An algebraic approach to the perfect ReeTits generalized octagons and related geometries

Een algebraïsche aanpak van de perfecte veralgemeende achthoeken van Ree-Tits en verwante meetkundes

Kris COOLSAET

Promotor: Prof. Dr. H. Van Maldeghem

Proefschrift voorgelegd aan de Faculteit Wetenschappen tot het behalen van de graad van Doctor in de Wetenschappen: Wiskunde.

Vooraf

Before we begin our banquet, I would like to say a few words. And here they are: Nitwit! Blubber! Oddment! Tweak!

Harry Potter and the Philosopher's Stone - J.K. Rowling

Wellicht kreeg ik de smaak voor eindige meetkunde te pakken op de tweede internationale conferentie over 'finite geometry and combinatorics' te Deinze (in juni 1992). Ik was zeer gefascineerd door de veralgemeende zeshoek op 63 punten, die me heel wat interessanter leek dan al die veralgemeende vierhoeken waarover toen in Gent zoveel te doen was.

Het leek me dan ook een logische stap om bij Hendrik Van Maldeghem aan te kloppen met de vraag naar een onderwerp voor een doctoraat. Zijn antwoord zal me altijd bijblijven: "Waarom probeer je niet liever de veralgemeende achthoeken, daar is nog niet zoveel op gewerkt en jij hebt er toch de tijd voor."

Met dank aan al wie bleef geloven dat het er nog wel eens van zou komen.

De rest van deze tekst is in het Engels opgesteld. Appendix B (blz. 247) bevat een Nederlandstalige samenvatting.

Contents

1 Introduction and overview 1
1.1 Generalized polygons 3
1.2 Root systems 4
1.3 Lie algebras 8
1.4 Modules 10
1.5 Chevalley groups and isotropic elements 11
1.6 Operations 12
1.7 Geometry 15
1.8 Geometries with a Coxeter diagram 17
1.9 The special case of characteristic 2 20
1.10 The final twist 22
1.11 Bibliographical notes 23
1.12 Some final comments 25
2 The Lie algebra of type E_{6} and related structures 27
2.1 A root system of type E_{6} 27
2.2 The Lie algebra of type E_{6} over K 45
2.3 Isotropic elements 68
2.4 Automorphisms 73
2.5 Additional E_{6}-modules 99
2.6 The geometry \mathcal{E} 110
3 The Lie algebra of type F_{4} and related structures 115
3.1 A root system of type F_{4} 115
3.2 The Lie algebra of type F_{4} over K 127
3.3 Automorphisms of W 143
3.4 F-isotropic subspaces 157
3.5 The geometry \mathcal{F} 161
4 The Lie algebra of type F_{4} when char $K=2$ 165
4.1 Two Lie algebras isomorphic to \mathbf{W}. 165
4.2 Duality 177
4.3 The graph endomorphism of $\widehat{\mathrm{F}}_{4}(K)$ 186
5 The perfect Ree-Tits generalized octagon 191
5.1 A root system of type ${ }^{2} \mathrm{~F}_{4}$ 192
5.2 Octagonality and the Ree group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ 195
5.3 The Suzuki-Tits ovoid and the Suzuki group 202
5.4 Transitivity properties of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ 210
5.5 Pairs of octagonal elements 215
5.6 The Ree-Tits octagon 225
A The Suzuki-Tits ovoid 233
A. 1 Modules for the Lie algebra of type A_{3} 233
A. 2 Modules for the Lie algebra of type B_{2} 239
A. 3 The case of characteristic 2 241
A. 4 The Suzuki-Tits ovoid 244
B Nederlandstalige samenvatting 247
1 Inleiding en overzicht 247
2 De Lie-algebra van type E_{6} en verwante structuren 249
3 De Lie-algebra van type F_{4} en verwante structuren 256
4 De Lie-algebra van type F_{4} wanneer char $K=2$ 260
5 De perfecte veralgemeende achthoeken van Ree-Tits 263

1 Introduction and overview

Of all generalized polygons related to algebraic groups the generalized octagons have probably been studied the least. Perhaps one of the reasons is the fact that only a single (infinite) family of examples is known and that these Ree-Tits octagons, and their embeddings in a projective space, are not easily constructed.

The standard way to define a Ree-Tits octagon is as a coset geometry of a Ree group [25]. This group is constructed by 'twisting' the Chevalley group of type F_{4} over a suitable field K of characteristic 2 . Another construction technique makes use of a special coordinatization introduced by H. Van Maldeghem [26], which is itself based on the properties of the Ree groups, in particular the commutation relations displayed in [24].

What is missing for the Ree-Tits octagon, and exists for all other classical generalized polygons, is an explicit embedding into some projective space. The main objective of this text is to establish a construction of such an embedding into a 25 -dimensional space, where the points (lines) of the Ree-Tits octagon are a subset of the points (lines) of the projective space.

We will provide explicit 'formulae' which can be applied to the projective coordinates of a point to determine whether or not it is a point of the octagon. And likewise, we will provide a means to determine from the projective coordinates of two points of the octagon, whether they are collinear in the octagon, and more generally, what is their mutual distance.

These 'formulae' are not so elementary as in the case of the other generalized polygons. For example, we will prove that a point Ke belongs to the Ree-Tits octagon if and only if both $e^{2}=0$ and $q([e, \mathbf{V}], e)=0$. The first expression is shorthand for a system of 26 quadratic equations in 26 variables (the 26 coordi-
nates of e). The second expression corresponds to a system of 676 polynomials of degree 3 in 26 variables, additionally involving a field automorphism σ of K. (For contrast, compare this to the formulae needed to define the points of the split Cayley hexagon : a single quadratic equation in 7 variables suffices.)

- Regretfully, the theory we will develop only works for perfect Ree-Tits octagons. However, there is reason to believe that most of the results we have obtained can be reformulated to also hold when K is not a perfect field.

This text looks at the octagon (and the metasymplectic space to which its points and lines belong) from three different perspectives : groups, geometries and algebras, concentrating on the latter.

We proceed in three stages: first we provide an in-depth treatment of the Lie algebra (and group) of type E_{6} over a general field (Chapter 2), then we consider the subalgebra of type F_{4} in general characteristic (Chapter 3) and in characteristic 2 (Chapter 4), and finally we obtain a description of the perfect Ree-Tits generalized octagon (Chapter 5).

The techniques we will use can be summarized in the following picture of Coxeter diagrams and Tits indices:

Unfortunately, a picture is only worth a thousand words. We will need four chapters to explain it in full detail.

- In Appendix A we provide an illustration of how the techniques of the main text can be applied to a much simpler example : we reduce the Lie algebra of type A_{3} to one of type B_{2} and finally 'twist' it to obtain a Suzuki-Tits ovoid. This appendix can be read without reference to the main text.

1.1 Generalized polygons

An incidence geometry (of rank 2) consists of a set \mathcal{P} of points, a set \mathcal{L} of lines and an incidence relation relating points to lines. The incidence graph of an incidence geometry is a (simple undirected) bipartite graph with vertex set $\mathcal{P} \cup \mathcal{L}$ and edges corresponding to incident point-line pairs (we assume that \mathcal{P} and \mathcal{L} are disjoint).

Let n be a positive integer. A generalized n-gon is an incidence geometry whose incidence graph Γ satisfies the following axioms [26] :

1. The diameter of Γ is n.
2. The girth of Γ (i.e., the length of the shortest cycle in Γ) is $2 n$.
3. (Nondegeneracy condition.) Every vertex of Γ lies on at least 3 edges.

Interchanging points and lines of an incidence geometry yields another incidence geometry which is called the dual of the first. Note that the dual of a generalized n-gon is again a generalized n-gon (with the same n).

In a generalized digon (2-gon) every point is incident with every line (and conversely), making the structure not very interesting (see however Section 1.8).

For $n>2$ however, two points will be incident with (are joined by) at most one common line, and two lines will be incident with (intersect in) at most one common point, making the geometry into a partial linear space. For $n=$ 3, every pair of points are joined by exactly one line and every pair of lines intersect in exactly one point. In other words, generalized 3-gons are none other than the well-known projective planes.

The defining axioms for generalized n-gons lead to many interesting combinatorial properties. For example, every line of a generalized n-gon is incident with the same number of points (and dually, every point is incident with the same number of lines). In the finite case, i.e., when both \mathcal{P} and \mathcal{L} are finite, a
theorem by Feit and Higman [16] states that only the cases $n=2,3,4,6$ and 8 may occur.

- It has already been mentioned that the smaller the n the better have the corresponding n-gons been studied. Another reason for this is probably the size of the examples : the smallest 3 -, 4 -, 6 - and 8 -gons have $7,15,63$ and 1755 points (and at least as many lines).

The earliest examples of generalized polygons, called the classical generalized polygons, arise from groups of Lie type or twisted groups of Lie type. For example, the classical Desarguesian projective plane is related to the general linear group of dimension 3, i.e., a Lie group of type A_{2}. Generalized quadrangles (4-gons) can be obtained from the symplectic, orthogonal and unitary groups (of type B_{2}, C_{2} and ${ }^{2} A_{3}$), generalized hexagons (6 -gons) from groups of type G_{2} and ${ }^{3} D_{4}$, and finally, the Ree-Tits generalized octagon (8-gon), which will be central to this text, from the Ree group of type ${ }^{2} \mathrm{~F}_{4}$.

- Apart from the generalized Ree-Tits octagons, no other generalized octagons are known, except for some 'free' and 'universal' constructions (cf. [26, Section 1.3.13] and [21]), which in some sense do not really count. Some experts believe that (at least in the finite case) no others exist, but this has not yet been proved. It is not even known whether all generalized octagons with 3 points on a line and 5 lines through each point (i.e., the smallest case) are necessarily isomorphic.

1.2 Root systems

Before we can talk about Lie algebras, we need to introduce one of their basic building blocks, the root systems.

Consider a finite dimensional real Euclidian vector space \mathbf{P}. For each vector $r \in \mathbf{P}, r \neq 0$, consider the reflection w_{r} in the hyperplane orthogonal to r, i.e.,

$$
w_{r}(x) \stackrel{\text { def }}{=} x-\frac{2 r \cdot x}{r \cdot r} r .
$$

A subset Φ of \mathbf{P} is called a root system of \mathbf{P} if it satisfies the following properties [8] :

1. Φ is a finite set of non-zero vectors,
2. Φ spans \mathbf{P},
3. If $r, s \in \Phi$, then $w_{r}(s) \in \Phi$,
4. If $r, s \in \Phi$, then $\langle r, s\rangle \stackrel{\text { def }}{=} 2(r \cdot s) /(r \cdot r)$ is an integer,
5. If $r, s \in \Phi$ are linearly dependent, then $r= \pm s$.

We will be interested in two specific examples of root systems. For the first one, said to be of type E_{6}, we will use a non-standard construction based on a 6-dimensional orthogonal real representation of the generalized quadrangle $Q^{-}(5,2)$. The second one, of type F_{4}, will be derived from the first by projecting it onto a special 4-dimensional subspace.

- In chapter 5 we will project this second example once more onto a 2-dimensional subspace. The resulting set could be called a 'root system of type ${ }^{2} \mathrm{~F}_{4}$ ' although it does not satisfy the definition above.

Every root system Φ contains a subset $\left\{\pi_{0}, \ldots, \pi_{n-1}\right\}$ of linearly independent vectors such that every root is a linear combination of elements of this subset with coefficients which are integral and either all non-negative or all nonpositive. Such a set is called a fundamental system of roots and its elements are called fundamental roots.

Fundamental roots can be used to draw a Dynkin diagram which is an invariant of the root system. Although there are many different ways to select a fundamental root system in Φ, they always have isomorphic Dynkin diagrams. The diagrams for the root systems of type E_{6} and F_{4} are depicted below (we have numbered the nodes for future reference) :

Each node i of the Dynkin diagram corresponds to a fundamental root π_{i}. Two nodes in the diagram that are not connected satisfy $\left\langle\pi_{i}, \pi_{j}\right\rangle=0$, two nodes that are connected by a single line satisfy $\left\langle\pi_{i}, \pi_{j}\right\rangle=\left\langle\pi_{j}, \pi_{i}\right\rangle=-1$ and two nodes that are connected by a double line satisfy $\left\{\left\langle\pi_{i}, \pi_{j}\right\rangle,\left\langle\pi_{j}, \pi_{i}\right\rangle\right\}=$ $\{-1,-2\}$. Equivalently, the number of lines between two roots in the diagram indicate the angle between them : $\pi / 2$ when there is no line, $2 \pi / 3$ when there is a single line and $3 \pi / 4$ when there is a double line.

In a root system of type E_{6} all roots have the same length, and as a consequence $\langle r, s\rangle$ is symmetric. In a root system of type F_{4} however, we distinguish between short and long roots (the lengths differ by a factor of $\sqrt{2}$.) The $>$-sign on the diagram shows that we have chosen to put the two fundamental long roots on the left, and the two fundamental short roots on the right.

The root system Φ_{F} of type F_{4} can be obtained from the root system Φ of type E_{6} by projecting it onto a suitable 4 -dimensional subspace \mathbf{P}_{F} of \mathbf{P}. The 24 roots of E_{6} that already belong to \mathbf{P}_{F} (and which form a root system of type D_{4} in their own right) will become long roots of the new system, while the other 48 will be projected onto 24 different short roots of the new system.

The projection onto \mathbf{P}_{F} can be written as $x \mapsto(x+\bar{x}) / 2$ where ${ }^{-}$is an involution on \mathbf{P}. The long roots are precisely those roots that are left invariant by this involution. The fundamental roots of Φ_{F} are projections of the fundamental roots of Φ. More specifically, they have the following values :

$$
\pi_{0}, \quad \pi_{3}, \quad \frac{1}{2}\left(\pi_{2}+\pi_{4}\right), \quad \frac{1}{2}\left(\pi_{1}+\pi_{5}\right)
$$

From this it is easy to understand why this projection operation is often called a folding of the diagram.

With every root system Φ we may associate the dual root system Φ^{*} of roots r^{*} of the form

$$
r^{*} \stackrel{\text { def }}{=} \frac{2 r}{r \cdot r}, \quad \text { with } r \in \Phi \text {. }
$$

The element r^{*} is called the co-root corresponding to r. Note that $\left(r^{*}\right)^{*}=r$ and $\left\langle r^{*}, s^{*}\right\rangle=\langle s, r\rangle$. The notion of co-root is mainly useful in a root system like Φ_{F} where not every root has the same length.

The finite group generated by all reflections w_{r} for $r \in \Phi$ is called the Weyl group $W(\Phi)$ of that root system. The Weyl group acts regularly on the set of all fundamental systems of roots of Φ.

The Dynkin diagram for Φ can also be interpreted as a Coxeter diagram for $W(\Phi)$. The nodes correspond to generators $g_{i}=w_{\pi_{i}}$ satisfying $g_{i}^{2}=1$, with $\left(g_{i} g_{j}\right)^{2}=1$ when nodes i and j are not connected by a line in the diagram, $\left(g_{i} g_{j}\right)^{3}=1$ when connected by a single line, and $\left(g_{i} g_{j}\right)^{4}=1$ when connected by a double line.

- The 'Dynkin diagram' for the 'root system' of type ${ }^{2} \mathrm{~F}_{4}$ consists of two nodes connected by 4 lines. The corresponding 'Weyl group' is the dihedral group of order 16 with generators g_{1}, g_{2} such that $g_{1}^{2}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{8}=1$.

An important role is also reserved for the dual of the base $\left\{\pi_{0}, \ldots, \pi_{n-1}\right\}$, i.e., a set of vectors $\left\{\pi_{0}^{\prime}, \ldots, \pi_{n-1}^{\prime}\right\}$ such that $\left\langle\pi_{i}, \pi_{j}^{\prime}\right\rangle=\delta_{i j}$, for every $i, j \in$ $\{0, \ldots, n-1\}$. The elements π_{i}^{\prime} are called fundamental weights of the root system.

Different fundamental systems of roots yield different fundamental weights, but weights with the same index i will always belong to the same orbit \mathcal{P}_{i} of the Weyl group. In the case of E_{6}, with corresponding Weyl group $W\left(\mathrm{E}_{6}\right)$, the orbit for π_{0}^{\prime} is the full set $\Phi=\mathcal{P}_{0}$ of 72 roots.

The orbit $\mathcal{P}=\mathcal{P}_{1}$ of π_{1}^{\prime} (with size 27) is of special interest. Its elements will be called points because they correspond to the points of the generalized quadrangle which we have used initially to define the root system. The symmetry of the diagram is also reflected in the properties of the weight orbits. We have

$$
\mathcal{P}_{0}=-\mathcal{P}_{0}, \mathcal{P}_{1}=-\mathcal{P}_{5}, \mathcal{P}_{2}=-\mathcal{P}_{4}, \mathcal{P}_{3}=-\mathcal{P}_{3} .
$$

For a root system of type F_{4} the long roots are the weights that correspond to the leftmost node of the diagram and the short roots correspond to the rightmost node. There are 24 roots of each type. The long roots of F_{4} form a subset of the roots of E_{6}, the short roots do not.

- The symmetry of the diagram of F_{4} does not immediately provide an interpretation
in terms of weight orbits. Recall that left and right hand nodes now correspond to fundamental weights of different length.

The Weyl group of the root system of type F_{4} can be embedded as a subgroup $W\left(\mathrm{~F}_{4}\right)$ into $W\left(\mathrm{E}_{6}\right)$. This group splits \mathcal{P} into two orbits : a set L_{∞} of 3 points on a line, which we will call the line at infinity, and a set of 24 points \mathcal{P}^{*}. If $p \in L_{\infty}$ then $p+\bar{p}=0$. If $p \in \mathcal{P}^{*}$ then $s=(p+\bar{p}) / 2$ is a short root and the correspondence $p \leftrightarrow s$ is one-to-one. It turns out that for most practical purposes points of \mathcal{P}^{*} and short roots are interchangeable.

1.3 Lie algebras

It is well known that to every root system there corresponds a Lie algebra over a given field K. This is a vector space \mathbf{A} endowed with a bilinear product $[\cdot, \cdot]$ (called Lie product or Lie bracket) satisfying the following axioms :

1. $[A, A]=0$, for every $A \in \mathbf{A}$.
2. (The Jacobi identity) $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$, for every $A, B, C \in \mathbf{A}$.

Typically \mathbf{A} is a subspace of $\operatorname{Hom}(\mathbf{T}, \mathbf{T})$, the algebra of linear transformations on some vector space \mathbf{T}, and then the Lie bracket is defined by $[A, B] \stackrel{\text { def }}{=} A B-$ $B A$.

In the case of E_{6} we will take T to be a 27-dimensional vector space V endowed with a special trilinear form $\langle\cdot, \cdot, \cdot\rangle$ and \mathbf{A} to be the space \mathbf{L} of all linear transformations A that satisfy $\langle a A, b, c\rangle+\langle a, b A, c\rangle+\langle a, b, c A\rangle=0$, for every $a, b, c \in \mathbf{V}$. Then \mathbf{L} is an algebra of dimension 78 .

It is no coincidence that the dimension of \mathbf{V} is the same as the number of points of $Q^{-}(5,2)$. There is indeed a one-to-one correspondence between these points and a set of canonical base vectors for \mathbf{V}. The trilinear form $\langle\cdot, \cdot, \cdot\rangle$ can be defined by means of the lines of $Q^{-}(5,2)$ and a regular spread Σ of such lines.

In the case of F_{4} the associated Lie algebra \mathbf{J} has dimension 52. It is a subalgebra of \mathbf{L} consisting of those elements A for which $\infty A=0$, where ∞ denotes a special element of \mathbf{V}.

Alternatively, we may use the element ∞ to define an involution ${ }^{-}$which interchanges \mathbf{V} and \mathbf{V}^{*} (the dual vector space of \mathbf{V}) and easily generalizes to $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$. The algebra \mathbf{J} then consists of precisely those elements A of \mathbf{L} that satisfy $A+\bar{A}=0$.

In general, every Lie algebra \mathbf{A} associated with a root system Φ contains a socalled Chevalley basis. This basis consists of elements e_{r}, one for each $r \in \Phi$ and elements $h_{\pi_{i}}$, one for each fundamental root π_{i}. The elements h_{r} are defined for all $r \in \Phi$ (not just for fundamental roots) and behave somewhat like the co-roots r^{*} of Φ^{*} (e.g., $h_{(r+s)^{*}}=h_{r^{*}}+h_{s^{*}}$). They generate the torus or Cartan subalgebra of the Lie algebra.

A Chevalley basis satisfies the following properties [8, Theorem 4.2.1] :

Let $r, s \in \Phi$. Then

1. $\left[h_{r}, h_{s}\right]=0$,
2. $\left[h_{r}, e_{s}\right]=\langle r, s\rangle e_{s}$,
3. $\left[e_{r}, e_{-r}\right]=h_{r}$,
4. $\left[e_{r}, e_{s}\right]=0$, when $r+s \notin \Phi$,
5. $\left[e_{r}, e_{s}\right]=N_{r, s} e_{r+s}$, when $r+s \in \Phi$,
where $N_{r, s}= \pm i$ with i the greatest integer i for which $r+s-i r \in \Phi$.

- For a Lie algebra of type $\mathrm{E}_{6}, N_{r, s}= \pm 1$. For a Lie algebra of type $\mathrm{F}_{4}, N_{r, s}= \pm 1$ or ± 2. Except for the unspecified sign of $N_{r, s}$, the Chevalley basis properties uniquely define the Lie algebra \mathbf{L}. When K has characteristic 2 the signs are immaterial. In the general case it is possible to specify exactly what the sign of $N_{r, s}$ must be for each pair r, s [8, Proposition 4.2.2].

1.4 Modules

A vector space \mathbf{T} onto which \mathbf{A} can act as a linear transformation (notation t^{A} for $t \in \mathbf{T}, A \in \mathbf{A}$) is called an \mathbf{A}-module (or in this context, an E_{6}-module or F_{4}-module) when $t^{[A, B]}=\left(t^{A}\right)^{B}-\left(t^{B}\right)^{A}$ for every $t \in \mathbf{T}$ and $A, B \in \mathbf{A}$.

There are many examples of A-modules. Clearly, if A was initially constructed as a subalgebra of $\operatorname{Hom}(\mathbf{T}, \mathbf{T})$, then \mathbf{T} is an \mathbf{A}-module if we set $a^{A}=a A$. Also \mathbf{T}^{*} (the dual vector space of \mathbf{T}) is an A-module with the action $\alpha^{A}=$ $-A \alpha$. Additional examples are given by the Lie algebra \mathbf{A} itself, which is an A-module with $C^{A}=[C, A]$, and the base field K, which is a trivial 1 dimensional A-module when we take $k^{A}=0$ for every $k \in K$.

In fact, it is possible to associate an A-module with the orbit of each weight. In particular, we will denote the module that corresponds to the orbit \mathcal{P}_{i} of the fundamental weight π_{i}^{\prime} by \mathbf{T}_{i}.

In the case of E_{6} we have $\mathbf{T}_{0}=\mathbf{L}, \mathbf{T}_{1}=\mathbf{V}, \mathbf{T}_{2}=\mathbf{V} \wedge \mathbf{V}, \mathbf{T}_{3}=\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$, $\mathbf{T}_{4}=\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ and $\mathbf{T}_{5}=\mathbf{V}^{*}$. In the case of F_{4}, the module that corresponds to the fundamental weight that is a long root is \mathbf{J} itself, while the module for the fundamental weight that is a short root has dimension 26 and can be embedded into \mathbf{V} as the hyperspace \mathbf{W} of elements a that satisfy $a \bar{\infty}=0$. (We will not explicitely establish the modules for the middle nodes of the Dynkin diagram for F_{4}.)

There is no easy general recipe to construct the module associated with a particular orbit of the Weyl group, hence we have to treat each case separately. The same holds for the action of the Lie algebra onto these vector spaces.

In the case of E_{6}, the connection between $\mathrm{T}_{1}=\mathrm{V}$ and $\mathcal{P}_{1}=\mathcal{P}$ is immediate : the points p of \mathcal{P} serve as canonical base vectors e_{p} for \mathbf{V}. Similarly, every element $-q$ of $-\mathcal{P}$ is related to a canonical base vector η_{q} of \mathbf{V}^{*}. The Chevalley basis provides a way to connect $\mathbf{T}_{0}=\mathbf{L}$ with $\mathcal{P}_{0}=\Phi$: each of the 72 roots r does indeed define a base element e_{r} of \mathbf{L}, but we need the extra 6 elements $h_{\pi_{i}}$ to generate the full module.

Unfortunately, for other modules we need to be more creative. In general,
a module \mathbf{T} associated with an orbit of the Weyl group has a canonical base vector for every element of that orbit, but these vectors do not necessarily generate the entire module as a vector space. Case in point is the 26-dimensional module \mathbf{W} for F_{4} : there are only 24 short roots in the orbit of the corresponding weight, so we need to find the 2 extra dimensions elsewhere. (In this particular case it was more straightforward to construct the F_{4}-module \mathbf{W} as a subspace of the E_{6}-module \mathbf{V}.)

1.5 Chevalley groups and isotropic elements

The general linear group GL(T) acts in a natural way on $\mathbf{T}, \mathbf{T}^{*}$ and $\operatorname{Hom}(\mathbf{T}, \mathbf{T})$. However, it does not always leave \mathbf{A} or some of its modules, invariant. Therefore, when studying Lie algebras and their geometries, we consider only certain special subgroups of GL($\mathbf{T})$, the so-called Chevalley groups. If we would interpret the A-modules as 'generalizations' of weight orbits, then the Chevalley groups could be considered 'generalizations' of the Weyl groups.

In the case of E_{6} we denote the group by $\widehat{\mathrm{E}}_{6}(K)$. Elements g of $\widehat{\mathrm{E}}_{6}(K)$ satisfy $\left\langle a^{g}, b^{g}, c^{g}\right\rangle=\langle a, b, c\rangle$ for every $a, b, c \in \mathbf{V}$. $\widehat{\mathrm{E}}_{6}(K)$ acts in a natural way on the E_{6}-modules introduced above. The Chevalley group $\widehat{F}_{4}(K)$ of type F_{4} is a subgroup of $\widehat{\mathrm{E}}_{6}(K)$. Every element of $\widehat{\mathrm{F}}_{4}(K)$ leaves the special element ∞ invariant.

In general, a Chevalley group has many orbits in its action on a specific module T. However, all canonical base vectors of \mathbf{T} turn out always to belong to the same orbit. Any element of \mathbf{T} that belongs to such an orbit, will be called isotropic. In practice we will always first give an algebraic definition of an isotropic element in a particular module, and then prove afterwards that the canonical base elements are isotropic and that the isotropic elements form a single orbit. As will be explained later, the notion of isotropic element also forms the basis for the construction of a geometry related to a given Lie algebra.

- As an added bonus isotropic elements also help us resolve some difficulties in cases where the base field K has small characteristic. As an example, consider again the case of E_{6}. For most fields the isotropic elements of $\mathbf{V} \wedge \mathbf{V}$ generate $\mathbf{V} \wedge \mathbf{V}$ (as a vector
space) completely, but when char $K=2$ this is not true. Although we will not expand on this in the text, certain operations which are of geometric interest can be defined on the space generated by the isotropic elements of $\mathbf{V} \wedge \mathbf{V}$, but this definition can not be extended to $\mathbf{V} \wedge \mathbf{V}$ itself when char $K=2$. Similar issues arise for the module $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ when char $K=2$ or 3 .

The notion of isotropy does not carry over from algebras to subalgebras. To be sure, the isotropic elements of \mathbf{J} are exactly those isotropic elements of \mathbf{L} that belong to \mathbf{J}. Also, the isotropic elements of the F_{4}-module \mathbf{W} are exactly those isotropic elements of the E_{6}-module \mathbf{V} that belong to \mathbf{W}. It is however dangerous to generalize this to all modules. For example, we need to distinguish between E-isotropic elements of $\mathbf{V} \wedge \mathbf{V}$ (i.e., isotropic with respect to the algebra and Chevalley group of type E_{6}) and F-isotropic elements of the corresponding module for F_{4}.

There exists yet another connection between isotropic elements and Chevalley group elements. For every isotropic element E of \mathbf{A}, we may define a nonsingular linear transformation

$$
x(E)=\exp E \stackrel{\text { def }}{=} 1+E+\frac{1}{2} E^{2}+\frac{1}{6} E^{3}+\cdots
$$

that belongs to the Chevalley group. In the case of E_{6} (and hence also of F_{4}) we have $E^{2}=0$ whenever E is isotropic, so $x(E)$ has a simple form.

This formula generalizes to the case where E is of the form $A+\bar{A}$ where A is an isotropic element of $\mathbf{L}-\mathbf{J}$. Then $E^{3}=0$ and $x(E)=x(A) x(\bar{A})=$ $x(\bar{A}) x(A)$. Group elements of these forms can be used to generate the full Chevalley group in both cases.

- In characteristic 2 the expression $\frac{1}{2}(A+\bar{A})^{2}$ should be interpreted as $A \bar{A}$.

1.6 Operations

Throughout the subsequent chapters the reader will notice that the number of (new) operations we found necessary to introduce is rather plentiful (for
a complete list, see page 277). Most of these operations satisfy a number of generic properties which we describe below.

Consider three A-modules $\mathbf{T}, \mathbf{T}^{\prime}$ and $\mathbf{T}^{\prime \prime}$, not necessarily distinct, and consider an operator \circ defined for $t \in \mathbf{T}, t^{\prime} \in \mathbf{T}^{\prime}$ such that $t \circ t^{\prime} \in \mathbf{T}^{\prime \prime}$. A first property is that \circ is compatible with the Lie algebra \mathbf{A} in the following sense :

$$
t^{A} \circ t^{\prime}+t \circ t^{\prime A}=\left(t \circ t^{\prime}\right)^{A}, \quad \text { for any } A \in \mathbf{A}, t \in \mathbf{T}, t^{\prime} \in \mathbf{T}^{\prime}
$$

Secondly, let e_{p} be a canonical base vector of \mathbf{T} and let $e_{p^{\prime}}$ be a canonical base vector of \mathbf{T}^{\prime} such that $p+p^{\prime}$ is an element of the orbit of weights associated with $\mathbf{T}^{\prime \prime}$, then $e_{p} \circ e_{p^{\prime}}$ is always a scalar multiple of $e_{p+p^{\prime}}$. If $p+p^{\prime}$ does not belong to the correct orbit, then $e_{p} \circ e_{p^{\prime}}$ is zero, or in certain cases, undefined.

Finally, every operation is invariant for the corresponding Chevalley group, i.e., if g belongs to that group, then

$$
t^{g} \circ t^{\prime g}=\left(t \circ t^{\prime}\right)^{g}, \quad \text { for every } t \in \mathbf{T}, t^{\prime} \in \mathbf{T}^{\prime}
$$

Note that the action t^{A} of $A \in \mathbf{A}$ on $t \in \mathbf{T}$ is always an operation that satisfies these generic properties.

As with the modules itself, there is no easy general recipe for defining such operations, but the expected generic properties serve as helpful guidelines. As an illustration we investigate the various binary operations $a \circ \alpha$ that can be defined between elements $a \in \mathbf{V}$ and $\alpha \in \mathbf{V}^{*}$ in the case of E_{6}.

Consider the weight orbits \mathcal{P} and $-\mathcal{P}$ associated with \mathbf{V} and \mathbf{V}^{*}. For $p \in$ \mathcal{P} and $-q \in-\mathcal{P}$ the product $p \cdot-q$ can take one of three possible values : $-4 / 3,-1 / 3$ or $2 / 3$. This indicates that we will be able to define three binary operators. For each operator \circ the value $a \circ \alpha$ will be found in the E_{6}-module associated with the weight $p-q$.

The first operation corresponds to the case $p \cdot-q=-4 / 3$. It is easily proved that this is only possible when $p=q$ and hence $p-q=0$ is the trivial weight and the binary operation will take values in the trivial module K. A good candidate is the product $a \alpha$, the standard product between \mathbf{V} and its dual \mathbf{V}^{*}. We easily verify that this product is compatible with \mathbf{L},

$$
a^{A} \alpha+a \alpha^{A}=(a A) \alpha-a(A \alpha)=0=(a \alpha)^{A}
$$

that it acts on the canonical base vectors in the expected way,

$$
e_{p} \eta_{q}= \begin{cases}1, & \text { if } p=q \\ 0, & \text { otherwise }\end{cases}
$$

and that it is left invariant by $\widehat{\mathrm{E}}_{6}(K)$ (in fact, by $\mathrm{GL}(\mathbf{V})$ in this case).
For the second operation we need to consider the case $p \cdot-q=-1 / 3$. Now $p-q \in \Phi$ and we look for an operation with values in \mathbf{L}. In Section 2.2 we will introduce an operator $*$ which serves this purpose, and which will play a central role in the rest of the chapter. (The generic properties for this operation are proved in the text.) The third operation is the tensor product $\alpha \otimes a$ and corresponds to $p \cdot-q=2 / 3$.

- Let us point out some of the difficulties that arise when we try to find an appropriate definition of a particular operation. Note for instance that $a * \alpha$ belongs to a module $\widehat{\mathbf{L}}$ which is slightly larger than the module \mathbf{L} which would probably have been expected here. Because of the special case char $K=3$, the only other option here was to make $a * \alpha \in \mathbf{L}$ partially defined, i.e., only for those cases where $a \alpha=0$.

A similar problem arises with the expression $E \times a$, with $E \in \mathbf{L}, a \in \mathbf{V}$. As is proved in Chapter 2, the value of this expression belongs to $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ only when $a E=0$. Again this could be easily resolved by changing the definition of $E \times a$, but unfortunately there is no elegant way to do this when $\operatorname{char} K=2$.

In general the solution seems to be to order the binary operations (for fixed \mathbf{T} and \mathbf{T}^{\prime}) according to increasing value of the corresponding product $p \cdot q$. A specific operation on $\mathbf{T} \times \mathbf{T}^{\prime}$ need then only be defined for those elements $t \in \mathbf{T}$ and $t^{\prime} \in \mathbf{T}^{\prime}$ for which every 'prior' operation yields a value of zero. For example, the product $E \times a$ only needs to make sense when $a E=0$, and $E \times F$ only when $E F=0,[E, F]=0$ and $E \cdot F=0$, with $a \in \mathbf{V}, E, F \in \mathbf{L}$.

To further complicate matters, in higher dimensional modules some operations can only be defined on the submodules generated by isotropic elements, e.g., on a subspace of $\mathbf{V} \wedge \mathbf{V}$ and not on the entire space $\mathbf{V} \wedge \mathbf{V}$.

The various operations introduced in Chapter 2 (which treats E_{6}) are sufficient also for Chapter 3 (which treats F_{4}) although in many cases we combine them with the involution ${ }^{-}$.

For example, in the case of F_{4} we will treat $a * \bar{b}$ as an operation on $\mathbf{V} \times \mathbf{V}$ (instead of $\mathbf{V} \times \mathbf{V}^{*}$). Even then it remains compatible with \mathbf{J}, i.e., $a^{A} * \bar{b}+a *$ $\overline{b^{A}}=(a * \bar{b})^{A}$ for every $a, b \in \mathbf{V}$. This is because in some sense the involution is compatible with all operations introduced in the earlier chapters : $\overline{a * \alpha}=\bar{\alpha} * \bar{a}$, $a \alpha=\bar{\alpha} a$, etc.

- The group $\hat{\mathrm{E}}_{6}(\mathrm{~K})$ has essentially 3 orbits on pairs of isotropic elements of \mathbf{V}, leading to three different operations that can be defined on $\mathbf{V} \times \mathbf{V}$. The group $\widehat{\mathrm{F}}_{4}(K)$ has 5 orbits on pairs of isotropic elements (this time of \mathbf{W}) and hence we expect two new operations to emerge. These new operations turn out to correspond to $a * \bar{b}$ and $a \bar{b}$. In other words, they can be obtained from 'old' operations on $\mathbf{V} \times \mathbf{V}^{*}$ by applying ${ }^{-}$to their second argument.

1.7 Geometry

The isotropic elements of the modules \mathbf{T}_{i} are used as a basis for the construction of a geometry of rank n. The Dynkin diagram of the root system now serves as a Buekenhout diagram of the geometry, where each node corresponds to a different type (see also Section 1.8 below). The tables on the next page relate the various types with the node numbers in the diagram for the two Lie algebras of interest.

An element of a given type is a one-dimensional subspace of the form $K t_{i}$, where t_{i} is an isotropic element of the corresponding module \mathbf{T}_{i}. Incidence between elements $K t_{i}$ and $K t_{j}$ of type i and $j(i \neq j)$ can be expressed in terms of operations of $\mathbf{T}_{i} \times \mathbf{T}_{j}$. For example, a point $K a$ of \mathcal{E} is incident with a dual point $K \alpha$ if and only if both $a \alpha=0$ and $a * \alpha=0$. It is incident with a simplex $K E$ if and only if $a E=0$ and $E \times a=0$.

The geometry \mathcal{E} of type E_{6}			
node	type	node	type
0	simplex	3	plane
1	point	4	dual line
2	line	5	dual point

The geometry \mathcal{F} of type F_{4}

node	type	node	type
1	hyperline	3	line
2	plane	4	point

A different way to describe the same geometry is to consider isotropic subspaces of \mathbf{V} and \mathbf{V}^{*}. (A subspace is called isotropic when all its elements are.) Different types then correspond to isotropic subspaces of different dimensions. The following table lists the corresponding information in the case of E_{6}.

type	isotropic subspace
simplex	6-dimensional isotropic subspace of $\mathbf{V}\left(\right.$ or $\left.\mathbf{V}^{*}\right)$
point	1-dimensional isotropic subspace of \mathbf{V}
line	2-dimensional isotropic subspace of \mathbf{V}
plane	3-dimensional isotropic subspace of \mathbf{V}
dual line	2-dimensional isotropic subspace of \mathbf{V}^{*}
dual point	1-dimensional isotropic subspace of \mathbf{V}^{*}

This interpretation makes some types of incidence more evident. For instance, incidence of points, lines and planes is the same as containment of the corresponding subspaces.

- A plane in \mathcal{E} also corresponds to a 3-dimensional isotropic subspace of the dual space \mathbf{V}^{*} and a dual line corresponds to a 5 -dimensional isotropic subspace of \mathbf{V}. Also, with every dual point we may associate a 10 -dimensional subspace of \mathbf{V}^{*} in which the isotropic points are those of a hyperbolic quadric.

We again need to be careful about the distinction between E-isotropic and Fisotropic : although points of \mathcal{F} can be regarded as points of \mathcal{E}, the lines and planes of \mathcal{F} are only a subset of those lines (and planes) of \mathcal{E} all of whose points belong to \mathcal{F}.

In the case of F_{4} we will introduce the notion of F-isotropic subspace (which is stronger than that of isotropic subspace) and then we have the following correspondence :

type	isotropic subspace
point	1-dimensional F-isotropic subspace of \mathbf{W}
line	2-dimensional F-isotropic subspace of \mathbf{W}
plane	3-dimensional F-isotropic subspace of \mathbf{W}

- A hyperline does not correspond to an F-isotropic subspace. Instead with every hyperline we may associate a symplectic space which is embedded into a 6-dimensional isotropic subspace of \mathbf{V}.

1.8 Geometries with a Coxeter diagram

To prove that the geometries \mathcal{E} and \mathcal{F} are indeed the well-known geometries of type E_{6} and F_{4}, we need to apply the theory of buildings, in particular the local approach to buildings, as set down in [23]. It would lead us way too far to give a complete introduction to this theory here, hence we will concentrate on the points that are of interest to our main exposition.

Formally, define a pre-geometry \mathcal{G} to be a structure consisting of

1. A set T of types, usually denoted by descriptive names like 'point', 'line', 'plane',....
2. For each type t, a set of objects which are said to be of that type. Every object o must be of exactly one type, denoted by $t(o)$.
3. A symmetric incidence relation between objects of different types. (By extension, objects of the same type are said to be incident if and only if they are equal.)

We restrict ourselves to the case where T is finite, and then $|T|$ is called the rank of \mathcal{G}. A set F of pairwise incident objects is called a flag of \mathcal{G}. The type $t(F)$ of F is the set of types of all its elements. A maximal flag, i.e., a flag of type T, is called a chamber.

A pre-geometry \mathcal{G} is called a geometry if it satisfies the following additional axiom :
4. Every flag of \mathcal{G} can be extended to a chamber.

- Generalized polygons are examples of geometries of rank 2 (where the points and
the lines are the objects of type 'point' and 'line' respectively). A projective space of dimension n is a geometry of rank n, with as objects the subspaces of dimension 0 up to $n-1$ and where the dimension serves as the type.

The residue of a flag F of a geometry \mathcal{G} is a new geometry \mathcal{G}_{F} with type set $T-t(F)$ and as objects all objects which are indicent with every element of F. A geometry is called thick if every residue of rank 1 (i.e., obtained from a flag containing objects of every type but one) contains at least 3 objects.

- The residue of a point in a generalized polygon consists of all lines through that point, a residue of a line consists of all points on that line. Generalized polygons as defined in Section 1.1 are always thick.

A geometry \mathcal{G} is said to admit a Coxeter diagram if and only if for every pair $i, j \in T$ of different types and for every flag F of type $T-\{i, j\}$ the residue \mathcal{G}_{F} is a generalized $m_{i j}$-gon, where $m_{i j}=m_{j i}$ depends only on the choice of i, j.

The map $\{i, j\} \mapsto m_{i j}$ is called the Coxeter diagram of \mathcal{G}. It is usually depicted as a graph with vertices representing the types and edges $\{i, j\}$ labelled with the corresponding integer $m_{i j}$. By convention edges with $m_{i j}=2$ are omitted (i.e., when the residue is a digon), a single edge is drawn when $m_{i j}=3$ (a projective plane), a double edge when $m_{i j}=4$ (a generalized quadrangle) and a triple edge when $m_{i j}=6$.

It is not so difficult to prove that a projective space of dimension n over a field K admits the following Coxeter diagram :

where each rank 2 residue is either a digon or a Desarguesian projective plane over K.

In fact, the theory of buildings teaches us that also a kind of converse is true: in a thick geometry with Coxeter diagram A_{n} all non-digonal rank 2 residues are
isomorphic projective planes and the isomorphism type of the entire geometry is uniquely determined by the isomorphism type of these residues.

The same property holds for thick geometries with diagrams D_{n}, E_{6}, E_{7} (not shown) and E_{8} (not shown). It is no coincidence that the Coxeter diagrams look the same as the Dynkin diagrams with the same name.

Hence, when we wish to prove that \mathcal{E} is the well-known geometry (building) of type E_{6} over the field K, we simply need to show that the corresponding rank 2 residues are either digonal or projective planes over K, as indicated in the diagram. We will prove this in Section 2.6.

- In fact, we will take a shortcut: we only prove that the residues of the three end nodes of the diagram are the expected geometries of rank 5 (i.e., with Coxeter diagrams A_{5}, D_{5} and D_{5}). As each rank 2 residue of \mathcal{E} is also a rank 2 residue of at least one of these three residual geometries, this is sufficient.

When we also allow generalized quadrangles as possible residues, the situation is slightly more complicated. We will be interested in the following Coxeter diagrams :

(We will assume that the 'point' type corresponds to the leftmost node in the B_{n} diagram and to the rightmost node in the diagram of type F_{4}.)

If t is a type of a geometry, we define the t-shadow of an object o of that geometry to be the set of all objects of type t that are incident with o. A geometry
with Coxeter diagram B_{n} or F_{4} is said to satisfy the intersection property if the intersection of two point-shadows is always the point-shadow of some object of that geometry or empty and if the point-shadows of distinct elements are always distinct.

Now, the following can be proved [23] : Consider a thick geometry with Coxeter diagram B_{n} or F_{4} which satisfies the intersection property. Let i, j be a pair of different types. Then all rank 2 residues with type set $\{i, j\}$ are isomorphic (independent of the chosen flag) and the isomorphism class of the geometry is uniquely determined by the isomorphism classes of the rank 2 residues for each i, j. Moreover, in the case of B_{n}, all residues with $m_{i j}=3$ are isomorphic projective planes.

- That the intersection property is needed here is proved by the Neumaier geometry of the Fano planes in a fixed 7 -set. This geometry has 7 points, 35 lines (triples of points) and 15 (Fano) planes on the 7 -set (one of two orbits of Alt(7)). The Neumaier geometry does not satisfy the intersection property, for all planes have the entire 7 -set as a point-shadow. This geometry has the same B_{3} diagram as the symplectic polar space $W_{5}(2)$ (on 63 points) and all corresponding residues are isomorphic. The polar space however, does satisfy the intersection property.

In Section 3.5 we will show that \mathcal{F} is the well-known geometry of type F_{4} over the field K by proving that \mathcal{F} satisfies the intersection property, that both residues with $m_{i j}=3$ are projective planes over K and that the residue with $m_{i j}=4$ is the symplectic quadrangle $W_{2}(K)$.

- We will use a similar technique as in the case of \mathcal{E} : we prove that the residues of both end points are the expected geometries, and that the residue of the central pair of nodes is the expected digon.

1.9 The special case of characteristic 2

It has already been mentioned that the long roots of a root system of type F_{4} form a smaller root system Φ_{L} of type D_{4}. The same is true for the set Φ_{S} of short roots. There exists a linear transformation.$^{+}$that transforms Φ_{S} into Φ_{F}, satisfying $x^{+\dagger}=2 x$ for all $x \in \mathbf{P}_{F}$.

Because . ${ }^{\dagger}$ does not leave Φ invariant (we have $\Phi^{+}=\Phi^{*}$) it cannot be used to fold the root system Φ_{F} in the same way as we applied ${ }^{-}$to Φ. As a consequence it is not clear how to fold \mathbf{J} into an algebra of smaller dimension, or whether this is possible at all.

In Chapter 4 we show that at least something can be done when the base field K has characteristic 2 . In that case the map $a \mapsto S(a)=a * \bar{\infty}$ maps the 26dimensional module \mathbf{W} onto a 26 -dimensional ideal (and hence subalgebra) $S(\mathbf{W})$ of \mathbf{J}. The quotient $\mathbf{Q}=\mathbf{J} / S(\mathbf{W})$ again has dimension 26 and is moreover isomorphic to $S(\mathbf{W})$.

Equivalently, in characteristic 2 it is possible to introduce a bracket operation on \mathbf{W} which makes it a Lie algebra isomorphic to \mathbf{Q}. We can use ${ }^{+}$to formulate an explicit isomorphism $\mu: \mathbf{W} \rightarrow \mathbf{Q}$. Many of the operations defined in earlier chapters are also well-defined on \mathbf{Q}, and μ remains 'compatible' with many of them.

We intend to use μ to twist both $\widehat{\mathrm{F}}_{4}(K)$ and the geometry \mathcal{F} (it is customary to talk about twisting instead of folding in this case). At least one hurdle needs to be overcome : in geometric terms we would like to map points onto hyperlines in such a way that (symmetric) incidence is preserved. In algebraic terms this has two consequences. Isotropic elements should be mapped to isotropic elements, and the algebraic operation that indicates incidence should be preserved.

The first problem is that isotropic elements are defined in \mathbf{J} but not in \mathbf{Q}. (However, it can be proved that no two isotropic elements of \mathbf{J} can differ only in an element of $S(\mathbf{W})$, hence this is not really an issue). Secondly, and most unfortunately, the algebraic operation that we use to check incidence is an operation on $\mathbf{W} \times \mathbf{J}$ and not on $\mathbf{W} \times \mathbf{Q}$, and there seems no easy way to make it so.

To solve this we introduce a duality operation $Q(\cdot)$, defined by means of μ. This operation is quadratic and not linear like μ, maps isotropic elements of \mathbf{W} onto isotropic elements of \mathbf{J} (and not of \mathbf{Q}), and most importantly, transforms the 'incidence operation' into something very much like it, sufficiently so for incidence to be preserved.

If e is an isotropic element of e, then $Q(e)=\mu\left(e^{\text {frob }}\right) \bmod S(\mathbf{W})$. In other words, applying first Q and then μ^{-1} brings us 'almost' back to the original, up to an extra application of the Frobenius endomorphism. Because of this supplementary endomorphism we will be forced in Chapter 5 to introduce a Tits endomorphism σ and restrict ourselves to fields for which such σ exists. (A Tits endomorphism satisfies $\sigma^{2}=$ frob.)

1.10 The final twist

The duality between isotropic elements of \mathbf{W} and of \mathbf{J} also extends to Chevalley group elements. With every isotropic element e of \mathbf{W} we may associate an element $x(e)$ of $\widehat{\mathrm{F}}_{4}(K)$ (which is essentially equal to $x(S(e))$ in the notation used before). The map

$$
x(e) \mapsto x(Q(e)), \quad x(Q(e)) \mapsto x\left(e^{\mathrm{frob}}\right)
$$

now defines an automorphism of $\widehat{\mathrm{F}}_{4}(K)$, and this automorphism allows us to twist $\widehat{F}_{4}(K)$ into a smaller group. The resulting Ree group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ is generated by elements of the form

$$
y(e) \stackrel{\text { def }}{=} x\left(Q(e)^{\sigma^{-1}}\right) x(e) x\left(e Q(e)^{\sigma^{-1}}\right)
$$

In Chapter 5 we introduce two new operations $q(\cdot, \cdot)$ and $c(\cdot, \cdot)$ on $\mathbf{W} \times \mathbf{W}$ (with values in \mathbf{W}) which are invariant for ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. Both operations are only partially defined : the second argument of $q(\cdot, \cdot)$ must be isotropic, and for $c(\cdot, \cdot)$ the pair of arguments must generate an isotropic subspace of \mathbf{W}. We also define the notion of semi-octagonal element (an isotropic element e such that $q(e, e)=0$) and of octagonal element (a semi-octagonal element e that satisfies $e \in q(\mathbf{V}, e))$.

The set of non-zero isotropic elements of \mathbf{W}, which form a single orbit of $\widehat{\mathrm{F}}_{4}(K)$, splits into several orbits of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. The set of non-zero octagonal elements is one of these orbits, the semi-octagonal elements that are not octagonal form another.

The octagonal elements are the basis for the final step in our construction : twisting the geometry \mathcal{F} into a generalized octagon \mathcal{O}. The points and lines of \mathcal{O} are the one- and two-dimensional octagonal subspaces of \mathbf{W} (i.e., subspaces all of whose elements are octagonal). Equivalently, points and lines of \mathcal{O} can also be interpreted as 'absolute' elements of the duality Q on \mathcal{F} and there also exists a connection between lines of \mathcal{O} and semi-octagonal elements of \mathbf{W} that are not octagonal.

The many operations which have been introduced throughout the text now also serve a useful purpose in determining properties of pairs of points of \mathcal{O}. For example, if $K e$ and $K f$ are two points of \mathcal{O}, then they will be collinear if and only if $q(e, f)=0$. They are at mutual distance ≤ 4 if and only if $[e, f]=0$. If they are at distance 4 , then $K c(e, f)$ represents the unique point collinear to both of them. If they are at distance 6 , then $[e, f]$ is semi-octagonal and is related to the unique line at distance 3 of both points.

The group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$, which acts as an automorphism group on \mathcal{O}, has the expected properties : it is transitive on the points of \mathcal{O} and on all pairs of points at a fixed distance. Finally, we also prove that the corresponding elations and root groups have properties that make \mathcal{O} a Moufang octagon, which demonstrates that \mathcal{O} is indeed the well-known Ree-Tits generalized octagon which we set out to construct.

1.11 Bibliographical notes

Lie algebras are objects well known by mathematicians and physicists alike and their properties can be said to belong to mathematical folklore. A textbook introduction to Lie algebras can be found in Humphreys [18].

Our main reference for the theory of generalized polygons is Van MaldeGHEM [26]. This book has been our primary source of information on generalized octagons in particular.

The Chevalley groups have been well studied both from a group theoretical and a geometrical point of view. Definitions of these groups and their 'twisted'
variants can be found in CARTER [8]. An in-depth treatment of Chevalley groups of type E_{6} and F_{4}, their subgroups and the modules \mathbf{V} and \mathbf{W}, can be found in a 4-part paper by M. Aschbacher [1,3,4,5] - a paper referred to either directly or indirectly by most authors on these subjects. His basic definitions are also recorded in [2] and [11].

In ASCHBACHER [1] many concepts are introduced which are also central to this text. Many of the transitivity theorems of $\widehat{\mathrm{E}}_{6}(K)$ are proved (cf. Sections 2.4 and 3.3) using techniques which are however quite different from ours. COHEN and COOPERSTEIN [10] provide details on orbits of 2-spaces in V.

Probably the first author to give an explicit description of the 27-dimensional E_{6}-module \mathbf{V} and the related 26 -dimensional F_{4}-module \mathbf{W} (when K is the field of real numbers) is Freudenthal [17]. He defines \mathbf{V} to consist of all 3×3 matrices over the octonions, i.e., all matrices of the form

$$
X=\left(\begin{array}{ccc}
a & C & B \\
\bar{C} & b & A \\
\bar{B} & \bar{A} & c
\end{array}\right)
$$

where a, b, c are real numbers and A, B, C are octonions. The subspace \mathbf{W} then corresponds to the matrices of trace 0 , i.e., satisfying $a+b+c=0$. The product $X \circ Y \stackrel{\text { def }}{=} \frac{1}{2}(X Y+Y X)$ makes \mathbf{V} into the so-called exceptional Jordan Algebra. Although octonions are non-associative it is still possible to define a determinant for these types of matrix, and this determinant turns out to be very much related to the trilinear product $\langle\cdot, \cdot, \cdot\rangle$ used in our definition of the Lie-algebra of type E_{6}.

- We chose not to use this representation as a base for our constructions because the factor $\frac{1}{2}$ makes it difficult to extend the definitions to fields of characteristic 2.

Clearly, a lot of what is written in the subsequent chapters is not new. However, our approach to the construction of the Lie algebras of types E_{6} and F_{4} probably contains a lot of new ideas, for instance the use of $Q^{-}(5,2)$ as a basis for the definition of the module \mathbf{V}, the construction of \mathbf{L} from \mathbf{V} both as a kind of 'derivation' and as the algebra generated by $a * \alpha$ for $a \alpha=0$, and the introduction of several operations which clarify the interaction between the various modules. We also hope that our treatment of the modules $\mathbf{V} \wedge \mathbf{V}$ and
$\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ will prove to be of some use to the mathematical community.
As far as we are aware we are the first to give an explicit algebraic definition of a duality operation like $Q(\cdot)$ and hence also the first to give an explicit algebraic construction of the Ree-Tits octagon \mathcal{O}, which was the main goal of this text.

1.12 Some final comments

It is also possible to describe a construction of \mathcal{O} without the information given in Chapters 2 and 3, as we did in [14]. In that case we begin with the Lie algebra J over a field of characteristic 2 as defined from its Chevalley basis properties. The module \mathbf{W} then needs to be introduced as an ideal of \mathbf{J} and not as a subspace of \mathbf{V}. However, with this starting point proofs of theorems tend to be more involved, the connection with the generalized quadrangle and the spread Σ is lost and it is no longer clear what makes characteristic 2 special.

Of course there still remains a lot of work to be done. It would for example be nice to extend the results of Chapter 5 to the case of a non-perfect field K. In a forthcoming paper [15] we do this by establishing the correspondence between the projective coordinates of the points of \mathcal{O} and their Van Maldeghem coordinates as introduced in [26, Chapter 3]. This correspondence is given as a set of formulas involving σ but never its inverse, and therefore it can be formally extended to the case in which σ is a Tits endomorphism instead of an automorphism.

Other suggestions for future work are : a more profound investigation of the larger E_{6}-modules in characteristic 2 and 3, application of the techniques of this text to describe the embeddings of the classical generalized hexagons and the Ree ovoids in characteristic 3, construction of other exceptional Lie algebras (for E_{7} an 'extension' of the generalized quadrangle $Q^{-}(5,2)$ can be used as a basis) and trying to reconstruct the algebra from the combinatorial properties of the generalized octagon, in the hope of using this to prove uniqueness of the smallest case. The reader may surely find some other interesting topics to add to this list.

2 The Lie algebra of type E_{6} and related structures

2.1 A root system of type E_{6}

As stated in the introductory chapter we will establish a root system of type E_{6} in a rather unconventional way. It is well known (see for instance [13]) that the Weyl group of type E_{6} is isomorphic to the automorphism group of the generalized quadrangle $Q^{-}(5,2)$ with parameters $(s, t)=(2,4)$ and it should therefore not come as a surprise that this equivalence can be used to define the root system.

The definition of generalized n-gon from the introduction can be rephrased as follows when $n=4$: A generalized quadrangle of order (s, t) is a point-line incidence structure such that

- every line is incident with exactly $s+1$ points and every point is incident with exactly $t+1$ lines,
- each pair of points is incident with at most one common line (and hence each pair of lines is incident with at most one common point), and
- given a point p not incident with a line L, there is exactly one point q and exactly one line M such that q is incident with both L and M and M is incident with both p and q.

Two points p, q incident with the same line are called collinear. We write $p \sim q$ if p, q are collinear but different, and we write $p \perp q$ when $p \sim q$ or $p=q$.

If $p \sim q$ then $p q$ will denote the unique line incident with both p and q (i.e., joining p and q).

The most simple non-trivial example of a generalized quadrangle is provided by $W(2)$ of order $(2,2)$ which can be constructed in the following way :

- The points of $W(2)$ are the 15 pairs $\{i, j\}$ from the 6 -set $\{0, \ldots, 5\}$.
- The lines of $W(2)$ are the 15 tripartitions of $\{0, \ldots, 5\}$, i.e., the partitions of the 6 -set into three disjoint pairs.
- A point is incident with a line if and only if the corresponding pair is a pair of the corresponding tripartition.

Points of $W(2)$ are collinear if and only if the corresponding pairs are disjoint.
$W(2)$ can be extended to the generalized quadrangle $Q^{-}(5,2)$ of order $(2,4)$ by adding

- 12 points denoted by $i^{\prime}, i^{\prime \prime}$ with $i \in\{0, \ldots, 5\}$, and
- 30 lines $i^{\prime} j^{\prime \prime}$ with $i, j \in\{0, \ldots, 5\}$, incident with the points $i^{\prime}, j^{\prime \prime}$ and $\{i, j\}$.

The two sets $\left\{0^{\prime}, \ldots, 5^{\prime}\right\}$ and $\left\{0^{\prime \prime}, \ldots, 5^{\prime \prime}\right\}$ are called sixes and their union is a double six. Note that points within the same six are never collinear, while each point in a six is adjacent with all points of the other six, except one. As will be proved later, $Q^{-}(5,2)$ contains many double sixes, and removing each one always leaves a copy of $W(2)$.

We will further refer to the generalized quadrangle $Q^{-}(5,2)$ as \mathcal{Q}. By the above, \mathcal{Q} has 27 points and 45 lines, with 3 points on each line and 5 lines through each point. We denote the set of points of the quadrangle by \mathcal{P} and the set of lines by \mathcal{L}. The line containing the three points p, q, r will often be written as $p q r$.

- There are various other ways to define the same generalized quadrangle \mathcal{Q}. (It can be proved that all generalized quadrangles of order $(2,4)$ are isomorphic [20].)

The classical definition takes as points the points of an elliptic quadric in $\operatorname{PG}(5,2)$ and as lines all isotropic lines on this quadric. Intersecting the quadric with an appropriate hyperplane yields $Q(4,2)$, a generalized quadrangle isomorphic with $W(2)$.

Another construction takes as points the 27 lines on a general cubic surface, e.g., the real cubic surface with projective coordinates satisfying $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+\right.$ $\left.x_{2}+x_{3}\right)^{3}$. There are 45 planes whose intersection with this surface consists of 3 lines. These planes may serve as lines of the quadrangle. Two points of \mathcal{Q} are collinear if and only if the corresponding lines on the cubic intersect. In the given example, the 15 planes with equations of the form $x_{i}+\cdots+x_{j}=0$ (of 1 up to 4 terms) define a subquadrangle of order $(2,2)$.

The original definition of 'double six' (by Schläfli) refers to two sets of 6 lines in real 3-dimensional projective space that are mutually skew, such that each line of the first set intersects each line of the other, except one. Each such double six lies on a unique cubic surface.

The point graph of \mathcal{Q} (points are adjacent if and only if they are collinear) is strongly regular with parameters $(v, k, \lambda, \mu)=(27,10,1,5)$. The adjacency matrix A of this graph has eigenvalues 10,1 and -5 with multiplicities 1,20 and 6. The eigenspace of the last eigenvalue yields a 6-dimensional real orthogonal representation for this graph, which can be established using standard techniques (cf. [6]) :

Define the matrix

$$
\begin{equation*}
R \stackrel{\text { def }}{=} \frac{1}{15 \sqrt{6}}(A-10)(A-1) \tag{2.1}
\end{equation*}
$$

- $\frac{R}{\sqrt{6}}$ is the minimal idempotent for eigenvalue -5 in the Bose-Mesner algebra associated with this strongly regular graph.

It can be proved that R is a symmetric matrix with entries $4 / 3 \sqrt{6}$ on the diagonal, $-2 / 3 \sqrt{6}$ at positions that correspond to pairs of adjacent points and $1 / 3 \sqrt{6}$ everywhere else.

The eigenvalues of R are of the form $\frac{1}{15 \sqrt{6}}(\lambda-10)(\lambda-1)$ where λ ranges over the eigenvalues of A. So, R has eigenvalue 0 with multiplicity 21 and $\sqrt{6}$ with
multiplicity 6 . From this it follows that the rank of R is 6 and that $R^{2}=\sqrt{6} R$.
Let V be the 27-dimensional real vector space of (row) vectors onto which R acts as a linear transformation by multiplication on the right. Denote the subspace of V generated by the rows of R by \mathbf{P}. By the above, \mathbf{P} is a 6 -dimensional (real) vector space. We will represent a point p of \mathcal{P} by the corresponding row R_{p} of R and we will usually identify $p \in \mathcal{P}$ with its representation R_{p} in \mathbf{P}.

The standard Euclidian dot product on V when applied to p and q yields p. $q=R_{p} R_{q}^{T}$ which is equal to the (p, q)-th entry of $R R^{T}$. We have $R R^{T}=R^{2}=$ $\sqrt{6} R$ and hence

$$
p \cdot q=\left\{\begin{align*}
4 / 3, & \text { if and only if } p=q, \tag{2.2}\\
1 / 3, & \text { if and only if } p \not \perp q, \\
-2 / 3, & \text { if and only if } p \sim q .
\end{align*}\right.
$$

- For more information on strongly regular graphs and their eigenvalues, minimal idempotents and representations we refer to [6, 7]. In a note on page 34 we present an alternative way to construct \mathbf{P} without the need for this theoretical background.

The map $p \mapsto R_{p}$ not only provides a 6-dimensional representation of \mathcal{Q}, but also defines a 6-dimensional orthogonal representation of the automorphism group of \mathcal{Q}.

Indeed, we represent an automorphism ζ of \mathcal{Q} by its permutation action on the coordinates in V (a linear transformation on V). By (2.2) the value of $p \cdot q$ only depends on the mutual position of p and q, and hence $p^{\zeta} \cdot q^{\zeta}=p \cdot q$. It follows that the q th coordinate of R_{p} is equal to the coordinate of $R_{p 5}$ with index q^{ζ}. In other words, ζ acting as a permutation on the coordinates of V maps the row R_{p} to the row $R_{p^{\zeta}}$, i.e., p onto p^{ζ} as expected. Because it maps rows of R onto rows of R it also leaves \mathbf{P} invariant and therefore it is a linear transformation of \mathbf{P}. It is an orthogonal transformation because by the above it also preserves the dot product on \mathbf{P}.

The chosen representation is also special because it provides us with a simple criterion to decide whether three points constitute a line :

Lemma 2.1 Three points $p_{1}, p_{2}, p_{3} \in \mathcal{P}$ constitute a line of \mathcal{Q} if and only if $p_{1}+$ $p_{2}+p_{3}=0($ in $\mathbf{P})$.

Proof: We have

$$
\begin{aligned}
\left(p_{1}+p_{2}+p_{3}\right)^{2} & =\left(p_{1}+p_{2}+p_{3}\right) \cdot\left(p_{1}+p_{2}+p_{3}\right) \\
& =p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2\left(p_{1} \cdot p_{2}+p_{1} \cdot p_{3}+p_{2} \cdot p_{3}\right) \\
& =4+2\left(p_{1} \cdot p_{2}+p_{1} \cdot p_{3}+p_{2} \cdot p_{3}\right), \quad \text { by }(2.2) .
\end{aligned}
$$

Also by (2.2) the right hand side of this equality can only attain zero when $p_{1} \cdot p_{2}=p_{1} \cdot p_{3}=p_{2} \cdot p_{3}=-2 / 3$, i.e., when $p_{1} \sim p_{2} \sim p_{3} \sim p_{1}$. But then p_{1}, p_{2}, p_{3} form a line. Because the dot product is positive definite (it is the restriction of the standard Euclidian product to \mathbf{P}) the left hand side is zero if and only if $p_{1}+p_{2}+p_{3}=0$.

A vector of the form $r=q_{0}-p_{0}$ with $p_{0} \not \perp q_{0}$ will be called a root. The pair of points $\left(p_{0}, q_{0}\right)$ is said to be associated with this root and p_{0} is called a base point of r. The set of all roots will be denoted by Φ. If r is a root then by (2.2)

$$
\begin{equation*}
r^{2}=\left(q_{0}-p_{0}\right)^{2}=q_{0} \cdot q_{0}-2 p_{0} \cdot q_{0}+p_{0} \cdot p_{0}=4 / 3-2 / 3+4 / 3=2 \tag{2.3}
\end{equation*}
$$

Lemma 2.2 Every root has exactly 6 base points. The six pairs $\left(p_{0}, q_{0}\right), \ldots,\left(p_{5}, q_{5}\right)$ which are associated with the same root have the following properties :

1. The points p_{1}, \ldots, p_{5} are exactly those points of \mathcal{P} adjacent to q_{0} but not to p_{0} (see figure 2.1 on the next page).
2. The points q_{1}, \ldots, q_{5} are exactly those points of \mathcal{P} adjacent to p_{0} but not to q_{0}.
3. Of the points q_{0}, \ldots, q_{5} the only point not collinear to p_{i} is q_{i}.
4. Of the points p_{0}, \ldots, p_{5} the only point not collinear to q_{i} is p_{i}.
5. The 6 base points p_{i} of r are mutually non-adjacent and so are the corresponding 6 base points q_{i} of $-r$.

Hence, $\left\{p_{0}, \ldots, p_{5}\right\}$ and $\left\{q_{0}, \ldots, q_{5}\right\}$ constitute a double six of \mathcal{Q}.

Figure 2.1: Base points of roots r and $-r$

Proof: Consider a root r associated with a given pair $\left(p_{0}, q_{0}\right)$. Let (p, q) be any other pair associated with the same root. By (2.3) we have

$$
2=r \cdot r=\left(q_{0}-p_{0}\right) \cdot(q-p)=q_{0} \cdot q-q_{0} \cdot p-p_{0} \cdot q+p_{0} \cdot p
$$

If we assume $p \neq p_{0}$ (and hence $q \neq q_{0}$), then by (2.2) we find that the only way to make this equation work is by setting

$$
p_{0} \cdot p=q_{0} \cdot q=1 / 3, \quad p_{0} \cdot q=q_{0} \cdot p=-2 / 3
$$

Hence $p_{0} \sim q, q \sim p_{0}, p \not \perp p_{0}$ and $q \not \perp q_{0}$. By Lemma 2.1 the third point on the line through p_{0} and q is represented by the vector $-p_{0}-q$. Because $r=q_{0}-p_{0}=q-p$ this vector is equal to $-q_{0}-p$ which corresponds to the third point on the line through q and p_{0}.

In other words, every base point p of r can be constructed in the following way : let L be any line through p_{0} and denote the unique point on L adjacent to q_{0} by a. Then q is the third point on the line through p_{0} and a, and p is the third point on the line through q_{0} and a. By Lemma 2.1 we have $p_{0}+q+a=$ $p+q_{0}+a$ and hence $q_{0}-p_{0}=q-p$. So each pair (p, q) constructed in this way defines the same root r. As there are 5 different lines L, there must be 5 different pairs (p, q) apart from $\left(p_{0}, q_{0}\right)$ that correspond to r.

This lemma enables us to count the roots of Φ : for each of 27 points p_{0} there are 16 points q_{0} not adjacent to them. This gives a total of $27 \cdot 16=432$ pairs, giving 432/ $6=72$ different roots.

The following lemma explains the name 'base' point :

Lemma 2.3 The base points p_{0}, \ldots, p_{5} of a given root r form a basis for the 6dimensional (real) vector space \mathbf{P}. We have $r=-\frac{1}{3}\left(p_{0}+\cdots+p_{5}\right)$.

Proof: The Gram-matrix of the 6 vectors p_{i} (i.e., the 6×6 matrix with entries $p_{i} \cdot p_{j}$) has entries $4 / 3$ on the diagonal and $1 / 3$ elsewhere. This matrix is nonsingular and therefore the points p_{i} are represented by linearly independent vectors of \mathbf{P}. We already know that \mathbf{P} has dimension 6 and hence they form a basis.

As a consequence, every element v of \mathbf{P} is uniquely determined by the 6 values $v \cdot p_{i}$. Now, write $r=q_{i}-p_{i}$, then $p_{i} \not \perp q_{i}$ by Lemma 2.2, and hence using (2.2) we find $p_{i} \cdot r=1 / 3-4 / 3=-1$ for every i. Also

$$
-\frac{1}{3} \sum_{j} p_{j} \cdot p_{i}=-\frac{1}{3}(4 / 3+1 / 3+\cdots+1 / 3)=-1
$$

for every i. Therefore r must be equal to $-\frac{1}{3} \sum_{j} p_{j}$.
Instead of p_{0}, \ldots, p_{5} it is more convenient to use the basis $p_{0} / 3, \ldots, p_{5} / 3$ to coordinatize \mathbf{P}. With these conventions, p_{0}, \ldots, p_{5} have coordinates $(3,0, \ldots, 0)$, $\ldots,(0, \ldots, 0,3)$, and r has coordinates $(-1, \ldots,-1)$. We will denote these coordinate tuples by a short hand notation of the form $300000, \ldots, 000003$ and $\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$, where $\overline{1}, \overline{2}$ and $\overline{3}$ stand for $-1,-2$ and -3 .

Because p_{i} is a base point of r we known that $q_{i} \stackrel{\text { def }}{=} p_{i}+r$ is a base point of $-r$. The points q_{0}, \ldots, q_{5} then have coordinates $2 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}, \ldots, \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} 2$. By Lemma $2.2 p_{i}$ and q_{j} are adjacent if $i \neq j$. Denote the third point on the line $p_{i} q_{j}$ by $a_{i j}$. Then $a_{i j}=-p_{i}-q_{j}=-p_{i}-p_{j}-r$ and hence $a_{i j}=a_{j i}$. As a consequence $a_{i j}$ has coordinate $\overline{2}$ at positions i and j, and 1 at all other positions. It follows that the fifteen points $a_{i j}$ with $0 \leq i<j \leq 5$ are distinct and have coordinates $\overline{2} \overline{2} 1111, \ldots, 1111 \overline{2} \overline{2}$. It also follows that each of the 27 points of \mathcal{P} is either of the form p_{i}, q_{j} or $a_{i j}$. Table 2.1 sums up this information. Note that the coordinate 'pattern' of a point p uniquely determines the value of $p \cdot r$ (with $r=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1})$.

$\begin{aligned} & p_{0}, \ldots, p_{5} \\ & p \cdot r=-1 \end{aligned}$	300000	030000	003000	000300	000030	000003
$\begin{aligned} & q_{0}, \ldots, q_{5} \\ & p \cdot r=1 \end{aligned}$						
	$\overline{2} 2 \overline{1111}$	$\overline{2} 12 \overline{111}$	$\overline{2} 11211$	$\overline{2} 1112 \overline{1}$	$\overline{2} 1111 \overline{2}$	$1 \overline{2} 2111$
a_{01}, \ldots, a_{45}	12̄1211	$12 \overline{112} 1$	$12 \overline{1112}$	$112 \overline{2} 11$	$112 \overline{2} 1$	$11 \overline{2} 11 \overline{2}$
$p \cdot r=0$	$1112 \overline{2} 1$	$111 \overline{2} 1 \overline{2}$	$11112 \overline{2}$			

Table 2.1: The points of \mathcal{P}

By the above we know that $p_{i}, q_{j}, a_{i j}$ form a line of \mathcal{Q}. This already accounts for 30 of the lines. Let $\{i, j, k, l, m, n\}=\{0, \ldots, 5\}$. Then
$a_{i j}+a_{k l}+a_{m n}=-p_{i}-p_{j}-r-p_{k}-p_{l}-r-p_{m}-p_{n}-r=-\sum p_{j}-3 r=0$.
and hence $a_{i j} a_{k l} a_{m n}$ is a line by Lemma 2.1, yielding the 15 remaining lines.

- The relation with the construction of \mathcal{Q} given at the start of this section will now be clear: the points $p_{i}, q_{j}, a_{i j}$ correspond to $i^{\prime}, j^{\prime \prime},\{i, j\}$ in the earlier notation. It follows that the 15 points $a_{i j}$ together with the 15 lines $a_{i j} a_{k l} a_{m n}$ form a subquadrangle of \mathcal{Q} isomorphic to $W(2)$. The 5 points $a_{i j}$ with fixed i constitute an ovoid in this subquadrangle. These are also the points of the subquadrangle adjacent to a fixed base point p_{i} of r (or q_{i} of $-r$).

In what follows we will use the terminology 'standard notation for points of \mathcal{P} ' whenever we represent the points of \mathcal{P} in the form p_{i}, q_{j} and $a_{i j}$. Note that this notation depends on the choice of the root r.

Note that the chosen basis is not orthogonal with respect to the dot product. Indeed, we have $p_{i} / 3 \cdot p_{j} / 3=\delta_{i j} / 9+1 / 27$ and hence

$$
\begin{equation*}
c \cdot d=\frac{1}{9}\left[\sum c_{i} d_{i}+\frac{1}{3} \sum c_{i} \sum d_{i}\right], \tag{2.4}
\end{equation*}
$$

when $c=\left(c_{0}, \ldots, c_{5}\right)$ and $d=\left(d_{0}, \ldots, d_{5}\right)$.

