be disjoint from all other conics in the 8-arc. This implies that the
two trace conditions originating from the disjointness of Cθ

l+1 will lead to the
same values for t.

Next, consider a degree-4 maximal arc D in the degree-8 maximal arc. If
θt′ = ιθt, where ι is the unique involution described in Lemma 3.3.1, fixing all
conics in the 8-arc, then we know Dθt = Dθt′ . Since θt′ 6= θt, the values t and t′

will of course be distinct. However, these t-values have to give rise to the same
degree-4 arc Dθt . In other words, these t-values come in pairs, which means
that two t-values induce one and the same line at infinity or equivalently, one
and the same degree-4 maximal arc of Denniston type.

Suppose there would be a third value t′′ inducing the same degree-4 arc of

Denniston type. This means Dθt = Dθt′′ or Dθtθ
−1
t′′ = D. Since t and t′′ are

presumed to be distinct, it follows that θtθ
−1
t′′ = ι which means that θt = ιθt′′

or equivalently ιθt = θt′′ . We conclude that θt′′ = θt′ or t′′ = t′.

Remark 3.3.4. There are no restrictions on σ since D1 and D2 are non-
isomorphic. On the other hand, considerD1 consisting of the conics C1, Ck, Ck+1

and the automorphism fixing the conic C1. If in that case σ is the identity then
the conics Ck and Cθ

k will intersect in the point (0,
√

k, 1) on the x-axis. Anal-
ogously the conics Ck+1 and Cθ

k+1 intersect in (0,
√

k + 1, 1). This of course
does not occur in disjoint conics.

Finally, we have enough tools to start counting the number of isomorphism
classes of degree-8 Mathon arcs in PG(2, 22h+1), 2h + 1 6= 7 and prime.
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Theorem 3.3.5. The number of isomorphism classes of proper Mathon arcs
of degree 8 in PG(2, 22h+1), 2h + 1 6= 7 and prime, is exactly

N

14
(22h−2 − 1)((6h + 3)N − 1),

where N = (22h − 1)/3(2h + 1).

Proof. Let Di, i = 1, ..., N , be chosen fixed and representative of each iso-
morphism class of degree-4 maximal arcs of Denniston type in the standard
pencil. Assume Di consists of the conics C1, C

i
2 and Ci

3, i = 1, ..., N . First
of all we want to calculate how many degree-8 maximal arcs of Mathon type
contain one of the N degree-4 maximal arcs Di, say D1, have the x-axis as
elation axis and the intersection point of the Denniston lines as elation centre.

• Assume i 6= 1.

Let θ be an automorphism of PG(2, 22h+1) as given by the matrix in (3.1).
We need to count in how many ways we can map Ci

2 onto C1 such that
both conditions {

Cθ
1 ∩ C1

2 = ∅
Cθ

1 ∩ C1
3 = ∅

are satisfied. As seen above these conditions of disjointness are equivalent
to the two trace conditions{

Tr[A1(σ)t + B1(σ)t2] = 0
Tr[A2(σ)t + B2(σ)t2] = 0,

where A1, A2, B1 and B2 are functions of σ. This can also be written as{
Tr[(A1(σ) +

√
B1(σ))t] = 0

Tr[(A2(σ) +
√

B2(σ))t] = 0,

which are two linear equations that correspond to two hyperplanes in the
vector space V(2h + 1, 2). Since A1(σ) +

√
B1(σ) 6= A2(σ) +

√
B2(σ),

which is easily checked by adding (3.2) and (3.3), the corresponding hy-
perplanes intersect in a (2h−1)-dimensional subspace. We conclude that
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there are 22h−1 = 22h+1

4
solutions to the system of trace conditions above.

This means that for every σ there are 22h+1

4
solutions for t. However,

since these t-values come in pairs we find, for every field automorphism

σ, that there are 22h+1

8
degree-4 maximal arcs. One of them will give rise

to a degree-8 maximal arc of Denniston type and so there are

(2h + 1)
(22h+1

8
− 1

)
automorphisms θ that satisfy the needed conditions and induce a degree-
8 maximal arc of Mathon type. One such automorphism leads to two
conics disjoint from C1

2 and C1
3 and so we get

(2h + 1)
(22h+1

4
− 2

)
conics disjoint from C1

2 and C1
3 .

In exactly the same way we can map Ci
3 onto C1 and also C1 onto C1.

This gives us

3(2h + 1)
(22h+1

4
− 2

)
conics that expand D1 to a degree-8 maximal arc of Mathon type.

• Now assume i = 1.

In the cases where C1
2 is mapped onto C1 and C1

3 is mapped onto C1 we
find again

(2h + 1)
(22h+1

4
− 2

)
conics to expand D1. If we consider the case where C1 is fixed however,
we have to make sure that σ is not the identity as seen in the remark
above. And so in the case i = 1 we get

2(2h + 1)
(22h+1

4
− 2

)
+ 2h

(22h+1

4
− 2

)
conics to expand D1.
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As there are N − 1 choices for Di, i 6= 1 there are in total

(N − 1)(6h + 3)
(22h+1

4
− 2

)
+ (6h + 2)

(22h+1

4
− 2

)
such conics.

Suppose we counted one of these conics, say C, twice. Since, due to Lemma
2.3.11, this conic C induces a unique degree-4 maximal arc together with C1

it would imply that C is the image of two conics contained in one of the N
4-arcs Di. However, this would give rise to an automorphism of the 4-arc that
does not fix the conics, clearly a contradiction.

In other words, we can use each one of these conics to expand D1 to a degree-8
maximal arc of Mathon type. Moreover, since the four conics disjoint from D1

in a degree-8 maximal arc of Mathon type all give rise to this same degree-8
arc, we find

1

4

[
(N − 1)(6h + 3)

(22h+1

4
− 2

)
+ (6h + 2)

(22h+1

4
− 2

)]
degree-8 maximal arcs of Mathon type that contain D1. Of course there were
N choices for D1 and so there are

N

4

[
(N − 1)(6h + 3)

(22h+1

4
− 2

)
+ (6h + 2)

(22h+1

4
− 2

)]
degree-8 maximal arcs of Mathon type that contain the degree-4 maximal arc
Di. As a result of Lemma 3.3.3 we now find

N

28

[
(N − 1)(6h + 3)

(22h+1

4
− 2

)
+ (6h + 2)

(22h+1

4
− 2

)]
non-isomorphic degree-8 maximal arcs of Mathon type in PG(2, 22h+1), 2h+1 6=
7. Remark that we divided by 7 as Lemma 3.2.4 and Lemma 3.3.3 state. This
is due to the fact that we now fix an entire degree-4 maximal arc in the pencil,
not only the conic C1. 2

Remark 3.3.6. If 2h + 1 = 7 the situation changes. Let φ be a non-trivial
automorphism of K.

If φ stabilizes one of the degree-4 maximal subarcs of K we have seen in the
proof of Corollary 3.3.2 that φ must be the unique involution ι described in
Lemma 3.3.1.
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If φ does not stabilize any of the Denniston subarcs it turns out (see Chapter
4, Remark 4.1.1) that |Aut(K)| = 14 and we can no longer benefit from the
fact that Aut(K) ∼= C2, which implies that the previous counting arguments
no longer hold.

This particular case is studied in detail in the next chapter. There, we will
describe these specific maximal arcs, count them and finally show that they
can be extended to infinite families.

We conclude this section with a lemma that assures us that the number of
isomorphism classes of proper Mathon 8-arcs in PG(2, 22h+1), 2h + 1 6= 7 and
prime, really is an integer.

Lemma 3.3.7. In GF(22h+1), 2h + 1 6= 7 and prime,

14 |N(22h−2 − 1)((6h + 3)N − 1),

with N = (22h − 1)/3(2h + 1), holds.

Proof. We know that 2h+1 6= 7 and prime. This implies that 7 6 | 3(2h+1).
It follows that we need to show that

14 | (22h − 1)(22h−2 − 1)((6h + 3)(22h − 1)− 3(2h + 1)).

Since (6h + 3)(22h− 1)− 3(2h + 1) = 3(2h + 1)(22h− 2) = 6(2h + 1)(22h−1− 1)
the above is equivalent to

14 | 6(2h + 1)(22h − 1)(22h−1 − 1)(22h−2 − 1).

It remains to be shown that 7 | (22h − 1)(22h−1 − 1)(22h−2 − 1). Clearly 7
will divide 2k − 1, k ∈ N∗, if and only if k ≡ 0 mod 3. Since surely one of
the exponents 2h, 2h − 1 or 2h − 2 satisfies this condition we conclude that
14 |N(22h−2 − 1)((6h + 3)N − 1). 2

3.4 Maximal arcs in PG(2, 32)

In this section we will consider the case PG(2, 32). Due to a randomized
computer search Mathon ([38]) found three non-isomorphic degree-8 maximal
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arcs in PG(2, 32). It now follows from Theorem 3.3.5 that there are exactly
three such arcs. In this section we will describe these arcs and conclude with
the actual equations of their conics as they were written down by Mathon in
[38]. In [32] Hamilton and Penttila showed that there is, up to isomorphism,
a unique degree-4 maximal arc of Denniston type in PG(2, 32). Let w be a
primitive element in GF(32) satisfying w18 + w = 1. The three conics C1, Cw

and Cw+1, given by

{x2 + xy + y2 + λz2|λ ∈ 〈1, w〉 \ {0}},

determine a degree-4 maximal arc of Denniston type D1 on the nucleus (0, 0, 1).
Due to the above, the number of isomorphism classes of degree-8 maximal arcs
of Mathon type in PG(2, 32) is equal to the number of isomorphism classes of
degree-8 maximal arcs of Mathon type that contain D1 while the intersection
point (0, 1, 0) of the Denniston lines is fixed. This means we need to count the
number of conics with nucleus (0, 0, 1) that are disjoint from D1 while fixing the
point (0, 1, 0). It is clear (Lemma 2.3.11) that every such conic, together with
the conic C1, determines a degree-4 maximal arc of Denniston type D2, which
of course is isomorphic to D1. We now consider automorphisms θ of PG(2, 32)
such that (D1)

θ contains C1, (0, 0, 1)θ = (0, 0, 1) and (0, 1, 0)θ = (0, 1, 0). We
need to take into account three possibilities for θ, more precisely: Cθ

1 = C1,
Cθ

w = C1 and Cθ
w+1 = C1. First let us consider the automorphism θ given by

θ : x → Mxσ,

with

M :=

 w−9σ 0 0
t w−9σ 0√

w−9σt + t2 0 1

 ,

where σ ∈ Aut(GF(32)) and t ∈ GF(32). This automorphism will indeed fix
the points (0, 0, 1) and (0, 1, 0) while Cθ

w+1 = C1. The trace conditions that
satisfy the conditions of disjointness: Cθ

1 ∩ Cw = ∅ and Cθ
1 ∩ Cw+1 = ∅, are

Tr
[w9σt(1 + w)(1 + w9σt)

(1 + w1+18σ)

]
= 0

Tr
[w9σt(1 + w18)(1 + w9σt)

(1 + w18+18σ)

]
= 0.

For all σ ∈ Aut(GF(32)) we find eight elements t ∈ GF(32) satisfying these
conditions. More precisely, for every σ, we find the following t-values.
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σ = 1 : t = 0, w8, w22, w21, w11, w30, w6, w15

σ = 2 : t = 0, w13, w6, w28, w29, w22, w18, w15

σ = 4 : t = 0, w2, w, w19, w10, w22, w17, w26

σ = 8 : t = 0, w21, w2, w13, w18, w16, w11, w15

σ = 16 : t = 0, w7, w9, w12, w29, w14, w17, w11

These eight elements t are partitioned into pairs. For example if σ = 1 we find
the pairs

(0, w22), (w8, w21), (w11, w30), (w6, w15). (3.4)

The case Cθ
w = C1 can be handled in an analogous way. The trace conditions

now are 
Tr

[w−15σt(1 + w)(1 + w−15σt)

(1 + wσ+1)

]
= 0

Tr
[w−15σt(1 + w18)(1 + w−15σt)

(1 + wσ+18)

]
= 0.

The t-values for every σ, which are again partitioned in pairs, are listed below.

σ = 1 : t = 0, w21, w19, w24, 1, w25, w11, w15

σ = 2 : t = 0, w20, w30, w24, w10, w14, w18, w23

σ = 4 : t = 0, w3, w2, w20, 1, w29, w5, w8

σ = 8 : t = 0, w4, w12, w24, w5, w22, w27, w16

σ = 16 : t = 0, w4, w6, w9, w5, w22, w23, w15

Finally we have a look at the case where C1 is fixed. In accordance to Remark
3.3.4 we must demand that σ 6= 1 otherwise the x-axis is fixed pointwise and it
would be impossible for the conics Cw and Cw+1 to obtain disjoint images. In
the same way as seen above the conditions of disjointness result in the following
system of trace conditions:

Tr
[t(1 + w)(1 + t)

(w + wσ)

]
= 0

Tr
[t(1 + w18)(1 + t)

(w18 + wσ)

]
= 0.
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The t-values for every σ are:

σ = 2 : t = 0, w7, w6, w24, 1, w22, w27, w15

σ = 4 : t = 0, w4, w12, w24, 1, w10, w23, w15

σ = 8 : t = 0, w2, w, w19, 1, w5, w18, w11

σ = 16 : t = 0, w4, w12, w24, 1, w10, w23, w15.

Each one of these pairs (see (3.4)) give rise to a unique degree-4 maximal arc
of Denniston type. This means that, for each one of them, we get two conics
disjoint from D1. One of these degree-4 maximal arcs is contained in the pencil
of D1 and so it leads to a degree-8 maximal arc of Denniston type. The other
three induce proper Mathon arcs of degree 8.
Now we are able to count the conics that give rise to a maximal arc of Den-
niston type (“D-conics”) as well as the conics that give rise to a maximal
arc of Mathon type (“M -conics”). Remark that only four values for σ can be
included in the case where C1 is fixed since the identity leads to a contradiction.

“D-conics” “M-conics”
Cθ

w+1 = C1 5× 1× 2 5× 3× 2
Cθ

w = C1 5× 1× 2 5× 3× 2
Cθ

1 = C1 4× 1× 2 4× 3× 2
28 84

It follows that we find 84 “M-conics”. This means there are 21 degree-8 max-
imal arcs of Mathon type. As each of these proper Mathon arcs of degree
8 have an automorphism group of size 2 and contain exactly seven degree-4
maximal arcs of Denniston type, which are isomorphic to D1, we obtain three
non-isomorphic proper Mathon arcs of degree 8.

On a more technical note we can calculate the equation of the conic Cθ
1 using

the matrix M and the matrix

A :=

1 1 0
0 1 0
0 0 1

 ,

associated to the equation x2 + xy + y2 + z2 = 0 of C1. Analogous results
hold for the conics Cθ

w and Cθ
w+1. This will enable us to construct the entire

degree-8 maximal arc using Theorem 3.1.2. We need to calculate the form
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MT−1
AσM−1. Since A = Aσ and

M−1 :=

 w9σ 0 0
tw18σ w9σ 0√

w−9σt + t2w9σ 0 1


we find that (M−1)T AσM−1 is equal to the matrixw18σ + tw27σ + t2w36σ + (w−9σt + t2)w18σ w18σ + tw27σ

√
w−9σt + t2w9σ

tw27σ w18σ 0√
w−9σt + t2w9σ 0 1

 .

This means that the equation of the conic Cθ
1 is given by

(w18σ + tw27σ + t2w36σ + (w−9σt + t2)w18σ)x2 + w18σxy + w18σy2 + z2 = 0,

with t ∈ GF(32) and σ ∈ Aut(GF(32)), which is equivalent to the equation

(1 + (1 + w18σ)w−9σt + (1 + w18σ)t2)x2 + xy + y2 + w13σz2 = 0. (3.5)

Let us now consider the case σ = 4 and t = w2. We obtain

w12x2 + xy + y2 + w21z2 = 0

as the equation of Cθ
1 . If we multiply this equation by w19, set y = w12y′ and

z = w8z′, we find
x2 + xy′ + w12y′2 + w25z′2 = 0,

which is equivalent to

x2 + xy + w12y2 + w25z2 = 0.

Using Theorem 3.1.2 and Mathon’s composition we can easily compose the
remaining three conics of the degree-8 arc. Their equations are

C1 ⊕ Cθ
1 : x2 + xy + w6y2 + w21z2 = 0

Cw ⊕ Cθ
1 : x2 + xy + w18y2 + w16z2 = 0

Cw+1 ⊕ Cθ
1 : x2 + xy + w20y2 + w9z2 = 0.

This way we managed to construct the degree-8 maximal arc consisting of the
conics {C1, Cw, Cw+1, C

θ
1 , C1⊕Cθ

1 , Cw⊕Cθ
1 , Cw+1⊕Cθ

1}. In [38] Mathon found



3.4. Maximal arcs in PG(2, 32) | 59

the three degree-8 maximal arcs (not of Denniston type) in PG(2, 32) formed
by

{x2 + xy + (wk + wlλ + wmλ3)y2 + λz2|λ ∈ 〈1, w, w9〉 \ {0}},
with exponents (k, l, m) = (12, 15, 4), (5, 25, 14), and (6, 19, 8), respectively.
The 8-arc constructed above is exactly the one of Mathon corresponding to
the exponents (k, l, m) = (6, 19, 8). The other two proper Mathon 8-arcs in
GF(32) are found, for instance, in the following way.

Consider the case σ = 1 and t = w8 and substitute these values in equation
(3.5). We find

w17x2 + xy + y2 + w13z2 = 0,

which is the equation of another conic C ′θ
1 that induces a proper Mathon 8-arc.

If we multiply this equation by w14 and set y = w17y′, we get

x2 + xy′ + w17y′2 + w27z′2 = 0,

or equivalently,
x2 + xy + w17y2 + w27z2 = 0.

Using the same arguments as before we can write down the equations of the
remaining conics in the degree-8 arc. These are

C1 ⊕ C ′θ
1 : x2 + xy + w8y2 + w6z2 = 0

Cw ⊕ C ′θ
1 : x2 + xy + w26y2 + w29z2 = 0

Cw+1 ⊕ C ′θ
1 : x2 + xy + w12y2 + w3z2 = 0.

However, the obtained conics do not have the exact same equations as the
conics in one of the two proper Mathon 8-arcs corresponding to the exponents
(k, l, m) = (12, 15, 4) or (5, 25, 14). Therefore, in order to attain the wanted
equations, consider the equation of the conic Cw ⊕C ′θ

1 and set z = w9z′. This
gives us the equivalent equation

x2 + xy + w26y2 + w16z2 = 0,

which is exactly the equation of the conic corresponding to the value λ = w16

in the proper Mathon 8-arc with exponents (12, 15, 4). Using the composition
we find

C ′θ
1 : x2 + xy + w11y2 + w25z2 = 0

C1 ⊕ C ′θ
1 : x2 + xy + w12y2 + w21z2 = 0

Cw+1 ⊕ C ′θ
1 : x2 + xy + w10y2 + w9z2 = 0.
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The conics {C1, Cw, Cw+1, C
′θ
1 , C1 ⊕ C ′θ

1 , Cw ⊕ C ′θ
1 , Cw+1 ⊕ C ′θ

1 } are the ones
contained in the proper Mathon 8-arc with exponents (12, 15, 4).