- Using (2.4) and the explicit coordinates in Table 2.1, the reader may verify that (2.2) does indeed hold. We could therefore have used Table 2.1 as a definition of the em-

Table 2.2: Typical roots of Φ and their base points
bedding of \mathcal{Q} into \mathbf{P} without the need for the matrix R of (2.1). But then some more work is needed to prove that all automorphisms of \mathcal{Q} can be represented by linear transformations of \mathbf{P}.

It is an easy exercise to enumerate the roots of Φ by computing all differences $q-p$ between pairs of points p, q such that $p \not \perp q$. Table 2.2 lists the results in terms of coordinates. Every element of Φ can be obtained by permuting the coordinates of one of the elements listed. The last column indicates how many roots can be obtained in this way from the listed element. As with the points, the coordinate 'pattern' of a root s uniquely determines the value of $r \cdot s$ (with $r=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1})$.

We also easily obtain the following results :

$r \cdot s=$	if and only if
2	$r=s$
1	$r-s \in \Phi$
0	$r-s, r+s \notin \Phi$
-1	$r+s \in \Phi$
-2	$r=-s$

$p \cdot r=$	if and only if
1	$p-r \in \mathcal{P}$
0	$p+r, p-r \notin \mathcal{P}$
-1	$p+r \in \mathcal{P}$

for all $r, s \in \Phi, p \in \mathcal{P}$.

We will now set out to prove that the elements of Φ do indeed form a root system of type E_{6}. In this context it is customary to express relations between the roots not in terms of the inner product $r \cdot s$, but by means of the following binary product :

$$
\begin{equation*}
\langle r, s\rangle \stackrel{\text { def }}{=} 2 \frac{r \cdot s}{r \cdot r} \tag{2.6}
\end{equation*}
$$

- In general $\langle r, s\rangle$ is linear only in the second argument, and not in the first, but this will only be of importance from Chapter 3 onwards, when we introduce roots of unequal lengths. For now $\langle r, s\rangle=r \cdot s$.

The binary product is often defined in terms of roots and co-roots (cf. §1.2), i.e., $\langle r, s\rangle=$ $r^{*} \cdot s$. We have $r^{*}=r$ for al $r \in \Phi_{L}$.

To every root r we associate the reflection w_{r} about the hyperplane orthogonal to r :

$$
\begin{equation*}
w_{r}: \mathbf{P} \rightarrow \mathbf{P}: x \mapsto w_{r}(x) \stackrel{\text { def }}{=} x-\langle r, x\rangle r \tag{2.7}
\end{equation*}
$$

As a consequence of (2.5) we see that w_{r} maps points onto points and roots onto roots and hence that Φ satisfies the definition of root system (Section 1.2).

To determine what type of root system Φ represents, we establish the following fundamental system $\left\{\pi_{0}, \ldots, \pi_{5}\right\}$ of roots for Φ :

$$
\begin{array}{lll}
\pi_{0}=p_{3}+p_{4}+p_{5}+2 r, & \pi_{3}=p_{2}-p_{3} \\
\pi_{1}=p_{0}-p_{1}, & \pi_{4}=p_{3}-p_{4} \tag{2.8}\\
\pi_{2}=p_{1}-p_{2}, & \pi_{5}=p_{4}-p_{5},
\end{array}
$$

or using coordinates,

$$
\begin{align*}
& \pi_{0}=\overline{2} \overline{2} \overline{2} 111, \pi_{3}=003 \overline{3} 00 \\
& \pi_{1}=3 \overline{3} 0000, \pi_{4}=0003 \overline{3} 0 \tag{2.9}\\
& \pi_{2}=03 \overline{3} 000, \pi_{5}=00003 \overline{3}
\end{align*}
$$

To show that this is indeed a fundamental system we must prove that every element of Φ can be written as a linear combination of fundamental roots in which all coefficients are either all non-negative or all non-positive.

Indeed, when $i<j$, we may write $p_{i}-p_{j}=\pi_{i-1}+\cdots+\pi_{j}$, and hence the property holds for every root of the form $\pm\left(p_{i}-p_{j}\right)$. When $i<j<k$ we find $p_{i}+p_{j}+p_{k}+2 r=\pi_{0}+\left(p_{i}-p_{3}\right)+\left(p_{j}-p_{4}\right)+\left(p_{k}-p_{5}\right)$, hence the property holds for all roots of the form $\pm\left(p_{i}+p_{j}+p_{k}+2 r\right)$. Finally, we leave it to the reader to verify that $r=2 \pi_{0}+\pi_{1}+2 \pi_{2}+3 \pi_{3}+2 \pi_{4}+\pi_{5}$.

The Cartan matrix which corresponds to this fundamental system, i.e., the matrix with entries $\left\langle\pi_{i}, \pi_{j}\right\rangle$, is easily computed to have the following value :

$$
\left(\begin{array}{cccccc}
2 & 0 & 0 & -1 & 0 & 0 \tag{2.10}\\
0 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
-1 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

This proves

Proposition 2.4 The elements of Φ form a root system of type E_{6}.

Also useful is the following list of so-called fundamental weights π_{i}^{\prime} :

$$
\begin{array}{ll}
\pi_{0}^{\prime}=r, & \pi_{3}^{\prime}=q_{0}+q_{1}+q_{2} \\
\pi_{1}^{\prime}=q_{0}, & \pi_{4}^{\prime}=-p_{4}-p_{5} \tag{2.11}\\
\pi_{2}^{\prime}=q_{0}+q_{1}, & \pi_{5}^{\prime}=-p_{5}
\end{array}
$$

or in coordinates

$$
\begin{align*}
& \pi_{0}^{\prime}=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}, \pi_{3}^{\prime}=000 \overline{3} \overline{3} \overline{3} \\
& \pi_{1}^{\prime}=2 \overline{1} \overline{1} \overline{1} \overline{1}, \pi_{4}^{\prime}=0000 \overline{3} \overline{3} \tag{2.12}\\
& \pi_{2}^{\prime}=11 \overline{2} \overline{2} \overline{2} \overline{2}, \pi_{5}^{\prime}=00000 \overline{3} .
\end{align*}
$$

We leave it to the reader to verify that these elements of \mathbf{P} satisfy $\left\langle\pi_{i}, \pi_{j}^{\prime}\right\rangle=\delta_{i j}$ for $0 \leq i, j \leq 5$.

- Observe that π_{0}^{\prime} is a root, π_{1}^{\prime} is a point and π_{5}^{\prime} is the negative of a point. Also π_{2}^{\prime} is the sum of two noncollinear points and can at the same time be written as $r-p$ where $r \in \Phi, p \in \mathcal{P}$ such that $p \cdot r=0$ (take $r=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$ and $p=\overline{2} \overline{2} 1111$). Likewise π_{4}^{\prime} is the negative of a sum of two points and at the same time of the form $r+p$ where $r \in \Phi, p \in \mathcal{P}$ and $p \cdot r=1$, i.e., $\pi_{4}^{\prime}=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}+1111 \overline{2} \overline{2}$. Finally π_{3}^{\prime} is at the same time the sum of three mutually noncollinear points and the negative of such a sum $\left(\pi_{3}^{\prime}=-p_{3}-p_{4}-p_{5}\right)$ and can also be written as the sum of two roots r, s such that $r \cdot s=-1$, i.e., $\pi_{3}^{\prime}=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}+111 \overline{2} \overline{2} \overline{2}$.

The finite group $W\left(\mathrm{E}_{6}\right)$ generated by all w_{r} where r ranges through Φ, is called the Weyl group of Φ. It is easily proved that $W\left(\mathrm{E}_{6}\right)$ is a group of orthogonal transformations on \mathbf{P} and therefore a group of automorphisms of \mathcal{Q}.

The following proposition lists some transitivity properties of $W\left(\mathrm{E}_{6}\right)$ that will play an important role in what follows. Define an ordered coclique to be an ordered tuple of mutually non-collinear points of \mathcal{P}.

Proposition 2.5 The Weyl group $W\left(\mathrm{E}_{6}\right)$ acts transitively on the following sets:

1. the set of points \mathcal{P},
2. the set of roots Φ,
3. the ordered pairs $(p, q) \in \mathcal{P} \times \mathcal{P}$ with $p \sim q$,
4. the ordered pairs $(p, q) \in \mathcal{P} \times \mathcal{P}$ with $p \not \perp q$,
5. the ordered pairs $(p, r) \in \mathcal{P} \times \Phi$ satisfying $p \cdot r=-1$,
6. the ordered pairs $(p, r) \in \mathcal{P} \times \Phi$ satisfying $p \cdot r=0$,
7. the ordered pairs $(p, r) \in \mathcal{P} \times \Phi$ satisfying $p \cdot r=1$,
8. the ordered pairs $(r, s) \in \Phi \times \Phi$ satisfying $r \cdot s=-1$,
9. the ordered pairs $(r, s) \in \Phi \times \Phi$ satisfying $r \cdot s=0$,
10. the ordered pairs $(r, s) \in \Phi \times \Phi$ satisfying $r \cdot s=1$,
11. the ordered cocliques of size 3,
12. the ordered cocliques of size 4,
13. the ordered cocliques of size 5 that cannot be extended to an ordered coclique of size 6 ,
14. the ordered cocliques of size 5 that belong to an ordered coclique of size 6,
15. the ordered cocliques of size 6 .

Proof: (We use the standard notation for points of \mathcal{P}.)
Note that $w_{t} \in W\left(\mathrm{E}_{6}\right)$ interchanges the base points p of t with the corresponding base point $p+t$ of $-t$ and leaves all other points of \mathcal{P} unchanged. As a consequence it is easily seen that $W\left(\mathrm{E}_{6}\right)$ must be transitive on \mathcal{P}. Indeed, to map $p \in \mathcal{P}$ onto $q \in \mathcal{P}$ such that $p \not \perp q$, we use w_{q-p}, and when $p \sim q$, we may find an intermediate point p^{\prime} such that $p \not \perp p^{\prime} \not \perp q^{\prime}$ and then apply $w_{p^{\prime}-p}$ and $w_{q-p^{\prime}}$ in succession.

Now consider any pair $(p, q) \in \mathcal{P} \times \mathcal{P}$. By the above we may map (p, q) onto a pair of the form $\left(p_{0}, q^{\prime}\right)$ for some fixed p_{0}. The Weyl group elements w_{s} that leave p_{0} invariant, are exactly those for which $p_{0} \cdot s=0$, i.e., those for which p_{0} is neither a base point of s nor of $-s$. Hence s is of the form $a_{l m}-p_{n}$ with $n \neq 0, a_{l m}-q_{n}$ or $p_{j}-p_{i}, i \neq 0$. We leave it to the reader to verify that using only such w_{s} we may now map any point in \mathcal{P} onto either p_{0}, q_{0} or q_{1}. This proves statements 3 and 4 of this proposition, and also statement 2, because every root r is associated with a noncollinear pair (p, q) such that $r=q-p$.

Note that $w_{s}(r)=r$ whenever $r \cdot s=0$. Consider the subgroup W_{r} of $W\left(\mathrm{E}_{6}\right)$ that is generated by such elements s. From Table 2.2 (pg. 35) we see that those elements s have coordinates that are permutations of $\overline{3} 30000$, and it easily follows that W_{r} acts as the symmetric group $\operatorname{Sym}(6)$ on \mathcal{P} by permuting coordinates. This proves statements 5-7, and in a similar way, statements 8-10.

Consider any coclique C of size at least 2 . By the above, we may fix two of the points of C to be p_{0} and q_{0} and again consider the subgroup W_{r} for $r=q_{0}-p_{0}$. The set S of points of \mathcal{P} collinear to neither p_{0} or q_{0} consists of the 10 points a_{12}, \ldots, a_{45}. The subgroup $W_{p_{0}, q_{0}}$ of W_{r} fixing both p_{0} and q_{0} acts on \mathbf{P} as Sym(5) by permuting the last five coordinates in \mathbf{P}. Hence $W_{p_{0}, q_{0}}$ acts on S in the same way as $\operatorname{Sym}(5)$ acts on the pairs $12, \ldots, 45$.

Mutually noncollinear points in S correspond to mutually overlapping pairs. As a consequence, the orbits of $W_{p_{0}, q_{0}}$ on cocliques in S are as follows (we list a single representative for each orbit) :

$$
\left\{a_{12}\right\}, \quad\left\{a_{12}, a_{13}\right\}, \quad\left\{a_{12}, a_{13}, a_{23}\right\}, \quad\left\{a_{12}, a_{13}, a_{14}\right\}, \quad\left\{a_{12}, a_{13}, a_{14}, a_{15}\right\} .
$$

This proves statements 11-15.

- The cocliques of size 6 are the sets of base points of roots. The cocliques of size 5 that cannot be extended to a coclique of size 6 are the sets of points that are collinear to two points p and q such that $p \not \perp q$. Cocliques of size 5 are ovoids in the subquadrangles of order (2,2).

If (p, q) is a coclique of \mathcal{P} then the orbit of $W\left(\mathrm{E}_{6}\right)$ formed by the sums $p+q$ is the orbit of the weight π_{2}^{\prime}. It is also the orbit of the differences $r-p$ when $p \cdot r=0$. Likewise, if ($p, p^{\prime}, p^{\prime \prime}$) is a coclique of \mathcal{P}, then π_{3}^{\prime} lies in the orbit of $p+p^{\prime}+p^{\prime \prime}$ which is the same as that of $r+s$ where $r, s \in \Phi$ such that $r \cdot s=-1$.

We will also be interested in sets of roots of the following kind :

Proposition 2.6 Let $\left(r_{1}, r_{2}, \ldots, r_{k}\right) \in \Phi^{k}$ be such that $\left\langle r_{i}, r_{j}\right\rangle=1$ whenever $i \neq j$. Then $k \leq 5$ and $W\left(\mathrm{E}_{6}\right)$ acts transitively on all k-tuples of this kind (for a given k). Any pair $\left(r_{1}, r_{2}\right)$ of this type has exactly 3 common base points, any k-tuple with $3 \leq k \leq 5$ has exactly 2 common base points.

Proof: For $k \leq 2$ transitivity was already proved in Proposition 2.5. Hence, without loss of generality we may choose $r_{1}=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$ and $r_{2}=111 \overline{2} \overline{2} \overline{2}$. It is then easily seen that the stabilizer of r_{1} and r_{2} in $W\left(\mathrm{E}_{6}\right)$ acts as the group $\operatorname{Sym}(3)^{2}$ which independently permutes the first three and the last three coordinates. Also, roots r which satisfy $\left\langle r, r_{1}\right\rangle=1$ are those having 3 coordinates equal to 1 and 3 coordinates equal to $\overline{2}$. If moreover $\left\langle r, r_{2}\right\rangle=1$, then the first three coordinates of r must contain exactly two ones.

This proves that $W\left(\mathrm{E}_{6}\right)$ acts transitively on triples $\left(r_{1}, r_{2}, r_{3}\right)$ and without loss of generality we may choose $r_{3}=11 \overline{2} 1 \overline{2} \overline{2}$. The stabilizer of this triple now acts like $\operatorname{Sym}(2)^{2}$ which independently permutes the first two and last two coordinates. It is easily seen that again this stabilizer acts transitively on the four remaining roots r_{4} such that $\left\langle r_{4}, r_{1}\right\rangle=\left\langle r_{4}, r_{2}\right\rangle=\left\langle r_{4}, r_{3}\right\rangle=1$. Choosing $r_{4}=1 \overline{2} 11 \overline{2} \overline{2}$ we see that exactly one possibility remains to extend the 4 -tuple to a 5 -tuple, i.e., $r_{5}=\overline{2} 111 \overline{2} \overline{2}$.

With these choices we find that r_{1}, \ldots, r_{5} have common base points 000030 and 000003 . Using Table 2.1 (pg. 34) we obtain 000300 as an additional common base point for r_{1} and r_{2}.

Before we can proceed to the next section we need to introduce one more concept. In what follows, fix an automorphism ω of \mathcal{Q} (and hence an orthogonal transformation of \mathbf{P}) of order 3 having 9 orbits on \mathcal{P} each of which is a line. These lines form a spread Σ, i.e., a partition of the 27 points of \mathcal{P} into lines.

- An example of such an automorphism is given by

$$
\omega: \begin{array}{lll}
\omega: & p_{0} \mapsto p_{1}+r, & p_{1} \mapsto p_{2}+r,
\end{array} \quad p_{2} \mapsto p_{0}+r, ~=~ p_{3}-p_{4}, \quad p_{4} \mapsto-r-p_{4}-p_{5}, \quad p_{5} \mapsto-r-p_{5}-p_{3},
$$

using the standard notation for points of \mathcal{P}.
Consider two lines $L=\left\{p, p^{\prime},-p-p^{\prime}\right\}$ and $M=\left\{q, q^{\prime},-q-q^{\prime}\right\}$ of \mathcal{Q}. Each point of M is collinear to exactly one point of L, say $p \sim q, p^{\prime} \sim q^{\prime}$ and hence $\left(-p-p^{\prime}\right) \sim\left(-q-q^{\prime}\right)$. For each collinear pair we may construct the third point on the corresponding line, giving the three points $-p-q,-p^{\prime}-q^{\prime}$ and $p+p^{\prime}+q+q^{\prime}$ (see figure 2.2). These three points sum to 0 and therefore form yet another line N. The set of lines $\{L, M, N\}$ is called a regulus of \mathcal{Q} and the

Figure 2.2: Grid generated by $p, p^{\prime}, q, q^{\prime} \in \mathcal{P}$
configuration of 6 lines and 9 points described here is called a grid. A grid is made up of two reguli which are said to be complementary.

Given two lines $L, M \in \Sigma$, say $L=\left\{p, p \omega, p \omega^{2}\right\}, M=\left\{q, q \omega, q \omega^{2}\right\}$ with $p \sim q$, then the third line of the regulus through L and M is $N=\{-p-$ $\left.q,(-p-q) \omega,(-p-q) \omega^{2}\right\}$ and hence is a line of Σ. In other words, if two lines of a regulus belong to Σ then so does the third. We say that Σ is a regular spread.

Because $p+p \omega+p \omega^{2}=0$ for all $p \in \mathcal{P}$ we find that $1+\omega+\omega^{2}=0$ over \mathbf{P}.
If $r \in \Phi$, then $r+r \omega+r \omega^{2}=0$ and hence $r \cdot r \omega+r \cdot r \omega^{2}+r \omega \cdot r \omega^{2}=-3$, which implies $r \cdot r \omega=r \omega \cdot r \omega^{2}=r \omega^{2} \cdot r=-1$.

Another consequence is that $p \cdot r+p \cdot r \omega+p \cdot r \omega^{2}=0$. If p is a base point of r, then $p \cdot r=-1$, hence $p \cdot r \omega+p \cdot r \omega^{2}=1$. There are two possible ways to satisfy this equality, and we will use these to define a distinction between positive and negative base points of r :

$$
\begin{array}{ll}
p \cdot r=-1, & p \cdot r \omega=1,
\end{array} \quad p \cdot r \omega^{2}=0, \quad \text { when } p \text { is a positive base point of } r,
$$

Lemma 2.7 If p is a positive (respectively negative) base point of r, then $p+r$ is a negative (respectively positive) base point of $-r$.

If p is a base point of r, then p is a positive base point of r if and only if it is also a base point of $-r \omega$, and then it is a negative base point of $-r \omega$. Likewise, p is a negative base point of r if and only if it is also a base point of $-r \omega^{2}$ and then it is a positive base point of $-r \omega^{2}$.

Proof: We easily compute that $(p+r) \cdot(-r) \omega=1-p \cdot r \omega$ and $(p+r)$. $(-r) \omega^{2}=1-p \cdot r \omega^{2}$. Definition (2.13) then shows that $p+r$ is a negative base point of $-r$ when p is positive base point of r (and vice versa).

By (2.13) we see that $p \cdot(-r \omega)=-1$ if and only if p is a positive base point of r. In that case, because $\omega^{3}=1$, we have $p \cdot(-r \omega) \omega^{2}=-p \cdot r=1$ and $p \cdot(-r \omega) \omega=-p \cdot r \omega^{2}=0$, hence p is a negative base point of $-r \omega$. A similar argument can be used when p is a negative base point of r.

Let (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ be two non-collinear pairs associated with the same root r. We will call these pairs compatible if and only if p, p^{\prime} are both positive base points of r, or both negative base points of r.

Lemma 2.8 Let $r \in \Phi, p, p^{\prime} \in \mathcal{P}$. Write $q=p+r, q^{\prime}=p^{\prime}+r$.
Then the pairs (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are compatible if and only if either the line $p q^{\prime}$ or the line $p^{\prime} q$ belongs to Σ.

Proof: Assume p is a positive base point of r. If $p q^{\prime} \in \Sigma$ then either $p=q^{\prime} \omega$ or $p=q^{\prime} \omega^{2}$. Because q^{\prime} is a base point of $-r$, and hence $q^{\prime} \cdot r=1$, it follows from (2.13) and the fact that ω is orthogonal, that $p=q^{\prime} \omega$ and that $p^{\prime}=q^{\prime}-r$ is a positive base point of r. Similarly, if p is a negative base point of r, then $p=q^{\prime} \omega^{2}$ and also p^{\prime} is a negative base point. Hence in both cases (p, q) and (p^{\prime}, q^{\prime}) are compatible.

Every root r has 3 positive base points and 3 negative base points, hence there are 6 compatible pairs $\left\{(p, q),\left(p^{\prime}, q^{\prime}\right)\right\}$ in all. Likewise every of the 6 base points p of r lies on exactly one line of Σ, and gives rise to exactly one q^{\prime} as in the construction above. Hence all compatible pairs associated with r are accounted for.

Lemma 2.9 Of the 6 lines in any grid, either 1 or 3 belong to Σ.

Proof: The lines of a spread do not intersect, hence at most three lines of Σ lie on the grid. Because Σ is a regular spread, Σ cannot intersect the grid in 2 lines, hence we must prove that Σ intersects every grid in at least one line. We do this by counting :

For each line there are 32 lines that do not intersect it, and hence 16 grids through that line. This gives a total of $45 \times 16 / 6=120$ grids. For each line of Σ there are 4 grids through that line that intersect in 3 lines of Σ, hence there are $9 \times 4 / 3=12$ grids of that type. Through each line of Σ there remain 12 grids that intersect Σ in one line, giving 108 grids of that type. But $120=108+12$ and therefore all grids are accounted for.

- We end this section with a short description of yet another way to construct the generalized quadrangle \mathcal{Q} and the associated spread Σ. Points of the quadrangle are denoted by $x_{i j}, y_{i j}, z_{i j}$ with $1 \leq i, j \leq 3$. Lines are of the form $x_{i j} y_{j k} z_{k i}$, with $1 \leq$ $i, j, k \leq 3$ and $x_{1 i} x_{2 j} x_{3 k}, y_{1 i} y_{2 j} y_{3 k}$ or $z_{1 i} z_{2 j} z_{3 k}$ where $\{i, j, k\}=\{1,2,3\}$. The spread $\bar{\Sigma}$ now consists of those 9 lines of the latter type for which $i j k$ is an even permutation of 123.

2.2 The Lie algebra of type E_{6} over K

In what follows let K denote any field. Let \mathbf{V} be a 27 -dimensional vector space over K generated by 27 base vectors e_{p}, each associated with a different point $p \in \mathcal{P}$. Let \mathbf{V}^{*} denote the corresponding dual space and choose base vectors η_{q} of \mathbf{V}^{*} for $q \in \mathcal{P}$ in such a way that

$$
e_{p} \eta_{q}= \begin{cases}1, & \text { if } p=q \\ 0, & \text { otherwise }\end{cases}
$$

We may represent an element a of \mathbf{V} as a row vector with 27 coordinates in K. We use the notation $a[p] \stackrel{\text { def }}{=} a \eta_{p}$ for the ' p th' coordinate of a (for $p \in \mathcal{P}$). Similarly, we may represent $\alpha \in \mathbf{V}^{*}$ by a column vector of 27 coordinates where $\alpha[p] \stackrel{\text { def }}{=} e_{p} \alpha$ denotes the ' p th' coordinate of α, taking care to use the same ordering of the coordinates for both \mathbf{V} and \mathbf{V}^{*}. With these notations we find

$$
\begin{equation*}
a \alpha=\sum_{i \in \mathcal{P}} a[i] \alpha[i]=\sum_{i \in \mathcal{P}}\left(a \eta_{i}\right)\left(e_{i} \alpha\right) \tag{2.14}
\end{equation*}
$$

- We have chosen not to use the 'functional notation' for elements of the dual vector space. Some authors would write $\alpha(a)$, or even αa, where we write $a \alpha$.

Linear transformations will be identified with matrices acting by multiplication to the right of normal vectors, or to the left of dual vectors. In other words : if A is a linear transformation on \mathbf{V}, then $A[p, q] \stackrel{\text { def }}{=} e_{p} A \eta_{q}$ denotes the entry at row p and column q of A.

Define the following operations :

1. A trilinear symmetric form $\langle a, b, c\rangle$ on \mathbf{V}, acting as follows on the base vectors e_{i} :

$$
\left\langle e_{i}, e_{j}, e_{k}\right\rangle \stackrel{\text { def }}{=}\left\{\begin{align*}
1, & \text { if }\{i, j, k\} \in \Sigma, \tag{2.15}\\
-1, & \text { if }\{i, j, k\} \in \mathcal{L}-\Sigma, \\
0, & \text { otherwise }
\end{align*}\right.
$$

2. A trilinear form $\langle\alpha, \beta, \gamma\rangle$ on \mathbf{V}^{*}, defined in a similar way :

$$
\left\langle\eta_{i}, \eta_{j}, \eta_{k}\right\rangle \stackrel{\text { def }}{=}\left\{\begin{align*}
1, & \text { if }\{i, j, k\} \in \Sigma, \tag{2.16}\\
-1, & \text { if }\{i, j, k\} \in \mathcal{L}-\Sigma, \\
0, & \text { otherwise } .
\end{align*}\right.
$$

3. A related bilinear product \times which maps a pair $a, b \in \mathbf{V}$ to an element $a \times b$ of \mathbf{V}^{*} (and dually, a product $\alpha \times \beta \in \mathbf{V}$) using the following identities:

$$
\begin{array}{lll}
c(a \times b) & \stackrel{\text { def }}{=}\langle c, a, b\rangle, & \text { for all } c \in \mathbf{V} \tag{2.17}\\
(\alpha \times \beta) \gamma & \stackrel{\text { def }}{=}\langle\alpha, \beta, \gamma\rangle, & \text { for all } \gamma \in \mathbf{V}^{*}
\end{array}
$$

4. The operations \# and D with the following properties $\left(a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}\right)$:

$$
\begin{array}{lll}
a^{\#} & \stackrel{\text { def }}{=} \frac{1}{2} a \times a, & \alpha^{\#} \tag{2.18}\\
D(a) & \stackrel{\text { def }}{=} \frac{1}{2} \alpha \times \alpha, \\
= & \frac{1}{3} a a^{\#}=\frac{1}{6}\langle a, a, a\rangle, & D(\alpha) \stackrel{\text { def }}{=} \frac{1}{3} \alpha^{\#} \alpha=\frac{1}{6}\langle\alpha, \alpha, \alpha\rangle .
\end{array}
$$

- There is a problem with this definition when $\operatorname{char} K=2$ or 3 , which will be resolved below.

For ease of notation we introduce the symbol $\epsilon_{i j k} \stackrel{\text { def }}{=}\left\langle e_{i}, e_{j}, e_{k}\right\rangle$. Note that $\epsilon_{i j k}$ is equal to 0,1 or -1 . For $a, b, c \in \mathbf{V}$ we find

$$
\begin{equation*}
\langle a, b, c\rangle=\sum \epsilon_{i j k} a[i] b[j] c[k], \quad a \times b=\sum \epsilon_{i j k} a[i] b[j] \eta_{k} \tag{2.19}
\end{equation*}
$$

where the sums may be restricted to the 270 ordered triples (i, j, k) for which $\{i, j, k\}$ is a line. Also

$$
\begin{equation*}
a^{\#}=\sum^{\prime} \epsilon_{i j k} a[i] a[j] \eta_{k} \tag{2.20}
\end{equation*}
$$

where the sum is taken over the 27 points k of \mathcal{P}, and for each k, over the 5 pairs $\{i, j\}$ such that $\{i, j, k\}$ is a line. When char $K=2$, we take (2.20) as the definition of the operator \#.

The cubic form D can be expressed as follows in terms of coordinates :

$$
\begin{equation*}
D(a) \stackrel{\text { def }}{=} \sum^{\prime} \epsilon_{i j k} a[i] a[j] a[k], \tag{2.21}
\end{equation*}
$$

where the sum ranges over the 45 lines $\{i, j, k\}$ of \mathcal{L}. When char $K=2$ or 3 , we take (2.21) as the definition of the operator D.

- As has already been apparent, we will often need to treat the cases char $K=2$ and 3 separately. Note however that most equations which we will derive below can be expressed as polynomial identities in several coordinate variables $a[i], b[j], c[k], \alpha[i], \ldots$, where all coefficients are integers. Once these polynomial identities have been derived, they therefore immediately hold in all fields K, even when char $K=2$ or 3 , and no separate proof is needed.

We easily prove the following identities for every $a, b \in \mathbf{V}$ and $\ell \in K$:

$$
\begin{align*}
& (a+\ell b)^{\#}=a^{\#}+\ell a \times b+\ell^{2} b^{\#} \tag{2.22}\\
& D(a+\ell b)=D(a)+\ell b a^{\#}+\ell^{2} a b^{\#}+\ell^{3} D(b)
\end{align*}
$$

Similar properties hold over \mathbf{V}^{*}. (In what follows we will no longer mention such dual properties.)

Also

$$
\begin{equation*}
\langle a, b, \alpha \times \beta\rangle=(\alpha \times \beta)(a \times b)=\langle a \times b, \alpha, \beta\rangle, \quad \text { for } a, b \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*} \tag{2.23}
\end{equation*}
$$

The following serves as a kind of fundamental axiom for the basic operations on \mathbf{V} and \mathbf{V}^{*} :

Proposition 2.10 Let $a, b, c, d \in \mathbf{V}$. Then

$$
\begin{align*}
(a \times b) \times(c \times d) & +(a \times c) \times(b \times d)+(a \times d) \times(b \times c) \\
& =\langle a, b, c\rangle d+\langle b, c, d\rangle a+\langle c, d, a\rangle b+\langle d, a, b\rangle c . \tag{2.24}
\end{align*}
$$

Proof: Clearly both the left and the right hand side of (2.24) are linear in a, b, c, d, hence it is sufficient to prove this identity when $a=e_{i}, b=e_{j}, c=$ $e_{k}, d=e_{l}$ are base vectors of \mathbf{V}.

First assume that at least two of these base vectors are equal, say $i=l$. Then the left hand side of (2.24) evaluates to $2\left(e_{i} \times e_{j}\right) \times\left(e_{i} \times e_{k}\right)$ which is only
nonzero when $i \sim j, i \sim k$ and $-i-j \sim-i-k$, hence when $\{i, j, k\}$ is a line. In that case the value of the left hand side is $2 \epsilon_{i j k} e_{i}$. When $i=l$ the right hand side of (2.24) is easily computed to yield the same value.

Hence, assume $|\{i, j, k, l\}|=4$. For the left hand side of (2.24) to be nonzero, at least one of the following conditions must be satisfied :
(a) $i \sim j, k \sim l$ and $-i-j \sim-k-l$.
(b) $j \sim k, i \sim l$ and $-j-k \sim-i-l$.
(c) $k \sim i, j \sim l$ and $-k-i \sim-j-l$.

Up to symmetry there are only two configurations of the four points i, j, k, l in which at least one of these conditions is met.

Case 1. $i \sim j \sim k \sim l \sim i$. It is easily seen that the right hand side of (2.24) is now zero. The left hand side is equal to

$$
\begin{align*}
& \epsilon_{i, j,-i-j} \epsilon_{k, l,-k-l} \epsilon_{-i-j,-k-l, i+j+k+l} e_{i+j+k+l} \tag{2.25}\\
& \quad+\epsilon_{i, l,-i-l} \epsilon_{j, k,-j-k} \epsilon_{-i-l,-j-k, i+j+k+l} e_{i+j+k+l}
\end{align*}
$$

Now, the 6ϵ-values in this expression correspond to the 6 lines of a grid. By lemma 2.9 an odd number of them must be equal to 1 and therefore an odd number must be equal to -1 . As a consequence one of the terms in (2.25) has coefficient 1 and one has coefficient -1 . Hence (2.25) is zero, as had to be proved.

Case 2. $\{i, j, k\}$ is a line and l is adjacent to exactly one point of that line, say $i \sim l$. The left hand side of (2.24) is now equal to $\epsilon_{i j k} e_{l}$, and this is easily proved to also be the value of the right hand side of (2.24).

Note that the right hand side of (2.24) can be nonzero only if at least 3 of the points i, j, k, l lie on a line, which was covered in case 2 above. Hence, all cases were covered.

We may derive several additional equalities by setting some of the variables in Proposition 2.10 to the same symbol. Because these are polynomial identities
with integral coefficients, they also hold when char $K=2$ or 3 .

$$
\begin{align*}
(a \times b) \times(a \times c)+a^{\#} \times(b \times c) & =\langle a, b, c\rangle a+\left(c a^{\#}\right) b+\left(b a^{\#}\right) c \tag{2.26}\\
\left(a^{\#} \times b^{\#}\right)+(a \times b)^{\#} & =\left(a b^{\#}\right) a+\left(b a^{\#}\right) b \tag{2.27}\\
(a \times b) \times a^{\#} & =D(a) b+\left(b a^{\#}\right) a \tag{2.28}\\
\left(a^{\#}\right)^{\#} & =D(a) a \tag{2.29}
\end{align*}
$$

for all $a, b, c \in \mathbf{V}$.

- In [2] equation (2.29) is considered fundamental instead of (2.24). It is not difficult to derive equations (2.24,2.26-2.28) from (2.29). For example, substituting $a+\ell b$ for a in (2.29) and equating coefficients of ℓ and ℓ^{2} in the resulting polynomial identity, leads to (2.27) and (2.28). The others can be proved using the same technique.

Note that (2.29) proves that $D(a)=0$ when $a^{\#}=0$, also when char $K=3$. For other characteristics this was already an immediate consequence of the definition (2.18). Applying (2.29) to $a^{\#}$ instead of a, yields

$$
\begin{equation*}
D\left(a^{\#}\right)=D(a)^{2}, \quad \text { for all } a \in \mathbf{V} \tag{2.30}
\end{equation*}
$$

Lemma 2.11 Let $a, b, c \in \mathbf{V}, \delta \in \mathbf{V}^{*}$. Then

$$
\begin{align*}
& ((a \times b) \times \delta) \times c+((b \times c) \times \delta) \times a+((c \times a) \times \delta) \times b \tag{2.31}\\
& \quad=\langle a, b, c\rangle \delta+(a \delta)(b \times c)+(b \delta)(c \times a)+(c \delta)(a \times b)
\end{align*}
$$

Proof: First note the following identity :

$$
\begin{aligned}
d[((a \times b) \times \delta) \times c] & =\langle(a \times b) \times \delta), c, d\rangle \\
& =\langle a \times b, c \times d, \delta\rangle=[(a \times b) \times(c \times d)] \delta
\end{aligned}
$$

by (2.17) and (2.23). Multiplying (2.24) to the right with δ and using this equality, we obtain (2.31) multiplied to the left with d. Because d can be chosen arbitrarily, the lemma follows.

By setting $a=b$ and $a=c$ in (2.31) we obtain some more identities:

$$
\begin{align*}
\left(a^{\#} \times \gamma\right) \times b+((a \times b) \times \gamma) \times a & =(b \gamma) a^{\#}+(a \gamma)(a \times b)+\left(b a^{\#}\right) \gamma \tag{2.32}\\
\left(a^{\#} \times \beta\right) \times a & =(a \beta) a^{\#}+D(a) \beta \tag{2.33}
\end{align*}
$$

- In $[10,11]$ the vector space \mathbf{V} and the associated operations are defined in a different way : V is defined to consist of all triples $a=(X, Y, Z)$ of 3×3 matrices X, Y, Z over K and then $D(a)=\operatorname{det} X+\operatorname{det} Y+\operatorname{det} Z-\operatorname{Tr} X Y Z$. Up to a minus sign this definition corresponds to ours if we represent \mathcal{Q} as was explained in the final note of section 2.1. In [1] the trilinear form is introduced explicitely, and consists of two parts: a set of terms that correspond to the 15 lines of a subquadrangle of order $(2,2)$ and a set of terms that correspond to the remaining lines. This is called the Dickson presentation.

Another difference lies in our distinction between the spaces \mathbf{V} and \mathbf{V}^{*}. Other authors define $a^{\#}$ and $a \times b$ to belong to \mathbf{V} instead of \mathbf{V}^{*}.

For $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ define $a * \alpha \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ by means of the following identity:

$$
\begin{equation*}
b(a * \alpha) \beta \stackrel{\text { def }}{=}(b \alpha)(a \beta)-(\alpha \times \beta)(a \times b), \quad \text { for all } b \in \mathbf{V}, \beta \in \mathbf{V}^{*} \tag{2.34}
\end{equation*}
$$

Note that the definition implies

$$
\begin{equation*}
a(b * \beta) \alpha=b(a * \alpha) \beta, \quad \text { for all } a, b \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*} . \tag{2.35}
\end{equation*}
$$

We may regard $a * \alpha$ as a linear transformation on \mathbf{V} (mapping b to $b(a * \alpha)$) or as a linear transformation on \mathbf{V}^{*} (mapping β onto $(a * \alpha) \beta$). We have

$$
\begin{equation*}
b(a * \alpha)=(b \alpha) a-(a \times b) \times \alpha, \quad(a * \alpha) \beta=(a \beta) \alpha-(\alpha \times \beta) \times a . \tag{2.36}
\end{equation*}
$$

Also the following cases are of interest :

$$
\begin{equation*}
a(a * \alpha)=(a \alpha) a-2 a^{\#} \times \alpha, \quad(a * \alpha) \alpha=(a \alpha) \alpha-2 a \times \alpha^{\#} . \tag{2.37}
\end{equation*}
$$

Lemma 2.12 Let $a, b, c \in \mathbf{V}$. Then

$$
\begin{align*}
a * a^{\#}+D(a) \mathbf{1} & =0, \tag{2.38}\\
a *(a \times b)+b * a^{\#}+\left(b a^{\#}\right) \mathbf{1} & =0, \tag{2.39}\\
a *(b \times c)+b *(c \times a)+c *(a \times b)+\langle a, b, c\rangle \mathbf{1} & =0, \tag{2.40}
\end{align*}
$$

where $\mathbf{1}$ denotes the identity transformation on \mathbf{V}.

Proof: Apply the left hand side of (2.40) to $d \in \mathbf{V}$ to obtain

$$
\begin{aligned}
& d[a *(b \times c)+b *(c \times a)+c *(a \times b)+\langle a, b, c\rangle \mathbf{1}] \\
& =\langle d, b, c\rangle a-(a \times d) \times(b \times c)+\langle d, c, a\rangle b-(b \times d) \times(c \times a) \\
& \\
& +\langle d, a, b\rangle c-(c \times d) \times(a \times b)+\langle a, b, c\rangle d
\end{aligned}
$$

And this is zero by (2.24), for every $d \in \mathbf{V}$, proving (2.40). The other properties follow in a similar way from (2.26) and (2.28).

We are now in a position to introduce the Lie algebra $\widehat{\mathbf{L}}$ as a subspace of $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$: define $\widehat{\mathbf{L}}$ to be the set of all linear transformations A of \mathbf{V} that satisfy

$$
\begin{equation*}
a \times a A+A a^{\#}+\tau(A) a^{\#}=0, \quad \text { for all } a \in \mathbf{V}, \tag{2.41}
\end{equation*}
$$

for some scalar $\tau(A) \in K$ which only depends on A. If A, A^{\prime} satisfy (2.41) then so does $A+k A^{\prime}$ for any $k \in K$, with $\tau\left(A+k A^{\prime}\right)=\tau(A)+k \tau\left(A^{\prime}\right)$. Hence $\widehat{\mathbf{L}}$ is a vector space and τ is a linear functional on $\widehat{\mathbf{L}}$. Also note that the identity transformation $\mathbf{1}$ belongs to $\widehat{\mathbf{L}}$ with $\tau(\mathbf{1})=-3$.

Substituting $a+b$ for a in (2.41) and then multiplying by c, we obtain

$$
\begin{align*}
a A \times b+a \times b A+A(a \times b)+\tau(A) a \times b & =0, \tag{2.42}\\
\langle a A, b, c\rangle+\langle a, b A, c\rangle+\langle a, b, c A\rangle+\tau(A)\langle a, b, c\rangle & =0, \tag{2.43}
\end{align*}
$$

for every $a, b, c \in \mathbf{V}$ and $A \in \widehat{\mathbf{L}}$.
The following lemma proves that $\widehat{\mathbf{L}}$ is indeed a Lie algebra over K with the usual definition of the 'Lie bracket' operator.

Lemma 2.13 Let $A, B \in \widehat{\mathbf{L}}$. Then $[A, B] \stackrel{\text { def }}{=} A B-B A$ belongs to $\widehat{\mathbf{L}}$ and $\tau([A, B])=$ 0.

Proof: Applying (2.42) and (2.41) we find

$$
\begin{aligned}
a \times a A B & =-a A \times a B-B(a \times a A)-\tau(B)(a \times a A) \\
& =-a A \times a B+B A a^{\#}+\tau(A) B a^{\#}+\tau(B) A a^{\#}+\tau(A) \tau(B) a^{\#}
\end{aligned}
$$

and hence, interchanging A and B in this expression,

$$
a \times a B A=-a B \times a A+A B a^{\#}+\tau(B) A a^{\#}+\tau(A) B a^{\#}+\tau(B) \tau(A) a^{\#} .
$$

Subtracting these equalities, we find

$$
a \times a(A B-B A)=-(A B-B A) a^{\#},
$$

and therefore $[A, B] \in \widehat{\mathbf{L}}$ with $\tau([A, B])=0$.
If we define \mathbf{L} to be the kernel of τ, i.e., the subset of $A \in \widehat{\mathbf{L}}$ for which $\tau(A)=0$, then this lemma proves that also \mathbf{L} is a Lie algebra over K.

- Specialized to $\tau(A)=0$ equations (2.42-2.43) show that the operations \times and $\langle\cdot, \cdot, \cdot\rangle$ are compatible with the Lie algebra L (cf. Chapter 1).

Lemma 2.14 Let $b \in \mathbf{V}$ and $\beta \in \mathbf{V}^{*}$. Then $b * \beta \in \widehat{\mathbf{L}}$ with $\tau(b * \beta)=b \beta$.

Proof: Consider any $c \in \mathbf{V}$. We compute

$$
\begin{aligned}
c(a \times a(b * \beta)) & & =\langle c, a, a(b * \beta)\rangle=a(b * \beta)(a \times c) & \\
& =b(a *(a \times c)) \beta, & & \text { by }(2.35) \\
& =b\left(-c * a^{\#}-\left(c a^{\#}\right) \mathbf{1}\right) \beta, & & \text { by }(2.39) \\
& =-b\left(c * a^{\#}\right) \beta-(b \beta)\left(c a^{\#}\right), & & \\
& =-c(b * \beta) a^{\#}-(b \beta)\left(c a^{\#}\right), & & \text { by }(2.35)
\end{aligned}
$$

This is true for every $c \in \mathbf{V}$, proving that $a \times a(b * \beta)+(b * \beta) a^{\#}+(b \beta) a^{\#}$ for every $a \in \mathbf{V}$ and hence the lemma follows.

- As was mentioned in Chapter 1, we could have chosen to define $a * \alpha$ differently. For example, setting $b(a * \alpha) \beta=(b \alpha)(a \beta)+\frac{1}{3}(a \alpha)(b \beta)-(\alpha \times \beta)(a \times b)$, i.e., adding $\frac{1}{3}(a \alpha) \mathbf{1}$ to the current definition, would have made $\tau(a * \alpha)=0$, obviating the need to introduce τ and $\widehat{\mathbf{L}}$, and allowing us to immediately define \mathbf{L} from the property $a \times$ $a A+A a^{\#}=0$. Unfortunately, this definition of the $*$-operator would make no sense when $\operatorname{char} K=3$.

The following lemmas will provide more information on the structure of $\widehat{\mathbf{L}}$ and \mathbf{L}.

Lemma 2.15 Consider a root $r \in \Phi$ with positive base point p_{0} and write $q_{0}=$ $p_{0}+r$ as usual. Define

$$
\begin{equation*}
E_{r} \stackrel{\text { def }}{=} e_{q_{0}} * \eta_{p_{0}} . \tag{2.44}
\end{equation*}
$$

Then

$$
e_{p} E_{r}=\left\{\begin{align*}
e_{p+r}, & \text { when } p \text { is a positive base point of } r, \tag{2.45}\\
-e_{p+r}, & \text { when } p \text { is a negative base point of } r, \\
0, & \text { for any other } p \in \mathcal{P} .
\end{align*}\right.
$$

As a consequence the definition of E_{r} is independent of the choice of p_{0}.

Proof: We must evaluate $e_{p}\left(e_{q_{0}} * \eta_{p_{0}}\right)=\left(e_{p} \eta_{p_{0}}\right) e_{q_{0}}-\left(e_{p} \times e_{q_{0}}\right) \times \eta_{p_{0}}$. If $p=p_{0}$ then the right hand side clearly evaluates to $e_{q_{0}}$. Otherwise this expression is nonzero only if $p \sim q_{0}$ and also $-p-q_{0} \sim p_{0}$. Using the standard notation for points of \mathcal{P} we see that p must be of the form p_{i} with $1 \leq i \leq 5$. Hence $p=p_{i}$ is a base point of r and $p+r=q_{i}$. We have $\left(e_{p} \times e_{q_{0}}\right) \times \eta_{p_{0}}= \pm \eta_{-p-q_{0}}= \pm e_{p+q_{0}-p_{0}}= \pm e_{p+r}$ and hence $e_{p_{i}} E_{r}= \pm e_{q_{i}}$. If $\left(p_{i}, q_{i}\right)$ and $\left(p_{0}, q_{0}\right)$ are compatible pairs, exactly one of the lines $p_{i} q_{0}, p_{0} q_{i}$ belongs to the spread Σ (Lemma 2.8) yielding a plus sign. Otherwise, neither of them belongs to Σ, resulting in a minus sign.

In a similar way it is easily proved that $e_{q} * \eta_{p}=0$ when $p \sim q$. When we regard E_{r} as a matrix, we may reformulate (2.45) as follows :

$$
E_{r}[p, q]= \begin{cases}+1, & \text { when } r=q-p \text { and } p \text { is a positive basepoint of } r \tag{2.46}\\ -1, & \text { when } r=q-p \text { and } p \text { is a negative basepoint of } r \\ 0, & \text { otherwise. }\end{cases}
$$

Note that the matrices E_{r} are linearly independent, as each pair (p, q) with $p \not \perp q$ is associated with exactly one root.

If p is a positive base point of root r, then q is a negative base point of $-r$ (Lemma 2.7). As a consequence, (2.46) implies

$$
E_{r} \eta_{q}=\left\{\begin{align*}
-\eta_{q-r} & \text { when } q \text { is a positive base point of }-r, \tag{2.47}\\
\eta_{q-r} & \text { when } q \text { is a negative base point of }-r \\
0 & \text { for any other } q \in \mathcal{P}
\end{align*}\right.
$$

This also means that the transpose E_{r}^{T} of E_{r} satisfies $E_{r}^{T}=-E_{-r}$.

Lemma 2.16 Consider a point $p \in \mathcal{P}$. Define

$$
\begin{equation*}
H_{p} \stackrel{\text { def }}{=} e_{p} * \eta_{p} \tag{2.48}
\end{equation*}
$$

Then

$$
\begin{equation*}
e_{q} H_{p}=\left(p \cdot q-\frac{1}{3}\right) e_{q} \tag{2.49}
\end{equation*}
$$

where $p \cdot q-1 / 3$, which is either equal to 1,0 or -1 , should be regarded as an element of the prime field of K.
(The proof is very similar to the proof of lemma 2.15.)
Note that H_{p} is a diagonal matrix.
We write H_{r} for the matrix $H_{q_{0}}-H_{p_{0}}$ with $r \in \Phi, p_{0}, q_{0} \in \mathcal{P}, r=q_{0}-p_{0}$. From (2.49) it follows that

$$
\begin{equation*}
e_{q} H_{r}=(r \cdot q) e_{q}, \quad \text { for all } q \in \mathcal{P} \tag{2.50}
\end{equation*}
$$

proving that the definition of H_{r} is independent of the choice of the base point p_{0} of r.

Note that $\tau\left(H_{p}\right)=1$ when $p \in \mathcal{P}$, and that $\tau\left(H_{r}\right)=0$ when $r \in \Phi$.

Proposition 2.17 A matrix A belongs to $\widehat{\mathbf{L}}$ if and only if

1. $A[p, q]=0$ whenever p, q are collinear.
2. $A[p, q]=A\left[p^{\prime}, q^{\prime}\right]$ when (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are compatible pairs associated with the same root.
3. $A[p, q]=-A\left[p^{\prime}, q^{\prime}\right]$ when (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are incompatible pairs associated with the same root.
4. $A[i, i]+A[j, j]+A[k, k]+\tau(A)=0$ for any three points i, j, k forming a line of \mathcal{Q}, where $\tau(A)$ is a scalar that does not depend on i, j, k.

Proof: We first investigate the value of

$$
\begin{equation*}
\left\langle e_{i} A, e_{j}, e_{k}\right\rangle+\left\langle e_{i}, e_{j} A, e_{k}\right\rangle+\left\langle e_{i}, e_{j}, e_{k} A\right\rangle+\tau(A)\left\langle e_{i}, e_{j}, e_{k}\right\rangle \tag{2.51}
\end{equation*}
$$

for all possible triples (i, j, k) and determine the necessary and sufficient conditions for this expression to be zero. We have

$$
\left\langle e_{i} A, e_{j}, e_{k}\right\rangle= \begin{cases}\epsilon_{-j-k, j, k} A[i,-j-k], & \text { if } j \sim k \tag{2.52}\\ 0, & \text { otherwise }\end{cases}
$$

We need to consider the following cases:

1. The points i, j, k are all different and mutually noncollinear. By (2.52) each of the first three terms of (2.51) are zero, independent of the choice of A. The last term is zero by (2.15).
2. The points i, j, k are all different and exactly one pair is collinear, say $i \sim j$. Then (2.51) equals $\pm A[k,-i-j]$. Note that k must be collinear to exactly one point of the line $\{i, j,-i-j\}$, and hence $k \sim-i-j$.
3. The points i, j, k are all different and exactly two pairs (say i, j and j, k) are collinear. In this case (2.51) evaluates to $\epsilon_{-i-j, i, j} A[k,-i-j]+\epsilon_{-j-k, j, k} A[i,-j-$ $k]$. Note that $(k,-i-j)$ and $(i,-j-k)$ are pairs of noncollinear points associated with the same root $i-j-k$. Moreover, these pairs are compatible if and only if $\epsilon_{-i-j, i, j}=-\epsilon_{-j-k, j, k}$.
4. The points i, j, k are the three points of a line. Then (2.51) equals $\epsilon_{i j k}(A[i, i]+$ $A[j, j]+A[k, k]+\tau(A))$.
5. Exactly two of the points i, j, k are the same (say $i=k$) and $i \sim j$. Then (2.51) reduces to $\pm 2 A[i,-i-j]$.
6. Exactly two of the points i, j, k are the same (say $i=k$) but $i \not \perp j$. Then (2.51) is zero, independent of A.
7. All three points are the same. Then (2.51) is again zero for every possible A.

Now, if $A \in \widehat{\mathbf{L}}$, then A satisfies (2.43) and then (2.51) must be zero for every triple i, j, k of points. If p, q are collinear points, then take a line pij not through q and set $k=q$ in case 2 above. We find $A[p, q]=0$. If (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are noncollinear pairs belonging to the same root, then $p \sim q^{\prime}$ and $p^{\prime} \sim q$ by Lemma 2.2. Taking $i=p^{\prime}, k=p$ and $j=-p-q^{\prime}=-q-p^{\prime}$ we obtain $A[p, q]= \pm A\left[p^{\prime}, q^{\prime}\right]$ from case 3 , with a plus-sign if and only if the pairs are compatible. The final condition of this lemma then follows from case 4.

Conversely, for A to belong to $\widehat{\mathbf{L}}$ the following conditions, derived from (2.41) are sufficient

$$
\begin{array}{lll}
e_{i} \times e_{i} A & =0, & \text { for all } i \in \mathcal{P}, \\
e_{i} \times e_{j} A+e_{i} A \times e_{j}+A\left(e_{i} \times e_{j}\right)+\tau(A)\left(e_{i} \times e_{j}\right)=0, & \text { for all } i, j \in \mathcal{P} . \tag{2.53}
\end{array}
$$

The second condition is equivalent to requiring (2.51) to be zero for any triple $i, j, k \in \mathcal{P}$. From cases $1-7$ above it follows that this requirement is always satisfied under the conditions of the lemma.

Finally, the first condition of the lemma implies that $e_{i} A$ can be written as a linear combination of base vectors e_{j} such that $i \nsim j$. But for such j we always have $e_{i} \times e_{j}=0$, hence $e_{i} \times e_{i} A=0$ and also the first condition of (2.53) is satisfied.

Note that the conditions of Proposition 2.17 are closed under transposition of A, i.e., $A \in \widehat{\mathbf{L}}$ if and only if $A^{T} \in \widehat{\mathbf{L}}$ (with $\tau\left(A^{T}\right)=\tau(A)$). It follows that also the dual properties of (2.41-2.43) are always valid:

$$
\begin{align*}
\alpha \times A \alpha+\alpha^{\#} A+\tau(A) \alpha^{\#} & =0, \tag{2.54}\\
A \alpha \times \beta+\alpha \times A \beta+(\alpha \times \beta) A+\tau(A)(\alpha \times \beta) & =0, \tag{2.55}\\
\langle A \alpha, \beta, \gamma\rangle+\langle\alpha, A \beta, \gamma\rangle+\langle\alpha, \beta, A \gamma\rangle+\tau(A)\langle\alpha, \beta, \gamma\rangle & =0, \tag{2.56}
\end{align*}
$$

for every $\alpha, \beta, \gamma \in \mathbf{V}^{*}$ and $A \in \widehat{\mathbf{L}}$.
Define $\widehat{\mathbf{H}}$ to be the subspace of all diagonal matrices of $\widehat{\mathbf{L}}$ and write $\mathbf{H} \xlongequal{=} \widehat{\mathbf{H}} \cap \mathbf{L}$. (Equivalently, \mathbf{H} is the subspace of diagonal elements of \mathbf{L} and the subspace of all $H \in \widehat{\mathbf{H}}$ such that $\tau(H)=0$.)

Lemma 2.18 The elements $H_{\pi_{0}}, \ldots, H_{\pi_{5}}, H_{q_{0}}$ form a basis for $\widehat{\mathbf{H}}$ and hence $\widehat{\mathbf{H}}$ has dimension 7. The elements $H_{\pi_{0}}, \ldots, H_{\pi_{5}}$ form a basis for \mathbf{H} and \mathbf{H} has dimension 6 .

Proof: (We use the standard notation for points of \mathcal{P}.) We will first prove that $\operatorname{dim} \widehat{\mathbf{H}}$ can be at most 7 . Note that every element A of $\widehat{\mathbf{H}}$ satisfies
$A[i, i]+A[j, j]+A[k, k]+\tau(A)=0, \quad$ for any three points i, j, k forming a line,
i.e., condition 4 of Proposition 2.17. For $A \in \widehat{\mathbf{H}}$ we therefore have

$$
\begin{equation*}
A\left[a_{i j}, a_{i j}\right]=-A\left[p_{i}, p_{i}\right]-A\left[q_{j}, q_{j}\right]-\tau(A), \quad \text { when } i \neq j, \tag{2.58}
\end{equation*}
$$

and applying this to $(i, j)=(0, k)$ and to $(i, j)=(k, 0)$ implies

$$
\begin{equation*}
A\left[q_{i}, q_{i}\right]=A\left[p_{i}, p_{i}\right]-A\left[p_{0}, p_{0}\right]+A\left[q_{0}, q_{0}\right], \quad \text { for } i=0, \ldots, 5 \tag{2.59}
\end{equation*}
$$

This proves that all elements $A[x, x]$ can be expressed as linear combinations of $A\left[p_{0}, p_{0}\right], \ldots, A\left[p_{5}, p_{5}\right], A\left[q_{0}, q_{0}\right]$ and $\tau(A)$. Hence $\operatorname{dim} \widehat{\mathbf{H}}$ can be at most 8 .

Now, consider the line $a_{01} a_{23} a_{45}$ and apply equations (2.57-2.59) :

$$
\begin{aligned}
0= & A\left[a_{01}, a_{01}\right]+A\left[a_{23}, a_{23}\right]+A\left[a_{45}, a_{45}\right]+\tau(A) \\
= & -A\left[q_{0}, q_{0}\right]-A\left[p_{1}, p_{1}\right]-A\left[q_{2}, q_{2}\right]-A\left[p_{3}, p_{3}\right]-A\left[q_{4}, q_{4}\right]-A\left[p_{5}, p_{5}\right] \\
& -2 \tau(A) \\
= & -3 A\left[q_{0}, q_{0}\right]+2 A\left[p_{0}, p_{0}\right]-A\left[p_{1}, p_{1}\right]-A\left[p_{2}, p_{2}\right]-A\left[p_{3}, p_{3}\right] \\
& -A\left[p_{4}, p_{4}\right]-A\left[p_{5}, p_{5}\right]-2 \tau(A) .
\end{aligned}
$$

This provides an additional linear dependency between $A\left[q_{0}, q_{0}\right], A\left[p_{0}, p_{0}\right]$, $\ldots, A\left[p_{5}, p_{5}\right]$ and $\tau(A)$. Hence $\operatorname{dim} \widehat{\mathbf{H}}$ can be at most 7 .

Now let $H \in\left\{H_{\pi_{0}}, \ldots, H_{\pi_{5}}, H_{q_{0}}\right\}$ and $p \in\left\{p_{0}, \ldots, p_{5}, a_{23}\right\}$. We will compute all 49 elements of the form $H[p, p]\left(=e_{p} H \eta_{p}\right)$. By (2.50) we have $e_{p} H_{\pi_{i}} \eta_{p}=p$. π_{i} and by (2.49) we find $e_{p} H_{q_{0}} \eta_{p}=p \cdot q_{0}-1 / 3$. We leave it to the reader to verify that the corresponding matrix of values $H[p, p]$ is the following (columns
correspond to p, rows to H) :

$$
\left(\begin{array}{ccccccc}
-1 & -1 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & -1 & -1 & -1 & 0
\end{array}\right)
$$

This matrix has determinant -1 and hence the elements H are linearly independent (for every field characteristic). It follows that $\operatorname{dim} \widehat{\mathbf{H}}=7$.

Because τ is a linear functional on $\widehat{\mathbf{H}}, \mathbf{H}$ has co-dimension at most 1 in $\widehat{\mathbf{H}}$. As $\tau\left(H_{\pi_{i}}\right)=0$ and $\tau\left(H_{q_{0}}\right)=1$ we find that $\operatorname{dim} \mathbf{H}=6$ and $\left\{H_{\pi_{0}}, \ldots, H_{\pi_{5}}\right\}$ is a basis for \mathbf{H}.

Note that \mathbf{H} as a vector space over K behaves very much like \mathbf{P} as a real vector space. Indeed, any root $r \in \Phi$ can be written as a linear combination of fundamental roots π_{i} with integral coefficients. Hence, if $r=\lambda_{0} \pi_{0}+\cdots+\lambda_{5} \pi_{5}$ in \mathbf{P}, then $H_{r}=\lambda_{0} H_{\pi_{0}}+\cdots+\lambda_{5} H_{\pi_{5}}$, where the coefficients λ_{i} are now regarded as belonging to the prime field of K. This is an immediate consequence of (2.50).

We combine the previous results into the following theorem.

Theorem 2.19 The algebras $\widehat{\mathbf{L}}$ (respectively \mathbf{L}) have dimension 79 (respectively 78) and can be written as a direct sum in the following way:

$$
\begin{equation*}
\widehat{\mathbf{L}}=\widehat{\mathbf{H}} \oplus \bigoplus_{r \in \Phi} K E_{r}, \quad \mathbf{L}=\mathbf{H} \oplus \bigoplus_{r \in \Phi} K E_{r} . \tag{2.60}
\end{equation*}
$$

$\widehat{\mathbf{L}}$ is generated (as a vector space) by all transformations of the form $a * \alpha$ with $a \in$ $\mathbf{V}, \alpha \in \mathbf{V}^{*} . \mathbf{L}$ is generated by all such transformations satisfying the extra condition $a \alpha=0$.

Proof: Clearly $\widehat{\mathbf{H}} \leq \widehat{\mathbf{L}}$ and $E_{r} \in \mathbf{L}$, hence it only remains to be proved that we did not leave out any elements of $\widehat{\mathbf{L}}$ in the sum. If $A \in \mathbf{L}$, then it follows from

Proposition 2.17 that the non-diagonal elements of A are completely determined by giving one value $A[p, q]$ for every $\operatorname{root} q-p$. The dimension of the non-diagonal part of $\widehat{\mathbf{L}}$ is therefore the same as the dimension of $\bigoplus_{r \in \Phi} K E_{r}$. Together with Lemma 2.18 which describes the structure of the diagonal part of $\widehat{\mathbf{L}}$, this proves the first part of (2.60). The second part is a consequence of $\mathbf{H}=\widehat{\mathbf{H}} \cap \mathbf{L}$ and $\tau\left(E_{r}\right)=0$.

Because every E_{r}, H_{r} and H_{p} is of the form $a * \alpha$, we see that $\widehat{\mathbf{L}}$ can indeed be generated by such elements.

Also note that every E_{r} is of the form $a * \alpha$ with $a \alpha=0$. By Lemma 2.14 it remains to be proved that also \mathbf{H} can be generated by elements of this form. Consider any root $r=q-p \in \Phi$, with p a positive base point of r. We have

$$
\left(e_{q}+e_{p}\right) *\left(\eta_{q}-\eta_{p}\right)=H_{r}+E_{r}-E_{-r}
$$

As $\left(e_{q}+e_{p}\right)\left(\eta_{q}-\eta_{p}\right)=0$ it follows that H_{r} is indeed a linear combination of elements of the required form. Because \mathbf{H} is generated by $H_{\pi_{0}}, \ldots H_{\pi_{5}}$, the theorem follows.

The elements $E_{r}, r \in \Phi$, together with $H_{\pi_{0}}, \ldots, H_{\pi_{5}}$ and $H_{q_{0}}$, will be called the standard basis for $\widehat{\mathbf{L}}$.

- When char $K=3$ we have $\tau(\mathbf{1})=0$ and hence $\mathbf{1} \in \mathbf{H}$. Because $[\mathbf{1}, \mathbf{L}]=0, \mathbf{L}$ is not simple and we may construct the Lie algebra $\mathbf{L}^{\prime} \stackrel{\text { def }}{=} \mathbf{L} / K \mathbf{1}$ of dimension 77 which turns out to be simple. For all other characteristics \mathbf{L} is itself a simple algebra.

Lemma 2.20 Let $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ and $A \in \widehat{\mathbf{L}}$. Then

$$
\begin{equation*}
[a * \alpha, A]=a A * \alpha-a * A \alpha \tag{2.61}
\end{equation*}
$$

Proof: Let $x \in \mathbf{V}$. We apply (2.36) to obtain the following results :

$$
\begin{array}{ll}
x(a A * \alpha) & =(x \alpha) a A-(x \times a A) \times \alpha \\
-x(a * A \alpha) & =-(x A \alpha) a+(x \times a) \times A \alpha \\
-x(a * \alpha) A & =-(x \alpha) a A+((x \times a) \times \alpha) A \\
x A(a * \alpha) & =(x A \alpha) a-(x A \times a) \times \alpha
\end{array}
$$

The sum of the left hand sides of these equations is $x(a A * \alpha-a * A \alpha-[a *$ $\alpha, A])$. The sum of the right hand sides evaluates to

$$
((x \times a) \times \alpha) A+(x \times a) \times A \alpha-(x \times a A) \times \alpha-(x A \times a) \times \alpha .
$$

Applying (2.42) and (2.55) easily proves this expression to be zero.

- This lemma proves that the $*$-operator is compatible with the Lie algebra \mathbf{L} (cf. Chapter 1).

We will need the following technical lemma in later proofs :

Lemma 2.21 Let $p \in \mathcal{P}, r, s \in \Phi$. Then

$$
\begin{align*}
e_{p} E_{r} E_{-r} & = \begin{cases}-e_{p}, & \text { if } p \text { is a base point of } r, \\
0, & \text { otherwise. }\end{cases} \tag{2.62}\\
E_{r} E_{s} E_{r} & = \begin{cases}-E_{r}, & \text { if } r=-s, \\
0, & \text { otherwise } .\end{cases} \tag{2.63}\\
E_{r} H_{s} E_{r} & =0 . \tag{2.64}
\end{align*}
$$

Proof: Clearly $e_{p} E_{r} E_{-r}$ can only be nonzero when p is a base point of E_{r}. When p is a positive base point of r, we find $e_{p} E_{r}=e_{p+r}, e_{p} E_{r} E_{-r}=-e_{p}$, for then $p+r$ is a negative base point of $-r$. Likewise, when p is a negative base point, we have $e_{p} E_{r}=-e_{p+r}$ and $e_{p} E_{r} E_{-r}=-e_{p}$, proving (2.62).

Secondly, compute $e_{p} E_{r} E_{s} E_{r}$. Note that this expression can only be nonzero if $p \cdot r=(p+r) \cdot s=(p+r+s) \cdot r=-1$. The first and the last equality imply $(r+s) \cdot r=0$ and hence $s \cdot r=-2$, i.e., $r=-s$. When this is the case, the first part of the lemma proves $e_{p} E_{r} E_{-r} E_{r}=-e_{p} E_{r}$, for every p, hence $E_{r} E_{-r} E_{r}=-E_{r}$.

Finally, as H_{s} is a diagonal matrix, $e_{p} E_{r} H_{s} E_{r}$ can only be nonzero when both $p+r$ and $p+2 r$ belong to \mathcal{P}. But this is impossible.

Proposition 2.22 Let $r, s \in \Phi$. Then

1. $\left[E_{r}, E_{-r}\right]=H_{r}$.
2. $\left[E_{r}, E_{s}\right]=E_{r+s}$ or $-E_{r+s}$, when $\langle r, s\rangle=-1$.
3. $\left[E_{r}, E_{s}\right]=0$ when $\langle r, s\rangle \geq 0$.
4. $\left[E_{r}, H_{s}\right]=\langle s, r\rangle E_{r}$.
5. $\left[H_{r}, H_{s}\right]=0$.

Proof: Let $r=q-p$ with $p, q \in \mathcal{P}$, i.e., $E_{r}= \pm e_{q} * \eta_{p}$ where the sign depends on whether p is a positive or a negative base point of r. From Lemma 2.20 we find

$$
\begin{equation*}
\left[E_{r}, E_{s}\right]= \pm\left(e_{q} E_{s} * \eta_{p}-e_{q} * E_{s} \eta_{p}\right) \tag{2.65}
\end{equation*}
$$

1. Let $x \in \mathcal{P}$, then using (2.62), we find

$$
e_{x}\left[E_{r}, E_{-r}\right]=e_{x} E_{r} E_{-r}-e_{x} E_{-r} E_{r}= \begin{cases}-e_{x}, & \text { if } x \text { is a base point of } r, \\ e_{x}, & \text { if } x \text { is a base point of }-r, \\ 0, & \text { otherwise }\end{cases}
$$

Comparing this with (2.50), we obtain $e_{x}\left[E_{r}, E_{-r}\right]=e_{x} H_{r}$ for every $x \in \mathcal{P}$, and hence $\left[E_{r}, E_{-r}\right]=H_{r}$.
2. If $\langle r, s\rangle=-1$ then Table 2.2 (pg. 35) shows us that there exist three base points p of r (but not of s) such that $q=p+r$ is a base point of s. With such p, equation (2.65) yields :

$$
\left[E_{r}, E_{s}\right]= \pm e_{q+s} * \eta_{p}= \pm E_{q+s-p}= \pm E_{r+s}
$$

3. If $\langle r, s\rangle \geq 0$ then we can always find (p, q) such that p is not a base point of $-s$, and q is not a base point of s. (When $\langle r, s\rangle=1$, choose $p \neq p_{j}$ in the standard notation for points of \mathcal{P}, in the other cases any pair will do.) Hence, by (2.65), $\left[E_{r}, E_{s}\right]=0$ in each case.
4. Choose a base point p of r. From Lemma 2.20 we obtain $\left[E_{r}, H_{s}\right]=e_{q} H_{s} *$ $\eta_{p}-e_{q} * H_{s} \eta_{p}=\langle s, q\rangle e_{q} * \eta_{p}-\langle s, p\rangle e_{q} * \eta_{p}=\langle s, r\rangle E_{r}$.
5. Both H_{r} and H_{s} are diagonal matrices and hence commute.

- Proposition 2.22 almost provides us with a Chevalley basis for L (cf. Chapter 1) except that the Lie-bracket arguments on the left hand side of the fourth equation are in the wrong order.

To obtain a true Chevalley basis, set $h_{r}=-H_{r}$ and for every pair $\{r,-r\}$ of opposite roots, choose $e_{r}=E_{r}$ in one case and $e_{-r}=-E_{-r}$ in the other. This small discrepancy originates from the way we define E_{r} using the notion of positive and negative base points of r. As a consequence some of the formulas we will develop later may at certain places differ in sign from the equivalent formulas listed for instance in [8].

It has already been stated that \mathbf{H} and \mathbf{P} behave very much in the same way. It will therefore not come as a surprise that also the dot product on \mathbf{P} has its equivalent on \mathbf{H}. We define the bilinear product ' .' on $\widehat{\mathbf{H}}$ by its action on the base elements $H_{\pi_{0}}, \ldots, H_{\pi_{5}}, H_{q_{0}}$:

$$
\begin{align*}
& H_{\pi_{i}} \cdot H_{\pi_{j}} \stackrel{\stackrel{\text { def }}{=} \pi_{i} \cdot \pi_{j},}{H_{\pi_{i}} \cdot H_{q_{0}}} \stackrel{\stackrel{\text { def }}{=}}{=} \pi_{i} \cdot q_{0} \\
& H_{q_{0}} \cdot H_{\pi_{j}} \tag{2.66}\\
& \stackrel{\text { def }}{=} q_{0} \cdot \pi_{j}, \\
& H_{q_{0}} \cdot H_{q_{0}}
\end{align*} \stackrel{\stackrel{\text { def }}{=}}{=} q_{0} \cdot q_{0}-1 / 3=1, ~ l
$$

where in each case the right hand side should be regarded as an element of the prime field of K.

Because we can express every root $r, s \in \Phi$ as a linear combination of fundamental roots with integer coefficients, it immediately follows that

$$
H_{r} \cdot H_{s}=r \cdot s, \quad \text { for any } r, s \in \Phi
$$

Because every $p \in \mathcal{P}$ can be written as either $q_{0}+r$ with $r \in \Phi$, or as $\left(q_{0}+\right.$ $r)+r^{\prime}$ with $r, r^{\prime} \in \Phi$ and $q_{0}+r \in \mathcal{P}$, we can prove the following identities in a similar way :

$$
\begin{equation*}
H_{p} \cdot H_{r}=H_{r} \cdot H_{p}=p \cdot r, H_{p} \cdot H_{q}=p \cdot q-1 / 3, \quad \text { for any } p, q \in \mathcal{P}, r \in \Phi . \tag{2.67}
\end{equation*}
$$

We now extend the definition of this dot product to $\widehat{\mathbf{L}}$ as follows (let $r, s \in \Phi$, $H \in \widehat{\mathbf{H}})$:

$$
\begin{array}{ll}
E_{r} \cdot E_{s} & \stackrel{\text { def }}{=} \begin{cases}-1 & \text { when } r=-s, \\
0 & \text { otherwise. }\end{cases} \\
E_{r} \cdot H=H \cdot E_{r} & \stackrel{\text { def }}{=} 0
\end{array}
$$

As an immediate consequence we find that $A \cdot B=B \cdot A$ for every $A, B \in \widehat{\mathbf{L}}$.

Lemma 2.23 Let $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, A \in \widehat{\mathbf{L}}$. Then

$$
\begin{equation*}
(a * \alpha) \cdot A=a A \alpha \tag{2.69}
\end{equation*}
$$

Proof: It is sufficient to prove this for all $a=e_{p}, \alpha=\eta_{q}$ with $p, q \in \mathcal{P}$ and for all $A=E_{r}$ with $r \in \Phi$ and for all $A=H_{x}$ with $x \in \mathcal{P}$ or $x \in \Phi$.

Now, $e_{p} E_{r} \eta_{q}$ is the (p, q) th entry of the matrix E_{r}. The only r for which this is nonzero is $r=q-p$ and then the entry is 1 when p is a positive base point of r and -1 when p is a negative base point of r. Also in that case $e_{p} * \eta_{q}= \pm E_{p-q}= \pm E_{-r}$, with a plus sign if q is a positive base point of $-r$ (and hence p is a negative base point of r) and a minus sign otherwise. This proves the lemma when A is of the form E_{r}.

Secondly, consider $e_{p} H_{r} \eta_{q}$ when $r \in \Phi$. Then $e_{p} H_{r} \eta_{q}=(p \cdot r)\left(e_{p} \eta_{q}\right)$ equals zero if $p \neq q$ and in that case $e_{p} * \eta_{q}$ is zero or a non-diagonal matrix. When $p=q$ we find $e_{p} H_{r} \eta_{p}=p \cdot r=H_{p} \cdot H_{r}$ by (2.67). A similar argument holds for H_{x} when $x \in \mathcal{P}$.

As an immediate application we find that $(a * \alpha) \cdot \mathbf{1}=a \alpha$ and hence

$$
\begin{equation*}
\mathbf{1} \cdot A=A \cdot \mathbf{1}=\tau(A), \quad \text { for all } A \in \widehat{\mathbf{L}} \tag{2.70}
\end{equation*}
$$

The dot product can also be used to coordinatize $\widehat{\mathbf{L}}$. From (2.60) we know that every $A \in \widehat{\mathbf{L}}$ can be written in a unique way as

$$
\begin{equation*}
A=A_{H}+\sum_{r \in \Phi} A[r] E_{r}, \tag{2.71}
\end{equation*}
$$

with 'coordinates' $A[r] \in K$ and the 'diagonal part' $A_{H} \in \widehat{\mathbf{H}}$. Multiplying this equation with E_{-r} and using (2.68), we see that $A[r]=-A \cdot E_{-r}=A \cdot E_{r}^{T}$.