To obtain the last one of the three proper Mathon 8-arcs corresponding to
(5, 25, 14) take σ = 2 and t = w6 and substitute these values in equation (3.5).
We get

w2x2 + xy + y2 + w26z2 = 0,

the equation of a conic C ′′θ
1 , inducing a proper Mathon 8-arc. Multiplying this

equation by w29 and setting y = w2y′, gives us

x2 + xy′ + w2y′2 + w24z′2 = 0,

or equivalently,

x2 + xy + w2y2 + w24z2 = 0.

Thus, the equation of the remaining conics of the 8-arc are

C1 ⊕ C ′′θ
1 : x2 + xy + w13y2 + w15z2 = 0

Cw ⊕ C ′′θ
1 : x2 + xy + w9y2 + w13z2 = 0

Cw+1 ⊕ C ′′θ
1 : x2 + xy + w24y2 + w14z2 = 0.

Again, in order to attain the wanted equations, consider the equation of the
conic C1 ⊕ C ′′θ

1 and set z = w28z′. We get the equivalent equation

x2 + xy + w13y2 + w9z2 = 0,

which is exactly the equation of the conic corresponding to the value λ = w9

in the proper Mathon 8-arc with exponents (5, 25, 14). Through composition
we obtain

C ′′θ
1 : x2 + xy + w22y2 + w16z2 = 0

Cw ⊕ C ′′θ
1 : x2 + xy + w3y2 + w25z2 = 0

Cw+1 ⊕ C ′′θ
1 : x2 + xy + w5y2 + w21z2 = 0.

The conics {C1, Cw, Cw+1, C
′′θ
1 , C1 ⊕ C ′′θ

1 , Cw ⊕ C ′′θ
1 , Cw+1 ⊕ C ′′θ

1 } are exactly
the ones contained in the proper Mathon 8-arc corresponding to the exponents
(5, 25, 14).
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3.5 Final remarks

• It is clear that a maximal arc of Mathon type in PG(2, q) always contains
a degree-4 arc of Denniston type. From this it follows that the dual of
a maximal arc of Mathon type is actually the intersection of degree-q/4
Denniston arcs. Furthermore, such an intersection cannot be constructed
from a closed set of conics (see Corollary 2.3.10).

• In Section 2.3 (Theorem 2.3.5) we have used certain λ-polynomials {p, r}
to map additive subgroups A of GF(2m) to subsets of conics on a common
nucleus which form maximal arcs in PG(2, 2m). At the end of his paper
([38]) Mathon asks the following question. What is the largest d of a
proper Mathon arc of degree d generated by a {p, r}-map in PG(2, 2m)?
In a first paper by Fiedler, Leung and Xiang ([22]) the authors prove
that there are always {p, 1}-maps generating proper Mathon maximal
arcs of degree 2(bm

2
c+1) in PG(2, 2m). In [23], a second paper by the same

authors, Mathon’s question is nearly completely answered. Specifically,
the authors prove that, when m ≥ 5 and m 6= 9, the largest d of a
proper Mathon arc of degree 2d in PG(2, 2m) generated by a {p, 1}-map
is (bm

2
c+1). For {p, r}-maps, they proved that, if m ≥ 7 and m 6= 9, then

the largest d of a proper Mathon maximal arc of degree 2d in PG(2, 2m)
generated by a {p, r}-map is either bm

2
c+ 1 or bm

2
c+ 2.
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Chapter 4

Singer 8-arcs of Mathon type

In Chapter 3 we counted the number of non-isomorphic Mathon maximal arcs
of degree 8 in PG(2, 2h), h 6= 7 and prime. In this chapter we will show that
in PG(2, 27) a special class of Mathon maximal arcs of degree 8 arises which
admits a sharply transitive, or Singer, group on the seven conics of these arcs.
We will give a detailed description of these arcs, and then count the total num-
ber of non-isomorphic Mathon maximal arcs of degree 8. Finally, we show that
these special arcs found in PG(2, 27) extend to two infinite families of Mathon
arcs of degree 8 in PG(2, 2k), k odd and divisible by 7, while maintaining the
nice property of admitting a Singer group.

The following results can be found in [16].

4.1 Introduction

First, recall Theorem 3.1.2, the synthetic version of Mathon’s construction,
which states that, given a degree-d maximal arc M of Mathon type and a
conic Cd disjoint from M with the same nucleus n, there is a unique degree-2d
maximal arc of Mathon type containing M ∪ Cd.

In the previous chapter this result was used to count the number of non-
isomorphic maximal arcs of Mathon type of degree 8 in PG(2, 2p), with p prime
and p 6= 2, 3, 7. The fact that our count did not work for p = 7 suggested that
something special might be going on in PG(2, 27). In what follows we will see
that this is indeed the case, as we will show that this specific plane admits

63
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two maximal degree-8 arcs of Mathon type with a particularly interesting
automorphism group that do not exist in any of the other planes PG(2, 2p), p
prime.

Let K be a proper Mathon 8-arc. As a result of Lemma 3.3.1 we know that
there always exists an involution stabilizing K and all of its conics. In the
specific case of PG(2, 2p), p prime and p 6= 2, 3, 7, we proved in Corollary 3.3.2
that Aut(K) ∼= C2.

The properties above, Theorem 3.1.2 and a counting argument that will be
exploited also later in this chapter made it possible to count the number of
non-isomorphic degree-8 arcs of Mathon type in PG(2, 22h+1), 2h + 1 6= 7 and
prime. More precisely, we found that the number of non-isomorphic degree-8
maximal arcs of Mathon type in PG(2, 22h+1), 2h+1 6= 7 and prime, is exactly

N

14
(22h−2 − 1)((6h + 3)N − 1),

where N = (22h − 1)/3(2h + 1) is the number of non-isomorphic Denniston
arcs of degree 4 in PG(2, 22h+1).

Remark 4.1.1. As we mentioned above, this result does not hold for 2h+1 =
7 (note that in that case the obtained number is not even an integer), because
Corollary 3.3.2 fails for 2h + 1 = 7. Next, we discuss in more detail why this
happens.

Now, let K be a degree-8 maximal arc of Mathon type in PG(2, 27), and let
φ be a non-trivial automorphism of K. If φ stabilizes one of the degree-4
maximal subarcs of K we found out in the previous chapter (proof of Corollary
3.3.2) that φ must be the unique involution ι described in Lemma 3.3.1. Now
suppose that φ does not stabilize any of the Denniston subarcs. Since 7 is the
only possible orbit length of φ on these subarcs it follows that the order of 〈φ〉
has to be a multiple of 7. Let the order of 〈φ〉 be k7, with k ∈ N?. In that
case |〈φ〉D| = k, where D is any of the seven Denniston subarcs of degree 4.
Furthermore, since |Aut(K)D| = 2 (see Chapter 3) we find that k = 2. This
means that |Aut(K)| = 14. Hence, in PG(2, 27) a proper Mathon arc of degree
8 could have a full automorphism group of order 2 or of order 14. The latter
type of arc would be of specific interest, especially because of the subgroup of
order 7 cyclically permuting the conics of the arc.

This remark suggests the existence of two classes of degree-8 maximal arcs of
Mathon type in PG(2, 27).
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• The degree-8 maximal arcs of Mathon type that have a full automorphism
group of order 2 will be referred to as normal 8-arcs (see Section 4.4).

• Those admitting a full automorphism group of order 14 will be called
Singer 8-arcs .

Also, with a little abuse of definition, Denniston arcs of degree 8 that admit
a group acting sharply transitively on their seven conics will be called Singer
8-arcs as well in the next two sections.

We will now move to a detailed analysis of Mathon maximal arcs of degree 8
in PG(2, 27), and prove the existence of two classes of Singer 8-arcs of Mathon
type.

4.2 Necessary conditions for the existence of a Singer
arc

Let D1 be a given degree-4 maximal arc of Denniston type in the standard
pencil consisting of the conics C1, Cw, Cw+1 with nucleus F0(0, 0, 1). (Note
that every degree-4 maximal arc of Denniston type is isomorphic to such arc.)
Due to Lemma 2.3.11 each conic C disjoint from D1, and with nucleus F0,
will give rise to a degree-8 maximal arc of Mathon type (which might be of
Denniston type).
Let the additive subgroup {0, 1, w, w + 1}, w ∈ GF(27) \ {0, 1}, be the one
associated to the maximal arc D1. In other words we assume that the conics
C1, Cw, Cw+1 contained in D1 are given by the equation

Ci : x2 + xy + y2 + iz2 = 0,

where i = 1, w, w + 1.

If we now assume that K := 〈D1, C〉 is a Singer 8-arc, then necessarily all
degree-4 arcs of Denniston type contained in it have to be isomorphic, as these
seven Denniston arcs will be cyclically permuted by the Singer group (= the
cyclic group of order 7 permuting the conics, and hence the arcs). This explains
why we will consider images of D1 that have exactly one conic in common with
D1.

Consider the automorphism θt,σ of PG(2, 27) given by

θt,σ : x 7→ Axσ
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with

A :=


√

w
−σ

0 0

t
√

w
−σ

0√√
w
−σ

t + t2 0 1

 , (4.1)

σ ∈ Aut(GF(27)) and t ∈ GF(27). This automorphism will map Cw onto
C1 while (0, 0, 1)θ = (0, 0, 1) and (0, 1, 0)θ = (0, 1, 0). This latter restriction
on the automorphism θt,σ can be made without loss of generality since the
seven Denniston lines of a Singer 8-arc of Mathon type have to be concurrent;
hence the above restriction simply chooses the line x = 0 to be the axis of the
unique elation stabilizing our 8-arc under construction. Notice that we could
equally well map Cw+1 onto C1 or consider any other combination of two of
the conics C1, Cw, Cw+1 since our purpose is to find a Denniston arc of degree
4 intersecting D1 in exactly one conic and being isomorphic to D1. In the
previous chapter we obtained two trace conditions that are equivalent to this
property. It is clear that these trace conditions still have to hold. They can
be written as:

Tr

[
(1 + w)t(

√
w
−σ

+ t)

(w−σ + w)

]
= 0 (4.2)

and

Tr

[
wt(

√
w
−σ

+ t)

(w−σ + w + 1)

]
= 0. (4.3)

In view of |Aut(K)D| = 2 for any degree-4 Denniston arc contained in K (see,
for instance, Remark 4.1.1), we see that the only automorphisms mapping D1

onto D2 := Dθt,σ

1 , while fixing (0, 1, 0) and stabilizing z = 0, are θt,σ and ιθt,σ

(where ι is the involution described in Lemma 3.3.1). Hence, if we assume K
to be a Singer 8-arc of Mathon type, these two automorphisms of PG(2, 27)
should belong to the automorphism group of K. It is now natural to look at
the action of powers of θt,σ.

4.2.1 The action on the line x = 0

We will first concentrate on the action of this automorphism on the line x = 0.
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If we want the Singer group to act on the seven conics of the maximal 8-arc,
these conics will be cyclically permuted. However, since it is still a degree-8 arc
of Mathon type their tangent points (0, yi, 1), i = 1, . . . , 7, at the line x = 0
should not only be distinct, but furthermore, these points should, together
with the nucleus, form an additive group {0, y1, . . . , y7} of order 8.

We also remark that, in this case, the field automorphism σ cannot be the
identity. This follows from the proof of Corollary 3.3.2 in Chapter 3 where we
proved that the non-trivial automorphism φ mentioned above cannot belong
to PGL(3, 2p).

First of all we will calculate these intersection points. The automorphism θt,σ

acts on the points (0, y, 1), y ∈ GF(27), contained on the line x = 0 as follows:


√

w
−σ

0 0

t
√

w
−σ

0√√
w
−σ

t + t2 0 1


 0

y
1

σ

=

 0√
w
−σ

yσ

1

 ,

with σ ∈ Aut(GF(27)) and t ∈ GF(27). Notice that the point (0,
√

w, 1) is
indeed mapped onto the point (0, 1, 1). In order to find all the intersection
points, i.e., the images of the point (0, 1, 1) under θt,σ, θ2

t,σ, θ3
t,σ, . . . , θ7

t,σ, we

only need the element on position (2, 2) of the matrices A, A·Aσ, A·Aσ ·Aσ2
,. . . ,

A ·Aσ ·Aσ2 ·Aσ3 ·Aσ4 ·Aσ5 ·Aσ6
(the dots in between the matrices indicate the

usual matrix multiplication). These are, respectively,

√
w
−σ

,
√

w
−(σ2+σ)

,
√

w
−(σ3+σ2+σ)

, . . . ,
√

w
−(σ6+···+σ2+σ)

.

This means we found that the seven intersection points are

(0, 1, 1), (0,
√

w
−σ

, 1), (0,
√

w
−(σ2+σ)

, 1), . . . , (0,
√

w
−(σ6+···+σ2+σ)

, 1).

Eventually we want to show that the set of elements

{0, 1,
√

w
−σ

,
√

w
−(σ2+σ)

,
√

w
−(σ3+σ2+σ)

, . . . ,
√

w
−(σ6+···+σ2+σ)}

forms an additive group. Therefore we will start by proving the following
lemma.
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Lemma 4.2.1. The set

{0, 1,
√

w
−σ

,
√

w
−(σ2+σ)

,
√

w
−(σ3+σ2+σ)

, . . . ,
√

w
−(σ6+···+σ2+σ)}

of elements in GF(27), with σ any non-trivial automorphism of GF(27), can
be written as the set

{0, 1, x, x3, x7, x15, x31, x63},

where x is one of the elements
√

w
−(σi+···+σ)

.

Proof. Let σ = 2k, k = 1, . . . , 6. Notice that there is exactly one integer l 6= 0
(mod 7) such that σl = 2kl = 2, and that different k yield different l. Set

x :=
√

w
−(σ+···+σl)

.

Now consider

x3 =
√

w
−3(σ+σ2+···+σl)

.

We need to show that

3(σ + σ2 + · · ·+ σl) = σ + σ2 + · · ·+ σj3 (4.4)

for some j3.

If l = 1, 2, 3 we see that j3 = 2, 4 and 6 respectively, satisfies equation (4.4). If
l = 4 we find

σ + σ2 + σ3 + σ4 + σ5 + σ6 + σ7 + σ8

on the left hand side of (4.4).

Now, using σ7 = 1, and the equality σ6 + σ5 + · · · + σ + 1 = 0, we see that,
if l = 4, j3 = 1 is a solution to (4.4). In an analogous way we can compute
the values of j3 that satisfy equation (4.4) for l = 5, 6. In fact, using the same
argument, we see that j3 ≡ 2l mod 7 is the unique solution (mod 7) to (4.4).
In exactly the same way, we can also show that for each l there are unique
solutions (mod 7) to the equations

k(σ + σ2 + · · ·+ σl) = σ + σ2 + · · ·+ σjk ,

with k = 7, 15, 31, 63.

We get the following table.



4.2. Necessary conditions for the existence of a Singer arc | 69

l j3 j7 j15 j31 j63

1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1

(4.5)

Clearly each row contains every non-trivial power of σ exactly once. This im-
plies that for every l, with the given choice of x, our set is indeed representable
as

{0, 1, x, x3, x7, x15, x31, x63}.

We remark that the polynomials 1 + x + x7 and 1 + x3 + x7 are primitive over
GF(27).

Lemma 4.2.2. The set {0, 1, x, x3, x7, x15, x31, x63} of distinct elements of the
finite field GF(27) is a subgroup of the additive group of GF(27) if and only if
either 1 + x = x7, or 1 + x3 = x7.

Proof. Setting 1 + x = x7 we can easily construct the following Cayley table:

+ 0 1 x x3 x7 x15 x31 x63

0 0 1 x x3 x7 x15 x31 x63

1 1 0 x7 x63 x x31 x15 x3

x x x7 0 x15 1 x3 x63 x31

x3 x3 x63 x15 0 x31 x x7 1
x7 x7 x 1 x31 0 x63 x3 x15

x15 x15 x31 x3 x x63 0 1 x7

x31 x31 x15 x63 x7 x3 1 0 x
x63 x63 x3 x31 1 x15 x7 x 0

It is clear that all necessary conditions are satisfied. A similar Cayley table
can be constructed in the case 1 + x3 = x7, which is equivalent to the case
1+x = x31. We conclude this proof by showing that the remaining three cases
1 + x = x3, 1 + x = x15 and 1 + x = x63 do not determine a group under the
addition in GF(27). Suppose that 1 + x = x3. Then x3 + x7 = x3(1 + x4) =
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x3(1 + x)4 = x15 and x7 + x15 = x7(1 + x8) = x7(1 + x)8 = x31, which implies
that x3 = x31, a contradiction. If 1 + x = x15 then x7 + x15 = x7(1 + x)8 =
x7x120 = x127 = 1, implying x = x7, a contradiction. Finally, if 1 + x = x63,
we have x + x3 = x(1 + x)2 = xx126 = 1 which implies x3 = x63, again a
contradiction.

4.2.2 From Denniston 4-arc to Singer 8-arc

In the following Lemma we consider degree-4 maximal arcs of Denniston type,
containing the conic C1 : x2 + xy + y2 + z2 = 0, in the standard pencil.
We remind the reader that every degree-4 maximal arc of Denniston type is
isomorphic to one in the standard pencil containing C1.

Lemma 4.2.3. The number of conics in the standard pencil of PG(2, 27) gen-
erating, together with C1, a degree-4 Denniston arc of a given isomorphism
type is exactly 42.

Proof. Consider the standard pencil. Consider the conic C1 : x2+xy+y2+z2 =
0. This is the conic containing the point (0, 1, 1) on the line x = 0. Furthermore
the point (0, 0, 1) is the nucleus of C1, and (0, 1, 0) is the intersection point of
the lines x = 0 and z = 0. This means that so far three points on the line
x = 0 are taken. The other 126 points on that line are contained in the 126
conics left in the standard pencil. Of course, every one of those conics together
with C1 gives rise to a unique degree-4 maximal arc of Denniston type. Since
the third conic in such a 4-arc is determined we find that there are 63 degree-4
arcs of Denniston type in the pencil. We also know that there are exactly
3 isomorphism classes of degree-4 arcs of Denniston type in PG(2, 27), each
of which has an automorphism group isomorphic to Cq+1 o C2 (see Lemma
3.2.1, Remark 3.2.2 and Lemma 3.2.3 of Chapter 3). It follows that there are
21 degree-4 arcs in each class, or equivalently, that there are 42 conics in the
standard pencil generating, together with C1, a degree-4 Denniston arc of a
given isomorphism type.

We already proved that the set of elements

{0, 1,
√

w
−σ

,
√

w
−(σ2+σ)

,
√

w
−(σ3+σ2+σ)

, . . . ,
√

w
−(σ6+···+σ2+σ)}

can be written as A = {0, 1, x, x3, x7, x15, x31, x63}, with x a function of w.
Moreover we know that A forms a group under the addition in GF(27) if and
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only if either 1+x = x7 or 1+x3 = x7. It is clear that the set of solutions of the
equation 1 + x = x7 and the set of solutions of the equation 1 + x3 = x7 have
to be disjoint, otherwise x = x3, a contradiction. This implies that in each of
the two cases we have seven possible values for x. For every given non-trivial
field automorphism σ, each of these values of x yields a unique value of w.
In other words, we have 2 × 7 × 6 = 84 possible values of w, that is, we get
84 conics which, together with the automorphism θt,σ, possibly give rise to a
Singer 8-arc. Note that, since 1+x+x7 and 1+x3+x7 are not conjugate under
any field automorphism the 84 values of w are indeed distinct. Furthermore
note that, in view of Lemma 4.2.1 and Lemma 4.2.2, the σ in θt,σ is uniquely
determined once we have chosen a specific value of w out of these 84.
In view of Lemma 4.2.3 we can also conclude that these 84 conics together
with C1 determine exactly two isomorphism classes of degree-4 maximal arcs
of Denniston type in the standard pencil. In other words, at most two of
the three isomorphism types of degree-4 maximal arcs of Denniston type in
PG(2, 27) can possibly be extended to a Singer 8-arc.

4.3 Necessary and sufficient condition

We start by proving a lemma that provides us with a necessary and sufficient
condition in order for θt,σ to generate a Singer 8-arc.

Lemma 4.3.1. Let D = {C1, C2, C3} be a 4-arc of Denniston type in PG(2, 27).
Let θ be an automorphism of PG(2, 27) with the properties that Cθ

2 = C1,
C4 := Cθ

1 is disjoint from C1, C2 and C3, and C4 has the same nucleus as
C1, C2 and C3. If Dθ2

intersects both D and Dθ in a conic, then D together
with θ generate a Singer 8-arc, and consequently θ has order divisible by 7.

Proof. Set D = {C1, C2, C3}, Dθ = {C1, C4, C5}, with Cθ
2 = C1, Cθ

1 = C4

and Cθ
3 = C5. So clearly C1 ⊕C2 = C3 and C1 ⊕C4 = C5. Let 〈D, C4〉 denote

the 8-arc generated by D and C4.

As C1 ∈ Dθ, we see that C4 = Cθ
1 ∈ Dθ2

. There are two possible cases (recall

that Dθ2
intersects D in a conic which has to be distinct from C1):

(i) Dθ2
= {C4, C2, C2 ⊕ C4 =: C6},



72 | Chapter 4. Singer 8-arcs of Mathon type

(ii) Dθ2
= {C4, C3, C3 ⊕ C4 =: C7}.

We discuss both cases separately. Note that all ⊕-additions and related com-
putations are well defined by Lemma 2.3.11 and Theorem 3.1.2.

(i) The case Dθ2
= {C4, C2, C2 ⊕ C4 =: C6}.

From C4 ∈ Dθ it follows that Cθ
4 ∈ Dθ2

. Clearly Cθ
4 6= C4. We will show

that Cθ
4 cannot be C2 either. This would clearly yield an automorphism

of order a power of 3 stabilizing the 8-arc 〈D, C4〉. Hence θ necessarily
would stabilize one of the conics in this 8-arc. But then there has to
be a line that is not fixed pointwise containing at least 3 fixpoints, and
so θ ∈ PΓL(3, 27) \ PGL(3, 27). Consequently 7 divides the order of

θ, a contradiction. Hence Cθ
4 = C6. As Cθ

2 = C1 we obtain Dθ3
=

{C1, C6, C1 ⊕ C6 =: C7}. We need to show that Dθ3 ∈ 〈D, C4〉. But this
is true since C7 = C1 ⊕ C6 = C1 ⊕ C2 ⊕ C4 = C3 ⊕ C4 ∈ 〈D, C4〉.

Next we look at Dθ4
. Note that from the previous step it follows that

Cθ
6 = C7, and hence that Dθ4

= {C4, C7, C4 ⊕ C7}. But C4 ⊕ C7 =

C4 ⊕ C3 ⊕ C4 = C3. And so Dθ4
= {C4, C7, C3} ∈ 〈D, C4〉.

Consequently, Dθ5
= {C6, C3, C5} ∈ 〈D, C4〉, Dθ6

= {C7, C5, C2} ∈
〈D, C4〉, and Dθ7

= {C3, C2, C1} = D.

It is now also clear that the action of θ on the conics of 〈D, C4〉 is described
by C1 → C4 → C6 → C7 → C3 → C5 → C2 → C1. Hence D and θ
generate a unique Singer 8-arc, and θ has order divisible by 7.

(ii) The case Dθ2
= {C4, C3, C3 ⊕ C4 =: C7}.

First assume that Cθ
4 = C7. But then Cθ

5 = C3, from which Cθ2

3 = C3,
yielding a contradiction as in the case Cθ

4 = C2 above. Hence this case
cannot occur, and consequently Cθ

4 = C3.

We quickly see that Dθ3
= {C3, C5, C3⊕C5 =: C6}. Now C6 = C3⊕C5 =

C3 ⊕ C1 ⊕ C4 = C2 ⊕ C4, and hence Dθ3 ∈ 〈D, C4〉.

From Cθ
3 = C5 and Cθ

5 = C7 it follows that Dθ4
= {C5, C7, C

θ
6 = C5⊕C7}.

But Cθ
6 = C5 ⊕ C7 = C1 ⊕ C4 ⊕ C3 ⊕ C4 = C2, and so Dθ4 ∈ 〈D, C4〉.

Consequently, Dθ5
= {C7, C6, C1} ∈ 〈D, C4〉, Dθ6

= {C6, C2, C4} ∈
〈D, C4〉, and Dθ7

= {C2, C1, C3} = D.
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It is now also clear that the action of θ on the conics of 〈D, C4〉 is described
by C1 → C4 → C3 → C5 → C7 → C6 → C2 → C1. Hence D and θ
generate a unique Singer 8-arc, and θ has order divisible by 7.

2

Remark 4.3.2. As mentioned in Section 4.2, if a Mathon arc is a Singer 8-
arc, it can be constructed (or at least it is isomorphic to one that can be
constructed) from a Denniston 4-arc D in the standard pencil containing the
conic C1 : x2 + xy + y2 + z2 = 0 together with an appropriate automorphism
θt,σ. Such automorphism clearly has to satisfy the conditions of Lemma 4.3.1,
and so Lemma 4.3.1 provides us with necessary and sufficient conditions on
θt,σ in order to give rise to a Singer 8-arc. This means that theoretically
the necessary subgroup condition analyzed in Lemma 4.2.1 and Lemma 4.2.2
would also follow from the above necessary and sufficient condition. However,
we believe that first dealing with the subgroup condition as we did, makes
the analysis of the above necessary and sufficient condition easier, and further
provides insightful information on the Singer 8-arcs that will arise.

Remark 4.3.3. Let θt,σ be an automorphism as considered in (4.1). Suppose
furthermore that θt,σ gives rise to a Singer 8-arc. As mentioned in Lemma 3.3.1
(see also Remark 4.1.1) there is a unique involution ι stabilizing all conics of
the arc. Hence also θ′t,σ := ιθt,σ = θt,σι will be an automorphism giving rise to
the same Singer 8-arc as θt,σ. This involution is easily seen to be induced by

E =

 1 0 0
1 1 0
0 0 1

 .

And consequently θ′t,σ : x 7→ EAxσ, where

EA =


√

w
−σ

0 0

t +
√

w
−σ √

w
−σ

0√√
w
−σ

t + t2 0 1

 .

Thus θ′t,σ = θt+
√

w
−σ

,σ. This implies that the t-values corresponding to a given

Singer 8-arc come in pairs, t and t +
√

w
−σ

.
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Remark 4.3.4. In our analysis so far we have nowhere required that the hy-
pothetical Singer 8-arc would be a proper Mathon arc. Hence, some of the
Singer 8-arcs we will discover in what follows may well be arcs of Denniston
type. It is however, given θt,σ, easy to decide whether an arc is of Denniston or
proper Mathon type. To be of Denniston type all conics of the arc should be
contained in the standard pencil, and hence all degree-4 maximal arcs in the
considered 8-arc should have the same Denniston line, namely z = 0. Conse-
quently this line should be fixed by θt,σ. This happens if and only if the element

on position (3, 1) of matrix A is equal to zero, or equivalently
√

w
−σ

t+ t2 = 0.

Hence, if and only if t = 0 or t =
√

w
−σ

. In view of the previous remark, we
see that both of these t-values will correspond to one and the same Denniston
8-arc.

We are now ready to start exploiting Lemma 4.3.1.

Assume that the same settings as presented in Section 4.2 hold, that is, the
additive subgroup {0, 1, w, w + 1}, w ∈ GF(27) \ {0, 1} is the one associated to
the maximal arc D. The conics with equation

x2 + xy + y2 + iz2 = 0,

where i = 1, w, w + 1, that are contained in D are denoted by C1, C2 and C3,
respectively. Next, let θ = θt,σ be an automorphism of PG(2, 27) as defined in
(4.1).

Instead of choosing w to be one of the 84 values found in Section 4.2, we
will instead fix σ = 2. In view of Lemma 4.2.1 we can do so without loss of
generality. Once x is known, this will determine w uniquely.

Hence θ : p 7→ Ap2, with

A =

 w−1 0 0
t w−1 0√

w−1t + t2 0 1

 .

Suppose that Dθ = {C1, C4, C5}, with Cθ
2 = C1, Cθ

1 = C4 and Cθ
3 = C5. Due to

the proof of the previous lemma we need to consider two specific cases which
possibly can lead to a Singer 8-arc. Either Cθ2

1 = C3 or Cθ2

1 = C6, where
C6 := C2 ⊕ C4. We will investigate both cases separately.



4.3. Necessary and sufficient condition | 75

Let p = (x, y, 1) be a general point of the conic C1. We know that the auto-
morphism θ2 is determined by the matrix A.A2, which is given by w−3 0 0

w−2t + w−1t2 w−3 0

w−2
√

w−1t + t2 + w−1t + t2 0 1

 .

Using this we are able to compute the point pθ2
. This gives us

pθ2

=

 w−3x4

(w−2t + w−1t2)x4 + w−3y4

(w−2
√

w−1t + t2 + (w−1t + t2))x4 + 1

 . (4.6)

We start with the case Cθ2

1 = C3. This means that we want pθ2
to be contained

in C3. Expressing this condition yields the following equation:

w−6x8 + (w−3x4)((w−2t + w−1t2)x4 + w−3y4) + (w−4t2 + w−2t4)x8

+w−6y8 + (w + 1)((w−4(w−1t + t2) + w−2t2 + t4)x8 + 1) = 0.

Using the fact that x2 + xy + y2 + 1 = 0, and so x8 + x4y4 + y8 + 1 = 0, we
can simplify the previous equation to

w−6+w−2t4x8+(w−4t+w−3t2+w−1t2+wt4+w−4t2+w−2t2+t4)x8+w+1 = 0,

which is actually

((w−2 + w + 1)t4 + (w−4 + w−3 + w−2 + w−1)t2 + w−4t)x8

+w−6 + w + 1 = 0. (4.7)

As this should hold for any point p on C1, this equation should be identically
zero. This means that both the coefficients of x8 and x0, which are (w−2 +w+
1)t4 + (w−4 + w−3 + w−2 + w−1)t2 + w−4t and w−6 + w + 1 respectively, have
to be 0. First, we have a look at the condition

w−6 + w + 1 = 0.

With the notation used in Lemma 4.2.1 and the fact that σ = 2 we find that
l = 1 which implies that x = w−1. We find that

w−6 + w + 1 = 0

⇔ x6 + x−1 + 1 = 0

⇔ x7 + x + 1 = 0.
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We conclude that w−6 + w + 1 = 0 if and only if x7 + x + 1 = 0. In other
words, the case where x7 + x + 1 = 0 is the only possible case that allows the
coefficient of x0 in (4.7) to be 0. Furthermore the identity

(w−2 + w + 1)t4 + (w−4 + w−3 + w−2 + w−1)t2 + w−4t = 0

has to hold. Equivalently, we find

t(t + w−1)((w−2 + w + 1)t2 + (w−3 + w−1 + 1)t + w−3) = 0.

This will provide us with four values for t which are t = 0, t = w−1, t = w115

and t = w39. As follows from Remark 4.3.3 and Remark 4.3.4 it is clear that
the two solutions t = 0 and t = w−1 will lead to a degree-8 maximal arc of
Denniston type. The two other values of t will extend the degree-4 maximal
arc D to a unique Singer 8-arc.

Next, we move on to the second case Cθ2

1 = C6. We now aim for pθ2
to be

contained in C6. First of all we have to compute C4 which is the image of C1

under θ. We can do this using the matrix A and the matrix

B :=

 1 1 0
0 1 0
0 0 1

 ,

which is associated to the equation x2 + xy + y2 + z2 = 0 of the conic C1. We
need to calculate the form (A−1)T BA−1. Since

A−1 =

 w 0 0
w2t w 0

w
√

w−1t + t2 0 1

 ,

we find that (A−1)T BA−1 is the matrix w2 + (w3 + w)t + (w4 + w2)t2 w2 + w3t w
√

w−1t + t2

w3t w2 0

w
√

w−1t + t2 0 1

 .

It follows that the equation of the conic Cθ
1 = C4 is given by

(w2 + (w3 + w)t + (w4 + w2)t2)x2 + w2xy + w2y2 + z2 = 0.
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Multiplying this equation by w−2 yields

C4 : (1 + (w + w−1)t + (w2 + 1)t2)x2 + xy + y2 + w−2z2 = 0.

Since we know that C2 : x2 + xy + y2 + wz2 = 0 we can now determine the
equation of the conic C6 := C2 ⊕ C4. We get

C6 :
(w + (1 + (w + w−1)t + (w2 + 1)t2)w−2)

w + w−2
x2 + xy + y2 + (w + w−2)z2 = 0,

or equivalently,

C6 : (w + (1 + (w + w−1)t + (w2 + 1)t2)w−2)x2 + (w + w−2)xy

+(w + w−2)y2 + (w2 + w−4)z2 = 0.

Using (4.6) the condition pθ2 ∈ C6 can be expressed in the following way:

(w + (1 + (w + w−1)t + (w2 + 1)t2)w−2)(w−3x4)2

+(w + w−2)(w−3x4)(w−2tx4 + w−1t2x4 + w−3y4)

+(w + w−2)((w−4t2 + w−2t4)x8 + w−6y8)

+(w2 + w−4)(w−4(w−1t + t2) + w−2t2 + t4)x8 + 1) = 0.

This is equivalent to

((w2 + w−1)t4 + (w−2 + 1)t2 + (w−4 + w−3)t + w−8 + w−5)x8

+(w−8 + w−5)x4y4 + (w−8 + w−5)y8 + w−4 + w2 = 0.

Again, using the fact that x8 + x4y4 + y8 + 1 = 0 (since x2 + xy + y2 + 1 = 0),
this equation can be simplified to

((w2 + w−1)t4 + (w−2 + 1)t2 + (w−4 + w−3)t)x8

+w−8 + w−5 + w−4 + w2 = 0. (4.8)

Analogous to the first case this equation should be identically zero. We start
by checking if the coefficient of x0 can be equal to 0 and, since x = w−1 with
the notation of Lemma 4.2.1, we see that

w−8 + w−5 + w−4 + w2 = 0

⇔ x8 + x5 + x4 + x−2 = 0

⇔ x10 + x7 + x6 + 1 = 0.
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Now assume that x7 +x3 +1 = 0. In this case we find that x10 +x7 +x6 +1 =
x10 + x6 + x3 = x3(x7 + x3 + 1) = 0, exactly what we wanted. On the other
hand, suppose that x7 + x + 1 = 0 holds. This would imply that

x10 + x7 + x6 + 1 = x7(x3 + 1) + (x3 + 1)2

= (x3 + 1)(x7 + x3 + 1)

= (x3 + 1)(x3 + x)

= x(x3 + 1)(x2 + 1).

But since x 6= 0, x3 6= 1 and x2 6= 1 this can never be 0. In other words the
case in which x7+x3+1 = 0 is the only possible case that allows the coefficient
of x0 to be 0. Finally we have a look at the identity

(w2 + w−1)t4 + (w−2 + 1)t2 + (w−4 + w−3)t = 0,

assuring us that also the coefficient of x8 in (4.8) is 0. The four solutions
satisfying this equation are t = 0, t = w−1, t = w91 and t = w8. Analogous to
what we have seen above the two solutions t = 0 and t = w−1 yield a degree-8
maximal arc of Denniston type. The other two values for t that satisfy this
equation will lead to a unique Singer 8-arc.

We can conclude the previous findings by saying that in both cases x7+x+1 = 0
and x7 + x3 + 1 = 0 the degree-4 maximal arc D can uniquely be extended to
a Singer 8-arc.

We end this section by providing actual equations of the two Singer 8-arcs in
PG(2, 27). Let a be a primitive element of GF(27). Both Singer 8-arcs clearly
can be given by the set

{(x, y, z) ∈ PG(2, 27)|aix2 + xy + y2 + ajz2 = 0} ∪ {(0, 0, 1)}, (4.9)

where there are seven ordered pairs (i, j), each corresponding to one of the
conics of the arc. There are two cases. The unique, up to isomorphism, Singer
8-arc in the case where 1 + a + a7 = 0 is the one with exponents

(i, j) = (0, 0), (0,−1), (0, 6), (16, 2), (39, 14), (93, 62), (101, 30). (4.10)

In the other case where a satisfies 1+a3+a7 = 0 the unique, up to isomorphism,
Singer 8-arc is the one with exponents

(i, j) = (0, 0), (0,−1), (0, 30), (18, 2), (12, 62), (33, 6), (43, 14). (4.11)
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These values for (i, j) can be obtained by actually computing the morphism
θt,σ using the above, and then letting this morphism act on C1 . This can
easily be done using a computer algebra package such as GAP ([24]).