Lemma 2.24 Using the standard notation for points of \mathcal{P}, the following elements of \widehat{L}

$$
\begin{align*}
& H_{r}-\mathbf{1}, H_{q_{0}}-\mathbf{1}, H_{q_{0}}+H_{q_{1}}-\mathbf{1} \\
& \quad H_{q_{0}}+H_{q_{1}}+H_{q_{2}}-\mathbf{1},-H_{p_{4}}-H_{p_{5}}-2 \cdot \mathbf{1},-H_{p_{5}}-\mathbf{1}, \mathbf{1} \tag{2.72}
\end{align*}
$$

form a dual basis of $H_{\pi_{0}}, \ldots, H_{\pi_{5}}, H_{q_{0}}$ with respect to the dot product on $\widehat{\mathbf{H}}$. By adding the elements $-E_{-r}$ for every $r \in \Phi$ we may extend this to a dual basis for the standard basis of $\widehat{\mathbf{L}}$.

Proof: We must prove that the dot product of elements of (2.72) with the standard base vectors always yields zero, unless the elements occur at corresponding positions in the given list, in which case the dot product should be 1.

First note that the first 6 elements of the dual base are strongly related to the fundamental weights of E_{6}, cf. (2.11). Because the fundamental weights form a dual basis of the fundamental roots in \mathbf{P}, and because $\mathbf{1} \cdot H_{\pi_{i}}=0$, it easily follows that these 6 elements satisfy the required properties. It only remains to compute the dot product of the first 7 elements of (2.72) with $H_{q_{0}}$. We find

$$
\begin{aligned}
& H_{r} \cdot H_{q_{0}}-\mathbf{1} \cdot H_{q_{0}}=r \cdot q_{0}-1=1-1=0 \\
& H_{q_{0}} \cdot H_{q_{0}}-\mathbf{1} \cdot H_{q_{0}}=\left(q_{0} \cdot q_{0}-1 / 3\right)-1=1-1=0 \\
& H_{q_{0}} \cdot H_{q_{0}}+H_{q_{1}} \cdot H_{q_{0}}-\mathbf{1} \cdot H_{q_{0}} \\
& \quad=\left(q_{0} \cdot q_{0}-1 / 3\right)+\left(q_{1} \cdot q_{0}-1 / 3\right)-1=1+0-1=0 \\
& H_{q_{0}} \cdot H_{q_{0}}+H_{q_{1}} \cdot H_{q_{0}}+H_{q_{2}} \cdot H_{q_{0}}-\mathbf{1} \cdot H_{q_{0}} \\
& \quad=\left(q_{0} \cdot q_{0}-1 / 3\right)+\left(q_{1} \cdot q_{0}-1 / 3\right)+\left(q_{2} \cdot q_{0}-1 / 3\right)-1 \\
& \quad=1+0+0-1=0 \\
& -H_{p_{4}} \cdot H_{q_{0}}-H_{p_{5}} \cdot H_{q_{0}}-2 \cdot \mathbf{1} \cdot H_{q_{0}} \\
& \quad=-\left(p_{4} \cdot q_{0}-1 / 3\right)-\left(p_{5} \cdot q_{0}-1 / 3\right)-2=1+1-2=0 \\
& -H_{p_{5}} \cdot H_{q_{0}}-\mathbf{1} \cdot H_{q_{0}}=-\left(p_{5} \cdot q_{0}-1 / 3\right)-1=1-1=0 \\
& \mathbf{1} \cdot H_{q_{0}}=1
\end{aligned}
$$

It is an immediate consequence of (2.68) that this dual basis for $\widehat{\mathbf{H}}$ can be extended to a dual basis for $\widehat{\mathbf{L}}$ by adding a base element $-E_{-r}$ for every base element E_{r} of $\widehat{\mathbf{L}}$.

We end this section by proving some additional properties of this dot product.

Lemma 2.25 Let $A, B, C \in \widehat{\mathbf{L}}$. Then

$$
\begin{equation*}
[A, B] \cdot C=[B, C] \cdot A=[C, A] \cdot B \tag{2.73}
\end{equation*}
$$

and in particular $[A, B] \cdot A=0$.

Proof: By Theorem 2.19 it is sufficient to prove this when A is of the form $a * \alpha$, with $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$. We have

$$
\begin{aligned}
{[A, B] \cdot C } & =[a * \alpha, B] \cdot C & & \\
& =(a B * \alpha) \cdot C-(a * B \alpha) \cdot C & & \text { by }(2.61) \\
& =a B C \alpha-a C B \alpha=a[B, C] \alpha=(a * \alpha) \cdot[B, C] & & \text { by }(2.69)
\end{aligned}
$$

proving the first equality. The second equality follows from the first by permuting the symbols A, B and C.

- This lemma proves that the dot product on \mathbf{L} is compatible with the Lie algebra \mathbf{L} (cf. Chapter 1).

As an immediate consequence we find $[[A, B], C] \cdot D=[C, D] \cdot[A, B]$ for every $A, B, C, D \in \widehat{\mathbf{L}}$. Applying this to the Jacobi identity $[[A, B], C]+[[B, C], A]+$ $[[C, A], B]=0$ for Lie algebras, we find

$$
\begin{equation*}
[A, B] \cdot[C, D]+[B, C] \cdot[A, D]+[C, A] \cdot[B, D]=0 . \tag{2.74}
\end{equation*}
$$

Proposition 2.26 Let $A, B, C \in \mathbf{L}$. Then

$$
\begin{equation*}
\operatorname{Tr} A B=6(A \cdot B), \quad \operatorname{Tr} A B C=3[A, B] \cdot C \tag{2.75}
\end{equation*}
$$

Also

$$
\begin{equation*}
\operatorname{Tr} X=-9 \tau(X), \quad \text { for all } X \in \widehat{\mathbf{L}} \tag{2.76}
\end{equation*}
$$

Proof: In general, the trace of a matrix X in \mathbf{L} is equal to $\sum_{p \in \mathcal{P}} X[p, p]=$ $\sum_{p \in \mathcal{P}} e_{p} X \eta_{p}$. Hence

$$
\operatorname{Tr} A B=\sum e_{p} A B \eta_{p}=\left(\sum e_{p} A * \eta_{p}\right) \cdot B
$$

and

$$
\operatorname{Tr} A B C=\sum e_{p} A B C \eta_{p}=\left(\sum e_{p} A B * \eta_{p}\right) \cdot C .
$$

It is therefore sufficient to prove that $\sum e_{p} A * \eta_{p}=6 A$ and $\sum e_{p} A B * \eta_{p}=$ $3[A, B]$, and in both cases we need to prove this only when A, B are elements of the standard basis for \mathbf{L}, i.e., when they are of the form E_{r} or H_{r}, with $r \in \Phi$.

If p is a base point of r, then $e_{p} E_{r} * \eta_{p}=E_{r}$ by Lemma 2.45. If p is not a base point of r then $e_{p} E_{r}=0$. Because r has exactly 6 base points, we find $\sum e_{p} E_{r} * \eta_{p}=6 E_{r}$. Also $e_{p} H_{r} * \eta_{p}=(p \cdot r) H_{p}$ which is non-zero only if p is a base point of either r or $-r$. Partitioning these 12 points into 6 pairs (p, q) where $q=p+r$, we find for each pair

$$
e_{p} H_{r} * \eta_{p}+e_{q} H_{r} * \eta_{q}=(p \cdot r) H_{p}-(q \cdot r) H_{q}=-H_{p}+H_{q}=H_{r} .
$$

Now consider $r, s \in \Phi$. We compute $e_{p} E_{r} E_{s} * \eta_{p}$. Note that this element can only be nonzero when the following conditions are satisfied : $p \cdot r=-1$, $(p+r) \cdot s=-1$ and $(p+r+s) \cdot p=1 / 3$ or $4 / 3$. It follows that $r \cdot s=-1$ or -2 respectively. As a consequence $\sum e_{p} E_{r} E_{s} * \eta_{p}=0$ whenever $r \cdot s \geq 0$, but then also $\left[E_{r}, E_{s}\right]=0$ by Proposition 2.22. We consider the remaining two cases :

- $r \cdot s=-2$, i.e., $s=-r$. Then $e_{p} E_{r} E_{-r} * \eta_{p}=-H_{p}$ if p is a base point of r and 0 otherwise, and hence $\sum e_{p} E_{r} E_{-r} * \eta_{p}=3 H_{r}$, because the 6 base points of r add up to $-3 r$ in \mathbf{P}, by Lemma 2.3.
- $r \cdot s=-1$, i.e., $r+s \in \Phi$. Then $e_{p} E_{r} E_{s} * \eta_{p}$ is nonzero only when p is a base point of r and $p+r$ is a base point of s. From Table 2.2 (pg. 35) we see that there are exactly 3 such p. Also note that none of these p is at the same time a base point of s, hence for these p we have $e_{p} E_{s} E_{r} * \eta_{p}=0$, and hence $e_{p} E_{r} E_{s} * \eta_{p}=e_{p}\left[E_{r}, E_{s}\right] * \eta_{p}$ and this is equal to $\left[E_{r}, E_{s}\right]$, for $\left[E_{r}, E_{s}\right]= \pm E_{r+s}$ and $e_{p} E_{r+s} * \eta_{p}=E_{r+s}$ by Lemma 2.45.

We may compute the value of $e_{p} H_{r} E_{s} * \eta_{p}$ in a similar way. Indeed $e_{p} H_{r} E_{s} *$ $\eta_{p}=(p \cdot r) e_{p} E_{s} * \eta_{p}$ and this is equal to $(p \cdot r) E_{s}$ when p is a base point of s, and zero otherwise. Now, the sum of all base points p of s is equal to $-3 s$ and hence $\sum e_{p} H_{r} E_{s} * \eta_{p}=-3(s \cdot r) E_{s}$ and this is equal to $3\left[H_{r}, E_{s}\right]$ by Proposition 2.22. Likewise $e_{p} E_{r} H_{s} * \eta_{p}=((p+r) \cdot s) E_{r}$ when p is a base point of r (and zero otherwise). Summing over all base points of r then yields $\sum e_{p} E_{r} H_{s} * \eta_{p}=$ $3(r \cdot s) E_{r}=3\left[E_{r}, H_{s}\right]$.

Finally consider $\sum_{p} e_{p} H_{r} H_{s} * \eta_{p}=\sum_{p}(p \cdot r)(p \cdot s) H_{p}$. We need to prove that this expression evaluates to $\left[H_{r}, H_{s}\right]=0$. As before, this sum is equal to the sum of $(q \cdot s) H_{q}-(p \cdot s) H_{p}$ over the 6 pairs (p, q) with $q=p+r$ and p a base point of r. Now
$(q \cdot s) H_{q}-(p \cdot s) H_{p}=(p \cdot s) H_{q}+(r \cdot s) H_{q}-(p \cdot s) H_{p}=(p \cdot s) H_{r}+(r \cdot s) H_{q}$
Summing the first term on the right hand side over all base points of r yields $(-3 r \cdot s) H_{r}$, while summing the second term over all base points q of $-r$ yields $(r \cdot s)(-3) H_{-r}$. Both results add up to zero.

To prove (2.76) let $X \in \widehat{\mathbf{L}}$ and consider $\operatorname{Tr} X=\sum X[p, p]$. Partitioning the 27 points of \mathcal{P} into 9 lines, and applying Proposition $2.17-4$, we see that this sum must be equal to 9 times $-\tau(X)$.

- Also, when $A, B, C, D \in \mathbf{L}$ we have
$\operatorname{Tr} A B C D=$
$[A, B] \cdot[C, D]-[A, D] \cdot[B, C]+(A \cdot B)(C \cdot D)+(A \cdot C)(B \cdot D)+(A \cdot D)(B \cdot C)$.
Currently we have only been able to prove this by computer.

2.3 Isotropic elements

We call an element $e \in \mathbf{V}$ isotropic if and only if $e^{\#}=0$. Dually, we call $\eta \in \mathbf{V}^{*}$ isotropic if and only if $\eta^{\#}=0$. The elements e_{p} of \mathbf{V} and η_{p} of \mathbf{V}^{*} with $p \in \mathcal{P}$ serve as typical examples of isotropic elements.

A subspace of \mathbf{V} or \mathbf{V}^{*} is called isotropic if and only if all its elements are isotropic. From (2.22) it follows that the subspace generated by $a_{1}, \ldots, a_{k} \in \mathbf{V}$ is isotropic if and only if $a_{i}^{\#}=a_{i} \times a_{j}=0$ for all i, j, and a similar property holds for subspaces of \mathbf{V}^{*}. Clearly $K e$ is isotropic if and only if $e^{\#}=0$, and $K e+K f$ is isotropic if and only if $e^{\#}=f^{\#}=e \times f=0$.

- In [1] isotropic elements and subspaces are called singular, an element $a \in \mathbf{V}$ such that $D(a)=0$, but not necessarily $a^{\#}=0$, is called brilliant, and other elements are called dark. A 2-space generated by isotropic elements e, f such that $e \times f \neq 0$ is called hyperbolic. In [10] the authors use the terminology white, gray $\left(D(a)=0\right.$ but $\left.a^{\#} \neq 0\right)$ and dark.

As was mentioned in Chapter 1, the one-dimensional isotropic subspaces $K e$ will later serve as points of a geometry \mathcal{E} and the operations defined on \mathbf{V}, when applied to these points, will enable us to distinguish between various relations of pairs of such points (for example, Ke and $K f$ will turn out to be collinear, or equal, if and only if $e \times f=0$).

Proposition 2.27 Let e be an isotropic element of \mathbf{V}. Let $a, b \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, A \in \widehat{\mathbf{L}}$. Then

1. $(e \times a) \times(e \times b)=\langle e, a, b\rangle e$,
2. $(e \times a)^{\#}=\left(e a^{\#}\right) e$ and hence $e \times a$ is isotropic if both a and e are isotropic,
3. $((e \times a) \times \alpha) \times e=(e \alpha)(e \times a)$,
4. $e(e * \alpha)=(e \alpha) e$,
5. $e *(e \times a)=0$,
6. $e \times e A=0$ and hence $e A(e \times a)=0$.

Proof: These identities are immediate consequences of (2.26), (2.27), (2.32), (2.37), (2.39) and (2.41) specialised to the case $a^{\#}=0$.

An element $E \in \widehat{\mathbf{L}}$ will be called isotropic if and only if it can be written in the form $E=e * \eta$ with $e \eta=0$ and both e and η isotropic. It follows that all isotropic elements of $\widehat{\mathbf{L}}$ belong to \mathbf{L}. The elements E_{r} with $r \in \Phi$ serve as typical examples of isotropic elements of \mathbf{L}.

As with \mathbf{V} and \mathbf{V}^{*} a subspace of \mathbf{L} will be called isotropic if and only if all its elements are isotropic.

Proposition 2.28 Let $E=e * \eta$ be an isotropic element of \mathbf{L} (with $e \in \mathbf{V}, \eta \in \mathbf{V}^{*}$, $e^{\#}=0, \eta^{\#}=0$ and $\left.e \eta=0\right)$. Let $a, b, c \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*}, A \in \widehat{\mathbf{L}}$. Then

1. $e E=0$ and dually $E \eta=0$.
2. $E(e \times a)=0$, and dually $(\eta \times \alpha) E=0$.
3. $a E \times e=0$, and dually $\eta \times E \alpha=0$.
4. $E^{2}=0$ and $E \cdot E=0$.
5. $e * E \alpha=(e \alpha) E$, and dually $a E * \eta=(a \eta) E$.
6. $e A E=(E \cdot A) e$, and dually $E A \eta=(E \cdot A) \eta$. In particular $e \in \mathbf{V} E$ and dually $\eta \in E \mathbf{V}^{*}$.
7. $(a E)^{\#}=0, a E \times b E=0$, and dually $(E \alpha)^{\#}=0, E \alpha \times E \beta=0$. Hence $\mathbf{V} E$ (and $E \mathbf{V}^{*}$) are isotropic subspaces of \mathbf{V} (and \mathbf{V}^{*}).
8. $a E * E \alpha=(a E \alpha) E$.
9. $E A E=(E \cdot A) E$.
10. $E(a E \times b)=0$ and dually $(\beta \times E \alpha) E=0$.

Proof: (We leave the proof of the dual properties to the reader.)

1. By Proposition 2.27-4 we have $e E=e(e * \eta)=0$.
2. We have $E(e \times a)=(e * \eta)(e \times a)=\langle a, e, e\rangle \eta-((e \times a) \times \eta) \times e=0$, by Proposition 2.27-3.
3. We find $a E \times e=-E(a \times e)-e E \times a=0$ by the above.
4. For every $a \in \mathbf{V}$ we have $a E^{2}=a E(e * \eta)=(a E \eta) e-(a E \times \eta) \times e=0$ by the above. Also $E \cdot E=e E \eta=0$.
5. We compute $e * E \alpha=e *(e * \eta) \alpha=e *(e \alpha) \eta-e *(e \times(\eta \times \alpha))=(e \alpha) E$ by Proposition 2.27-5.
6. Taking the dot product of the above with $A \in \widehat{\mathbf{L}}$ yields $e A E \alpha=(e \alpha)(E \cdot A)$. This is true for every $\alpha \in \mathbf{V}^{*}$, hence $e A E=(E \cdot A) e$. If $E \neq 0$ we may always find $A \in \mathbf{L}$ such that $E \cdot A \neq 0$, and then $e=e A E /(E \cdot A) \in \mathbf{V} E$.
7. We have

$$
\begin{aligned}
(a E)^{\#} & =[(a \eta) e-(e \times a) \times \eta]^{\#} \\
& =(a \eta)^{2} e^{\#}+[(e \times a) \times \eta]^{\#}-(a \eta)[(a \times e) \times \eta] \times e, \quad \text { by }(2.22) \\
& =\left((e \times a)^{\#} \eta\right) \eta-(a \eta)(e \eta)(e \times a), \quad \text { by Proposition } 2.27-2 \\
& =\left(e a^{\#}\right)(e \eta) \eta=0 .
\end{aligned}
$$

Substituting $a+b$ for a in the above proves that also $a E \times b E=0$.
8. Consider $e^{\prime} \stackrel{\text { def }}{=} a E$ and $E^{\prime} \stackrel{\text { def }}{=} e^{\prime} * \eta$. By case 5 above, we have $E^{\prime}=(a \eta) E$. Note that $\left(e^{\prime}\right)^{\#}=0$ and $e^{\prime} \eta=0$, by the above, and hence we may apply case 5 of this proposition to E^{\prime} and e^{\prime}. We find $e^{\prime} * E^{\prime} \alpha=\left(e^{\prime} \alpha\right) E^{\prime}$ and then $a E * E^{\prime} \alpha=(a E \alpha) E^{\prime}$. Because $E^{\prime}=(a \eta) E$ we obtain that $a E * E \alpha=(a E \alpha) E$ whenever $a \eta \neq 0$. By duality, the same is true when $e \alpha \neq 0$.

Now consider the case $e \alpha=a \eta=0$. Then $a E=-(e \times a) \times \eta$ and $E \alpha=$

```
\(-e \times(\eta \times \alpha)\). We compute
    \(a E * E \alpha\)
        \(=-[(e \times a) \times \eta] * E \alpha\)
    \(=[(e \times a) \times E \alpha] * \eta+(\eta \times E \alpha) *(e \times a)+\langle\eta, E \alpha, e \times a\rangle \mathbf{1}, \quad\) by (2.40)
    \(=[(e \times a) \times E \alpha] * \eta, \quad\) by case 3 above
    \(=-[(e \times a) \times(e \times(\eta \times \alpha))] * \eta\)
    \(=-\langle e, a, \eta \times \alpha\rangle e * \eta, \quad\) by Proposition 2.27-1
    \(=-a[e \times(\eta \times \alpha)] E=(a E \alpha) E\).
```

9. Take the dot product with A of both sides of the previous property. Because this holds for every $a \in \mathbf{V}$ and $\alpha \in \mathbf{V}^{*}$, we find $E A E=(E \cdot A) E$.
10. Applying (2.42) yields $E(a E \times b)=-a E^{2} \times b-a E \times b E$ and this is 0 by cases 4 and 7 above.

- In [12] an element E of \mathbf{L} is called extremal if and only if $[[\mathbf{L}, E], E] \leq K E$. Note that $[[A, E], E]=A E^{2}-2 E A E+E^{2} A=-2(E \cdot A) E$ by Proposition 2.28, hence isotropic elements of \mathbf{L} are extremal in this sense. A related notion is that of sandwich element [27], an element E which satisfies $[[\mathbf{L}, E], E]=0$. When char $K=2$ all isotropic elements of \mathbf{L} are sandwich elements.

Proposition 2.29 Let $e \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ be such that $e^{\#}=0$. Then $E=e * \alpha$ is isotropic if and only if $e \alpha=0$ and $e \times \alpha^{\#}=0$.

Proof: First assume $E=e * \alpha$ is isotropic. Because $E \in \mathbf{L}$ we immediately find $\tau(E)=e \alpha=0$.

Let f denote any isotropic element of \mathbf{V}. It follows from Proposition 2.27-2 that $e \times f$ is isotropic. We have $f E=(f \alpha) e-(e \times f) \times \alpha$ and hence

$$
\begin{array}{rlrl}
(f E)^{\#} & =(f \alpha) e^{\#}-(f \alpha)[(e \times f) \times \alpha] \times e+[(e \times f) \times \alpha]^{\#}, & \text { by }(2.22) \\
& =[(e \times f) \times \alpha]^{\#}, & & \text { by Proposition } 2.27-3 \\
& =\left\langle e, f, \alpha^{\#}\right\rangle(e \times f), & & \text { by Proposition } 2.27-2
\end{array}
$$

Because E is isotropic this expression must be zero and therefore $\left\langle e, f, \alpha^{\#}\right\rangle=$ $f\left(e \times \alpha^{\#}\right)=0$ for every f such that $e \times f$ is isotropic. In particular, this is true for every base element $f=e_{p}$ of \mathbf{V}, and hence $e \times \alpha^{\#}=0$.

Conversely, assume $e \alpha=0$ and $e * \alpha^{\#}=0$. Consider an element η of the form $\eta=E \beta$ with $\beta \in \mathbf{V}^{*}$ such that $e \beta \neq 0$. (If no such β exists, $e=0$ and then E is trivially isotropic.) We have $\eta=(e \beta) \alpha-(\alpha \times \beta) \times e$ and hence, using Proposition 2.27, e $=0$ and $e * \eta=(e \beta) E$. It is therefore sufficient to prove that $\eta^{\#}=0$. We have

$$
\begin{equation*}
\eta^{\#}=(e \beta)^{2} \alpha^{\#}-(e \beta)[(\alpha \times \beta) \times e] \times \alpha+[(\alpha \times \beta) \times e]^{\#} \tag{2.77}
\end{equation*}
$$

Applying the dual of (2.32) and using $e \times \alpha^{\#}=0$ we obtain

$$
[(\alpha \times \beta) \times e] \times \alpha=(e \beta) \alpha^{\#}+\left(\alpha^{\#} \beta\right) e
$$

and from Proposition 2.27 we derive

$$
\begin{aligned}
{[(\alpha \times \beta) \times e]^{\#} } & =\left(e(\alpha \times \beta)^{\#}\right) e \\
& =\left\langle e, \alpha^{\#}, \beta^{\#}\right\rangle e-(e \alpha)\left(\beta^{\#} \alpha\right) e-(e \beta)\left(\alpha^{\#} \beta\right) e=-(e \beta)\left(\alpha^{\#} \beta\right) e .
\end{aligned}
$$

Subsituting these results into (2.77) yields $\eta^{\#}=0$.

- There are many other properties of isotropic elements of \mathbf{L} that maybe could have been used as alternative definitions of isotropy. For example, when E is isotropic then $\mathbf{V} E$ (respectively $E \mathbf{V}^{*}$) are isotropic subspaces of \mathbf{V} (respectively \mathbf{V}^{*}). Also the rank of E as a matrix is minimal over all nontrivial elements of \mathbf{L} (and equal to 6). Unfortunately, we have not yet been able to prove that those definitions are equivalent to ours.

When char $K \neq 2$ it seems to be sufficient that $E^{2}=0$ for $E \in \mathbf{L}$ to be isotropic. Counterexamples can easily be found when char $K=2$.

2.4 Automorphisms

Let $g: \mathbf{V} \rightarrow \mathbf{V}: a \mapsto a^{g}$ be a non-singular linear transformation of \mathbf{V}. We may extend the action of g in a unique way to \mathbf{V}^{*} by requiring

$$
\begin{equation*}
a^{g} \alpha^{g}=a \alpha, \quad \text { for all } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, \tag{2.78}
\end{equation*}
$$

and to $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$, by requiring

$$
\begin{equation*}
a^{g} A^{g} \alpha^{g}=a A \alpha, \quad \text { for all } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, A \in \operatorname{Hom}(\mathbf{V}, \mathbf{V}) \tag{2.79}
\end{equation*}
$$

We will call g an automorphism of \mathbf{V} (and \mathbf{V}^{*}) if and only if it satisfies

$$
\begin{equation*}
\left(a^{g}\right)^{\#}=\left(a^{\#}\right)^{g}, \quad\left(\alpha^{g}\right)^{\#}=\left(\alpha^{\#}\right)^{g}, \quad \text { for all } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*} \tag{2.80}
\end{equation*}
$$

As an immediate consequence, every automorphism g satisfies

$$
\begin{array}{lll}
a^{g} \times b^{g}=(a \times b)^{g}, & \left\langle a^{g}, b^{g}, c^{g}\right\rangle=\langle a, b, c\rangle & D\left(a^{g}\right)=D(a), \\
\alpha^{g} \times \beta^{g}=(\alpha \times \beta)^{g}, & \left\langle\alpha^{g}, \beta^{g}, \gamma^{g}\right\rangle=\langle\alpha, \beta, \gamma\rangle, & D\left(\alpha^{g}\right)=D(\alpha), \\
a^{g} * \alpha^{g}=(a * \alpha)^{g}, & &
\end{array}
$$

for all $a, b, c \in \mathbf{V}, \alpha, \beta, \gamma \in \mathbf{V}^{*}$. (When char $K=3$, use (2.29) to prove the identities in the third column.)

Applying g to (2.41) we find that $A \in \widehat{\mathbf{L}}$ implies $A^{g} \in \widehat{\mathbf{L}}$ with

$$
\begin{equation*}
\tau\left(A^{g}\right)=\tau(A), \quad \text { for } A \in \widehat{\mathbf{L}} \tag{2.82}
\end{equation*}
$$

and in a similar way (2.69) implies

$$
\begin{equation*}
A^{g} \cdot B^{g}=A \cdot B, \quad \text { for } A, B \in \widehat{\mathbf{L}} \tag{2.83}
\end{equation*}
$$

Another consequence is that automorphisms map isotropic elements of $\mathbf{V}\left(\mathbf{V}^{*}\right.$, \mathbf{L}, respectively) onto isotropic elements of $\mathbf{V}\left(\mathbf{V}^{*}, \mathbf{L}\right.$, respectively).

- The definition of automorphism given here can easily be extended to semi-linear transformations of \mathbf{V}. In that case we require $a^{g} \alpha^{g}$ to be equal to $(a \alpha)^{\sigma}$, where σ denotes the field automorphism for the semi-linear transformation.

An example is provided by letting a non-trivial field automorphism σ of K act on the individual coordinates of the element $a \in \mathbf{V}$, i.e., $a^{\sigma} \stackrel{\text { def }}{=} \sum\left(a \eta_{i}\right)^{\sigma} e_{i}$.

It is important to note that in that case σ needs to be a bijection, i.e., $K^{\sigma}=K$. In later chapters we will encounter similar σ which are endomorphisms of K, i.e., injective but not necessarily bijective.

The following proposition provides an interesting type of automorphism.

Proposition 2.30 Let E be an isotropic element of \mathbf{L}, then $x(E) \stackrel{\text { def }}{=} \mathbf{1}-E$ is an automorphism of \mathbf{V} (and \mathbf{V}^{*}). We have

$$
\begin{array}{ll}
a^{x(E)}=a-a E, & \\
\alpha^{x(E)}=\alpha+E \alpha, & \tag{2.84}\\
A^{x(E)}=A+[E, A]-(E \cdot A) E, & \\
\text { for all } a \in \mathbf{V} \text { all } A \in \widehat{\mathbf{L}},
\end{array}
$$

For $k, k^{\prime} \in K$ we have $x(k E) x\left(k^{\prime} E\right)=x\left(\left(k+k^{\prime}\right) E\right)$. In particular $x(E) x(-E)=\mathbf{1}$.

Proof: We have $(\mathbf{1}-k E)\left(\mathbf{1}-k^{\prime} E\right)=\mathbf{1}-\left(k+k^{\prime}\right) E+k k^{\prime} E^{2}$ and hence by Proposition 2.28-4 $x(k E) x\left(k^{\prime} E\right)=x\left(\left(k+k^{\prime}\right) E\right)$. Substituting $k=1, k^{\prime}=-1$ we obtain $x(E) x(-E)=\mathbf{1}$.

To prove (2.84) we need to verify (2.78-2.79). This is straightforward if we rewrite the expression for $\alpha^{x(E)}$ as $(1+E) \alpha$ and the expression for $A^{x(E)}$ as $(\mathbf{1}+E) A(\mathbf{1}-E)$. (For the last formula, note that $E A E=(E \cdot A) E$ by Proposition 2.28-9.)

Finally, let $a \in \mathbf{V}$, then

$$
\left(a^{x(E)}\right)^{\#}=(a-a E)^{\#}=a^{\#}-a \times a E+(a E)^{\#}=a^{\#}+E a^{\#}=\left(a^{\#}\right)^{x(E)}
$$

by Proposition $2.28-7$ and (2.41). Toghether with its dual, this proves that $x(E)$ is an automorphism, by (2.80).

- When char $K \neq 2$ we may write the last identity of (2.84) as $A^{x(E)}=A+[E, A]+$ $\frac{1}{2}[E,[E, A]]$.

The group generated by all $x(E)$ with E an isotropic element of \mathbf{V} will de denoted by $\widehat{\mathrm{E}}_{6}(K)$ and is called a Chevalley group of type E_{6}. Note that this is a subgroup of the general linear group of \mathbf{V}.

- Chevalley groups come in different flavours. The adjoint Chevalley group of type E_{6} is usually defined as acting on L , i.e., by means of the last identity of (2.84). This group is always a simple group. Other Chevalley groups of type E_{6} have the adjoint Chevalley group as a quotient.

The group $\widehat{\mathrm{E}}_{6}(K)$ defined here may possibly contain elements of the form $k \mathbf{1}$ with $k \in$ $K-\{0,1\}$ (although unfortunately we have not been able to determine whether this is really the case). These elements act trivially on \mathbf{L}, but not on \mathbf{V}, and belong to the center of $\widehat{\mathrm{E}}_{6}(K)$.

We are therefore careful not to call $\hat{\mathrm{E}}_{6}(K)$ 'the' Chevalley group of type E_{6}.

- In [1] the Chevalley group of type E_{6} is constructed as the isometry group of the trilinear form on \mathbf{V}. This is essentially the same as our notion of automorphism.

In the special case $E=k E_{r}$ with $k \in K, r \in \Phi$, we use the notation $x_{r}(k) \stackrel{\text { def }}{=}$ $x\left(k E_{r}\right)$.

Lemma 2.31 Let $r, s \in \Phi, p \in \mathcal{P}, k \in K$. Then

$$
\begin{align*}
& e_{p}^{x_{r}(k)}= \begin{cases}e_{p}-k e_{p+r}, & \text { when } p \text { is a positive base point of } r, \\
e_{p}+k e_{p+r}, & \text { when } p \text { is a negative base point of } r, \\
e_{p,}, & \text { otherwise. }\end{cases} \\
& \eta_{p}^{x_{r}(k)}= \begin{cases}\eta_{p}+k \eta_{p-r}, & \text { when } p \text { is a positive base point of }-r, \\
\eta_{p}-k \eta_{p-r}, & \text { when } p \text { is a negative base point of }-r, \\
\eta_{p}, & \text { otherwise. }\end{cases} \tag{2.85}\\
& \begin{aligned}
E_{-r}^{x_{r}(k)} & =E_{-r}+k H_{r}+k^{2} E_{r}, \\
E_{s}^{x_{r}(k)} & =E_{s,} \\
E_{s}^{x_{r}(k)} & =E_{s}+k E_{r+s} \text { or } E_{s}-k E_{r+s}, \\
H_{s}^{x_{r}}(k) & \text { when }\langle r, s\rangle \geq 0, \\
& H_{s}+\langle r, s\rangle k E_{r} .
\end{aligned} \quad . \begin{array}{l}
\text { when }\langle r, s\rangle=-1,
\end{array}
\end{align*}
$$

Proof: (2.85) is an immediate application of (2.45), (2.47) and (2.84). Similarly, applying (2.84) to $E=k E_{r}$ and $A=E_{s}$, yields

$$
E_{s}^{x_{s}(k)}=E_{s}+k\left[E_{r}, E_{s}\right]-k^{2}\left(E_{r} \cdot E_{s}\right) E_{r} .
$$

The value of this expression may then be computed from Proposition 2.22 and (2.68). Similarly

$$
H_{s}^{x_{r}(k)}=H_{s}+k\left[E_{r}, H_{s}\right]-k^{2}\left(E_{r} \cdot H_{s}\right) E_{r}=H_{s}+\langle r, s\rangle k E_{r} .
$$

- It can be proved that the set of all elements $x_{r}(k)$ with $k \in K, r \in \Phi$ generate the group $\widehat{\mathrm{E}}_{6}(K)$. This is often taken as the definition of $\widehat{\mathrm{E}}_{6}(K)$. A proof of the equivalence of both definitions will be given after Theorem 2.36.
- Properties (2.86) differ slightly from those listed in [8, Section 4.4] because the elements E_{r} are Chevalley basis elements only up to a sign, as explained after Proposition 2.22. For those r for which $-E_{r}$ is a Chevalley base element, our $x_{r}(k)$ corresponds to $x_{r}(-k)$ in [8].

When g, h are group elements, we will write $g^{h} \stackrel{\text { def }}{=} h^{-1} g h$.
Let E be an isotropic element of \mathbf{L}. Applying an automorphism g of \mathbf{V} to the first statement of (2.84) we obtain $\left(a^{x(E)}\right)^{g}=(a-a E)^{g}=a^{g}-(a E)^{g}=$ $a^{g}-a^{g} E^{g}=\left(a^{g}\right)^{x\left(E^{g}\right)}$ and hence

$$
\begin{equation*}
x(E)^{g}=x\left(E^{g}\right) \tag{2.87}
\end{equation*}
$$

for all isotropic elements $E \in \mathbf{L}$ and all automorphisms g of \mathbf{V}.

Lemma 2.32 Let E, F be isotropic elements of \mathbf{L} such that $E \cdot F=-1$. Define

$$
\begin{equation*}
n(E, F) \stackrel{\text { def }}{=} x(E) x(F) x(E) \tag{2.88}
\end{equation*}
$$

Then $n(E, F)=n(F, E)$ and

$$
\begin{equation*}
E^{n(E, F)}=F, \quad F^{n(E, F)}=E . \tag{2.89}
\end{equation*}
$$

Proof: (Note that $E^{2}=F^{2}=0$ and $E F E=-E$ and $F E F=-F$ by Proposition 2.28.)

We have

$$
\begin{aligned}
n(E, F) & =(\mathbf{1}-E)(\mathbf{1}-F)(\mathbf{1}-E) \\
& =\mathbf{1}-E-F-E+E F+F E+E^{2}-E F E=\mathbf{1}-E-F+E F+F E
\end{aligned}
$$

This expression is symmetric in E and F, proving $n(E, F)=n(F, E)$.
We compute

$$
\begin{aligned}
E^{x(E)} & =E+[E, E]-(E \cdot E) E=E \\
E^{x(F)} & =E+[F, E]-(E \cdot F) F=E+F-[E, F] \\
F^{x(E)} & =F+[E, F]-(E \cdot F) E=E+F+[E, F] \\
{[E, F]^{x(E)} } & =[E, F]+[E,[E, F]]-(E \cdot[E, F]) E \\
& =[E, F]+E^{2} F-2 E F E+F^{2} E=[E, F]+2 E \\
E^{n(E, F)} & =E^{x(E) x(F) x(E)}=E^{x(F) x(E)}=(E+F-[E, F])^{x(E)} \\
& =E+E+F+[E, F]-[E, F]-2 E=F
\end{aligned}
$$

The value for $F^{n(E, F)}$ is obtained by interchanging the roles of E and F.
By (2.68) the elements $E=k E_{r}$ and $F=k^{-1} E_{-r}$, with $k \in K-\{0\}, r \in \Phi$, satisfy the conditions of Lemma 2.32, and then

$$
\begin{equation*}
n_{r}(k) \stackrel{\text { def }}{=} n\left(k E_{r}, k^{-1} E_{-r}\right)=x_{r}(k) x_{-r}\left(k^{-1}\right) x_{r}(k) \tag{2.90}
\end{equation*}
$$

is well defined. These elements will play a special role in what follows. Also of interest are the following group elements, for $k \in K-\{0\}, r \in \Phi$:

$$
\begin{equation*}
h_{r}(k) \stackrel{\text { def }}{=} n_{r}(-1) n_{r}(k) . \tag{2.91}
\end{equation*}
$$

Lemma 2.33 Let $k \in K-\{0\}, p, r, s \in \Phi$. Then

$$
\begin{align*}
e_{p}^{n_{r}(k)} & = \pm k^{-\langle r, p\rangle} e_{w_{r}(p)}, & e_{p}^{h_{r}(k)} & =k^{\langle r, p\rangle} e_{p}, \\
\eta_{p}^{n_{r}(k)} & = \pm k^{\langle r, p\rangle} \eta_{w_{r}(p)}, & \eta_{p}^{h_{r}(k)} & =k^{-\langle r, p\rangle} \eta_{p}, \\
E_{s}^{n_{r}(k)} & =k^{-\langle r, s\rangle} E_{w_{r}(s),} & E_{s}^{h_{r}(k)} & =k^{\langle r, s\rangle} E_{s} \tag{2.92}\\
H_{p}^{n_{r}(k)} & =H_{w_{r}(p)}, & H_{p}^{h_{r}(k)} & =H_{p} \\
H_{s}^{n_{r}(k)} & =H_{w_{r}(s),} & H_{s}^{h_{r}(k)} & =H_{s} .
\end{align*}
$$

where w_{r} denotes the Weyl group element associated with r.

Proof: From the proof of Lemma 2.32, we obtain

$$
n_{r}(k)=\mathbf{1}-k E_{r}-k^{-1} E_{-r}+E_{r} E_{-r}+E_{-r} E_{r} .
$$

From (2.62) it follows that $e_{p}+e_{p} E_{r} E_{-r}+e_{p} E_{-r} E_{r}$ equals 0 when p is a base point of either r or $-r$, and equal e_{p} otherwise. Hence

$$
e_{p}^{n_{r}(k)}=\left\{\begin{aligned}
-k e_{p} E_{r}= \pm k e_{p+r}, & \text { when } p \text { is a base point of } r \\
-k^{-1} e_{p} E_{-r}= \pm k^{-1} e_{p-r}, & \text { when } p \text { is a base point of }-r \\
e_{p}, & \text { otherwise. }
\end{aligned}\right.
$$

Note that these three cases correspond with $\langle r, p\rangle=-1,+1$ and 0 respectively, and that in each case the base element on the right hand side is indeed equal to $e_{w_{r}(p)}$, by (2.7). This proves the first equality in the left column of (2.92).

The second equality follows from the fact that $e_{p}^{n_{r}(k)} \eta_{p}^{n_{r}(k)}$ must be equal to $e_{p} \eta_{p}=1$.

For the third equality, write $s=q-p$ with p a positive base point of s. Then $E_{s}=e_{q} * \eta_{p}$ and hence by the above

$$
\begin{aligned}
E_{s}^{n_{r}(k)} & =e_{q}^{n_{r}(k)} * \eta_{p}^{n_{r}(k)} \\
& = \pm k^{-\langle r, q\rangle} e_{w_{r}(q)} * \pm k^{\langle r, p\rangle} \eta_{w_{r}(p)} \\
& = \pm k^{-\langle r, s\rangle} e_{w_{r}(q)} * \eta_{w_{r}(p)} \\
& = \pm k^{-\langle r, s\rangle} E_{w_{r}(s)}
\end{aligned}
$$

Similarly, $H_{p}^{n_{r}(k)}=e_{p}^{n_{r}(k)} * \eta_{p}^{n_{r}(k)}= \pm k^{-\langle r, p\rangle} e_{w_{r}(p)} * \pm k^{\langle r, p\rangle} \eta_{w_{r}(p)}$. The sign of both factors on the right hand side must be the same as $e_{p}^{n_{r}(k)} \eta_{p}^{n_{r}(k)}=1$. Hence $H_{p}^{n_{r}(k)}=e_{w_{r}(p)} * \eta_{w_{r}(p)}=H_{w_{r}(p)}$. By definition $H_{s}=H_{q}-H_{p}$ when $s=q-p$, and hence also the last equality in the left column follows.

Finally, if p is a base point of r, and hence $p+r$ is a base point of $-r$, then

$$
e_{p}^{h_{r}(k)}=e_{p}^{n_{r}(-1) n_{r}(k)}=\left(e_{p} E_{r}\right)^{n_{r}(k)}=-k^{-1} e_{p} E_{r} E_{-r}
$$

by the above. Lemma 2.21 then shows that this is equal to $k^{-1} e_{p}$.
Similarly, when p is a base point of $-r$, we find that $e_{p}^{h_{r}(k)}=k e_{p}$, and when p is not a base point of either, $e_{p}^{h_{r}(k)}=e_{p}$, proving the first equality in the right column of (2.92). The other equalities in the right column can then be derived using the same methods as for the left column.

Lemma 2.33 shows that the element $n_{r}(k)$ acts on the 1-dimensional subspace $K e_{p}$ of \mathbf{V} (respectively $K E_{s} \leq \mathbf{L}$) in the same way as the Weyl group element w_{r} acts on the points of \mathcal{P} (respectively the roots of Φ). Hence $W\left(\mathrm{E}_{6}\right)$ is a quotient group of the subgroup N of $\widehat{\mathrm{E}}_{6}(K)$ generated by all $n_{r}(k)$ with $r \in \Phi$, $k \in K$. The group elements $h_{r}(k)$ belong to the kernel of the corresponding homomorphism.

In the remainder of this section we will establish various transitivity properties of the group $\widehat{E}_{6}(K)$.

For this purpose we will make use of a reduction process that manipulates the coordinates of elements $a \in \mathbf{V}$. Recall that $a \in \mathbf{V}$ can be written as $\sum_{p \in \mathcal{P}} a[p] e_{p}$ with coordinates $a[p]=a \eta_{p}$.

The reduction process can be summarized as follows : we choose an element of the form $x_{r}(k)$ to map a given $a \in \mathbf{V}$ onto $a^{\prime} \in \mathbf{V}$ with the property that a^{\prime} has one more coordinate that is 'known' to be zero. Successive reductions decrease the number of non-zero coordinates of a while staying in the same orbit of $\widehat{\mathrm{E}}_{6}(K)$, until the final image of a has a sufficiently simple structure.

In general, when it is known that $a[p] \neq 0$ for some $p \in \mathcal{P}$, we choose $q \in \mathcal{P}$ such that $p \not \perp q$ and then apply an element of the form $x_{t}(k)$ with $t=q-p$. From (2.85) it follows that the coordinate of the image a^{\prime} of a at position q is now equal to $a^{\prime}[q]=a[q] \pm k a[p]$. Hence, setting $k=\mp a[q] / a[p]$ we obtain $a^{\prime}[q]=0$.

This transformation does however also affect other coordinates $a[q]$ of a and when performing successive reductions we should make sure that earlier annihilations are not 'undone' by later actions. Note that by (2.85) $x_{t}(k)$ only changes coordinates $a[q]$ of a at positions which satisfy $t \cdot q=1$.

Theorem 2.34 The orbits of $\widehat{\mathrm{E}}_{6}(K)$ on \mathbf{V} are as follows:

1. The trivial orbit $\{0\}$.
2. The set of all elements $a \in \mathbf{V}$ with $a^{\#}=0$ but $a \neq 0$. i.e., all non-zero isotropic elements of \mathbf{V}.
3. The set of all elements $a \in \mathbf{V}$ with $D(a)=0$ but $a^{\#} \neq 0$.
4. For each $\ell \in K-\{0\}$ an orbit of elements $a \in \mathbf{V}$ with $D(a)=\ell$.

Typical representatives for these orbits are given by $0, e_{p}, e_{p}+e_{p^{\prime}}$ and $e_{p}+e_{p^{\prime}}+\ell e_{p^{\prime \prime}}$, where $p p^{\prime} p^{\prime \prime}$ is a line of Σ.

Proof: Choose a fixed line $p p^{\prime} p^{\prime \prime}$ of Σ. Assume $a \neq 0$.

At least one coordinate $a[x]$ of a is nonzero. Because $W\left(\mathrm{E}_{6}\right)$ acts transitively on \mathcal{P} we may always find an element $w \in W\left(\mathrm{E}_{6}\right)$ which maps x onto p, and hence we may find a corresponding element in the subgroup N of $\widehat{\mathrm{E}}_{6}(K)$ which maps $K e_{x}$ onto $K e_{p}$. Therefore, without loss of generality we may assume $a[p]=0$.

Now, let $q \in \mathcal{P}$ such that $p \not \perp q$, i.e., $p \cdot q=1 / 3$. Then we may annihilate $a[q]$ using $x_{t}(k)$ with $t=q-p$ as described in the introduction to this section. This transformation will affect only coordinates $a\left[q^{\prime}\right]$ of a at positions that satisfy $t \cdot q^{\prime}=1$, i.e., $q \cdot q^{\prime}=1+p \cdot q^{\prime}$. For $q^{\prime}=q$ this implies $q \cdot q^{\prime}=1 / 3$ and
$p \cdot q^{\prime}=-2 / 3$, hence $q^{\prime} \sim p$. In other words, annihilating $a[q]$ does not effect any other coordinate $a\left[q^{\prime}\right]$ with $q^{\prime} \not \perp p$. We may therefore repeat this process to annihilate all coordinates of this type, ending up with an image b of a with $b[p] \neq 0$ and $b[q]=0$ for every $q \not \perp p$.

If also every $b[q]=0$ with $p \sim q$, then $b \in K e_{p}$. Otherwise, because $W\left(\mathrm{E}_{6}\right)$ is transitive on all adjacent pairs of points, we may assume without loss of generality that $b\left[p^{\prime}\right] \neq 0$. We now use $x_{t}(k)$ with $t=q-p^{\prime}$ to annihilate all remaining coordinates $b[q]$ for which $q \neq p, p^{\prime}, p^{\prime \prime}$. Indeed, using a similar argument as above, we see that an annihilation of this kind affects only a[p"] and $a[q]$. (It does not affect coordinates $a[q]$ with $q \not \perp p$ because all of them are zero.)

This proves that every non-zero element of \mathbf{V} is equivalent (under the action of $\widehat{\mathrm{E}}_{6}(K)$) to an element c of the form $c=k e_{p}+k^{\prime} e_{p^{\prime}}+k^{\prime \prime} e_{p^{\prime \prime}}$ with $k \neq 0$ and $k^{\prime \prime}=0$ when $k^{\prime}=0$. Choose q on a line through p^{\prime} different from $p p^{\prime} p^{\prime \prime}$. Then $r=q-p$ is a root with $\langle r, p\rangle=-1$. Applying $h_{r}(k)$ to c then reduces $c[p]$ to 1 by (2.92). We therefore assume without loss of generality that $k=1$. Likewise, if $k^{\prime} \neq 0$, we may choose q^{\prime} on a line through p which is different from $p p^{\prime} p^{\prime \prime}$ and set $r^{\prime}=p^{\prime}-q^{\prime}$ to reduce k^{\prime} to 1 without affecting $c[p]$.

Summarizing, this proves that every $a \in \mathbf{V}$ can be mapped onto $0, e_{p}$ or an element of the form $e_{p}+e_{p^{\prime}}+\ell e_{p^{\prime \prime}}$ with $\ell \in K$. To prove that each of these elements represents a different orbit, we may compute that the corresponding values of $a^{\#}$ and $D(a)$ are different in each case. Because $D(a)$ and the fact that $a^{\#}$ is or is not equal to 0 are invariants of $\widehat{\mathrm{E}}_{6}(K)$, this concludes the proof.

Note that also the dual of this theorem holds, and in particular, that the nonzero isotropic elements of \mathbf{V}^{*} form a single orbit under the action of $\widehat{\mathrm{E}}_{6}(K)$.

- Several results on orbits of $\hat{\mathrm{E}}_{6}(K)$ are already contained in [1], but with proofs that are completely different from ours. Theorem 3.3 of [1] is the 'projective version' of the theorem above, i.e., it lists the orbits on 1 -spaces $K a$ of \mathbf{V} instead of on the elements of V themselves.

Theorem 2.35 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on ordered pairs (e, f) where both e, $f \in \mathbf{V}-\{0\}$ are isotropic. Let $x, p \in \mathcal{P}$.

1. An orbit with representative $\left(e_{x}, e_{p}\right)$ where $p \sim x$.
2. An orbit with representative $\left(e_{x}, e_{p}\right)$ where $p \not \perp x$.
3. For each $\ell \in K-\{0\}$ an orbit with representative $\left(e_{x}, \ell e_{x}\right)$.

The following table list several properties of the corresponding pairs (e, f).

	Case 1	Case 2	Case 3
$e \times f$	isotropic, $\neq 0$	0	0
$f \in K e$	no	no	$f=\ell e$
$e \in f \widehat{\mathbf{L}}$	no	yes	yes

Proof: Because $\widehat{\mathrm{E}}_{6}(K)$ is transitive on isotropic points we may choose e of the form $e=e_{x}$ without loss of generality.

Again we will use the reduction process to map f to an element with few nonzero coordinates using elements of type $x_{t}(k)$. In this case however, we must make sure that $x_{t}(k)$ leaves e_{x} invariant. For this reason we only use elements $t=q-p$ such that $\langle t, x\rangle \geq 0$, i.e., such that

$$
\begin{equation*}
x \cdot q \geq x \cdot p \tag{2.93}
\end{equation*}
$$

We need to consider three different cases.
Case 1. Assume there exists $p \in \mathcal{P}$ such that $p \sim x$ and $f[p] \neq 0$. In this case $x \cdot p=-2 / 3$ is as small as possible and hence (2.93) is trivially satisfied. As in the proof of Theorem 2.34 we obtain an element f^{\prime} equivalent to f with $f[q]=0$ for all $q \not \perp p$ and $f^{\prime}[p] \neq 0$. We claim that the fact that f^{\prime} is isotropic implies $f^{\prime} \in K e_{p}$.

Indeed, consider $p^{\prime} \sim p$ and let $p^{\prime \prime}$ denote the third point on the line $p p^{\prime}$. Then
by (2.20) the coordinate of $f^{\prime \#}$ at position $p^{\prime \prime}$ is equal to $\pm f^{\prime}[p] f^{\prime}\left[p^{\prime}\right]$ and must be zero. Hence $f^{\prime}\left[p^{\prime}\right]=0$.

Case 2. If case 1 does not apply, assume there exists $p \in \mathcal{P}$ such that $p \not \perp x$ and $f[p] \neq 0$. Now $x \cdot p=1 / 3$ and to satisfy (2.93) we must avoid all q adjacent to x in the reduction process. However, $f[q]=0$ for all such q, for otherwise case 1 would have applied. Hence, again we may reduce f^{\prime} to f with $f[q]=0$ for all $q \not \perp p$ and $f^{\prime}[p] \neq 0$. Using the same argument as before, the fact that f^{\prime} is isotropic implies $f^{\prime} \in K e_{p}$.

Case 3. If neither of the previous cases applies, then f must be a scalar multiple of e, i.e., $f=\ell e_{x}$ for some $\ell \in K$.

In both cases 1 and 2 we have found that f is equivalent to an element of the form ℓe_{p}. In a final step, we apply a group element $h_{r}(\ell)$ which leaves e_{x} invariant and maps ℓe_{p} to e_{p}. By (2.92) r must be chosen in such a way that $\langle r, p\rangle=-1$ and to leave e_{x} invariant we must have $\langle r, x\rangle=0$. In both cases a root r with these properties can easily be found.

Proposition 2.5 tells us that $W\left(\mathrm{E}_{6}\right)$ acts transitively on adjacent and on nonadjacent pairs of \mathcal{P}. Hence we may freely choose x and p as long as they satisfy the listed conditions.

Finally, to check the table of properties in the statement of this theorem, note that all properties are invariant for $\widehat{\mathrm{E}}_{6}(K)$. It is therefore sufficient to check them for a single (representative) pair in each orbit. This is a straightforward application of the definitions and will be left to the reader.

- Theorem 6.4 of [1] proves that there are two orbits on 2-spaces generated by isotropic 1 -spaces (the singular and the hyperbolic lines). This is the 'projective version' of Theorem 2.35.
- The proofs of most of the 'orbit' theorems in this section (and in Chapters 3 and 5) run along the same lines as the proofs of Theorem 2.34 and 2.35. It may be useful to refer to the earlier proofs to fill in the necessary details in some of the proofs below.

Theorem 2.36 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on ordered pairs (e, η) where both $e \in \mathbf{V}-\{0\}$ and $\eta \in \mathbf{V}-\{0\}$ are isotropic. Let $x, p \in \mathcal{P}$.

1. For every $\ell \in K-\{0\}$ an orbit with representative $\left(e_{x}, \ell \eta_{x}\right)$.
2. An orbit with representative $\left(e_{x}, \eta_{p}\right)$ where $p \not \perp x$.
3. An orbit with representative $\left(e_{x}, \eta_{p}\right)$ where $p \sim x$.

The following table list several properties of the corresponding pairs (e, η).

	Case 1	Case 2	Case 3
$e \eta$	$=\ell \neq 0$	0	0
$e * \eta$	not isotropic	isotropic, $\neq 0$	0
$e \in \eta \times \mathbf{V}^{*}$	no	no	yes
$\eta \in e \times \mathbf{V}$	no	no	yes

Proof: We set $\eta=\eta_{x}$ and apply the reduction process to e, using only group elements that leave η_{x} invariant. Hence we only use elements $x_{t}(k)$ with $t=$ $q-p$ such that $\langle t, x\rangle \leq 0$, i.e.,

$$
\begin{equation*}
x \cdot q \leq x \cdot p \tag{2.94}
\end{equation*}
$$

We again consider three cases.
Case 1. If $e[x] \neq 0$ then $p=x$ makes (2.94) trivially satisfied. Using the techniques of earlier theorems, we find that e is equivalent to an element of the form ℓe_{x}.

Case 2. If $e[x]=0$, assume there exists $p \not \perp x$ such that $e[p] \neq 0$. By (2.94) we may apply the reduction process to all coordinates $e[q]$ of e with $q \not \perp p$, except at position $q=x$, a coordinate which is already zero. We end up with an element of the form ℓe_{p}.

Case 3. If neither of the previous cases apply we may find p adjacent to x such that $e[p]=0$. The reduction process can now only be applied to $e[q]$ such
that $q \sim x$. However, the other coordinates $e[q]$ are already zero, for otherwise one of the previous cases would apply. Therefore again we end up with an element of the form ℓe_{p}.

In the last two cases, as in the proof of Theorem 2.35, we may find r such that $h_{r}(\ell)$ reduces the coefficient ℓ to 1 . The transitivity of $W\left(\mathrm{E}_{6}\right)$ (Proposition 2.5) also allows us to choose x and p at will. We leave it to the reader to check the table of properties in the statement of this theorem for a single representative pair in each orbit. Note that $H_{x}=e_{x} * \eta_{x}$ is not isotropic for $H_{x}^{2} \neq 0$.

It is an immediate consequence of this theorem that the non-zero isotropic elements of \mathbf{L} form a single orbit of $\widehat{E}_{6}(K)$. Note that $\operatorname{dim} E_{r}=6$ and hence $\operatorname{dim} E=6$ whenever E is a non-zero isotropic element of L.

- There is a much shorter proof of the fact that all non-zero isotropic elements E are equivalent : Choose $r \in \Phi$ and $k \in K$ such that $E \cdot k E_{r}=-k E[r]=-1$. Such r and k can be found for every non-zero isotropic element E of \mathbf{L}, for it is easily proved that E cannot be a diagonal matrix. Now use $n\left(E, k E_{r}\right)$ to map E to $k E_{r}$. An appropriate $h_{s}(k)$ gets rid of the factor k and the fact that $W\left(\mathrm{E}_{6}\right)$ acts transitively on the roots of Φ (Proposition 2.5) allows us to choose r as we please.
- In the proof of Theorem 2.36 we have used only group elements of the form $x_{r}(k)$. As a consequence, any non-zero isotropic element E can be written as E_{s}^{g} with $s \in \Phi$ and g a product of elements of the form $x_{r}(k)$. Hence $x(E)$ can be written as a product of elements of that form, by (2.87), and this again proves that $\widehat{\mathrm{E}}_{6}(K)$ can be generated by elements of that form. Our definition of $\widehat{\mathrm{E}}_{6}(K)$ is therefore equivalent to the standard definition. (See the note after Lemma 2.31.)

Theorem 2.37 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on ordered pairs (E, e) where $E \in \mathbf{L}-\{0\}$ and $e \in \mathbf{V}-\{0\}$ are isotropic. Let $r \in \Phi, p \in \mathcal{P}$.

1. An orbit with representative $\left(E_{r}, e_{p}\right)$ where $\langle r, p\rangle=-1$.
2. An orbit with representative $\left(E_{r}, e_{p}\right)$ where $\langle r, p\rangle=0$.
3. An orbit with representative $\left(E_{r}, e_{p}\right)$ where $\langle r, p\rangle=+1$.

The following table list several properties of the corresponding pairs (E, e).

	Case 1	Case 2	Case 3
$e E$	$\neq 0$	0	0
$e \in E \mathbf{V}^{*} \times \mathbf{V}^{*}$	$n o$	yes	yes
$E \in \mathbf{V} *(e \times \mathbf{V})$	$n o$	yes	yes
$\operatorname{dim}(\mathbf{V} E \times e)$	5	2	0
$\operatorname{dim}\left(E \mathbf{V}^{*} \cap e \times \mathbf{V}\right)$	0	2	5
$e \in \mathbf{V} E$	no	no	yes
$E \in e * \mathbf{V}^{*}$	no	no	yes

If $e \in \mathbf{V} E$ then we can always find an isotropic element $f \in \mathbf{V}$ such that $e=f E$ and an isotropic element $\varphi \in \mathbf{V}^{*}$ such that $E=e * \varphi$.

Proof: We set $E=E_{r}$ and apply the reduction process to e, using only group elements that leave E_{r} invariant. Hence we use only elements $x_{t}(k)$ with $t=$ $q-p$ such that $\langle t, r\rangle \geq 0$ (see (2.86)) or equivalently, such that

$$
\begin{equation*}
\langle r, q\rangle \geq\langle r, p\rangle . \tag{2.95}
\end{equation*}
$$

We consider three cases.
Case 1. Assume we can find a base point p of r such that $e[p] \neq 0$. We have $\langle r, p\rangle=-1$ and therefore (2.95) is trivially satisfied. After reduction we end up with an element of the form ℓe_{p}.

Case 2. Assume $e[q]=0$ for all base points q of r, but we may find a point p such that $e[p] \neq 0$ and $\langle r, p\rangle=0$. In that case the reduction process can only be applied to coordinates of e at positions q which are not base points of r. However, as in earlier proofs, the 'missing' coordinates are already taken care of. Again we end up with an element of the form ℓe_{p}.

Case 3. Assume $e[q]=0$ except when q is a base point for $-r$. As before we may reduce e to an element of the form ℓe_{p}. To take care of the constant ℓ we apply an element $h_{s}(\ell)$ with $\langle s, p\rangle=-1$ and $\langle s, r\rangle=0$. It is easily proved that such s can always be found, in each of the three cases. The transitivity
properties of $W\left(\mathrm{E}_{6}\right)$ (Proposition 2.5) allow us to freely choose $r \in \Phi$ and $x, y, z \in \mathcal{P}$ as long as they satisfy the listed conditions.

The table of properties (and the additional properties for the case $e \in \mathbf{V} E$) need only be verified for a single representative pair of each orbit. We will discuss the most difficult cases here and leave the rest to the reader. Using the standard notation for points of \mathcal{P}, the three cases correspond to $p=p_{0}$, $p=a_{01}$ and $p=q_{0}$. Note that $\mathbf{V} E_{r}$ is generated by $e_{q_{0}}, \ldots, e_{q_{5}}$, hence only in the third case we have $e \in \mathbf{V} E$. We see that $e_{p_{0}} \times \mathbf{V} E_{r}$ is generated by the 5 elements $e_{a_{01}}, \ldots, e_{a_{05}}$, that $e_{a_{01}} \times \mathbf{V} E_{r}$ is generated by $e_{q_{0}}$ and $e_{q_{1}}$ and that $e_{q_{0}} \times \mathbf{V} E_{r}$ is trivial.

Note that $e_{p_{0}} \times \mathbf{V}$ is generated by $\eta_{q_{1}}, \ldots, \eta_{q_{5}}$ and $\eta_{a_{01}}, \ldots, \eta_{a_{05}}$, and hence $\mathbf{V} *\left(e_{p_{0}} \times \mathbf{V}\right)$ is generated by all E_{s} which have at least one of the ten elements q_{1}, \ldots, a_{05} as a base point. The root r is not amongst them, hence $E_{r} \notin \mathbf{V} *$ $\left(e_{p_{0}} \times \mathbf{V}\right)$. On the other hand $E_{r}= \pm e_{q_{1}} *\left(e_{a_{01}} \times e_{q_{0}}\right)$, hence E_{r} belongs to both $\mathbf{V} *\left(e_{q_{0}} \times \mathbf{V}\right)$ and $\mathbf{V} *\left(e_{a_{01}} \times \mathbf{V}\right)$. Similarly, e_{p} belongs to $E_{r} \mathbf{V}^{*} \times \mathbf{V}^{*}$ if and only if p is adjacent to one of the base points of r, and this is only true in the last two cases.

Note that also the dual of this theorem holds, which provides a list of orbits of pairs (E, η) with both E and η isotropic and non-zero.

Theorem 2.38 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on ordered pairs (E, F) where both $E, F \in \mathbf{L}-\{0\}$ are isotropic. Let $r, s \in \Phi$.

1. For every $\ell \in K-\{0\}$ an orbit with representative $\left(E_{r}, \ell E_{-r}\right)$.
2. An orbit with representative $\left(E_{r}, E_{s}\right)$ where $\langle r, s\rangle=-1$.
3. An orbit with representative $\left(E_{r}, E_{s}\right)$ where $\langle r, s\rangle=0$.
4. An orbit with representative $\left(E_{r}, E_{s}\right)$ where $\langle r, s\rangle=+1$.
5. For every $\ell \in K-\{0\}$ an orbit with representative $\left(E_{r}, \ell E_{r}\right)$.

The following tables list several properties of the corresponding pairs (E, F).

	$E \cdot F$	$[E, F]$	$F \in[E, \widehat{\mathbf{L}}]$	$E F$	$E+F$
Case 1	$-\ell$	not isotr.	no	$\neq 0$	not isotr.
Case 2	0	isotr., $\neq 0$	no	$\neq 0$	not isotr.
Case 3	0	0	yes	$=F E \neq 0$	not isotr.
Case 4	0	0	yes	0	isotr.
Case 5	0	0	yes	0	isotr.

	$F \in K E$	$\mathbf{V} E \cap \mathbf{V} F$	$\operatorname{dim}(\mathbf{V} E \cap \mathbf{V} F)$	$\operatorname{dim}\left(E \mathbf{V}^{*} \times F \mathbf{V}^{*}\right)$
Case 1	no	$\{0\}$	0	15
Case 2	no	$\{0\}$	0	6
Case 3	no	$\mathbf{V} E F=\mathbf{V} F E$	1	6
Case 4	no	$E \mathbf{V}^{*} \times F \mathbf{V}^{*}$	3	3
Case 5	$F=\ell E$	$\mathbf{V} E=\mathbf{V} F$	6	0

Proof: Write $F=a * \alpha$ with $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ isotropic and $a \alpha=0$. By the dual of Theorem 2.37 we may without loss of generality assume that $E=E_{r}$ and $\alpha=\eta_{x}$ where $x \in \mathcal{P}, r \in \Phi$.

Now consider $e \stackrel{\text { def }}{=} e_{x} F$. It is a consequence of Proposition 2.28 that $F=e * \eta_{x}$, $e^{\#}=0$ and $e \eta_{x}=0$.

As before we will apply the reduction process to e using only group elements that leave both E_{r} and η_{x} invariant. Hence we use only elements $x_{t}(k)$ with $t=q-p$ such that

$$
\begin{equation*}
\langle r, q\rangle \geq\langle r, p\rangle \quad \text { and } \quad x \cdot q \leq x \cdot p . \tag{2.96}
\end{equation*}
$$

Note that $e[p]=e \eta_{p}=e_{x} F \eta_{p}=F[x, p]$ is zero for every $p \in \mathcal{P}$ adjacent to x. In other words, whenever $e[p] \neq 0$ we have $p \cdot x=1 / 3$. Therefore the second inequality of (2.96) is satisfied whenever $q \neq x$, and because $e[x]=0$ this means that we essentially only have to worry about the first inequality.

Again we consider three cases.
Case 1. Assume we can find p such that $\langle r, p\rangle=1$. Then the left hand side of (2.96) is trivially satisfied.

Case 2. Otherwise, assume we can find such p with $\langle r, p\rangle=0$. This time the reduction process cannot handle coordinates $e[q]$ with $q \not \perp p$ and $\langle r, q\rangle=1$. Of these q we know that $e[q]=0$ whenever $q=x$ or $q \sim x$. The remaining cases (when $\langle r, q\rangle=1$) are ruled out because otherwise the previous case could have been applied to reduce e.

Case 3. Otherwise, we must find p such that $\langle r, p\rangle=-1$, and a similar argument proves that e can again be reduced to a single non-zero coordinate.

These reductions prove that F is equivalent to some element of the form $\ell e_{p} *$ η_{x} with $p \not \perp x$, and hence to some $\pm \ell E_{s}$ with $s \in \Phi$. In a final step we use a group element $h_{t}(\pm \ell)$ which leaves E_{s} invariant and maps $\pm \ell E_{r}$ to E_{r}. This means that the corresponding root t must satisfy $\langle s, t\rangle=0$ and $\langle r, t\rangle=-1$. We leave it to the reader to verify that this is always possible unless $r=s$ or $r=-s$.

Again the transitivity properties of $W\left(\mathrm{E}_{6}\right)$ (Proposition 2.5) allows us to freely choose $r, s \in \Phi$ as long as they satisfy the stated conditions.

As before, the table of properties need only be verified for a single representative pair of each orbit. We will discuss the most difficult cases here and leave the rest to the reader.

We will use the standard notation for points of \mathcal{P}. The 5 cases now correspond to $s=-r, s=p_{0}-a_{12}, s=p_{1}-p_{0}, s=a_{12}-p_{0}$ and $s=r$.

Note that $E_{r} E_{s}$ is trivial if and only if the base points of $-r$ do not intersect with the base points of s. This is equivalent to $\langle r, s\rangle>0$. When $s=p_{1}-p_{0}=$ $q_{1}-q_{0}$, we see that $E_{r} E_{s}$ maps $e_{p_{0}}$ onto $\pm e_{q_{1}}$ and all maps other base elements to 0 . Hence $\mathbf{V} E_{r} E_{s}=K e_{q_{1}}$ in that case, which is then also easily seen to be equal to $\mathbf{V} E_{r} \cap \mathbf{V} E_{s}$.

In the fourth case, with $s=a_{12}-p_{0}$, we see that the base points of $-r$ and $-s$
intersect in $\left\{q_{3}, q_{4}, q_{5}\right\}$. Hence $\mathbf{V} E_{r} \cap \mathbf{V} E_{s}$ is generated by $e_{q_{3}}, e_{q_{4}}$ and $e_{q_{5}}$. Also $E_{r} \mathbf{V}^{*}$ is generated by $\eta_{p_{0}}, \ldots, \eta_{p_{5}}$ and $E_{S} \mathbf{V}^{*}$ is generated by $\eta_{p_{0}}, \eta_{p_{1}}, \eta_{p_{2}}, \eta_{a_{34}}$, $\eta_{a_{45}}$ and $\eta_{a_{35}}$. Hence $E_{r} \mathbf{V}^{*} \times E_{s} \mathbf{V}^{*}$ is also generated by $e_{q_{3}}, e_{q_{4}}$ and $e_{q_{5}}$.

As a consequence of the properties listed in this theorem the subspace generated by isotropic elements E_{1}, \ldots, E_{k} of \mathbf{L} will itself by isotropic if and only if $E_{i} E_{j}=0$ for all i, j.

The table of properties of Theorem 2.38 also shows that under certain conditions $E+F$ (respectively $[E, F]$) are isotropic, and then $x(E+F) \in \widehat{\mathrm{E}}_{6}(K)$ (respectively $x([E, F]) \in \widehat{\mathrm{E}}_{6}(K)$). This allows us to formulate the following commutation relations.

Proposition 2.39 Let E, F be isotropic elements of L such that $E \cdot F=0$. Then

$$
\begin{equation*}
x(E) x(F)=x(F) x(E) x([E, F]) . \tag{2.97}
\end{equation*}
$$

If moreover $E F=F E=0$ then

$$
\begin{equation*}
x(E) x(F)=x(F) x(E)=x(E+F) . \tag{2.98}
\end{equation*}
$$

Proof: Let $a \in \mathbf{V}$. We find $a^{x(-F) x(E)}=(a+a F)^{x(E)}=a+a F-a E-a F E$ and then

$$
\begin{aligned}
a^{x(-F) x(E) x(F)} & =a+a F-a E-a F E-a F-a F^{2}+a E F+a F E F \\
& =a-a E+a[E, F]
\end{aligned}
$$

because $F^{2}=0$ and $F E F=(E \cdot F) F=0$ by Proposition 2.28. Similarly

$$
a^{x(E) x([E, F])}=(a-a E)^{x([E, F])}=a-a E+a[E, F]-a E[E, F]
$$

And again $a E[E, F]=a E^{2} F-a E F E=0$, by Proposition 2.28. This proves (2.97), because $x(-F)=x(F)^{-1}$.

Finally, when $E F=0, a^{x(E) x(F)}=(a-a E)^{x(F)}=a-a E-a F+a E F=a-$ $a(E+F)$.

- When applied to $E=k E_{r}, F=k^{\prime} E_{s}$ with $r, s \in \Phi, k, k^{\prime} \in K$, (2.97) reduces to Chevalley's commutator formula [8, Theorem 5.2.2].

Theorem 2.40 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on n-tuples $\left(e_{1}, \ldots, e_{n}\right) \in \mathbf{V}^{n}$ of linearly independent elements that satisfy $e_{i}^{\#}=e_{i} \times e_{j}=0$, for all $i, j, 1 \leq i, j \leq n$. (We use the standard notation for points of \mathcal{P}.)

- When $n=1$, a single orbit with representative $\left(e_{p_{0}}\right)$.
- When $n=2$, a single orbit with representative $\left(e_{p_{0}}, e_{q_{0}}\right)$.
- When $n=3$, a single orbit with representative $\left(e_{p_{0}}, e_{q_{0}}, e_{a_{12}}\right)$.
- When $n=4$, a single orbit with representative $\left(e_{p_{0}}, e_{q_{0}}, e_{a_{12}}, e_{a_{13}}\right)$.
- An orbit with representative $\left(e_{p_{0}}, e_{q_{0}}, e_{a_{12}}, e_{a_{13}}, e_{a_{14}}\right)$. All 5-tuples in this orbit can be extended to a 6-tuple with the stated properties.
- For every $\ell \in K-\{0\}$, an orbit with representative $\left(e_{p_{0}}, e_{q_{0}}, e_{a_{12}}, e_{a_{13}}, l e_{a_{23}}\right)$. A 5-tuple in this orbit cannot be extended to a 6-tuple with the stated properties.
- For every $\ell \in K-\{0\}$, an orbit with representative $\left(e_{p_{0}}, e_{q_{0}}, e_{a_{12}}, e_{a_{13}}, e_{a_{14}}\right.$, $\left.\ell e_{a_{15}}\right)$.
(Note that in the last two cases, different ℓ need not necessarily correspond to different orbits.)

Proof: By Theorem 2.35 we may set $e_{1}=e_{p_{0}}$ and $e_{2}=e_{q_{0}}$ for some fixed pair of noncollinear points p_{0}, q_{0} in \mathcal{P}, without loss of generality. The fact that $e_{1} \times e_{i}=e_{2} \times e_{i}=0$ translates to $e_{i}\left[p_{1}\right]=\cdots=e_{i}\left[p_{5}\right]=e_{i}\left[q_{1}\right]=\cdots=e_{i}\left[q_{5}\right]=$ $e_{i}\left[a_{01}\right]=\cdots=e_{i}\left[a_{05}\right]=0$, using the standard notation for points of \mathcal{P}. Note also that the fact that $e_{1}, e_{2}, e_{i}, i \geq 2$, are linearly independent forces at least one coordinate of the form $e_{i}\left[a_{j k}\right]$, with $1 \leq j, k \leq 5$ to be non-zero. We may then apply an appropriate group element $x_{t}(k)$ to reduce both $e_{i}\left[p_{0}\right]$ and $e_{i}\left[q_{0}\right]$ to zero (i.e., with $t=p_{0}-a_{j k}$ and $q_{0}-a_{j k}$).

As a consequence we may assume that each $e_{i}, i \geq 3$, belongs to the 10 dimensional space generated by $e_{a_{12}}, \ldots, e_{a_{45}}$. We will apply the usual reduction process using only elements $x_{t}(k)$ with t of the form $t=p_{j}-p_{i}$, with $1 \leq i, j \leq 5$.