4.3.1 Extra trace condition

We wind up this section (on a side note) with a quick look at the elements of
the matrix

A? := A · Aσ · Aσ2 · Aσ3 · Aσ4 · Aσ5 · Aσ6

,

with A the matrix (4.1), and the condition that it induces. Although Lemma
4.3.1 provides us with necessary and sufficient conditions in order to give rise
to a Singer 8-arc it could be interesting to have a look at the elements of the
matrix A?. This matrix is the one that occurs in the automorphism θ7

t,σ. To
simplify notations we will rewrite A as follows:

A :=

 a 0 0
b a 0
c 0 1

 . (4.12)

The diagonal elements on positions (1, 1) and (2, 2) of A? are both

aσ6+σ5+···+σ+1 = a
σ7−1
σ−1 = 1.

The element on position (2, 1) of A? is

aσ6

(aσ5

(aσ4

(aσ3

(aσ2

(aσb + abσ) + aσ+1bσ2

) + aσ2+···+1bσ3

) + aσ3+···+1bσ4

)

+aσ4+···+1bσ5

) + aσ5+···+1bσ6

.

This is equivalent to

aσ6+···+σb + aσ6+···+σ2+1bσ + aσ6+···+σ3+σ+1bσ2

+ · · ·+ aσ5+···+1bσ6

,

which can, of course, be written as

b

a
+

bσ

aσ
+

bσ2

aσ2 +
bσ3

aσ3 +
bσ4

aσ4 +
bσ5

aσ5 +
bσ6

aσ6 .

This is exactly Tr( b
a
).
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Finally we have a look at the element on position (3, 1) which is

aσ6

(aσ5

(aσ4

(aσ3

(aσ2

(aσc + cσ) + cσ2

) + cσ3

) + cσ4

) + cσ5

) + cσ6

.

Equivalently, we find

aσ6+···+σc + aσ6+···+σ2

cσ + aσ6+···+σ3

cσ2

+ · · ·+ aσ6

cσ5

+ cσ6

=
c

a
+

cσ

aσ+1
+

cσ2

aσ2+···+1
+

cσ3

aσ3+···+1
+

cσ4

aσ4+···+1
+

cσ5

aσ5+···+1
+

cσ6

aσ6+···+1

=
c

(a
1

σ−1 )σ−1
+

cσ

(a
1

σ−1 )σ2−1
+

cσ2

(a
1

σ−1 )σ3−1
+ · · ·+ cσ6

(a
1

σ−1 )σ7−1

= a
1

σ−1

[
c

(a
1

σ−1 )σ
+

cσ

(a
1

σ−1 )σ2
+

cσ2

(a
1

σ−1 )σ3
+ · · ·+ cσ6

(a
1

σ−1 )σ7

]
= a

1
σ−1 Tr

[
c

a
σ

σ−1

]
.

And so the matrix A? is actually the matrix

A? :=

 1 0 0
Tr( b

a
) 1 0

a
1

σ−1 Tr[
c

a
σ

σ−1

] 0 1

 . (4.13)

Since we want the Singer group to act on the seven conics of the maximal
8-arc we want these conics to be fixed under θ7

t,σ. In other words, the matrix
A? should induce the identity map or at least the unique involution fixing the
conics. As the element on position (2, 1) of (4.13) is either 0 or 1 it does not
impose an extra condition. More specifically, 0 would induce the identity while
1 would induce the involution. The element on position (3, 1) however has to
be equal to 0, otherwise the matrix A? would not induce an automorphism
that fixes the seven conics.

It can be proved that, next to (4.2) and (4.3),

Tr

[√√
w
−σ

t + t2

(
√

w
−σ

)
σ

σ−1

]
= 0,
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or equivalently,

Tr

[
(
√

w
σ2

σ−1 + w
σ2

σ−1
√

w
−σ

)t

]
= 0 (4.14)

is a new trace condition in order to lead to the Singer 8-arcs since the three
trace conditions (4.2), (4.3) and (4.14) are linearly independent. This can
again be checked by using, for instance, GAP ([24]) as a calculator.

4.4 The count

In this section we will count the number of Singer 8-arcs and the number of
normal 8-arcs in PG(2, 27). Since these are the only two classes of degree-8
arcs of Mathon type in PG(2, 27) it will lead to the total number of degree-8
maximal arcs of Mathon type in PG(2, 27). This will fill the hole that was left
in Chapter 3. In the following lemma the number of Singer 8-arcs of proper
Mathon type in PG(2, 27) is counted.

Lemma 4.4.1. In PG(2, 27) there are, up to isomorphism, exactly two Singer
8-arcs.

Proof. At the end of section 4.2 we concluded that at most two out of the three
isomorphism types of degree-4 maximal arcs of Denniston type in PG(2, 27)
could possibly be extended to a Singer 8-arc. In the previous section it became
clear that both of these isomorphism classes induce a unique Singer 8-arc.

Lemma 4.4.2. The number of non-isomorphic normal 8-arcs in PG(2, 27) is
199.

Proof. This proof is quite analogous to the proof of Theorem 3.3.5 in the pre-
vious chapter. Let D1,D2 and D3 be chosen fixed and representative of each of
the three isomorphism classes of degree-4 maximal arcs of Denniston type in
the standard pencil. Assume Di consists of the conics C1, C

i
2 and Ci

3, i = 1, 2, 3.
We will start by counting how many degree-8 maximal arcs of Mathon type
contain one of the three degree-4 maximal arcs, say D1, have the line x = 0 as
elation axis and (0, 1, 0) as the intersection point of their lines at infinity. This
is done as follows. Every conic disjoint from D1 and having the same nucleus
as D1 will extend D1 in a unique way to a maximal arc of Mathon type (which
may be Denniston). On the other hand, every Mathon arc of degree 8 that
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contains D1 will give rise to four such conics. Now each such conic, together
with C1, generates a unique maximal arc of degree 4 (of Denniston type) which
has to be isomorphic to one of the Di, i = 1, 2, 3. Hence it will be sufficient
to count in how many ways we can map Di, i = 1, 2, 3, on an isomorphic
degree-4 arc which intersects D1 exactly in C1 plus the nucleus, and which has
a Denniston line containing (0, 1, 0).

• Assume i 6= 1.

Clearly we need an automorphism θ such that (Di)θ satisfies the prop-
erties described above. Hence θ has to map one of the conics C1 or Ci

j,
j = 2, 3 onto C1. It follows that θ is of the form (4.1), with w the value
corresponding to C1 or Ci

j, respectively. The above conditions will be
satisfied iff the trace conditions (4.2) and (4.3) seen above, are satisfied.
These two conditions can be written as

{
Tr[A1(w, σ)t] = 0
Tr[A2(w, σ)t] = 0,

where A1 and A2 are both functions of w and σ. We actually obtain two
linear equations that correspond to two hyperplanes in the vector space
V (7, 2). In Chapter 3 it was shown that these hyperplanes are distinct.
This means that for every w and every field automorphism σ there are
25 solutions for t. As noticed in the previous chapter, and as seen in the
previous section, these t-values always come in pairs. This implies that,
for every w and σ, there are 24 degree-4 maximal arcs. One of them gives
rise to a degree-8 maximal arc of Denniston type, and so there are

3 · 7 · (24 − 1)

automorphisms θ that satisfy the needed conditions and induce a degree-8
maximal arc of proper Mathon type. Of course, one such automorphism
leads to two conics disjoint from D1 and so we get

2 · 3 · 7 · (24 − 1) = 630

conics that extend D1 to a degree-8 maximal arc of Mathon type.
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• Now assume i = 1.

In the cases where C1
2 is mapped onto C1 and C1

3 is mapped onto C1 we
also find

2 · 7.(24 − 1)

conics to extend D1. If we now consider the case where C1 is fixed
however, we have to make sure that σ is not the identity since this would
result in conics which are not disjoint (see Remark 3.3.4 in Chapter 3).
And so when i = 1 we find

2 · 2 · 7 · (24 − 1) + 2 · 6 · (24 − 1) = 600

conics to extend D1 in this case.

Finally, as there were two choices for Di, i 6= 1, there are in total

2 · 630 + 600 = 1860

conics that extend D1 to a proper Mathon arc satisfying the desired properties.
Of course, there were three choices for D1 and so we get

3 · 1860 = 5580

conics that will extend some Di to a degree-8 maximal arc of Mathon type.
However, due to Lemma 4.4.1 we know that two out of the three isomorphism
classes of degree-4 maximal arcs can be extended to a unique Singer 8-arc.
This means that eight conics will extend some Di to a Singer 8-arc which
implies that there are actually

5580− 8 = 5572

conics that will extend some Di to a normal 8-arc. Since the four conics disjoint
from Di in such a normal 8-arc all give rise to the same 8-arc there are 1393
normal 8-arcs that contain some degree-4 maximal arc Di. Hence, the number
of non-isomorphic normal 8-arcs is

1393/7 = 199.

The fact that we divide by 7 is a consequence of Corollary 3.3.2 and Lemma
3.3.1 in Chapter 3, which states that there is a unique isomorphism of the
plane mapping a degree-4 Denniston arc in a normal Mathon 8-arc onto one
of the Di.
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The total number of non-isomorphic degree-8 maximal arcs of Mathon type is
now easily calculated and yields the following theorem.

Theorem 4.4.3. The number of non-isomorphic degree-8 maximal arcs of
proper Mathon type in PG(2, 27) is equal to 201, two of which are Singer 8-arcs,
and 199 of which are normal 8-arcs.

4.5 Bigger fields

It turns out that Singer 8-arcs also exist in bigger fields.

Consider GF(2h), with h = 7l and h odd. Let, for now, TR denote the usual
absolute trace map from the finite field GF(2h) onto GF(2) and let tr be the
usual absolute trace map from the field GF(27) onto GF(2). Now, since h
is odd and a multiple of 7 the equality TR(α) = tr(α) will hold for every
α ∈ GF(27), subfield of GF(2h). This implies that all conics from (4.9), as
well with exponents (4.10) as with exponents (4.11), are exterior to the line
z = 0. However, one has to be careful with the definition of Singer arc over
these bigger fields. To see this, first consider the case where l 6= 7k for some
(odd) k. In this case consider the smallest positive t such that lt ≡ 1 (mod 7).
Then the field automorphism τ = 2lt acts as squaring on the subfield GF(27)
and has order 7 (over the big field). If we now replace the automorphism σ = 2
from Section 3 by τ , then we can easily see that we produce two Mathon 8-arcs
that admit a cyclic group of order 7 acting sharply transitively on the seven
conics of the arc. These are clearly Singer 8-arcs in the obvious sense.

However, if we consider the case where l = 7k for some (odd) k, then there is
no field automorphism of GF(2l) that acts as squaring on the subfield GF(27)
and has order 7 (over the big field). In this case every field automorphism
that acts as squaring on the subfield GF(27) will have as order a proper power
of 7. In this case the arcs we produce will only admit a cyclic group acting
transitively on the seven conics of the arc, but not sharply transitively, as the
elements of the unique cyclic subgroup of order 7 will stabilize all conics of the
arc (but not fix them pointwise). One could define such arcs as Singer 8-arcs
of the second kind .
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4.6 Open questions

The following two questions seem now to be natural.

• Can we construct Singer arcs of degree bigger than 8, that is, are there for
example degree-16 arcs that admit a (cyclic) automorphism group acting
sharply transitively on their conics? If so, over which fields do these arcs
exist? What about Singer arcs of the second kind?

• Proper 8-arcs of Mathon type have, considered conicwise, naturally the
structure of the Fano plane. Furthermore, the Singer group of the Mathon
8-arcs of Singer type acts as a Singer group on this Fano plane. This
Singer group is only a subgroup of the full automorphism group of the
Fano plane. Are there fields over which there exist Mathon 8-arcs that
admit the full automorphism group of the Fano plane (in its natural
action on the conics of the arc)? If not, what is the largest subgroup of
PGL(3, 2) that can occur, and over which fields does this happen? In
such case one would of course not require that, if a conic is stabilized by
an automorphism, it is fixed pointwise.
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Chapter 5

Partial flocks of the quadratic
cone yielding Mathon arcs

As a consequence of a question asked by J. A. Thas we started studying the
link between maximal arcs of Mathon type and partial flocks of the quadratic
cone ([33]). This link is of a rather algebraic nature. In this last chapter we
establish, due to a specific projection, a geometric connection between these
two structures. We also define a composition on the flock planes and use this
to work out an analogue of the synthetic version of Mathon’s Theorem (see
Chapter 3). Finally we show how it is possible to construct a maximal arc
of Mathon type of degree 2d, containing a Denniston arc of degree d, and
provided that there is a solution to a certain given system of trace conditions.

5.1 Partial flocks

This first section will serve as an introduction to partial flocks as well as a
brief description of the algebraic link between partial flocks and maximal arcs
of Mathon type as it was proved in [33]. Suppose that K is a quadratic cone
in PG(3, q) with vertex x. A partial flock F of K is a set of disjoint (non-
singular) conics on the cone K . A partial flock is called complete if it is not
contained in a larger partial flock. A flock F of K is a partial flock of size q.
The planes containing the conics of the flock are called the flock planes . If all
the flock planes of a partial flock have a line in common, then this partial flock
is called linear . Flocks are related to some elation generalized quadrangles of

87
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order (q2, q), line spreads of PG(3, q) and, when q is even, families of ovals in
PG(2, q), called herds ([49]).

From now on, let the order q, of the field GF(q), be even and suppose that
the cone K has equation X1X3 = X2

2 . The vertex is the point x(1, 0, 0, 0)
and does not belong to any plane of a (partial) flock F . The conics of F are
defined by k planes Vi, i ∈ {1, . . . , k}, of which the equations can be written
in the form

X0 + f(t)X1 + tX2 + g(t)X3 = 0, (5.1)

with t ∈ B, where B is some subset of GF(q), and f and g are functions from
B to GF(q). In order to form a partial flock the intersection of any two of the
planes (5.1) with K has to be empty. This means that the system of equations X0 + f(s)X1 + sX2 + g(s)X3 = 0

X0 + f(t)X1 + tX2 + g(t)X3 = 0
X1X3 = X2

2

for any s, t ∈ B, with s 6= t, can have no solutions in GF(q). This is equivalent
with the condition that the quadratic equation

(f(s) + f(t))X2
1 + (s + t)X1X2 + (g(s) + g(t))X2

2 = 0

has no solutions in GF(q). In other words, the k conics Vi∩K , i ∈ {1, . . . , k},
form a partial flock of K if and only if

Tr
[(f(s) + f(t))(g(s) + g(t))

(s + t)2

]
= 1, ∀s, t ∈ B, s 6= t. (5.2)

We already know (see Chapter 2) that a closed set of conics C, which can be
used to construct maximal arcs of Mathon type, may be written in the form

C = {(x, y, z) : p(λ)x2 + xy + r(λ)y2 + λz2 = 0, λ ∈ A},

where A is a subset of GF(q) \ {0} such that A ∪ {0} is closed under addition
and p and r are functions from A to GF(q).

Hamilton and J. A. Thas proved in [33] that the functions p and r associated
to C give rise to a partial flock in the following way. Set B = A∪{0} and define
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the functions f and g on B by f(0) = g(0) = 0 and f(t) = tp(t), g(t) = tr(t)
for t ∈ A. Since A, p and r define a closed set of conics we know that

sp(s) + tp(t)

s + t
= p(s + t) and

sr(s) + tr(t)

s + t
= r(s + t), (5.3)

for s, t ∈ A, with s 6= t. As s + t ∈ A the trace condition for the closed set of
conics gives us

1 = Tr[p(s + t)r(s + t)] = Tr
[
(
sp(s) + tp(t)

s + t
)(

sr(s) + tr(t)

s + t
)
]

= Tr
[(f(s) + f(t))(g(s) + g(t))

(s + t)2

]
.

This implies that f, g and B define a partial flock.

From (5.3) we know that sp(s) + tp(t) = (s + t)p(s + t) and sr(s) + tr(t) =
(s+t)r(s+t), or equivalently that f(s)+f(t) = f(s+t) and g(s)+g(t) = g(s+t).
In other words, the functions f and g arising from a closed set of conics are
additive on B and also B is closed under addition. A partial flock with these
properties will be called an additive partial flock.

Conversely, suppose an additive partial flock is given with functions f and g
on an additive subgroup B of GF(q). Now define A = B \ {0} and functions
p(t) = f(t)/t and r(t) = g(t)/t, t ∈ A. Since f and g are additive on B we see
that

sp(s) + tp(t)

s + t
=

f(s) + f(t)

s + t
=

f(s + t)

s + t
= p(s + t)

and hence the closure principle holds. Furthermore, it is clear that

Tr[p(s + t)r(s + t)] = Tr
[f(s + t)g(s + t)

(s + t)2

]
= Tr

[(f(s) + f(t))(g(s) + g(t))

(s + t)2

]
= 1.

The above implies that, using the fact that the functions f and g are additive
on B, the required trace and closure conditions on A in order to give rise to a
closed set of conics, and hence a maximal arc of Mathon type in PG(2, q) are
satisfied. Knowing all the above, the following theorem holds.
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Theorem 5.1.1 ([33]). A degree-d maximal arc of Mathon type gives rise
to an additive partial flock of size d of the quadratic cone in PG(3, q), and
conversely.

In what follows we will show that a partial flock, corresponding to a maximal
arc M of degree d of Mathon type, is linear, if and only if M is of Denniston
type. This is also mentioned in [33] without an explicit proof.

Given a degree-d maximal arc M of Mathon type of which the corresponding
partial flock is linear. Consider two random planes X0 + tp(t)X1 + tX2 +
tr(t)X3 = 0 and X0 + sp(s)X1 + sX2 + sr(s)X3 = 0, s, t ∈ A and s 6= t,
that define two conics contained in the partial flock. Expressing that the
intersection line of these two planes has to be contained in the plane X0 = 0
(as X0 = 0 is also a flock plane) is equivalent to imposing that the rank of the
matrix 1 tp(t) t tr(t)

1 sp(s) s sr(s)
1 0 0 0


is equal to two. This condition will be satisfied if and only if p(s) = p(t) and
r(s) = r(t). Now say p(s) = p(t) = a and r(s) = r(t) = b. It follows that the
conics contained in M can be written as

ax2 + xy + by2 + λz2 = 0, λ ∈ A,

and it follows that M is a maximal arc of Denniston type.

Conversely, if M is a maximal arc of Denniston type, then the corresponding
partial flock is determined by planes with equation

X0 + tX1 + tX2 + atX3 = 0, t ∈ B,

where a is a fixed element of GF(q). It is clear that all these planes have the
line X1 + X2 + aX3 = 0, X0 = 0 in common, hence the corresponding partial
flock is linear.

We conclude that a partial flock, corresponding to a maximal arc M of degree
d of Mathon type, is linear if and only if M is of Denniston type.
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5.2 Projection

As became clear in the previous section a maximal arc of degree d of Mathon
type gives rise to an additive partial flock of size d of the quadratic cone in
PG(3, q), and conversely. The link between these two geometric structures is
of an algebraic nature and is based on the trace condition of Mathon’s con-
struction. The authors of [33] also remark in their paper that a closed set of
conics of size d− 1 on a common nucleus in PG(2, q), q even, can be projected
onto the quadratic cone and in this way induces a partial flock of the quadratic
cone. However, this partial flock did not appear to have as many nice proper-
ties as the one arising from the algebraic approach.

In this section we will establish a more geometric link between the maximal
arcs of Mathon type in PG(2, q) and additive partial flocks in PG(3, q). This
is done by obtaining a geometric link between the partial flock arising from
projection and the additive partial flock. We will see that the relation between
the two partial flocks basically is an “inversion” on the nuclear line of the cone.

Before continuing we first provide a short lemma that guarantees that our
projections are well defined.

Lemma 5.2.1. Let K be a quadratic cone with vertex x in PG(3, q), let N
be its nuclear line, and let π be any plane not through x. Denote N ∩ π by n,
and let p be any point on N distinct from x and n. Then the projection from
p of any conic C in π with nucleus n onto the cone K is a conic on K .

Proof. First note that every line through p intersects the cone in a unique
point. Hence the projection of C results in q + 1 points on K . We need to
show they form a conic.

Consider any plane γ in PG(3, q) not containing x and not containing p. Then
γ clearly intersects K in a conic, and if we project this conic from p onto π
then we obtain a conic in π having n as its nucleus. In this way we obtain
q2(q − 1) conics in π with nucleus n.

On the other hand, in PG(2, q) every conic with nucleus (0, 0, 1) is of the form
αX2

0 + X0X1 + βX2
1 + λX2

2 = 0 with λ 6= 0 and α, β arbitrary elements of
GF(q). Hence there are q2(q− 1) conics having a given point as their nucleus.
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It follows that the conics with nucleus n in π are in one-to-one correspondence
with the planes not through x or p. The lemma follows. 2

Now let M be a degree-d maximal arc of Mathon type in the plane PG(2, q).
Embed PG(2, q) in PG(3, q) and assume that PG(2, q) is the plane with equa-
tion X0 = 0. To simplify the calculations ahead we will assume that the conics
contained in M have equations

α2X2
1 + X1X3 + β2X2

3 + λ2X2
2 = 0, (5.4)

with α, β and λ elements of GF(q). Of course the quadratic polynomial
α2x2+x+β2 has to be irreducible over GF(q) and this is satisfied if Tr(α2β2) =
Tr(αβ) = 1. Hence the change of notation does not alter the trace condition.
In the plane X0 = 0 all conics contained in M have nucleus (0, 1, 0) and the
line at infinity is the line X2 = 0. These conics will sometimes be denoted by
C : (α2, β2, λ2) using only these specific coefficients.

Next, let K be a quadratic cone in PG(3, q). Suppose the cone K has equation
X1X3 = X2

2 . The vertex is the point x(1, 0, 0, 0) and does not belong to the
plane X0 = 0. Notice that the conic which is the intersection of K and the
plane X0 = 0 is not contained in M since the elements α and β cannot be zero.
It is clear that the nuclear line N is the intersection of the planes X1 = 0 and
X3 = 0 which is the line with points (t, 0, 1, 0), t ∈ GF(q) and the vertex x.
Notice that N intersects X0 = 0 in the point (0, 0, 1, 0), the common nucleus
of all conics in M .

Take the point n(1, 0, 1, 0) on the line N . We will project the elements in M
onto the cone K . This means that, for every conic C in M , we look for the
plane V that intersects K exactly in the projection of C from the point n.
In other words, the conic C contained in M is projected onto the conic which
is the intersection of V and K . Furthermore the line with equation X2 = 0,
X0 = 0, which is the line at infinity of M , spans a plane with the point n. This
plane will determine a conic on the cone K which will be the projection of
the line at infinity of M . In the following lemmas we will determine the planes
that induce the projections of each of the conics contained in M . Remark that
these planes induce a partial flock on the quadratic cone K since all conics,
as well as the line at infinity, of M are disjoint. However this partial flock is
not additive, where the partial flock arising in [33] is an additive partial flock.
In what follows we will look for the link between the partial flock induced by
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the projection and the additive partial flock induced by the planes in [33].

Lemma 5.2.2. If α2X2
1 +X1X3 +β2X2

3 +λ2X2
2 = 0 is the equation of a conic

C in M . Then the plane that contains the projection of the conic C from n on
the cone K has equation

λX0 + αX1 + (λ + 1)X2 + βX3 = 0. (5.5)

Proof. Take three points on C, for example p(0, λ, α, 0), q(0, 0, β, λ) and
r(0, β2λ, αβ2, λ). The line pn contains the points (0, λ, α, 0) + t(1, 0, 1, 0) =
(t, λ, α + t, 0), t ∈ GF(q). If t = α the point satisfies X1X3 = X2

2 and it
follows that the intersection of pn and K is the point p′(α, λ, 0, 0). In an
analogous way we find that the lines qn and rn intersect the cone K in the
points q′(β, 0, 0, λ) and r′(βλ+αβ2, β2λ, βλ, λ) respectively. These three points
determine the plane that intersects K in the projection of C. This plane has
an equation of the form aX0 + bX1 + cX2 + dX3 = 0. The conditions resulting
from the requirement that the points p′, q′ and r′ must be contained in this
plane are  αa + λb = 0

βa + λd = 0
(βλ + αβ2)a + β2λb + βλc + λd = 0.

We see that (a, b, c, d) = (λ, α, λ + 1, β) satisfies this system of equations and
therefore the plane that determines the projection of C has equation

λX0 + αX1 + (λ + 1)X2 + βX3 = 0.

2

The planes obtained in Lemma 5.2.2 will be called conic planes since these
planes are associated to the conics in M . It will become clear that they need
to be distinguished from the planes associated to the Denniston lines and the
line at infinity of a maximal arc of Mathon type (see Chapter 2). The latter
will be called the Denniston planes and the singular plane, respectively.

Lemma 5.2.3. If X2 = 0 is the equation of the line at infinity of M . Then
the singular plane has equation X0 + X2 = 0.

Proof. It suffices to consider the span of X2 = 0 and the point n. This is
indeed the plane X0 + X2 = 0. 2
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Using Lemma 5.2.2 and Lemma 5.2.3 we can find all the planes that deter-
mine the projection of the maximal arc M onto the quadratic cone K and
form a partial flock on K . However these planes do not seem to correspond
immediately to the planes found in [33]. In other words we are looking for
the correspondence between the two partial flocks. In particular, applying our
notation on the theory from [33] yields the planes

X0 + α2λ2X1 + λ2X2 + β2λ2X3 = 0 (5.6)

together with the plane X0 = 0, which induce the additive partial flock.

So far, we have found the conic planes with equations λX0 +αX1 +(λ+1)X2 +
βX3 = 0 and the singular plane X0+X2 = 0. Now, consider the automorphism
δ ∈ PGL(4, q) given by

X0 → X0 + X2,

Xi → Xi, i > 0,

that fixes the cone K . This will map the singular plane X0 + X2 = 0 to the
plane X0 = 0 and the image of the conic planes under δ is

λX0 + αX1 + X2 + βX3 = 0. (5.7)

Remark 5.2.4. The point n(1, 0, 1, 0) from which we project is in fact arbi-
trary. Suppose we had chosen any other point (x, 0, 1, 0), x 6= 0 on the nuclear
line. In this case we can still find an automorphism that fixes the cone K and
switches the singular plane and the plane X0 = 0 in the following way. If we
project from the point (x, 0, 1, 0), x 6= 0 we get conic planes with equations

λ

x
X0 + αX1 + (λ + 1)X2 + βX3 = 0 (5.8)

and the singular plane X0 + xX2 = 0. Next, consider the automorphism
δ′ ∈ PGL(4, q) given by

X0 → xX0 + xX2,

Xi → Xi, i > 0.

This δ′ maps the singular plane to the plane X0 = 0 and the planes (5.8) to
the planes

λX0 + αX1 + X2 + βX3 = 0
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while stabilizing the cone. Hence, the partial flock induced by the plane X0 = 0
and the planes (5.7) is, up to isomorphism, the unique partial flock arising
from projection. We will now establish a link between this partial flock and
the additive partial flock arising from the maximal arc.

The planes found in (5.7) intersect the nuclear line in the points (1, 0, λ, 0).

Next, consider the inversion ι on the nuclear line defined by

(1, 0, y, 0) 7→ (1, 0, 1/y, 0), y 6= 0

(1, 0, 0, 0) 7→ (0, 0, 1, 0),

(0, 0, 1, 0) 7→ (1, 0, 0, 0).

Then ι induces an involution, fixing the point (1, 0, 1, 0), on the points of the
nuclear line. We can now use ι to construct a map φ on each plane V that
doesn’t intersect neither one of the points (1, 0, 0, 0) nor (0, 0, 1, 0). Each one
of these planes intersects the plane X0 = 0 in a unique line L and the nuclear
line in a point (1, 0, y, 0), y 6= 0. Define the map φ on the planes V as follows:

φ(V ) = 〈L, ι(1, 0, y, 0)〉 = 〈L, (1, 0, 1/y, 0)〉.

Applying φ on the planes (5.7) results in the planes

X0 + αλX1 + λX2 + βλX3 = 0.

Remark 5.2.5. The correspondence deduced above can also be seen by con-
sidering the automorphisms θλ ∈ PGL(4, q) given by the matrix

Mλ :=


λ2 0 λ2 0
0 1 0 0
0 0 1 0
0 0 0 1


and applying θλ on the original conic planes (5.5) and the singular plane X0 +
X2 = 0. Remark that, since θλ depends on λ, with every conic plane, there
corresponds a unique automorphism θλ.

Finally, we apply the automorphism κ ∈ PGL(4, q) given by

(a, b, c, d) 7→ (a2, b2, c2, d2),
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that fixes the cone K . This yields

X0 + α2λ2X1 + λ2X2 + β2λ2X3 = 0,

and so, the conic planes found in (5.5) are isomorphic to the planes given in
(5.6).

We can summarize as follows. Given a maximal arc of Mathon type in the
plane X0 = 0 in PG(3, q) with common nucleus (0, 1, 0) and X2 = 0 as line
at infinity, i.e., given the coefficients (α2, β2, λ2). Projection from the point
n(1, 0, 1, 0) on the nuclear line onto the cone K gives rise to a partial flock
equivalent to the one with flock planes (5.7) and X0 = 0. This partial flock is
not yet additive. Applying the simple map φ, arising from an inversion on the
nuclear line, to these planes, and then the automorphism κ gives us the planes
(5.6) found in [33], i.e., an additive partial flock. Of course all the above works
in both ways.

5.3 Plane composition

It is natural to wonder about the relation between these conic planes and the
singular (or Denniston) planes and to check whether the equations of these
planes can be calculated directly. We already know (see Lemma 2.3.11 in
Chapter 2) that, given any two disjoint conics on a common nucleus in a
plane, there is a unique third disjoint conic on the same nucleus such that the
three conics form a degree-4 maximal arc of Denniston type. This result can
be translated to a result concerning conic planes.

We start by introducing a standard equation for planes not containing the
point n(1, 0, 1, 0). A plane with an equation of the form

aX0 + bX1 + (a + 1)X2 + cX3 = 0, a, b, c ∈ GF(q) (5.9)

is said to have a standard equation. This equation is unique when the coef-
ficients of X0 and X2 are distinct, that is when the plane does not contain
n.

Lemma 5.3.1. Given any two planes in PG(3, q), not containing n or x, and
intersecting the cone K disjointly, there is a unique third plane such that the
projection of the intersection of these three planes with K from n onto the
plane X0 = 0 induces a degree-4 maximal arc of Denniston type.
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Proof. Given two conic planes and their standard equation V : λX0 +
αX1 + (λ + 1)X2 + βX3 = 0 and W : λ′X0 + α′X1 + (λ′ + 1)X2 + β′X3 = 0.
These conic planes V and W are associated to the conics C1 : (α2, β2, λ2) and
C2 : (α′2, β′2, λ′2) in X0 = 0. Using Lemma 2.3.11 we know that the conic

C1 ⊕ C2 :
(α2λ2 + α′2λ′2

λ2 + λ′2
,
β2λ2 + β′2λ′2

λ2 + λ′2
, λ2 + λ′2

)
is the unique conic inducing a degree-4 maximal arc of Denniston type con-
taining both C1 and C2. The unique conic plane corresponding to C1⊕C2 has
equation

V ⊕W : (λ + λ′)X0 +
αλ + α′λ′

λ + λ′
X1 + (λ + λ′ + 1)X2 +

βλ + β′λ′

λ + λ′
X3 = 0.

2

Notice that the partial flock associated to a maximal arc of Denniston type
should be linear. One easily checks that the three planes in the above lemma
have a line in common. Also note that the coefficients in the standard equation
of the plane V ⊕W are obtained using a Mathon composition.

We know that, if the equation of the conic plane associated to a conic C :
(α2, β2, λ2) is given by λX0 + αX1 + (λ + 1)X2 + βX3 = 0 this equation
is standard. Once the conic plane is set in standard notation we can use
the following lemma to determine the singular plane associated to a degree-4
maximal arc of Denniston type.

Lemma 5.3.2. Given two conic planes V and W in PG(3, q), the singular
plane inducing the line at infinity of the unique degree-4 maximal arc of Den-
niston type induced by V and W can be found by the sum of the equations of
V and W .

Proof. The conic planes V : λX0 + αX1 + (λ + 1)X2 + βX3 = 0 and
W : λ′X0 + α′X1 + (λ′ + 1)X2 + β′X3 = 0 are associated to the two conics
C1 : (α2, β2, λ2) and C2 : (α′2, β′2, λ′2) in X0 = 0. We are looking for the
singular conic in the pencil

{µC1 + νC2 : µ, ν ∈ GF(q), µ, ν 6= 0}.

Since both conics C1 and C2 have 1 as coefficient of the term X1X3 the singular
conic in the pencil above can be found by simply taking the sum of both conics,
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i.e., µ = ν = 1. This gives us (α2 + α′2)X2
1 + (λ2 + λ′2)X2

2 + (β2 + β′2)X2
3 = 0

which is equivalent to

(α + α′)X1 + (λ + λ′)X2 + (β + β′)X3 = 0, (5.10)

yielding the equation of the line at infinity of the unique degree-4 maximal
arc of Denniston type induced by V and W in the plane X0 = 0. Taking the
sum of the equations of the two conic planes V and W gives us the plane with
equation

(λ + λ′)X0 + (α + α′)X1 + (λ + λ′)X2 + (β + β′)X3 = 0.

Intersecting that plane with the plane X0 = 0 results in the same equation of
the line at infinity. 2

Remark that if we take the sum of the conic planes V and V ⊕W in the proof
of Lemma 5.3.1 we do not exactly find equation (5.10). However, we do find
the same line at infinity. By multiplying that equation by the right scalar
we can always attain equation (5.10). It is clear that we obtain a different
singular plane if the equations of the conic planes are not standard. In that
case Lemma 5.3.2 does not work.

Next we consider the intersections of each of the planes in the partial flock,
i.e., the conic planes and the singular plane, with the nuclear line N . We know
that N consists of the points (t, 0, 1, 0), t ∈ GF(q) and the vertex x(1, 0, 0, 0).
Since the singular plane should always induce a line at infinity on the plane
X0 = 0 in the projection from n(1, 0, 1, 0) we know that this singular plane in-
tersects the nuclear line in the point n. Furthermore, suppose the planes V, W
and V ⊕ W , as seen in the proof of Lemma 5.3.1, are the three conic planes
associated to a random degree-4 maximal arc of Denniston type. Their inter-
sections with the nuclear line gives us the points (λ+1, 0, λ, 0), (λ′+1, 0, λ′, 0)
and (λ + λ′ + 1, 0, λ + λ′, 0), respectively. If, to these three points, we add
the vertex x(1, 0, 0, 0) we see that, in the X2-component, the elements of the
additive group of order 4 that induce the Denniston 4-arc are given.

5.4 Analogue of the synthetic theorem

In Chapter 3 we obtained a synthetic version of Mathon’s theorem. Mainly
by using Mathon’s composition and Lemma 2.3.11 it became clear that, given
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a degree-d maximal arc M of Mathon type and a conic C disjoint from M ,
there is a unique maximal arc of degree 2d of Mathon type containing M ∪C.
With the tools given above it is possible to translate this theorem to a theorem
concerning partial flocks. First we will extend the additive linear partial flock
of size 4 corresponding to a degree-4 maximal arc of Denniston type.

Theorem 5.4.1. Given an additive linear partial flock F of size 4 and given a
plane V ′, not containing the point n′(0, 0, 1, 0) or x, and such that V ′ intersects
K in a conic disjoint from the elements of F . Then there is a unique additive
partial flock of size 8 containing the conics determined by V ′ and the four planes
defining F .

Proof. This follows immediately from the analysis in the previous sections,
Theorem 5.3.2 and Theorem 3.1.2 . 2

Remark 5.4.2. If the plane V ′ in the previous theorem contains the intersec-
tion line of the four planes V ′

1 , . . . , V
′
4 defining F , the partial flock of size 8

will be linear, thus inducing a degree-8 maximal arc of Denniston type.

The previous theorem can be generalized to maximal arcs of Mathon type in
the following way.

Theorem 5.4.3. Given an additive partial flock F of size d and given a plane
V ′, not containing the point n′, and such that V ′ intersects K in a conic
disjoint from the elements of F . Then there is a unique additive partial flock
of size 2d containing the conics determined by V ′ and the d planes defining F .

Proof. The proof is analogous to the proof of Theorem 5.4.1. 2

Using Lemma 5.3.2 and the equation of the singular planes we can deduce
some properties concerning the Denniston lines.

Lemma 5.4.4. Given a degree-2d maximal arc M of Mathon type that con-
tains a degree-d maximal arc D of Denniston type. Then all Denniston lines
of M are concurrent.

Proof. After projection from the point n(1, 0, 1, 0) the maximal arc D gives
rise to a linear partial flock on the cone K . In other words, all the planes
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inducing this partial flock intersect in a common line L. Using Theorem 5.4.3
we can choose a suitable plane V to construct the partial flock of size 2d that
corresponds to the degree-2d maximal arc M . However, as was noticed in Re-
mark 5.4.2, this plane V cannot contain the common line L and hence V must
intersect L in a point p in PG(3, q). Furthermore, using Lemma 5.3.2, since all
Denniston planes actually are linear combinations of V and the conic planes in
the linear partial flock corresponding to D, it is clear that p will be contained
in all Denniston planes. Finally, after projection from n on the plane X0 = 0,
we see that all the Denniston lines must be concurrent as they all contain the
projection of p. 2

Remark 5.4.5. Note that the above lemma provides an alternative proof for
the fact that the Denniston lines of a degree-8 maximal arc of proper Mathon
type are concurrent. (See Chapter 3.)