Consider e_{3}. The transitivity properties of $W\left(\mathrm{E}_{6}\right)$ (Proposition 2.5) allow us to assume that $e_{3}\left[a_{12}\right] \neq 0$, without loss of generality. The reduction process can now be used to annihilate all coordinates at positions $a_{13}, \ldots, a_{15}, a_{23}, \ldots, a_{25}$. We leave it to the reader to prove that $e_{3}^{\#}=0$ implies $a_{34}=a_{35}=a 45=0$. Hence e_{3} can be mapped onto a scalar multiple of $e_{a_{12}}$. Finally this factor can be removed using a group element of the form $h_{s}(k)$ with for example $s=$ $p_{2}-p_{3}$.

When $n \geq 4$ we choose $e_{3}=e_{a_{12}}$. Using a similar reasoning as above, we can reduce each $e_{i}, i \geq 3$ to a linear combination of $e_{a_{13}}, e_{a_{14}}, e_{a_{15}}, e_{a_{23}}, e_{a_{24}}$ and $e_{a_{25}}$. Without loss of generality we may assume that $e_{4}\left[a_{13}\right] \neq 0$ and use this coordinate to reduce $e_{4}\left[a_{14}\right], e_{4}\left[a_{15}\right] e_{4}\left[a_{23}\right]$ to zero. The property $e_{4}^{\#}=0$ then implies that also $e_{4}\left[a_{25}\right]=e_{4}\left[a_{24}\right]=0$, so we end up with a multiple of $e_{a_{13}}$. Again this scalar factor can be removed using an element of the form $h_{s}(k)$, for example with $s=p_{3}-p_{4}$.

When $n \geq 5$ we further choose $e_{4}=e_{a_{13}}$ and now e_{i} can be reduced to a linear combination of $e_{a_{14}}, e_{a_{15}}$ and $e_{a_{23}}$. If $e\left[a_{23}\right] \neq 0$ then $e_{5}^{\#}=0$ implies $e_{4}\left[a_{15}\right]=e_{4}\left[a_{14}\right]=0$, and then e_{4} is a multiple of $e_{a_{23}}$. (Note that in this case we cannot get rid of the extra factor as we did before.)

If on the other hand $e\left[a_{23}\right]=0$, then without loss of generality we may assume $e\left[a_{14}\right] \neq 0$ and then we may reduce e_{4} to a multiple of $e_{a_{14}}$. In this case we do find an appropriate $h_{s}(k)$ to get rid of the extra factor $\left(s=p_{5}-p_{4}\right)$.

Finally, when $n=6$, we choose $e_{5}=e_{a_{14}}$ and then e_{6} reduces to a multiple of $e_{a_{15}}$. (It is easily seen that the alternative $e_{5}=e_{a_{23}}$ leads to $e_{6}=0$.)

- We do not know whether in the last two cases of Theorem 2.40 distinct ℓ also imply distinct orbits. It is rather fortunate that in what follows we will only need the 'projective version' of the theorem, in which elements e_{i} are substituted by one-dimensional subspaces $K e_{i}$.
- The 'projective version' can be found as Theorem 6.5 of [1].

The following is a technical lemma which will be useful in later proofs.

Lemma 2.41 Let $p \in \mathcal{P}, r \in \Phi$. Let $A \in \mathbf{L}$ and write $A=A_{H}+\sum_{s} A[s] E_{s}$ as in (2.71). Then

1. $e_{p} A=0$ if and only if $A[p, p]=0$ and $A[s]=0$ for all $s \in \Phi$ such that $p \cdot s=-1$.
2. $A\left(e_{p} \times \mathbf{V}\right)=0$ if and only if $A[s]=0$ for all $s \in \Phi$ such that $p \cdot s \geq 0$ and $A_{H}=0$ (except when char $K=2$ in which case this latter condition is relaxed to $\left.A_{H} \in K\left(H_{p}+\mathbf{1}\right)\right)$.
3. $E_{r} A=0$ if and only if $A[s]=0$ for all $s \in \Phi$ such that $r \cdot s \leq 0$ and $A_{H}=0$ (except when char $K=3$ in which case this latter condition is relaxed to $A_{H} \in K\left(H_{r}+\mathbf{1}\right)$.

Proof:

1. We easily compute

$$
e_{p} A=e_{p} A_{H}+\sum_{s \in \Phi, p \cdot s=-1} \pm A[s] e_{p+s}
$$

and hence $e_{p} A=0$ if and only if $e_{p} A_{H}=0$ and $A[s]=0$ for all $s \in \Phi$ such that $p \cdot s=-1$, i.e., p is a base point of s. Because A_{H} is a diagonal matrix, the first requirement can also be written as $A_{H}[p, p]=A[p, p]=0$.
2. Likewise $A\left(e_{p} \times \mathbf{V}\right)=0$ if and only if $A\left(e_{p} \times e_{p^{\prime}}\right)=0$ for all $p^{\prime} \in \mathcal{P}$ which is equivalent to requiring that $A \eta_{q}=0$ for all $q \in \mathcal{P}$ that are adjacent to p. From the dual of the above we know that the latter is true if and only if $A[q, q]=0$ and $A[s]=0$ for all $s \cdot q=1$.

From the proof of Lemma 2.18, specialising to the case $p=q_{0}$, the condition that $A[q, q]=0$ for all q adjacent to p is easily shown to imply $A_{H}=0$ when char $K \neq 2$, and $A_{H} \in K\left(H_{p}+\mathbf{1}\right)$ when char $K=2$.

The second condition, i.e., that $A[s]=0$ for every $s \in \Phi$ such that $-s$ has a base point q adjacent to p, is equivalent to $A[s]=0$ whenever $p \cdot s \geq 0$. Indeed p is adjacent to 0,2 or 5 base points of $-s$ acoording to whether $p \cdot(-s)=-1$, 0 or 1 .
3. $E_{r} A=0$ if and only if $\mathbf{V} E_{r} A=0$ if and only if $e_{q} A=0$ for all $q \in \mathcal{P}$ such that $q \cdot r=1$, i.e., for all base points q of $-r$.

Again from the proof of Lemma 2.18 we find that $A[q, q]=0$ for all base points of $-r$ if and only if $A_{H}=0$ when char $K \neq 3$, and $A_{H} \in K\left(H_{r}+\mathbf{1}\right)$ when char $K=3$. The second condition, i.e., that $A[s]=0$ for every $s \in \Phi$ such that r has a base point q that is also a base point of $-s$, translates to $A[s]=0$ whenever $r \cdot(-s) \geq 0$.

Theorem 2.42 The following is an exhaustive list of all orbits of $\widehat{\mathrm{E}}_{6}(K)$ on n-tuples $\left(E_{1}, \ldots, E_{n}\right)$ of linearly independent isotropic elements of \mathbf{L} that satisfy $E_{i} E_{j}=0$ for all $i, j, 1 \leq i, j \leq n$.

- When $n \leq 4$, for each n a single orbit with representative $\left(E_{r_{1}}, \ldots, E_{r_{n}}\right)$,
- When $n=5$, for each $\ell \in K$ an orbit with representative $\left(E_{r_{1}}, \ldots, E_{r_{4}}, \ell E_{r_{5}}\right)$, with $r_{1}=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}, r_{2}=111 \overline{2} \overline{2} \overline{2}, r_{3}=11 \overline{2} 1 \overline{2} \overline{2}, r_{4}=1 \overline{2} 11 \overline{2} \overline{2}$ and $r_{5}=$ $\overline{2} 111 \overline{2} \overline{2}$.
(In the case $n=5$ different ℓ need not necessarily correspond to different orbits.)

Proof: By Theorem 2.38 without loss of generality we may take $E_{1}=E_{r_{1}}=$ $E_{\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} 1}$ and $E_{2}=E_{r_{2}}=E_{111 \overline{2} \overline{2} \overline{2}}$. Using Lemma 2.41 we may compute that E_{3} satisfies $E_{1} E_{3}=E_{2} E_{3}=0$ if and only if E_{3} is a linear combination of elements E_{S}, with $s=\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}, 111 \overline{2} \overline{2} \overline{2}$ or one of the following :

$11 \overline{2} 1 \overline{2} \overline{2}$	$11 \overline{2} \overline{2} \overline{2} 1$	$11 \overline{2} \overline{2} 1 \overline{2}$
$1 \overline{2} 11 \overline{2} \overline{2}$	$1 \overline{2} 1 \overline{2} \overline{2} 1$	$1 \overline{2} 1 \overline{2} 1 \overline{2}$
$\overline{2} 111 \overline{2} \overline{2}$	$\overline{2} 11 \overline{2} \overline{2} 1$	$\overline{2} 11 \overline{2} 1 \overline{2}$

(Pairs of roots on the same line or column in this grid have inner product 1, other pairs have inner product 0 .)

We will now use a process similar to that of other proofs in this section to reduce the number of non-zero coordinates of E_{3} to a minimum. Because
E_{1}, E_{2}, E_{3} are linearly independent, we may find at least one root s in (2.99) such that $E_{3}[s] \neq 0$. Because of the properties of the Weyl group we may choose $s=r_{3}=11 \overline{2} 1 \overline{2} \overline{2}$ without loss of generality.

Applying $x_{r}(k) \in \widehat{\mathrm{E}}_{6}(K)$ to E_{3} with $r=\overline{2} \overline{2} 1 \overline{2} 11$ and an appropriate $k \in K$ annihilates the coordinate of E_{3} at position $\overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$. Similarly $r=003 \overline{3} 00$ can be used to annihilate the coordinate at position $111 \overline{2} \overline{2} \overline{2}$. We invite the reader to verify that these reductions do not affect the other coordinates of E_{3} and leave both E_{1} and E_{2} invariant.

After further reductions with $r=000 \overline{3} 03,000 \overline{3} 30,0 \overline{3} 3000$ and $\overline{3} 03000$ we end up with E_{3} of the following form :

$$
E_{3}=k_{0} E_{11 \overline{1} 1 \overline{2} \bar{L}}+k_{1} E_{1 \overline{1} 1 \bar{L} \overline{2} \overline{1}}+k_{2} E_{\overline{2} 11 \bar{L} \overline{2} \overline{1}}+k_{3} E_{1 \overline{1} 1 \overline{1} 1 \bar{L} \overline{2}}+k_{4} E_{\overline{2} 11 \overline{2} 1 \overline{2} \prime}
$$

with $k_{0}, \ldots, k_{4} \in K$ and $k_{0} \neq 0$.
Not every element of this form is isotropic. Indeed, if E_{3} is isotropic then also $e_{p} E_{3}$ must be isotropic for all $p \in \mathcal{P}$. Taking $p=000030$ we find

$$
e_{000030} E_{3}= \pm k_{0} e_{11 \overline{2} 11 \overline{2}} \pm k_{1} e_{1 \overline{2} 1 \overline{1} 11} \pm k_{2} e_{\overline{2} 11 \overline{2} 11^{\prime}}
$$

and because $k_{0} \neq 0$ this element can only be isotropic if $k_{1}=k_{2}=0$. The same argument applied to $p=000003$ yields $k_{3}=k_{4}=0$.

We have proved that E_{3} can be reduced to an element of the form $k_{0} E_{r_{3}}$ with $k_{0} \in K$ using elements of $\widehat{\mathrm{E}}_{6}(K)$ that leave $E_{1}=E_{r_{1}}$ and $E_{2}=E_{r_{2}}$ invariant. To get rid of the final scalar k_{0} we apply $h_{r}\left(k_{0}\right)$ with r such that $r_{1} \cdot r=r_{2} \cdot r=0$ and $r_{3} \cdot r=-1$, e.g., $r=003 \overline{3} 00$.

The case $n=4$ can be handled in a similar way. By the above we may choose $E_{1}=E_{r_{1}}, E_{2}=E_{r_{2}}$ and $E_{3}=E_{r_{3}}$ without loss of generality and now E_{4} is a linear combination of E_{1}, E_{2}, E_{3} and elements E_{s} with s equal to one of the following :

$$
1 \overline{2} 11 \overline{2} \overline{2}, \quad \overline{2} 111 \overline{2} \overline{2}, \quad 11 \overline{2} \overline{2} \overline{2} 1, \quad 11 \overline{2} \overline{2} 1 \overline{2} .
$$

Without loss of generality we may assume $E_{4}[1 \overline{2} 11 \overline{2} \overline{2}] \neq 0$. A similar reduction process as before then yields E_{4} of the following form :

$$
E_{4}=k_{5} E_{1 \overline{2} 11 \overline{2} \bar{z}}+k_{6} E_{11 \bar{z} \bar{z} \bar{z} 1}+k_{7} E_{11 \bar{z} \bar{z} 1 \overline{2}}
$$

with $k_{5}, k_{6}, k_{7} \in K$ and $k_{5} \neq 0$.
Because E_{4} is isotropic, also $e_{p} E_{4}$ must be isotropic for every $p \in \mathcal{P}$. As before, applying this to $p=000030$ and $p=000003$ yields $k_{6}=k_{7}=0$. To get rid of the factor k_{5} we may apply $h_{r}\left(k_{5}\right)$ with $r=3 \overline{3} 0000$.

Finally, any element E_{5} such that $E_{1} E_{5}=\cdots=E_{4} E_{5}=0$, must be a linear combination of E_{1}, \ldots, E_{4} and a multiple of $E_{r_{5}}$. We can annihilate the coordinates at positions r_{1}, \ldots, r_{4} of E_{5} in a similar way as before, hence E_{5} is equivalent to an element of the form $\ell E_{r_{5}}$ as stated.

- As with Theorem 2.40 we do not know whether in the last case of Theorem 2.42 distinct ℓ also imply distinct orbits.

Proposition 2.43 Let e_{1}, \ldots, e_{n} be linearly independent elements of \mathbf{V} that satisfy $e_{i}^{\#}=e_{i} \times e_{j}=0$, for all $i, j, 1 \leq i, j \leq n$. Let $V_{n}=e_{1} \times \mathbf{V} \cap \cdots \cap e_{n} \times \mathbf{V}$. Then $\operatorname{dim} V_{1}=10, \operatorname{dim} V_{2}=5, \operatorname{dim} V_{3}=3, \operatorname{dim} V_{4}=2, \operatorname{dim} V_{6}=0$ and $\operatorname{dim} V_{5}=0$ or 2 according to whether $\left(e_{1}, \ldots, e_{5}\right)$ can be extended to a 6 -tuple with the same properties or not.

For $n>1$ the subspace V_{n} is isotropic.

Proof: By Theorem 2.40 we may without loss of generality choose every e_{i} to be some scalar multiple of a base vector $e_{p_{i}}$ with $p_{i} \in \mathcal{P}$.

Let $\eta \in V_{n}$. We will consider the coordinates $\eta[q]$ with $q \in \mathcal{P}$. Let $a \in \mathbf{V}$. Using (2.19) we easily compute

$$
e_{i} \times a=e_{p_{i}} \times a=\sum_{q \sim p_{i}} \pm a\left[p_{i}\right] \eta_{-p-q} .
$$

This sum contains 10 terms, and therefore $\operatorname{dim} V_{1}=10$. It also easily follows that in general the dimension of V_{n} is equal to the number of points adjacent
to all of p_{1}, \ldots, p_{n}. We leave it to the reader to derive the corresponding dimensions, for instance by specialising to the representatives given in Theorem 2.40. Also note that the set of points of \mathcal{P} adjacent to a non-adjacent pair is always a coclique. It easily follows that V_{n} is isotropic whenever $n \geq 2$.

In the cases $n=2, n=3$ and $n=5$ such that $\operatorname{dim} V_{n} \neq 0$ we will call the isotropic subspace V_{n} of \mathbf{V}^{*} the (isotropic) companion space in \mathbf{V}^{*} of the isotropic subspace generated by e_{1}, \ldots, e_{n}. We use the same terminology in the dual case. If V is the companion space in \mathbf{V}^{*} of $U \leq \mathbf{V}$, then U is the companion space of V in \mathbf{V}.

Proposition 2.44 Let e_{1}, \ldots, e_{n} be linearly independent elements of \mathbf{V} that satisfy $e_{i}^{\#}=e_{i} \times e_{j}=0$, for all $i, j, 1 \leq i, j \leq n$. Consider the subpace L_{n} of \mathbf{L} of all elements $A \in \mathbf{L}$ that satisfy $A\left(e_{i} \times \mathbf{V}\right)=0$ for all $i, 1 \leq i \leq n$. Then $\operatorname{dim} L_{1}=16$ (or 17 when char $K=2$), $\operatorname{dim} L_{2}=5, \operatorname{dim} L_{3}=2, \operatorname{dim} L_{4}=1, \operatorname{dim} L_{6}=1$ and $\operatorname{dim} L_{5}$ is either 1 or 0 according to whether $\left(e_{1}, \ldots, e_{5}\right)$ can be extended to a 6 -tuple with the same properties or not.

For $n>1$ the space L_{n} is an isotropic subspace of \mathbf{L}.

Proof: By Lemma 2.41 the space L_{1} is generated by all E_{s} such that $p \cdot s \neq 1$, and an additional element $H_{p}+\mathbf{1}$ when char $K=2$. Hence $\operatorname{dim} L_{1}=16$ (or 17 when $\operatorname{char} K=2$) as stated.

We may extend this observation to the case $n>1$. For $e_{i}=e_{p_{i}}$ with $p_{i} \in \mathcal{P}$ the dimension of L_{n} is equal to the number of roots s such that $p_{i} \cdot s=1$ for all i. Without loss of generalization we need only consider those points used as representatives in Theorem 2.40.

For the point $p_{0}=300000$ the 16 corresponding roots s are the following :

$3 \overline{3} 0000$	$30 \overline{3} 000$	$300 \overline{3} 00$	$3000 \overline{3} 0$	$30000 \overline{3}$
$222 \overline{1} \overline{1} \overline{1}$	$22 \overline{1} 2 \overline{1} \overline{1}$	$22 \overline{1} \overline{1} 2 \overline{1}$	$22 \overline{1} \overline{1} \overline{1} 2$	$2 \overline{1} 22 \overline{1} \overline{1}$
$2 \overline{1} 2 \overline{1} 2 \overline{1}$	$2 \overline{1} 2 \overline{1} \overline{1} 2$	$2 \overline{1} \overline{1} 22 \overline{1}$	$2 \overline{1} \overline{1} 2 \overline{1} 2$	$2 \overline{1} \overline{1} \overline{1} 22$
111111				

Of these, only the first 5 satisfy $s \cdot q_{0}=1$ (with $q_{0}=2 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$). We infer that L_{2} has dimension 5 and is generated by the isotropic elements E_{s} with s equal to one of these 5 roots. Note that for any two such roots s, s^{\prime} we have $s \cdot s^{\prime}=1$, and hence $E_{s} E_{s^{\prime}}=0$. Therefore L_{2} is isotropic, and so are its subspaces L_{3}, \ldots, L_{6}.

If we also require $s \cdot a_{12}=1$ (with $a_{12}=1 \overline{2} \overline{2} 111$) then only $s=3 \overline{3} 0000$ and $30 \overline{3} 000$ remain, yielding $\operatorname{dim} L_{3}=2$. If also $s \cdot a_{13}=1$ (with $a_{13}=1 \overline{2} 1 \overline{2} 11$) then s must be equal to $3 \overline{3} 0000$. Note that for this s we have $s \cdot a_{14}=s \cdot a_{15}=1$ (with $a_{14}=1 \overline{2} 11 \overline{2} 1$ and $a_{15}=1 \overline{2} 111 \overline{2}$), implying $L_{6}=L_{4}$ and $L_{6}=L_{5}$ when $e_{5}=p_{a_{14}}$. The remaining case, where $e_{5}=e_{a_{23}}$, yields $L_{5}=\{0\}$ because $s \cdot a_{23}=0\left(\right.$ with $\left.a_{23}=11 \overline{2} \overline{2} 11\right)$.

For $n=2, n=3$ and $n=6$ we will call L_{n} the (isotropic) companion space in \mathbf{L} of the isotropic subspace generated by e_{1}, \ldots, e_{n}.

Proposition 2.45 Let E_{1}, \ldots, E_{n} be linearly independent isotropic elements of \mathbf{L} that satisfy $E_{i} E_{j}=0$ for all $i, j, 1 \leq i, j \leq n$. Let $T_{n}=\mathbf{V} E_{1} \cap \cdots \cap \mathbf{V} E_{n}$. Then T_{n} is an isotropic subspace of \mathbf{V} and $\operatorname{dim} T_{1}=6, \operatorname{dim} T_{2}=3, \operatorname{dim} T_{3}=\operatorname{dim} T_{4}=$ $\operatorname{dim} T_{5}=2$. Cases with $n>5$ cannot occur.

Proof: Without loss of generalization we may choose E_{1}, \ldots, E_{n} to be $E_{r_{1}}, \ldots$, $E_{r_{n}}$ as in Theorem 2.42. The dimension of the intersections T_{n} is then equal to the number of common base points of r_{1}, \ldots, r_{n}, which can be obtained from Proposition 2.6.

For $n=1, n=2$ and $n=5$ we will call T_{n} the (isotropic) companion space in \mathbf{V} of the isotropic subspace generated by E_{1}, \ldots, E_{n}. By Theorem 2.37 an isotropic element e belongs to the $\mathbf{V} E$ if and only if $\mathbf{V} E \times e=0$. As a consequence T is the companion space in \mathbf{L} of $U \leq \mathbf{V}$ if and only if U is the companion space in \mathbf{V} of T.

2.5 Additional E_{6}-modules

Let L denote an element of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$. We will write $L \alpha$ for the image in \mathbf{V} of $\alpha \in \mathbf{V}^{*}$ through L. Hence $L \alpha \beta \in K$ for $\alpha, \beta \in \mathbf{V}$. Dually we write $a \Lambda$ for the image of a through an element $\Lambda \in \operatorname{Hom}\left(\mathbf{V}, \mathbf{V}^{*}\right)$, and then $b a \Lambda \in K$ for $a, b \in \mathbf{V}$.

- Readers who prefer the 'functional notation' for elements of \mathbf{V}^{*} would write $\beta(L \alpha)$ or $\beta(L(\alpha))$ for $L \alpha \beta$ and $\Lambda(a)(b)$ for $b a \Lambda$. In our notation we have $L \alpha \beta=(L \alpha) \beta$ and $b a \Lambda=b(a \Lambda)$.

Define $\mathbf{V} \wedge \mathbf{V}$ to be the subspace of antisymmetric elements of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$, i.e., those elements L satisfying $L \alpha \alpha=0$ for all $\alpha \in \mathbf{V}^{*}$. $(\mathbf{V} \wedge \mathbf{V}$ can be identified with the space of antisymmetric bilinear forms on \mathbf{V}^{*}.) Dually, we define $\mathbf{V}^{*} \wedge$ \mathbf{V}^{*} to be the subspace antisymmetric elements of $\operatorname{Hom}\left(\mathbf{V}, \mathbf{V}^{*}\right)$, i.e., those Λ satisfying $a a \Lambda=0$, for all $a \in \mathbf{V}$.

The standard example of an element of $\mathbf{V} \wedge \mathbf{V}$ is provided by the wedge product $a \wedge b$ of $a, b \in \mathbf{V}$:

$$
\begin{equation*}
a \wedge b: \mathbf{V}^{*} \rightarrow \mathbf{V}: \alpha \mapsto(a \wedge b) \alpha \stackrel{\text { def }}{=}(a \alpha) b-(b \alpha) a \tag{2.100}
\end{equation*}
$$

with the following immediate properties :

$$
\begin{align*}
& a \wedge b=-b \wedge a, \quad a \wedge a=0 \\
& (a \wedge b) \alpha \beta=-(a \wedge b) \beta \alpha=\left|\begin{array}{ll}
a \alpha & a \beta \\
b \alpha & b \beta
\end{array}\right|, \tag{2.101}\\
& (a \wedge b) \alpha \alpha=0,
\end{align*}
$$

for every $a, b \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*}$.
It is easily proved that the elements $e_{i} \wedge e_{j}$ with $i, j \in \mathcal{P}, i \neq j$ and every pair $\{i, j\}$ counted only once, form a basis for $\mathbf{V} \wedge \mathbf{V}$ and hence $\operatorname{dim} \mathbf{V} \wedge \mathbf{V}=351$.

We define a dual wedge product on \mathbf{V}^{*} in a similar way :

$$
\begin{equation*}
\alpha \wedge \beta: \mathbf{V} \rightarrow \mathbf{V}^{*}: a \mapsto a(\alpha \wedge \beta) \stackrel{\text { def }}{=}(a \beta) \alpha-(a \alpha) \beta \tag{2.102}
\end{equation*}
$$

satisfying

$$
\begin{align*}
& \alpha \wedge \beta=-\beta \wedge \alpha, \quad \alpha \wedge \alpha=0 \\
& a b(\alpha \wedge \beta)=-b a(\alpha \wedge \beta)=\left|\begin{array}{cc}
a \alpha & a \beta \\
b \alpha & b \beta
\end{array}\right| \tag{2.103}\\
& a a(\alpha \wedge \beta)=0 .
\end{align*}
$$

The elements $\eta_{i} \wedge \eta_{j}$ with $i, j \in \mathcal{P}, i \neq j$ and every pair $\{i, j\}$ counted only once, form a basis for $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$.

Now, let $\alpha \in \mathbf{V}^{*}$ and $A \in \mathbf{L}$. Define $\alpha \times A$ to be the following element of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right):$

$$
\begin{equation*}
\alpha \times A: \gamma \mapsto(\alpha \times A) \gamma \stackrel{\text { def }}{=} \alpha \times A \gamma, \quad \text { for every } \gamma \in \mathbf{V}^{*} \tag{2.104}
\end{equation*}
$$

and dually, for $b \in \mathbf{V}, B \in \mathbf{L}$:

$$
\begin{equation*}
B \times b: c \mapsto c(B \times b) \stackrel{\text { def }}{=} c B \times b, \quad \text { for every } c \in \mathbf{V} \tag{2.105}
\end{equation*}
$$

By definition, we have $(\alpha \times A) \gamma \gamma=\langle\alpha, A \gamma, \gamma\rangle=-\gamma^{\#} A \alpha$, by (2.54). Hence $\alpha \times A \in \mathbf{V} \wedge \mathbf{V}$ whenever $A \alpha=0$, and dually $B \times b \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ whenever $b B=0$.

- If we change the definition to $(\alpha \times A) \gamma \stackrel{\text { def }}{=} \alpha \times A \gamma+\frac{1}{2} \gamma \times A \alpha$ then $\alpha \times A \in \mathbf{V} \wedge \mathbf{V}$ also when $A \alpha \neq 0$. Unfortunately this cannot be made to work when char $K=2$.
- The vector space $\mathbf{V} \wedge \mathbf{V}$ (and dually $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$) is an \mathbf{L}-module with the corresponding action defined by the identity $L^{A} \alpha \beta=L(A \alpha) \beta+L \alpha(A \beta)$. As a consequence $(a \wedge b)^{A}=$ $a A \wedge b+a \wedge b A$, proving that the wedge product is compatible with the Lie algebra \mathbf{L}. Similarly, $(\beta \times B)^{A}=-A \beta \times B+\beta \times[B, A]$, making also the cross product compatible with \mathbf{L}.
- When char $K=2$ the module $\mathbf{V} \wedge \mathbf{V}$ is not irreducible. Indeed, because $a \wedge b=b \wedge a$ in this case, the map $\theta: a \wedge b \mapsto a \times b$ is well-defined and provides a homomorphism from $\mathbf{V} \wedge \mathbf{V}$ into \mathbf{V}^{*}. The kernel of θ is a 324-dimensional subspace of $\mathbf{V} \wedge \mathbf{V}$ which is also an E_{6}-module (and turns out to be irreducible).

Also note that when char $K=2$ the elements \times_{α} defined by $\times_{\alpha} \beta \gamma \stackrel{\text { def }}{=}\langle\alpha, \beta, \gamma\rangle$ are antisymmetric and hence belong to $\mathbf{V} \wedge \mathbf{V}$. The vector space generated by all elements
of this kind is a submodule of $\mathbf{V} \wedge \mathbf{V}$ which is isomorphic to \mathbf{V}^{*}. It can be proved that $\theta\left(\times_{\alpha}\right)=\alpha$.

If g is an automorphism of \mathbf{V} then its action can be extended in a unique way to $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$ by requiring

$$
\begin{equation*}
L^{g} \alpha^{g} \beta^{g}=L \alpha \beta, \quad \text { for all } \alpha, \beta \in \mathbf{V}^{*}, L \in \operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right) \tag{2.106}
\end{equation*}
$$

(And similarly in the dual case.)
It follows that

$$
\begin{array}{lll}
(a \wedge b)^{g} & =a^{g} \wedge b^{g}, & (\alpha \wedge \beta)^{g}
\end{array}=\alpha^{g} \wedge \beta^{g}, ~\left(\alpha^{g} \times A^{g}\right), \quad \begin{array}{ll}
(B \times b)^{g} & =\left(b^{g} \times B^{g}\right) \\
(\alpha \times A)^{g} & =\left(\alpha^{g}\right.
\end{array}
$$

for $a, b \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*}, A, B \in \mathbf{L}$.

Lemma 2.46 Let $a, b \in \mathbf{V}$. Let E be an isotropic element of \mathbf{L}. Then

$$
\begin{equation*}
a E \wedge b E=(-a E \times b) \times E=(b E \times a) \times E \tag{2.107}
\end{equation*}
$$

Proof: Let $\alpha \in \mathbf{V}^{*}$. Then by Proposition 2.28-8, we have

$$
(a E \alpha) b E=b(a E * E \alpha)=(b E \alpha) a E-(a E \times b) \times E \alpha,
$$

proving the first equality. The second equality is then obtained by interchanging the roles of a and b.

Lemma 2.47 Let $a, b, e \in \mathbf{V}$ be such that e is isotropic and $a \times b=0$. Then

$$
\begin{equation*}
e \times a \wedge e \times b=(a *(e \times b)) \times e \tag{2.108}
\end{equation*}
$$

Proof: Let $c \in \mathbf{V}$. Then

$$
\begin{aligned}
c[(a *(e \times b)) \times e] & =c(a *(e \times b)) \times e \\
& =\langle b, c, e\rangle a \times e-((c \times a) \times(e \times b)) \times e \\
& =\langle b, c, e\rangle a \times e-\langle a, c, e\rangle b \times e, \text { by Proposition 2.27-3 }
\end{aligned}
$$

and this is equal to $c(e \times a \wedge e \times b)$.

Proposition 2.48 Let $L \in \mathbf{V} \wedge \mathbf{V}, L \neq 0$. Then the following are equivalent:

1. $L=e \wedge f$ for some $e, f \in \mathbf{V}$ such that $e^{\#}=f^{\#}=e \times f=0$.
2. $L=\eta \times E$ for some isotropic $E \in \mathbf{L}$ and isotropic $\eta \in \mathbf{V}^{*}$ such that $E \eta=0$ but $\eta \notin E \mathbf{V}^{*}$.

Proof: By Theorem 2.35 the pairs (e, f) satisfying the given conditions form a single orbit of $\widehat{\mathrm{E}}_{6}(K)$. Likewise, by the dual of Theorem 2.37, the pairs (E, η) satisfying the given conditions form also a single orbit of $\widehat{E}_{6}(K)$. To prove the theorem it is therefore sufficient to find at least one example for which $e \wedge f=\eta \times E$. We leave it to the reader to use either (2.107) or (2.108) to find an example of this kind.

An element $L \in \mathbf{V} \wedge \mathbf{V}$ which satisfies one of the statements of this proposition will be called isotropic. Isotropic elements of $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ are defined in a dual way. Note that $\widehat{E}_{6}(K)$ maps isotropic elements of $\mathbf{V} \wedge \mathbf{V}$ (or $\left.\mathbf{V}^{*} \wedge \mathbf{V}^{*}\right)$ onto isotropic elements and it is a consequence of the proof of this proposition that the nonzero isotropic elements of $\mathbf{V} \wedge \mathbf{V}$ form a single orbit.

If $L \in \mathbf{V} \wedge \mathbf{V}$ is isotropic then $L \mathbf{V}^{*}$ is a isotropic subspace of \mathbf{V} of dimension 2.

- A typical isotropic element of $\mathbf{V} \wedge \mathbf{V}$ is given by $e_{p} \wedge e_{p^{\prime}}$ where $p \not \perp p^{\prime}$. In fact, these elements are related to the elements of the orbit \mathcal{P}_{2} of which the fundamental weight π_{2}^{\prime} is an example. Note that there are only 216 elements of this type, while $\operatorname{dim} \mathbf{V} \wedge \mathbf{V}=351$, hence as with \mathbf{L}, these 'canonical' base elements do not provide a full basis for the module. To generate all of $\mathbf{V} \wedge \mathbf{V}$ we must add one space $\mathbf{H}_{p} \times \eta_{p}$ of dimension 5 for each $p \in \mathcal{P}$. (\mathbf{H}_{p} denotes the subspace of elements H of \mathbf{H} for which $H \eta_{p}=0$.)
- When char $K=2$, then the isotropic elements of $\mathbf{V} \wedge \mathbf{V}$ clearly belong to the 324dimensional submodule of $\mathbf{V} \wedge \mathbf{V}$.

The definitions and properties which were given above for $\mathbf{V} \wedge \mathbf{V}$ can be generalized to trilinear forms. Let P denote a trilinear form on \mathbf{V}^{*} and write $P \alpha \beta \gamma$ for its value on the triple $(\alpha, \beta, \gamma) \in \mathbf{V}^{*} \times \mathbf{V}^{*} \times \mathbf{V}^{*}$. Alternatively we may regard $P \alpha \beta$ as an element of \mathbf{V}, and $P \alpha$ as an element of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$, and hence P as an element of $\operatorname{Hom}\left(\mathbf{V}^{*} \times \mathbf{V}^{*}, \mathbf{V}\right)$ or of $\operatorname{Hom}\left(\mathbf{V}^{*}, \operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)\right)$.

We will be interested in the vector space $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ of all antisymmetric trilinear forms on \mathbf{V}^{*}, i.e., elements P that satisfy

$$
\begin{equation*}
P \delta \gamma \gamma=P \gamma \delta \gamma=P \gamma \gamma \delta=0, \quad \text { for all } \gamma, \delta \in \mathbf{V}^{*} . \tag{2.109}
\end{equation*}
$$

Dually we will consider the vector space $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ of all antisymmetric trilinear forms on \mathbf{V}, i.e., those Π that satisfy

$$
\begin{equation*}
\operatorname{ccd} \Pi=c d c \Pi=d c c \Pi=0, \quad \text { for all } c, d \in \mathbf{V} \tag{2.110}
\end{equation*}
$$

The standard example of an element of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ is provided by the wedge product $a \wedge b \wedge c$ and dually $\alpha \wedge \beta \wedge \gamma$ with $a, b, c \in \mathbf{V}$ and $\alpha, \beta, \gamma \in \mathbf{V}^{*}$. These trilinear forms are defined to satisfy

$$
(a \wedge b \wedge c) \alpha \beta \gamma=\left|\begin{array}{lll}
a \alpha & a \beta & a \gamma \tag{2.111}\\
b \alpha & b \beta & b \gamma \\
c \alpha & c \beta & c \gamma
\end{array}\right|=a b c(\alpha \wedge \beta \wedge \gamma)
$$

It follows that interchanging two of the three operands of $a \wedge b \wedge c$ or $\alpha \wedge \beta \wedge \gamma$ simply changes the sign of the result.

It is easily proved that the elements $e_{i} \wedge e_{j} \wedge e_{k}$ with $i, j, k \in \mathcal{P}, i \neq j \neq k \neq i$ and every triple $\{i, j, k\}$ counted only once, form a basis for $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ and hence $\operatorname{dim} \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}=2925$. A similar basis of elements of the form $\eta_{i} \wedge \eta_{j} \wedge$ η_{k} can be established for $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$.

As with $\mathbf{V} \wedge \mathbf{V}$, there are other interesting ways to construct elements of $\mathbf{V} \wedge$ $\mathbf{V} \wedge \mathbf{V}$.

For every $A, B \in \mathbf{L}$ we define the trilinear form $A \times B$ as follows :

$$
\begin{equation*}
(A \times B) \gamma \delta \varepsilon \stackrel{\text { def }}{=}(A \gamma \times B) \delta \varepsilon=\langle A \gamma, B \delta, \varepsilon\rangle, \quad \text { for every } \gamma, \delta, \varepsilon \in \mathbf{V}^{*} \tag{2.112}
\end{equation*}
$$

and dually $(A \times B)^{*}$ as follows :

$$
\begin{equation*}
\operatorname{cde}(A \times B)^{*} \stackrel{\text { def }}{=} c d(A \times e B)=\langle c, d A, e B\rangle, \quad \text { for all } c, d, e \in \mathbf{V} \tag{2.113}
\end{equation*}
$$

Lemma 2.49 Let $A, B \in \mathbf{L}$ be such that $A B=B A=0$. Then $A \times B=-B \times A$ and $A \times B$ belongs to $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$.

Proof: Let $\gamma, \delta, \varepsilon \in \mathbf{V}^{*}$. By repeatedly applying (2.56) we find

$$
\begin{aligned}
& \langle A \gamma, B \delta, \varepsilon\rangle=-\langle\gamma, A B \delta, \varepsilon\rangle-\langle\gamma, B \delta, A \varepsilon\rangle=-\langle\gamma, B \delta, A \varepsilon\rangle \\
& =\langle B \gamma, \delta, A \varepsilon\rangle+\langle\gamma, \delta, B A \varepsilon\rangle=\langle B \gamma, \delta, A \varepsilon\rangle \\
& =-\langle A B \gamma, \delta, \varepsilon\rangle-\langle B \gamma, A \delta, \varepsilon\rangle=-\langle B \gamma, A \delta, \varepsilon\rangle,
\end{aligned}
$$

proving that $A \times B=-B \times A$.
Also

$$
\begin{array}{rlr}
(A \times B) \gamma \gamma \delta & =\langle A \gamma, B \gamma, \delta\rangle & \\
& =-\langle\gamma, A B \gamma, \delta\rangle-\langle\gamma, B \gamma, A \delta\rangle, & \text { by (2.56) } \\
& =\gamma^{\#} B A \delta=0 \\
& \text { by (2.54). } \\
(A \times B) \gamma \delta \gamma & =\langle A \gamma, B \delta, \gamma\rangle=-\gamma^{\#} A B \delta=0 . & \\
(A \times B) \delta \gamma \gamma & =\langle A \delta, B \gamma, \gamma\rangle=-\gamma^{\#} A B \delta=0 . &
\end{array}
$$

These identities prove that $A \times B$ satisfies (2.109).
A third way to construct elements of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ is provided by the following lemma:

Lemma 2.50 Let $\alpha, \beta, \gamma \in \mathbf{V}^{*}$ be such that $\alpha^{\#}=\beta^{\#}=\gamma^{\#}=\alpha \times \beta=\beta \times \gamma=$ $\gamma \times \alpha=0$. Consider the unique trilinear form $X(\alpha, \beta, \gamma)$ satisfying

$$
\begin{equation*}
X(\alpha, \beta, \gamma) \delta \varepsilon \varphi \stackrel{\text { def }}{=}\langle\alpha \times \delta, \beta \times \varepsilon, \gamma \times \varphi\rangle \tag{2.114}
\end{equation*}
$$

Then $X(\alpha, \beta, \gamma) \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$.

Proof: Note that

$$
X(\alpha, \beta, \gamma) \delta \varepsilon=[(\alpha \times \delta) \times(\beta \times \varepsilon)] \times \gamma
$$

Setting $\delta=\varepsilon$ and applying (2.26) we find

$$
\begin{aligned}
& X(\alpha, \beta, \gamma) \delta \delta \\
& \quad=\langle\alpha, \beta, \delta\rangle \delta \times \gamma+\left(\delta^{\#} \alpha\right) \beta \times \gamma+\left(\delta^{\#} \beta\right) \alpha \times \gamma-\left(\delta^{\#} \times(\alpha \times \beta)\right) \times \gamma=0
\end{aligned}
$$

hence $X(\alpha, \beta, \gamma) \delta \delta \varphi=0$. By symmetry also the other two conditions of (2.109) are satisfied.

If g is an automorphism of \mathbf{V} then its action can be extended in a unique way to the trilinear forms on \mathbf{V}^{*} by requiring

$$
\begin{equation*}
P^{g} \alpha^{g} \beta^{g} \gamma^{g}=P \alpha \beta \gamma, \quad \text { for all } \alpha, \beta, \gamma \in \mathbf{V}^{*} \tag{2.115}
\end{equation*}
$$

(And similarly in the dual case.)
It follows that

$$
\begin{aligned}
& (a \wedge b \wedge c)^{g}=a^{g} \wedge b^{g} \wedge c^{g}, \quad(\alpha \wedge \beta \wedge \gamma)^{g}=\alpha^{g} \wedge \beta^{g} \wedge \gamma^{g} \\
& (A \times B)^{g}=\left(A^{g} \times B^{g}\right), \quad(A \times B)^{* g}=\left(A^{g} \times B^{g}\right)^{*}, \\
& X(\alpha, \beta, \gamma)^{g}=X\left(\alpha^{g}, \beta^{g}, \gamma^{g}\right), \quad X(a, b, c)^{g}=X\left(a^{g}, b^{g}, c^{g}\right),
\end{aligned}
$$

for $a, b, c \in \mathbf{V}, \alpha, \beta, \gamma \in \mathbf{V}^{*}, A, B \in \mathbf{L}$.

Lemma 2.51 Let $a, b, c \in \mathbf{V}$ and let E be an isotropic element of \mathbf{L}. Then

$$
\begin{equation*}
a E \wedge b E \wedge c E=(c E *(b E \times a)) \times E \tag{2.116}
\end{equation*}
$$

Proof: Write $F=(c E *(b E \times a))$. Let $\alpha \in \mathbf{V}^{*}$. Then

$$
\begin{aligned}
(F \times E) \alpha & =F \alpha \times E \\
& =(c E \alpha)(b E \times a) \times E-[c E \times((b E \times a) \times \alpha)] \times E \\
& =(c E \alpha)(a E \wedge b E)+c E \wedge((b E \times a) \times \alpha) E
\end{aligned}
$$

applying (2.107) to both terms. Also

$$
\begin{aligned}
((b E \times a) \times \alpha) E & =-E(b E \times a) \times \alpha-(b E \times a) \times E \alpha \\
& =-(b E \times a) \times E \alpha=-(a E \wedge b E) \alpha
\end{aligned}
$$

by Proposition 2.28-10 and again by (2.107). Hence

$$
\begin{aligned}
(F \times E) \alpha & =(c E \alpha)(a E \wedge b E)-c E \wedge(a E \wedge b E) \alpha \\
& =(c E \alpha)(a E \wedge b E)+(a E \alpha)(b E \wedge c E)+(b E \alpha)(c E \wedge a E) \\
& =(a E \wedge b E \wedge c E) \alpha
\end{aligned}
$$

Lemma 2.52 Let $\alpha, \beta, \gamma \in \mathbf{V}^{*}$ and let E be an isotropic element of \mathbf{L}. Then

$$
\begin{equation*}
X(E \alpha, E \beta, E \gamma)=E \times((\alpha \times E \beta) * E \gamma) \tag{2.117}
\end{equation*}
$$

Proof: Write $F=((\alpha \times E \beta) * E \gamma)$ and let $\delta, \varepsilon, \varphi \in \mathbf{V}^{*}$. We have

$$
F \varepsilon=\langle\alpha, E \beta, \varepsilon\rangle E \gamma-(\alpha \times E \beta) \times(\varepsilon \times E \gamma)
$$

and hence

$$
\begin{aligned}
(E \times F) \delta \varepsilon \varphi & =\langle E \delta, F \varepsilon, \varphi\rangle \\
& =-\langle\alpha \times E \beta, \varepsilon \times E \gamma, \varphi \times E \delta\rangle \\
& =-X(E \beta, E \gamma, E \delta) \alpha \varepsilon \varphi=-X(E \delta, E \beta, E \gamma) \alpha \varepsilon \varphi
\end{aligned}
$$

because X is antisymmetric.
This is equal to

$$
\begin{aligned}
- & \langle\alpha \times E \delta, \varepsilon \times E \beta, \varphi \times E \gamma\rangle \\
= & \langle E \alpha \times \delta, \varepsilon \times E \beta, \varphi \times E \gamma\rangle+\langle(\alpha \times \delta) E, \varepsilon \times E \beta, \varphi \times E \gamma\rangle \\
= & \langle E \alpha \times \delta, \varepsilon \times E \beta, \varphi \times E \gamma\rangle-\langle\alpha \times \delta,(\varepsilon \times E \beta) E, \varphi \times E \gamma\rangle \\
& \quad-\langle\alpha \times \delta, \varepsilon \times E \beta,(\varphi \times E \gamma) E\rangle,
\end{aligned}
$$

applying (2.43) twice. By Proposition 2.28-10 the last two terms are zero, and hence $(E \times F) \delta \varepsilon \varphi=\langle E \alpha \times \delta, \varepsilon \times E \beta, \varphi \times E \gamma\rangle=X(E \alpha, E \beta, E \gamma) \delta \varepsilon \varphi$.

Proposition 2.53 Let $P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}, P \neq 0$. Then the following are equivalent:

1. $P=a \wedge b \wedge c$ for some a, b, c that generate a 3-dimensional isotropic subspace of \mathbf{V}.
2. $P=E \times F$ for some isotropic elements E, F such that $E F=F E=0$ but $k E \neq K F$.
3. $P=X(\alpha, \beta, \gamma)$ for some α, β, γ that generate a 3 -dimensional isotropic subspace of \mathbf{V}^{*}.

Proof: By Theorem 2.38 the pairs (E, F) that satisfy he given conditions form a single orbit of $\widehat{\mathrm{E}}_{6}(K)$. Likewise by Theorem 2.40 the triples (a, b, c) that satisfy the given conditions form a single orbit and so do the triples (α, β, γ). To prove the theorem it is therefore sufficient to find at least one example for which $a \wedge b \wedge c=E \times F$ and at least one for which $X(\alpha, \beta, \gamma)=E \times F$. Again we leave it to the reader to apply (2.116) and (2.117) to obtain the necessary examples.

An element $P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ which satisfies one of the statements of this proposition will be called isotropicisotropic. Isotropic elements of $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ are defined in a dual way. Note that $\widehat{E}_{6}(K)$ maps isotropic elements of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ (or $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$) onto isotropic elements, and it is a consequence of the proof of this proposition that the non-zero isotropic elements of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ form a single orbit.

If $P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ is isotropic then $P \mathbf{V}^{*} \mathbf{V}^{*}$ is an isotropic subspace of \mathbf{V} of dimension 3.

- A typical isotropic element of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ is given by $e_{p} \wedge e_{p^{\prime}} \wedge e_{p^{\prime \prime}}$ where $p, p^{\prime}, p^{\prime \prime}$ form a coclique of size 3 in \mathcal{Q}. These elements are related to the elements of the orbit \mathcal{P}_{3} of which the fundamental weight π_{3}^{\prime} is an example.
- The isotropic space generated by α, β, γ of Proposition 2.53 is the companion space in \mathbf{V}^{*} of the isotropic subspace V generated by a, b, c. Likewise E and F span the companion space of V in \mathbf{L}.

If $\alpha \in \mathbf{V}^{*}, a \in \mathbf{V}$, define the tensor product $\alpha \otimes a$ to be the following linear transformation of $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$:

$$
\begin{equation*}
\alpha \otimes a: \mathbf{V} \rightarrow \mathbf{V}: x \mapsto x(\alpha \otimes a) \stackrel{\text { def }}{=}(x \alpha) a \tag{2.118}
\end{equation*}
$$

As a matrix, $\alpha \otimes a$ is obtained by multiplying the column vector α with the row vector a.

- This means that we could have used the notation αa instead of $\alpha \otimes a$, but we have chosen not to do this to avoid confusion with the product $a \alpha$.

Lemma 2.54 Let e, f be isotropic elements of \mathbf{V}. Let η be an isotropic element of \mathbf{V}^{*} such that e $\eta=f \eta=0$. Set $E=e * \eta, F=f * \eta$. Then

$$
\begin{equation*}
E F=F E=\eta \otimes e F=\eta \otimes f E=-\eta \otimes[(e \times f) \times \eta] . \tag{2.119}
\end{equation*}
$$

Proof: Let $a \in \mathbf{V}$. We have $a E F=(a \eta) e F-((a \times e) \times \eta) F=(a \eta) e F$, by Proposition 2.28-2. Also $e F=(e \eta)-(e \times f) \times \eta$. This proves $a E F=$ $-(a \eta)(e \times f) \times \eta$ for all $a \in \mathbf{V}$. The right hand side of this expression is symmetric in e and f, hence $E F=F E$.

Proposition 2.55 Let $M \in \operatorname{Hom}(\mathbf{V}, \mathbf{V}), M \neq 0$. Then the following are equivalent

1. $M=\alpha \otimes a$ for some $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ such that $a^{\#}=0, \alpha^{\#}=0, a \alpha=0$ and $a * \alpha=0$.
2. $M=E F$ for some isotropic elements $E, F \in \mathbf{L}$ such that $E F=F E \neq 0$.

Proof: By Theorem 2.36 the pairs (a, α) satisfying the given conditions form a single orbit of $\widehat{\mathrm{E}}_{6}(K)$. Likewise, by Theorem 2.38 the pairs (E, F) that satisfy he given conditions form a single orbit. It is therefore sufficient to find at least one example for which $\alpha \otimes a=E F$.

Such examples are provided by Lemma 2.54 for $e \times f \neq 0, \eta \neq 0$. Note that $a=(e \times f) \times \eta$ is isotropic by Proposition 2.27-2 and that $a * \alpha=[(e \times f) \times$ $\eta] * \eta=0$ by Proposition 2.27-5.

- Calling the elements $M \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ that satisfy one of the conditions of this proposition isotropic would be ambiguous because also the isotropic elements of \mathbf{L} belong to $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$. A typical element that satisfies these conditions is of the form $\eta_{p} \otimes e_{q}= \pm E_{r} E_{s}$ with $p \sim q, r \cdot s=0$ and $p-q=r+s$. Not surprisingly, all elements $r+s$ of this type form a single orbit of $W\left(\mathrm{E}_{6}\right)$. This time however this orbit is not associated with a fundamental weight.
- The subspace of $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ generated by the elements M of Proposition 2.55 is again a module for $\mathbf{L} . \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ can be written as a direct product of this module, the module \mathbf{L} and a trivial module of dimension 1.

2.6 The geometry \mathcal{E}

As was announced in Chapter 1, the isotropic elements of the various E_{6} modules will be used to define a geometry \mathcal{E} of type E_{6}. This geometry consists of six different types, numbered like the nodes of the Dynkin diagram :

1. The points of \mathcal{E} are the isotropic 1 -spaces of \mathbf{V}, i.e., the sets $K e$ where e is an isotropic element of $\mathbf{V}-\{0\}$.
2. The lines of \mathcal{E} are the isotropic 1-spaces of $\mathbf{V} \wedge \mathbf{V}$, i.e., the sets $K(e \wedge f)$ where e, f generate an isotropic 2-space of \mathbf{V}.
3. The planes of \mathcal{E} are the isotropic 1-spaces of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$, i.e., the sets $K(d \wedge$ $e \wedge f$) where d, e, f generate an isotropic 3-space of \mathbf{V}.
4. The dual lines of \mathcal{E} are the isotropic 1-spaces of $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$, i.e., the sets $K(\eta \wedge \varphi)$ where η, φ generate an isotropic 2-space of \mathbf{V}^{*}.
5. The dual points of \mathcal{E} are the isotropic 1 -spaces of \mathbf{V}^{*}, i.e., the sets $K \eta$ where η is an isotropic element of $\mathbf{V}^{*}-\{0\}$.

0 . The simplices of \mathcal{E} are the isotropic 1 -spaces of \mathbf{L}, i.e., the sets $K E$ where E is an isotropic element of $\mathbf{L}-\{0\}$.

The following table defines the incidence relations between elements of different types.

	$e \in \mathbf{V}$	$L \in \mathbf{V} \wedge \mathbf{V}$	$P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$	$\Lambda \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	$\eta \in \mathbf{V}^{*}$
$E \in \mathbf{L}$	$e \in \mathbf{V} E$	$L \mathbf{V}^{*} \leq \mathbf{V} E$	$P \mathbf{V}^{*} \mathbf{V}^{*} \leq \mathbf{V} E$	$\mathbf{V} \Lambda \leq E \mathbf{V}^{*}$	$\eta \in E \mathbf{V}^{*}$
	$E \times e=0$	$E \times L \mathbf{V}^{*}=0$	$E \times P \mathbf{V}^{*} \mathbf{V}^{*}=0$	$\mathbf{V} \Lambda \times E=0$	$\eta \times E=0$
e		$e \in L \mathbf{V}^{*}$	$e \in P \mathbf{V}^{*} \mathbf{V}^{*}$	$\mathbf{V} \Lambda \leq e \times \mathbf{V}$	$e \in \eta \times \mathbf{V}^{*}$
				$e * \mathbf{V} \Lambda=0$	$\eta \in e \times \mathbf{V}$
			$L \mathbf{V}^{*} \leq P \mathbf{V}^{*}$	$L \mathbf{V}^{*} * \mathbf{V} \Lambda=0$	$L \mathbf{V}^{*} \leq \eta \times \mathbf{V}^{*}$
L				$P \mathbf{V}^{*} \mathbf{V}^{*} * \mathbf{V} \Lambda=0$	$P \mathbf{V}^{*} \mathbf{V}^{*} \leq \eta \times \mathbf{V}^{*}$
					$P \mathbf{V}^{*} \mathbf{V}^{*} * \eta=0$
P				$\eta \in \mathbf{V} \Lambda$	
Λ					

Incidence is symmetric and elements of the same type are never incident (so we only list the upper diagonal half of the table). If a table entry lists several relations, then they are equivalent.

Incidence between points $K e$, lines $K L$, planes $K P$ and simplices $K E$ is equivalent to containment of the corresponding 1-, 2-, 3- and 6-dimensional subspaces $K e, L \mathbf{V}^{*}, P \mathbf{V}^{*} \mathbf{V}^{*}$ and $\mathbf{V} E$ of \mathbf{V}. Incidence between dual points $K \eta$, dual lines $K \Lambda$ and simplices $K E$ is equivalent to containment of the $1-, 2-$ and 6dimensional subspaces $K \eta, \mathbf{V} \Lambda$ and $E \mathbf{V}^{*}$ of \mathbf{V}^{*}.

Note that a line $K\left(e \wedge e^{\prime}\right)$ is incident with a dual line or dual point if and only if both points $K e$ and $K f$ are incident with these elements, and similarly for planes $K\left(e \wedge e^{\prime} \wedge e^{\prime \prime}\right)$. Also, a dual line $K\left(\eta \wedge \eta^{\prime}\right)$ is incident with a point, line or plane if and only if both dual points $K \eta$ and $K \eta^{\prime}$ are incident with that point, line or plane.

A dual point $K \Lambda$ can also be identified with the 5-dimensional companion space of $V V \Lambda$, and then incidence with points, lines and planes is again equivalent to containment.

Proposition 2.56 Let $K E$ be a simplex of \mathcal{E}. Then the elements incident with $K E$ form a projective 5 -space \mathcal{A} (i.e., a geometry of type A_{5}) where points, lines and planes, dual lines and dual points correspond to subspaces of \mathcal{A} of (projective) dimension 0 , 1,2,3 and 4 respectively.

Proof: From the definitions of incidence in \mathcal{E} it easily follows that points, lines and planes incident with $K E$ are of the form $K(a E), K(a E \wedge b E)$ and $K(a E \wedge$ $b E \wedge c E)$ with $a, b, c \in \mathbf{V}$. Likewise dual points and dual lines incident with $K E$ are of the form $K(E \alpha)$ and $K(E \alpha \wedge E \beta)$ with $\alpha, \beta \in \mathbf{V}^{*}$.

From the 6-dimensional space $\mathbf{V} E$ we construct a 5 -dimensional projective space \mathcal{A} in a natural way. By the above, there is an immediate one-to-one correspondence between points, lines and planes of \mathcal{A} (i.e., 1-, 2- and 3-dimensional subspaces of $\mathbf{V} E$) and points, lines and planes of \mathcal{E} incident with $K E$.

By Proposition 2.28-8 we have $a E * E \alpha=(a E \alpha) E$ and hence the bilinear form $F: \mathbf{V} E \times E \mathbf{V}^{*} \rightarrow K$ with $F(b, \beta) \stackrel{\text { def }}{=}(b * \beta) / E$ is well defined. Note that F is non-degenerate : if $F(\mathbf{V} E, \beta)=0$, with $b=E \alpha$, then $\mathbf{V} E \alpha=0$ and hence $\beta=E \alpha=0$. As a consequence F defines a correspondence between any k dimensional subspace S of $\mathbf{V} E$ and the subspace S^{*} of $E \mathbf{V}^{*}$ of dimension $6-k$ of all elements $\beta \in E \mathbf{V}^{*}$ for which $F(\beta)=0$. Moreover, by definition of F, if $b \in S$ then $\beta \in S^{*}$ if and only if $b * \beta=0$, i.e., if and only if the points $K b$ and the dual point $K \beta$ are incident in \mathcal{E}. This proves that projective 3 -spaces and 4 -spaces of \mathcal{A} are in one-to-one correspondence with the dual lines and dual planes of \mathcal{E} that are incident with $K E$.

We leave it to the reader to verify that all incidence relations in \mathcal{E} do indeed reduce to the corresponding incidence relations in \mathcal{A}.

Proposition 2.57 Let $K \eta$ be a dual point of \mathcal{E}. Then the elements incident with $K \eta$ form a geometry \mathcal{D} of type D_{5} where point, lines and planes correspond to isotropic subspaces of dimension 0, 1 and 2, and dual lines and simplexes correspond to the two different types of generators (maximal isotropic subspaces) of \mathcal{D}.

Proof: From the definitions of incidence in \mathcal{E} we see that points incident with $K \eta$ are of the form $K(\eta \times \alpha)$ with $\alpha \in \mathbf{V}^{*}$. For $\eta \times \alpha$ to be isotropic, we must have $\alpha^{\#} \eta=0$ by the dual of Proposition 2.27-2. Similarly, two points $K(\eta \times \alpha)$ and $K(\eta \times \beta)$ will generate a space of isotropic elements if and only if $\langle\eta, \alpha, \beta\rangle=0$, by Proposition 2.27-1.

By specializing to $\eta=\eta_{p}$ for some $p \in \mathcal{P}$, we see that the points incident with $K \eta$ are the points of a projective 9 -space that lie on a hyperbolic quadric, i.e., points of a geometry \mathcal{D} of type D_{5}.

Isotropic subspaces of \mathbf{V}^{*} of elements incident with $K \eta$ correspond to subspaces of \mathcal{D} all of whose points lie on the quadric. This observation provides a one-to-one correspondence between lines of planes of \mathcal{E} that are incident with $K \eta$ and lines and planes of \mathcal{D}.

Now consider a dual point $K(\eta \wedge \beta)$. By Proposition 2.43 the companion space in \mathbf{V} of $K \eta+K \beta$ is a 5 -dimensional isotropic subspace, i.e., a generator of \mathcal{D}.

Conversely, if U is a 5-dimensional subspace of $\eta \times \mathbf{V}$ which has a companion space V in \mathbf{V}^{*}, then V is a two-dimensional isotropic subspace of \mathbf{V}^{*} that contains η. This provides a one-to-one correspondence between generators of \mathcal{D} of this type and dual points of \mathcal{E} incident with $K \eta$.

The second type of maximal isotropic subspace in \mathcal{D} has no companion space in \mathbf{V}^{*} but a 1-dimensional companion space $K E$ in \mathbf{L} (cf. Proposition 2.44). Note that $\operatorname{dim} \mathbf{V} E \cap\left(\eta \times \mathbf{V}^{*}\right)$ is at least 5 , and hence $\eta \in E \mathbf{V}^{*}$ by Theorem 2.37, i.e., $K E$ and $K \eta$ are incident. Conversely, if $K \eta$ is incident with $K E$ then $\mathbf{V} E$ intersects $\eta \times \mathbf{V}^{*}$ in an isotropic 5-space, by Proposition 2.56. This provides a one-to-one correspondence between maximal isotropic subspaces of \mathcal{D} of the second type and simplices of \mathcal{E} incident with $K \eta$.

Also by Proposition 2.56 the intersection of maximal isotropic spaces of different types is a subspace of \mathbf{V} of dimension 4 proving that they indeed correspond to generators of different type in \mathcal{D}.

We again leave it to the reader to verify that all incidence relations in \mathcal{E} do indeed reduce to the corresponding incidence relations in \mathcal{D}.

As was explained in Section 1.8 of the introduction, Propositions 2.56, 2.57 and its dual, prove the following

Theorem $2.58 \mathcal{E}$ is the geometry arising from the exceptional building of type E_{6} over the field K.

3 The Lie algebra of type F_{4} and related structures

3.1 A root system of type F_{4}

Define a linear transformation ${ }^{-}$on \mathbf{P} by its action on the basis elements, as follows:

$$
\begin{array}{llll}
p_{0} \mapsto \bar{p}_{0} \stackrel{\text { def }}{=}-q_{5}, & p_{1} \mapsto & \bar{p}_{1} \stackrel{\text { def }}{=}-q_{4}, & p_{2} \mapsto \\
\bar{p}_{2} \stackrel{\text { def }}{=}-q_{3} \tag{3.1}\\
p_{3} \mapsto \bar{p}_{3} \stackrel{\text { def }}{=}-q_{2}, & p_{4} \mapsto & \bar{p}_{4} \stackrel{\text { def }}{=}-q_{1}, & p_{5} \mapsto \\
\bar{p}_{5} \stackrel{\text { def }}{=}-q_{0}
\end{array}
$$

where we have used the standard notation for points of \mathcal{P}. Because $p_{i} \cdot p_{j}=$ $q_{i} \cdot q_{j}$ equals $1 / 3$ whenever $i \neq j$ and $4 / 3$ otherwise, this transformation preserves the dot product on \mathbf{P}.

Note that $-3 r=\sum p_{i}$ is mapped to $-\sum q_{i}=-6 r-\sum p_{i}=-3 r$, and hence $\bar{r}=r$. Then $-\bar{q}_{i}=-\bar{p}_{i}-\bar{r}=q_{5-i}-r=p_{5-i}$ and therefore ${ }^{\circ}$ is an involution. Also $\bar{a}_{i j}=-\bar{p}_{i}-\bar{q}_{j}=q_{5-i}+p_{5-j}=-a_{5-i, 5-j}$. This proves that $\overline{\mathcal{P}}=-\mathcal{P}$ and hence, because every root can be written as a difference of points with inner product $1 / 3$, that $\bar{\Phi}=\Phi$.

Let $p \in \mathcal{P}$ and consider the point $-\bar{p}$. It is easily computed that $p=-\bar{p}$ exactly when p is either a_{01}, a_{23} or a_{45}. These points form a line, which we will denote by L_{∞} and call the 'line at infinity'. We write $\mathcal{P}^{*} \stackrel{\text { def }}{=} \mathcal{P}-L_{\infty}$.

If $r \in R$ then of the six base points of r there can be at most one on L_{∞}, and at most one base point p such that $p+r \in L_{\infty}$. Because r has 6 base points, we can at least find 4 pairs $(p, q) \in \mathcal{P}^{*} \times \mathcal{P}^{*}$ such that $r=q-p$.

For every $p \in \mathcal{P}^{*}, p$ and $-\bar{p}$ are collinear, and the third point $\bar{p}-p$ on the line joining them, belongs to L_{∞}. We will denote this point by p_{∞}. With this notation we have $\bar{p}=p+p_{\infty}$ when $p \in \mathcal{P}^{*}$.

The operation - can now be expressed as an operation on the generalized quadrangle \mathcal{Q} as follows : a point p on the line at infinity is mapped to $-p$, any other point is mapped to $-q$ where q is the third point on the line $p p_{\infty}$ which projects p onto the line of infinity. The map $p \mapsto-\bar{p}$ is an automorphism of \mathcal{Q} (more specifically, an axial collineation).

Lemma 3.1 Let $p, q \in \mathcal{P}^{*}$. Then $(p+\bar{p}) \cdot q=p \cdot(q+\bar{q})=\frac{1}{2}(p+\bar{p}) \cdot(q+\bar{q})$ and the value of this expression uniquely determines the configuration of the points p, q, \bar{p} and \bar{q} as summarized by the following table and the illustration below :

$(p+\bar{p}) \cdot q$	$p \cdot q$	$-\bar{p} \cdot q$			
2	$4 / 3$	$-2 / 3$	$p=q$	$-\bar{p} \sim q$	$p_{\infty}=q_{\infty}$
1	$1 / 3$	$-2 / 3$	$p \not \perp q$	$-\bar{p} \sim q$	$p_{\infty} \neq q_{\infty}$
0	$1 / 3$	$1 / 3$	$p \not \perp q$	$-\bar{p} \not \perp q$	$p_{\infty}=q_{\infty}$
-1	$-2 / 3$	$1 / 3$	$p \sim q$	$-\bar{p} \not \perp q$	$p_{\infty} \neq q_{\infty}$
-2	$-2 / 3$	$4 / 3$	$p \sim q$	$-\bar{p}=q$	$p_{\infty}=q_{\infty}$

Proof: Because • preserves the dot product on \mathcal{P} and is an involution, we find

$$
\begin{aligned}
(p+\bar{p}) \cdot(q+\bar{q}) & =p \cdot q+p \cdot \bar{q}+\bar{p} \cdot q+\bar{p} \cdot \bar{q} \\
& =p \cdot q+p \cdot \bar{q}+p \cdot \bar{q}+p \cdot q=2 p \cdot(q+\bar{q}),
\end{aligned}
$$

and interchanging the roles of p and q this is also equal to $2(p+\bar{p}) \cdot q$.

Also

$$
p_{\infty} \cdot q_{\infty}=(\bar{p}-p) \cdot(\bar{q}-q)=2(p \cdot q)+2(-\bar{p} \cdot q) .
$$

Because p, q and $-\bar{p}$ are points, the expressions $p \cdot q$ and $-\bar{p} \cdot q$ must have values $4 / 3,1 / 3$, or $-2 / 3$ and hence $(p+\bar{p}) \cdot q \in\{-2,-1,0,1,2\}$. Because $p \sim-\bar{p}$ we find that $p=q$ if and only if $-\bar{p} \sim q$, and $-\bar{p}=q$ if and only if $p \sim q$. It follows that $p \cdot q$ and $-\bar{p} \cdot q$ are uniquely determined, and have values as indicated in (3.2), whenever $(p+\bar{p}) \cdot q= \pm 1$ or ± 2. This leaves the case $(p+\bar{p}) \cdot q=0$, i.e., $p \cdot q=-\bar{p} \cdot q=1 / 3$ or $-2 / 3$. In the second case however, we would obtain $p_{\infty} \cdot q_{\infty}=-8 / 3$, which is impossible.

Lemma 3.2 Let $r \in \Phi$ and $p, q \in \mathcal{P}^{*}$ be such that $r=q-p$. Then only the following two possibilities occur :

1. $r \cdot \bar{r}=0$ if and only if $p_{\infty} \neq q_{\infty}$ if and only if q_{∞} is a base point of r and p_{∞} is a base point of $-r$. There are exactly 48 roots r of this type.
2. $r=\bar{r}$ if and only if $p_{\infty}=q_{\infty}$ if and only if r has no base point at infinity. There are exactly 24 roots r of this type.

Proof: First note that $\bar{r}=\bar{q}-\bar{p}=\left(q_{\infty}+q\right)-\left(p_{\infty}+p\right)=r+\left(q_{\infty}-p_{\infty}\right)$, and hence $r=\bar{r}$ if and only if $p_{\infty}=q_{\infty}$.

Also $r \cdot \bar{r}=(q-p) \cdot(\bar{q}-\bar{p})=q \cdot \bar{q}+p \cdot \bar{p}-p \cdot \bar{q}-q \cdot \bar{p}=4 / 3-p \cdot \bar{q}-\bar{p} \cdot q$ because p and $-\bar{p}$ are collinear (and so are q and $-\bar{q}$). Because ${ }^{-}$preserves the dot product on \mathbf{P} and is an involution, we have $p \cdot \bar{q}=\bar{p} \cdot q$ and hence $r \cdot \bar{r}=4 / 3-2 p \cdot \bar{q}$. As $\bar{q} \in-\mathcal{P}$, there are three possibilities :

Case 1. $p \cdot \bar{q}=2 / 3$ and $r \cdot \bar{r}=0$. We have $0=r \cdot \bar{r}=r \cdot\left(r+\left(q_{\infty}-p_{\infty}\right)\right)$ and hence $r \cdot q_{\infty}=r \cdot p_{\infty}-2$. By (2.5) this is only possible when $r \cdot p_{\infty}=1$ and $r \cdot q_{\infty}=-1$, hence p_{∞} is a base point of $-r$ and q is a base point of r.

Case 2. $p \cdot \bar{q}=-1 / 3$ and then $r \cdot \bar{r}=2$, i.e., $r=\bar{r}$. Let $z \in L_{\infty}$ (and hence $z=-\bar{z})$.

We have $z \cdot r=z \cdot \bar{r}=-\bar{z} \cdot \bar{r}=-z \cdot r$ and hence $z \cdot r=0$. It follows that z is never a base point of r in this case.

Case 3. $p \cdot \bar{q}=-4 / 3$ and then $r \cdot \bar{r}=4$, which is impossible by (2.5).
To count the number of roots of each type, we use the fact that there are exactly 16 roots with a given base point z. As base points of the same root are never collinear, there must be $3 \cdot 16=48$ roots of the first type, and hence the remaining 24 belong to the second type.

Lemma 3.3 Let $r, s \in \Phi$ be such that $s \cdot \bar{s}=0$ and $r \cdot s=\bar{r} \cdot s$. Then $r=\bar{r}$.

Proof: Let $p, q \in \mathcal{P}^{*}$ be such that $r=q-p$. As in the proof of Lemma 3.2 we have $\bar{r}=r+\left(q_{\infty}-p_{\infty}\right)$ and hence $r=\bar{r}$ if and only if $p_{\infty}=q_{\infty}$.

From $r \cdot s=\bar{r} \cdot s$ we find $q_{\infty} \cdot s=p_{\infty} \cdot s$. By Lemma $3.2 s$ has a base point at infinity, say z. If $z^{\prime}, z^{\prime \prime}$ are the remaining points of L_{∞}, we have $s \cdot z+s \cdot z^{\prime}+s$. $z^{\prime \prime}=0$, and from $s \cdot z=-1$ we may conclude that all three terms must have a different value. Because $p_{\infty}, q_{\infty} \in L_{\infty}$, it follows that $p_{\infty}=q_{\infty}$.

Lemma 3.4 Let $r \in \Phi$ be such that $r \cdot \bar{r}=0$. Then there exists a unique point $p \in \mathcal{P}^{*}$ such that $r+\bar{r}=p+\bar{p}$. Conversely, if $p \in \mathcal{P}^{*}$, then there is a unique pair $\{r, \bar{r}\} \subseteq \Phi$ such that $r+\bar{r}=p+\bar{p}$, and this pair satisfies $r \cdot \bar{r}=0$.

The points $p(-\bar{p}, p-r, p-\bar{r}$, respectively) are the (unique) common base point of $-r$ and $-\bar{r}$ (r and \bar{r}, r and $-\bar{r},-r$ and \bar{r}, respectively). Both $p-r$ and $p-\bar{r}$ belong to L_{∞}. (See also the figure below.)

$$
p-r=-\bar{p}+\bar{r} \overbrace{0}^{p_{\infty}} 0^{-\bar{p}}
$$

Proof: Let $r \in \Phi$ be such that $r \cdot \bar{r}$. By Lemma $3.2 r$ has a base point at infinity. Denote this base point by z and write $p \stackrel{\text { def }}{=} z+r$. Then

$$
p+\bar{p}=z+r+\bar{z}+\bar{r}=z+r-z+\bar{r}=r+\bar{r} .
$$

If $r+\bar{r}=p+\bar{p}$ we have

$$
4=(p+\bar{p})^{2}=(r+\bar{r})^{2}=r^{2}+2 r \cdot \bar{r}+\bar{r}^{2}=4+2 r \cdot \bar{r}
$$

hence $r \cdot \bar{r}=0$. Also

$$
4=(r+\bar{r})^{2}=(r+\bar{r}) \cdot(p+\bar{p})=p \cdot r+\bar{p} \cdot r+p \cdot \bar{r}+\bar{p} \cdot \bar{r}
$$

and this can only be attained when each of the terms in the right hand side is equal to 1 . Hence p is a common base point of $-r$ and $-\bar{r}$. Because $r \cdot \bar{r}=0$ the roots $-r$ and \bar{r} have exactly one base point in common (cf. Table 2.2, pg. 35), so p is unique.

There are exactly 24 points in \mathcal{P}^{*}, and exactly 24 pairs $\{r, \bar{r}\}$ with $r \cdot \bar{r}=0$. This proves that every p corresponds to a unique pair $\{r, \bar{r}\}$.

Lemma 3.5 Let $r \in \Phi, x \in \mathbf{P}$. Then

$$
\begin{equation*}
\overline{w_{r}(x)}=w_{\bar{r}}(\bar{x}) \tag{3.3}
\end{equation*}
$$

If $r \cdot \bar{r}=0$, then $w_{r} w_{\bar{r}}=w_{\bar{r}} w_{r}$ and

$$
\begin{equation*}
w_{r+\bar{r}}(x+\bar{x})=w_{r}\left(w_{\bar{r}}(x+\bar{x})\right) . \tag{3.4}
\end{equation*}
$$

Proof: By definition

$$
\overline{w_{r}(x)}=\overline{r-(r \cdot x) x}=\bar{r}-(r \cdot x) \bar{x}=\bar{r}-(\bar{r} \cdot \bar{x}) \bar{x}=w_{\bar{r}}(\bar{x}),
$$

using the fact that • preserves the dot product on \mathbf{P}.
We have $(r+\bar{r})^{2}=r^{2}+\bar{r}^{2}=4$ and hence

$$
\begin{equation*}
w_{r+\bar{r}}(x+\bar{x})=x+\bar{x}-\frac{1}{2}((r+\bar{r}) \cdot(x+\bar{x}))(r+\bar{r}) . \tag{3.5}
\end{equation*}
$$

Also

$$
w_{r}\left(w_{\bar{r}}(x)\right)=w_{r}(x-(\bar{r} \cdot x) \bar{r})=w_{r}(x)-(\bar{r} \cdot x) w_{r}(\bar{r})=x-(r \cdot x) r-(\bar{r} \cdot x) \bar{r}
$$

Note that the right hand side of this expression remains the same when we interchange r and \bar{r}, hence $w_{r} w_{\bar{r}}=w_{\bar{r}} w_{r}$.