Another property regarding the Denniston lines concerns the coefficients α and
β in the equation of the conics given by (5.4).

Lemma 5.4.6. The Denniston lines of a maximal arc of Mathon type are
concurrent if the coefficient α or β is a constant.

Proof. Suppose that α ∈ GF(q) is a constant in the equation of the conics
contained in a maximal arc of Mathon type as given in (5.4). In this case let
V : λX0+αX1+(λ+1)X2+βX3 = 0 and W : λ′X0+αX1+(λ′+1)X2+β′X3 = 0
be two random conic planes. Using Lemma 5.3.2 we know that the singular
plane induced by V and W has equation

(λ + λ′)X0 + (λ + λ′)X2 + (β + β′)X3 = 0.

It is clear that the point (0, 1, 0, 0) is always contained in this plane. This
implies that all Denniston lines are concurrent. An analogous argument holds
if β is a constant. 2

5.5 Additive group

Consider an additive group G of order 2d. In this section we will discuss how,
under certain circumstances, it is possible to construct a degree-2d maximal
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arc M of Mathon type (having G as its related additive group), and containing
a degree-d maximal arc of Denniston type. Consider the plane X0 = 0 and
let G := {0, 1, λ1, λ2, . . . , λ2d−2}. Now we take an additive subgroup H :=
{0, 1, λ1, . . . , λd−2} of order d of G and we choose the line X2 = 0 as a line at
infinity. The elements of H give rise to a degree-d maximal arc D of Denniston
type in the standard pencil determined by the nucleus (0, 1, 0), the line X2 = 0
at infinity and the conic X2

1 + X1X3 + X2
3 + X2

2 = 0 induced by the element 1
in H. In other words, D consists of the conics

Cλ2 : X2
1 + X1X3 + X2

3 + λ2X2
2 = 0,

with λ2 = 1, λ2
1, . . . , λ

2
d−2. Every conic Cλ2 has nucleus (0, 1, 0) and the line at

infinity of D is the line X2 = 0.

Next, we choose an element in G that is not contained in H, say λd. It is clear
that H ∪ {λd} generates G. Because we are trying to construct a degree-2d
maximal arc M of Mathon type that contains D we need, using Theorem 3.1.2,
a conic C : α2X2

1 + X1X3 + β2X2
3 + λ2

dX
2
2 = 0, with α, β ∈ GF(q), disjoint

from D on the same nucleus (0, 1, 0). However, since M contains the degree-d
maximal arc D we can assume without loss of generality, using Lemma 5.4.4
and Lemma 5.4.6, that α = 1. It follows that if we can find a suitable element
β we will be able to construct the entire maximal arc M .

We know that the two conics C1 and C uniquely determine a third conic C1⊕C
in order to form a degree-4 maximal arc of Denniston type. This 4-arc has
a unique line at infinity L, which is also uniquely determined by C1 and C
(use for instance Lemma 5.3.2), moreover, C1 and L induce the conic C. This
implies that it suffices to determine L in order to find C and thus M .

Since α = 1 we can assume that L has an equation of the form

ρX2 + X3 = 0, X0 = 0,

ρ ∈ GF(q). The singular plane S associated to L has an equation of the form
AX0 + ρX2 + X3 = 0. As we know that this plane has to contain the point
n(1, 0, 1, 0) we find that A = ρ. Hence S has equation

ρX0 + ρX2 + X3 = 0. (5.11)
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Furthermore, the conic plane that determines C1 has equation X0+X1+X3 = 0
and the conic plane that determines C has equation λdX0 +X1 +(λd +1)X2 +
βX3 = 0. Since these two equations are standard, their sum also provides us
with the equation of the associated singular plane S. We find that S must
have the equation (λd + 1)X0 + (λd + 1)X2 + (β + 1)X3 = 0, or equivalently

λd + 1

β + 1
X0 +

λd + 1

β + 1
X2 + X3 = 0. (5.12)

From (5.11) and (5.12) we see that ρ = (λd + 1)/(β + 1), or equivalently

β =
λd + 1

ρ
+ 1. (5.13)

Next, we need to express that the conic C, with β as given in (5.13), is disjoint
from the maximal arc D. The elements ρ that satisfy these conditions of
disjointness will provide us with the proper elements β that induce C and thus
the maximal arc M .

The conic C is given by the equation

X2
1 + X1X3 +

(λd + 1

ρ
+ 1

)2

X2
3 + λ2

dX
2
2 = 0

and has to be disjoint from the conics Cλ2 : X2
1 + X1X3 + X2

3 + λ2X2
2 = 0,

with λ2 = 1, λ2
1, . . . , λ

2
d−2 that form the degree-d maximal arc D. Suppose that

the point p(x1, x2, x3) in X0 = 0 is a point of Cλ2 . In that case we know that
x2

1 + x1x3 + x2
3 + λ2x2

2 = 0 holds. If p is also contained in C we find that

x2
1 + x1x3 +

((λd + 1)2

ρ2
+ 1

)
x2

3 + (λ2
d + λ2)x2

2 + λ2x2
2 = 0,

which is now of course equivalent to

λd + 1

ρ
x3 + (λd + λ)x2 = 0.

It follows that

x2 =
(λd + 1)

ρ(λd + λ)
x3.

If we now substitute this in the equation of the conic Cλ2 we find

X2
1 + X1X3 + X2

3 + λ2 (λd + 1)2

ρ2(λd + λ)2
X2

3 = 0.
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Since we want the conics Cλ2 and C to be disjoint we want the quadratic
equation

x2 + x +
(
1 + λ2 (λd + 1)2

ρ2(λd + λ)2

)
= 0

to have no solutions over GF(q). This will be the case if and only if

Tr
[
1 + λ2 (λd + 1)2

ρ2(λd + λ)2

]
= 1. (5.14)

Distinguishing the cases q = 2h, h odd and h even, we can simplify condition
(5.14) further. If h is odd we know that Tr[1] = 1 and condition (5.14) is
equivalent to

Tr
[λ(λd + 1)

ρ(λd + λ)

]
= 0. (5.15)

On the other hand, if h is even then Tr[1] = 0 and we analogously find

Tr
[λ(λd + 1)

ρ(λd + λ)

]
= 1. (5.16)

We conclude that all elements ρ that satisfy condition (5.14) give rise to a
suitable element β as given in (5.13). Substituting this β in the equation
X2

1 + X1X3 + β2X2
3 + λ2

dX
2
2 = 0, where we assumed α = 1 as seen above, gives

us a conic C which is disjoint from the degree-d maximal arc D and therefore
induces a degree-2d maximal arc of Mathon type where the coefficients of the
term X2

2 are the squares of the elements in G \ {0}.

Hence, as soon as the above system of trace conditions has a non-trivial solution
we can construct a proper maximal degree-2d arc of Mathon type, containing
a degree-d maximal arc of Denniston type. In a worst case scenario all the
trace conditions could be linearly independent (over GF(2)). In such case,
with q = 2h we are guaranteed of the existence of a Mathon maximal arc of
degree 2blog2(h)c+1 having the prescribed additive group, containing a maximal
arc of Denniston type of degree 2blog2(h)c. So in general one should be able to
analyze the linear (in)dependence of the trace conditions. Though we do not
believe that in general they are all independent, the analysis of dependence
seems to be a hard problem, and an interesting topic for future research.
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Appendix A

Isomorphism between AS(q) and
the Payne derivation of W(q)

The two generalized quadrangles mentioned in the title were considered in
Chapter 1 (Section 1.7). We already brought up that AS(q) is actually a
Payne-derived GQ, more precisely, AS(q) ∼= P(W(q), x), with q odd. In this
appendix we present an actual map between the two incidence geometries. The
reason we were so interested in describing an actual map is rooted in a (failed)
attempt to construct new partial geometries. Let us first explain this in some
more detail. Let K be a maximal arc of Mathon type in PG(2, q), q even.
Then one can construct the partial geometry T ∗

2 (K). Now, since K is a union
of conics on the same nucleus, it is obvious that T ∗

2 (K) is the union of GQs
T ∗

2 (O) sharing (only) a spread of symmetry (see below). Of course if q is odd
there are no (non-trivial) maximal arcs in PG(2, q), but nevertheless there is a
GQ, AS(q), with parameters (q − 1, q + 1), that is, the parameters that a GQ
arising from a hyperoval would have. Furthermore, AS(q), has a unique spread
of symmetry. It was our aim to see if it is possible to construct, for odd q,
partial geometries with the parameters of a T ∗

2 (K) by taking unions of several
AS(q) sharing (only) their spread of symmetry. As in P(W(q), x) lines are lines
of PG(3, q), which are easier to deal with than the original curves describing
AS(q), we believed it was useful to have an easy algebraic tool to go from AS(q)
to P(W(q), x) and back. That is the main reason for having constructed the
explicit isomorphism described in this appendix. Unfortunately, it never has
been useful in constructing new partial geometries.
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A.1 A closer look at both geometries

Before we introduce the above mentioned map we should have a closer look at
both generalized quadrangles.

• The generalized quadrangle of Ahrens and Szekeres AS(q).

Recall the definition of the generalized quadrangle AS(q) = (P ,B, I), q an
odd prime, of order (q−1, q+1) as seen in Chapter 1. For the convenience
of the reader we restate the elements of B, which are the following curves
of AG(3, q):

(i) x = σ, y = a, z = b

(ii) x = a, y = σ, z = b

(iii) x = cσ2 − bσ + a, y = −2cσ + b, z = σ.

Here the parameter σ ranges over GF(q) and a, b, c are arbitrary elements
of GF(q). The incidence I is the natural one.

It is clear that |P| = q3, that |B| = q2(q + 2), and that each element of B
is incident with q elements of P . For each value of c there are q2 curves
of type (iii), and these curves have no point in common. For suppose the
curves corresponding to (a, b, c) and (a′, b′, c) intersect. Then for some σ
we have cσ2 − bσ + a = cσ2 − b′σ + a′ and −2cσ + b′ = −2cσ + b. This
clearly implies b = b′ and a = a′. Similarly, no two curves of type (i) (or
type (ii)) intersect.

Thus we have q + 2 families of disjoint curves, q2 curves in each family
and q points on each curve, and each point of P is incident with exactly
q + 2 elements of B, one from each family.

Let π∞ : u = 0 be the plane at infinity of AG(3, q). Now consider the
curves of type (i). The equations can be written as follows: x

y
z

 =

 0
a
b

 + σ

 1
0
0

 .

It is clear that these curves are lines and that they all have the same
projective point (1, 0, 0, 0) at infinity.
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Next, let S = {L1, ..., L1+st} be a spread of a generalized quadrangle Q
of order (s, t) and let GS be the group of automorphisms of Q that fixes
each line of S.

In order to continue we need the definition of a spread of symmetry.

Definition A.1.1. A spread of symmetry is a spread S satisfying the
following property: for every K, L ∈ S and every two lines M and N
meeting K and L, there exists an automorphism θ ∈ GS such that M θ =
N . If Q is a grid, then S is a spread of symmetry if and only if |GS| = s+1.

The following Lemma shows us that there is a spread of symmetry in
AS(q) and where it is situated.

Lemma A.1.2. The lines of type (i) of AS(q) form the spread of sym-
metry.

Proof. We need to find an automorphism group of the GQ that fixes the
lines of type (i) linewise and acts regularly on the points of these lines.
Consider the affine maps θk : x′ = x + k, y′ = y, z′ = z, k ∈ GF(q).
These q maps clearly form a group of automorphisms of AS(q) acting in
the desired way.

We move on by having a look at the curves of type (iii) in the case c = 0.
This gives us the following equation: x

y
z

 =

 a
b
0

 + σ

 −b
0
1

 .

It is clear that the q2 lines given by these equations determine q points
(−b, 0, 1, 0), b ∈ GF(q), in the plane at infinity π∞. Together with the
point (1, 0, 0, 0) these q points form a line L in π∞. We obtain the fol-
lowing situation: through every point (−b, 0, 1, 0) on L there are q lines
of AS(q) lying in a plane. This plane has L as its line at infinity and is
completely determined by the elements b and c(= 0) of GF(q). The q
values for a then determine each of the q lines.

In the general case (c 6= 0) the equations of the curves of type (iii) are
equivalent to {

x = cz2 − bz + a
y = −2cz + b .

(A.1)



108 | Appendix A. Isomorphism between AS(q) and the Payne derivation of W(q)

This system of equations gives rise to a conic in a plane of AG(3, q).
Remark that (1, 0, 0, 0) is the point at infinity of each of these conics.

Given any point p = (x, y, z) in AG(3, q) we can always choose a curve
of type (iii) through p such that the coordinates of p can be written in
the following way:

x = cpz
2 − bpz + ap

y = −2cpz + bp,

with ap, bp, cp 6= 0 ∈ GF(q) the elements that determine the chosen conic,
i.e., the curve of type (iii). Note that ap, bp and cp are not uniquely
determined by p.

• The Payne derived GQ.

Using the notation from Chapter 1 we have that S ′ = P(S, x) = (P ′,B′, I′)
is a GQ of order (q − 1, q + 1), which is called the Payne-derived GQ of
S with respect to x. In what follows we will assume S to be the gen-
eralized quadrangle W(q) in its natural embedding in PG(3, q) with the
associated symplectic polarity ρ determined by the matrix

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

We know that each point of W(q) is regular and so we will consider
P(W(q), (1, 0, 0, 0)) := P , the Payne derived of W(q) with respect to the
point (1, 0, 0, 0).

Remark A.1.3. Since we consider the Payne derived P it is clear that
in this case the spread of symmetry is the spread consisting of the lines
through the point (1, 0, 0, 0).

A.2 An actual map between AS(q) and P

Finally, we present a map from AS(q) to P , q odd, and prove that it is indeed
an isomorphism between the two geometries.
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Theorem A.2.1. Let p = (x, y, z) be a point of AG(3, q), with x = cpz
2−bpz+

ap, y = −2cpz+bp, cp 6= 0. Then the map α : p 7→ pα = (x−cpz
2+bpz/2, y, z/2)

is an isomorphism between AS(q) and P.

Proof. First of all remark that the coordinates (x, y, z) of the point p are
written as given in (A.1). It is clear that p is a certain point of some conic
in AG(3, q) which is a line of type (iii) in AS(q). To prove that the map α is
well-defined we need to show that it does not depend on the conic we chose to
represent p. Suppose that p can also be written as follows.

x = cpz
′2 − bpz

′ + ap

y = −2cpz
′ + bp

z = z′

with ap, bp, cp ∈ GF(q). Clearly z = z′. It immediately follows that −2cpz +

bp = −2cpz + bp. If we multiply this last equation by z and then divide it by
2 we obtain

−cpz
2 +

bpz

2
= −cpz

2 +
bpz

2
.

This proves that the map α is well-defined.

Now suppose that (x, y, z)α = (x′, y′, z′)α or equivalently that (x − cpz
2 +

bpz/2, y, z/2) = (x′ − cpz
′2 + bpz

′/2, y′, z′/2). It follows immediately that z =

z′, y = y′ and so −2cpz + bp = −2cpz + bp. Using the same arguments we did
above, we find x = x′. This implies that α is injective, hence bijective.

It remains to be shown that α preserves collinearity. Notice that, in order to
prove that α is an isomorphism, it is indeed sufficient to show that α preserves
collinearity. This follows from the fact that three distinct points on a line in
that case have to be mapped onto three distinct points on a line, since a GQ
does not contain triangles.

We start by considering a curve of type (i). Let (σ1, a, b) and (σ2, a, b) deter-
mine two points on such a line. The images of these points under the map α
are (σ1 − cpb

2 + bpb/2, a, b/2) and (σ2 − c′pb
2 + b′pb/2, a, b/2) respectively, with

bp, b
′
p, cp, c

′
p ∈ GF(q). The line of AG(3, q) containing these two points can be

written in the following way:

(σ1 − cpb
2 + bpb/2, a, b/2) + t(σ2 − σ1 − b2(c′p − cp) + b/2(b′p − bp), 0, 0),
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in which t ranges over GF(q). It is clear that the point at infinity of this line
is (1, 0, 0, 0). This proves that α maps the spread of symmetry of AS(q) to the
spread of symmetry of the Payne-derived GQ P .

Next we need to show that α maps a curve of type (iii) to an absolute line
with respect to the symplectic polarity ρ. Consider two points p1 = (cpσ

2
1 −

bpσ1 + ap,−2cpσ1 + bp, σ1) and p2 = (cpσ
2
2 − bpσ2 + ap,−2cpσ2 + bp, σ2) on

such a curve, with ap, bp, cp ∈ GF(q). It suffices to show that pα
2 lies in (pα

1 )ρ.
Since pα

2 = (−bpσ2/2+ ap,−2cpσ2 + bp, σ2/2) and the affine part of (pα
1 )ρ is the

hyperplane in AG(3, q) with equation

−X +
σ1

2
Y + (2cpσ1 − bp)Z − bpσ1

2
+ ap = 0

it is easy to see that the condition holds.

Finally we will prove that also a curve of type (ii) is mapped onto an absolute
line. Consider two distinct points p1 and p2 on such a curve. Then there are
a, b ∈ GF(q) and σ, σ′ ∈ GF(q) such that p1 = (a, σ, b) and p2 = (a, σ′, b). Now
it is clear that in fact (x, y, z)α = (x + yz

2
, y, z

2
). Hence pα

2 = (a + σ′b
2

, σ′, b
2
),

and the affine part of (pα
1 )ρ is the hyperplane in AG(3, q) with equation

−X +
b

2
Y − σZ + a +

σb

2
= 0.

It is now clear that pα
2 ∈ (pα

1 )ρ. This proves that the line 〈pα
1 , pα

2 〉 is absolute,
concluding our proof. 2



Appendix B

Nederlandstalige samenvatting

In deze Nederlandstalige samenvatting zullen we de resultaten uit deze thesis
bondig op een rijtje zetten. Hierbij is het niet de bedoeling om in detail te tre-
den, bijgevolg zullen in deze samenvatting geen bewijzen worden opgenomen.
Indien meer informatie gewenst is, verwijzen we graag naar de Engelstalige
tekst, waarvan we hier de structuur zullen aanhouden.

B.1 Inleiding

In dit inleidende hoofdstuk wordt het algemeen wiskundig kader geschetst
waarin deze thesis zich bevindt. Enkele fundamentele, meetkundige begrip-
pen worden opgefrist en de notaties worden vastgelegd. We gaan ervan uit
dat de lezer voldoende vertrouwd is met de basisbegrippen uit de projectieve
meetkunde en verwijzen voor een vollediger inleiding naar Chapter 1 van de
Engelstalige tekst. Bij wijze van inleiding herhalen we hier de definitie van een
maximale boog, het centrale thema van deze verhandeling.