Likewise $w_{r}\left(w_{\bar{r}}(\bar{x})\right)=\bar{x}-(r \cdot \bar{x}) r-(\bar{r} \cdot \bar{x}) \bar{r}$, and hence

$$
\begin{equation*}
w_{r}\left(w_{\bar{r}}(x+\bar{x})\right)=x+\bar{x}-(r \cdot x) r-(\bar{r} \cdot x) \bar{r}-(r \cdot \bar{x}) r-(\bar{r} \cdot \bar{x}) \bar{r} \tag{3.6}
\end{equation*}
$$

Now, $r \cdot(x+\bar{x})=\bar{r} \cdot(\overline{x+\bar{x}})=\bar{r} \cdot(x+\bar{x})$. This proves that (3.5) and (3.6) are the same.

From (3.1) the images of the fundamental roots of Φ are easily computed :

$$
\begin{equation*}
\bar{\pi}_{0}=\pi_{0}, \quad \bar{\pi}_{1}=\pi_{5}, \quad \bar{\pi}_{2}=\pi_{4}, \quad \bar{\pi}_{3}=\pi_{3}, \quad \bar{\pi}_{4}=\pi_{2}, \quad \bar{\pi}_{5}=\pi_{1} \tag{3.7}
\end{equation*}
$$

and hence the subspace \mathbf{P}_{F} of \mathbf{P} which is left invariant by ${ }^{-}$is generated by the following vectors

$$
\begin{equation*}
\psi_{1} \stackrel{\text { def }}{=} \pi_{0}, \quad \psi_{2} \stackrel{\text { def }}{=} \pi_{3}, \quad \psi_{3} \stackrel{\text { def }}{=} \frac{1}{2}\left(\pi_{2}+\pi_{4}\right), \quad \psi_{4} \stackrel{\text { def }}{=} \frac{1}{2}\left(\pi_{1}+\pi_{5}\right), \tag{3.8}
\end{equation*}
$$

and has dimension 4. The map $x \mapsto \frac{1}{2}(x+\bar{x})$ may serve as a projection of \mathbf{P} onto \mathbf{P}_{F}.

Proposition 3.6 The set

$$
\Phi_{F} \stackrel{\text { def }}{=}\left\{\left.\frac{1}{2}(r+\bar{r}) \right\rvert\, r \in \Phi\right\}
$$

is a root system of type F_{4} with $\Pi_{F} \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{4}\right\}$ as a fundamental system of roots.

Proof: By Lemma 3.2 either $r=\bar{r}$ or $r \cdot \bar{r}=0$. In the first case $(r+\bar{r}) / 2=r$, $w_{(r+\bar{r}) / 2}=w_{r}$ and then $w_{r}\left(\Phi_{F}\right)=\Phi_{F}$ by (3.3). If on the other hand $r \cdot \bar{r}=0$, then $w_{(r+\bar{r}) / 2}\left(\Phi_{F}\right)=\Phi_{F}$, by (3.4).

Let $r, s \in \Phi$. We have
$\langle(r+\bar{r}) / 2,(s+\bar{s}) / 2\rangle=2 \frac{\frac{1}{2}(r+\bar{r}) \cdot \frac{1}{2}(s+\bar{s})}{\frac{1}{2}(r+\bar{r}) \cdot \frac{1}{2}(r+\bar{r})}=2 \frac{(r+\bar{r}) \cdot(s+\bar{s})}{(r+\bar{r})^{2}}=4 \frac{(r+\bar{r}) \cdot s}{(r+\bar{r})^{2}}$.
When $r=\bar{r}$ this is equal to $r \cdot s$ which is integral. When $r \cdot \bar{r}=0$ we have $(r+\bar{r})^{2}=4$ and again this expression is an integer.

To prove that Φ_{F} is a root system, it remains to be proved that $(r+\bar{r}) / 2=$ $\lambda(s+\bar{s}) / 2$ for $r, s \in \Phi$ implies $\lambda= \pm 1$. By computing the length of both sides of this equation, we see that $\lambda= \pm 1, \lambda= \pm \sqrt{2}$ or $\lambda= \pm 1 / \sqrt{2}$, and because both r and s can be expressed as linear combinations of the fundamental roots with coefficients that are integral, only the first two possibilities remain.

Now let $r \in \Phi$. We may express r as a linear combination $r=\lambda_{0} \pi_{0}+\cdots+$ $\lambda_{5} \pi_{5}$ of fundamental roots of Π. Then, by (3.7-3.8),

$$
\begin{aligned}
\frac{1}{2}(r+\bar{r})= & \lambda_{0} \pi_{0}+\frac{1}{2}\left(\lambda_{1}+\lambda_{5}\right) \pi_{1}+\frac{1}{2}\left(\lambda_{2}+\lambda_{4}\right) \pi_{2}+\lambda_{3} \pi_{3} \\
& +\lambda_{3} \pi_{3}+\frac{1}{2}\left(\lambda_{2}+\lambda_{4}\right) \pi_{4}+\frac{1}{2}\left(\lambda_{1}+\lambda_{5}\right) \pi_{5} \\
= & \lambda_{0} \psi_{1}+\lambda_{3} \psi_{2}+\left(\lambda_{2}+\lambda_{4}\right) \psi_{3}+\left(\lambda_{1}+\lambda_{5}\right) \psi_{4} .
\end{aligned}
$$

This proves that every element of Φ_{F} can be written as a linear combination of elements of Π_{F} in which all coefficients are either all non-negative or all non-positive (and integral). This proves that Π_{F} is a fundamental system of roots for Φ_{F}.

We leave it to the reader to verify that the Cartan matrix, i.e., the matrix with entries $\left\langle\psi_{i}, \psi_{j}\right\rangle$, is the following:

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \tag{3.9}\\
-1 & 2 & -1 & 0 \\
0 & -2 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

(Note that $\psi_{3}^{2}=\psi_{4}^{2}=1$ and hence $\left\langle\psi_{3}, x\right\rangle=2 \psi_{3} \cdot x$ and $\left\langle\psi_{4}, x\right\rangle=2 \psi_{4} \cdot x$.)
The root system Φ_{F} can be partitioned into two sets of size 24 : the set of short roots Φ_{S} of elements of length 1 which correspond to the first case of Lemma
3.2, and the set of long roots Φ_{L} of elements of length $\sqrt{2}$, corresponding to the second case of that lemma. Lemma 3.4 provides a one-to-one correspondence between points p of \mathcal{P}^{*} and short roots $(p+\bar{p}) / 2$ of Φ_{S}.

Note that Φ_{F} is not a subset of Φ. So, from now on, when ambiguity may arise, we will use the term F-root for elements of Φ_{F} and E-root for elements of Φ. The long (F-)roots are exactly those F-roots that are at the same time E-roots.

- When we use the qualifier 'long' or 'short' we will implicitely assume that we are talking about F-roots.
- Because not all F-roots have the same length, we must carefully distinguish between $\langle r, s\rangle$ and $r \cdot s$ when $r, s \in \Phi_{F}$. We have $\langle r, s\rangle=r \cdot s$ when $r \in \Phi_{L}$ and $\langle r, s\rangle=2 r \cdot s$ when $r \in \Phi_{S}$. The expression $\langle r, s\rangle$ is no longer symmetric in r and s.

Let s denote a short (F-)root. Let $u \in \Phi$ be such that $s=(u+\bar{u}) / 2$. Then we define

$$
\begin{equation*}
w_{s}^{\prime} \stackrel{\text { def }}{=} w_{u} \cdot w_{\bar{u}}=w_{\bar{u}} \cdot w_{u} . \tag{3.10}
\end{equation*}
$$

By (3.4) on \mathbf{P}_{F} the element w_{s}^{\prime} coincides with the reflection w_{s} in the hyperplane orthogonal to s. However, this is no longer true when we extend its action to the entire space \mathbf{P}.

- For example, let $u=3 \overline{3} 0000, \bar{u}=00003 \overline{3}$ and $p=000003$. We have $w_{u}\left(w_{\bar{u}}(p)\right)=$ 000030 while $w_{u+\bar{u}}(p)=\frac{3}{2} \frac{3}{2} 00 \frac{3}{2} \frac{3}{2}$.

Define $W\left(\mathrm{~F}_{4}\right)$ to be the subgroup of $W\left(\mathrm{E}_{6}\right)$ generated by all elements w_{r} with $r \in \Phi_{L}$ and all elements w_{s}^{\prime} with $s \in \Phi_{S}$. When restricted to \mathbf{P}_{F} the group $W\left(\mathrm{~F}_{4}\right)$ acts like the Weyl group of the root system Φ_{F}. As an immediate consequence of Lemma 3.5 we have

$$
\begin{equation*}
\overline{w(x)}=w(\bar{x}), \quad \text { for all } w \in W\left(\mathrm{~F}_{4}\right), x \in \mathbf{P} . \tag{3.11}
\end{equation*}
$$

It will be convenient to coordinatize \mathbf{P}_{F}, the space generated by Φ_{F}, by means of the following basis :

$$
\begin{equation*}
\psi_{1}+\psi_{2}+\psi_{3}, \quad \psi_{2}+\psi_{3}, \quad \psi_{3}, \quad \psi_{1}+2 \psi_{2}+3 \psi_{3}+2 \psi_{4} . \tag{3.12}
\end{equation*}
$$

We leave it to the reader to verify that this is an orthonormal basis and that with respect to this basis the F-roots have the following coordinates :

1. The coordinates of the 24 long roots are permutations of $(\pm 1, \pm 1,0,0)$.
2. There are 16 short roots with coordinates of the form $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)$.
3. The 8 remaining short roots have coordinates which are permutations of $(\pm 1,0,0,0)$.

We will denote coordinate quadruples by a shorthand notation of the form 1000 , $0 \overline{1} \overline{1} 0,+--+$, where $\overline{1}$ stands for -1 (as before), + for $+1 / 2$ and - for $-1 / 2$.

- This is the representation of a root system of type F_{4} which is most commonly used in the literature.

The fundamental F-roots have the following coordinates :

$$
\begin{equation*}
\psi_{1}=1 \overline{1} 00, \quad \psi_{2}=01 \overline{1} 0, \quad \psi_{3}=0010, \quad \psi_{4}=---+. \tag{3.13}
\end{equation*}
$$

Let $r, s \in \Phi_{F}$. Using the coordinate representation above it is easily computed that the value of $\langle r, s\rangle$ is closely related to whether $r+s, r-s$ are F-roots and of what kind. We obtain the following results :
When $r, s \in \Phi_{S}$

$\langle r, s\rangle=$	if and only if
2	$r=s$
1	$r-s \in \Phi_{S}$
0	both $r-s, r+s \in \Phi_{L}$
-1	$r+s \in \Phi_{S}$
-2	$r=-s$

When $r, s \in \Phi_{L}$

$\langle r, s\rangle=$	if and only if
2	$r=s$
1	$r-s \in \Phi_{L}$
0	$r-s, r+s \in 2 \Phi_{S}-\Phi$
-1	$r+s \in \Phi_{L}$
-2	$r=-s$

When $r \in \Phi_{S}, s \in \Phi_{L}$

$\langle r, s\rangle=$	if and only if
2	$r-s \in \Phi_{S}, s-2 r \in \Phi_{L}$
0	$r-s, r+s \notin \Phi$
-2	$r+s \in \Phi_{S}, s+2 r \in \Phi_{L}$

When $r \in \Phi_{L}, s \in \Phi_{S}$

$\langle r, s\rangle=$	if and only if
1	$r-s \in \Phi_{S}, r-2 s \in \Phi_{L}$
0	$r-s, r+s \notin \Phi$
-1	$r+s \in \Phi_{S}, r+2 s \in \Phi_{L}$

Lemma 3.7 Let $r \in \Phi_{L}, s \in \Phi_{S}, p \in \mathcal{P}^{*}, u \in \Phi$ be such that $s=(p+\bar{p}) / 2=$ $(u+\bar{u}) / 2$. Then

$$
\begin{equation*}
\langle r, s\rangle=p \cdot r=\bar{p} \cdot r=u \cdot r=\bar{u} \cdot r \tag{3.15}
\end{equation*}
$$

Let $t \in \Phi_{S}, q \in \mathcal{P}^{*}, v \in \Phi$ be such that $t=(q+\bar{q}) / 2=(v+\bar{v}) / 2$. Then the following properties hold, depending on the value of and $\langle s, t\rangle=\frac{1}{2}(p+\bar{p}) \cdot(q+\bar{q})$:

$\langle s, t\rangle=$		
2	$u \cdot q=\bar{u} \cdot q=1$	$\{u \cdot v, \bar{u} \cdot v\}=\{0,2\}$
1	$\{u \cdot q, \bar{u} \cdot q\}=\{0,1\}$	$\{u \cdot v, \bar{u} \cdot v\}=\{0,1\}$
0	$u \cdot q=\bar{u} \cdot q=0$	$\{u \cdot v, \bar{u} \cdot v\}=\{-1,1\}$
-1	$\{u \cdot q, \bar{u} \cdot q\}=\{-1,0\}$	$\{u \cdot v, \bar{u} \cdot v\}=\{-1,0\}$
-2	$u \cdot q=\bar{u} \cdot q=-1$	$\{u \cdot v, \bar{u} \cdot v\}=\{-2,0\}$

Proof: Because $r=\bar{r}$ we find $p \cdot r=\bar{p} \cdot \bar{r}=\bar{p} \cdot r$, and similar $u \cdot r=\bar{u} \cdot r$. Now $2\langle r, s\rangle=r \cdot(p+\bar{p})=r \cdot p+r \cdot \bar{p}=2 r \cdot p$ and hence $\langle r, s\rangle=r \cdot p$. Similarly $\langle r, s\rangle=r \cdot u$.

Clearly $\langle s, t\rangle=2 s \cdot t=\frac{1}{2}(p+\bar{p}) \cdot(q+\bar{q})$ and we may distinguish between 5 different cases according to (3.2). Similarly we have $\langle s, t\rangle=\frac{1}{2}(u+\bar{u}) \cdot(q+$ $\bar{q})=u \cdot q+u \cdot \bar{q}$ where $u \cdot q, u \cdot \bar{q} \in\{-1,0,1\}$. This determines $\{u \cdot q, u \cdot \bar{q}\}$ uniquely, except when $\langle s, t\rangle=0$. Note however that $\{u \cdot q, \bar{u} \cdot q\}=\{-1,1\}$ would imply that q is a common base point of either u and $-\bar{u}$, or of \bar{u} and $-u$. Such common base points belong to L_{∞} by Lemma 3.4, contradicting $q \in \mathcal{P}^{*}$.

Finally, $\langle s, t\rangle=\frac{1}{2}(u+\bar{u}) \cdot(v+\bar{v})=u \cdot v+u \cdot \bar{v}$, with $u \cdot v, u \cdot \bar{v} \in\{-2,-1,0$, $1,2\}$. Note that $u \cdot v \neq \bar{u} \cdot v$ by Lemma 3.3 and this determines $\{u \cdot v, \bar{u} \cdot v\}$ uniquely in each of the five cases.

With the root system Φ_{F} we may associate the dual root system Φ_{F}^{*} of roots r^{*} of the form

$$
r^{*} \stackrel{\text { def }}{=} \frac{2 r}{r \cdot r} \quad \text { with } r \in \Phi_{F}
$$

The element r^{*} is called the co-root corresponding to r. Note that $\langle r, s\rangle=r^{*} \cdot s$ and $\left\langle r, s^{*}\right\rangle=\left\langle s, r^{*}\right\rangle$.

- The notion of 'co-root' is a valid concept for every root system, but is trivial when all roots have the same size, e.g., in a root system of type E_{6}.

The fundamental (F-)weights for this root system are the following :

$$
\begin{align*}
& \psi_{1}^{\prime}=1001=2 \psi_{1}+3 \psi_{2}+4 \psi_{3}+2 \psi_{4} \\
& \psi_{2}^{\prime}=1102=3 \psi_{1}+6 \psi_{2}+8 \psi_{3}+4 \psi_{4} \tag{3.17}\\
& \psi_{3}^{\prime}=+++\frac{3}{2}=2 \psi_{1}+4 \psi_{2}+6 \psi_{3}+3 \psi_{4} \\
& \psi_{4}^{\prime}=000=3 \psi_{1}+2 \psi_{2}+3 \psi_{3}+2 \psi_{4}
\end{align*}
$$

We again leave it to the reader to verify that these elements of \mathbf{P}_{F} satisfy ψ_{i}^{*}. $\psi_{j}^{\prime}=\delta_{i j}$ for $1 \leq i, j \leq 4$: the fundamental weights form a dual basis for the fundamental co-roots. Note that ψ_{1}^{\prime} is a long root, ψ_{4}^{\prime} is a short root, ψ_{2}^{\prime} is the sum of two long roots with inner product 1 (1001 and 0101) and ψ_{3}^{\prime} is the sum of two short roots with inner product $1 / 2$ (++++ and 0001).

Proposition 3.8 The following are orbits of the group $W\left(\mathrm{~F}_{4}\right)$:

1. the set of short roots Φ_{S},
2. the set of long roots Φ_{L},
3. five orbits of ordered pairs $(r, s) \in \Phi_{S} \times \Phi_{S}$, one for each possible value of $\langle r, s\rangle$,
4. three orbits of ordered pairs $(r, s) \in \Phi_{S} \times \Phi_{L}$, one for each possible value of $\langle r, s\rangle$,
5. five orbits of ordered pairs $(r, s) \in \Phi_{L} \times \Phi_{L}$, one for each possible value of $\langle r, s\rangle$,
6. the set of points of L_{∞},
7. the set of points \mathcal{P}^{*},
8. five orbits of ordered pairs $(p, q) \in \mathcal{P}^{*} \times \mathcal{P}^{*}$, one for each possible value of $(p+\bar{p}) \cdot(q+\bar{q})$, i.e., one for each row in (3.2).
9. an orbit of triples $\left(p_{1}, p_{2}, p_{3}\right)$ with $p_{i} \in \mathcal{P}^{*}$ and $\left(p_{i}+\bar{p}_{i}\right) \cdot p_{j}=1$ when $i \neq j$.

Proof: 1. It is easily seen that the action of w_{1000} on any root changes the sign of its first coordinate, and similar effects can be obtained on the other coordinates by the group elements $w_{0100}, \ldots, w_{0001}$. This proves that the 16 short roots with coordinates $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)$ belong to the same orbit. Now $w_{++++}(+---)=1000$, proving that also 1000 belongs to this orbit, and a similar reasoning holds for the other short roots. The orbit cannot be larger, for every reflection must map roots onto roots and preserve their lengths.
2. It is easily computed that the action of $w_{1 \overline{1} 00}$ permutes the first two coordinates of a root. Using similar reflections, we see that every permutation of the coordinates is possible, and by the above, also every sign change. As a consequence, all long roots belong to the same orbit.

3-4. By the above it is sufficient to prove this for any fixed short root r. Choose $r=++++$. Also by the above, the subgroup of $W\left(\mathrm{~F}_{4}\right)$ that fixes r contains all coordinate permutations. The group element w_{+-+-}also fixes ++++ and maps ++-+ onto 1000 and $1 \overline{1} 00$ onto $\overline{1} 100$. Using this information the orbits can now easily be computed.
5. We leave this case to the reader. It can be proved in a similar way as above.
6. Because L_{∞} consists of those points p for which $p=-\bar{p}$, it follows from (3.11) that L_{∞} is left invariant by $W\left(\mathrm{~F}_{4}\right)$. We therefore only need to prove that every point $z \in L_{\infty}$ can be mapped to any other point $z^{\prime} \in L_{\infty}$. Now, let q denote any point of \mathcal{P}^{*} not adjacent to z or z^{\prime}, then w_{q-z}^{\prime} maps z onto z^{\prime}.
$7-8$. These follow from the one-to-one correspondence between a short root s and the point p such that $s=(p+\bar{p}) / 2$.
9. Let $s_{i}=\left(p_{i}+\bar{p}_{i}\right) / 2$ denote the short root corresponding to p_{i}. Note that $\left\langle s_{i}, s_{j}\right\rangle=1$ when $i \neq j$. By the above, without loss of generality we may set $s_{1}=++++$ and $s_{2}=1000$. The subgroup of $W\left(F_{4}\right)$ that fixes s_{1} and s_{2} contains all permutations of the last 3 coordinates. It is also easily computed that the only short roots s_{3} such that $\left\langle s_{1}, s_{3}\right\rangle=\left\langle s_{2}, s_{3}\right\rangle=1$ are,+-++++-+ and +++-.

3.2 The Lie algebra of type F_{4} over K

In what follows we fix a special element ∞ of \mathbf{V} with the property $D(\infty)=1$, and hence $\infty \infty^{\#}=3$ and $D\left(\infty^{\#}\right)=1$.

Define the linear operator ${ }^{\top}$ as follows :

$$
\begin{array}{ll}
\bar{a} \stackrel{\text { def }}{=}\left(a \infty^{\#}\right) \infty^{\#}-\infty \times a, & \text { for } a \in \mathbf{V} \\
\bar{\alpha} \stackrel{\text { def }}{=}(\infty \alpha) \infty-\infty^{\#} \times \alpha, & \text { for } \alpha \in \mathbf{V}^{*} \tag{3.18}
\end{array}
$$

This operator can be regarded both as an element of $\operatorname{Hom}\left(\mathbf{V}, \mathbf{V}^{*}\right)$ and as an element of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$. The following proposition proves that ${ }^{-}$is a polarity with respect to several algebraic operators.

Proposition 3.9 Let $a, b \in \mathbf{V}, \alpha, \beta \in \mathbf{V}^{*}$. Then

1. $\bar{\infty}=\infty^{\#}$ and $\overline{\infty^{\#}}=\infty$,
2. $a \bar{b}=b \bar{a}$ and (dually) $\bar{\alpha} \beta=\bar{\beta} \alpha$,
3. $\overline{\bar{a}}=a$ and $\overline{\bar{\alpha}}=\alpha$.
4. $\overline{a^{\#}}=\overline{a^{\#}}$ and $\overline{\alpha^{\#}}=\overline{\alpha^{\#}}$,
5. $\bar{a} \times \bar{b}=\overline{a \times b}$ and (dually) $\overline{\alpha \times \beta}=\bar{\alpha} \times \bar{\beta}$,

Proof: 1. We compute $\bar{\infty}=\left(\infty \infty^{\#}\right) \infty^{\#}-\infty \times \infty=3 \infty^{\#}-2 \infty^{\#}=\infty^{\#}$. The dual property follows in a similar way.
2. We compute $a \bar{b}=\left(b \infty^{\#}\right)\left(a \infty^{\#}\right)-\langle a, \infty, b\rangle$, an expression which is symmetric in a and b.
3. We have $\overline{\bar{a}}=(\infty \bar{a}) \infty-\infty^{\#} \times \bar{a}$. Also $\infty^{\#} \times \bar{a}=\left(a \infty^{\#}\right) \infty^{\#} \times \infty^{\#}-(\infty \times a) \times$ $\infty^{\#}=2\left(a \infty^{\#}\right) \infty-a-\left(a \infty^{\#}\right) \infty$, using (2.28). From the above we know that $\infty \bar{a}=a \infty^{\#}$ and hence $\overline{\bar{a}}=a$.
4. By definition, we have

$$
\begin{equation*}
\bar{a}^{\#}=\left[\left(a \infty^{\#}\right) \infty^{\#}-\infty \times a\right]^{\#}=\left(a \infty^{\#}\right)^{2} \infty-\left(a \infty^{\#}\right) \infty^{\#} \times(\infty \times a)+(\infty \times a)^{\#} . \tag{3.19}
\end{equation*}
$$

Now, by (2.27-2.28) we have

$$
\begin{array}{ll}
(\infty \times a)^{\#} & =\left(\infty a^{\#}\right) \infty+\left(a \infty^{\#}\right) a-a^{\#} \times \infty^{\#}, \\
\left(a \infty^{\#}\right) \infty^{\#} \times(\infty \times a) & =\left(a \infty^{\#}\right) a+\left(a \infty^{\#}\right)\left(a \infty^{\#}\right) \infty,
\end{array}
$$

and substituting these results in (3.19), we obtain $\left(\infty a^{\#}\right) \infty-a^{\#} \times \infty^{\#}$ which is equal to $\overline{a^{\#}}$.
5. This is an immediate consequence of the previous property.

In what follows we will prefer to write $\bar{\infty}$ instead of $\infty^{\#}$.
For any $A \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ we define the matrix \bar{A} to be the unique element of $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ satisfying

$$
\begin{equation*}
a \bar{A} \alpha=\bar{\alpha} A \bar{a}, \quad \text { for all } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*} \tag{3.20}
\end{equation*}
$$

As an immediate consequence of this definition, we have the following properties :

Lemma 3.10 Let $a \in \mathbf{V}, A, B \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$. Then

$$
\begin{equation*}
\overline{a A}=\bar{A} \bar{a}, \quad \overline{A B}=\bar{B} \bar{A}, \quad \overline{[A, B]}=[\bar{B}, \bar{A}] . \tag{3.21}
\end{equation*}
$$

Also, applying the definitions and using Proposition 3.9, we find

$$
\begin{equation*}
\overline{a * \alpha}=\bar{\alpha} * \bar{a}, \quad \text { for every } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, \tag{3.22}
\end{equation*}
$$

and, by Lemma 2.23,

$$
\begin{equation*}
\bar{A} \cdot \bar{B}=A \cdot B, \quad \text { for every } A, B \in \mathbf{L} \tag{3.23}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\overline{\alpha \otimes a}=\bar{a} \otimes \bar{\alpha}, \quad \text { for every } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*} . \tag{3.24}
\end{equation*}
$$

We may also extend this definition to $\mathbf{V} \wedge \mathbf{V}$ (and dually to $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$) : for $L \in \mathbf{V} \wedge \mathbf{V}, \bar{L} \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ is the unique symmetric bilinear form satisfying $a b \bar{L}=L \bar{b} \bar{a}$ for all $a, b \in \mathbf{V}$. Likewise, if $P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ then \bar{P} is the unique element of $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ satisfying $a b c \bar{P}=P \bar{c} \bar{b} \bar{a}$. We may now easily prove

$$
\begin{array}{lll}
\overline{a \wedge b}=\bar{b} \wedge \bar{a}, & \text { for } a, b \in \mathbf{V} \\
\overline{B \times b}=\bar{b} \times \bar{B}, & \overline{A \times B}=(\bar{B} \times \bar{A})^{*}, & \text { for } b \in \mathbf{V}, A, B \in \mathbf{L} \\
\overline{a \wedge b \wedge c}=\bar{c} \wedge \bar{b} \wedge \bar{a}, & \overline{X(a, b, c)}=X(\bar{c}, \bar{b}, \bar{a}), & \text { for } a, b, c \in \mathbf{V} \tag{3.25}
\end{array}
$$

Note that isotropic elements are always mapped to isotropic elements by ${ }^{-}$.

Proposition 3.11 Let $A \in \mathbf{L}$. Then the following statements are equivalent

1. $\infty A=0$.
2. $A \bar{\infty}=0$.
3. $a A \bar{a}=0$ for every $a \in \mathbf{V}$.

If these are satisfied then also

$$
\begin{equation*}
a A \bar{b}+b A \bar{a}=0, \quad \text { for every } a, b \in \mathbf{V} \tag{3.26}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\bar{A}=-A \tag{3.27}
\end{equation*}
$$

Proof: Substituting $a=\infty$ in (2.41) we obtain $\infty \times \infty A=-A \bar{\infty}$, hence $A \bar{\infty}=$ 0 when $\infty A=0$, and by duality also the converse holds.

We have $a A \bar{a}=(a A \bar{\infty})(a \bar{\infty})-\langle a A, \infty, a\rangle$ and hence by (2.41) :

$$
\begin{equation*}
a A \bar{a}=(a A \bar{\infty})(a \bar{\infty})+\infty A a^{\#} . \tag{3.28}
\end{equation*}
$$

Hence $\infty A=0$ and $A \bar{\infty}=0$ imply $a A \bar{a}=0$.

Conversely, assume $a A \bar{a}=0$ for all a. Then also $(a+b) A(\overline{a+b})-a A \bar{a}-$ $b A \bar{b}=0$ which implies (3.26). Substituting e_{p} for a in (3.28), with $p \in \mathcal{P}$, yields $\left(e_{p} A \bar{\infty}\right)\left(e_{p} \bar{\infty}\right)=0$ and hence $e_{p} A \bar{\infty}=0$ for any p such that $e_{p} \bar{\infty} \neq 0$.

Now consider $p \in \mathcal{P}$ such that $e_{p} \bar{\infty}=0$. As $D(\bar{\infty})=1$, there must be at least one line $i j k$ of \mathcal{Q} such that the i-th, j-th and k-th coordinate of $\bar{\infty}$ are nonzero, i.e., such that $e_{i} \bar{\infty}, e_{j} \bar{\infty}, e_{k} \bar{\infty} \neq 0$. We may also find at least one point on $i j k$, say i, which is not collinear to p. Then $e_{i} \bar{\infty} \neq 0$ and $e_{i} \times e_{p}=0$. Now apply (3.26) to $a=e_{i}, b=e_{p}$. We find

$$
\begin{aligned}
0 & =e_{i} A \overline{e_{p}}+e_{p} A \overline{e_{i}} \\
& =\left(e_{i} A \bar{\infty}\right)\left(e_{p} \bar{\infty}\right)-e_{i} A\left(\infty \times e_{p}\right)+\left(e_{p} A \bar{\infty}\right)\left(e_{i} \bar{\infty}\right)-e_{p} A\left(\infty \times e_{i}\right) \\
& =\left(e_{p} A \bar{\infty}\right)\left(e_{i} \bar{\infty}\right)+\infty A\left(e_{i} \times e_{p}\right)=\left(e_{p} A \bar{\infty}\right)\left(e_{i} \bar{\infty}\right) .
\end{aligned}
$$

It follows that $e_{p} A \bar{\infty}=0$ also in this case.
This proves that $e_{p} A \bar{\infty}=0$ for every basis element e_{p} of \mathbf{V}, and hence $A \bar{\infty}=$ 0.

We denote the set of all $A \in \mathbf{L}$ that satisfy the above proposition by \mathbf{J}. It is easily seen that \mathbf{J} is a Lie algebra which is a subalgebra of \mathbf{L}.

Lemma 3.12 Let $A \in \mathbf{L}$. Then $\infty A=\infty \bar{A}$ and hence $A-\bar{A} \in \mathbf{J}$.

Proof: It is sufficient to prove this when A is of the form $a * \alpha$ with $a \in \mathbf{V}$, $\alpha \in \mathbf{V}^{*}$, for \mathbf{L} is generated as a vector space by elements of this form. We have

$$
\begin{aligned}
\infty A=\infty(a * \alpha) & =(\infty \alpha) a-(a \times \infty) \times \alpha \\
& =(\infty \alpha) a+\bar{a} \times \alpha-(a \bar{\infty}) \bar{\infty} \times \alpha \\
& =(\infty \alpha) a+\bar{a} \times \alpha+(a \bar{\infty}) \bar{\alpha}-(a \bar{\infty})(\infty \alpha) \infty
\end{aligned}
$$

Interchanging a with $\bar{\alpha}, \alpha$ with \bar{a} and hence $a \bar{\infty}$ with $\infty \alpha$, leaves this expression invariant. Hence $\infty(a * \alpha)=\infty(\bar{\alpha} * \bar{a})=\infty(\overline{a * \alpha})=\infty \bar{A}$.

Denote by \mathbf{W} the subspace of elements $a \in \mathbf{V}$ such that $a \bar{\infty}=0$. By Proposition 3.11 it follows that $\mathbf{V} A \leq \mathbf{W}$ whenever $A \in \mathbf{J}$. Hence the action of \mathbf{J} on \mathbf{V} leaves \mathbf{W} invariant. In other words: \mathbf{W} is a 26 -dimensional module for \mathbf{J}.

Dually, the subspace of elements $\alpha \in \mathbf{V}^{*}$ such that $\infty \alpha=0$ is also left invariant by \mathbf{J}. We denote this space by \mathbf{W}^{*}.

- The notation \mathbf{W}^{*} is a little misleading, because it suggests that \mathbf{W}^{*} can be obtained from \mathbf{W} using the map $e_{p} \mapsto \eta_{p}$, which is not correct in general. It is however true for the particular choice of ∞ which we will introduce later.
- It is not sufficient that $a, b \in \mathbf{W}$ to have $a \times b \in \mathbf{W}^{*}$ or $a^{\#} \in \mathbf{W}^{*}$ or $a * \bar{b} \in \mathbf{J}$. However, $a \in \mathbf{W}$ always implies $\bar{a} \in \mathbf{W}^{*}$ (and conversely).

On \mathbf{W} and \mathbf{W}^{*} the definitions of ${ }^{〔}$ simplify to

$$
\begin{array}{lll}
\bar{a} & \stackrel{\text { def }}{=}-\infty \times a, & \text { for } a \in \mathbf{W} \tag{3.29}\\
\bar{\alpha} \stackrel{\text { def }}{=}-\bar{\infty} \times \alpha, & \text { for } \alpha \in \mathbf{W}^{*} .
\end{array}
$$

- In [1] the space \mathbf{W} is introduced in essentially the same way as ours, but the polarity \because is defined only on \mathbf{W}, as in (3.29) but without the minus sign.

Note that $a \bar{b}=b \bar{a}=-\langle a, b, \infty\rangle$ when $a, b \in \mathbf{W}$. Substituting $d=\infty$ in (2.24) yields

$$
\begin{align*}
& (a \times b) \times \bar{c}+(b \times c) \times \bar{a}+(c \times a) \times \bar{b}= \\
& (a \bar{b}) c+(b \bar{c}) a+(c \bar{a}) b-\langle a, b, c\rangle \infty \tag{3.30}
\end{align*}
$$

for all $a, b, c \in \mathbf{W}$. Similarly, setting $c=\infty$ in (2.26) yields

$$
\begin{equation*}
(a \times b) \times \bar{a}+a^{\#} \times \bar{b}=(a \bar{b}) a-\left(\infty a^{\#}\right) b-\left(b a^{\#}\right) \infty . \tag{3.31}
\end{equation*}
$$

Applying the same technique to (2.39) and (2.40), we obtain

$$
\begin{array}{r}
a * \bar{a}=\infty * a^{\#}+\left(\infty a^{\#}\right) \mathbf{1} \\
a * \bar{b}+b * \bar{a}=\infty *(a \times b)-(a \bar{b}) \mathbf{1} \tag{3.33}
\end{array}
$$

for all $a, b \in \mathbf{W}$.
The following proposition lists some properties of isotropic elements that belong to W.

Proposition 3.13 Let e be an isotropic element that belongs to \mathbf{W}. Let $a \in \mathbf{V}, \alpha \in$ $\mathbf{V}^{*}, A \in \mathbf{L}$. Then

1. $e \bar{e}=0$.
2. $\bar{e} \times(e \times a)=(a \bar{e}) e$, and dually $e \times(\bar{e} \times \alpha)=(e \alpha) \bar{e}$.
3. $e * \bar{e}=0$.
4. $(e \times a) \wedge \bar{e}=(a * \bar{e}) \times e$ and dually $e \wedge(\bar{e} \times \alpha)=\bar{e} \times(e * \alpha)$.
5. $e A \bar{e}=0$.
6. $e A * \bar{e}=e * A \bar{e}$.

Proof: Most properties are easy consequences of (3.29-3.33), Proposition 2.27 and Lemma 2.47 where ∞ is substituted for the appropriate variable. Note that $e * \bar{e}=0$ implies $[e * \bar{e}, A]=0$ yielding the last statement, by (2.61).

Proposition 3.14 Let E be an isotropic element of $\mathbf{L}-\{0\}$. Then we may find isotropic elements $e, f \in \mathbf{W}$ such that $e \bar{f}=0$ and $E=e * \bar{f}$ (and then $\bar{E}=f * \bar{e}$). Let $A \in \mathbf{L}$. Then

1. $e, f \in \mathbf{V} E$.
2. $\infty E=\infty \bar{E}=\bar{e} \times \bar{f}$ and dually $E \bar{\infty}=\bar{E} \bar{\infty}=e \times f$.
3. $e E=f E=e \bar{E}=f \bar{E}=0$ and $E \cdot \bar{E}=0$.
4. $\bar{e} \times E=e \wedge \infty E, \bar{f} \times E=0$ and dually $E \times f=E \bar{\infty} \wedge \bar{f}, E \times e=0$.
5. $E \bar{E}=\bar{E} E=E \bar{\infty} \otimes \infty E$. In particular $[E, \bar{E}]=0$.
6. $[\bar{E},[E, A]]=[E,[\bar{E}, A]]=-(E \cdot A) \bar{E}-(\bar{E} \cdot A) E+\infty E A * E \bar{\infty}$.
7. $\infty E A * E \bar{\infty}=\infty E * A E \bar{\infty}$.

Proof: Because $\operatorname{dim} \mathbf{V} E=6$ the intersection of this isotropic subspace of \mathbf{V} with the hyperplane \mathbf{W} has dimension at least 5 . Hence, we may always find $c \in \mathbf{V}$ such that $c E \in \mathbf{W}$ and with the extra condition that $c E$ is not a multiple of ∞E. Because of this we can find $\gamma \in \mathbf{V}^{*}$ such that $\infty E \gamma=0$ and $c E \gamma \neq 0$, and even $c E \gamma=1$. The elements $e=c E$ and $f=\overline{E \gamma}$ satisfy the stated conditions.

1. By the above $e=c E \in \mathbf{V} E$ and $f=\bar{\gamma} \bar{E}=-\bar{\gamma} E \in \mathbf{V} E$.
2. We have $\infty E=\infty(e * \bar{f})=(\infty \bar{f}) e-(e \times \infty) \times \bar{f}=\bar{e} \times \bar{f}$. Interchanging e and f yields $\infty \bar{E}=\bar{e} \times \bar{f}$.
3. $e E=0$ by Proposition 2.28-1 and dually $E \bar{f}=0$ and hence $f \bar{E}=0$. Applying Proposition 2.28-2 yields $E \bar{e}=-E(e \times \infty)=0$, and dually $e \bar{E}=0$. Also $E \cdot \bar{E}=(e * \bar{f}) \cdot \bar{E}=e \bar{E} \bar{f}=0$.
4. The first equality is immediate from Proposition 3.13-4 with $a=f$ and $\alpha=\bar{f}$, the second follows from Proposition 2.28-3.
5. Let $x \in \mathbf{V}$. We have

$$
\begin{aligned}
x E \bar{E}=x E(f * \bar{e}) & =(x E \bar{e}) f-(x E \times f) \times \bar{e} \\
& =-x(E \times f) \times \bar{e} \\
& =-x(E \bar{\infty} \wedge \bar{f}) \times \bar{e} \\
& =-(x \bar{f})(E \bar{\infty} \times \bar{e}+(x E \bar{\infty}) \bar{f} \times \bar{e} \\
& =-(x \bar{f})((e \times f) \times \bar{e})+(x E \bar{\infty})(\infty E) \\
& =-(x \bar{f})(f \bar{e}) e+(x E \bar{\infty})(\infty E)=(x E \bar{\infty})(\infty E)
\end{aligned}
$$

Interchanging E and \bar{E} leaves this expression unchanged, and hence $E \bar{E}=\bar{E} E$.
6. By (2.61) we have $[E,[\bar{E}, A]]=[E,[f * \bar{e}, A]]=[E, f A * \bar{e}]-[E, f * A \bar{e}]$. Now, by the above,

$$
\begin{aligned}
& {[E, f A * \bar{e}]} \\
& \quad=f A * E \bar{e}-f A E * \bar{e}=-f A E * \bar{e} \\
& \quad=-f A(e * \bar{f}) * \bar{e} \\
& \quad=-(f A \bar{e}) e * \bar{e}+((f A \times e) \times \bar{f}) * \bar{e}
\end{aligned}
$$

$$
\begin{aligned}
& =-((f A \times e) \times \bar{e}) * \bar{f}-(\bar{e} \times \bar{f}) *(f A \times e)-\langle f A \times e, \bar{e}, \bar{f}\rangle \mathbf{1}, \text { by (2.40) } \\
& =-(f A \bar{e}) e * \bar{f}-\infty E *(f A \times e)-(f A \bar{e})(e \bar{f}) \mathbf{1}, \text { by Proposition 3.13-2 } \\
& =-(f A \bar{e}) E-\infty E *(f A \times e)=-(\bar{E} \cdot A) E-\infty E *(f A \times e)
\end{aligned}
$$

Also $-[E, f * A \bar{e}]=-f * E A \bar{e}+f E * A \bar{e}=-f * E A \bar{e}$, and then

$$
\begin{array}{rlrl}
-f * E A \bar{e} & =-f *(e * \bar{f}) A \bar{e} & & \\
& =-f *(e * A \bar{e}) \bar{f} & & \text { by (2.35), } \\
& =-f(e * A \bar{e}) * \bar{f} & & \\
& =-f(e A * \bar{e}) * \bar{f} & & \text { by Proposition 3.13-6, } \\
& =-e A(f * \bar{e}) * \bar{f}=-e A \bar{E} * \bar{f} . &
\end{array}
$$

The value of this last expression can be computed by interchanging e and f in the expression for $-f A E * \bar{e}$ above, hence

$$
-e A \bar{E} * \bar{f}=-(E \cdot A) \bar{E}-\infty E *(e A \times f) .
$$

Adding both expressions and using the fact that $-f A \times e-e A \times f=A(e \times$ $f)=A E \bar{\infty}$ we obtain the stated value for $[E,[\bar{E}, A]]$ Note that interchanging E and \bar{E} does not alter the value of this expression.
7. Applying statement 6 of this proposition to \bar{A} we find

$$
[\bar{E},[E, A]]=\overline{[E,[\bar{E}, \bar{A}]]}=-(\bar{E} \cdot A) E-(E \cdot A) \bar{E}+\infty \bar{E} * A \bar{E} \bar{\infty}
$$

comparing this to the statement 6 and using statement 2 we obtain the listed result.

In what follows we will choose a specific vector ∞ and hence a specific vector space \mathbf{W} and algebra \mathbf{J}. Fix a line $\left\{z_{1}, z_{2}, z_{3}\right\}$ of Σ. Define

$$
\begin{equation*}
\infty \stackrel{\text { def }}{=} e_{z_{1}}+e_{z_{2}}+e_{z_{3}} \tag{3.34}
\end{equation*}
$$

Note that $D(\infty)=1$ and that $\bar{\infty}=\eta_{z_{1}}+\eta_{z_{2}}+\eta_{z_{3}}$.

- By Theorem 2.34 all elements $a \in \mathbf{V}$ with $D(a)=1$ are known to lie in the same orbit of $\hat{\mathrm{E}}_{6}(\mathrm{~K})$. Our choice of ∞ is therefore not so special from an algebraic point of view. However, this particular choice will enable us to easily establish a connection with the root system of type F_{4} which we have constructed in Section 3.1.

We will choose the line $\left\{z_{1}, z_{2}, z_{3}\right\}$ to coincide with the line L_{∞} as defined in Section 3.1. This is possible because the definition of the involution ${ }^{-}$depends on the root which is used in the coordinatization of \mathbf{P}. By an appropriate choice of this root we can make L_{∞} coincide with any given line of \mathcal{L} and of the spread Σ in particular.

With this choice of ∞, the polarity • can now be expressed in terms of the involution with the same notation. It is easily computed that the following holds :

$$
\begin{equation*}
\overline{e_{p}}=\eta_{-\bar{p}}, \quad \overline{\eta_{p}}=e_{-\bar{p}}, \quad \text { for every } p \in \mathcal{P} \tag{3.35}
\end{equation*}
$$

Note that $e_{p} \in \mathbf{W}$ if and only if $p \in \mathcal{P}^{*}$. These elements serve as typical examples of isotropic elements of \mathbf{W}.

We will occasionally be interested in the 3-dimensional subspace \mathbf{V}_{∞} of \mathbf{V} generated by the elements $e_{z_{1}}, e_{z_{2}}, e_{z_{3}}$, and the 2 -dimensional space $\mathbf{W}_{\infty}=$ $\mathbf{V}_{\infty} \cap \mathbf{W}$, generated by $e_{z_{1}}-e_{z_{2}}$ and $e_{z_{1}}-e_{z_{3}}$. We leave it to the reader to verify that the isotropic elements of \mathbf{V}_{∞} are those of the form $k e_{z_{i}}$ with $k \in K$, $i=1,2,3$, and hence that \mathbf{W}_{∞} does not contain any isotropic element, except 0 .

Lemma 3.15 Let ω denote the defining automorphism for the spread Σ. Then $\bar{x} \omega=$ $\bar{x} \omega$ for all $x \in \mathbf{P}$.

Let $p \in \mathcal{P}^{*}$ be a positive base point of $r \in \Phi$. Then $-\bar{p}$ is a positive base point of $-\bar{r}$. If moreover $r=\bar{r}$ then $p+\bar{p}+r \in \Phi_{L}$ and $-\bar{p}$ is a negative base point of $p+\bar{p}+r$.

Proof: First note that the map $\mathcal{P} \rightarrow \mathcal{P}: q \mapsto-\bar{q}$ maps lines of Σ to lines of Σ. Indeed L_{∞} is left invariant, and any other line L is mapped onto the third line M of the grid determined by L because q and $-\bar{q}$ lie on a line that intersects L_{∞} when $q \in \mathcal{P}^{*}$. Because Σ is a regular spread, M also belongs to Σ.

Hence, for $q \in \mathcal{P}^{*}$, the unique line of Σ through q must be mapped onto the unique line of Σ through $-\bar{q}$, i.e., $\left\{q, q \omega, q \omega^{2}\right\}$ is mapped onto $\{-\bar{q},-\bar{q} \omega$, $\left.-\bar{q} \omega^{2}\right\}$. Because the image of $q \omega$ must be collinear to it, this image can only be $-\bar{q} \omega$.

We have just proved that $\overline{q \omega}=\bar{q} \omega$ for all $q \in \mathcal{P}^{*}$, and the same property holds trivially for $q \in L_{\infty}$. Because \mathcal{P} generates \mathbf{P} as a vector space (and ω is a linear transformation) we find that $\bar{x} \omega=\bar{x} \omega$ for all $x \in \mathbf{P}$.

Now, let $p \in \mathcal{P}^{*}$ be a base point of $r \in \Phi$. Applying the involution ${ }^{\text {º }}$ to (2.13) and using the first part of this lemma easily proves that $-\bar{p}$ is a positive base point of $-\bar{r}$. If moreover $r=\bar{r}$, then $-\bar{p} \cdot(p+r)=-2 / 3-\bar{p} \cdot r=-2 / 3-p$. $r=1 / 3$, hence $-\bar{p} \not \perp(p+r)$ and then $p+\bar{p}+r$ is a root with base point $-\bar{p}$. Also $-\bar{p} \cdot(p+\bar{p}+r) \omega=-\bar{p} \cdot p \omega-\bar{p} \cdot \bar{p} \omega-\bar{p} \cdot r \omega=1 / 3+2 / 3-\bar{p} \cdot r \omega=$ $1-p \cdot r \omega$. Hence $-\bar{p}$ is a negative base point of $p+\bar{p}+r$.

Let $p \in \mathcal{P}$ be a positive base point of $r \in \Phi$. Then $E_{r}=e_{p+r} * \eta_{p}$. By (3.22) we have $\overline{E_{r}}=\overline{\eta_{p}} * \overline{e_{p+r}}=e_{-\bar{p}} * \eta_{-\bar{p}-\bar{r}}= \pm E_{\bar{r}}$. By Lemma $3.15-\bar{p}$ is a positive base point of $-\bar{r}$, hence $-\bar{p}-\bar{r}$ is a negative base point of \bar{r}. We find

$$
\begin{equation*}
\overline{E_{r}}=-E_{\bar{r}}, \quad \text { for every } r \in \Phi . \tag{3.36}
\end{equation*}
$$

A similar argument can be used to prove

$$
\begin{array}{ll}
\overline{H_{p}}=H_{-\bar{p}}, & \tag{3.37}\\
\text { for every } p \in \mathcal{P} \\
\overline{H_{r}}=H_{-\bar{r}}, & \\
\text { for every } r \in \Phi
\end{array}
$$

Let $r \in \Phi$. Then $E_{r} \in \mathbf{J}$ if and only if $\infty E_{r}=0$ if and only if no base point of r belongs to L_{∞} if and only if $r \in \Phi_{L}$. (An element E_{r} of this type may serve as a typical example of an isotropic element of \mathbf{J}.) Likewise, $H_{r} \in \mathbf{J}$ if and only if $r \in \Phi_{L}$.

Let $s \in \Phi_{S}$ and write $s=(u+\bar{u}) / 2$ with $u \in \Phi_{L}$. Define

$$
\begin{equation*}
E_{s} \stackrel{\text { def }}{=} E_{u}+E_{\bar{u}}=E_{u}-\overline{E_{u}}, \tag{3.38}
\end{equation*}
$$

then $E_{s} \in \mathbf{J}$ by Lemma 3.12. Note that s uniquely determines the pair $\{u, \bar{u}\}$ (by Lemma 3.4) and hence the definition of E_{S} is sound.

It is a consequence of Lemma 3.4 that $\infty E_{u}= \pm e_{p}$ and hence, by Proposition 3.14,

$$
\begin{equation*}
E_{u} E_{\bar{u}}=-\overline{e_{p}} \otimes e_{p}=-\eta_{-\bar{p}} \otimes e_{p} \tag{3.39}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[E_{u},\left[E_{\bar{u}}, A\right]\right] } & =\left(E_{u} \cdot A\right) E_{\bar{u}}+\left(E_{\bar{u}} \cdot A\right) E_{u}+e_{p} A * \eta_{-\bar{p}} \tag{3.40}\\
& =\left(E_{u} \cdot A\right) E_{\bar{u}}+\left(E_{\bar{u}} \cdot A\right) E_{u}+e_{p} * A \eta_{-\bar{p}}, \quad \text { for } A \in \mathbf{L}
\end{align*}
$$

Similarly, define $H_{s} \in \mathbf{J}$ as follows :

$$
\begin{equation*}
H_{s} \stackrel{\text { def }}{=} H_{u}+H_{\bar{u}}=H_{u}-\overline{H_{u}} . \tag{3.41}
\end{equation*}
$$

If $s=(p+\bar{p}) / 2$, then $p+\bar{p}=u+\bar{u}$ implies $H_{s}=H_{p}-\overline{H_{p}}=H_{p}-H_{-\bar{p}}$.

Lemma 3.16 Let $s \in \Phi_{s,} p \in \mathcal{P}^{*}$ such that $s=\frac{1}{2}(p+\bar{p})$. Let z, z^{\prime} denote the points of $L_{\infty}-\left\{p_{\infty}\right\}$. Let $q \in \mathcal{P}$. Then

$$
\begin{array}{lll}
e_{-\bar{p}} E_{s} & = \pm\left(e_{z}-e_{z^{\prime}}\right), & \\
e_{z} E_{s}=-e_{z^{\prime}} E_{S} & = \pm e_{p}, & \text { when } q \in \mathcal{P}^{*} \text { such that }\langle s, q\rangle=-1 \\
e_{q} E_{s} & = \pm e_{\bar{p}+\bar{q},} & \text { otherwise. } \\
e_{q} E_{s} & =0, & \\
e_{q} H_{s} & =\langle s, q\rangle e_{q}=2(s \cdot q) e_{q} . & \tag{3.42}
\end{array}
$$

Proof: Let $u \in \Phi$ such that $s=\frac{1}{2}(u+\bar{u})$. We have $e_{q} E_{s}=e_{q} E_{u}+e_{q} E_{\bar{u}}$. By (2.45) $e_{q} E_{u}= \pm e_{q+u}$ when $q \cdot u=-1$, and $e_{q} E_{u}=0$ when $q \cdot u \geq 0$. The value of $e_{q} E_{\bar{u}}$ is analogous. From Lemma 3.4 we know that the line at infinity consists of the points $p_{\infty}, p-u$ and $p-\bar{u}$. We set $z=p-u$ and $z=p-\bar{u}$.

$$
z=p-u=-\bar{p}+\bar{u} \overbrace{}^{p_{\infty}}{ }^{\prime}=p-\bar{u}=-\bar{p}+u L_{\infty}-\bar{p}=q
$$

Firstly, when $q \in \mathcal{P}^{*}$ we may use (3.16) to distinguish between various cases. It follows that $e_{q} E_{s}=0$ when $p=q$ or $p \sim q$. If $q=-\bar{p}$, then $e_{q} E_{u}= \pm e_{p-u}$ and $e_{q} E_{\bar{u}}= \pm e_{p-\bar{u}}$. (Refer to the illustration above.) Because $E_{s} \in \mathbf{J}$ we have $e_{q} E_{s} \bar{\infty}=0$ and hence both terms must have opposite sign.

If on the other hand $p \sim q$ but $q \neq-\bar{p}$, then without loss of generality (we may always interchange u and \bar{u}) we may choose $q \cdot u=-1$ and then $q+u=\bar{p}+\bar{q}$ and hence $e_{q} E_{s}= \pm e_{\bar{p}+\bar{q}}$. (Refer to the illustration below.)

Secondly, consider $q \in L_{\infty}$. The base points of u and \bar{u} on L_{∞} are z and z^{\prime}, and in both cases $e_{q} E_{s}= \pm e_{p}$. It also follows that $e_{p_{\infty}} E_{s}=0$. We have $0=\infty E_{s}=$ $\left(e_{p_{\infty}}+e_{z}+e_{z^{\prime}}\right) E_{s}=e_{z} E_{s}+e_{z^{\prime}} E_{s}$ and hence $e_{z} E_{s}$ and $e_{z^{\prime}} E_{s}$ have opposite sign.

Finally $e_{q} H_{s}=e_{q} H_{u}+e_{q} H_{\bar{u}}=(q \cdot u) e_{q}+(q \cdot \bar{u}) e_{q}=(q \cdot 2 s) e_{q}$.
The last result of (3.42) can be generalized to all of Φ_{F} :

$$
\begin{equation*}
e_{q} H_{r}=\langle r, q\rangle e_{q}=\left(r^{*} \cdot q\right) e_{q}, \quad \text { for all } r \in \Phi_{F}, q \in \mathcal{P} \tag{3.43}
\end{equation*}
$$

- Because the operation $\langle\cdot, \cdot\rangle$ is not linear in the first argument, it is not always true that $H_{r}+H_{s}=H_{r+s}$ when $r, s, r+s \in \Phi_{F}$, as in the case of \mathbf{E}_{6}. The elements H_{r} behave like co-roots of the root system, and not like ordinary roots.

Let us now consider the subalgebra \mathbf{G} of diagonal elements of \mathbf{J}, i.e., $\mathbf{G} \stackrel{\text { def }}{=}$ $\mathbf{H} \cap \mathbf{J}$.

Lemma 3.17 \mathbf{G} consists of those diagonal matrices A of \mathbf{H} satisfying $A\left[z_{1}, z_{1}\right]=$ $A\left[z_{2}, z_{2}\right]=A\left[z_{3}, z_{3}\right]=0$. The dimension of \mathbf{G} is 4 and $\left\{H_{\psi_{1}}, H_{\psi_{2}}, H_{\psi_{3}}, H_{\psi_{4}}\right\}$ is a basis for \mathbf{G}.

Proof: Consider the linear transformation τ_{∞} which maps $A \in \mathbf{H}$ to $\infty A \in \mathbf{V}$. The kernel of τ_{∞} is \mathbf{G}. Because A is a diagonal matrix, we find $\tau_{\infty}(A)=$ $\infty A=A\left[z_{1}, z_{1}\right] e_{z_{1}}+A\left[z_{2}, z_{2}\right] e_{z_{2}}+A\left[z_{3}, z_{3}\right] e_{z_{3}}$. Hence $A \in \mathbf{G}$ if and only if $A\left[z_{1}, z_{1}\right]=A\left[z_{2}, z_{2}\right]=A\left[z_{3}, z_{3}\right]=0$.

By Proposition 2.17 we also have $A\left[z_{1}, z_{1}\right]+A\left[z_{2}, z_{2}\right]+A\left[z_{3}, z_{3}\right]=0$, and hence the image of τ_{∞} has dimension at most 2 . It is not so difficult to find roots r, s such that

$$
\begin{array}{lll}
r \cdot z_{1}=1, & r \cdot z_{2}=-1, & r \cdot z_{3}=0 \\
s \cdot z_{1}=1, & s \cdot z_{2}=0, & s \cdot z_{3}=-1
\end{array}
$$

and then $\infty H_{r}=e_{z_{1}}-e_{z_{2}}$ and $\infty H_{s}=e_{z_{1}}-e_{z_{3}}$ are clearly linearly independent. Hence $\operatorname{dim} \tau_{\infty}(\mathbf{H})=2$. As a consequence we find $\operatorname{dim} \mathbf{G}=4$.

It is easily seen that $H_{\psi_{i}} \in \mathbf{G}$ for $i=1, \ldots, 4$. It remains to be proved that they are linearly independent. The following matrix contains the values of $H_{\psi_{i}} \cdot H_{\pi_{j}}$ with $i=1, \ldots, 4$ (row numbers) and $j=0, \ldots, 3$ (column numbers).

$$
\left(\begin{array}{cccc}
2 & 0 & 0 & -1 \\
-1 & 0 & -1 & 2 \\
0 & -1 & 2 & -2 \\
0 & 2 & -1 & 0
\end{array}\right)
$$

This matrix can easily be computed from the Cartan matrix (2.10). Its determinant is -1 , hence the $H_{\psi_{i}} \in \mathbf{G}$ are linearly independent.

Theorem 3.18 The algebra \mathbf{J} has dimension 52 and can be written as a direct sum as follows:

$$
\begin{equation*}
\mathbf{J}=\mathbf{G} \oplus \bigoplus_{r \in \Phi_{L}} K E_{r} \oplus \bigoplus_{s \in \Phi_{S}} K E_{s} . \tag{3.44}
\end{equation*}
$$

Proof: It is easily seen that the sum in (3.44) is a direct sum and, using Lemma 3.17 , that it has dimension 52 . It is also a subspace of \mathbf{J}.

Now let τ_{∞} be the linear transformation which maps $A \in \mathbf{L}$ to $\infty A \in \mathbf{V}$. Then \mathbf{J} is the kernel of τ_{∞}. Let $p \in \mathcal{P}^{*}$, then there exists $r \in \Phi$ such that $\infty E_{r}= \pm e_{p}$. From the proof of Lemma 3.17 we also known that $\tau_{\infty}(\mathbf{H})$ is a 2-dimensional subspace of the space generated by the $e_{z i}$. Hence $\tau_{\infty}(\mathbf{L})$ has dimension 26 (and is in fact equal to \mathbf{W}). Therefore $\operatorname{dim} \mathbf{J}=\operatorname{dim} \mathbf{L}-\operatorname{dim} \mathbf{W}=78-26=$ 52.

Proposition 3.19 Let $r, s \in \Phi_{F}$. Then

1. $\left[E_{r}, E_{-r}\right]=H_{r}$.
2. $\left[E_{r}, E_{s}\right]=2 E_{r+s}$ or $-2 E_{r+s}$, when both $r-s, r+s \in \Phi_{F}$.
3. $\left[E_{r}, E_{s}\right]=E_{r+s}$ or $-E_{r+s}$, when $r+s \in \Phi_{F}$ but $r-s \notin \Phi_{F}$.
4. $\left[E_{r}, E_{s}\right]=0$ when $\langle r, s\rangle \geq 0$.
5. $\left[E_{r}, H_{s}\right]=\langle s, r\rangle E_{r}$.
6. $\left[H_{r}, H_{s}\right]=0$.

Proof: We distinguish four cases, according to whether r, s are short or long roots. The last statement of this proposition is a consequence of the fact that H_{r}, H_{s} are diagonal matrices.

Case 1. If both $r, s \in \Phi_{L}$ nothing remains to be proved, for in that case the proposition is equivalent to Proposition 2.22.

Case 2. Assume $r \in \Phi_{L}, s \in \Phi_{S}$ and consider $v \in \Phi$ such that $s=(v+\bar{v}) / 2$. Then

$$
\left.\left[E_{r}, E_{s}\right]=\left[E_{r}, E_{v}\right]+\left[E_{r}, E_{\bar{v}}\right]=\left[E_{r}, E_{v}\right]+\left[\overline{E_{r}}, \overline{E_{v}}\right]=\left[E_{r}, E_{v}\right]-\overline{\left[E_{r}, E_{v}\right]}\right]
$$

because $r=\bar{r}$. By Proposition 2.22, $\left[E_{r}, E_{v}\right]=0$ unless $r \cdot v=-1$ in which case it is equal to $\pm E_{r+v}$. Because $r+v \neq \bar{r}+\bar{v}$, it follows that $\left[E_{r}, E_{s}\right]=0$ or
$\left[E_{r}, E_{S}\right]= \pm E_{r+s}\left(\right.$ with $\left.r+s \in \Phi_{S}\right)$ when $r \cdot v=-1$. By (3.15) $r \cdot s=r \cdot v$, hence $\left[E_{r}, E_{s}\right]= \pm E_{r+s}$ if and only if $r \cdot s=-1$, which is equivalent to $r+s \in \Phi_{F}$, by (3.14).

Similarly, $\left[E_{r}, H_{s}\right]=\left[E_{r}, H_{v}+H_{\bar{v}}\right]=((v+\bar{v}) \cdot r) E_{r}=(2 s \cdot r) E_{r}=\langle s, r\rangle E_{r}$.
Case 3. If $r \in \Phi_{S}$ and $s \in \Phi_{L}$ then we may apply the previous case with the roles of r and s interchanged, except for statement 5 . Now, let $u \in \Phi$ such that $r=(u+\bar{u}) / 2$. Then $\left[E_{r}, H_{s}\right]=\left[E_{u}+E_{\bar{u}}, H_{s}\right]=(s \cdot u) E_{u}+(s \cdot \bar{u}) E_{\bar{u}}=(s \cdot u) E_{r}$, because $s \cdot u=\bar{s} \cdot \bar{u}=s \cdot u$.

Case 4. Assume $r, s \in \Phi_{S}$ and define $u, v \in \Phi$ as before. We have

$$
\begin{equation*}
\left[E_{r}, E_{s}\right]=\left[E_{u}, E_{v}\right]-\overline{\left[E_{u}, E_{v}\right]}+\left[E_{\bar{u}}, E_{v}\right]-\overline{\left[E_{\bar{u}}, E_{v}\right]} . \tag{3.45}
\end{equation*}
$$

Note that this expression is non-zero if and only if $u \cdot v<0$ or $\bar{u} \cdot v<0$. By (3.16) this is the case if and only if $\langle r, s\rangle \leq 0$.

If $\langle r, s\rangle=-2$, then we may without loss of generality assume that $u=-v$ (otherwise we interchange the roles of u and \bar{u}) and then $\left[E_{u}, E_{v}\right]=H_{u}-\overline{H_{u}}=$ H_{r} by (3.41).

If $\langle r, s\rangle=0$ or -1 we may without loss of generality assume $u \cdot v=-1$ and $\bar{u} \cdot v \geq 0$. We obtain $\left[E_{u}, E_{v}\right]= \pm E_{u+v},\left[E_{\bar{u}}, E_{v}\right]=0$ and hence $\left[E_{r}, E_{s}\right]=$ $\pm\left(E_{u+v}+E_{\overline{u+v}}\right)$.

When $\langle r, s\rangle=0, r+s$ is a long root, and therefore $u+v=\overline{u+v}$. Indeed $8=$ $4(r+s)^{2}=(u+v+\overline{u+v})^{2}=(u+v)^{2}+2(u+v) \cdot(\overline{u+v})+(\overline{u+v})^{2}$ can only be satisfied when $(u+v) \cdot(\overline{u+v})=2$. Then also $u+v=\overline{u+v}=r+s$ and $\left[E_{r}, E_{s}\right]= \pm 2 E_{r+s}$. When $\langle r, s\rangle=-1, r+s$ is a short root and $\left[E_{r}, E_{s}\right]= \pm E_{r+s}$.

Finally, $\left[E_{r}, H_{s}\right]=\left[E_{u}+E_{\bar{u}}, H_{v}+H_{\bar{v}}\right]=(u \cdot v+u \cdot \bar{v}) E_{u}+(\bar{u} \cdot v+\bar{u} \cdot \bar{v}) E_{\bar{u}}=$ $(2 r \cdot s) E_{r}=\langle s, r\rangle E_{r}$.

- This proposition 'almost' provides us with a Chevalley basis for J. To obtain a true Chevalley basis we use the same technique as was explained in the note after Proposition 2.22.
- Compared to Proposition 2.22 we need to make an extra distinction when $r+s \in$
Φ_{F}. The resulting coefficient in the right hand side of $\left[E_{r}, E_{s}\right]$ is now either ± 2 or ± 1 depending on whether $r-s$ is also a root, or not. By (3.14), if $r-s, r+s$ both belong to Φ_{F}, then both r, s must be short roots.

Lemma 3.20 Let $p, q \in \mathcal{P}^{*}$ such that $p \not \perp q$ and $p_{\infty}=q_{\infty}$. Then

$$
\begin{equation*}
e_{p} * \overline{e_{q}}=-e_{q} * \overline{e_{p}}= \pm E_{r+s}, \tag{3.46}
\end{equation*}
$$

with $r=(p+\bar{p}) / 2, s=(q+\bar{q}) / 2$.

Proof: We have $e_{p} \times e_{q}=0$ and $e_{p} \overline{e_{q}}=0$, hence $e_{p} * \overline{e_{q}}=-e_{q} * \overline{e_{p}}$ by (3.33). Also $p \not \perp-\bar{q}$ and therefore $u=p+\bar{q}$ is a root. By definition $E_{u}=E_{p+\bar{q}}=$ $\pm e_{p} * \eta_{-\bar{q}}= \pm e_{p} * \overline{e_{q}}$. Also $\bar{p}-p=p+\infty=q_{\infty}=\bar{q}-q$ and therefore $q+\bar{p}=\bar{p}+q$. Hence $r+s=(p+q+\bar{p}+\bar{q}) / 2=p+\bar{q}$.

The following proposition establishes the behaviour of the dot product on J.

Proposition 3.21 Let $r, s \in \Phi_{F}, H \in \mathbf{G}$. Then

$$
\begin{array}{ll}
E_{r} \cdot E_{s} & = \begin{cases}-2 & \text { when } r=-s \in \Phi_{S} \\
-1 & \text { when } r=-s \in \Phi_{L} \\
0 & \text { otherwise. }\end{cases} \tag{3.47}\\
E_{r} \cdot H=H \cdot E_{r} & =0 \\
H_{r} \cdot H_{s} & =r^{*} \cdot s^{*}
\end{array}
$$

Proof: We will only consider the special case where both r, s are short roots and leave the other cases to the reader. Let $u, v \in \Phi$ be such that $r=(u+\bar{u}) / 2$, $s=(v+\bar{v}) / 2$. We have $E_{r} \cdot E_{s}=E_{u} \cdot E_{v}+E_{\bar{u}} \cdot E_{v}+E_{u} \cdot E_{\bar{v}}+E_{\bar{u}} \cdot E_{\bar{v}}=$ $2 E_{u} \cdot E_{v}+2 E_{\bar{u}} \cdot E_{v}$, by (3.23). This is nonzero only when either $u=-v$ or $u=-\bar{v}$, in which case its value is -2 . This happens exactly when $r=-s$.

Similarly $H_{r} \cdot H_{s}$ evaluates to $(u+\bar{u}) \cdot(v+\bar{v})=4 r \cdot s$ and $E_{r} \cdot H=E_{u} \cdot H+$ $E_{\bar{u}} \cdot H=0$.

- When char $K=2$ the dot product on \mathbf{J} is no longer nondegenerate as it was on \mathbf{L}. In fact, in that case $E_{s} \cdot \mathbf{J}=0$ and $H_{s} \cdot \mathbf{J}=0$ whenever s is a short root.

3.3 Automorphisms of W

An automorphism g of \mathbf{V} will be called an automorphism of \mathbf{W} if and only if it satisfies $\infty^{g}=\infty$. As an immediate consequence g will then satisfy

$$
\begin{equation*}
\bar{a}^{g}=\overline{a^{g}}, \quad \bar{A}^{g}=\overline{A^{g}}, \quad \bar{\alpha}^{g}=\overline{\alpha^{g}}, \tag{3.48}
\end{equation*}
$$

and similar equalities for all other operations on the various L-modules which were introduced. Also note that $\mathbf{W}^{g}=\mathbf{W}$ and $\mathbf{J}^{g}=\mathbf{J}$.

- For our particular choice of ∞, all field automorphisms of \mathbf{V} are also (field) automorphisms of \mathbf{W}.

If E is an isotropic element of \mathbf{J}, then also $x(E)$ is an automorphism of \mathbf{W}. This is however not true when $E \in \mathbf{L}-\mathbf{J}$. The following lemma shows how an isotropic element of this type can still be used to construct an automorphism of \mathbf{W} :

Lemma 3.22 Let Ebe an isotropic element of \mathbf{L}. Define

$$
\begin{equation*}
x^{\prime}(E)=x^{\prime}(-\bar{E}) \stackrel{\text { def }}{=} x(E) x(-\bar{E})=x(-\bar{E}) x(E) \tag{3.49}
\end{equation*}
$$

Then $x^{\prime}(E)$ is an automorphism of \mathbf{W} and the following properties hold (with $S=$ $E-\bar{E}):$

$$
\begin{align*}
a^{x^{\prime}(E)} & =a-a S-a E \bar{E}=a-a S-(a E \bar{\infty}) \infty E \\
\alpha^{x^{\prime}(E)} & =\alpha+S \alpha-\bar{E} E \alpha=\alpha+S \alpha-(\infty E \alpha) E \bar{\infty}, \\
A^{x^{\prime}(E)} & =A+[S, A]-(E \cdot A) E-(\bar{E} \cdot A) \bar{E}-[\bar{E},[E, A]] \tag{3.50}\\
& =A+[S, A]-(S \cdot A) S-\infty E A * E \bar{\infty},
\end{align*}
$$

for all $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, A \in \mathbf{L}$.

Proof: Note that $[E,-\bar{E}]=0$ by Proposition 3.14-5, and hence $x(E)$ and $x(-\bar{E})$ commute, by (2.97). This proves that (3.49) is sound.

We have $\infty^{x^{\prime}(E)}=\infty^{x(E) x(-\bar{E})}=\infty-\infty E+\infty \bar{E}-\infty E \bar{E}$. Because $\infty E=\infty \bar{E}$ we find $\infty E \bar{E}=\infty(\bar{E})^{2}$ and this is zero because \bar{E} is isotropic. This proves $\infty^{x^{\prime}(E)}=\infty$ and therefore $x^{\prime}(E)$ is an automorphism of \mathbf{W}.

Let $A \in \mathbf{L}$. By (2.84) we find

$$
\begin{aligned}
A^{x^{\prime}(E)=} & A^{x(E) x(-\bar{E})} \\
= & {[A+[E, A]-(E \cdot A) E]^{x(-\bar{E})} } \\
= & A+[E, A]-(E \cdot A) E-[\bar{E}, A]-[\bar{E},[E, A]]+(E \cdot A)[\bar{E}, E] \\
& -(\bar{E} \cdot A) \bar{E}-(\bar{E} \cdot[E, A]) \bar{E}+(E \cdot A)(\bar{E} \cdot E) \bar{E} \\
= & A+[E, A]-[\bar{E}, A]-[\bar{E},[E, A]]-(E \cdot A) E-(\bar{E} \cdot A) \bar{E} \\
= & A+[E, A]-[\bar{E}, A]+(E \cdot A) \bar{E}+(\bar{E} \cdot A) E-\infty E A * E \bar{\infty}
\end{aligned}
$$

using Proposition 3.14. It can easily be verified that this is the result listed in (3.50).

We leave it to the reader to compute the images of $a \in \mathbf{V}$ and $\alpha \in \mathbf{V}^{*}$ in a similar way.

The elements $x^{\prime}(E)$ are only of interest when $E \neq \bar{E}$, for otherwise $x^{\prime}(E)$ is the identity.

- When char $K \neq 2$ then (3.50) can be further simplified to

$$
\begin{aligned}
a^{x^{\prime}(E)} & =a-a S+\frac{1}{2} a S^{2} \\
\alpha^{x^{\prime}(E)} & =\alpha+S \alpha+\frac{1}{2} S^{2} \alpha \\
A^{x^{\prime}(E)} & =A+[S, A]+\frac{1}{2}[S,[S, A]] .
\end{aligned}
$$

The group generated by all automorphisms of the form $x(E)$ where E is an isotropic element of \mathbf{L} such that $E=\bar{E}$, together with all elements $x^{\prime}(E)$ as defined in Lemma 3.22, will be denoted by $\widehat{\mathrm{F}}_{4}(K)$ and is called a Chevalley group of type F_{4}. It is a subgroup of $\widehat{E}_{6}(K)$ and all its elements are automorphisms of \mathbf{W}.

- In [1] $\hat{\mathrm{F}}_{4}(K)$ is defined as the subgroup of $\hat{\mathrm{E}}_{6}(K)$ of isometries of the bilinear form $[a, b] \mapsto\langle\infty, a, b\rangle$, which is essentially the same as our notion of automorphism of \mathbf{W}.

When $r \in \Phi_{L}, k \in K$, then $x_{r}(k) \in \widehat{F}_{4}(K)$. If s is a short root, then write $s=(u+\bar{u}) / 2=(p+\bar{p}) / 2$ with $u \in \Phi, p \in \mathcal{P}^{*}$ and define

$$
\begin{equation*}
x_{s}(k) \stackrel{\text { def }}{=} x^{\prime}\left(k E_{u}\right)=x_{u}(k) x_{\bar{u}}(k) \tag{3.51}
\end{equation*}
$$

By Lemma $3.22 x_{s}(k) \in \widehat{F}_{4}(K)$. Also $\infty E_{u}= \pm e_{p}$, so (3.50) translates to

$$
\begin{align*}
a^{x_{s}(k)} & =a-k a E_{s}-k^{2}(a \eta-\bar{p}) e_{p}, \\
\alpha^{x_{s}(k)} & =\alpha+k E_{s} \alpha-k^{2}\left(e_{p} \alpha\right) \eta-\bar{p}, \tag{3.52}\\
A^{x_{s}(k)} & =A+k\left[E_{s}, A\right]-k^{2}\left(E_{s} \cdot A\right) E_{s}-k^{2} e_{p} A * \eta_{-\bar{p}},
\end{align*}
$$

for all $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}, A \in \mathbf{L}$. This proves that the definition of $x_{s}(k)$ is independent of the choice of u.

- The elements $x_{s}(k)$ correspond to those given in [8], except that as before, for certain s we should use $x_{s}(-k)$ instead of $x_{s}(k)$.

When r is a long root, the action of $x_{r}(k)$ on \mathbf{V} is as in (2.85). When s is a short root, say $s=(p+\bar{p}) / 2$ with $p \in \mathcal{P}^{*}$, then from (3.42) and (3.52) we obtain

$$
\begin{align*}
& e_{-\bar{p}}^{x_{s}(k)}=e_{-\bar{p}} \pm k\left(e_{z}-e_{z^{\prime}}\right)-k^{2} e_{p}, \\
& e_{z}^{x_{s}(k)}=e_{z} \pm k e_{p}, \\
& e_{z_{s}}^{x_{s}(k)}=e_{z^{\prime}} \mp k e_{p}, \quad \text { (sign opposite to the previous case), } \tag{3.53}\\
& e_{q}^{x_{s}(k)}=e_{q} \pm k e_{\bar{p}+\bar{q}}, \\
& e_{q}^{x_{s}(k)}=e_{q}, \quad \text { for } q \in \mathcal{P}^{*} \text { such that }\langle s, q\rangle=-1, \\
& e_{q} \quad \text { for all other } q \in \mathcal{P},
\end{align*}
$$

where z, z^{\prime} are the points of L_{∞} different from p_{∞}.

Lemma 3.23 Let $r \in \Phi_{L}, s \in \Phi_{S}$. Then

$$
E_{r}^{x_{s}(k)}= \begin{cases}E_{r} \pm k E_{r+s}+k^{2} E_{r+2 s}, & \text { when }\langle r, s\rangle=-1 \tag{3.54}\\ E_{r}, & \text { otherwise. }\end{cases}
$$

Proof: The action of $x_{S}(k)$ on E_{r} with $r \in \Phi_{L}$ can be computed from Proposition 3.19 and (3.52). Consider $p \in \mathcal{P}^{*}$ such that $s=(p+\bar{p}) / 2$. We compute $e_{p} E_{r} * \eta_{-\bar{p}}$. Note that $e_{p} E_{r} \neq 0$ only if $p \cdot r=-1$, i.e., when $\langle r, s\rangle=-1$, and then $e_{p} E_{r}= \pm e_{p+r}$. Hence $e_{p} E_{r} * \eta_{-\bar{p}}= \pm E_{r+p+\bar{p}}= \pm E_{r+2 s}$.

To see that the sign of this result must be negative, note that p is a positive base point of r if and only if $-\bar{p}$ is a negative base point of $p+\bar{p}+r$ by Lemma 3.15.

Lemma 3.24 Let E, F be isotropic elements of \mathbf{L} such that $E \cdot F=-1$ and $[E, \bar{F}]=0$. Define

$$
\begin{equation*}
n^{\prime}(E, F) \stackrel{\text { def }}{=} x^{\prime}(E) x^{\prime}(F) x^{\prime}(E) \tag{3.55}
\end{equation*}
$$

Then $n^{\prime}(E, F)=n^{\prime}(F, E)=n^{\prime}(-\bar{E},-\bar{F})=n^{\prime}(-\bar{F},-\bar{E})$. Also

$$
\begin{equation*}
n^{\prime}(E, F)=n(E, F) n(-\bar{E},-\bar{F})=n(-\bar{E},-\bar{F}) n(E, F) \tag{3.56}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{n^{\prime}(E, F)}=F, \quad \bar{E}^{n^{\prime}(E, F)}=\bar{F}, \quad F^{n^{\prime}(E, F)}=E, \quad \bar{F}^{n^{\prime}(E, F)}=\bar{E} \tag{3.57}
\end{equation*}
$$

Proof: Note that $[E,-\bar{E}]=[E,-\bar{F}]=[F,-\bar{E}]$ and hence by (2.97) both $x(E)$ and $x(F)$ commute with both $x(-\bar{E})$ and $x(-\bar{F})$. Hence

$$
\begin{aligned}
n^{\prime}(E, F)=x^{\prime}(E) x^{\prime}(F) x^{\prime}(E) & =x(E) x(-\bar{E}) x(F) x(-\bar{F}) x(E) x(-\bar{E}) \\
& =x(E) x(F) x(-\bar{E}) x(E) x(-\bar{F}) x(-\bar{E}) \\
& =x(E) x(F) x(E) x(-\bar{E}) x(-\bar{F}) x(-\bar{E}) \\
& =n(E, F) n(-\bar{E},-\bar{F}) .
\end{aligned}
$$

Because $x^{\prime}(E)=x^{\prime}(-\bar{E})$ and $x^{\prime}(F)=x^{\prime}(-\bar{F})$, we have $n^{\prime}(E, F)=n^{\prime}(-\bar{E},-\bar{F})$ and therefore $n(E, F) n(-\bar{E},-\bar{F}),=n(-\bar{E},-\bar{F}) n(E, F)$. This expression is left unchanged when E and F are interchanged, because $n(E, F)=n(F, E)$ and $n(-\bar{E},-\bar{F})=n(-\bar{F},-\bar{E})$. It follows that $n^{\prime}(E, F)=n^{\prime}(F, E)$.

By (2.89) we find

$$
E^{n^{\prime}(E, F)}=F^{n(-\bar{F},-\bar{E})}=F^{x(-\bar{F}) x(-\bar{E}) x(-\bar{F})}
$$

and this is equal to F because $[F,-\bar{F}]=[F,-\bar{E}]=0$. This yields the first identity of (3.57). The other identities can be obtained from the first by interchanging E and F, or substituting $-\bar{E}$ for E and $-\bar{F}$ for F.

Consider a short root s with $s=(u+\bar{u}) / 2$ as usual. Note that $E=k E_{u}$ and $F=k^{-1} E_{-u}$ satisfy the conditions of Lemma 3.24, and then

$$
\begin{equation*}
n_{s}(k) \stackrel{\text { def }}{=} n\left(k E_{u}, k^{-1} E_{-u}\right)=x_{s}(k) x_{-s}\left(k^{-1}\right) x_{s}(k)=n_{u}(k) n_{\bar{u}}(k) \tag{3.58}
\end{equation*}
$$

is well defined (and belongs to $\widehat{\mathrm{F}}_{4}(K)$). Also of interest are the following group elements, for $k \in K-\{0\}, s \in \Phi_{S}$:

$$
\begin{equation*}
h_{s}(k) \stackrel{\text { def }}{=} n_{s}(-1) n_{s}(k) . \tag{3.59}
\end{equation*}
$$

Using (2.33) we may now easily compute the following identities

$$
\begin{align*}
e_{p}^{n_{s}(k)} & = \pm k^{-\langle s, p\rangle} e_{w_{s}^{\prime}(p)}, & e_{p}^{h_{s}(k)} & =k^{\langle s, p\rangle} e_{p} \\
\eta_{p}^{n_{s}(k)} & = \pm k^{\langle s, p\rangle} \eta_{w_{s}^{\prime}(p)}, & \eta_{p}^{h_{s}(k)} & =k^{-\langle s, p\rangle} \eta_{p} \\
E_{r}^{n_{s}(k)} & =k^{-\langle s, r\rangle} E_{w_{s}^{\prime}(r),} & E_{r}^{h_{s}(k)} & =k^{\langle s, r\rangle} E_{r} \tag{3.60}\\
H_{p}^{n_{s}}(k) & =H_{w_{s}^{\prime}(p),} & H_{p}^{h_{s}(k)} & =H_{p} \\
H_{r}^{n_{s}}(k) & =H_{w_{s}^{\prime}(r),}, & H_{r}^{h_{s}(k)} & =H_{r} .
\end{align*}
$$

for all $k \in K, r \in \Phi_{F} \cup \Phi, s \in \Phi_{S}, p \in \mathcal{P}$.
Again this shows that the element $n_{s}(k)$ acts on the 1-dimensional subspace $K e_{p}$ of \mathbf{V} (respectively $K E_{r} \leq \mathbf{L}$) in the same way as the Weyl group element w_{s}^{\prime} acts on the points of \mathcal{P} (respectively the roots of Φ). Hence $W\left(\mathrm{~F}_{4}\right)$ is a quotient group of the subgroup N^{\prime} of $\widehat{\mathrm{E}}_{6}(K)$ generated by all $n_{r}(k)$ with $r \in \Phi_{L}$, and all $n_{s}(k)$ with $s \in \Phi_{S}$. The group elements $h_{r}(k)$ and $h_{s}(k)$ belong to the kernel of the corresponding homomorphism.

In the remainder of this section we will establish various transitivity properties of the group $\widehat{F}_{4}(K)$ using a similar reduction process as in Section 2.4. This time we will use elements of the form $x_{r}(k)$ and $x_{s}(k)$ with $r \in \Phi_{L}, s \in \Phi_{S}$ and $k \in K$.

Theorem 3.25 The orbits of $\widehat{\mathrm{F}}_{4}(K)$ on isotropic elements of \mathbf{V} are as follows:

1. The trivial orbit $\{0\}$.
2. The set of all isotropic elements that belong to \mathbf{W}. A typical representative of this orbit is given by e_{p} with $p \in \mathcal{P}^{*}$.
3. The set of all isotropic elements that belong to $\mathbf{V}-\mathbf{W}$. A typical representative of this orbit is given by e_{z} with $z \in L_{\infty}$.

Proof: Let e denote an isotropic element of \mathbf{V}. We will prove that e can be mapped by $\widehat{F}_{4}(K)$ onto an element of the form $k e_{p}$ with $p \in \mathcal{P}$ and $k \in K$. In fact, the scalar k can be removed by an appropriate application of $h_{r}(k)$ (for some $r \in \Phi_{F}$) and the point p can be chosen freely in one of the two orbits of $W\left(\mathrm{~F}_{4}\right)$ on \mathcal{P} by a suitable $n_{r}(1)$.

First assume that $e \in \mathbf{V}_{\infty}$. Then e is isotropic if and only if $e=k e_{p}$ with $k \in K$ and $p \in L_{\infty}$ and therefore e belongs to one of the stated orbits.

If $e \in \mathbf{V}-\mathbf{V}_{\infty}$ then there is at least one $p \in \mathcal{P}^{*}$ for which the coordinate $e[p] \neq 0$. For this p we partition the set \mathcal{P}^{*} into 5 parts which we will denote by $\mathcal{P}_{2}^{*}, \mathcal{P}_{1}^{*}, \mathcal{P}_{0}^{*}, \mathcal{P}_{-1}^{*}$ and \mathcal{P}_{-2}^{*}. The set \mathcal{P}_{i}^{*} contains those elements q of \mathcal{P}^{*} for which $(p+\bar{p}) \cdot q=i$. Note that these sets correspond to the five cases of (3.16). We have $\mathcal{P}_{2}^{*}=\{p\}$ and $\mathcal{P}_{-2}^{*}=\{-\bar{p}\}$.

Consider $s \in \Phi_{S}, p^{\prime} \in \mathcal{P}^{*}$ such that $s=\left(p^{\prime}+\bar{p}^{\prime}\right) / 2$ and $\langle s, p\rangle=-1$. If $q \in \mathcal{P}^{*}$ such that $e[q] \neq 0$ then (3.16) shows us that applying $x_{s}(k)$ may affect coordinates at positions $\bar{p}^{\prime}+\bar{q}$ (provided this is a point of \mathcal{P}^{*}), p^{\prime} and at infinity. Now $(p+\bar{p}) \cdot\left(\bar{p}^{\prime}+\bar{q}\right)=-1+(p+\bar{p}) \cdot q$, and hence $\bar{p}^{\prime}+\bar{q} \in \mathcal{P}_{i-1}^{*}$ when $q \in \mathcal{P}_{i}^{*}$. It follows that $x_{s}(k)$ will only affect coordinate positions in $\mathcal{P}_{1}^{*}, \ldots$, \mathcal{P}_{-2}^{*} and L_{∞}, and of those only a single coordinate position (i.e., $\bar{p}+\bar{p}^{\prime}$) will belong to \mathcal{P}_{1}^{*}. This means that we may apply consecutive reductions of this type to annihilate every single coordinate with an index in \mathcal{P}_{1}^{*}.

Similarly, let $r \in \Phi_{L}$ be such that $p \cdot r=-1$, and then $(p+\bar{p}) \cdot r=-2$. If $q \in \mathcal{P}^{*}$ such that $e[q] \neq 0$, then applying $x_{r}(k)$ may affect coordinates at positions $q+r$ (when $q+r \in \mathcal{P}$). Because $q+r \in \mathcal{P}_{i-2}^{*}$ when $q \in \mathcal{P}_{i}^{*}$ we see that $x_{r}(k)$ will only affect coordinate positions in $\mathcal{P}_{0}^{*}, \mathcal{P}_{-1}^{*}$ and \mathcal{P}_{-2}^{*}, and of those only a single coordinate position (i.e., $p+r$) will belong to \mathcal{P}_{0}^{*}. This means that we may apply consecutive reductions of this type to annihilate every single coordinate with an index in \mathcal{P}_{0}^{*} while leaving the coordinates with index in \mathcal{P}_{1}^{*} intact.

After applying the necessary reductions of this type we end up with an element for which all non-zero coordinates have index in $\mathcal{P}_{0}^{*}, \mathcal{P}_{-1}^{*}, \mathcal{P}_{-2}^{*}$ or L_{∞}, i.e., at positions q such that either $p \sim q$ or $q \in L_{\infty}$. As in the proof of Theorem 2.35 we may compute $e^{\#}$ (which should be 0) to show that e must then be of
the form $e=k_{1} e_{p}+k_{2} e_{-\bar{p}}+k_{3} e_{z}+k_{4} e_{z^{\prime}}$, with $k_{1} k_{2}=k_{3} k_{4}$, where z, z^{\prime} denote the points of L_{∞} different from p_{∞}.

We may apply $x_{s}(k)$ with $s=(-\bar{p}-p) / 2$ to reduce k_{4} to zero, and then also $k_{2}=0$ (because $k_{1} \neq 0$). Finally, when $k_{3} \neq 0$ we use $x_{s}(k)$ with $s=(p+\bar{p}) / 2$ to reduce e to a multiple of e_{z}, otherwise e is a multiple of e_{p}.

- Theorem 8.6 in [1] states that $\widehat{\mathrm{F}}_{4}(K)$ acts transitively on the isotropic 1 -spaces of \mathbf{W}, which is essentially a 'projective version' of the second statement of this theorem.

Theorem 3.26 The following is an exhaustive list of all orbits of $\widehat{\mathrm{F}}_{4}(K)$ on ordered pairs (e, f) where both $e, f \in \mathbf{W}-\{0\}$ are isotropic. Let $x, p \in \mathcal{P}^{*}$.

1. For each $\ell \in K-\{0\}$ an orbit with representative $\left(e_{x}, \ell e_{-\bar{x}}\right)$.
2. An orbit with representative $\left(e_{x}, e_{p}\right)$ where $(p+\bar{p}) \cdot x=-1$.
3. An orbit with representative $\left(e_{x}, e_{p}\right)$ where $(p+\bar{p}) \cdot x=0$.
4. An orbit with representative $\left(e_{x}, e_{p}\right)$ where $(p+\bar{p}) \cdot x=+1$.
5. For each $\ell \in K-\{0\}$ an orbit with representative $\left(e_{x}, \ell e_{x}\right)$.

The following table list several properties of the corresponding pairs (e, f).

	Case 1	Case 2	Case 3	Case 4	Case 5
$e \bar{f}$	ℓ	0	0	0	0
$e \times f$	isotr., $\notin \mathbf{W}$	isotr., $\in \mathbf{W}, \neq 0$	0	0	0
$e * \bar{f}$	not isotr.	isotr., $\notin \mathbf{J}$	isotr., $\in \mathbf{J}, \neq 0$	0	0
$f \in K e$	no	no	no	$n o$	$f=\ell e$

Proof: Because $\widehat{\mathrm{F}}_{4}(K)$ is transitive on isotropic points of \mathbf{W} we may choose f of the form $f=e_{x}$ without loss of generality.

We will apply the same reduction process as in the proof of Theorem 3.25, but this time we must make sure that the elements $x_{r}(k)$ and $x_{s}(k)$ which we use, leave e_{x} invariant. This means that we will only use elements $r \in \Phi_{L}$ such that $r \cdot x \geq 0$, i.e., we can only reduce coordinate positions $q=r+p$ of \mathcal{P}_{0}^{*} which satisfy the following property :

$$
\begin{equation*}
q \cdot x \geq p \cdot x \tag{3.61}
\end{equation*}
$$

Similarly, we can only use elements $s=\left(p^{\prime}+\bar{p}^{\prime}\right) / 2 \in \Phi_{S}$ such that $s \cdot x \geq 0$, i.e., we can only reduce coordinate positions $q=\bar{p}+\bar{p}^{\prime}$ of \mathcal{P}_{1}^{*} for which

$$
\begin{equation*}
(q+\bar{q}) \cdot x \geq(p+\bar{p}) \cdot x \tag{3.62}
\end{equation*}
$$

for we have $q+\bar{q}=\left(\bar{p}+\bar{p}^{\prime}\right)+\left(p+p^{\prime}\right)=p+\bar{p}+2 s$.
In the final reduction stage we need $x_{s}(k)$ with $s=(-\bar{p}-p) / 2$ to obtain an element of the form $k_{1} e_{p}+k_{3} e_{z}$ with $p \in \mathcal{P}^{*}$ and $z \in L_{\infty}$. Again this is only allowed when $x_{s}(k)$ leaves e_{x} invariant, i.e., when

$$
\begin{equation*}
(p+\bar{p}) \cdot x \leq 0 . \tag{3.63}
\end{equation*}
$$

We consider five different cases.
Case 1. Assume $e[-\bar{x}] \neq 0$. We apply the reductions with $p=-\bar{x}$. Note that $p \cdot x=-\bar{x} \cdot x=-2 / 3,(p+\bar{p}) \cdot x=-2$ and hence (3.61-3.63) are trivially satisfied.

Case 2. Assume $e[-x]=0$ but $e[p] \neq 0$ for some p such that $(p+\bar{p}) \cdot x=-1$ (and then $p \cdot x=-2 / 3$). Again (3.61-3.63) are satisfied, except for $q \in \mathcal{P}_{1}^{*}$ such that $(q+\bar{q}) \cdot x=-2$. But then $q=-x$ and the coordinate at this position is already known to be zero and hence need not be reduced.

Case 3. Otherwise, assume $e[p] \neq 0$ for some p such that $(p+\bar{p}) \cdot x=0$, and then $p \cdot x=1 / 3$. Again (3.61-3.63) are satisfied, except for those coordinate positions q which are already known to be zero.

Case 4. Otherwise, assume $e[p] \neq 0$ for some p such that $(p+\bar{p}) \cdot x=-1$, and then $p \cdot x=1 / 3$. Again (3.61-3.62) are satisfied, except for those coordinate positions q which are already known to be zero. However, now (3.63) is not, hence we cannot execute the final reduction step.

In other words, we end up with an element of the form $e=k_{1} e_{p}+k_{2} e_{-\bar{p}}+$ $k_{3} e_{z}+k_{4} e_{z^{\prime}}$ with $k_{1} k_{2}=k_{3} k_{4}$ where z, z^{\prime} denote the points of L_{∞} different from p_{∞}. If $k_{2} \neq 0$, then interchanging the roles of $-\bar{p}$ and p this element can be further reduced using case 2 of this proof. Otherwise, the fact that $a \in \mathbf{W}$ implies $k_{3}=k_{4}$, so $k_{3}=k_{4}=0$ and a is a multiple of e_{p}.

Case 5. Otherwise, e must be of the form $e=\ell e_{x}+\ell_{1} e_{x_{\infty}}+\ell_{2} e_{z}+\ell_{3} e_{z^{\prime}}$ with $L_{\infty}=\left\{x_{\infty}, z, z^{\prime}\right\}$. Then $e^{\#}=0$ and $e \in \mathbf{W}$ implies $\ell_{1}=\ell_{2}=\ell_{3}=0$.

In each of these five cases we see that e is equivalent to an element of the form $k e_{p}$ with $k \in K$. To get rid of the factor k we must find a suitable element $h_{r}(k)$ or $h_{s}(k)$ which leaves e_{x} invariant. We leave it to the reader to prove that this is always possible, except in the case $p=x$ or $p=-\bar{x}$.

- A 'projective version' of this theorem can be found as Theorem 9.5 in [1].

It is an immediate consequence of this theorem that $\widehat{\mathrm{F}}_{4}(K)$ has three orbits on the isotropic elements of \mathbf{L} : the trivial orbit $\{0\}$, the set of all isotropic elements of \mathbf{J} and the set of all isotropic elements of $\mathbf{L}-\mathbf{J}$.

Theorem 3.27 The following is an exhaustive list of all orbits of $\widehat{\mathrm{F}}_{4}(K)$ on ordered pairs (E, e) where F is a non-zero isotropic element of \mathbf{J} and e is a non-zero isotropic element of \mathbf{W}. Let $t \in \Phi_{L}, p \in \mathcal{P}^{*}$.

1. An orbit with representative $\left(E_{t}, e_{p}\right)$ where $\langle t, p\rangle=-1$.
2. An orbit with representative $\left(E_{t}, e_{p}\right)$ where $\langle t, p\rangle=0$.
3. An orbit with representative $\left(E_{t}, e_{p}\right)$ where $\langle t, p\rangle=+1$.

These orbits are the intersections with $\mathbf{J} \times \mathbf{W}$ of the corresponding orbits of $\widehat{\mathrm{E}}_{6}(K)$. If $e \in \mathbf{V} E$, then there exist isotropic elements $d, f \in \mathbf{W}$ such that $e=d E$ and $E=e * \bar{f}$.

Proof: We set $E=E_{t}$ and apply the reduction process to e, using only group elements $x_{r}(k)$ and $x_{s}(k)$ that leave E_{t} invariant.

For $r \in \Phi_{L}$ this means that we can only reduce coordinate positions q of \mathcal{P}_{0}^{*} which satisfy the following property :

$$
\begin{equation*}
q \cdot t \geq p \cdot t \tag{3.64}
\end{equation*}
$$

by (2.86). For $s \in \Phi_{S}$ we find that $\langle t, s\rangle \geq 0$ by (3.54) and hence

$$
\begin{equation*}
(q+\bar{q}) \cdot t \geq(p+\bar{p}) \cdot t . \tag{3.65}
\end{equation*}
$$

Similarly, in the final stage we need

$$
\begin{equation*}
(p+\bar{p}) \cdot t \leq 0 . \tag{3.66}
\end{equation*}
$$

Case 1. Assume we can find a base point p of t such that $e[p] \neq 0$. We have $p \cdot t=-1,(p+\bar{p}) \cdot t=-2$ and therefore (3.64-3.66) are trivially satisfied. After reduction we end up with an element of the form ℓe_{p}.

Case 2. Assume $e[q]=0$ for all base points q of t, but we may find a point p such that $e[p] \neq 0, p \cdot t=0$ and $(p+\bar{p}) \cdot t=0$. As in earlier proofs, the reduction process can again be applied to all coordinates which were not 'taken care of' by the previous case. Again we end up with an element of the form ℓe_{p}.

Case 3. Assume $e[q]=0$ except when q is a base point for $-r$. This time we need to use the special technique of case 4 of the proof of Theorem 3.26 because we cannot always satisfy (3.66) to once again reduce e to an element of the form ℓe_{p}.

We leave it to the reader to prove that we can get rid of the factor ℓ in each of these three cases and to prove the stated properties for the case $e \in \mathbf{V} E$.

Theorem 3.28 The following is an exhaustive list of all orbits of $\widehat{\mathrm{F}}_{4}(K)$ on ordered pairs (E, F) of non-zero isotropic elements of \mathbf{J}. Let $t, t^{\prime} \in \Phi_{L}$.

1. For every $\ell \in K-\{0\}$ an orbit with representative $\left(E_{t}, \ell E_{-t}\right)$.
2. An orbit with representative $\left(E_{t}, E_{t^{\prime}}\right)$ where $\left\langle t, t^{\prime}\right\rangle=-1$.
3. An orbit with representative $\left(E_{t}, E_{t^{\prime}}\right)$ where $\left\langle t, t^{\prime}\right\rangle=0$.
4. An orbit with representative $\left(E_{t}, E_{t^{\prime}}\right)$ where $\left\langle t, t^{\prime}\right\rangle=+1$.
5. For every $\ell \in K-\{0\}$ an orbit with representative $\left(E_{t}, \ell E_{t}\right)$.

These orbits are the intersections with $\mathbf{J} \times \mathbf{J}$ of the corresponding orbits of $\widehat{\mathrm{E}}_{6}(K)$.

Proof: (The proof uses a setting similar to that of Theorem 2.38.)
Write $F=a * \bar{b}$ with $a, b \in \mathbf{W}$ and $a \bar{b}=0$. By Theorem 3.27 we may without loss of generality assume that $E=E_{t}$ and $b=e_{-\bar{x}}$ (i.e., $\bar{b}=\eta_{x}$) for some $t \in \Phi_{L}$ and $x \in \mathcal{P}^{*}$. Consider $e \stackrel{\text { def }}{=} e_{x} F$, then $e \in \mathbf{W}, F=e * \eta_{x}, e^{\#}=0$ and $e \eta_{x}=0$. Also, because $F \in \Phi_{L}$, we have $F \infty^{\#}=e \times e_{-\bar{x}}=0$, by Proposition 3.14-3.

As before we will apply the reduction process to e using elements $x_{r}(k)$ and $x_{s}(k)$ that leave both E_{t} and $e_{-\bar{x}}$ invariant. This yields the following restrictions on the coordinate indices p and q that can be used in the reduction process :

$$
\begin{array}{lll}
q \cdot t \geq p \cdot t & \text { and } & q \cdot \bar{x} \leq p \cdot \bar{x} \\
(q+\bar{q}) \cdot t \geq(p+\bar{p}) \cdot t & \text { and } & (q+\bar{q}) \cdot x \leq(p+\bar{p}) \cdot x \tag{3.67}\\
(p+\bar{p}) \cdot t \leq 0 & \text { and } & (p+\bar{p}) \cdot x \geq 0
\end{array}
$$

Additionally, many coordinates $e[q]$ of e are already zero, in particular, $e=e_{x} F$ implies $e[q]=0$ whenever $q \sim x$ and $\bar{e} \times \eta_{x}=0$ implies $e[q]=0$ whenever $q \sim-\bar{x}$. In other words, by (3.2), $e[q]=0$ whenever $(q+\bar{q}) \cdot x \neq 0$.

Because the reduction process only involves coordinates $e[p], e[q]$ which are non-zero, and in those cases, $p \cdot \bar{x}=q \cdot \bar{x}=-1 / 3$ and $(p+\bar{p}) \cdot x=(q+\bar{q})$. $x=0$, by (3.2), this means that we essentially only have to worry about the inequalities in the left hand column of (3.67).

We need to consider three different cases :

Case 1. Assume there exists $p \in \mathcal{P}^{*}$ such that $p \cdot t=-1$ and $e[p] \neq 0$. Then (3.67) is trivially satisfied.

Case 2. Otherwise, assume we find $p \in \mathcal{P}^{*}$ such that $p \cdot t=0$ and $e[p] \neq 0$. As before, the coordinates $e[q]$ for which the reduction process would not work because of (3.67) are ruled out by the fact that the previous case did not apply.

Case 3. Otherwise, we must find $p \in \mathcal{P}^{*}$ such that $p \cdot t=+1$. Again we may apply similar techniques as before to reduce e to a single non-zero coordinate.

This proves that F is equivalent to some element of the form $\ell e_{p} * \eta_{x}$ and hence to some $\pm \ell E_{t^{\prime}}$ with $t^{\prime} \in \Phi_{L}$. We leave it to the reader to verify that the scalar factor can always be removed when $t \neq t^{\prime}$ and $t \neq-t^{\prime}$.

- In [19, Theorem A] it is stated that there are six different orbits on pairs of long root subgroups in $\widehat{\mathrm{F}}_{4}(K)$, with two orbits instead of one for the configuration that corresponds to case 3 of the theorem above. (A long root subgroup consists of all elements $x(k E)$ with $k \in K$, where E is a fixed isotropic element.)

This is probably a misprint, for in the same paper the author writes "when char $K=2$, the short root subgroups behave exactly as the long root subgroups", while Theorem 2 of that paper, which deals exactly with the case quoted, lists a result which differs from that of Theorem A.

Theorem 3.29 The group $\widehat{\mathrm{F}}_{4}(K)$ acts transitively on all linearly independent triples $(a, b, c) \in \mathbf{W}^{3}$ such that $a, b, c \neq 0, a^{\#}=b^{\#}=c^{\#}=0$ and $a * \bar{b}=b * \bar{c}=c * \bar{a}=0$.

Proof: By Theorem 3.26 we may without loss of generality choose $a=e_{x}$, $b=e_{y}$ with $x, y \in \mathcal{P}^{*}$ such that $(x+\bar{x}) \cdot y=1$. The conditions of the theorem then force all coordinates of c zero except possibly $c[x], c[y]$ or $c[q]$ with $q \in L_{\infty}$ or $q \in \mathcal{P}^{*}$ such that $(x+\bar{x}) \cdot q=(y+\bar{y}) \cdot q=1$ (and then $q \cdot x=q \cdot y=1 / 3$ by (3.2).

The fact that c is isotropic, belongs to \mathbf{W} and is linearly independent of a and b, shows that $c[p]=0$ for at least one coordinate $p \in \mathcal{P}^{*}$ different from x and y. We will apply the standard reduction process to reduce all other coordinates of c to zero. The fact that we may only use group elements that leave both
e_{x} and e_{y} invariant, implies the following conditions in the first stage of the reduction process :

$$
q \cdot x \geq p \cdot x, \quad q \cdot y \geq p \cdot y
$$

and in the second stage

$$
(q+\bar{q}) \cdot x \geq(p+\bar{p}) \cdot x, \quad(q+\bar{q}) \cdot y \geq(p+\bar{p}) \cdot y .
$$

By the above, both of these are satisfied for all coordinate positions q such that $c[q] \neq 0$.

This means that we can reduce c to the form

$$
c=k_{1} e_{p}+k_{2} e_{-\bar{p}}+k_{3} e_{z}+k_{4} e_{z^{\prime}}
$$

where $\left\{z, z^{\prime}\right\}=L_{\infty}-\left\{p_{\infty}\right\}, k_{1} k_{2}=k_{3} k_{4}$ and $k_{3}+k_{4}=0$. Note however that $k_{2}=0$ because $-\bar{p} \cdot(x+\bar{x})=-1$. This implies $k_{3}=k_{4}=0$ and therefore c can be reduced to a multiple of e_{p}. By Proposition 3.8 we may choose p freely (provided $(p+\bar{p}) \cdot x=(p+\bar{p}) \cdot y=1)$. We leave it to the reader to show that that we may get rid of the scalar factor k_{1} by an appropriate group element $h_{r}\left(k_{1}\right)$.

The following is the equivalent of the technical Lemma 2.41 for \mathbf{J} instead of \mathbf{L}.

Lemma 3.30 Let $p \in \mathcal{P}^{*}, r \in \Phi_{L}$. Let $A \in \mathbf{J}$ and write $A=A_{G}+\sum_{s \in \Phi_{F}} A[s] E_{S}$ with $A_{G} \in \mathbf{G}$. Then

1. $e_{p} A=0$ if and only if $A[p, p]=0$ and $A[s]=0$ for all $s \in \Phi_{F}$ such that $p \cdot s<0$.
2. $A\left(e_{p} \times \mathbf{V}\right)=0$ if and only if $A_{G}=0$ and $A[s]=0$ for all $s \in \Phi_{F}$ such that $p \cdot s=1$.
3. $E_{r} A=0$ if and only if $A[s]=0$ for all $s \in \Phi_{F}$ such that $r \cdot s \leq 0$ and $A_{G}=0$ (except when char $K=3$ in which case this latter condition is relaxed to $A_{H} \in K\left(H_{r}+\mathbf{1}\right)$).

Proof: Note that the 'coordinates' in \mathbf{L} of A are $A_{H}=A_{G}, A[s]$ for $s \in \Phi_{L}$ and $A[u]=A[\bar{u}]=A[s]$ for $u \in \Phi-\Phi_{L}$ such that $s=(u+\bar{u}) / 2$. We now apply Lemma 2.41 to these coordinates.

If $s \in \Phi_{S}$ such that $s=(u+\bar{u}) / 2$, then Lemma 3.7 shows that $p \cdot u$ or $p \cdot \bar{u}=$ -1 if and only if $p \cdot s=-1 / 2$ or -1 . This proves the first statement of this lemma.

Likewise $p \cdot u \geq 0$ or $p \cdot \bar{u} \geq 0$ if and only if $p \cdot s=1$. Also $H_{p}+\mathbf{1} \notin \mathbf{J}$ when $p \in \mathcal{P}^{*}$. This proves the second statement.

Similarly, $\langle r, s\rangle=r \cdot u=r \cdot \bar{u}$ and hence $r \cdot s \leq 0$ if and only if both $r \cdot u=$ $r \cdot \bar{u} \leq 0$. (Note that $H_{r}+\mathbf{1} \in \mathbf{J}$ when r is a long root.)

Theorem 3.31 For $n=1,2$ or 3 the group $\widehat{F}_{4}(K)$ acts transitively on the n-tuples $\left(E_{1}, \ldots, E_{n}\right)$ of linearly independent isotropic elements of \mathbf{J} that satisfy $E_{i} E_{j}=0$ for all $i, j, 1 \leq i, j \leq n$. A representative of each orbit is given by $\left(E_{r_{1}}, \ldots, E_{r_{n}}\right)$ with $r_{1}=1100, r_{2}=1010$ and $r_{3}=1001$.

There are no such n-tuples in \mathbf{J} with $n>3$.

Proof: By Theorem 3.28 without loss of generality we may set $E_{1}=E_{1100}$ and $E_{2}=E_{1010}$. From Lemma 3.30 it follows that any $E_{3} \in \mathbf{J}$ which satisfies $E_{1} E_{3}=E_{2} E_{3}=0$ must be of the form $E_{3}=k_{1} E_{1}+k_{2} E_{2}+k_{3} E_{1001}+k_{3}^{\prime} E_{100 \overline{1}}$.

If E_{1}, E_{2}, E_{3} are linearly independent, then either $k_{3} \neq 0$ or $k_{3}^{\prime}=0$ and because of the properties of the Weyl group we may assume $k_{3} \neq 0$ without loss of generality. Applying $x_{r}(k) \in \widehat{\mathrm{F}}_{4}(K)$ to E_{3} with $r=010 \overline{1}$ and an appropriate $k \in K$ annihilates k_{1}. Similarly $r=001 \overline{1}$ can be used to annihilate k_{2}. We leave it to the reader to prove that the resulting linear combination can be isotropic only when also $k_{3}^{\prime}=0$. Finally, we get rid of the factor k_{3} by applying $h_{s}\left(k_{3}\right)$ with $s=-++-$.

A similar application of Lemma 3.30 shows that any $E_{4} \in \mathbf{J}$ such that $E_{1} E_{4}=$ $E_{2} E_{4}=E_{3} E_{4}=0$ must necessarily be a linear combination of E_{1}, E_{2} and E_{3}.

3.4 F-isotropic subspaces

It turns our that the notion of isotropic subspace of \mathbf{V} needs to be strenghtened when we are working with F_{4}-modules.

An isotropic subspace U of \mathbf{V} will be called F-isotropic if and only if $e * \bar{f}=0$ for every two elements $e, f \in U$. It is a consequence of Theorem 3.25 that isotropic elements $e \in \mathbf{V}$ satisfy $e * \bar{e}=0$ if and only if they belong to \mathbf{W}, hence all F-isotropic subspaces are subspaces of \mathbf{W}.

Note that $\widehat{F}_{4}(K)$ maps F-isotropic subspaces onto F-isotropic subspaces.

Proposition 3.32 Let U denote an isotropic subspace of \mathbf{V}. Let V denote the companion subspace in \mathbf{V}^{*} of U, as in Proposition 2.43. Then U is F-isotropic if and only if $\bar{U} \leq V$. If U is F-isotropic then $\operatorname{dim} U \leq 3$.

Proof: Let e, f denote isotropic elements. By Theorem $2.35 e * \bar{f}=0$ if and only if $\bar{f} \in e \times \mathbf{V}$. Hence U is F-isotropic if and only every element of \bar{U} belongs to the intersection $\bigcap_{e \in U} e \times \mathbf{V}$, i.e., if and only if \bar{U} is a subspace of V.

Because the dimension of a companion space cannot be larger than the dimension of the original space, and $\operatorname{dim} V<3$ when $\operatorname{dim} U>3$, we must have $\operatorname{dim} U \leq 3$.

- [1] uses a very colorful terminology: F-isotropic spaces are called amber while the spaces $\mathbf{V} E$ with $E \in \mathbf{J}$ are tangerine. Isotropic 2-spaces of \mathbf{W} which are not F-isotropic are called scarlet.

Proposition 3.33 Let $L \in \mathbf{V} \wedge \mathbf{V}, L \neq 0$. Then the following are equivalent:

1. $L=e \wedge f$ with $e, f \in \mathbf{W}$ such that $e^{\#}=f^{\#}=0$ and $e * \bar{f}=0$.
2. $L=\bar{d} \times E$ for some isotropic $E \in \mathbf{J}$ and isotropic $d \in \mathbf{W}$ such that $d E=0$ but $d \notin \mathbf{V} E$.

Proof: By Theorem 3.26 the pairs (e, f) satisfying the given conditions form a single orbit of $\widehat{F}_{4}(K)$, and so do the pairs (d, E). To prove the theorem it is therefore sufficient to provide a single example for which $e \wedge f=\bar{d} \times E$.

Choose $a, b \in \mathbf{W}$ such that $a E \bar{b}=0$. Set $\bar{d}=b E \times a, e=a E, f=-b E$. Then $e * \bar{f}=a E * E \bar{b}=(a E \bar{b}) E=0$ and $e \wedge f=\bar{d} \times E$ by (2.107). Also $\infty \bar{d}=\infty(b E \times a)=\langle\infty, b E, a\rangle=b E(a \times \infty)=-b E \bar{a}=0$, and therefore $\bar{d} \in \mathbf{W}$.

An element $L \in \mathbf{V} \wedge \mathbf{V}$ which satisfies one of the statements of this proposition will be called F-isotropic. An isotropic element L of $\mathbf{V} \wedge \mathbf{V}$ is F-isotropic if and only if $L \mathbf{V}^{*}$ is an F-isotropic subspace of \mathbf{V}.

- It is not sufficient for an isotropic element of $\mathbf{V} \wedge \mathbf{V}$ to belong to $\mathbf{W} \wedge \mathbf{W}$ to be Fisotropic. From Theorem 3.26 it follows that there are two different orbits of $\widehat{\mathrm{F}}_{4}(K)$ on the isotropic elements of $\mathbf{W} \times \mathbf{W}$ and of these the F-isotropic elements only consititute a single one.

Proposition 3.34 Let $P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}, P \neq 0$. Then the following are equivalent:

1. $P=e_{1} \wedge e_{2} \wedge e_{3}$ with $e_{i} \in \mathbf{W}$ such that $e_{i}^{\#}=0$ and $e_{i} * \bar{e}_{j}=0$, for all i, j, $1 \leq i, j \leq 3$.
2. $P=E \times F$ for some isotropic $E, F \in \mathbf{J}$ such that $E F=F E=0$ but $K E \neq K F$.

Proof: Theorems 3.28 and 3.29 show that both statements correspond to a single orbit of $\widehat{\mathrm{F}}_{4}(K)$. It is therefore sufficient to provide a single element that belongs to both orbits.

Let E be an isotropic element of \mathbf{J} and choose $a, b, c \in \mathbf{V}$ such that $a E \bar{b}=$ $b E \bar{c}=c E \bar{a}=0$. (To see that this is always possible, specialise to the case $E=E_{r}$ with $r \in \Phi_{L}$.) Setting $e_{1}=a E, e_{2}=b E$ and $e_{3}=c E$, it follows from (2.116) that $e_{1} \wedge e_{2} \wedge e_{3}=F \times E$, with $F=c E *(b E \times a)$. Note that $e_{1} * \bar{e}_{2}=-a E * E \bar{b}=-(a E \bar{b}) E=0$, and likewise $e_{i} * \bar{e}_{j}=0$ for all pairs i, j. It is therefore sufficient to prove that $F \in \mathbf{J}$.

Now $c E \bar{\infty}=0$ and $\langle b E, a, \infty\rangle=0$, hence $c E \in \mathbf{W}$ and $b E \times a \in \mathbf{W}^{*}$. By Proposition 3.14-2 we need only prove that $(b E \times a) \times E \bar{c}=0$ and because $a * E \bar{c}=0$ we find $0=b E(a * E \bar{c})=-(b E \times a) \times E \bar{c}$.

An element P of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ that satisfies one of the statements of this proposition will be called F-isotropic. An isotropic element P of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ is Fisotropic if and only if $P \mathbf{V}^{*} \mathbf{V}^{*}$ is an F-isotropic subspace of \mathbf{V}.

Proposition 3.35 Let $E, F \in \mathbf{J}$ be isotropic such that $K E \neq K F$. Then $\mathbf{V} E \cap \mathbf{V} F$ is an F-isotropic subspace of \mathbf{W}.

Proof: Theorems 2.38 and 3.28 show that there are only a few cases to consider. If $\mathbf{V} E \cap \mathbf{V} F$ has dimension 0 or 1, then the statement is trivial, otherwise $\mathbf{V} E \cap \mathbf{V} F=E \mathbf{V}^{*} \times F \mathbf{V}^{*}=(E \times F) \mathbf{V}^{*} \mathbf{V}^{*}$, which is an F-isotropic 3-space by Proposition 3.34.

Proposition 3.36 Let U denote an F-isotropic subspace of \mathbf{W} of dimension n. Let J_{n} denote the intersection in \mathbf{J} of the companion subspace in \mathbf{L} of U. Then $\operatorname{dim} J_{1}=7$, $\operatorname{dim} J_{2}=3$ and $\operatorname{dim} J_{3}=2$. and the isotropic elements of J_{1} are the absolute elements of a non-degenerate (parabolic) quadratic form on J_{n}.

Conversely, if J is an isotropic subspace of \mathbf{J} with $\operatorname{dim} J \geq 2$, then the companion subspace in \mathbf{V} of J is F-isotropic.

Proof: Consider an element $e_{1} \in U$. Without loss of generality we may choose e_{1} to be $e_{p_{0}}$ with $p_{0}=300000$. Using Lemma 3.30 (or the information in the proof of Proposition 2.44) we may compute that any $E \in \mathbf{J}$ such that $e_{1} \in \mathbf{V} E$ must be of the following form :

$$
\begin{align*}
E=\quad & k_{1} E_{30000 \overline{3}}+k_{2} E_{111111}+k_{3} E_{2 \overline{1} 122 \overline{1}}+k_{4} E_{222 \overline{1} \overline{1} \overline{1}} \\
+ & k_{5} E_{2 \overline{1} 2 \overline{1} 2 \overline{1}}+k_{6} E_{22 \overline{1} 2 \overline{1} \overline{1}}+k_{0}\left(E_{22 \overline{1} \overline{1} 2 \overline{1}}+E_{2 \overline{1} 22 \overline{1} 2}\right) \tag{3.68}
\end{align*}
$$

with $k_{0}, \ldots, k_{6} \in K$. This proves that E belongs to a 7 -dimensional subspace of J.

To determine which E of this form are isotropic, we may derive from (3.68) that E can be written as $e_{p_{0}} * \alpha$ with

$$
\begin{aligned}
\alpha= & \pm k_{1} \eta_{000003} \pm k_{2} \eta_{2 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}} \pm k_{3} \eta_{111 \overline{2} \overline{2} 1} \pm k_{4} \eta_{1 \overline{2} \overline{2} 111} \\
& \pm k_{5} \eta_{11 \overline{2} 1 \overline{1} 1} \pm k_{6} \eta_{1 \overline{2} 1 \overline{1} 11} \pm k_{0} \eta_{1 \overline{2} 11 \overline{2} 1} \pm k_{0} \eta_{11 \overline{2} \overline{2} 1 \overline{1}}
\end{aligned}
$$

and in turn α can be written as $e_{a_{05}} \times a$ (with $\left.a_{05}=\overline{2} 1111 \overline{2}\right)$ with

$$
\begin{aligned}
a= & \pm k_{2} e_{000003} \pm k_{1} e_{{ }_{1 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}} \pm k_{4} e_{111 \overline{2} \overline{2} 1} \pm k_{3} e_{1 \overline{2} \overline{2} 111}} \\
& \pm k_{6} e_{11 \overline{1} 1 \overline{2} 1} \pm k_{5} e_{1 \overline{2} 1 \overline{2} 11} \pm k_{0} e_{1 \overline{2} 11 \overline{2} 1} \pm k_{0} e_{11 \overline{2} \bar{L} 1 \overline{1}}
\end{aligned}
$$

By Proposition 2.29, E is isotropic if and only if $e_{p_{0}} \alpha=0$ (which is trivially satisfied) and $e_{p_{0}} \times \alpha^{\#}=0$. Note that $\alpha^{\#}=\left(e_{a_{05}} a^{\#}\right) e_{a_{05}}$ and hence $e_{p_{0}} \times \alpha^{\#}=$ $\pm\left(e_{a_{05}} a^{\#}\right) e_{q_{0}}$ with $q_{0}=2 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}$. Therefore E is isotropic if and only if $e_{a_{05}} a^{\#}$ which is equivalent to $\pm k_{1} k_{2} \pm k_{3} k_{4} \pm k_{5} k_{6} \pm k_{0}^{2}=0$. This proves the statements about J_{1}.

Now, let $\operatorname{dim} U \geq 2$ and consider $e_{2} \in U$ such that e_{1}, e_{2} are linearly independent. Without loss of generality we may choose $e_{2}=e_{p_{1}}$ with $p_{1}=030000$. From the above we easily compute that the $E \in \mathbf{J}$ for which $e_{p_{0}} E=e_{p_{1}} E=0$ is of the form (3.68) with $k_{1}=k_{3}=k_{5}=k_{0}=0$. Hence $\operatorname{dim} L_{2}=3$. We may prove $\operatorname{dim} L_{3}=2$ in a similar way (or obtain it as a consequence of Proposition 3.34).

Finally, it is a consequence of Proposition 3.34 that any 2-dimensional isotropic subspace $K E+K F$ of \mathbf{J} has a companion subspace in \mathbf{V} which is F-isotropic. The same holds for isotropic subspaces $K E+K F+K G$ of larger dimension, because their companions are subspaces of the companions of $K E+K F$.

We will call the intersection with \mathbf{J} of the companion in \mathbf{L} of an F-isotropic subspace U, its companion in \mathbf{J}.

3.5 The geometry \mathcal{F}

The geometry \mathcal{F} of type F_{4} has elements and incidence defined as follows. Elements are of four different types numbered like the nodes of the Dynkin diagram :

1. The hyperlines of \mathcal{F} are the isotropic 1 -spaces of \mathbf{J}, i.e., the sets $K E$ where E is an isotropic element of $\mathbf{J}-\{0\}$.
2. The planes of \mathcal{F} are the 1 -spaces $K P$ of $\mathbf{W} \wedge \mathbf{W} \wedge \mathbf{W}$ where P is F-isotropic.
3. The lines of \mathcal{F} are the 1 -spaces $K L$ of $\mathbf{W} \wedge \mathbf{W}$ where L is F-isotropic.
4. The points of \mathcal{F} are the isotropic 1 -spaces of \mathbf{W}, i.e., the sets $K e$ where e is an isotropic element of $\mathbf{W}-\{0\}$.

Incidence between points $K e$, lines $K L$, planes $K P$ and hyperlines $K E$ is (symmetrized) containment of the corresponding 1-, 2-, 3- and 6-dimensional subspaces $K e, L \mathbf{V}^{*}, P \mathbf{V}^{*} \mathbf{V}^{*}$ and $\mathbf{V} E$ of \mathbf{W}. As with incidence in \mathcal{E}, containment can often be expressed in a different way using one of the many operators defined on \mathbf{V} and \mathbf{L}.

- Every point, line, plane and hyperline of \mathcal{F} is a point, line, plane or simplex of \mathcal{E} with the same incidence relation. A point $K e$ of \mathcal{E} is a point of \mathcal{F} if and only if $e \in \mathbf{W}$ and a simplex $K E$ of \mathcal{E} is a hyperline of \mathcal{F} if and only if $E \in \mathbf{J}$. It is however dangerous to take this analogy too far. For example, two points that are on the same line in \mathcal{F} are always on the same line in \mathcal{E} but the converse is not always true. The same care should be taken with planes.

Proposition 3.37 Let $K E$ be a hyperline of \mathcal{F}. Then the points, lines and planes incident with $K E$ form a symplectic 5 -space \mathcal{C} (i.e., a geometry of type C_{3}).

Proof: The points, lines and planes incident with $K E$ are points, lines and planes of the 5 -dimensional projective space \mathcal{A} of Proposition 2.56. Because $E \in \mathbf{J}$ and then $\mathbf{V} E \in \mathbf{W}$, every point of \mathcal{A} is also a point of \mathcal{C}. However, a
line $K(a E \wedge b E)$ of \mathcal{A} is a line of \mathcal{C} only if $a E \wedge b E$ is F-isotropic, i.e., if and only if $a E * \overline{b E}=0$. Now $a E * \overline{b E}=-a E * E \bar{b}=-(a E \bar{b}) E$, hence this is equivalent to requiring $a E \bar{b}=0$. From $a E \bar{b}=-b E \bar{a}$ it follows that the map $(a E, b E) \mapsto-(a E * \overline{b E}) / E=a E \bar{b}$ is an antisymmetric bilinear form on $\mathbf{V} E$ which is easily proved to be non-degenerate. Therefore the lines of \mathcal{C} are the absolute lines in \mathcal{A} of this symplectic polarity. And similarly, the planes of \mathcal{C} are those planes of \mathcal{A} all of whose lines are absolute.

Proposition 3.38 Let Ke be a point of \mathcal{F}. Then the hyperlines, planes and lines incident with Ke are the points, lines and planes of a 7-dimensional polar space \mathcal{B} of type B_{3}.

Proof: Let \mathcal{B} denote the projective space associated with the companion subspace of $K E$ in J. From Proposition 3.36 it follows that the projective dimension of \mathcal{B} is 6 and that the hyperlines of \mathcal{E} that belong to \mathcal{B} exactly correspond to the points of a non-degenerate parabolic quadric in \mathcal{B}. In a similar way, with every F-isotropic 2 - and 3-space that contains e we may associate its companion 3 - and 2-space in \mathbf{J}, each of which are absolute for the same quadratic form.

We leave it to the reader to verify that this correspondence between lines (planes, hyperlines, respectively) of \mathcal{E} that are incident with Ke and planes (lines, points, respectively) on the parabolic quadric, preserves incidence.

Proposition 3.39 Let KL and KP denote an incident line/plane-pair of \mathcal{F}. Then the points and hyperlines incident with both KL and KP form a generalized digon : a 2-space in \mathbf{W} and a 2-space of \mathbf{J} such that every 1-space contained in the first 2-space is incident with every 1 -space contained in the second.

Proof: The element $e \in \mathbf{V}$ for which $K e$ is incident with $K L$ form an F-isotropic 2-space $L \mathbf{V}^{*}$ which is a subspace of the F-isotropic 3-space $P \mathbf{V}^{*} \mathbf{V}^{*}$. By Proposition 3.36 the elements $E \in \mathbf{J}$ for which $K E$ is incident with $K P$ form the companion 2-space of $P \mathbf{V}^{*} \mathbf{V}^{*}$ in \mathbf{J}, a subspace of the companion 3-space of $L \mathbf{V}^{*}$. Clearly every such e belongs to every such $V E$.

Note that \mathcal{F} satisfies the intersection property (cf. Section 1.8). Indeed, because the intersection of two F-isotropic spaces is always F-isotropic, and because
every F-isotropic subspace of \mathbf{W} is in one-to-one correspondence to a single element of \mathcal{F}, it only remains to be proved that $\mathbf{V} E \cap \mathbf{V} F$ is F-isotropic for every isotropic $E, F \in \mathbf{J}$ such that $K E \neq K F$. And this is Proposition 3.35.

As was pointed out in the introduction, the intersection property together with Propositions 3.37-3.39 prove the following

Theorem 3.40 \mathcal{F} is the geometry arising from the exceptional split building of type F_{4} over the field K.

- This proves that \mathcal{F} is a so-called metasymplectic space according to the definitions given in [22] and [26]. Although these definitions are essentially self-dual, often the type 'point' is (implicitely) assumed to correspond to the long roots of \mathbf{J} (see for instance [9] where metasymplectic spaces are characterized axiomatically in terms of points and lines), while we have chosen to use the type 'point' for the elements of the F_{4}-module of smallest dimension. In the next chapter we shall see that in the case of char $K=2$ the geometry \mathcal{F} is self-dual and then this choice is immaterial.

Theorem 3.41 Let $K e, K f$ denote different points of \mathcal{F}.

1. If $e * \bar{f}=0$ then $K e$ and $K f$ are collinear. The points collinear (or equal) to both Ke and $K f$ form a projective 4-space of \mathcal{F} which corresponds to the 5dimensional companion space of $K \bar{e}+K \bar{f}$ in \mathbf{V}. The hyperlines incident with both Ke and Kf form a bundle of projective dimension 2 which corresponds to the 3-dimensional companion space of $K e+K f$ in \mathbf{J}.
2. If $e \times f=0$ but $e * \bar{f} \neq 0$ then the points $K d$ collinear to both Ke and $K f$ form a projective 3-space of \mathcal{F}. The hyperline $K(e * \bar{f})$ is the unique hyperline incident with both Ke and Kf.
3. If $e \bar{f}=0$ but $e \times f \neq 0$ then $K(e \times f)$ is the unique point collinear to both $K e$ and $K f$ and there are no hyperlines that are incident with both points.
4. If $e \bar{f} \neq 0$ then there are no points or hyperlines incident with both Ke and $K f$.

These are the only possible relations between different points of \mathcal{F}.

Proof: By Theorem 3.26 Kd is collinear with Ke if and only if $d \in \bar{e} \times \mathbf{V}^{*}$. Likewise, $K e$ belongs to the hyperline $K E$ if and only if $e \in \mathbf{V} E$. This proves the statements about the companion spaces, except that it still needs to be shown that the companion space in \mathbf{V}^{*} of a 2-dimensional F-isotropic space lies entirely in \mathbf{W}.

The different cases of the theorem correspond to the first four cases of Theorem 3.26 (in reverse order). Without loss of generality we may choose representatives for (e, f) of the form $\left(e_{x}, e_{p}\right)$ with $p, x \in \mathcal{P}^{*}$ from the respective orbits. We leave it to the reader to prove the theorem for these special cases.

Point pairs satisfying statement $1(2,3$ or 4 , respectively) of this theorem will be called collinear (cohyperlinear, almost opposite or opposite, respectively).

4 The Lie algebra of type F_{4} when char $K=2$

Throughout this chapter we assume that char $K=2$. In this special case the Lie algebra \mathbf{J} turns out to be no longer irreducible.

4.1 Two Lie algebras isomorphic to W .

In Lie algebras of characteristic 2 the operator.2 often plays a special role:

Proposition 4.1 Let $A \in \widehat{\mathbf{L}}$. Then $A^{2} \in \widehat{\mathbf{L}}$ with $\tau\left(A^{2}\right)=\tau(A)^{2}$. If $A \in \mathbf{J}$ then also $A^{2} \in \mathbf{J}$.

For every $A, B \in \widehat{\mathbf{L}}$ holds

1. $(A+B)^{2}=A^{2}+[A, B]+B^{2}$,
2. $\left[B, A^{2}\right]=[[B, A], A]$,

Proof: Let $a \in \mathbf{V}$. Applying (2.42) with $b=a A$ and then (2.41) twice, we obtain

$$
\begin{aligned}
a \times a A^{2} & =a A \times a A+A(a \times a A)+\tau(A) a \times a A \\
& =2(a A)^{\#}+A\left(A a^{\#}\right)+\tau(A) A a^{\#}+\tau(A) a \times a A \\
& =A^{2} a^{\#}+\tau(A)^{2} a^{\#},
\end{aligned}
$$

which by definition indicates that $A^{2} \in \widehat{\mathbf{L}}$ with $\tau\left(A^{2}\right)=\tau(A)^{2}$. Also $\infty A^{2}=$ $(\infty A) A$ and hence $A^{2} \in \mathbf{J}$ when $A \in \mathbf{J}$.

The first stated property then follows from $[A, B]=A B-B A=A B+B A$ in even characteristic. The second from $[[B, A], A]=B A^{2}-2[A, B]+A^{2} B$.

Proposition 4.2 For $a, b \in \mathbf{V}$ define the following operations:

$$
\begin{array}{ll}
S(a) \quad & \stackrel{\text { def }}{=} a * \bar{\infty}+(a \bar{\infty}) \mathbf{1}, \\
{[a, b]=[b, a]} & \stackrel{\text { def }}{=} a S(b)=b S(a)=(a \bar{\infty}) b+(b \bar{\infty}) a+(a \times b) \times \bar{\infty}, \\
& =(a \times \infty) \times(b \times \infty)+\langle a, b, \infty\rangle \infty, \tag{4.1}\\
a^{2} & \stackrel{\text { def }}{=}(a \bar{\infty}) a+a^{\#} \times \bar{\infty}=(a \times \infty)^{\#}+\left(\infty a^{\#}\right) \infty .
\end{array}
$$

Then for all $a, b, c, d \in \mathbf{V}, A \in \mathbf{J}$ we have

1. $(a+b)^{2}=a^{2}+[a, b]+b^{2}$,
2. $\infty^{2}=\infty,[a, a]=0$ and $[a, \infty]=0$.
3. $a^{2} \bar{\infty}=(a \bar{\infty})^{2}$ and $[a, b] \in \mathbf{W}$.
4. $S(a) \in \mathbf{J}$ and $S(\infty)=0$,
5. $[a, b] \bar{c}=[b, c] \bar{a}=[c, a] \bar{b}$ and $[a, b] \overline{[c, d]}+[a, c] \overline{[b, d]}+[a, d] \overline{[b, c]}=0$.
6. $a^{2} A=[a A, a]$ and $[a, b] A=[a A, b]+[a, b A]$,
7. $\left[a^{2}, c\right]=[[c, a], a]$ and $[[a, b], c]+[[b, c], a]+[[c, a], b]=0$,
8. $S(a) \cdot A=0$ and $S(a) \cdot S(b)=0$.
9. $S(a A)=[S(a), A]$ and $S([a, b])=[S(a), S(b)]$.
10. $S\left(a^{2}\right)=S(a)^{2}=a * \bar{a}+(a \bar{\infty})^{2} \mathbf{1}$ and $S([a, b])=a * \bar{b}+b * \bar{a}$.

Proof: (In most cases we will leave the proof of the second part of a statement to the reader. Often this amounts to substituting $a+b$ for a in the first part and applying statement 1 , or substituting $S(b)$ for A, which is allowed by statement 4.)

1. Evaluating $(a+b)^{2}+a^{2}+b^{2}$ by means of (4.1) yields the definition of $[a, b]$.
2. By definition, we find $\infty^{2}=(\infty \times \infty)^{\#}+(\infty \bar{\infty}) \infty=(2 \bar{\infty})^{\#}+3 D(\infty) \infty=\infty$ in characteristic 2. Substituting $a=b$ in statement 1 yields $[a, a]=0$. Finally $[a, \infty]=(a \times \infty) \times(\infty \times \infty)+\langle a, \infty, \infty\rangle \infty=2(a \times \infty) \times \bar{\infty}+2(a \bar{\infty}) \infty=0$.
3. From the definition we obtain $a^{2} \bar{\infty}=(a \bar{\infty})^{2}+\left\langle a^{\#}, \bar{\infty}, \bar{\infty}\right\rangle=(a \bar{\infty})^{2}$.
4. By definition $\tau(S(a))=a \bar{\infty}+(a \bar{\infty}) \tau(1)=0$. Also $\infty S(a)=[\infty, a]=0$ by the above, and hence $S(a) \in \mathbf{J}$.
5. We have $[a, b] \bar{c}=b S(a) \bar{c}=c \overline{b S(a)}=c \overline{S(a)} \bar{b}=c \overline{S(a)} \bar{b}=[c, a] \bar{b}$. The second part is obtained by multiplying the Jacobi identity to the right with \bar{d} and applying te first part.

6,7. We find $a^{2} A=(a \bar{\infty}) a A+\left(\bar{\infty} \times a^{\#}\right) A=(a \bar{\infty}) a A+\bar{\infty} \times A a^{\#}$, using (2.42). The second term of this expression evaluates to $\bar{\infty} \times A a^{\#}=\bar{\infty} \times(a A \times a)$, using (2.41). On the other hand, also $[a A, a]=a A(a * \bar{\infty})=(a \bar{\infty}) a A+(a \times$ $a A) \times \bar{\infty}$, which is the same expression. Statement 7 is obtained by substituting $S(c)$ for A.
8. By definition $S(a) \cdot A=a A \bar{\infty}+(a \bar{\infty}) \tau(A)=0$, because $A \in \mathbf{J}$.
9. Let $b \in \mathbf{V}$. Then $b[S(a), A]=b S(a) A+b A S(a)=[b, a] A+[b A, a]=[a A, b]$ by statement 6 . But this is equal to $b S(a A)$.
10. By the above $c S\left(a^{2}\right)=\left[c, a^{2}\right]=[[c, a], a]=c S(a)^{2}$ for all $c \in \mathbf{V}$. Hence $S\left(a^{2}\right)=S(a)^{2}$. Also

$$
\begin{aligned}
a * \bar{a} & =a *(a \bar{\infty}) \bar{\infty}+a *(a \times \infty) \\
& =(a \bar{\infty}) S(a)+(a \bar{\infty})^{2} \mathbf{1}+\infty * a^{\#}+\left(\infty a^{\#}\right) \mathbf{1} \\
& =(a \bar{\infty}) S(a)+(a \bar{\infty})^{2} \mathbf{1}+S\left(a^{\#}\right)=S\left(a^{2}\right)+(a \bar{\infty})^{2} \mathbf{1}
\end{aligned}
$$

Note that this proposition makes $\mathbf{W},[\cdot, \cdot]$ into a Lie algebra. (The Lie bracket is symmetric in even characteristic and statement 7 provides the Jacobi identity.)

Proposition 4.3 The map $a \mapsto S(a)$ is a homomorphism of \mathbf{J}-modules (and Lie algebras). The image $S(\mathbf{V})=S(\mathbf{W})$ of this map is an ideal (and hence a subalgebra) of \mathbf{J} of dimension 26 , isomorphic to \mathbf{W} as a \mathbf{J}-module.

Proof: Proposition 4.2-9 shows that S is a homomorphism of J-modules. Because $S(\infty)=0$ we have $S(\mathbf{V})=S(\mathbf{W})$, hence it only remains to be proved that 0 is the only element $a \in \mathbf{W}$ for which $S(a)=0$.

Let $a \in \mathbf{W}$. We will prove that $S(a) \cdot A=0$ for every $A \in \mathbf{L}$ only if $a=0$.
We easily compute that $S(a) \cdot A=a A \bar{\infty}$. The map $\mathbf{L} \rightarrow \mathbf{V}: A \mapsto A \bar{\infty}$ has kernel \mathbf{J}, and hence the dimension of its image is $\operatorname{dim} \mathbf{L}-\operatorname{dim} \mathbf{J}=26$. Also note that $\infty A \bar{\infty}=0$ by (2.39) and hence this image is a subspace of \mathbf{W}^{*}, and because of the dimension, it is equal to \mathbf{W}^{*}. Therefore $a \alpha=0$ for all $\alpha \in \mathbf{W}^{*}$, and hence $a=0$.

In \mathbf{W} definitions (4.1) can be simplified as follows :

$$
\begin{align*}
S(a) & =a * \bar{\infty}=\infty * \bar{a} & & \\
{[a, b] } & =\bar{a} \times \bar{b}+(a \bar{b}) \infty, & & \text { for all } a \in \mathbf{W} \tag{4.2}\\
a^{2} & =\bar{a}^{\#}+\left(\infty a^{\#}\right) \infty, & & \text { for all } a, b \in \mathbf{W}
\end{align*}
$$

When char $K=2$ it appears to be more convenient to discard the operators \# and \times in favour of the new operators. Note also that

$$
\begin{equation*}
\langle a, b, c\rangle=[a, b] \bar{c}=[b, c] \bar{a}=[c, a] \bar{b}, \quad D(a)=a^{2} \bar{a} \quad \text { for all } a, b, c \in \mathbf{W} \tag{4.3}
\end{equation*}
$$

Clearly, every isotropic element a of \mathbf{W} satisfies $a^{2}=0$. But also the converse is true : if $a \in \mathbf{W}$ and $a^{2}=0$, then $a^{\#}=\left(\infty a^{\#}\right) \bar{\infty}$, and hence $D(a) a=\left(a^{\#}\right)^{\#}=$ $\left(\infty a^{\#}\right)^{2} \infty$, which implies $\infty a^{\#}=0$, and hence $a^{2}=a^{\#}$.

In other words : an element a of \mathbf{W} is isotropic if and only if $a^{2}=0$.

Lemma 4.4 Let $a, b, c, d \in \mathbf{W}$. Then

$$
\begin{array}{ll}
a(b * \bar{c}) & =(a \bar{b}) c+(a \bar{c}) b+[[a, b], c]+([a, b] \bar{c}) \infty \\
a(b * \bar{c}) \bar{d} & =(a \bar{b})(c \bar{d})+(a \bar{c})(b \bar{d})+[a, b] \overline{[c, d]} \\
a^{2} * \bar{a} & =\left(\infty a^{\#}\right) S(a)+\left(a^{2} \bar{a}\right) \mathbf{1} \tag{4.4}\\
{[a, b] * \bar{a}+a^{2} * \bar{b}} & =\left(\infty a^{\#}\right) S(b)+(a \bar{b}) S(a)+\left(a^{2} \bar{b}\right) \mathbf{1} \\
{[a, b] * \bar{c}+[b, c] * \bar{a}+[c, a] * \bar{b}} \\
& =(a \bar{b}) S(c)+(b \bar{c}) S(a)+(c \bar{a}) S(b)+([a, b] \bar{c}) \mathbf{1} .
\end{array}
$$

Proof: We have

$$
\begin{aligned}
{[[a, b], c] } & =\overline{[a, b]} \times \bar{c}+([a, b] \bar{c}) \infty \\
& =(a \times b) \times \bar{c}+(a \bar{b}) \infty \times \bar{c}+([a, b] \bar{c}) \infty \\
& =(a \times b) \times \bar{c}+(a \bar{b}) c+([a, b] \bar{c}) \infty
\end{aligned}
$$

Also note that $a(b * \bar{c})=(a \bar{c}) b+(a \times b) \times \bar{c}$ by definition. This yields the first equality, and multiplying with \bar{d} yields the second.

We have $a^{2} * \bar{a}=\bar{a}^{\#} * \bar{a}+\left(\infty a^{\#}\right) \infty * \bar{a}=D(a) \mathbf{1}+\left(\infty a^{\#}\right) S(a)$, by (2.38), yielding the third equality. Substituting $a+k b$ for a in this equality (where k is a formal variable) and considering the terms in k of the result, yields the next equality. From this the last result can be obtained, by substituting $a+c$ for a.

Proposition 4.5 Let e be an isotropic element of \mathbf{W}. Let $a, b \in \mathbf{W}, A, B \in \mathbf{J}$. Then

1. $[a, e] \bar{e}=0,[a, e] \overline{[b, e]}=0$ and $[a, e] A \bar{e}=0$,
2. $[a, e]^{2}=(a \bar{e})[a, e]+\left(a^{2} \bar{e}\right) e$,
3. $[[[a, e], b], e]=[[a, e],[b, e]]=(a \bar{e})[b, e]+(b \bar{e})[a, e]+([a, b] \bar{e}) e$,
4. $e A * \bar{e} \in \mathbf{J}$,
5. $e S(a) * \bar{e}=[e, a] * \bar{e}=(a \bar{e}) S(e)$,
6. $e B(e A * \bar{e})=(e B A \bar{e}) e$.

Proof:

1. By Proposition 4.2-5 we obtain $[a, e] \bar{e}=[e, e] \bar{a}=0$ and hence $[a, e] \overline{[b, e]}=$ $[[b, e], e] \bar{a}=\left[b, e^{2}\right] \bar{a}=0$. Also $[a, e] A \bar{e}=[a, e] \overline{e A}=[e, e A] \bar{a}=e^{2} A \bar{a}=0$.
2. By (4.2) we find

$$
\begin{aligned}
{[a, e]^{\#} } & =(\bar{a} \times \bar{e}+(a \bar{e}) \infty)^{\#} \\
& =(\bar{a} \times \bar{e})^{\#}+(a \bar{e})(\bar{a} \times \bar{e}) \times \infty+(a \bar{e})^{2} \bar{\infty} \\
& =\left(\bar{a}^{\#} \bar{e}\right) \bar{e}+(a \bar{e}) \overline{[a, e]},
\end{aligned}
$$

applying the definition (4.1) in reverse. It follows that

$$
\begin{aligned}
{[a, e]^{2} } & =\overline{[a, e]^{\#}}+\left(\infty[a, e]^{\#}\right) \infty \\
& =(a \bar{e})[a, e]+\left(e a^{\#}\right) e+(a \bar{e})([a, e] \infty) \infty+\left(e a^{\#}\right)(e \infty) \infty \\
& =(a \bar{e})[a, e]+\left(e a^{\#}\right) e
\end{aligned}
$$

and also $a^{2} \bar{e}=\bar{a}^{\#} \bar{e}=e a^{\#}$.
3. The first equality is a consequence of the Jacobi identity and the fact that $[[a, e], e]=\left[a, e^{2}\right]=0$. The second identity follows form the first statement of this proposition by substituting $a+b$ for a.
4. We have $\infty(e A * \bar{e})=\infty \bar{e}+(\infty \times e A) \times \bar{e}=\overline{e A} \times \bar{e}=\overline{e A \times e}=\overline{A e^{\#}}=0$.
5. This is an immediate consequence of (4.4).
6. We use (4.4) to compute

$$
e B(e A * \bar{e})=(e B A \bar{e}) e+(e B \bar{e}) e A+[[e B, e A], e]+([e B, e A] \bar{e}) \infty .
$$

Now $[[e B, e A], e]=[[e B, e], e A]+[[e, e A], e B]=0$, because $[e A, e]=A e^{2}=0$, and similarly, $[e B, e]=0$. Also $e B \bar{e}=0$ by Proposition 3.11-3 and $[e B, e A] \bar{e}=$ $[e, B e] \overline{e A}=0$ by Proposition 4.2-5.

By Proposition 4.3 $S(\mathbf{W})$ is an ideal of \mathbf{J} and hence it makes sense to consider the quotient algebra $\mathbf{Q} \stackrel{\text { def }}{=} \mathbf{J} / S(\mathbf{W})$. The following proposition proves that many of the operations defined on \mathbf{J} also make sense on \mathbf{Q}.

Proposition 4.6 Let $A, B \in \mathbf{J}$. Then

1. $(A+S(\mathbf{W}))^{2}=A^{2}+S(\mathbf{W})$,
2. $[A+S(\mathbf{W}), B+S(\mathbf{W})]=[A, B]+S(\mathbf{W})$.
3. $(A+S(\mathbf{W})) \cdot(B+S(\mathbf{W}))=A \cdot B$,
4. The coset $A+S(\mathbf{W})$ contains at most one isotropic element. In particular, the only isotropic element of $S(\mathbf{W})$ is 0 .

Proof:

1. Let $a \in \mathbf{W}$. By Proposition 4.2 we find

$$
\begin{aligned}
(A+S(a))^{2} & =A^{2}+A S(a)+S(a) A+S(a)^{2} \\
& =A^{2}+[A, S(a)]+S\left(a^{2}\right) \\
& =A^{2}+S(a A)+S\left(a^{2}\right) \in A^{2}+S(\mathbf{W})
\end{aligned}
$$

2. Note that $S(\mathbf{W})$ is an ideal of \mathbf{J}. (This statement also follows by substituting $A+B$ for A in the above).
3. This is a consequence of Proposition 4.2-8.
4. Assume A, B are isotropic elements of \mathbf{J} such that $A=B \bmod S(\mathbf{W})$. By Proposition 3.28, the pair (A, B) can be mapped by $\widehat{F}_{4}(K)$ onto a pair of the form $\left(E_{r}, k E_{s}\right)$ with $r, s \in \Phi_{L}, k \in K$. It is easily seen that the group $\widehat{\mathrm{F}}_{4}(K)$ leaves $S(\mathbf{W})$ invariant, and hence also $E_{r}=k E_{s} \bmod S(\mathbf{W})$. This is only possible when $r=s$ and $k=1$, i.e., when $A=B$.

Statement 4 of this proposition proves that the notion of isotropic element can be extended to \mathbf{Q}.

Note that \mathbf{Q} has dimension 26. It even turns out that algebra \mathbf{Q} is isomorphic to $S(\mathbf{W})$. To prove this, we will express the Lie bracket on both algebras in terms of the corresponding base elements.

The following lemma can be used to establish the structure of $S(\mathbf{W})$.

Lemma 4.7 Let $p \in \mathcal{P}$. Then

$$
\begin{array}{ll}
S\left(e_{p}\right)=E_{S}, \quad \text { when } p \in \mathcal{P}^{*}, \text { with } s=(p+\bar{p}) / 2 \in \Phi_{S} \tag{4.5}\\
S\left(e_{p}\right)=H_{p}+\mathbf{1}, & \text { when } p \in L_{\infty}
\end{array}
$$

Proof: Consider $s \in \Phi_{S}, p \in \mathcal{P}^{*}, r \in \Phi$ such that $s=(r+\bar{r}) / 2=(p+\bar{p}) / 2$. By Lemma 3.4, the line at infinity consists of the points $p_{\infty}, p-r$ and $p-\bar{r}$. Hence $\bar{\infty}=\eta_{p_{\infty}}+\eta_{p-r}+\eta_{p-\bar{r}}$. We then easily compute that $e_{p} * \bar{\infty}=E_{r}+$ $E_{\bar{r}}=E_{s}$.