Definitie B.1.1. Een {k; d}-boog K in een eindig projectief vlak van de orde
q is een niet-ledige deelverzameling van k punten zodat een rechte van het vlak
de verzameling K snijdt in d punten, maar geen enkele rechte K snijdt in meer
dan d punten. Gegeven q en d dan is k nooit groter dan q(d−1)+d. Wanneer
hier de gelijkheid geldt noemt men de verzameling K een maximale boog van
graad d, een {q(d− 1) + d; d}-boog of korter nog, een d-boog.

111
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Een equivalente definitie van zo’n maximale boog K is een niet-ledige ver-
zameling punten in het vlak, zodanig dat elke rechte K snijdt in 0 of in d
punten. Een rechte die K snijdt wordt een secant genoemd terwijl een rechte
die disjunct is aan K een externe rechte wordt genoemd.

Het is duidelijk dat zowel een punt als een affien vlak voorbeelden zijn van
maximale bogen. Deze twee voorbeelden zullen we echter triviaal noemen.

Lemma B.1.1. Als K een {q(d−1)+d; d}-boog is in een projectief vlak π van
de orde q, dan vormen de externe rechten aan K een {q(q−d+1)/d; q/d}-boog
in het duale vlak.

Bijgevolg is een nodige voorwaarde voor het bestaan van een {q(d− 1)+d; d}-
boog in een projectief vlak van de orde q dat d een deler is van q. Denniston
[20] toonde aan dat deze voorwaarde voldoende is in het Desarguesiaanse pro-
jectieve vlak PG(2, q), met q even (Chapter 2).

Merk op dat, indien π een Desarguesiaans vlak is van orde q dat een maximale
boog K van graad d bevat, π ook een maximale boog van graad q/d bevat.
Deze boog heten we de duale maximale boog van K.

Ball, Blokhuis en Mazzocca gebruikten polynomiale methoden om het volgen-
de, meer dan 25 jaar oude vermoeden, te bewijzen.

Stelling B.1.2 ([5]). Er bestaan geen niet-triviale maximale bogen in het pro-
jectieve vlak PG(2, q) wanneer q oneven is.

B.2 Gekende constructies van maximale bogen

Het tweede hoofdstuk is volledig gewijd aan de reeds gekende constructies van
maximale bogen alsook aan een aantal karakterisaties daaromtrent. In 1969
gebruikte Denniston [20] een speciale waaier van kegelsneden om op die ma-
nier een maximale boog te construeren in de Desarguesiaanse vlakken van even
orde. Vijf jaar later was het J. A. Thas [51] die, d.m.v ovöıden en spreads in
veralgemeende vierhoeken W(q), maximale bogen van graad q vormde in vlak-
ken van orde q2. In 1980 was het opnieuw J. A. Thas [53] die een nieuwe
maximale boog van graad qt−1 introduceerde in symplectische translatievlak-
ken van de orde qt. Hij deed dit aan de hand van kwadrieken en spreads in
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projectieve ruimten. Tenslotte definieerde Mathon [38] in 2001 een compositie
op een verzameling kegelsneden met gemeenschappelijke kern. Op basis hier-
van ontstaan maximale bogen in PG(2, q) die, zoals onder meer bewezen werd
door Hamilton en Mathon [29], nieuwe families van maximale bogen induceren.

Eigenlijk zijn de maximale bogen die geconstrueerd werden door Mathon een
veralgemening van de maximale bogen van Denniston. In de Engelstalige ver-
sie hebben we, tijdens het voorstellen van de verschillende constructies, de
chronologische volgorde aangehouden. In deze beknopte samenvatting zullen
we vertrekken van de constructie van Mathon en vervolgens aanduiden hoe de
maximale bogen van Denniston terug te vinden zijn in deze veralgemening.
Bovendien laten we hier de twee constructies van J. A. Thas buiten beschou-
wing gezien het vervolg van deze thesis vooral gebasseerd is op de maximale
bogen van Mathon (en Denniston).

Maximale bogen van Mathontype

We veronderstellen vanaf nu telkens dat q = 2h. In PG(2, q), gerepresenteerd
door homogene coördinaten over GF(q), stellen we de punten voor door (a, b, c)
en de rechten door [u, v, w]. Een punt (a, b, c) is incident met een rechte [u, v, w]
als en slechts als au + bv + cw = 0. Verder zullen we de gebruikelijke, absolute
trace-afbeelding van GF(q) naar GF(2) noteren als Tr, zodat, voor x ∈ GF(q),

Tr(x) = x + x2 + x22

+ · · ·+ x2h−1

.

Voor α, β ∈ GF(q) waarvoor geldt dat Tr(αβ) = 1, en voor λ ∈ GF(q) defi-
niëren we Fα,β,λ als de kegelsnede

Fα,β,λ = {(x, y, z) : αx2 + xy + βy2 + λz2 = 0}.

Merk op dat de tracevoorwaarde Tr(αβ) = 1 equivalent is met de eis dat het
kwadratisch polynoom αξ2 + ξ + β irreducibel is over GF(q). De verzameling
van alle dergelijke kegelsneden zullen we voortaan voorstellen door F . Het
is duidelijk dat alle kegelsneden uit F het punt Fα,β,0 := F0(0, 0, 1) als kern
bevatten en dat, wegens de tracevoorwaarde, de rechte z = 0 extern is t.o.v.
alle kegelsneden. Deze rechte wordt bijgevolg de rechte op oneindig genoemd.
Alle overige kegelsneden zijn niet-ontaard.

Voor gegeven λ 6= λ′ definiëren we de compositie

Fα,β,λ ⊕ Fα′,β′,λ′ = Fα⊕α′,β⊕β′,λ⊕λ′
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waarbij de operator ⊕ als volgt gedefiniëerd is:

α⊕ α′ =
αλ + α′λ′

λ + λ′
, β + β′ =

βλ + β′λ′

λ + λ′
, λ⊕ λ′ = λ + λ′. (B.1)

Lemma B.2.1 ([38]). Twee niet-ontaarde kegelsneden Fα,β,λ, Fα′,β′,λ′ , λ 6= λ′

en hun compositie Fα,β,λ ⊕ Fα′,β′,λ′ zijn onderling disjunct als

Tr((α⊕ α′)(β ⊕ β′)) = 1.

Een deelverzameling C ⊂ F wordt gesloten genoemd als voor elke Fα,β,λ 6=
Fα′,β′,λ′ ∈ C, geldt dat Fα⊕α′,β⊕β′,λ⊕λ′ ∈ C.

In Mathon zijn volgende resultaat ([38]) zien we hoe gesloten verzamelingen
van kegelsneden kunnen dienen om maximale bogen te vormen. Een dergelijke
maximale boog wordt een maximale boog van Mathontype genoemd, of korter,
een Mathon maximale boog.

Stelling B.2.1 ([38]). Veronderstel dat C ⊂ F een gesloten verzameling is
van 2d−1 kegelsneden in PG(2, 2m), 1 ≤ d ≤ m. De unie van de punten op de
kegelsneden van C en hun gemeenschappelijke kern F0 vormen een maximale
{2m+d − dm + 2d; 2d}-boog K in PG(2, 2m).

Zoals al aangegeven werd in het begin van deze sectie kan de constructie van
Mathon gezien worden als een veralgemening van de constructie van Denniston.
Beschouw daartoe de volgende setting.

Kies een α ∈ GF(q) waarvoor Tr(α) = 1. Veronderstel dat A een deelverza-
meling is van GF(q)∗ = GF(q) \ {0} zodanig dat A ∪ {0} gesloten is onder de
optelling. In dit geval zal de puntenverzameling van kegelsneden

KA = {Fα,1,λ : λ ∈ A}

samen met de gemeenschappelijke kern F0 de puntenverzameling zijn van een
maximale boog van graad |A| + 1 in PG(2, q). Deze constructie is precies de
definitie van een maximale boog van Dennistontype, of korter, Denniston maxi-
male boog. De kegelsneden in KA zijn een deelverzameling van de standaard
kegelsnedenwaaier, meer bepaald, de verzameling

{Fα,1,λ : λ ∈ GF(q)}.
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Deze waaier vormt een partitie onder de punten van het vlak, disjunct van de
rechte z = 0, bestaande uit q− 1 disjuncte kegelsneden op de gemeenschappe-
lijke kern F0(0, 0, 1). De rechte z = 0, disjunct aan alle kegelsneden, zullen we
de rechte op oneindig noemen van de Denniston maximale boog. Dit is dus
eigenlijk de rechte op oneindig van de waaier die de Dennistonboog bevat.

Opmerking B.2.2. Vermits we zowel de rechte op oneindig van een Den-
niston maximale boog als de rechte op oneindig van een Mathon maximale
boog gëıntroduceerd hebben bestaat de kans dat er wat verwarring optreedt
i.v.m. deze term. Zoals verder ook zal blijken bevatten Mathon maximale
bogen verschillende Denniston maximale bogen. Wanneer we dan de rechte op
oneindig beschouwen van een Denniston maximale boog, als deelboog van een
Mathon maximale boog, zullen we deze rechte de Dennistonrechte noemen van
de beschouwde Dennistonboog. De externe rechte van de Mathonboog blijft
simpelweg de “rechte op oneindig”.

Een gesloten verzameling kegelsneden C = {Fα,β,λ} kan ook beschreven worden
waarbij de parameters α en β veeltermen zijn in λ. We kunnen dus zo een
gesloten verzameling beschrijven aan de hand van functies p : A → GF(q) en
r : A → GF(q), waarbij λ de waarden uit de verzameling A doorloopt. De
vergelijkingen die dan de gesloten verzameling C bepalen worden dan gegeven
door

{p(λ)x2 + xy + r(λ)y2 + λz2 = 0 : λ ∈ A}. (B.2)

Uit de resultaten in [38] volgt dat een maximale boog van Mathontype van
graad d Mathon deelbogen bevat van graad d′ voor elke deler d′ van d. Bo-
vendien blijkt dat elke Mathonboog van graad 4 een Dennistonboog is. In
hetzelfde artikel gebruikt Mathon zijn constructie ook om een aantal nieuwe,
oneindige families van maximale bogen in PG(2, q) voor te stellen.

Er zijn verscheidene families van Mathonbogen gekend die niet van het Den-
nistontype zijn. Een Mathon maximale boog die niet van Dennistontype is
zullen we voortaan vaak een ware Mathonboog noemen. Het is echter nogal
omslachtig om, tijdens het nagaan of een gegeven deelverzameling kegelsneden
van F een maximale boog is, telkens opnieuw de tracevoorwaarde uit Lemma
B.2.1 te controleren. In de volgende sectie zullen we een meer meetkundige
interpretatie geven van de maximale bogen van Mathontype die ons zal helpen
bij dit probleem.



116 | Appendix B. Nederlandstalige samenvatting

Een uiterst handig instrument hierbij is het volgende lemma van Aguglia,
Giuzzi en Korchmáros (zie [2]). Zij toonden aan dat twee kegelsneden met een
gemeenschappelijke kern op unieke wijze uitbreidbaar zijn.

Lemma B.2.2. Gegeven twee kegelsneden C1 en C2 met een gemeenschappe-
lijke kern, er bestaat dan een unieke Denniston maximale boog van graad 4 die
C1 ∪ C2 bevat.

Bovendien konden we van bovenstaand lemma gebruik maken om de volgende
stelling te bewijzen.

Stelling B.2.3. Een maximale boog K, bestaande uit disjuncte kegelsneden
met een gemeenschappelijk kern, is altijd van Mathontype.

B.3 Meetkundige interpretatie van Mathon maximale
bogen

Zoals gezegd proberen we in deze sectie een eerder meetkundige interpretatie te
geven van de Mathonbogen. Deze nieuwe aanpak zal het ook mogelijk maken
om het aantal niet-isomorfe Mathon 8-bogen te tellen in PG(2, 2h), h > 4 en
h 6= 7 priem.

Het tellen van Mathonbogen werd reeds bestudeerd in [30], waar grenzen wer-
den berekend voor het aantal isomorfieklassen van Mathonbogen van “ho-
ge”graad. De gebruikte technieken faalden echter voor bogen van kleinere
graad en het tellen van dergelijke bogen werd als een open probleem gepostu-
leerd.

De resultaten uit deze sectie zijn terug te vinden in [17].

B.3.1 Een synthetische constructie van Mathonbogen

De meetkundige interpretatie waarvan sprake zal eigenlijk neerkomen op een
soort veralgemening van Lemma B.2.2. Na aangetoond te hebben dat we,
gegeven een Mathon maximale boog van graad d en een disjuncte kegelsnede
C met dezelfde kern, steeds een externe rechte kunnen vinden die dienst zal
doen als rechte op oneindig van de nieuwe boog, kunnen we de volgende stelling
bewijzen.
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Stelling B.3.1 (Synthetische versie van Mathons stelling). Zij M een
Mathon maximale boog van graad d, d < q/2, bestaande uit d− 1 kegelsneden
met een gemeenschappelijke kern n en zij Cd een kegelsnede disjunct van M
met dezelfde kern n. Er bestaat dan een unieke Mathon maximale boog van
graad 2d die M ∪ Cd bevat.

Als q = 2p, p 6= 2, 3 priem, is het mogelijk om aan te tonen dat de automorfis-
megroep G van een Denniston maximale boog van graad 4 orde 2(q + 1) heeft
en isomorf is met Cq+1 o C2. Deze groep G bevat een cyclische deelgroep van
de orde q + 1 die alle drie de kegelsneden fixeert en scherp transitief werkt op
de punten van elk van die kegelsneden. Bovendien fixeert deze groep de rechte
L op oneindig van de 4-boog en werkt die scherp transitief op de punten van L.
De groep G bevat ook q + 1 involuties. Deze zijn precies de q + 1 elaties, met
als as een rechte door de kern, en als centrum de doorsnede van deze rechte
met de rechte L, die elk van de drie kegelsneden van de 4-boog fixeren. Elke
rechte door de kern induceert precies één dergelijke involutie.

In het volgende lemma tellen we het aantal isomorfieklassen van Denniston
maximale bogen van graad 4.

Lemma B.3.1. Het aantal isomorfieklassen van Denniston maximale bogen
van graad 4 in PG(2, 22h+1), 2h + 1 priem en 2h + 1 6= 3, is precies

N =
22h − 1

3(2h + 1)
.

Lemma B.3.2. Het aantal Denniston maximale bogen van graad 4 in de stan-
daard kegelsnedenwaaier in PG(2, 22h+1), 2h + 1 priem en 2h + 1 6= 3, die
isomorf zijn met een gegeven Denniston 4-boog en bovendien een gegeven ke-
gelsnede C bevatten is gelijk aan 3(2h + 1).

B.3.2 Mathon maximale bogen van graad 8

Vooraleer we het telprobleem i.v.m. de niet-isomorfe 8-bogen aanpakken is
het cruciaal om de meetkundige structuur van een Mathon maximale boog K
van graad 8 te bestuderen. Wegens Lemma B.2.2 weten we dat elke Mathon
8-boog precies zeven Denniston 4-bogen bevat, en dat elke twee van deze 4-
bogen precies één kegelsnede gemeen hebben. Meer nog, men kan inzien dat de
meetkundige structuur met als puntenverzameling de kegelsneden van K, als
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rechtenverzameling de 4-bogen van Dennistontype en de natuurlijke incidentie,
isomorf is met PG(2, 2).

Indien K van Dennistontype is vallen de zeven Dennistonrechten, correspon-
derend met de zeven deelbogen, samen. Indien K een ware Mathonboog is zijn
er precies zeven verschillende Dennistonrechten en geldt de volgende stelling.

Lemma B.3.3. Stel dat K een ware Mathon 8-boog is, dan zijn de zeven Den-
nistonrechten van K concurrent en bestaat er een unieke involutie die K, en
alle kegelsneden die K bevat, fixeert. Deze involutie is de elatie met als cen-
trum de doorsnede van de Dennistonrechten en als as de rechte door de kern
van K en het centrum.

Gevolg B.3.2. Veronderstel dat K een ware Mathon 8-boog is in PG(2, 2p), p
priem en p 6= 2, 3, 7, dan is Aut(K) ∼= C2.

Vermits we het aantal isomorfieklassen willen tellen van Mathon maximale
bogen van graad 8 is het noodzakelijk om na te gaan hoeveel isomorfe beelden
er zijn van een gegeven Mathon 8-boog. Het volgende lemma is van essentieel
belang voor ons eindresultaat.

Lemma B.3.4. Veronderstel dat K een ware Mathon 8-boog is in PG(2, 22h+1),
2h+1 priem en h 6= 1, 3, dan is het aantal maximale bogen van graad 8 die iso-
morf zijn met K, die één van hun deelbogen van graad 4 in de standaardwaaier
hebben en die hetzelfde punt hebben als doorsnede van de Dennistonrechten
gelijk aan 21(2h + 1).

Gegeven een Denniston maximale boog D van graad 4 in de standaard ke-
gelsnedenwaaier. Veronderstel dat D bestaat uit de kegelsneden C1, Ck, Ck+1.
Wegens Lemma B.2.2 weten we dat elke kegelsnede C, disjunct van D, sa-
men met de kegelsnede C1 een andere Denniston 4-boog genereert die isomorf
is met één van de Denniston maximale bogen van graad 4 uit de standaard-
waaier. Wanneer we op zoek gaan naar de voorwaarden die verzekeren dat de
kegelsnede C disjunct is van de 4-boog D vinden we twee tracevoorwaarden
van de vorm

Tr[A(σ)t + B(σ)t2] = 0,

waarbij A en B functies zijn van het veldautomorfisme σ en waarbij t ∈
GF(22h+1).

Tenslotte beschikken we over voldoende instrumenten om de telling van het
aantal isomorfieklassen van Mathon 8-bogen aan te vatten.
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Stelling B.3.3. Het aantal isomorfieklassen van ware Mathon 8-bogen in het
vlak PG(2, 22h+1), 2h + 1 6= 7 en 2h + 1 priem, is precies

N

14
(22h−2 − 1)((6h + 3)N − 1),

met N = (22h − 1)/3(2h + 1).

Het geval 2h + 1 = 7 is vrij apart en wordt uitgebreid besproken in het vierde
hoofdstuk van deze thesis (Chapter 4).

B.3.3 Maximale bogen in PG(2, 32)

In PG(2, 32) vond Mathon via computerberekeningen drie niet-isomorfe wa-
re Mathon maximale bogen van graad 8. Hij vermoedde dan ook dat dit de
enige ware Mathon 8-bogen zijn in dit vlak. Wegens het voorgaande kun-
nen wij nu bevestigen dat er inderdaad precies drie dergelijke maximale bo-
gen te vinden zijn in PG(2, 32). Het is bovendien mogelijk om, steunend op
bovenstaande theorie en gebruik makend van de specifieke tracevoorwaarden
Tr[A(σ)t+B(σ)t2] = 0, de verschillende t-waarden te berekenen die aanleiding
geven tot ware Mathon 8-bogen. Bijgevolg zijn we ook in staat om, zonder
computerhulp, de vergelijkingen van de drie ware Mathonbogen op te stellen.