When $p \in L_{\infty}$, a similar computation shows that $e_{p} * \bar{\infty}=H_{p}$, and because $e_{p} \bar{\infty}=1$ in this case, we obtain $S\left(e_{p}\right)=H_{p}+\mathbf{1}$.

It follows that $S(\mathbf{W})$ can be written as a direct sum in the following way:

$$
\begin{equation*}
S(\mathbf{W})=\mathbf{G}_{S} \oplus \bigoplus_{s \in \Phi_{S}} K E_{S} \tag{4.6}
\end{equation*}
$$

where \mathbf{G}_{S} denotes the 2-dimensional subspace of \mathbf{G} generated by $H_{z_{1}}+\mathbf{1}$, $H_{z_{2}}+\mathbf{1}$ and $H_{z_{3}}+\mathbf{1}$ with $L_{\infty}=\left\{z_{1}, z_{2}, z_{3}\right\}$. (Note that $\sum_{i} H_{z_{i}}+\mathbf{1}=0$.)

The following lemma proves that \mathbf{G}_{S} is generated by all H_{s} with $s \in \Phi_{S}$.

Lemma 4.8 Let $s \in \Phi_{S}, p \in \mathcal{P}^{*}$ be such that $s=(p+\bar{p}) / 2$. Then $H_{s}=H_{p_{\infty}}+\mathbf{1}$.

Proof: Let $q \in \mathcal{P}$. By $e_{q}\left(H_{p_{\infty}}+\mathbf{1}\right)=\left(p_{\infty} \cdot q+2 / 3\right) e_{q}$ where $p_{\infty} \cdot q+2 / 3 \in$ $\{0,1,2\}$ should be interpreted as an element of K. Because char $K=2$, we find that $e_{q}\left(H_{p_{\infty}}+\mathbf{1}\right)=e_{q}$ or 0 according to whether $p_{\infty} \not \perp q$ or not.

Similarly, $e_{q} H_{s}=\left(s^{*} \cdot q\right) e_{q}$ by (3.43) and $s^{*} \cdot q=2 s \cdot q=p \cdot q+\bar{p} \cdot q$. For $q \in \mathcal{P}^{*}$, by (3.2), this result is odd if and only if $q_{\infty} \neq p_{\infty}$, or equivalently $q \not \perp p$. For $q \in L_{\infty}$ we have $q=-\bar{q}$ and $\bar{p} \cdot q=p \cdot \bar{q}$, hence $s \cdot q=0$.

This proves that $e_{q} H_{s}=e_{q}\left(H_{p_{\infty}}+\mathbf{1}\right)$ for all $q \in \mathcal{P}$. Hence $H_{s}=H_{p}+\mathbf{1}$.

For $p \in \mathcal{P}^{*}, s \in \Phi_{S}$ with $s=(p+\bar{p}) / 2$ it turns out to be convenient to use the notation $e_{s} \stackrel{\text { def }}{=} e_{p}$ when working in even characteristic. With this notation we have $S\left(e_{s}\right)=E_{s}$. We will also write $h_{s} \stackrel{\text { def }}{=}\left[e_{s}, e_{-s}\right]=e_{p_{\infty}}+\infty$ and then $S\left(h_{s}\right)=H_{s}$.

From Proposition 3.19 we obtain the following expressions for the action of the Lie bracket on $S(\mathbf{W})$. Let $r, s \in \Phi_{S}$. Then

$$
\begin{array}{lll}
{\left[E_{r}, E_{-r}\right]} & =H_{r} & \\
{\left[E_{r}, E_{s}\right]} & =E_{r+s}, & \text { when }\langle r, s\rangle=-1, \\
{\left[E_{r}, E_{s}\right]} & =0, & \text { when }\langle r, s\rangle \leq 0, \tag{4.7}\\
{\left[E_{r}, H_{s}\right]} & =\langle s, r\rangle E_{r}, & \\
{\left[H_{r}, H_{s}\right]} & =0 &
\end{array}
$$

To establish a base of \mathbf{Q} first note that $E_{r}-E_{S} \notin S(\mathbf{W})$ whenever $r, s \in \Phi_{R}$ are different. This proves that the elements $E_{r}+S(\mathbf{W})$ can be used as the first 24 base elements of \mathbf{Q} and that we may write

$$
\begin{equation*}
\mathbf{Q}=\mathbf{G}_{L} \oplus \bigoplus_{r \in \Phi_{F}} K\left(E_{r}+S(\mathbf{W})\right) \tag{4.8}
\end{equation*}
$$

where $\mathbf{G}_{L} \stackrel{\text { def }}{=} \mathbf{G} / S(\mathbf{W})$ is isomorphic to $\mathbf{G} / \mathbf{G}_{S}$ and has dimension 2 .

Lemma 4.9 Let $r, r^{\prime} \in \Phi_{L}$. Then $H_{r}-H_{r^{\prime}} \in S(\mathbf{W})$ if and only if $r \cdot r^{\prime}$ is even (or equivalently $H_{r} \cdot H_{r^{\prime}}=0$). The elements $H_{\psi_{1}}+S(\mathbf{W})$ and $H_{\psi_{2}}+S(\mathbf{W})$ form a basis for \mathbf{G}_{L}.

Proof: Assume $r \cdot r^{\prime}$ is even. If $r^{\prime}=r$ or $r^{\prime}=-r$ then clearly $H_{r^{\prime}}=H_{r}=H_{-r}$. Otherwise, by (3.14), $r^{\prime}=r+2 s$ for some short root s. And then $H_{r^{\prime}}=H_{r+2 s}$. We claim that $H_{r+2 s}-H_{r}=H_{s}$. Indeed, for all $q \in \mathcal{P}$ we have $e_{q} H_{r+2 s}-$ $e_{q} H_{r}=((r+2 s) \cdot q-r \cdot q) e_{q}=(2 s \cdot q) e_{q}=\langle s, q\rangle e_{q}$ because $r^{\prime}=r+2 s$ and r are long roots, and s is a short root. By Lemma $4.8 H_{s} \in S(\mathbf{W})$.

Conversely, if $H=H_{r}-H_{r^{\prime}} \in S(\mathbf{W})$ then $H_{r} \cdot H=H_{r} \cdot H_{r^{\prime}}$ because $H_{r} \cdot H_{r}=$ $2=0$. And also, by Proposition 4.2-8, $H_{r} \cdot H=0$.

Note that $H_{\psi_{1}} \cdot H_{\psi_{2}}=\psi_{1} \cdot \psi_{2}=-1$ and hence $H_{\psi_{1}}+S(\mathbf{W})$ and $H_{\psi_{2}}+S(\mathbf{W})$ are linearly independent, by the above.

We may use this information (and that of Proposition 3.19) to derive the following formulas for the Lie bracket on \mathbf{Q}. Let $r, s \in \Phi_{L}$.

$$
\begin{array}{lll}
{\left[E_{r}+S(\mathbf{W}), E_{-r}+S(\mathbf{W})\right]} & =H_{r}+S(\mathbf{W}) & \\
{\left[E_{r}+S(\mathbf{W}), E_{s}+S(\mathbf{W})\right]} & =E_{r+s}+S(\mathbf{W}), & \text { when }\langle r, s\rangle=-1 \\
{\left[E_{r}+S(\mathbf{W}), E_{s}+S(\mathbf{W})\right]} & =0, & \text { when }\langle r, s\rangle \leq 0 \\
{\left[E_{r}+S(\mathbf{W}), H_{s}+S(\mathbf{W})\right]} & =\langle s, r\rangle E_{r}+S(\mathbf{W}), & \\
{\left[H_{r}+S(\mathbf{W}), H_{s}+S(\mathbf{W})\right]} & =0 & \tag{4.9}
\end{array}
$$

$$
\text { when }\langle r, s\rangle \leq 0
$$

The similarity between (4.7) and (4.9) can be used to show that $S(\mathbf{W})$ and \mathbf{Q} are isomorphic. To establish this isomorphism, we consider the linear transformation \dagger of \mathbf{P}_{F} defined on the fundamental roots in the following way:

$$
\begin{equation*}
\psi_{1}^{+} \stackrel{\text { def }}{=} \psi_{4}^{*}=2 \psi_{4}, \psi_{2}^{+} \stackrel{\text { def }}{=} \psi_{3}^{*}=2 \psi_{3}, \psi_{3}^{+} \stackrel{\text { def }}{=} \psi_{2}^{*}=\psi_{2}, \psi_{4}^{+} \stackrel{\text { def }}{=} \psi_{1}^{*}=\psi_{1} . \tag{4.10}
\end{equation*}
$$

This map satisfies $r^{\dagger} \cdot s^{\dagger}=2 r \cdot s$ and $r^{\dagger \dagger}=2 r$. It follows that $\left\langle r^{\dagger}, s^{\dagger}\right\rangle=\langle r, s\rangle$.
The following table lists the 24 short roots $r \in \Phi_{S}$, the corresponding images r^{\dagger} and the value of $r+r^{\dagger}$ when it belongs to Φ_{S}. Note that r^{\dagger} is always a long root when r is a short root. Because $r^{++}=2 r$ the same table can also be used to find the image of a long root (in the second column). Clearly $\Phi_{S}^{\dagger}=\Phi_{L}$ and $\Phi_{L}^{+}=2 \Phi_{S}$.

$$
r \cdot r^{\dagger}=1
$$

$r \cdot r^{\dagger}=0$

$$
r \cdot r^{\dagger}=-1
$$

r	r^{\dagger}
0100	0110
$0 \overline{1} 00$	$0 \overline{1} \overline{1} 0$
0001	1001
$000 \overline{1}$	$\overline{1} 00 \overline{1}$
++++	0101
+--+	$0 \overline{1} 01$
-++-	$010 \overline{1}$
----	$0 \overline{1} 0 \overline{1}$

r	r^{\dagger}
+++-	$\overline{1} 100$
++-+	0011
+-++	$00 \overline{1} 1$
+---	$\overline{1} \overline{1} 00$
-+++	1100
-+--	$001 \overline{1}$
--+-	$00 \overline{1} \overline{1}$
---+	$1 \overline{1} 00$

r	r^{\dagger}	$r+r^{\dagger}$
1000	$\overline{1} 001$	0001
$\overline{1} 000$	$100 \overline{1}$	$000 \overline{1}$
0010	$01 \overline{1} 0$	0100
$00 \overline{1} 0$	$0 \overline{1} 10$	$0 \overline{1} 00$
++--	$\overline{1} 010$	-++-
+-+-	$\overline{1} 0 \overline{1} 0$	----
-+-+	1010	++++
--++	$10 \overline{1} 0$	+--+

Note that both Φ_{S} and Φ_{L} can be regarded as root systems of type D_{4} that are embedded in the larger root system Φ_{F} of type F_{4}. The map + serves as an isomorphism between those two root systems.

Theorem 4.10 Define the linear transformation $\mu: \mathbf{V} \rightarrow \mathbf{Q}$ as follows:

$$
\begin{array}{lll}
\mu\left(e_{s}\right) & \stackrel{\text { def }}{=} & E_{s^{+}}+S(\mathbf{W}) \tag{4.12}\\
\mu\left(h_{s}\right) & \stackrel{\text { def }}{=} & H_{s^{+}}+S(\mathbf{W}) .
\end{array}
$$

Then μ is well-defined and satisfies

$$
\begin{array}{ll}
\mu(\infty) & =0 \\
\mu\left(a^{2}\right) & =\mu(a)^{2}, \\
\mu([a, b]) & =[\mu(a), \mu(b)] \tag{4.13}\\
\mu(a) \cdot \mu(b) & =a \bar{b}
\end{array}
$$

for all $a, b \in \mathbf{V}$.
The restriction of μ to \mathbf{W} provides an isomorphism between \mathbf{W} and \mathbf{Q}.

Proof: To prove that μ is well-defined we need to check that the second definition in (4.12) is independent of the choice of s. In other words, when $s=(p+\bar{p}) / 2$ and $t=(q+\bar{q}) / 2$ with $p, q \in \mathcal{P}^{*}$ such that $p_{\infty}=q_{\infty}$, we must have $H_{s^{\dagger}}=H_{t^{\dagger}}$. From (3.1) we know that $p_{\infty}=q_{\infty}$ implies that $(p+\bar{p}) \cdot q$ is even, and hence $\langle s, t\rangle$ is even. But then also $\left\langle s^{\dagger}, t^{\dagger}\right\rangle$ is even and therefore $H_{s^{\dagger}}=H_{t^{\dagger}} \bmod S(\mathbf{W})$ by Lemma 4.9.

By (4.5) and Lemma 4.8 we see that $\mu(\infty)=\mu\left(e_{z_{1}}+e_{z_{2}}+e_{z_{3}}\right)=H_{z_{1}}+H_{z_{2}}+$ $H_{z_{3}}+\mathbf{1}=0$, with $L_{\infty}=\left\{z_{1}, z_{2}, z_{3}\right\}$. The similarity between (4.7) and (4.9) and the fact that $\left\langle r^{\dagger}, s^{\dagger}\right\rangle=\langle r, s\rangle$ proves $[\mu(a), \mu(b)]=\mu([a, b])$. This proves that μ is an epimorphism of \mathbf{V} onto \mathbf{Q}. Because $\operatorname{dim} \mathbf{V}=\operatorname{dim} \mathbf{Q}+1$, the kernel of μ must have dimension 1 , and is therefore equal to $K \infty$. Therefore μ is an isomorphism when restricted to \mathbf{W}.

Because $(a+b)^{2}=a^{2}+b^{2}+[a, b]$ for all $a, b \in \mathbf{W}$ and also $(A+B)^{2}=A^{2}+$ $B^{2}+[A, B]$ for all $A, B \in \mathbf{J}$, by the above it is sufficient to prove $\mu\left(a^{2}\right)=\mu(a)^{2}$
only for the base elements of \mathbf{V}. Firstly, $e_{p}^{2}=0$ for all $p \in \mathcal{P}^{*}$ and $E_{r}^{2}=0$ for all $r \in \Phi$. Secondly, by (4.1), we see that $e_{p}^{2}=e_{p}$ when $p \in L_{\infty}$, and also $H_{r}^{2}=H_{r}$ for all $r \in \Phi$, as H_{r} is a diagonal matrix with entries 0 and 1 .

Finally, for $p, q \in \mathcal{P}, e_{p} \bar{e}_{q}=e_{p} \eta_{-q}=1$ or 0 according to whether $p=-\bar{q}$ or not. Also, for $r, s \in \Phi, E_{r} \cdot E_{s}=1$ or 0 according to whether $r=-s$ or not, $E_{r} \cdot H_{s}=0$ and $H_{r} \cdot H_{s}=\langle r, s\rangle$. We leave it to the reader to verify that this implies that $\mu\left(e_{p}\right) \cdot \mu\left(e_{q}\right)=0$ or 1 according to whether $p=-\bar{q}$ or not.

- To simplify notations in the proofs and results below we will often silently use $\mu(a)$ to denote the element $A \in \mathbf{J}$ such that $A=\mu(a) \bmod S(\mathbf{W})$ instead of the coset $A+$ $S(\mathbf{W}) \in \mathbf{Q}$ itself. (Of course this will only be done in those situations where the choice of coset representative is not important.)

4.2 Duality

Let e be an isotropic element of \mathbf{W}, let $A \in \mathbf{J}$. The map $A \mapsto e A * \bar{e}$ is a welldefined linear transformation of \mathbf{Q}, because by Proposition 4.5-5, eS $(a) * \bar{e}=$ $(a \bar{e}) S(e)$ belongs to $S(\mathbf{W})$, for all $a \in \mathbf{W}$. Also note that $(e A * \bar{e}) \cdot B=e A B \bar{e}$ for $B \in \mathbf{J}$, and therefore also the value of $e A B \bar{e}$ is well-defined for $A, B \in \mathbf{Q}$.

Now, define $Q(e)$ to be the unique element of $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ satisfying

$$
\begin{equation*}
a Q(e) \bar{b} \stackrel{\text { def }}{=} e \mu(a) \mu(b) \bar{e}=e \mu(b) \mu(a) \bar{e}=b Q(e) \bar{a}, \quad \text { for every } a, b \in \mathbf{V} \tag{4.14}
\end{equation*}
$$

By the above, this definition makes sense. Note that $Q(\cdot)$ is a quadratic operator, i.e., $Q(k e)=k^{2} Q(e)$ for all $k \in K$.

Proposition 4.11 Let e be an isotropic element of \mathbf{W}. Then $Q(e)$ belongs to \mathbf{J} and for all $a \in \mathbf{V}$ we have $\mu(a Q(e))=e \mu(a) * \bar{e}$.

Proof: Let $a, b \in \mathbf{V}$. Choose $A, B \in \mathbf{J}$ such that $A=\mu(a), B=\mu(b) \bmod S(\mathbf{V})$. Note that $e \mu(b) \mu(a) \bar{e}=e B A \bar{e}=e \overline{e B A}=e \bar{A} \bar{B} \bar{e}=e A B \bar{e}$ by Proposition 3.9-2 and because $A, B \in \mathbf{J}$.

Let $a, b \in \mathbf{V}$. We have $a Q(e) \bar{\infty}=e A \mu(\infty) \bar{e}=0$ and hence $Q(e) \bar{\infty}=0$. Similarly $\infty Q(e)=0$. We also have $a Q(e) \bar{a}=e A^{2} \bar{e}=0$, by Proposition 3.11-3 (and because $A^{2} \in \mathbf{J}$).

Now, consider $\langle a, a Q(e), b\rangle=a Q(e)(a \times b)$. By (4.1) we have $\overline{a \times b}=[a, b]+$ $(a \bar{b}) \infty+(a \bar{\infty}) b+(b \bar{\infty}) a$, and hence

$$
\begin{aligned}
\langle a, a Q(e), b\rangle & =a Q(e)(a \times b) \\
& =a Q(e) \overline{[a, b]}+(a \bar{b}) a Q(e) \bar{\infty}+(a \bar{\infty}) a Q(e) \bar{b}+(b \bar{\infty}) a Q(e) \bar{a} \\
& =a Q(e) \overline{[a, b]}+(a \bar{\infty}) a Q(e) \bar{b} \\
& =e A \mu([a, b]) \bar{e} \\
& =e A(A B+B A) \bar{e}+(a \bar{\infty}) a Q(e) \bar{b} \\
& =e A^{2} B \bar{e}+e A B A \bar{e}+(a \bar{\infty}) a Q(e) \bar{b}
\end{aligned}
$$

The middle term in this last expression is zero by Proposition 3.11-3, with eA substituted for a and B for A.

Similarly $\overline{a^{\#}}=a^{2}+\left(\infty a^{\#}\right) \infty+(a \bar{\infty}) a$ and hence

$$
\begin{aligned}
b Q(e) a^{\#} & =b Q(e) \overline{a^{2}}+\left(\infty a^{\#}\right) b Q(e) \bar{\infty}+(a \bar{\infty}) b Q(e) \bar{a} \\
& =e \mu\left(a^{2}\right) \mu(b) \bar{e}+(a \bar{\infty}) a Q(e) \bar{b} \\
& =e A^{2} B \bar{e}+(a \bar{\infty}) a Q(e) \bar{b}
\end{aligned}
$$

This proves that $\langle a, a Q(e), b\rangle=b Q(e) a^{\#}$ for all $b \in \mathbf{V}$, and hence $a \times a Q(e)=$ $Q(e) a^{\#}$ for all $a \in \mathbf{V}$. Therefore $Q(e) \in \mathbf{L}$. We have already proved that $\infty Q(e)=0$ for all $a \in \mathbf{V}$, and hence $Q(e) \in \mathbf{J}$ by Proposition 3.11.

Finally, $a Q(e) \bar{b}=\mu(a Q(e)) \cdot \mu(b)$ by applying the last identity in (4.13). On the other hand, by definition $a Q(e) \bar{b}=(e \mu(a) * \bar{e}) \cdot \mu(b)$. Because the inner product $a \bar{b}$ is non-degenerate on \mathbf{W}, also the dot-product on \mathbf{Q} is non-degenerate, and hence $\mu(a Q(e))=e \mu(a) * \bar{e}$, as $\mu(b)$ ranges over \mathbf{Q} when b ranges over \mathbf{W}.

Proposition 4.12 Let $e, f \in \mathbf{W}$ be such that $e^{2}=f^{2}=0$. Then

1. $Q(e)$ is isotropic (or zero).
2. $Q(e+[e, f]+(e \bar{f}) f)=Q(e)+[Q(e), Q(f)]+(e \bar{f})^{2} Q(f)$.
3. If $[e, f]=0$ then $Q(e+f)=Q(e)+Q(f)+S\left(\mu^{-1}(e * \bar{f})\right)$.
4. If e $\bar{f}=0$, then $Q([e, f])=[Q(e), Q(f]$.
5. If $[e, f]=0$ then $Q(e) Q(f)=0$ if and only if $e * \bar{f}=0$.
6. If $A \in \mathbf{J}$ is isotropic and $a \in \mathbf{W}$ such that $A=\mu(a)$, then $Q(e A)=a Q(e) * \bar{a}$.
7. $Q(e) \cdot Q(f)=(e \bar{f})^{2}$

Proof: Let $a, b, c, d \in \mathbf{V}$. For ease of notation we introduce the following abbreviations :

$$
E \stackrel{\text { def }}{=} Q(e), F \stackrel{\text { def }}{=} Q(f), x \stackrel{\text { def }}{=} a Q(e), y \stackrel{\text { def }}{=} b Q(e)
$$

Note that $x, y \in \mathbf{W}$. We choose $A, B, C, D, X, Y \in \mathbf{J}$ such that

$$
A=\mu(a), B=\mu(b), C=\mu(c), D=\mu(d) \bmod S(\mathbf{W})
$$

and

$$
X=\mu(x)=e A * \bar{e}, Y=\mu(y)=e B * \bar{e} \bmod S(\mathbf{W})
$$

We will also abbreviate $u Q(e) \bar{v}=u E \bar{v}$ to $E_{u v}$ for general $u, v \in \mathbf{W}$. Note that $e X=e Y=0$ and $e C X=e C(e A * \bar{e})=(e C A \bar{e}) e=(a Q(e) \bar{c}) e$ by Proposition 4.5-6. Hence

$$
e C X=E_{a c} e, e D X=E_{a d} e, e C Y=E_{b c} e, e D Y=E_{b d} e
$$

Also $e A Y=e B X=E_{a b} e$.

1. We compute

$$
\begin{aligned}
{[[c, x], y] \bar{d} } & =[c, x][\bar{d}, y] \\
& =[c,[d, y]] \bar{x} \\
& =\mu([c,[d, y]]) \cdot \mu(x)=[C,[D, Y]] \cdot X \\
& =e[C,[D, Y]] A \bar{e} \\
& =e C D Y A \bar{e}+e C Y D A \bar{e}+e D Y C A \bar{e}+e Y D C A \bar{e} \\
& =e C D\left(E_{a b} \bar{e}\right)+\left(E_{b c} e\right) D A \bar{e}+\left(E_{b d} e\right) C A \bar{e} \\
& =E_{a b}(e C D \bar{e})+E_{b c}(e D A \bar{e})+E_{b d}(e C A \bar{e})
\end{aligned}
$$

This proves

$$
\begin{equation*}
[[c, x], y] \bar{d}=E_{a c} E_{b d}+E_{b c} E_{a d}+E_{a b} E_{c d} \tag{4.15}
\end{equation*}
$$

Setting $a=b$ in this equality yields $\left[c, x^{2}\right] \bar{d}=0$, for all $c, d \in \mathbf{V}$. Therefore $x^{2}=0$ and by symmetry $y^{2}=0$.

Also

$$
x \bar{y}=a Q(e) \bar{y}=e A Y \bar{e}=E_{a b} e \bar{e}=0 .
$$

This proves that $x * \bar{y}$ is an isotropic element of \mathbf{L}. Applying (4.4) we obtain

$$
\begin{aligned}
c(x * \bar{y}) \bar{d} & =(c \bar{x})(y \bar{d})+(c \bar{y})(x \bar{d})+[c, x] \overline{[d, y]} \\
& =(C \cdot X)(Y \cdot D)+(C \cdot Y)(X \cdot D)+[[c, x], y] \bar{d} \\
& =(e A C \bar{e})(e B D \bar{e})+(e A D \bar{e})(e B C \bar{e})+E_{a c} E_{b d}+E_{b c} E_{a d}+E_{a b} E_{c d} \\
& =E_{a b} E_{c d}=E_{a b} c Q(e) \bar{d} .
\end{aligned}
$$

This is true for all $c, d \in \mathbf{V}$ and therefore $x * \bar{y}=(a Q(e) \bar{b}) Q(e)$. If $Q(e) \neq 0$ we may always find a, b such that $a Q(e) \bar{b}=1$, and then $Q(e)$ is equal to $x * \bar{y}$ and hence isotropic.
2. By Proposition 4.5-2 $[e, f]^{2}=(e \bar{f})[e, f]$ and hence $(e+[e, f]+(e \bar{f}) f)^{2}=$ $e^{2}+[e, f]^{2}+(e \bar{f})^{2} f^{2}+[e,[e, f]]+(e \bar{f})[e, f]+(e \bar{f})[[e, f], f]=0$, so $e+[e, f]+$ $(e \bar{f}) f$ is isotropic and $Q(e+[e, f]+(e \bar{f}) f)$ is well-defined. We have

$$
\begin{align*}
& a Q(e+[e, f]+(e \bar{f}) f) \bar{b} \\
&=(e+[e, f]+(e \bar{f}) f) A B(\bar{e}+[\bar{e}, \bar{f}]+(e \bar{f}) \bar{f}) \\
&= e A B \bar{e}+(e \bar{f}) e A B \bar{f}+(e \bar{f}) f A B \bar{e}+(e \bar{f})^{2} f A B \bar{f}+ \\
& {[e, f] A B \bar{e}+(e \bar{f})[e, f] A B \bar{f}+e A B[\bar{e}, \bar{f}]+(e \bar{f}) f A B[\bar{e}, \bar{f}]+[e, f] A B[\bar{e}, \bar{f}] } \tag{4.16}
\end{align*}
$$

Now $e A B \bar{e}=a Q(e) \bar{b}$ and $f A B \bar{f}=a Q(f) \bar{b}$ by definition. Also,

$$
[e, f] A B \bar{e}+e A B[\bar{e}, \bar{f}]=[e, f] A B \bar{e}+[e, f] B A \bar{e}=[e, f][A, B] \bar{e}=0,
$$

by Proposition 4.2. Likewise $[e, f] A B \bar{f}+f A B[\bar{e}, \bar{f}]=0$.
Finally, we compute

$$
\begin{aligned}
a E F \bar{b} & =x Q(f) \bar{b}=f X B \bar{f}=f(e A * \bar{e}) B \bar{f} \\
& =(f \bar{e}) e A B \bar{f}+(f A \bar{e})(e B \bar{f})+[f, e A] \overline{[e, f B]} \\
& =(e \bar{f}) e A B \bar{f}+(e A \bar{f})(e B \bar{f})+[f B, e A] \overline{[e, f]}, \quad \text { by Proposition 4.2-5 } \\
& =(e \bar{f}) e A B \bar{f}+(e A \bar{f})(e B \bar{f})+[f B, e] A \overline{[e, f]}+[f B A, e] \overline{[e, f]} \\
& =(e \bar{f}) e A B \bar{f}+(e A \bar{f})(e B \bar{f})+[f B, e] A \overline{[e, f]}, \quad \text { by Proposition 4.5-1 }
\end{aligned}
$$

and hence, adding the same formula with the roles of e and f interchanged,

$$
\begin{aligned}
a[E, F] \bar{b} & =(e \bar{f}) e A B \bar{f}+(e \bar{f}) f A B \bar{e}+[f B, e] A \overline{[e, f]}+[e B, f] A \overline{[e, f]} \\
& =(e \bar{f}) e A B \bar{f}+(\bar{e}) f A B \bar{e}+[e, f] B A \overline{[e, f]} .
\end{aligned}
$$

Substituting these results into (4.16) we obtain

$$
a Q(e+[e, f]+(e \bar{f}) f) \bar{b}=a Q(e) \bar{b}+a[Q(e), Q(f)] \bar{b}+(e \bar{f})^{2} a Q(f) \bar{b}
$$

This is true for all $a, b \in \mathbf{V}$, hence $Q(e+[e, f]+(e \bar{f}) f)=Q(e)+[Q(e), Q(f)]+$ $(e \bar{f})^{2} Q(f)$.
3. Note that $e+f$ is isotropic and hence $Q(e+f)$ is well-defined. Applying the definition of $Q(\cdot)$, we find

$$
\begin{aligned}
& a Q(e+f) \bar{b}-a Q(e) \bar{b}-a Q(f) \bar{b} \\
& \quad=(e+f) A B(\overline{e+f})-e A B \bar{e}-f A B \bar{f} \\
& \quad=e A B \bar{f}+f A B \bar{e} \\
& \quad=e A B \bar{f}+e B A \bar{f} \\
& \quad=e[A, B] \bar{f} \\
& \quad=(e * \bar{f}) \cdot[A, B] \\
& \quad=[a, b] \mu^{-1}(e * \bar{f})=\left[a, \mu^{-1}(e * \bar{f})\right] \bar{b}=a S\left(\mu^{-1}(e * \bar{f})\right) \bar{b}
\end{aligned}
$$

This is true for all $a, b \in \mathbf{V}$, hence $Q(e+f)-Q(e)-Q(f)=S\left(\mu^{-1}(e * \bar{f})\right)$.
4. Applying statement 2 of this proposition to the case $e \bar{f}=0$ yields $[Q(e)$, $Q(f)]=Q(e)+Q(e+[e, f])$. Because $[e,[e, f]]=0$ and $[e, f] * \bar{e}=0$, we may apply statement 3 to find $Q(e+[e, f])=Q(e)+Q([e, f])$. Hence $[Q(e), Q(f)]$ $=Q([e, f])$.
5. Let $[e, f]=0$. From the proof of statement 2 above we know that in this case $a E F \bar{b}=(e A \bar{f})(e B \bar{f})$. Clearly, if $e * \bar{f}=0$ then also $e A \bar{f}=(e * \bar{f}) \cdot A=0$, and then $E F=0$. Conversely, if $E F=0$ then $(e * \bar{f}) \cdot A=0$ for all $A \in \mathbf{J}$ and then $e * \bar{f}=0 \bmod S(\mathbf{W})$, because the dot-product is non-degenerate on \mathbf{Q}. Because $e * \bar{f}$ is isotropic, we must have $e * \bar{f}=0$ by Proposition 4.6-4.
6. (In this part of the proof A is isotropic and a belongs to \mathbf{W}.)

Note that $e A$ is isotropic because A is isotropic and hence $Q(e A)$ is well-
defined. We compute

$$
\begin{aligned}
c(a Q(e) * \bar{a}) \bar{d} & =c(x * \bar{a}) \bar{d}=(x \bar{c})(a \bar{d})+(a \bar{c})(x \bar{d})+[c, x] \overline{[a, d]} \\
& =E_{a c} a \bar{d}+E_{a d} a \bar{c}+[[a, c], d] \bar{x}
\end{aligned}
$$

Now

$$
\begin{aligned}
{[[a, c], d] \bar{x} } & =a Q(e) \overline{[a, c], d]} \\
& =e A[[A, C], D] \bar{e} \\
& =e A^{2} C D \bar{e}+e A C A D \bar{e}+e A D A C \bar{e}+e A D C A \\
& =(A \cdot C) e A D \bar{e}+(A \cdot D) e A C \bar{e}+e A D C A \bar{e} \\
& =(a \bar{c}) E_{a d}+(a \bar{d}) E_{a c}+c Q(e A) \bar{d} .
\end{aligned}
$$

Combining this with the previous result yields $c(a Q(e) * \bar{a}) \bar{d}=c Q(e A) \bar{d}$ for all $c, d \in \mathbf{V}$, and then $a Q(e) * \bar{a}=Q(e A)$.
7. Because E, F are isotropic by statement 1 of this proposition, we have $E F E=$ $(E \cdot F) E$. Now

$$
\begin{aligned}
a E F E \bar{b} & =f \mu(a E) \mu(b E) \bar{f}=f X Y \bar{f}=f(e A * \bar{e}) Y \bar{f} \\
& =(e A Y \bar{f})(e \bar{f})+(f A \bar{e})(e Y \bar{f})+[e A, f][\overline{[e Y}, \bar{f}] \\
& =E_{a b}(e \bar{f})^{2}=(a E \bar{b})(e \bar{f})^{2}
\end{aligned}
$$

and this is true for every $a, b \in \mathbf{V}$.

- Up to now we have only used the properties of μ listed in (4.13) to prove the various properties of $Q(\cdot)$. Proposition 4.13 below is the first to make use of the actual definition given in (4.12).

In what follows we will use the Frobenius endomorphism $k \mapsto k^{\text {frob }} \stackrel{\text { def }}{=} k^{2}$ over K to \mathbf{V} by applying it to the coordinates with respect to the Chevalley basis, i.e.,

$$
a^{\text {frob }} \stackrel{\text { def }}{=} \sum_{p \in \mathcal{P}} a[p]^{2} e_{p}
$$

Note that the map .frob satisfies $[a, b]^{\text {frob }}=\left[a^{\text {frob }}, b^{\text {frob }}\right],\left(a^{2}\right)^{\text {frob }}=\left(a^{\text {frob }}\right)^{2}$, $\overline{a^{\text {frob }}}=\bar{a}^{\text {frob }}$ and $a^{\text {frob }} \bar{b}^{\text {frob }}=(a \bar{b})^{2}$. The action of. frob can be extended in a natural way to $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ (and hence on $\widehat{\mathbf{L}}$) by the identity $a^{\text {frob }} A^{\text {frob }} \alpha^{\text {frob }}=$ $(a A \alpha)^{\text {frob }}$.

- In general, the operation. ${ }^{\text {frob }}$ is not an automorphism of \mathbf{V}, because it is semi-linear but not linear (except when $K=\mathrm{GF}(2)$ in which case it is the identity). However, it does satisfy (2.80), i.e., $\left(a^{\text {frob }}\right)^{\#}=\left(a^{\#}\right)^{\text {frob }}$, for all $a \in \mathbf{V}$.

The operation .frob is a bijection on \mathbf{V} if and only it is a bijection on the field K, i.e., if and only if $K^{\text {frob }}=K$. In that case the field is called perfectperfect field. In general, K is called perfect when $K^{p}=K$, with $p=$ char $K \neq 0$. Every finite field is perfect because the Frobenius morphism is an injection and hence K^{p} must be a subfield of K of the same size.

Proposition 4.13 Let e be an isotropic element of \mathbf{W}. Then

$$
\begin{equation*}
Q(e)=\mu\left(e^{\mathrm{frob}}\right) \bmod S(\mathbf{W}) \tag{4.17}
\end{equation*}
$$

Proof: We will first prove this proposition for $e=e_{p}$ with $p \in \mathcal{P}^{*}$. Let $q \in \mathcal{P}$. We will compute $e_{q} Q\left(e_{p}\right)$. Write $s=(p+\bar{p}) / 2$.

First assume $q \in \mathcal{P}^{*}$ and write $t=(q+\bar{q}) / 2$. By Proposition 4.11 we have $\mu\left(e_{q} Q\left(e_{p}\right)\right)=e_{p} \mu\left(e_{q}\right) * \eta_{-\bar{p}}=e_{p} E_{t^{\dagger}} * \eta_{-\bar{p}}$. When $p \cdot t^{\dagger} \geq 0$ we find that $\mu\left(e_{q} Q\left(e_{p}\right)\right)=0$ and then $e_{q} Q\left(e_{p}\right)=0$. Otherwise, we have $p+t^{\dagger} \in \mathcal{P}$ and then $\left(p+t^{\dagger}\right) \cdot(-\bar{p})=1 / 3$ so $r \stackrel{\text { def }}{=} p+t^{\dagger}+\bar{p} \in \Phi$ and $\mu\left(e_{q} Q\left(e_{p}\right)\right)=E_{r}$. We have $r=2 s+t^{\dagger}=\left(s^{\dagger}+t\right)^{\dagger}$ and $s^{\dagger}+t=\left(q+s^{\dagger}+\bar{q}+s^{\dagger}\right) / 2$, hence $E_{r}=\mu\left(e_{q+s^{\dagger}}\right)$. Because $q \cdot s^{\dagger}=t \cdot s^{\dagger}=s \cdot t^{\dagger}=p \cdot t^{\dagger}$ we see that $\mu\left(e_{q} Q\left(e_{p}\right)\right)=$ $\mu\left(e_{q} E_{s^{\dagger}}\right)$ in both cases, and hence $e_{q} Q\left(e_{p}\right)=e_{q} E_{s^{\dagger}}$ because both sides belong to \mathbf{W}.

Similarly, for $z \in L_{\infty}$ we have $\mu\left(e_{z} Q\left(e_{p}\right)\right)=e_{p} H * \eta_{-\bar{p}}$ for some diagonal element $H \in \mathbf{G}_{L}$. The value of this expression is a multiple of $e_{p} * \eta_{-\bar{p}}$ and this is zero. Note that also $e_{z} E_{s^{\dagger}}=0$ because $s^{\dagger} \in \Phi_{L}$.

This proves that $e_{q} Q\left(e_{p}\right)=e_{q} E_{s^{+}}$for all $q \in \mathcal{P}$ and hence that $Q\left(e_{p}\right)=E_{s^{\dagger}}=$ $\mu\left(e_{p}\right) \bmod S(\mathbf{W})$.

Finally, consider a general isotropic element e. Let e^{\prime} be the unique element in \mathbf{W} such that $\mu\left(e^{\prime}\right)=Q(e)$. We need to prove that $e^{\prime}[p]=e[p]^{2}$ for all $p \in \mathcal{P}$. For $p \in \mathcal{P}^{*}$ we may write $e^{\prime}[p]=e^{\prime} \eta_{p}=e^{\prime} \overline{e_{-\bar{p}}}=\mu(e) \cdot \mu\left(e_{-\bar{p}}\right)=$ $Q(e) \cdot Q\left(e_{-\bar{p}}\right)=\left(e \cdot \overline{e_{-\bar{p}}}\right)^{2}$ by Proposition 4.12-7. And this is equal to $e[p]^{2}$.

We still need to determine the coordinates of e^{\prime} 'at infinity'. For this purpose we will deduce a special property of coordinates of isotropic elements of \mathbf{W}. Note that $Q(e)$ is isotropic and therefore $Q(e)^{2}=0$ and $e^{\prime 2}=0$, hence e^{\prime} is isotropic. Also e is isotropic.

Let $L_{\infty}=\left\{z, z^{\prime}, z^{\prime \prime}\right\}$. Expressing the fact that $e^{\#} \eta_{z}=e^{\#} \eta_{z^{\prime}}=e^{\#} \eta_{z^{\prime \prime}}=0$ in terms of coordinates, yields

$$
\begin{aligned}
& e\left[z^{\prime}\right] e\left[z^{\prime \prime}\right]=Z \quad \stackrel{\text { def }}{=} \sum_{\{p,-\bar{p}\}, p_{\infty}=z} e[p] e[-\bar{p}], \\
& e\left[z^{\prime \prime}\right] e[z]=Z^{\prime} \quad \stackrel{\text { def }}{=} \sum_{\{p,-\bar{p}\}, p_{\infty}=z^{\prime}} e[p] e[-\bar{p}], \\
& e[z] e\left[z^{\prime}\right]=Z^{\prime \prime} \stackrel{\text { def }}{=} \sum_{\{p,-\bar{p}\}, p_{\infty}=z^{\prime \prime}} e[p] e[-\bar{p}],
\end{aligned}
$$

and the fact that $e \bar{\infty}=0$ yields $e[z]+e\left[z^{\prime}\right]+e\left[z^{\prime \prime}\right]=0$. Hence, adding these identities two by two, we find

$$
e[z]^{2}=Z^{\prime}+Z^{\prime \prime}, \quad e\left[z^{\prime}\right]^{2}=Z+Z^{\prime \prime}, \quad e\left[z^{\prime \prime}\right]^{2}=Z+Z^{\prime \prime}
$$

A similar identity holds for e^{\prime} and using the fact that $e^{\prime}[p]=e[p]^{2}$ when $p \in$ \mathcal{P}^{*}, we obtain

$$
e^{\prime}[z]^{2}=Z^{\prime 2}+Z^{\prime \prime 2}, \quad e^{\prime}\left[z^{\prime}\right]^{2}=Z^{2}+Z^{\prime \prime 2}, \quad e^{\prime}\left[z^{\prime \prime}\right]^{2}=Z^{2}+Z^{\prime \prime 2}
$$

It follows that $e^{\prime}[z]=e[z]^{2}, e^{\prime}\left[z^{\prime}\right]=e\left[z^{\prime}\right]^{2}$ and $e^{\prime}\left[z^{\prime \prime}\right]=e^{\prime}\left[z^{\prime \prime}\right]^{2}$.
It is a consequence of this proposition that $Q(e)=0$ if and only if $e=0$. Also, applying Proposition $4.12-6$ to $a=f^{\text {frob }}$ and $A=Q(f)$, now yields

$$
\begin{equation*}
Q(e Q(f))=f^{\text {frob }} Q(e) * \bar{f}^{\text {frob }}, \quad \text { for all } e, f \in \mathbf{W} \text { such that } e^{2}=f^{2}=0 \tag{4.18}
\end{equation*}
$$

The following proposition provides some explicit example values of $Q(e)$.

Proposition 4.14 Let $s, t \in \Phi_{S}$. Let $k, \ell \in K$. Then

$$
\begin{array}{lll}
Q\left(k e_{s}\right) & =k^{2} E_{s^{+}}, & \\
Q\left(k e_{s}+\ell e_{-s}+\sqrt{k} h_{s}\right) & =k^{2} E_{s^{+}}+\ell^{2} E_{-s^{+}}+k \ell H_{s^{+}}, & \\
Q\left(k e_{s}+\ell e_{t}\right) & =k^{2} E_{s^{+}}+\ell^{2} E_{t^{+}} & \text {when }\langle s, t\rangle=1, \\
Q\left(k e_{s}+\ell e_{t}\right) & =k^{2} E_{s^{+}}+\ell^{2} E_{t^{+}}+k \ell E_{(s+t)^{+*},} & \text { when }\langle s, t\rangle=0 . \tag{4.19}
\end{array}
$$

Proof: The first identity can be found in the proof of Proposition 4.13 for the special case $k=1$. The case for general k then follows from the fact that $Q(\cdot)$ is quadratic.

The second identity follows from the first, using Proposition 4.12-2 with $e=$ $k e_{s}$ and $f=\sqrt{\ell / k} e_{-s}$. The third and fourth identities are a consequence of Proposition 4.12-3. Note that $\langle s, t\rangle=1$ implies $e_{s} * \overline{e_{t}}=0$. Likewise, if $\langle s, t\rangle=$ 0 then $e_{s} * \overline{e_{t}}=E_{s+t}$ by Proposition 3.46, and then $S\left(\mu^{-1}\left(E_{s+t}\right)\right)=E_{(s+t)^{+*}} . \quad$.

4.3 The graph endomorphism of $\widehat{\mathrm{F}}_{4}(K)$

Let e be an isotropic element of \mathbf{W}. Define the linear map

$$
\begin{equation*}
x(e): \mathbf{V} \rightarrow \mathbf{V}: a \mapsto a^{x(e)} \stackrel{\text { def }}{=} a+[e, a]+(a \bar{e}) e \tag{4.20}
\end{equation*}
$$

In the special case of $e=k e_{p}$ with $k \in K, p \in \mathcal{P}^{*}$ it easily follows from (3.52) that $x\left(k e_{p}\right)$ is equal to $x_{s}(k)$ with $s=(p+\bar{p}) / 2$, using $k E_{S}=S\left(k e_{p}\right)$ by (4.5). Because $\widehat{\mathrm{F}}_{4}(K)$ is transitive on all isotropic elements of \mathbf{W}, we see that $x(e)$ must belong to $\widehat{\mathrm{F}}_{4}(K)$ also in the general case.

Generalizing the last statement of (3.52) using a similar argument and applying Proposition 4.2, yields

$$
\begin{equation*}
A^{x(e)} \stackrel{\text { def }}{=} A+S(e A)+e A * \bar{e} \tag{4.21}
\end{equation*}
$$

Note that $x(k e) x\left(k^{\prime} e\right)=x\left(\left(k+k^{\prime}\right) e\right)$ for all $k, k^{\prime} \in K$ and that in particular $x(e)^{2}=1$. It also follows that $\widehat{\mathrm{F}}_{4}(K)$ is generated by all elements $x(e)$ and $x(E)$ where e is an isotropic element of \mathbf{W} and E is an isotropic element of \mathbf{J}.

Lemma 4.15 Let e, f be isotropic elements of \mathbf{W} such that $e \bar{f}=1$. Define

$$
\begin{equation*}
n(e, f) \stackrel{\text { def }}{=} x(e) x(f) x(e) \tag{4.22}
\end{equation*}
$$

Then $n(e, f)=n(f, e)$ and

$$
\begin{equation*}
e^{n(e, f)}=f, \quad f^{n(e, f)}=e \tag{4.23}
\end{equation*}
$$

Proof: Note that $e^{x(e)}=e, f^{x(f)}=f$ and $e^{x(f)}=e+f+[e, f]=f^{x(e)}$. From $x(e)^{2}=1$, we then obtain $(e+f+[e, f])^{x(e)}=f$. It follows that $e^{n(e, f)}=$ $e^{x(e) x(f) x(e)}=f$ and $f^{n(f, e)}=e$, by symmetry. Applying (4.24) we obtain $n(e, f)=x(e) x(f) x(e)=x\left(f^{x(e)}\right)=x(e+f+[e, f])$ which is symmetric in e and f. This implies $n(e, f)=n(f, e)$.

- As with the elements $n(E, F)$ of Chapter 2 the elements $n(e, f)$ can be used in a short proof of the fact that the non-zero isotropic elements of \mathbf{W} form a single orbit of $\widehat{\mathrm{F}}_{4}(K)$.

Consider $p \in \mathcal{P}^{*}, k \in K-\{0\}$ then $n\left(k e_{p}, k^{-1} e_{-\bar{p}}\right)=x\left(k E_{s}\right) x\left(k^{-1} E_{-s}\right) x\left(k E_{s}\right)$ with $s=(p+\bar{p}) / 2$, and this is equal to $n_{s}(k)$ as defined in (3.58).

Let e be an isotropic element of \mathbf{W}. Applying an automorphism g of \mathbf{W} to (4.20) we obtain $\left(a^{x(e)}\right)^{g}=\left(a^{g}\right)^{x\left(e^{g}\right)}$ and hence

$$
\begin{equation*}
x(e)^{g}=x\left(e^{g}\right) \tag{4.24}
\end{equation*}
$$

for all isotropic elements $e \in \mathbf{W}$ and all automorphisms g of \mathbf{J}. This result is similar to (2.87).

Formula (4.24) can be extended to endomorphisms like . frob. Let g be an automorphism of \mathbf{W} and define $g^{\text {frob }}$ to be the transformation that maps $a^{\text {frob }}$ onto $\left(a^{g}\right)^{\text {frob }}$ for all $a \in \mathbf{V}$. Then $g^{\text {frob }}$ is an automorphism of $\mathbf{W}^{\text {frob }}$. Applying the Frobenius map to (4.20) we find that $\left(a^{\text {frob }}\right)^{x\left(e^{\text {frob }}\right)}=\left(a^{x(e)}\right)^{\text {frob }}$ for all $a \in \mathbf{V}$, and hence

$$
\begin{equation*}
x(e)^{\mathrm{frob}}=x\left(e^{\mathrm{frob}}\right) \tag{4.25}
\end{equation*}
$$

for all isotropic elements $e \in \mathbf{W}$. Because $\widehat{\mathrm{F}}_{4}(K)$ is generated by elements of the form $x(e)$, we find that $g^{\text {frob }} \in \widehat{\mathrm{F}}_{4}\left(K^{2}\right)$ whenever $g \in \widehat{\mathrm{~F}}_{4}(K)$.

We are now in the position to extend the commutation relations of Proposition 2.39 with some new identities involving elements of the form $x(e)$ with $e \in \mathbf{W}$.

Proposition 4.16 Let e, f be isotropic elements of \mathbf{W} such that $e \bar{f}=0$. Let E be an isotropic element of J. Then

$$
\begin{align*}
& x(e) x(f)=x(f) x(e) x([e, f]) \tag{4.26}\\
& x(e) x(E)=x(E) x(e) x(e E) x(e E * \bar{e})
\end{align*}
$$

If also $[e, f]=0$ then

$$
\begin{equation*}
x(f * \bar{e})=x(e * \bar{f})=x(e) x(f) x(e+f) \tag{4.27}
\end{equation*}
$$

Proof: First consider the case $[e, f]=0$. Note that in that case $f^{x(e)}=f+$
$[e, f]+(e \bar{f}) e=f$. For $a \in \mathbf{W}$ we find

$$
\begin{aligned}
a^{x(f) x(e)} & =(a+[f, a]+(a \bar{f}) f)^{x(e)} \\
& =a^{x(e)}+\left[f^{x(e)}, a^{x(e)}\right]+(a \bar{f}) f^{x(e)} \\
& =a+[e, a]+(a \bar{e}) e+[f, a]+[f,[e, a]]+(a \bar{e})[e, f]+(a \bar{f}) f \\
& =a+[e, a]+[f, a]+[[a, e], f]+(a \bar{e}) e+(a \bar{f}) f
\end{aligned}
$$

and then

$$
a^{x(f) x(e) x(e * f)}=a^{x(f) x(e)}+\left[a^{x(f) x(e)}, e * \bar{f}\right] .
$$

Using Lemma 4.4 to discard most of the resulting terms, we find $\left[a^{x(f) x(e)}, e *\right.$ $\bar{f}]=[a, e * \bar{f}]$ and we finally obtain

$$
\begin{aligned}
a^{x(f) x(e) x(e * f)} & =a+[e, a]+[f, a]+(a \bar{e}) f+(a \bar{f}) e+(a \bar{e}) e+(a \bar{f}) f \\
& =a+[e+f, a]+((\bar{e}+\bar{f}) a)(e+f)=a^{x(e+f)}
\end{aligned}
$$

Rearranging terms yields (4.27).
Now, for general values of $[e, f]$, by (4.24) we have

$$
x(f) x(e) x(f)=x\left(e^{x(f)}\right)=x(e+[e, f]+(e \bar{f}) f)=x(e+[e, f])
$$

Because $[e, f] \bar{e}=0$ by Proposition 4.5-1 and also $[[e, f], e]=\left[f, e^{2}\right]=0$, we may apply (4.27) to find that $x(e+[e, f])=x(e) x([e, f]) x([e, f] * \bar{e})=$ $x(e) x([e, f])$, because $[e, f] * \bar{e}=0$ by Proposition 4.5-6. This proves the first identity of (4.26).

Similarly,

$$
x(E) x(e) x(E)=x(e+e E)=x(e) x(e E) x(e E * \bar{e})
$$

because $e E \bar{e}=0$ and $[e, e E]=0$. This yields the second identity.
Because every isotropic element E of \mathbf{J} can be written as $E=e * \bar{f}$ with $e, f \in \mathbf{W}$ isotropic such that $[e, f]=0$ it follows from (4.27) that $\widehat{\mathrm{F}}_{4}(K)$ can be generated by elements of the form $x(e)$ with $e \in \mathbf{W}$ isotropic.

Because $\widehat{\mathrm{F}}_{4}(K)$ leaves $S(\mathbf{W})$ invariant, the action of $\widehat{\mathrm{F}}_{4}(K)$ on \mathbf{L} can be extended to \mathbf{Q} by setting $(A+S(\mathbf{W}))^{g}=A^{g}+S(\mathbf{W})$ for all $A \in \mathbf{J}, g \in \widehat{\mathrm{~F}}_{4}(K)$. Hence the operation \dagger from the following proposition is well-defined.

Proposition 4.17 Let $g \in \widehat{F}_{4}(K)$. Define

$$
\begin{equation*}
g^{+} \stackrel{\text { def }}{=} \mu g \mu^{-1} . \tag{4.28}
\end{equation*}
$$

Then $g^{\dagger} \in \widehat{\mathrm{F}}_{4}(K)$, and

$$
\begin{equation*}
x(e)^{\dagger}=x(Q(e)), \quad x(E)^{\dagger}=x\left(e^{\prime}\right) \tag{4.29}
\end{equation*}
$$

for every isotropic element $e \in \mathbf{W}$ and $E \in \mathbf{J}$, where e^{\prime} is the unique element of \mathbf{W} such that $E=\mu\left(e^{\prime}\right)$.

Proof: It is sufficient to prove (4.29).
Let $a \in \mathbf{W}$ and write $A=\mu(a) \bmod S(\mathbf{W})$. By definition, $x(e)^{\dagger}$ maps a onto $\mu^{-1}(A+S(e A)+e A * \bar{e})$ which is equal to $a+a Q(e)$ by Proposition 4.11. This proves the first part of (4.29). Similarly, $x(E)$ maps a onto $\mu^{-1}(A+[A, E]+$ $(A \cdot E) E)=a+\left[a, e^{\prime}\right]+\left(a \bar{e}^{\prime}\right) e^{\prime}$.

Definition (4.28) also implies

$$
\begin{equation*}
\mu(a)^{g}=\mu\left(a^{g^{\dagger}}\right), \quad \text { for all } a \in \mathbf{V} \tag{4.30}
\end{equation*}
$$

As a particular case of (4.29) we find

$$
\begin{equation*}
x_{s}(k)^{\dagger}=x_{s^{\dagger}}\left(k^{2}\right), \quad x_{s^{\dagger}}(k)^{\dagger}=x_{s}(k), \tag{4.31}
\end{equation*}
$$

for any $k \in K$ and $s \in \Phi_{S}$.
As a further consequence of Proposition 4.17 we have

$$
\begin{equation*}
n(e, f)^{\dagger}=n(Q(e), Q(f)) \tag{4.32}
\end{equation*}
$$

for isotropic elements $e, f \in \mathbf{W}$ satisfying $e \bar{f}=1$ (and hence $Q(e) \cdot Q(f)=1$).
Note that by definition $(g h)^{\dagger}=g^{\dagger} h^{\dagger}$ for any $g, h \in \widehat{\mathrm{~F}}_{4}(K)$. This proves that \dagger is an endomorphism of the group $\widehat{F}_{4}(K)$ (called a graph endomorphism of $\widehat{F}_{4}(K)$). If e is an isotropic element of \mathbf{W}, we may use (4.17) and (4.29) to obtain
$x(e)^{\dagger+}=x\left(e^{\text {frob }}\right)=x(e)^{\text {frob }}$, and in general, because $\widehat{\mathrm{F}}_{4}(K)$ can be generated by elements of the form $x(e)$, we have $g^{\dagger \dagger}=g^{\text {frob }}$, or

$$
\begin{equation*}
g \text { frob }=\text { frob } g^{+\dagger}, \quad \text { for } g \in \widehat{F}_{4}(K) \tag{4.33}
\end{equation*}
$$

- The endomorphism + is not necessarily an automorphism of $\widehat{\mathrm{F}}_{4}(K)$ for its image might be a proper subgroup of $\widehat{\mathrm{F}}_{4}(K)$. From (4.33) it follows that \dagger will be an automorphism of $\widehat{F}_{4}(K)$ if and only if the field K is perfect.

Proposition 4.18 Let e be an isotropic element of \mathbf{W}. Let $g \in \widehat{F}_{4}(K)$. Then

$$
\begin{equation*}
Q\left(e^{g}\right)=Q(e)^{g^{\dagger}} \tag{4.34}
\end{equation*}
$$

Proof: Let $a, b \in \mathbf{W}, g \in \widehat{F}_{4}(K)$. We have

$$
\begin{aligned}
a^{g^{\dagger}} Q(e)^{g^{\dagger}} \bar{b}^{g^{\dagger}} & =a Q(e) \bar{b} \\
& =e \mu(a) \mu(b) \bar{e} \\
& =e^{g} \mu(a)^{g} \mu(b)^{g} \bar{e}^{g} \\
& =e^{g} \mu\left(a^{g^{+}}\right) \mu\left(b^{g^{\dagger}}\right)^{g} \bar{e}^{g}=a^{g^{\dagger}} Q\left(e^{g}\right) \overline{b^{g^{\dagger}}}=a^{g^{\dagger}} Q\left(e^{g}\right) \bar{b}^{g^{\dagger}}
\end{aligned}
$$

and this is true for all a, b.

- Let e, f denote isotropic elements of \mathbf{W} and set $g=x(f)$ (and $\left.g^{\dagger}=x(Q(f))\right)$ in (4.34). We obtain $Q(e+[e, f]+(e \bar{f}) f)=Q(e)+[Q(e), Q(f)]+(Q(e) \cdot Q(f)) Q(f)$, which is equivalent to Proposition 4.12-2.

5 The perfect Ree-Tits generalized octagon

Apart from requiring that K is a field of characteristic 2 , as in the previous chapter, we will additionally assume throughout this chapter that the field K is perfect (i.e., $K^{2}=K$) and that K has a Tits endomorphism, i.e., a field endomorphism σ with the property

$$
\begin{equation*}
\left(k^{\sigma}\right)^{\sigma}=k^{2}, \quad \text { for every } k \in K \tag{5.1}
\end{equation*}
$$

Because K is assumed to be perfect the Tits endomorphism is an automorphism, i.e., $K=K^{\sigma}$ and $k^{\sigma^{-1}}$ is defined for every $k \in K$. For finite fields a Tits automorphism exists if and only if the order of the field is an odd power $2^{2 m+1}$ of 2 , and then $k^{\sigma}=k^{2^{m+1}}$.

- Note that $k^{\sigma^{-1}}=\sqrt{k^{\sigma}}=\left(k^{\sigma}\right)^{1 / 2}$ and we will always write this as $k^{\sigma / 2}$. (Note that the square root operator is well-defined. Because char $K=2$ every element K has at most one square root - we need not worry about the sign - and because K is perfect, every element has at least one square root.) Formally the symbol σ behaves very much like an exponent of value $\sqrt{2}$.

As with the Frobenius endomorphism we will extend σ to \mathbf{V} by applying it to the coordinates with respect to the Chevalley basis, i.e.,

$$
a^{\sigma} \stackrel{\text { def }}{=} \sum_{p \in \mathcal{P}} a[p]^{\sigma} e_{p}
$$

We have $a^{\text {frob }}=\left(a^{\sigma}\right)^{\sigma}$ for every $a \in \mathbf{W}$ and $A^{\text {frob }}=\left(A^{\sigma}\right)^{\sigma}$ for every $A \in \widehat{\mathbf{L}}$. Also $[a, b]^{\sigma}=\left[a^{\sigma}, b^{\sigma}\right],\left(a^{2}\right)^{\sigma}=\left(a^{\sigma}\right)^{2}, a^{\sigma} \overline{b^{\sigma}}=(a \bar{b})^{\sigma}, \ldots$, as expected. When e (and hence e^{σ}) is an isotropic element of \mathbf{W}, we find that $Q\left(e^{\sigma}\right)=Q(e)^{\sigma}$.

- We regret that we have to restrict ourselves to the case of a field K that is perfect, for a lot of the results of this chapter also hold in the non-perfect case. Unfortunately, the proofs in this chapter frequently use the fact that σ has an inverse σ^{-1} and we also occasionally have to extract a square root of an element of K. At this moment we do not see how to avoid this.

5.1 A root system of type ${ }^{2} \mathrm{~F}_{4}$

Lemma 5.1 Let $r \in \Phi_{S}$. Let $x \in \mathbf{P}_{F}$.

If $r \cdot r^{\dagger}=0$, then

$$
\begin{equation*}
w_{\sqrt{2} r+r^{\dagger}}\left(\sqrt{2} x+x^{\dagger}\right)=w_{r}\left(w_{r^{\dagger}}\left(\sqrt{2} x+x^{\dagger}\right)\right) \tag{5.2}
\end{equation*}
$$

Otherwise, $r \cdot r^{\dagger}= \pm 1$, and then

$$
\begin{equation*}
w_{\sqrt{2} r+r^{\dagger}}\left(\sqrt{2} x+x^{\dagger}\right)=w_{r}\left(w_{r^{\dagger}}\left(w_{r}\left(w_{r^{\dagger}}\left(\sqrt{2} x+x^{\dagger}\right)\right)\right)\right) . \tag{5.3}
\end{equation*}
$$

Proof: Let $x \in \mathbf{P}_{F}$. For ease of notation we write $s=\sqrt{2} r+r^{\dagger}, y=\sqrt{2} x+x^{\dagger}$. Note that $s^{\dagger}=\sqrt{2} s$ and $y^{\dagger}=\sqrt{2} y$. From $r \cdot x^{\dagger}=r^{\dagger} \cdot x$ and $r^{\dagger} \cdot x^{\dagger}=2 r \cdot x$ we derive $r \cdot y=s \cdot x, r^{\dagger} \cdot y=\sqrt{2} r \cdot y$ and $s \cdot y=2 \sqrt{2} r \cdot y$. Also $w_{r^{\dagger}}(y)=$ $y-\left(r^{\dagger} \cdot y\right) r^{\dagger}, w_{r}(y)=y-2(r \cdot y) r$ and $w_{r}\left(r^{\dagger}\right)=r^{\dagger}-2\left(r \cdot r^{\dagger}\right) r$.

Assume $r \cdot r^{\dagger}=0$. Then

$$
\begin{align*}
w_{r}\left(w_{r^{\dagger}}(y)\right) & =w_{r}\left(y-\left(r^{\dagger} \cdot y\right) r^{\dagger}\right) \\
& =y-2(r \cdot y) r-\left(r^{\dagger} \cdot y\right) r^{\dagger} \tag{5.4}\\
& =y-(s \cdot y) r / \sqrt{2}-(s \cdot y) r^{\dagger} / 2=y-\frac{1}{2}(s \cdot y) s
\end{align*}
$$

This is equal to $w_{s}(y)$ because $s \cdot s=4$ when $r \cdot r^{\dagger}=0$.
Secondly, let $r \cdot r^{\dagger}= \pm 1$. Note that $w_{r^{+}} w_{r} w_{r^{\dagger}}=w_{w_{r^{+}}(r)}=w_{r \mp r^{\dagger}}$, with $r \mp r^{\dagger} \in$ Φ_{S}, and hence

$$
\begin{aligned}
w_{r^{\dagger}}\left(w_{r}\left(w_{r^{\dagger}}(y)\right)\right) & =w_{r \mp r^{\dagger}}(y) \\
& =y-2\left(\left(r \mp r^{\dagger}\right) \cdot y\right)\left(r \mp r^{\dagger}\right)=y-2(1 \mp \sqrt{2})(r \cdot y)\left(r \mp r^{\dagger}\right)
\end{aligned}
$$

Also $r \cdot\left(r \mp r^{\dagger}\right)=0$ and therefore $w_{r}\left(r \mp r^{\dagger}\right)=r \mp r^{\dagger}$. This yields

$$
\begin{align*}
w_{r}\left(w_{r^{\dagger}}\left(w_{r}\left(w_{r^{\dagger}}(y)\right)\right)\right) & =w_{r}(y)-2(1 \mp \sqrt{2})(r \cdot y) w_{r}\left(r \mp r^{\dagger}\right) \\
& =y-2(r \cdot y)-2(1 \mp \sqrt{2})(r \cdot y)\left(r \mp r^{\dagger}\right) \\
& =y-2(r \cdot y)\left[(2 \mp \sqrt{2}) r+(\sqrt{2} \mp 1) r^{\dagger}\right] \tag{5.5}\\
& =y-2(r \cdot y)(\sqrt{2} \mp 1)\left(\sqrt{2} r+r^{\dagger}\right) \\
& =y-2(r \cdot y)(\sqrt{2} \mp 1) s .
\end{align*}
$$

To complete the proof of (5.3) we compute

$$
2 \frac{s \cdot y}{s \cdot s} \frac{2(s \cdot y)}{4 \pm 2 \sqrt{2}}=\frac{2(\sqrt{2} \mp 1)(s \cdot y)}{(\sqrt{2} \mp 1)(4 \pm 2 \sqrt{2})}=\frac{2(\sqrt{2} \mp 1)(s \cdot y)}{2 \sqrt{2}}=2(\sqrt{2} \mp 1)(r \cdot y)
$$

which proves that the right hand side of (5.5) is equal to $w_{s}(y)$.
The lemma above shows that it is natural to consider the subspace $\mathbf{P}_{O}=$ $\left\{\sqrt{2} x+x^{\dagger}\right\}$ of \mathbf{P}_{F}.

If we define

$$
\Phi_{O} \stackrel{\text { def }}{=}\left\{\sqrt{2} s+s^{\dagger} \mid s \in \Phi_{S}\right\},
$$

then it follows from Lemma 5.1 that $w_{s}(t) \in \Phi_{O}$ whenever $s, t \in \Phi_{O}$. We will call Φ_{O} a root system of type ${ }^{2} F_{4}$. Note that Φ_{O} is not a subset of Φ_{F}, hence when ambiguity may arise, we will use the term O-root for elements of Φ_{O}.

- Unlike Φ and Φ_{F}, the set Φ_{O} is not really a root system in the proper sense, because it contains elements r, s for which $\langle r, s\rangle$ is not integral. There also exist $r, s \in \Phi_{0}, r \neq \pm s$ such that r is a scalar multiple of s.

We depict this root system in Figure 5.1 on the next page. Each O-root $s=$ $\sqrt{2} r+r^{\dagger}$ has been labelled with the short root r to which it corresponds. Note that O-roots have three different lengths according to whether $r \cdot r^{\dagger}=1,0$ or -1 (those of intermediate length have been printed in black). Angles between O-roots are always a multiple of $\pi / 8$.

Let $s=\sqrt{2} r+r^{\dagger}$. Define $w_{s}^{\prime \prime} \stackrel{\text { def }}{=} w_{r}^{\prime} w_{r^{\dagger}}$ when $r \cdot r^{\dagger}=0$ (i.e., s is of intermediate length) and $w_{s}^{\prime \prime} \stackrel{\text { def }}{=} w_{r}^{\prime} w_{r^{+}} w_{r}^{\prime} w_{r^{+}}$when $r \cdot r^{\dagger}= \pm 1$. By (5.2-5.3) the element $w_{s}^{\prime \prime}$ coincides on \mathbf{P}_{O} with the reflection w_{s} in the line orthogonal to s.

Define $W\left({ }^{2} \mathrm{~F}_{4}\right)$ to be the subgroup of $W\left(\mathrm{~F}_{4}\right)$ generated by all elements $w_{s}^{\prime \prime}$ of this form. When restricted to \mathbf{P}_{O} the group $W\left({ }^{2} \mathrm{~F}_{4}\right)$ acts like a kind of Weyl group of Φ_{O}, isomorphic to the dihedral group of order 16 (i.e., the group of symmetries of the regular octagon).

The group $W\left({ }^{2} \mathrm{~F}_{4}\right)$ has three orbits on Φ_{O} (corresponding to the three different lengths of O-roots). Two ordered pairs of O-roots are equivalent under the action of $W\left({ }^{2} \mathrm{~F}_{4}\right)$ if and only if the corresponding lengths and the inner product are the same.

Figure 5.1: The root system Φ_{O} of type ${ }^{2} F_{4}$

5.2 Octagonality and the Ree group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$

For $a, e \in \mathbf{W}$ such that e is isotropic we define the operator $q(\cdot, \cdot)$ as follows :

$$
\begin{equation*}
q(a, e) \stackrel{\text { def }}{=} a Q(e)^{\sigma / 2}=a Q\left(e^{\sigma / 2}\right) \tag{5.6}
\end{equation*}
$$

We write $q(\mathbf{V}, e)$ for the set of elements $q(a, e)$ with $a \in \mathbf{V}$, i.e., $q(\mathbf{V}, e)=$ $\mathbf{V} Q(e)^{\sigma / 2}$.

- When the field K is not perfect, the definition of the operator $q(\cdot, \cdot)$ must be restricted to those isotropic elements e for which $\mathbf{V} Q(e) \leq \mathbf{V}^{\sigma}$. Note that $e=k e_{s}$ is of this type for every $s \in \Phi_{S}$ and every $k \in K$, even when $k \notin K^{\sigma}$.

Proposition 5.2 Let e, f denote isotropic elements of \mathbf{W}. Then

1. $Q(q(f, e))^{\sigma / 2}=q(e, f) * \bar{e}$,
2. $q(e, f) \bar{e}=0,[q(e, f), e]=0, q(e, q(f, e))=0$ and $q(q(e, f), q(f, e))=0$.
3. $q(e, f)=0$ if and only if $q(f, e)=0$,
4. $e \in q(\mathbf{V}, f)$ if and only if $f \in q(\mathbf{V}, e)$,
5. e and $q(e, e)$ both belong to $q(\mathbf{V}, q(e, e))$.

Proof:

1. Applying (4.18) to e and $f^{\sigma / 2}$ yields $Q(q(e, f))=q(f, e)^{\sigma} * \bar{f}^{\sigma}$.
2. The first two equalities follow from the definition and the fact that e is isotropic. The last two are a consequence of the previous statement.
3. Setting $q(e, f)=0$ in statement 1 of this proposition proves $Q(q(f, e))^{\sigma / 2}=$ 0 and hence $q(f, e)=0$.
4. Every $f \in q(\mathbf{V}, e)=\mathbf{V} Q(e)^{\sigma / 2}$ can be written as $f=q(a, e)$ for some $a \in \mathbf{V}$. We may choose a to be isotropic and belong to \mathbf{W} by Theorem 3.27. Then $Q(f)^{\sigma / 2}=q(e, a) * \bar{e}$ and therefore $e \in \mathbf{V} Q(f)^{\sigma / 2}$ by Proposition 3.14-1.
5. Setting $e=f$ in statement 1 proves $Q(q(e, e))^{\sigma / 2}=q(e, e) * \bar{e}$, and hence both e and $q(e, e)$ belong to $\mathbf{V} Q(q(e, e))^{\sigma / 2}$ by Proposition 3.14-1.

An element $e \in \mathbf{W}$ will be called semi-octagonal if and only if it is isotropic and $q(e, e)=0$. An element $e \in \mathbf{W}$ will be called octagonal if and only if it is isotropic and $e \in q(\mathbf{W}, e)$. An element $e \in \mathbf{W}$ will be called para-octagonal if it is isotropic but not semi-octagonal. By Theorem $2.37 e \in \mathbf{W}$ is octagonal if and only if it is semi-octagonal and $e \times Q(e)^{\sigma / 2}=0$. All octagonal elements are semi-octagonal, but not conversely. By Proposition 5.2-5 $q(e, e)$ is always octagonal (and different from zero) when e is para-octagonal. We will call $q(e, e)$ the kernel of e.

- To prove that an element e is not octagonal we will often try to establish an element f such that $[e, q(f, e)] \neq 0$. Indeed, when e is octagonal, both e and $q(f, e)$ belong to $\mathbf{V} Q(e)^{\sigma / 2}$, and this subspace of \mathbf{W} is isotropic.

Typical octagonal (semi-octagonal but not octagonal, para-octagonal, respectively) elements are the elements $e_{r} \in \mathbf{W}$ with $r \in \Phi_{S}$ such that $r \cdot r^{\dagger}=-1(0$, 1 , respectively). These correspond to long (intermediate, short, respectively) O-roots.

Before we proceed we need to introduce one more operator :

Lemma 5.3 Let e, $f \in \mathbf{W}$ be isotropic elements satisfying $[e, f]=0$. Define $c(e, f)$ to be the unique element of \mathbf{W} such that $\mu(c(e, f))=(e * \bar{f})^{\sigma / 2}$. Then

1. $c(e, f)=c(f, e)$,
2. $Q(c(e, f))^{\sigma / 2}=e * \bar{f}$,
3. $q(e, c(e, f))=q(f, c(e, f))=0$ and hence $q(c(e, f), e)=q(c(e, f), f)=0$,
4. For all $a \in \mathbf{W}$ we have $q(a, e+f)=q(a, e)+q(a, f)+[a, c(e, f)]$.

Proof:

1. Immediate by Proposition 4.2-10.
2. By Proposition 4.13, $Q(c(e, f))$ and $(e * \bar{f})^{\sigma}$ are equal, modulo $S(\mathbf{W})$. Because both are isotropic elements of \mathbf{J}, Proposition 4.6-4) proves that they are also equal in \mathbf{J}.
3. By the above $q(e, c(e, f))=e Q(c(e, f))^{\sigma / 2}=e(e * \bar{f})=0$.
4. This is a simple rephrasing of Proposition 4.12-3.

Let g be an automorphism of \mathbf{W} and define g^{σ} to be the transformation that maps a^{σ} onto $\left(a^{g}\right)^{\sigma}$ for all $a \in \mathbf{V}$. Then g^{σ} is an automorphism of \mathbf{W}^{σ}. As with the Frobenius map, we have

$$
\begin{equation*}
x(e)^{\sigma}=x\left(e^{\sigma}\right) \tag{5.7}
\end{equation*}
$$

for all isotropic elements $e \in \mathbf{W}$. It follows that $g^{\sigma} \in \widehat{\mathrm{F}}_{4}(K)$ whenever $g \in$ $\widehat{\mathrm{F}}_{4}(K)$. Note that $\left(g^{\sigma}\right)^{\sigma}=g^{\text {frob }}$ also in this context.

Proposition 5.4 Let g be an automorphism of \mathbf{W} satisfying $g^{\dagger}=g^{\sigma}$, i.e.,

$$
\begin{equation*}
\left(a^{g}\right)^{\sigma}=\left(a^{\sigma}\right)^{g^{+}}, \quad \text { for all } a \in \mathbf{W} \tag{5.8}
\end{equation*}
$$

Let e, f be isotropic elements of \mathbf{W}. Then

1. $q\left(a^{g}, e^{g}\right)=q(a, e)^{g}$, for all $a \in \mathbf{V}$,
2. $q\left(\mathbf{V}, e^{g}\right)=q(\mathbf{V}, e)^{g}$,
3. $c\left(e^{g}, f^{g}\right)=c(e, f)^{g}$.