B.4 Singer 8-bogen van Mathontype

In deze sectie tonen we aan dat er in PG(2, 27) een bijzondere klasse van maxi-
male 8-bogen van Mathontype opduiken die de actie van een scherp transitieve
groep, of Singergroep, toelaat op de zeven kegelsneden van dergelijke 8-bogen.
Deze worden in dit hoofdstuk in detail beschreven waardoor we uiteindelijk
ook in staat zijn om het aantal niet-isomorfe Mathon 8-bogen te tellen. Het
zal ook blijken dat deze speciale bogen, gevonden in PG(2, 27), uitbreidbaar
zijn naar twee oneindige families van Mathon 8-bogen in PG(2, 2k), k oneven
en deelbaar door 7, die nog steeds de Singeractie toelaten op hun kegelsneden.

Deze resultaten zijn terug te vinden in [16].
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B.4.1 Inleiding

Zoals in vorige sectie reeds aangegeven werd blijkt de telling uit Stelling B.3.3
niet te werken in het geval 2h + 1 = 7. In dit geval bekomen we immers niet
eens een geheel getal. De reden hiervoor is het falen van Gevolg B.3.2 in dit
bijzonder geval. Het komt er namelijk op neer dat een ware Mathon boog van
graad 8 in PG(2, 27) een automorfismegroep kan hebben van zowel orde 2 als
orde 14. De bogen van het laatste type blijken bijzonder interessant te zijn,
vooral omwille van de deelgroep van orde 7 die de kegelsneden van de boog op
cylcische wijze permuteert.

Dit voorgaande suggereert het bestaan van twee klassen van Mathon 8-bogen
in PG(2, 27).

• De Mathon maximale bogen van graad 8 die een automorfismegroep be-
vatten van orde 2. Deze zullen ook de normale 8-bogen worden genoemd.

• De 8-bogen die een automorfismegroep van orde 14 bevatten. Deze zullen
de Singer 8-bogen worden genoemd.

In de Engelstalige tekst volgt nu een gedetailleerde analyse van de Mathon
maximale bogen van graad 8 in PG(2, 27) waarin het bestaan van twee klassen
Singer 8-bogen van Mathontype aangetoond wordt. In deze ontleding kiezen
we de rechte x = 0 als as van de unieke elatie die de 8-boog fixeert.

Indien we eisen dat de Singergroep op de zeven kegelsneden van de maximale
8-boog werkt zullen deze kegelsneden cyclisch gepermuteerd worden. Vermits
het bovendien nog steeds om een Mathon 8-boog gaat moeten hun raakpunten
(0, yi, 1), i = 1, . . . , 7, met de rechte x = 0 uiteraard niet alleen verschillend
zijn, maar moeten ze bovendien samen met de kern aanleiding geven tot een
additieve groep {0, y1, . . . , y7} van orde 8.

Eerst en vooral is het mogelijk om aan te tonen dat {0, y1, . . . , y7} steeds kan
geschreven worden als de verzameling {0, 1, x, x3, x7, x15, x31, x63}, waarbij x
één van de elementen yi is, de tweede coördinaat van de snijpunten. Vervolgens
bewijzen we dat {0, 1, x, x3, x7, x15, x31, x63} inderdaad een deelgroep is van de
additieve groep van GF(27) als en slechts als voldaan is aan 1 + x = x7 of
1 + x3 = x7. Aan de hand hiervan zal uiteindelijk blijken dat ten hoogste
twee van de drie isomorfietypes van Denniston 4-bogen in PG(2, 27) mogelijk
uitbreidbaar zijn tot een Singer 8-boog.
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B.4.2 Nodige en voldoende voorwaarde

Een nodige en voldoende voorwaarde opdat een Singer 8-boog gegenereerd zou
worden vinden we in het volgende lemma.

Lemma B.4.1. Stel dat D = {C1, C2, C3} een Denniston 4-boog is in het vlak
PG(2, 27). Zij θ een automorfisme van PG(2, 27) met de eigenschappen dat
Cθ

2 = C1, dat C4 := Cθ
1 disjunct is van C1, C2 en dat C3, en C4 dezelfde kern

hebben als C1, C2 en C3. Als Dθ2
zowel D als Dθ snijdt in een kegelsnede,

dan induceert D samen met θ een Singer 8-boog en bijgevolg is de orde van θ
deelbaar door 7.

Dit lemma kunnen we benutten om in te zien dat, zowel in het geval x7+x+1 =
0 als in het geval x7 + x3 + 1 = 0, een Denniston 4-boog D op unieke wijze
kan uitgebreid worden naar een Singer 8-boog. Ook hier is het mogelijk om de
expliciete gedaante van beide Singer 8-bogen weer te geven (zie Section 4.3 in
de Engelstalige tekst).

B.4.3 De telling in PG(2, 27)

Het bovenstaande indachtig zullen we nu het aantal Singer 8-bogen en het aan-
tal normale 8-bogen in PG(2, 27) tellen. Vermits dit de enige twee klassen van
Mathon 8-bogen zijn in dit vlak halen we hieruit het totaal aantal maximale
bogen van Mathontype van graad 8 in PG(2, 27). Uit de vorige twee subsecties
kunnen we volgende lemma’s afleiden.

Lemma B.4.2. In PG(2, 27) zijn er, op isomorfisme na, precies twee Singer
8-bogen.

Lemma B.4.3. Het aantal niet-isomorfe normale 8-bogen in PG(2, 27) is 199.

Het totaal aantal niet-isomorfe Mathon 8-bogen volgt nu onmiddellijk.

Stelling B.4.1. Het aantal niet-isomorfe ware Mathon 8-bogen in PG(2, 27)
is gelijk aan 201, twee daarvan zijn Singer 8-bogen, de overige 199 zijn normale
8-bogen.
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B.4.4 Grotere velden

De Singer 8-bogen bestaan ook in grotere velden. Beschouw daartoe GF(2h),
met h = 7l en h oneven. Veronderstel even dat TR de notatie is voor de
trace-afbeelding van GF(2h) naar GF(2) en dat tr de notatie is voor de trace-
afbeelding van GF(27) naar GF(2). Vermits h oneven is en een veelvoud van 7
zal TR(α) = tr(α) voor elke α ∈ GF(27), deelveld van GF(2h). Alle bekomen
kegelsneden zullen dus steeds de rechte z = 0 als externe rechte hebben. Er
treden nu twee verschillende gevallen op.

• Indien l 6= 7k voor een zekere (oneven) k bekomen we de Singer 8-bogen
zoals hierboven beschreven.

• Indien l = 7k voor een zekere (oneven) k bekomen we maximale 8-bogen
waarop een cyclische groep transitief werkt op de zeven kegelsneden maar
niet scherp transitief. Men zou dergelijke 8-bogen Singer 8-bogen van het
tweede type kunnen noemen.

B.5 Mathon maximale bogen en partiële flocks van de
kwadratische kegel

In de eerste sectie van het laatste hoofdstuk van de thesis wordt kennis ge-
maakt met partiële flocks en wordt de algebräısche link tussen partiële flocks
en maximale bogen van Mathontype uitgelegd. Deze link werd beschreven
door Hamilton en J. A. Thas in [33]. Uiteindelijk zal het de bedoeling zijn
om, aan de hand van projectie, een meetkundig verband te bekomen tussen
partiële flocks en Mathon maximale bogen. Dit zal ons o.a. in staat stellen
om, na het definiëren van een compositie op de flockvlakken, een analogon te
formuleren van de synthetische versie van de stelling van Mathon en, gegeven
een gepaste additieve groep G, een Mathon maximale boog te construeren met
G als bijhorende additieve groep.

B.5.1 Partiële flocks

Veronderstel dat K een kwadratische kegel is in PG(3, q) met top x. Een
partiële flock F van K is een verzameling (niet-singuliere) kegelsneden op de
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kegel K . De vlakken die de kegelsneden van de flock bevatten worden vaak
flockvlakken genoemd. Wanneer alle flockvlakken van een partiële flock snijden
in eenzelfde rechte noemen we de partiële flock lineair.

Veronderstel dat de orde q van het veld GF(q) even is en dat de kegel K ver-
gelijking X1X3 = X2

2 heeft. De top is dan het punt x(1, 0, 0, 0) en behoort tot
geen enkel vlak van de partiële flock. De kegelsneden van F worden gedefini-
eerd door de k vlakken Vi, i ∈ {1, . . . , k}, waarvan de vergelijkingen kunnen
geschreven worden als

X0 + f(t)X1 + tX2 + g(t)X3 = 0,

met t ∈ B, waarbij B een zekere deelverzameling is van GF(q), en f en g
functies van B naar GF(q).

We weten reeds uit Sectie B.2 dat een gesloten verzameling C van kegelsneden
kan weergegeven worden aan de hand van functies p en r van A naar GF(q).

Hamilton en J. A. Thas toonden in [33] aan dat de functies p en r, geassocieerd
met C, aanleiding geven tot een partiële flock. Zij B = A∪{0} en definiëer de
functies f en g op B als volgt: f(0) = g(0) = 0 en f(t) = tp(t), g(t) = tr(t),
met t ∈ A. Op die manieren bepalen f, g en B een partiële flock. Er geldt
bovendien dat B gesloten is onder de optelling en dat deze functies f en g
additief zijn op B. Een partiële flock met deze eigenschap wordt additief
genoemd.

Ook het omgekeerde resultaat is geldig en ze vonden volgende stelling.

Stelling B.5.1 ([33]). Een Mathon maximale boog van graad d geeft aanlei-
ding tot een additieve, partiële flock van orde d van de kwadratische kegel in
PG(3, q), en omgekeerd.

Bovendien kan men ook aantonen dat een partiële flock, corresponderend met
een Mathon maximale boog M , lineair is als en slechts als M van Denniston-
type is.

B.5.2 Projectie

De link tussen partiële flocks en Mathon maximale bogen, zoals hierboven
aangegeven, is van een nogal algebräısche aard. In [33] werd reeds opgemerkt
dat een gesloten verzameling van d−1 kegelsneden met een gemeenschappelijke
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kern in PG(2, q), q even, geprojecteerd kan worden op de kwadratische kegel
en op die manier een partiële flock induceert. Deze gevonden partiële flock leek
echter niet dezelfde, mooie eigenschappen te bevatten als de flock afkomstig
van de algebräısche link.

In deze sectie zullen we een eerder meetkundige link voorstellen tussen beide
meetkundige structuren. We zullen m.a.w. een meetkundige link zoeken tus-
sen de partiële flock, ontstaan door projectie, en de additieve partiële flock.
Bovendien zal blijken dat de connectie tussen beiden eigenlijk afkomstig is van
een “inversie” op de kernrechte van de kegel.

Veronderstel dat M een Mathon maximale boog is van graad d in PG(2, q) en
stel dat PG(2, q) het vlak is met vergelijking X0 = 0 ingebed in PG(3, q). Om
de notatie te vereenvoudigen zullen we aannemen dat de kegelsneden uit M
een vergelijking hebben van de vorm

α2X2
1 + X1X3 + β2X2

3 + λ2X2
2 = 0,

met α, β en λ elementen van GF(q). Bijgevolg hebben alle kegelsneden van M
in het vlak X0 = 0 het punt (0, 1, 0) als kern en de rechte X2 = 0 als rechte op
oneindig.

Zij K opnieuw de kwadratische kegel in PG(3, q) met vergelijking X1X3 = X2
2 .

Beschouw het punt n(1, 0, 1, 0) op de kernrechte N . Vervolgens projecteren we
de elementen uit M op de kegel K . We zoeken m.a.w. voor elke kegelsnede C
uit M het vlak dat K precies snijdt in de projectie van C vanuit het punt n.
De projectie van de rechte op oneindig X2 = 0, X0 = 0 van M is de doorsnede
van K en het vlak opgespannen door die rechte en het punt n. In volgende
lemma’s bepalen we deze vlakken die de projecties van de kegelsneden van M
induceren.

Lemma B.5.1. Als α2X2
1 + X1X3 + β2X2

3 + λ2X2
2 = 0 de vergelijking is van

een kegelsnede C in M , dan heeft het vlak die de projectie van C bepaalt vanuit
n op de kegel K de vergelijking

λX0 + αX1 + (λ + 1)X2 + βX3 = 0. (B.3)

Vermits deze vlakken corresponderen met de kegelsneden van M zullen ze
kegelsnedenvlakken genoemd worden. Deze vlakken zullen uiteraard moeten
onderscheiden worden van de vlakken afkomstig van de Dennistonrechten en
de rechte op oneindig van een Mathon maximale boog. Deze laatste zullen
respectievelijk Dennistonvlakken en singuliere vlakken worden genoemd.
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Lemma B.5.2. Als X2 = 0 de vergelijking is van de rechte op oneindig van
M , dan heeft het singulier vlak de vergelijking X0 + X2 = 0.

Aan de hand van de voorgaande twee lemma’s zijn we in staat om alle vlakken
te bepalen die de projectie van M op K induceren. Deze vlakken vormen een
partiële flock die echter nog niet additief is.

Het verband tussen de geprojecteerde flock en de additieve flock kan als volgt
samengevat worden. Gegeven een Mathon maximale boog in het vlak X0 = 0
in PG(3, q) met als gemeenschappelijke kern het punt (0, 1, 0) en de rechte
X2 = 0 als rechte op oneindig. Projectie op de kegel K vanuit het punt
n(1, 0, 1, 0) op de kernrechte induceert een partiële flock equivalent met een
partiële flock ontstaan uit de flockvlakken λX0 + αX1 + X2 + βX3 = 0 en
X0 = 0. Deze partiële flock is echter nog niet additief. Passen we nu op deze
vlakken een afbeelding toe, afkomstig van een inversie op de kernrechte, en
daarna een gepast automorfisme, vinden we steeds de vlakken uit [33], m.a.w.
een additieve partiële flock. Dit geldt uiteraard in beide richtingen.

B.5.3 Vlakkencompositie

Men kan zich nu de vraag stellen wat de relatie is tussen de kegelsnedenvlak-
ken en de singuliere vlakken en of het enigszins mogelijk is om de vergelijking
van deze vlakken onderling te berekenen. In een volgend lemma zullen we de
eigenschap uit Lemma B.2.2 vertalen naar een resultaat betreffende kegelsne-
denvlakken.

Eerst introduceren we een standaardvergelijking voor vlakken die het punt
n(1, 0, 1, 0) niet bevatten. Een vlak met een vergelijking van de vorm

aX0 + bX1 + (a + 1)X2 + cX3 = 0, a, b, c ∈ GF(q)

noemen we een vlak met standaardvergelijking. Deze vergelijking is uniek wan-
neer de coëfficiënten van X0 en X2 verschillend zijn, of nog, wanneer het vlak
niet incident is met het punt n.

Lemma B.5.3. Gegeven twee willekeurige vlakken in PG(3, q) die n noch x
bevatten en een disjuncte doorsnede hebben met de kegel K . Er bestaat dan
een uniek derde vlak zodanig dat de projectie vanuit n op het vlak X0 = 0 van
de doorsnede van deze drie vlakken met K een Denniston 4-boog induceert.
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Eénmaal de vergelijking van een kegelsnedenvlak standaard is kunnen we vol-
gend lemma gebruiken om het singulier vlak, geassocieerd aan een Denniston
maximale boog van graad 4 te bepalen.

Lemma B.5.4. Zij V en W twee kegelsnedenvlakken in PG(3, q). Het singu-
lier vlak die de rechte op oneindig induceert van de unieke Denniston 4-boog
bepaald door V en W kan gevonden worden door de som te nemen van de
vergelijkingen van V en W .

B.5.4 Analogon van de synthetische stelling van Mathon

De synthetische versie van de stelling van Mathon kan eveneens vertaald wor-
den naar een resultaat omtrent partiële flocks.

Stelling B.5.2. Gegeven een additieve partiële flock F van orde d en gegeven
een vlak V ′ die het punt n′(0, 0, 1, 0) niet bevat en zodanig dat V ′ de kegel K
snijdt in een kegelsnede disjunct van de elementen van F . Er bestaat dan
een unieke additieve partiële flock van orde 2d die de kegelsneden bevat bepaald
door V ′ en de d vlakken die F induceren.

Gebruik makend van Lemma B.5.4 en de vergelijking van de singuliere vlakken
kunnen we enkele eigenschappen afleiden i.v.m. de Dennistonrechten.

Lemma B.5.5. Gegeven een Mathon maximale boog M van graad 2d die een
Denniston maximale boog D van graad d bevat, dan zijn alle Dennistonrechten
van M concurrent.

Lemma B.5.6. De Dennistonrechten van een Mathon maximale boog zijn con-
current als de coëfficiënt α of β constant is.

B.5.5 Additieve groep

Beschouw een additieve groep G van orde 2d. In deze sectie van de thesis
bespreken we hoe het mogelijk is om, onder bepaalde omstandigheden, een
Mathon maximale boog M van graad 2d te construeren waarvan G de cor-
responderende additieve groep is en zo dat M een Denniston d-boog bevat.
Vermits deze uiteenzetting vrij technisch is verwijzen we de lezer graag door
naar Sectie 5.5 van de Engelstalige tekst.



Index

Q(2m, q), 7
Q+(2m + 1, q), 7
Q−(2m + 1, q), 7
AG(n, q), 4
PG(n, q), 4
V(n + 1, q), 3
{k; d}-arc, 10
k-arc, 8

absolute, 5
affine plane, 4
affine space, 4
AS(q), 14
automorphism, 2
automorphism group, 2
axiomatic dimension, 4
axis, 5

center, 5
collinear, 2
collineation, 5
collineation group, 5
concurrent, 2
conic, 7
conic plane, 93
correlation, 5

Denniston line, 20
Denniston plane, 93
Desarguesian spread, 23
design, 3

dual maximal arc, 11

elation, 5
external line, 10

flock, 87
flock planes, 87

generalized quadrangle, 12
generator, 7
geometry, 1

homology, 5
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normal 8-arc, 65
nucleus, 8

o-polynomial, 8
monomial, 8

oval, 8

partial flock, 87
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complete, 87
linear, 87

partial geometry, 15
partial linear space, 2
Payne derived GQ, 14
perspectivity, 5
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symplectic, 7
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projectivity, 5
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singular, 6

rank, 1, 7
reciprocity, 5
regular hyperoval, 8
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singular plane, 93
spread, 23
spread of symmetry, 107
standard equation, 96
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