Proof: Let $a \in \mathbf{V}$. We have $q\left(a^{g}, e^{g}\right)^{\sigma}=\left(a^{g}\right)^{\sigma} Q\left(e^{\mathcal{g}}\right)=\left(a^{g}\right)^{\sigma} Q(e)^{g^{+}}$by (4.34) and this is equal to $\left(a^{\sigma}\right)^{g^{\dagger}} Q(e)^{g^{\dagger}}=\left(a^{\sigma} Q(e)\right)^{g^{\dagger}}=q(a, e)^{\sigma g^{\dagger}}=q(a, e)^{g \sigma}$ by (5.8). Because g is an automorphism, we also have $\mathbf{V}^{g}=\mathbf{V}$.

Finally, $c\left(e^{g}, f^{g}\right)$ is the unique element of \mathbf{W} satisfying $\mu\left(c\left(e^{g}, f^{g}\right)^{\sigma}\right)=e^{g} *$ $\bar{f}^{g}=(e * \bar{f})^{g}$. Also $(e * \bar{f})^{g}=\mu\left(c(e, f)^{\sigma}\right)^{g}=\mu\left(c(e, f)^{\sigma g^{+}}\right)$by 4.30 , and this is equal to $\mu\left(c(e, f)^{g \sigma}\right)$ by (5.8).

Proposition 5.5 Let e be an isotropic element of \mathbf{W}. Define

$$
\begin{equation*}
y(e) \stackrel{\text { def }}{=} x\left(Q(e)^{\sigma / 2}\right) x(e) x(q(e, e)) . \tag{5.9}
\end{equation*}
$$

Then $y(e)$ satisfies (5.8).

Proof: Write $d=q(e, e)$. Note that $Q(d)^{\sigma / 2}=d * \bar{e}$ by Proposition 5.2-1. Applying the commutation relations (4.26) we obtain

$$
\begin{align*}
x\left(e^{\sigma}\right) x(Q(e)) & =x(Q(e)) x\left(e^{\sigma}\right) x\left(e^{\sigma} Q(e)\right) x\left(e^{\sigma} Q(e) * \bar{e}^{\sigma}\right) \\
& =x(Q(e)) x\left(e^{\sigma}\right) x\left(d^{\sigma}\right) x\left(d^{\sigma} * \bar{e}^{\sigma}\right) \tag{5.10}\\
& =x(Q(e)) x\left(e^{\sigma}\right) x\left(d^{\sigma}\right) x(Q(d)) .
\end{align*}
$$

Hence,

$$
\begin{array}{rlrl}
y(e)^{\dagger} & =x\left(Q(e)^{\sigma / 2}\right)^{\dagger} x(e)^{\dagger} x(d)^{\dagger} & & \text { by }(4.29) \\
& =x\left(e^{\sigma}\right) x(Q(e)) x(Q(d)), & & \\
& =x(Q(e)) x\left(e^{\sigma}\right) x\left(d^{\sigma}\right) x(Q(d)) x(Q(d)), & \text { by }(5.10) \\
& =x(Q(e)) x\left(e^{\sigma}\right) x\left(d^{\sigma}\right)=y\left(e^{\sigma}\right)=y(e)^{\sigma} . &
\end{array}
$$

Note that $[e, q(e, e)]=0$ and $q(e, e) Q(e)^{\sigma / 2}=0$, and hence we may apply the commutation relations (4.26) to obtain

$$
\begin{align*}
y(e) & =x\left(Q(e)^{\sigma / 2}\right) x(e) x(q(e, e)) \tag{5.11}\\
& =x\left(Q(e)^{\sigma / 2}\right) x(q(e, e)) x(e)=x(q(e, e)) x\left(Q(e)^{\sigma / 2}\right) x(e)
\end{align*}
$$

Because every $x(\cdot)$ is an involution, we obtain the following formulas for the three remaining permutations of the factors

$$
\begin{align*}
y(e)^{-1} & =x(q(e, e)) x(e) x\left(Q(e)^{\sigma / 2}\right) \\
& =x(e) x\left(q(e, e) x\left(Q(e)^{\sigma / 2}\right)=x(e) x\left(Q(e)^{\sigma / 2}\right) x(q(e, e))\right. \tag{5.12}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
y(e)=x\left(Q(e)^{\sigma / 2}\right) x(e)=x(e) x\left(Q(e)^{\sigma / 2}\right), \quad \text { when } q(e, e)=0 \tag{5.13}
\end{equation*}
$$

The group generated by all elements $y(e)$ as defined in (5.9) will be denoted by ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ and is called a Ree group or twisted Chevalley group of type ${ }^{2} \mathrm{~F}_{4}$. It follows from Proposition 5.4 that this group preserves octagonality, semioctagonality and para-octagonality.

If e is an isotropic element of \mathbf{W} and g an automorphism of \mathbf{W} that satisfies (5.8), in particular, if $g \in{ }^{2} \widehat{\mathrm{~F}}_{4}(K)$, then applying Proposition 5.4 and (4.24), we obtain

$$
\begin{equation*}
y\left(e^{g}\right)=y(e)^{g} . \tag{5.14}
\end{equation*}
$$

Let $s \in \Phi_{S}, k \in K$. Define the following elements of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$:

$$
y_{s}(k) \stackrel{\text { def }}{=} y\left(k e_{s}\right)= \begin{cases}x_{s^{\dagger}}\left(k^{\sigma}\right) x_{s}(k), & \text { when } s \cdot s^{\dagger} \neq-1, \tag{5.15}\\ x_{s^{\dagger}}\left(k^{\sigma}\right) x_{s}(k) x_{s+s^{\dagger}}\left(k^{1+\sigma}\right), & \text { when } s \cdot s^{\dagger}=-1 .\end{cases}
$$

We may permute the factors in these definitions in similar ways as in (5.11) and (5.13).

- It can be proved that the set of all elements $y_{s}(k)$ with $k \in K, s \in \Phi_{S}$ generate the group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. This is often taken as the definition of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ (cf. [8]).

Before we investigate some properties of the full group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ we will first consider some of its smaller subgroups.

Proposition 5.6 Let e be an isotropic element of \mathbf{W} with kernel $d=q(e, e)$. Let $k_{0}, \ell_{0}, k_{1}, \ell_{1} \in K$. Then

$$
\begin{equation*}
y\left(k_{0} e\right) y\left(k_{1} d\right) y\left(\ell_{0} e\right) y\left(\ell_{1} d\right)=y\left(\left(k_{0}+\ell_{0}\right) e\right) y\left(\left(k_{1}+\ell_{1}+k_{0}^{\sigma} \ell_{0}\right) d\right) \tag{5.16}
\end{equation*}
$$

In particular $y(e)^{2}=1$ when e is semi-octagonal and $y(e)^{4}=1$ in general.

Proof: Write $E=Q(e)^{\sigma / 2}$ and $D=Q(d)^{\sigma / 2}=d * \bar{e}$. Note that $d=e E$ by definition and hence $d E=[d, e]=0$. Likewise, $e D=0$ and $[D, E]=0$.

It follows that both $x(k d)$ and $x\left(k^{\prime} D\right)$ commute with both $x(\ell e)$ and $x\left(\ell^{\prime} E\right)$, for any $k, k^{\prime}, \ell, \ell^{\prime} \in K$. Also note that $d D=0$ and so also $x(k d)$ and $x\left(k^{\prime} D\right)$ commute with each other. From

$$
y(k e)=x\left(k^{\sigma} E\right) x(k e) x\left(k^{1+\sigma} d\right), \quad y(\ell d)=x\left(\ell^{\sigma} D\right) x(\ell d)
$$

it then follows that $y(\ell d)$ commutes with $y(k e)$ and $y\left(\ell^{\prime} d\right)$, for any $k, \ell, \ell^{\prime} \in k$. However, $y\left(k_{0} e\right)$ and $y\left(\ell_{0} e\right)$ do not necessarily commute.

We have

$$
\begin{aligned}
y\left(k_{0} e\right) y\left(\ell_{0} e\right) & =x\left(k_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(k_{0}^{1+\sigma} d\right) x\left(\ell_{0}^{\sigma} E\right) x\left(\ell_{0} e\right) x\left(\ell_{0}^{1+\sigma} d\right) \\
& =x\left(k_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(\ell_{0}^{\sigma} E\right) x\left(\ell_{0} e\right) x\left(k_{0}^{1+\sigma} d\right) x\left(\ell_{0}^{1+\sigma} d\right)
\end{aligned}
$$

Applying (4.26) yields

$$
\begin{aligned}
x\left(k_{0} e\right) x\left(\ell_{0}^{\sigma} E\right) & =x\left(\ell_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(k_{0} \ell_{0}^{\sigma} e E\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} e E * \bar{e}\right) \\
& =x\left(\ell_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(k_{0} \ell_{0}^{\sigma} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right),
\end{aligned}
$$

and then

$$
\begin{aligned}
& y\left(k_{0} e\right) y\left(\ell_{0} e\right) \\
& \quad=x\left(k_{0}^{\sigma} E\right) x\left(\ell_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(k_{0} \ell_{0}^{\sigma} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right) x\left(\ell_{0} e\right) x\left(k_{0}^{1+\sigma} d\right) x\left(\ell_{0} \ell_{0}^{\sigma} d\right) \\
& \quad=x\left(k_{0}^{\sigma} E\right) x\left(\ell_{0}^{\sigma} E\right) x\left(k_{0} e\right) x\left(\ell_{0} e\right) x\left(k_{0} \ell_{0}^{\sigma} d\right) x\left(k_{0}^{1+\sigma} d\right) x\left(\ell_{0}^{1+\sigma} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right),
\end{aligned}
$$

using the commutation properties given above. This further simplies to

$$
\begin{aligned}
& y\left(k_{0} e\right) y\left(\ell_{0} e\right) \\
& \quad=x\left(\left(k_{0}+\ell_{0}\right)^{\sigma} E\right) x\left(\left(k_{0}+\ell_{0}\right) e\right) x\left(k_{0} \ell_{0}^{\sigma} d+k_{0}^{1+\sigma} d+\ell_{0}^{1+\sigma} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right) \\
& \quad=y\left(\left(k_{0}+\ell_{0}\right) e\right) x\left(\left(k_{0}+\ell_{0}\right)^{1+\sigma} d+k_{0} \ell_{0}^{\sigma} d+k_{0}^{1+\sigma} d+\ell_{0}^{1+\sigma} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right) \\
& \quad=y\left(\left(k_{0}+\ell_{0}\right) e\right) x\left(k_{0}^{\sigma} \ell_{0} d\right) x\left(k_{0}^{2} \ell_{0}^{\sigma} D\right) \\
& \quad=y\left(\left(k_{0}+\ell_{0}\right) e\right) y\left(k_{0}^{\sigma} \ell_{0} d\right)
\end{aligned}
$$

Note that in particular this implies $y\left(k_{0} e\right) y\left(\ell_{0} e\right)=y\left(\left(k_{0}+\ell_{0}\right) e\right)$ whenever e is semi-octagonal, because d is octagonal,

$$
\begin{equation*}
y(k d) y\left(k^{\prime} d\right)=y\left(\left(k+k^{\prime}\right) d\right), \quad \text { for all } k, k^{\prime} \in K \tag{5.17}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& y\left(k_{0} e\right) y\left(k_{1} d\right) y\left(\ell_{0} e\right) y\left(\ell_{1} d\right) \\
& \quad=y\left(k_{0} e\right) y\left(\ell_{0} e\right) y\left(k_{1} d\right) y\left(\ell_{1} d\right) \\
& \quad=y\left(\left(k_{0}+\ell_{0}\right) e\right) y\left(k_{0}^{\sigma} \ell_{0} d\right) y\left(k_{1} d\right) y\left(\ell_{1} d\right) \\
& \quad=y\left(\left(k_{0}+\ell_{0}\right) e\right) y\left(\left(k_{1}+\ell_{1}+k_{0}^{\sigma} \ell_{0}\right) d\right) \quad \text { by }(5.17)
\end{aligned}
$$

In order to study the group elements introduced by this proposition it is convenient to treat the pairs $\left(k_{0}, k_{1}\right),\left(\ell_{0}, \ell_{1}\right)$ as elements $\boldsymbol{k}, \boldsymbol{\ell}$ of an algebraic structure $K_{\sigma}^{(2)}$ endowed with the following addition operation, trace and norm :

$$
\begin{align*}
& \boldsymbol{k} \oplus \boldsymbol{\ell} \stackrel{\text { def }}{=}\left(k_{0}+\ell_{0}, k_{1}+\ell_{1}+k_{0}^{\sigma} \ell_{0}\right) \\
& T(\boldsymbol{k}) \stackrel{\text { def }}{=} k_{0}^{1+\sigma}+k_{1} \text {, } \tag{5.18}\\
& N(\boldsymbol{k}) \stackrel{\text { def }}{=} k_{0}^{2+\sigma}+k_{0} k_{1}+k_{1}^{\sigma}=k_{0} T(k)+k_{1}^{\sigma}=k_{0} k_{1}+T(k)^{\sigma} .
\end{align*}
$$

Note that $2 \boldsymbol{k}(=\boldsymbol{k} \oplus \boldsymbol{k})=\left(0, k_{0}^{1+\sigma}\right), 3 \boldsymbol{k}=\left(k_{0}, T(\boldsymbol{k})\right)$ and $4 \boldsymbol{k}=(0,0)$. We will write $3 \boldsymbol{k}$ as $-\boldsymbol{k}$ and $(0,0)$ as 0 , giving $\boldsymbol{k} \oplus(-\boldsymbol{k})=(-\boldsymbol{k}) \oplus \boldsymbol{k}=0$. We have

$$
\begin{equation*}
T(-\boldsymbol{k})=k_{1}, \quad N(-\boldsymbol{k})=N(\boldsymbol{k}) . \tag{5.19}
\end{equation*}
$$

For an isotropic element $e \in \mathbf{W}$ we will write

$$
\begin{equation*}
y(\boldsymbol{k e}) \stackrel{\text { def }}{=} y\left(k_{0} e\right) y\left(k_{1} q(e, e)\right) \tag{5.20}
\end{equation*}
$$

and then (5.16) simplifies to

$$
\begin{equation*}
y(k e) y(\ell e)=y((k \oplus \ell) e), \quad \text { for all } k, \ell \in K_{\sigma}^{(2)} \tag{5.21}
\end{equation*}
$$

proving that the set $y\left(K_{\sigma}^{(2)} e\right)$ of all elements of the form $y(k e)$ with $\boldsymbol{k} \in K_{\sigma}^{(2)}$ is a subgroup of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$.

- $\left(K_{\sigma}^{(2)}, \oplus\right)$ is a group of which $((0, K), \oplus)$ is a subgroup isomorphic to $(K,+)$. The group $y\left(K_{\sigma}^{(2)} e\right)$ is a quotient of $\left(K_{\sigma}^{(2)}, \oplus\right)$ which will turn out to be isomorphic to $(K,+)$ when e is semi-octagonal and non-zero, and to $\left(K_{\sigma}^{(2)}, \oplus\right)$ when e is para-octagonal.

We leave it to the reader to verify the following identities :

$$
\begin{equation*}
e^{y(k e)}=e+k_{0}^{\sigma} q(e, e), \quad q(e, e)^{y(k e)}=q(e, e) . \tag{5.22}
\end{equation*}
$$

5.3 The Suzuki-Tits ovoid and the Suzuki group

Let d, f be octagonal elements of \mathbf{W} satisfying $d \bar{f}=1$.
Write $D=Q(d)^{\sigma / 2}, F=Q(f)^{\sigma / 2}$ and define $e=q(f, d)=f D, g=q(d, f)=$ $d F, h=[d, f], E=Q(e)^{\sigma / 2}=d F * \bar{d}$ and $G=Q(g)^{\sigma / 2}=f D * \bar{f}$. We will investigate the structure of the 5-dimensional subspace $\mathbf{B}(d, f)$ of \mathbf{W} generated by d, e, f, g and h. (We will write $\mathbf{B}=\mathbf{B}(d, f)$ when d and f are clear from context.)

Because $d \bar{f}=1$ we have $D \cdot F=1$. From $d \in \mathbf{V} D$ and $D \cdot F=1$ we obtain $e F=f D F=f, e * \bar{d}=f D * \bar{d}=D$ and $[d, e]=[d, f D]=0$. By symmetry $g D=d, g * \bar{f}=F$ and $[f, g]=0$. Also $[e, f]=[f D, f]=0,[d, g]=[d, d F]=0$ and $e \bar{g}=f D F \bar{d}=f \bar{d}=1$. Finally $[e, g]=[f D, g]=[f, g] D+[f, g D]=$ $[f, d]=h$. This proves that \mathbf{B} is a subalgebra of \mathbf{W}.

It is also easily verified that $d D=e D=e G=f G=f F=g F=g E=d E=0$. In other words, any two elements that are at an angle $\pi / 4$ in the picture below, have a trivial product. Likewise, we invite the reader to verify that the Lie bracket applied to any two elements at a right angle also is zero, i.e., $[d, e]=0$, $\ldots,[D, E]=0$.

Note that $d D=f F=0, q(e, e)=e E=e(e * \bar{d})=d$ and $q(g, g)=f$. Also $h D=[d, f] D=[d D, f]+[d, f D]=0$, and similarly $h E=h F=h G=0$. Also $h \bar{d}=h \bar{e}=h \bar{f}=h \bar{g}=h \bar{h}=0$.

For $k \in K$ we have

$$
\begin{array}{ll}
y(k d) & =x\left(k^{\sigma} D\right) x(k d)
\end{array} \begin{array}{ll}
y(k f) & =x\left(k^{\sigma} F\right) x(k f) \\
y(k e) & =x\left(k^{\sigma} E\right) x(k e) x\left(k^{1+\sigma} d\right) \\
y(k g) & =x\left(k^{\sigma} G\right) x(k g) x\left(k^{1+\sigma} f\right)
\end{array}
$$

and hence the following are easily computed :

$$
\begin{aligned}
& d^{y(k d)}=d \\
& d^{y(k f)}=d+k^{2} f+k^{\sigma} g+k^{2} f+k h \\
& e^{y(k d)}=e^{2} \\
& f^{y(k d)}=k^{2} d+k^{\sigma} e+f+k h \\
& f^{y(k f)}=f \\
& g^{y(k d)}=k^{\sigma} d+g \\
& h^{y(k d)}=h \\
& g^{y(k f)}=g \\
& h^{y(k f)}=h \\
& d^{y(k e)}=d \quad d^{y(k g)}=d+k^{\sigma} e+k^{2+2 \sigma} f+k^{2+\sigma} g \\
& e^{y(k e)}=k^{\sigma} d+e \quad e^{y(k g)}=e+k^{2} g+k h \\
& f^{y(k e)}=k^{2+2 \sigma} d+k^{2+\sigma} e+f+k^{\sigma} g \quad f^{y(k g)}=f \\
& g^{y(k e)}=k^{2} e+g+k h \\
& g^{y(k g)}=k^{\sigma} f+g \\
& h^{y(k e)}=h \\
& h^{y(k g)}=h \text {. }
\end{aligned}
$$

In terms of $k \in K_{\sigma}^{(2)}$ we find

\[

\]

- From the formula for $d^{y(k g)}$ we see that $y\left(K_{\sigma}^{(2)} g\right)$ must be isomorphic to $\left(K_{\sigma}^{(2)}, \oplus\right)$ and not a proper quotient.

We will denote the subgroup of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ generated by $y\left(K_{\sigma}^{(2)} e\right)$ and $y\left(K_{\sigma}^{(2)} g\right)$
by $\operatorname{Suz}(d, f)$ (or simply Suz when d, f are clear from context). Suz is called a Suzuki group or twisted Chevalley group of type ${ }^{2} \mathrm{~B}_{2}$.

Theorem 5.7 Let d, f denote octagonal elements of \mathbf{W} such that $d \bar{f}=1$. Let $\mathbf{B}(d, f)$ and $\operatorname{Suz}(d, f)$ be defined as above.

Then every non-zero isotropic element of $\mathbf{B}(d, f)$ can be mapped by $\operatorname{Suz}(d, f)$ onto an element of the form $d+k[d, f]+k^{2} f$ with $k \in K$. All semi-octagonal elements of $\mathbf{B}(d, f)$ are octagonal and the set of non-zero (semi-)octagonal elements of $\mathbf{B}(d, f)$ constitutes a single orbit of Suz.

The subgroup $y\left(K_{\sigma}^{(2)} q(d, f)\right)$ of Suz leaves the (semi-)octagonal element f invariant and acts transitively on all (semi-)octagonal elements b such that $b \bar{f}=1$.

Proof: Let $d, e, f, g, h, D, E, F, G$ be as above. A general element b of \mathbf{B} can be written as

$$
b=k_{d} d+k_{e} e+k_{f} f+k_{g} g+k_{h} h,
$$

with $k_{d}, \ldots, k_{h} \in K$. We distinguish between three cases, according to the value of k_{d} and k_{f}.

We have $b^{2}=\left(k_{d} k_{f}+k_{e} k_{g}+k_{h}^{2}\right) h$, because $h^{2}=[d, f]^{2}=[d, f]=h$ by Proposition 4.5-2. Hence b is isotropic if and only if $k_{h}^{2}=k_{d} k_{f}+k_{e} k_{g}$.

Case 1. Assume $k_{d} \neq 0$. Using (5.23) we compute $b^{y(\ell g)}$ with $\ell \in K_{\sigma}^{(2)}:$

$$
\begin{align*}
b^{y(\ell g)}=k_{d} d+ & \left(k_{d} \ell_{0}^{\sigma}+k_{e}\right) e+\left(k_{d} N(\ell)^{\sigma}+k_{e} \ell_{1}^{\sigma}+k_{f}+k_{g} \ell_{0}^{\sigma}\right) f+ \\
& \left(k_{d} T(\ell)^{\sigma}+k_{e} \ell_{0}^{2}+k_{g}\right) g+\left(k_{d} \ell_{1}+k_{e} \ell_{0}+k_{h}\right) h . \tag{5.24}
\end{align*}
$$

Because $k_{d} \neq 1$ (and $K^{\sigma}=K$) we may always find $\ell=\left(\ell_{0}, \ell_{1}\right)$ such that $k_{d} \ell_{0}^{\sigma}=k_{e}$ and $k_{d} \ell_{1}^{\sigma}=k_{g}$. It is easily verified that this choice of ℓ makes the coefficients of e and g in (5.24) disappear. We obtain

$$
b^{y(\ell g)}=k_{d} d+\left(k_{d} N(\ell)^{\sigma}+k_{f}\right) f+\left(k_{d} N(\ell)^{\sigma / 2}+\sqrt{k_{d} k_{f}}+k_{h}\right) h .
$$

This element is of the form $b^{\prime}=k_{d} d+k_{f}^{\prime} f+k_{h}^{\prime} h$. If we assume that b and hence b^{\prime} is isotropic, we find $k_{h}^{\prime 2}=k_{d} k_{f}^{\prime}$, i.e., b^{\prime} is of the form $b^{\prime}=k_{d}\left(d+k^{2} f+k h\right)$ with $k=\sqrt{k_{f}^{\prime} / k_{d}}$. Applying Proposition 4.12-2 to the pair $k_{d} d, k f$ we obtain $Q\left(b^{\prime}\right)=k_{d}^{2}\left(Q(d)+k^{4} Q(f)+k^{2}[Q(d), Q(f)]\right)$, and hence

$$
\begin{aligned}
q\left(b^{\prime}, b^{\prime}\right)=b^{\prime} Q\left(b^{\prime}\right)^{\sigma / 2} & =k_{d}^{1+\sigma}\left(d+k^{2} f+k h\right)\left(D+k^{2 \sigma} F+k^{\sigma}[D, F]\right) \\
& =k_{d}^{1+\sigma}\left(k^{2 \sigma} g+k^{\sigma} d+k^{2} e+k^{2+\sigma} f\right) \\
& =k_{d}^{1+\sigma} k^{\sigma}\left(d+k^{2-\sigma} e+k^{2} f+k^{\sigma} g\right)
\end{aligned}
$$

Because $k_{d} \neq 0$ it follows that $q\left(b^{\prime}, b^{\prime}\right)=0$ if and only if $k_{f}^{\prime}=0$, i.e., if and only if $k_{f}=k_{d} N(\ell)$. In that case $b^{\prime}=k_{d} d$ and hence b^{\prime} (and therefore b) is octagonal.

This last result can also be summarized as follows : b is semi-octagonal if and only if it is octagonal if and only if it is of the form

$$
\begin{equation*}
b=k_{d} d+k_{d} \ell_{0}^{\sigma} e+k_{d} N(\ell)^{\sigma} f+k_{d} \ell_{1}^{\sigma} g+k_{d} \ell_{1} h=k_{d} d^{y(-\ell g)} \tag{5.25}
\end{equation*}
$$

for some $\ell \in K_{\sigma}^{(2)}$.
Case 2. Assume $k_{f} \neq 0$. Using the same techniques as in the previous case, we see that b can be mapped by Suz onto an element of the form $b^{\prime \prime}=$ $k_{f}\left(f+\ell^{2} d+\ell h\right)$ for some $\ell \in K$. Now, let $k \in K$ and consider $y(k d)$. We have

$$
b^{\prime \prime y(k d)}=k_{f}\left(f+\ell^{2} d+\ell h\right)^{y(k d)}=k_{f}\left(k^{2}+\ell^{2}\right) d+k_{f} k^{\sigma} e+f+k_{f}(k+\ell) h
$$

and hence, choosing $k=\ell k_{f}^{-1 / 2}$, we may map $b^{\prime \prime}$ onto an element that belongs to case 1 above, with $k_{d}=1$.

By symmetry, we can also map any element of case 1 to an element that satisfies case 2 (with $k_{f}=1$) and then back again to case 1 , with $k_{d}=1$.

Case 3. Assume $k_{d}=k_{f}=0$,i.e., $b=k_{e} e+k_{g} g+k_{h} h$. Applying either $y(k d)$ or $y(k g)$ with suitably chosen k, brings this case back to one of the previous cases, unless of course $k_{e}=k_{g}=0$, and then $b=0$ when b is isotropic.

These three cases prove that any non-zero isotropic element b can be mapped to an element of the form $d+k^{2} f+k h$ with $k \in K$. As part of the proof of case 1 it was shown that an element of this form is semi-octagonal only if $k=0$ and hence it is octagonal. It also follows that all non-zero (semi-)octagonal elements belong to the same orbit.

Finally, it is a consequence of (5.25) that all octagonal elements b with $k_{d}=1$, i.e., with $d \bar{f}=1$, belong to the same orbit of $y\left(K_{\sigma}^{(2)} e\right)$.

As an immediate consequence we see that $\operatorname{Suz}(d, f)=\operatorname{Suz}\left(d^{\prime}, f^{\prime}\right)$ for any two octagonal elements $d^{\prime}, f^{\prime} \in \mathbf{B}(d, f)$ such that $d^{\prime} \bar{f}^{\prime}=1$. This means Suz only depends on \mathbf{B}.

The set S of 1-dimensional subspaces $K b$ of octagonal elements is called a Suzuki-Tits ovoid in the 4-dimensional projective space associated with B. Theorem 5.7 proves that Suz acts doubly transitive on the points of this ovoid. A typical pair of points of this ovoid is given by $(K d, K f)$. From the proof of Theorem 5.7 it follows that no other nontrivial linear combination of d and f is semi-octagonal, hence that no three points of S lie on the same line, justifying the term 'ovoid' for this set.

- We may project \mathbf{B} onto a subspace \mathbf{C} of co-dimension 1 by leaving out the coordinate associated with h. Because Suz leaves h invariant, the group also acts naturally on C. The projection of the set S is again an ovoid in the corresponding 3-dimensional projective space.

Proposition 5.8 Let d, f be octagonal elements of \mathbf{W} satisfying $d \bar{f}=1$. Define

$$
\begin{equation*}
N(d, f) \stackrel{\text { def }}{=} y(d) y(f) y(d) y(f) y(d) \tag{5.26}
\end{equation*}
$$

Then $N(d, f)=N(f, d)$, also

$$
\begin{equation*}
N(d, f)=\left(n(d, f) n\left(Q(d)^{\sigma / 2}, Q(f)^{\sigma / 2}\right)\right)^{2}=\left(n\left(Q(d)^{\sigma / 2}, Q(f)^{\sigma / 2}\right) n(d, f)\right)^{2} \tag{5.27}
\end{equation*}
$$

and

$$
\begin{equation*}
d^{N(d, f)}=f, \quad f^{N(d, f)}=d \tag{5.28}
\end{equation*}
$$

Proof: Let d, \ldots, G be as above. From properties like $d D=0$ we may derive commutation relations like $x(d) x(D)=x(D) x(d)$ and $x(d) x(e)=x(e) x(d)$. For elements at an angle of $3 \pi / 4$ in the diagram printed in the beginning in this section, we may derive the following identities from (4.26) :

$$
\begin{array}{rlrlr}
(x(d) x(F))^{2} & =x(g) x(E), & & (x(e) x(F))^{2} & =x(f) x(G) \\
(x(e) x(E))^{2} & =x(d) x(D), & & (x(f) x(E))^{2} & =x(g) x(F) \tag{5.29}\\
(x(f) x(D))^{2} & =x(e) x(G), & & (x(g) x(D))^{2} & =x(d) x(E) \\
(x(g) x(G))^{2} & =x(f) x(F), & & (x(d) x(G))^{2} & =x(e) x(D)
\end{array}
$$

Together with the other relations, these can be used in different ways. For example, we have $x(d) x(F)=x(F) x(d) x(g) x(E)$ but also $x(F) x(d)=x(d) x(F)$ $x(g) x(E)$. Also note that the right hand sides of (5.29) commute.

Now

```
\(n(d, f) n(D, F)\)
    \(=x(d) x(f) x(d) x(D) x(F) x(D)\)
    \(=x(d) x(f) x(D) x(d) x(F) x(D)\)
    \(=x(d) x(D) x(f) x(e) x(G) x(g) x(E) x(F) x(d) x(D)\)
    \(=x(d) x(D) x(f) x(e) x(G) x(f) x(F) x(F) x(f) x(g) x(E) x(F) x(d) x(D)\)
    \(=x(d) x(D) x(f) x(F) x(e) x(E) x(f) x(F) x(d) x(D)\)
    \(=y(d) y(f) x(e) x(E) y(f) y(d)\)
```

Note that $y(d)^{2}=y(f)^{2}=1$ because d and f are (semi-)octagonal. Hence, squaring both sides of the identity above, we obtain

$$
\begin{aligned}
(n(d, f) n(D, F))^{2} & =y(d) y(f)(x(e) x(E))^{2} y(f) y(d) \\
& =y(d) y(f) x(d) x(D) y(f) y(d)
\end{aligned}
$$

and this is equal to $y(d) y(f) y(d) y(f) y(d)$, proving (5.27).
Note that $n(d, f)$ interchanges d and f. Also

$$
\begin{aligned}
d^{n(D, F)} & =d^{x(D) x(F) x(D)}=d^{x(F) x(D)}=(d+g)^{x(D)}=g \\
f^{n(D, F)} & =f^{x(D) x(F) x(D)}=(f+e)^{x(F) x(D)}=e^{x(D)}=e \\
e^{n(d, f)} & =e^{x(d) x(f) x(d)}=e
\end{aligned}
$$

$$
\begin{aligned}
& g^{n(d, f)}=e^{x(d) x(f) x(d)}=g \\
& e^{n(D, F)}=e^{x(D) x(F) x(D)}=e^{x(F) x(D)}=(e+f)^{x(D)}=f \\
& g^{n(D, F)}=g^{x(D) x(F) x(D)}=(g+d)^{x(F) x(D)}=d^{x(D)}=d
\end{aligned}
$$

From this it may be easily seen that $n(d, f) n(D, F)$ permutes d, e, f, g cyclicly, and hence $N(d, f)$ interchanges d and f (and e and g).

Because $N(d, f)$ is an element of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ it follows that it also interchanges D and F. The action of $N(d, f)$ corresponds to a symmetry of the diagram at the start of this section.

- As with $n(E, F)$ in Chapter 2 and $n(e, f)$ in Chapter 4, the group elements $N(d, f)$ can be used in a short proof of the fact that the non-zero octagonal elements of \mathbf{W} form a single orbit of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. We will give a different proof of this fact in section 5.4.

It is interesting to apply this Proposition 5.8 to the special case $d=e_{s}, f=e_{-s}$, where $s \in \Phi_{S}$ such that $s \cdot s^{\dagger}=1$. We obtain $N\left(e_{s}, e_{-s}\right)=\left(n_{s}(1) n_{-s}(1)\right)^{2}$ and hence

$$
\begin{equation*}
e_{r}^{N\left(e_{s}, e_{-s}\right)}=e_{w_{s}^{\prime \prime}(r)}, \quad h_{r}^{N\left(e_{s}, e_{-s}\right)}=h_{w_{s}^{\prime \prime}(r)} \tag{5.30}
\end{equation*}
$$

for all $r \in \Phi_{S}$. In other words, the elements $N\left(e_{s}, e_{-s}\right)$ are strongly related to the elements $w_{s}^{\prime \prime}$ of $W\left({ }^{2} \mathrm{~F}_{4}\right)$. The following propositions provide similar companions to the elements w_{s}^{\prime} of $W\left({ }^{2} \mathrm{~F}_{4}\right)$, where $s \cdot s^{\dagger}=0$.

Lemma 5.9 Let e, f be semi-octagonal elements of \mathbf{W} satisfying $q(e, f)=q(f, e)=$ 0 and $e \bar{f}=1$. Define

$$
\begin{equation*}
N^{\prime}(e, f) \stackrel{\text { def }}{=} y(e) y(f) y(e) \tag{5.31}
\end{equation*}
$$

Then $N(e, f)=N(f, e)$. Also

$$
\begin{equation*}
N^{\prime}(e, f)=n(e, f) n\left(Q(e)^{\sigma / 2}, Q(f)^{\sigma / 2}\right)=n\left(Q(e)^{\sigma / 2}, Q(f)^{\sigma / 2}\right) n(e, f) \tag{5.32}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{N^{\prime}(e, f)}=f, \quad f^{N^{\prime}(e, f)}=e, \quad E^{N^{\prime}(e, f)}=F, \quad F^{N^{\prime}(e, f)}=E . \tag{5.33}
\end{equation*}
$$

Proof: We will use the abbreviations $E=Q(e)^{\sigma / 2}, F=Q(f)^{\sigma / 2}$. We have $E \cdot F=1$ and $e E=e F=f E=f F=0$. Hence $x(e)$ and $x(f)$ commute with
both $x(E)$ and $x(F)$.

$$
\begin{aligned}
y(e) y(f) y(e) & =x(e) x(E) x(f) x(F) x(e) x(E) \\
& =x(e) x(f) x(e) x(E) x(F) x(E)=n(e, f) n(E, F)
\end{aligned}
$$

and likewise $y(e) y(f) y(e)=n(E, F) n(e, f)$. Also note that $n(e, f)=n(f, e)$ and $n(E, F)=n(F, E)$.

Finally, it is easily proved that $n(E, F)$ leaves both e and f invariant, while it interchanges E and F, and $n(e, f)$ leaves both E and F invariant, interchanging e and f. Hence $N^{\prime}(e, f)$ interchanges E with F and e with f.

We leave it to the reader to verify that $e=e_{S}, f=e_{-s}$ with $s \in \Phi_{S}$ such that $s \cdot \bar{s}=0$ do indeed satisfy the conditions of this proposition, and as a consequence, that

$$
\begin{equation*}
e_{r}^{N^{\prime}\left(e_{s}, e_{-s}\right)}=e_{w_{s}^{\prime \prime}(r)}, \quad h_{r}^{N^{\prime}\left(e_{s}, e_{-s}\right)}=h_{w_{s}^{\prime \prime}(r)}, \tag{5.34}
\end{equation*}
$$

for all $r \in \Phi_{S}$, also in this case.

5.4 Transitivity properties of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$

Consider the spaces $\mathbf{B}_{1}=\mathbf{B}\left(e_{0100}, e_{0 \overline{1} 00}\right)$ and $\mathbf{B}_{2}=\mathbf{B}\left(e_{0001}, e_{000 \overline{1}}\right)$. Let the corresponding Suzuki groups be denoted by $\operatorname{Suz}_{i}=\operatorname{Suz}\left(\mathbf{B}_{i}\right), i=1,2$. The following table lists the corresponding values of d, \ldots, G.

| d | e | f | g | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| e_{0100} | e_{0010} | $e_{0 \overline{1} 00}$ | $e_{00 \overline{1} 0}$ | E_{0110} | $E_{01 \overline{1} 0}$ | $E_{0 \overline{1} \overline{1} 0}$ | $E_{0 \overline{1} 10}$ |
| e_{0001} | e_{1000} | $e_{000 \overline{1}}$ | $e_{\overline{1} 000}$ | E_{1001} | $E_{\overline{1} 001}$ | $E_{\overline{1} 00 \overline{1}}$ | $E_{100 \overline{1}}$ |

The element h is the same in both cases, and equal to $h=h_{0100}=h_{0010}=$ $h_{0001}=h_{1000}$. Note that h can be written as $h=e_{z}+\infty$ with $z \in L_{\infty}$. It follows that $\mathbf{B}_{1} \cap \mathbf{B}_{2}=K h$ and hence the space $\mathbf{B}_{1}+\mathbf{B}_{2}$ has dimension 9 .

- The corresponding Lie algebra is of type B_{4} and consists of those elements of \mathbf{W} that belong to $\eta_{z} \times \mathbf{V}$.

Observe that \mathbf{B}_{1} involves only roots for which the first and last coordinate are 0 , while \mathbf{B}_{2} uses roots for which the middle coordinates are 0 . As a consequence we see that Suz_{1} must leave every element of \mathbf{B}_{2} invariant, and conversely, that Suz_{2} leaves every element of \mathbf{B}_{1} invariant.

The element $N \stackrel{\text { def }}{=} N\left(e_{-++\boldsymbol{l}^{\prime}}, e_{+--+}\right)$, which can be interpreted as a symmetry along the line connecting ++++ and ---- in figure 5.1, interchanges the spaces \mathbf{B}_{1} and \mathbf{B}_{2}. We will therefore be interested in the group generated by $\mathrm{Suz}_{1}, \mathrm{Suz}_{2}$ and N, which we denote by $2 \operatorname{Suz}^{2}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$. This group leaves $\mathbf{B}_{1}+\mathbf{B}_{2}$ invariant.

- The group $2 \operatorname{Suz}^{2}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ is a wreath product of two copies of Suz.

Theorem 5.10 The group $2 \operatorname{Suz}^{2}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ has exactly the following orbits on the semi-octagonal elements of $\mathbf{B}_{1}+\mathbf{B}_{2}$:

1. The trivial orbit $\{0\}$.
2. A single orbit of non-zero octagonal elements. Every octagonal element of $\mathbf{B}_{1}+$ \mathbf{B}_{2} belongs either to \mathbf{B}_{1} or to \mathbf{B}_{2}.
3. A single orbit of semi-octagonal elements that are not octagonal. This is exactly the set of elements that can be written as the sum of a non-zero octagonal element of \mathbf{B}_{1} and a non-zero octagonal element of \mathbf{B}_{2}.

Proof: Any element c of $\mathbf{B}_{1}+\mathbf{B}_{2}$ can be written as

$$
\begin{align*}
c= & k_{1} e_{1000}+k_{2} e_{0100}+k_{3} e_{0010}+k_{4} e_{0001}+ \\
& \ell_{1} e_{\overline{1} 000}+\ell_{2} e_{0 \overline{1} 00}+\ell_{3} e_{00 \overline{1} 0}+\ell_{4} e_{000 \overline{1}}+m h \tag{5.35}
\end{align*}
$$

with $k_{1}, \ell_{1}, \ldots, m \in K$. It is easily verified that c is isotropic if and only if $m^{2}=k_{1} \ell_{1}+\cdots+k_{4} \ell_{4}$. In that case we may write $c=b_{1}+b_{2}$ with

$$
\begin{aligned}
& b_{1}=k_{2} e_{0100}+\ell_{2} e_{0 \overline{1} 00}+k_{3} e_{0010}+\ell_{3} e_{00 \overline{1} 0}+\left(k_{2} \ell_{2}+k_{3} \ell_{3}\right)^{1 / 2} h, \\
& b_{2}=k_{1} e_{1000}+\ell_{1} e_{\overline{1} 000}+k_{4} e_{0001}+\ell_{4} e_{000 \overline{1}}+\left(k_{1} \ell_{1}+k_{4} \ell_{4}\right)^{1 / 2} h .
\end{aligned}
$$

Note that b_{i} is an isotropic element of \mathbf{B}_{i} (for $i=1,2$).
Applying Theorem 5.7 independently on b_{1} and b_{2}, we see that c can always be mapped by ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ onto an element of the form $c^{\prime}=b_{1}^{\prime}+b_{2}^{\prime}$ with

$$
\begin{array}{ll}
b_{1}^{\prime}=0 \quad \text { or } \quad b_{1}^{\prime}=e_{0100}+\ell_{2}^{\prime} e_{0 \overline{1} 00}+\ell_{2}^{\prime 1 / 2} h, \\
b_{2}^{\prime}=0 \quad \text { or } \quad b_{2}^{\prime}=e_{0001}+\ell_{4}^{\prime} e_{000 \overline{1}}+\ell_{4}^{\prime 1 / 2} h .
\end{array}
$$

Assume that both $b_{1}^{\prime}, b_{2}^{\prime} \neq 0$ (and hence $b_{1}^{\prime}, b_{2}^{\prime} \neq 0$). Applying Proposition $4.12-3$ we find

$$
\begin{align*}
& Q\left(c^{\prime}\right)=Q\left(b_{1}^{\prime}\right)+Q\left(b_{2}^{\prime}\right)+S\left(\mu^{-1}\left(b_{1}^{\prime} * \bar{b}_{2}^{\prime}\right)\right)= \\
& \quad E_{0110}+\ell_{2}^{\prime 2} E_{0 \overline{1} \overline{1} 0}+\ell_{2}^{\prime} H_{0110}+E_{1001}+\ell_{4}^{\prime 2} E_{\overline{1} 00 \overline{1}}+\ell_{4}^{\prime} H_{1001}+ \tag{5.36}\\
& \quad E_{++++}+\ell_{2}^{\prime} E_{+--+}+\ell_{4}^{\prime} E_{-++-}+\ell_{2}^{\prime} \ell_{4}^{\prime} E_{----}^{\prime}
\end{align*}
$$

and after some computation we obtain

$$
\begin{align*}
& q\left(c^{\prime}, c^{\prime}\right)^{\sigma}=c^{\prime \sigma} Q\left(c^{\prime}\right)= \\
& \ell_{2}^{\prime 2} e_{0010}+\ell_{2}^{\prime} e_{0100}+\ell_{2}^{\prime} e_{++-+}+\ell_{2}^{\prime} \ell_{4}^{\prime} e_{-+--}+ \\
& \ell_{2}^{\prime \sigma} e_{0010}+\ell_{2}^{\prime 1+\sigma} e_{01 \overline{100}}+\ell_{2}^{\prime \sigma} e_{+-++}+\ell_{2}^{\prime \sigma} \ell_{4}^{\prime} e_{--+-}+ \\
& \ell_{4}^{\prime 2} e_{1000}+\ell_{4}^{\prime} e_{0001}+\ell_{4}^{\prime} e_{-+++}+\ell_{2}^{\prime} \ell_{4}^{\prime} e^{\prime} \ldots+ \tag{5.37}\\
& \ell_{4}^{\prime \sigma} e_{1000}+\ell_{4}^{\prime 1+\sigma} e_{000 \overline{1}}+\ell_{4}^{\prime \sigma} e_{+++-}+\ell_{2}^{\prime} \ell_{4}^{\prime \sigma} e_{+---}+ \\
& \left(\ell_{2}^{\prime}+\ell_{4}^{\prime}\right)^{\sigma / 2}\left(e_{++++}+\ell_{2}^{\prime} e_{+--+}+\ell_{4}^{\prime} e_{-++-}+\ell_{2}^{\prime} \ell_{4}^{\prime} e_{-\ldots--}\right) \text {. }
\end{align*}
$$

This proves that $q\left(c^{\prime}, c^{\prime}\right)=0$ if and only if $\ell_{2}^{\prime}=\ell_{4}^{\prime}=0$. Extending this result with the cases $b_{1}^{\prime}=0$ or $b_{2}^{\prime}=0$ we obtain four typical examples of semioctagonal elements : $0, e_{0100^{\prime}} e_{0001}$ and $e_{0100}+e_{0001}$. The middle two are in the same orbit because of N, the last one is semi-octagonal but not octagonal. Indeed, by (5.36), we find

$$
Q\left(e_{0100}+e_{0001}\right)=E_{0110}+E_{1001}+E_{++++} .
$$

and hence in this case $\left[q\left(e_{-++-}, c^{\prime}\right), c^{\prime}\right]=e_{++++} \neq 0$.
Theorem 5.10 can be extended to the action of the full group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ on the full space \mathbf{W}. To prove this, we will apply a reduction process similar to that used in Chapter 2 and 3 for the groups $\widehat{\mathrm{E}}_{6}(K)$ and $\widehat{\mathrm{F}}_{4}(K)$. We will apply successive group elements of the form $y_{s}(k)$, with $s \in \Phi_{S}, k \in K$ to reduce the number of non-zero coordinates of an isotropic element $a \in \mathbf{W}$, while staying in the same orbit of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$.

Let a denote a non-zero octagonal element of \mathbf{W}. Because a is isotropic and non-zero it cannot belong to \mathbf{W}_{∞} and hence must have at least one coordinate $a[r]$ different from zero such that $r \in \Phi_{S}$. We will first prove that we can choose $r=0100$.

If a has coordinate $a[r] \neq 0$ for some r such that $r \cdot r^{\dagger}=1$, then subsequent operations of the form $N\left(e_{s}, e_{-s}\right)$ or $N^{\prime}\left(e_{s}, e_{-s}\right)$ will bring a in the required
form. Indeed, using figure 5.1 and referring to (5.30) and (5.34), it is easily seen that r can be mapped onto 0100 using appropriate Weyl group elements $w_{s}^{\prime \prime}$.

If $a[r]=0$ for all r satisfying $r \cdot r^{\dagger}=1$ but a has a non-zero coordinate for some $r \in \Phi_{S}$ with $r \cdot r^{\dagger}=0$, then we may easily find an element $y_{s}(1)$ which reduces a to the previous case. For example, assume $a[-+--] \neq 0$, then applying $y_{++++}(1)=x_{0101}(1) x_{++++}$(1) will create a non-zero coordinate at position 0100. By symmetry, other cases can be resolved in a similar way. The same technique can also be used when $r \cdot r^{\dagger}=-1$. For example, we may apply $y_{-+++}(1)=x_{1100}(1) x_{-+++}(1)$ when $a[++--] \neq 0$.

Henceforth we will assume that $a[r]=a[0100] \neq 0$. We now apply the reductions $y_{t}(k)$ of Table 5.1 (in the order given) to annihilate subsequent coordinates $a[s]$.

s	t^{\dagger}	t	$t+t^{\dagger}$
++++	$00 \overline{1} 1$	+-++	
-+++	$10 \overline{1} 0$	--++	+--+
+++-	$\overline{1} 0 \overline{1} 0$	+-+-	----
-++-	$00 \overline{1} \overline{1}$	--+-	
++-+	$0 \overline{1} 01$	+--+	
-+-+	$1 \overline{1} 00$	---+	
++--	$\overline{1} \overline{1} 00$	+---	
-+--	$0 \overline{1} 0 \overline{1}$	----	

Table 5.1: Reductions used in the proof of Theorems 5.11 and 5.16.
We have listed s, t, t^{\dagger} and $t+t^{\dagger}$ (when it belongs to Φ_{S}) for each step (note that $s=r+t)$. The table is ordered in such a way that each group element $y_{t}(k)$ does not affect the value of coordinate $a[r]$ or the values of $a[s]$ for each s from the previous rows. (We leave it to the reader to verify that this is indeed the case.) In each step the scalar k is equal to $a[s] / a[r]$.

After applying the stated reductions, we end up with an image b of a for which $b[r] \neq 0$ and $b[s]=0$ whenever $r \cdot s=1$. Now, for such s we may compute
that $b^{2}[s]=b[r] b[s-r]$, and because b is isotropic and $b[r] \neq 0$, we find that $b[s-r]=0$. When s runs through all short roots that satisfy $r \cdot s=1, v=s-r$ runs through all short roots that satisfy $r \cdot v=-1$.

In other words, the eight remaining short roots s for which a coordinate is (possibly) non-zero, are the 8 short roots s satisfying $r \cdot s=-2,0$ or 2 , which for our particular choice of r correspond to the roots with integral coordinates, i.e., the cyclic permutations of 1000 and $\overline{1} 000$. The fact that $b^{2}=0$ also allows us to easily compute the coordinates $b[z]$ with $z \in L_{\infty}$ (refer to the proof of proposition 4.13 for details). It follows that b is of the following form:

$$
\begin{align*}
b= & k_{1} e_{1000}+k_{2} e_{0100}+k_{3} e_{0010}+k_{4} e_{0001}+ \\
& \ell_{1} e_{\overline{1} 000}+\ell_{2} e_{0 \overline{1} 00}+\ell_{3} e_{00 \overline{1} 0}+\ell_{4} e_{000 \overline{1}}+m h \tag{5.38}
\end{align*}
$$

with $k_{1}, \ell_{1}, \ldots, m \in K$ such that $m^{2}=k_{1} \ell_{1}+\cdots+k_{4} \ell_{4}$ and $h=h_{1000}=\cdots=$ $h_{000 \overline{1}}$. In other words, b belongs to the space $\mathbf{B}_{1}+\mathbf{B}_{2}$. We may now apply Theorem 5.10 to complete the proof of

Theorem 5.11 The group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ has exactly the following orbits on the semi-octagonal elements of \mathbf{W} :

1. The trivial orbit $\{0\}$.
2. An orbit of non-zero octagonal elements.
3. An orbit of semi-octagonal elements that are not octagonal.

5.5 Pairs of octagonal elements

In this section we will provide more information on the orbit structure of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ on pairs of (non-zero) octagonal elements. The main result will be stated in Theorem 5.16. The proof of that theorem is subdivided into several lemmas.

Lemma 5.12 Let $k \in K-\{0\}$. Then ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ acts transtively on all ordered pairs (b, c) of octagonal elements $b, c \in \mathbf{W}$ such that $b \bar{c}=k$.

Proof: By Theorem 5.11 we may choose $c=e_{0 i \bar{i} o o}$ without loss of generality. Note that $b \bar{c}=b[0100]=k$ is non-zero. We will again apply the reductions $y_{t}(k)$ of Table 5.1 to map b onto an element for which the number of nonzero coordinates is little. We must however take care only to use such group elements $y_{t}(k)$ that leave $c=e_{0 \overline{1} 00}$ invariant. A quick inspection proves that this is the case for all $y_{t}(k)$ in the table. Hence, using the same argument as in the proof of Theorem 5.11, when b is isotropic it can always be mapped onto an element that belongs to $\mathbf{B}_{1}+\mathbf{B}_{2}$.

By Theorem 5.10-2 b, which is octagonal, must either belong to \mathbf{B}_{1} or \mathbf{B}_{2}. The condition $b \bar{c} \neq 0$ disposes of the second case, hence $b \in \mathbf{B}_{1}$. Then, by (5.25), we may write

$$
b=k e_{0100}{ }^{y\left(-l e_{00 \overline{1} 0}\right)},
$$

for some $\ell \in K_{\sigma}^{(2)}$. Note that $y\left(-\ell e_{00 \overline{1} 0}\right)$ leaves c invariant and hence b is equivalent to $k e_{0100}$ under the action of the stabilizer of $\hat{F}_{4}(K)$ of the element f.

Lemma 5.13 The group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ acts transtively on all ordered pairs (b, c) of octagonal elements $b, c \in \mathbf{W}$ such that $b \bar{c}=0$ and $[b, c] \neq 0$.

Proof: This proof will use the same techniques as the proofs of Theorem 5.11 and Lemma 5.12. By Theorem 5.11 we may choose $c=e$ \qquad without loss of generality. The main argument of this proof will rely on the assumption that the coordinate $b[0100]$ is non-zero. We will therefore first prove that it is always possible to map b onto b^{\prime} such that $b^{\prime}[0100] \neq 0$, by means of an element of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ that leaves $c=e$ \qquad invariant.

Because b is isotropic, $b \notin \mathbf{W}_{\infty}$ and then from $[b, c]=[b, e \ldots] \neq 0$ we easily deduce that at least one of the coordinates $b[r]$ is non-zero with $r=1000$, 0100, 0010, 0001, -++++, +-++, ++-+ or ++++-

Below we give a list of group elements $y_{t}(1)$ which can be used to map b onto b^{\prime} with the required properties, whenever $b[r] \neq 0$ for one of the given r.

r	s	t^{\dagger}	t	$t+t^{\dagger}$
1000	+++-	$010 \overline{1}$	-++-	
0100		none needed		
0010	+++-	$\overline{1} 010$	++--	-++-
0001	0100	$010 \overline{1}$	-++-	
-+++	0100	$\overline{1} 010$	++--	-++-
+-++	+++-	$010 \overline{1}$	-++-	
++-+	0100	$010 \overline{1}$	-++-	
+++-	0100	$10 \overline{1} 0$	--++	

For example, the last row of the table tells us that, when $b[0100]=0$ but $b[+++-] \neq 0$, we may apply $y_{--++}(1)$ to create a non-zero coordinate at position 0100. Similarly, the first row of the table indicates that when $b[0100]=$ $b[+++-]=0$ but $b[1000] \neq 0$ we may first apply $y_{-++-}(1)$ to obtain an image with a non-zero coordinate at position +++-, bringing us back to the first example. We leave it to the reader to verify that each of the listed group elements indeed leaves $c=e$ \qquad invariant.

Henceforth we may assume that the coordinate $b[0100]$ is non-zero. We now apply the reductions $y_{t}(k)$ of Table 5.1 to b, except the first reduction (which
corresponds to $s=++++$). Luckily we have no need for this reduction because $b \bar{c}=0$ implies that $b[++++]$ is zero already. It is easily verified that all other reductions in the table leave $c=e$ \qquad invariant.

Hence, using the same argument as in the proof of Lemma 5.12, when b is octagonal it can always be mapped onto an element that belongs to either \mathbf{B}_{1} or \mathbf{B}_{2}, and because $b[0100] \neq 0$ it must belong to \mathbf{B}_{1} and be of the form

$$
\left.b=k e_{0100}^{y(-l e}{ }_{00 \overline{1} 0}\right),
$$

for some $k \in K, \ell \in K_{\sigma}^{(2)}$. Note that $y\left(-\ell e_{00 \overline{1} 0}\right)$ leaves c invariant.

Finally, we apply an element $N=N\left(k^{\sigma / 2} e_{-++-}, k^{-\sigma / 2} e_{+--+}\right)$to prove that the orbit of (b, c) does not depend on k. This group element leaves both e \qquad and e_{++++}invariant and interchanges $k^{\sigma / 2} e_{-++-}$and $k^{-\sigma / 2} e_{+--+}$. Hence it also interchanges the following elements :

$$
c\left(k^{\sigma / 2} e_{-+++^{\prime}} e_{++++}\right)=k^{1 / 2} e_{0100} \quad \text { and } \quad c\left(k^{-\sigma / 2} e_{+-+^{\prime}} e_{++++}\right)=k^{-1 / 2} e_{0001}
$$

and hence it interchanges $k e_{0100}$ and e_{0001} while it leaves e_{\ldots} untouched. This proves that every (b, c) satisfying the conditions of this lemma is equiva-

Lemma 5.14 The group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ acts transtively on all ordered pairs (b, c) of octagonal elements $b, c \in \mathbf{W}$ such that $b \bar{c}=0,[b, c]=0$ and $b * \bar{c} \neq 0$.

Proof: This proof will use the same techniques as the proofs of the previous lemmas in this section. Without loss of generality we may choose $c=e_{0001}$. As in the proof of Lemma 5.12 we first need to prove that b can be mapped onto an element b^{\prime} for which $b^{\prime}[0100]$ is non-zero, using only group elements from ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ that leave $c=e_{0001}$ invariant. (In this case this turns out to be slightly more complicated.)

Because b is isotropic, $b \notin \mathbf{W}_{\infty}$, and then from $[b, c]=0, b * \bar{c} \neq 0$ we deduce that $b[r] \neq 0$ for at least one root r from the list $1000, \overline{1} 000,0100,0 \overline{1} 00,0010$ or $00 \overline{1} 0$. We list these roots below, together with the group elements $y_{t}(1)$ which can be used to map b onto b^{\prime} with the required properties, whenever $f[r] \neq 0$. (Refer to the proof of Lemma 5.13 for an explanation of how this table should be interpreted.) All of these group elements leave c invariant.

r	s	t^{\dagger}	t	$t+t^{\dagger}$
0100		none needed		
0010	0100	$01 \overline{1} 0$	0010	0100
$\overline{1} 000$	0100	1100	-+++	
$0 \overline{1} 00$	0100	0110	0100	
$00 \overline{1} 0$	0100	0110	0100	

Unfortunately, the case $r=1000$ cannot be handled in the same way and will be postponed until the end of this proof. For now let us assume that we have $b[0100] \neq 0$. We again apply the reductions of Table 5.1 except those that do not leave $c=e_{0001}$ invariant, i.e., those corresponding to $s=+++-,++-$, ++-- and -+---. Luckily, the corresponding coordinates $b[s]$ are already zero, because $[b, c]=0$. As in Lemma 5.13, this means that we have mapped b onto an octagonal element which must belong to \mathbf{B}_{1} and because $\operatorname{Suz}\left(\mathbf{B}_{1}\right)$ leaves c invariant, we may apply Theorem 5.7 to see that all such b are in the same orbit of the stabilizer c in $\widehat{F}_{4}(K)$.

This still leaves the special case $b[0100]=b[0010]=b[\overline{1} 000]=b[0 \overline{1} 00]=$ $b[00 \overline{1} 0]=0$, but $b[1000] \neq 0$. In this case we may further annihilate 4 coordinates $b[s]$ using the elements $y_{t}(1)$ listed in the following table:

s	t^{\dagger}	t	$t+t^{\dagger}$
++++	1100	-+++	
++-+	1010	-+-+	++++
+-++	$10 \overline{1} 0$	--++	+--+
+--+	$1 \overline{1} 00$	---+	

Note that all of these elements leave $c=e_{0001}$ invariant.

Together with $[b, c]=0$ this implies that we end up with an element b that belongs to the space generated by \mathbf{W}_{∞} and the 6 elements e \qquad $-{ }^{\prime}$ $e_{--++} e_{-+-+}$and e_{-+++}. The fact that b is isotropic induces the following further simplification : b must be of the form

$$
b=k^{2} e_{1000}+\ell^{2} e_{0001}+k \ell h_{0001},
$$

with $k, \ell \in K$. Finally, Theorem 5.7 (applied to \mathbf{B}_{2}) proves that b can only be (semi-)octagonal when $k=0$, contradicting $b[1000] \neq 0$.

Lemma 5.15 The group ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ acts transtively on all ordered pairs (b, c) of octagonal elements b, c such that $b \bar{c}=0,[b, c]=0, b * \bar{c}=0$, but $b \notin K c$.

Proof: This proof will use the same techniques as the proofs of the other lemmas in this section. Without loss of generality we may choose $c=e_{++++}$

Because b is isotropic, $b \notin \mathbf{W}_{\infty}$, and then from $[b, c]=0, b * \bar{c} \neq 0$ we deduce that $b[r] \neq 0$ for at least one root r from the list $r=1000,0100,0010,0001$, ,,-++++-++++-+ or +++- . This is exactly the same list of roots as in the proof of Lemma 5.13, and in fact we can use the same transformations as in that lemma to ensure that we may choose $r=0100$. (The transformations of Lemma 5.13 happen to also leave ++++ invariant, not entirely by coincidence.)

We may now apply the following reductions to b (taken from Table 5.1) in order to annihilate three of its coordinates :

s	t^{\dagger}	t	$t+t^{\dagger}$
++++	$00 \overline{1} 1$	+-++	
-+++	$10 \overline{1} 0$	--++	+--+
++-+	$0 \overline{1} 01$	+--+	

This reduces b to the form

$$
b=k_{1} e_{1000}+k_{2} e_{0100}+k_{3} e_{0010}+k_{4} e_{0001}+k_{5} e_{+-++}+k_{6} e_{+++-}
$$

with $k_{1}, \ldots, k_{6} \in K$ such that $k_{2} \neq 0$. Note that $b^{2}=\left(k_{2} k_{5}+k_{4} k_{6}\right) e_{++++}$and hence $k_{2} k_{5}+k_{4} k_{6}=0$.

We will now compute $Q(b)$. We write $b=b_{1}+b_{2}$ with

$$
\begin{aligned}
& b_{1}=k_{2} e_{0100}+k_{2} k_{5} e_{++++}+k_{3} e_{0010}+k_{6} e_{+++-} \\
& b_{2}=k_{1} e_{1000}+k_{4} k_{6} e_{++++}+k_{4} e_{0001}+k_{5} e_{+-++}
\end{aligned}
$$

Note that $\left[b_{1}, b_{2}\right]=0$, and hence $Q(b)=Q\left(b_{1}\right)+Q\left(b_{2}\right)+S\left(\mu^{-1}\left(b_{1} * \bar{b}_{2}\right)\right.$ by Proposition 4.12-3.

To compute $Q\left(b_{1}\right)$ we apply Proposition 4.12-2 to $e=k_{2} e_{0100}$ and $f=k_{5} e_{+-++}$ to obtain

$$
\begin{aligned}
Q\left(k_{2} e_{0100}+k_{2} k_{5} e_{++++}\right) & =k_{2}^{2} E_{0110}+k_{2}^{2} k_{5}^{2}\left[E_{0110^{\prime}} E_{00 \overline{1} 1}\right] \\
& =k_{2}^{2} E_{0110}+k_{2}^{2} k_{5}^{2} E_{0101} .
\end{aligned}
$$

Repeated application of Proposition 4.12-3 then yields

$$
Q\left(b_{1}\right)=k_{2}^{2} E_{0110}+k_{2}^{2} k_{5}^{2} E_{0101}+k_{3}^{2} E_{01 \overline{1} 0}+k_{6}^{2} E_{\overline{1} 100}+k_{2} k_{3} E_{0100}
$$

Likewise

$$
Q\left(b_{2}\right)=k_{4}^{2} E_{1001}+k_{4}^{2} k_{6}^{2} E_{0101}+k_{1}^{2} E_{\overline{1} 001}+k_{5}^{2} E_{00 \overline{1} 1}+k_{1} k_{4} E_{0001}
$$

and hence

$$
\begin{aligned}
Q(b)= & k_{1}^{2} E_{\overline{1} 001}+k_{2}^{2} E_{0110}+k_{3}^{2} E_{01 \overline{1} 0}+k_{4}^{2} E_{1001}+k_{5}^{2} E_{00 \overline{1} 1}+k_{6}^{2} E_{\overline{1} 100} \\
& +k_{1} k_{2} E_{-+++}+k_{1} k_{4} E_{0001}+k_{2} k_{3} E_{0100}+k_{2} k_{4} E_{++++}+k_{3} k_{4} E_{++-+} \\
& +\left(k_{1} k_{3}+k_{5} k_{6}\right) E_{-+-+} .
\end{aligned}
$$

The fact that b is octagonal will allow us to establish further relations between the coefficients k_{1}, \ldots, k_{6}. Recall that $[b, q(\mathbf{V}, b)]=0$ when b is octagonal, or equivalently, that $\left[b^{\sigma}, a Q(b)\right]=0$ for all $a \in \mathbf{V}$.

Choosing $a=e_{+--+}$we obtain

$$
\begin{aligned}
e_{+--+} Q(b)= & k_{2}^{2} e_{++++}+k_{6}^{2} e_{-+-+}+k_{1} k_{2} e_{0001}+k_{2} k_{3} e_{++-+} \\
{\left[b^{\sigma}, e_{+--+} Q(b)\right]=} & k_{1}^{\sigma} k_{6}^{2} e_{++-+}+k_{3}^{\sigma} k_{6}^{2} e_{-+++}+k_{5}^{\sigma} k_{6}^{2} e_{0001}+k_{6}^{2+\sigma} e_{0100} \\
& +\left(k_{1} k_{2} k_{6}^{\sigma}+k_{2} k_{3}^{1+\sigma}\right) e_{++++}
\end{aligned}
$$

and hence $\left[b^{\sigma}, e_{++--} Q(b)\right]=0$ implies $k_{6}=0$ and $k_{3}=0\left(\right.$ as $\left.k_{2} \neq 0\right)$. Because also $k_{2} k_{5}+k_{3} k_{6}=0$ this implies $k_{5}=0$, and hence b belongs to $\mathbf{B}_{1}+\mathbf{B}_{2}$. Because of Theorem 5.10 and because $k_{2} \neq 0$, we must even have $b \in \mathbf{B}_{1}$ and hence $k_{1}=k_{4}=0$. Hence $b=k_{2} e_{0100}$.

Finally we map b to e_{0001} using the same $N=N\left(k_{2}^{\sigma / 2} e_{-++-}, k_{2}^{-\sigma / 2} e_{+--+}\right)$as in the proof of Lemma 5.13. It was already indicated there that N leaves e_{++++} invariant.

We may now combine Lemmas 5.12-5.15 into the following

Theorem 5.16 The following is an exhaustive list of all orbits of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ on ordered pairs (e, f) of non-zero octagonal (isotropic) elements $e, f \in \mathbf{W}$.

1. For each $k \in K-\{0\}$ an orbit with representative $\left(e_{0100}, k e_{0 i \overline{100}}\right)$.
2. An orbit with representative ($\left.e_{0100}, e_{-}\right)$.
3. An orbit with representative $\left(e_{0100}, e_{0001}\right)$.
4. An orbit with representative $\left(e_{0100}, e_{++++}\right)$.
5. For each $k \in K-\{0\}$ an orbit with representative $\left(e_{0100}, k e_{0100}\right)$.

These orbits are the intersections of the corresponding orbits of $\widehat{\mathrm{F}}_{4}(K)$ with the set of pairs of octagonal elements.

The following table list several properties of the corresponding pairs (e, f).

	Case 1	Case 2	Case 3	Case 4	Case 5
$[e, f]$	not isotr.	semi-oct. \ddagger	0	0	0
$q(e, f)$	para-oct.	$\neq 0$, oct.	0	0	0
$e+f$	not isotr.	not isotr.	semi-oct. \ddagger	$\neq 0$, oct.	octag.
$c(e, f)$	undef.	undef.	$\neq 0$, oct.	0	0
$f \in q(\mathbf{V}, e)$	no	no	no	yes	yes
$q(\mathbf{V}, e) \cap$ $q(\mathbf{V}, f)$	$\{0\}$	$\{0\}$	Kc(e,f)	$\operatorname{dim}=3$	$q(\mathbf{V}, e)=$ $q(\mathbf{V}, f)$

\ddagger semi-octagonal, but not octagonal

Proof: Only the table of properties remains to be checked. Note that all properties are 'invariant' for ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$, for example, when $g \in{ }^{2} \widehat{\mathrm{~F}}_{4}(K)$, then $q(e, f)^{g}=q\left(e^{g}, f^{g}\right), c(e, f)^{g}=c\left(e^{g}, f^{g}\right)$, etc. As a consequence it is sufficient to check all listed properties only for a single (representative) pair in each orbit. We will discuss the most difficult cases here and leave the rest to be verified by the reader.

When $e=e_{0100}$ and $f=e_{0001}$ we have $Q(e)^{\sigma / 2}=E_{0110}$ and $Q(f)^{\sigma / 2}=E_{1001}$, and then $\mathbf{V} Q(e)^{\sigma / 2} \cap \mathbf{V} Q(f)^{\sigma / 2}=\mathbf{V} Q(e)^{\sigma / 2} Q(f)^{\sigma / 2}$ by Theorem 2.38. It is easily seen that $\mathbf{V} E_{0110} E_{1001}=K e_{++++}$, and indeed $e_{++++}=c\left(e_{0100^{\prime}} e_{0001}\right)$.

Consider the value of $e+f$. When $e=e_{0100}$ and $f=e_{0001}$ then $e+f$ is semioctagonal but not octagonal by Theorem 5.10-3. When $f=e_{++++}$we obtain $Q(e+f)=Q\left(e_{0100}+e_{++++}\right)=e_{0110}+e_{0101}$, and then $\left(e_{000 \overline{1}}+e_{+--+}\right) Q(e+$ $f)=(e+f)^{\sigma}$, proving that $e+f$ is octagonal.

A subspace of \mathbf{W} all of whose elements are octagonal, will be called an octagonal subspace of \mathbf{W}. Clearly, when d is octagonal, then $K d$ is octagonal. It follows from Theorem 5.16 that $e+f$ is octagonal if and only if $e \bar{f}=0$,
$[e, f]=0$ and $e * \bar{f}=0$, hence every octagonal space must be F-isotropic.
For such e, f and for $k, \ell \in K$ we have $Q(k e+\ell f)^{\sigma / 2}=k^{\sigma} Q(e)^{\sigma / 2}+\ell^{\sigma} Q(f)^{\sigma / 2}$, hence for any octagonal subspace S of \mathbf{W} the set $Q(S)^{\sigma / 2} \stackrel{\text { def }}{=}\left\{Q(e)^{\sigma / 2} \mid e \in S\right\}$ is a subspace of \mathbf{J}. Because S is octagonal, $Q(S)^{\sigma / 2}$ must be a subspace of the companion subspace of S in \mathbf{J}. As a consequence $\operatorname{dim} S \leq 2$.

Proposition 5.17 Let $L \in \mathbf{W} \wedge \mathbf{W}$ be F-isotropic. Then the following are equivalent :

1. $L=e \wedge f$ with $e, f \in \mathbf{W}$ such that $K e \neq K f$ and $K e+K f$ an octagonal subspace of \mathbf{W}.
2. $L=\bar{d} \times Q(d)^{\sigma / 2}$ for some $d \in \mathbf{W}$ which is semi-octagonal but not octagonal.

Proof: By Theorem 5.11 the elements d which are semi-octagonal but not octagonal form a single orbit of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. Likewise, by Theorem 5.16 , also the pairs (e, f) in the first statement form a single orbit of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$. To prove the theorem it is therefore sufficient to provide a single example of each orbit such that $e \wedge f=\bar{d} \times Q(d)^{\sigma / 2}$. Such an example is given by $e=e_{0100^{\prime}} f=e_{++++^{\prime}}$ $d=e_{-+++}$and then $Q(d)^{\sigma / 2}=e_{1100}$.

Proposition 5.18 Let S denote a two-dimensional octagonal subspace of \mathbf{W}. Let T denote the companion subspace of $Q(S)$ in \mathbf{W}. Then $\operatorname{dim} T=3, S \leq T$, all elements of T are semi-octagonal and S contains all octagonal elements of T. If $d \in T-S$, then $S=\left(\bar{d} \times Q(d)^{\sigma / 2}\right) \mathbf{V}^{*}$.

Proof: By Theorem 5.16 without loss of generality we may take $S=K e+K f$ with $e=e_{0100^{\prime}} f=e_{++++}$and then $Q(e)^{\sigma / 2}=E_{0110}$ and $Q(f)^{\sigma / 2}=E_{0101}$. The companion subspace of $Q(S)$ in \mathbf{W} is equal to $\mathbf{V} E_{0110} \cap \mathbf{V} E_{0101}$, which is the 3 -dimensional space generated by $e=e_{0100^{\prime}} f=e_{++++}$and e_{-+++}. Consider an element $d=k_{1} e_{0100}+k_{2} e_{++++}+k_{3} e_{-+++}$of this space. We have $Q(d)^{\sigma / 2}=$
$k_{1}^{\sigma} e_{0110}+k_{2}^{\sigma} e_{0101}+k_{3}^{\sigma} e_{1100^{\prime}}$, and hence $q(d, d)=d Q(d)^{\sigma / 2}=0$, proving that d is semi-octagonal. Also note that $\left[d, e_{0 \overline{1} 00} Q(d)^{\sigma / 2}\right]=k_{3}^{1+\sigma} e_{++++}$and hence d is octagonal if and only if $k_{3}=0$.

Finally, note that $e, f \in \mathbf{V} Q(d)^{\sigma / 2}$ and that $d \in \mathbf{V} Q(e)^{\sigma / 2}$ and $d \in \mathbf{V} Q(f)^{\sigma / 2}$. Hence $\bar{e} \times \mathbf{V} Q(d)^{\sigma / 2}=\bar{f} \times \mathbf{V} Q(d)^{\sigma / 2}=\bar{d} \times \mathbf{V} Q(e)^{\sigma / 2}=\bar{d} \times \mathbf{V} Q(f)^{\sigma / 2}=0$ and therefore $\bar{d} \times Q(d)^{\sigma / 2}=k_{3}^{1+\sigma_{\bar{e}}}{ }_{-+++} \times E_{1100}$ which was shown to be equal to $k_{3}^{1+\sigma} e \wedge f$ in the proof of Proposition 5.17.

5.6 The Ree-Tits octagon

Define a new geometry \mathcal{O} whose points are the one-dimensional octagonal subspaces of \mathbf{W} and whose lines are the two-dimensional octagonal subspaces of \mathbf{W}. Points of \mathcal{O} are points of \mathcal{F}, and lines of \mathcal{O} are exactly those lines of \mathcal{F} all of whose points belong to \mathcal{O}.

- Because an octagonal subspace of \mathbf{W} has dimension at most 2, there are no planes or hyperlines of \mathcal{F} all of whose points belong to \mathcal{O}.

As an immediate consequence of properties defined in earlier sections, we find that there are many equivalent ways of stating that two points $K e$ and $K f$ belong to the same line of \mathcal{O}. For example :

- Every 1-dimensional subspace $K\left(k_{1} e+k_{2} f\right)$ of $K e+K f$ is a point of \mathcal{O}.
- $f \in q(\mathbf{V}, e)$.
- $f \in[e, \mathbf{V}]$.
- $[e, \mathbf{J}] \bar{f}=0$.
- $\operatorname{dim} q(\mathbf{V}, e) \cap q(\mathbf{V}, f)=3$.
- $e \bar{f}=0,[e, f]=0$ and $e * \bar{f}=0$.

The theorem on the next page (which is in some sense the final 'thesis' of this text) proves that the point-line geometry \mathcal{O} satisfies the axioms of a generalized octagon, where 'collinear', 'cohyperlinear', 'almost opposite' and 'opposite' correspond to distance $2,4,6$ and 8 in the incidence graph of \mathcal{O}.

Theorem 5.19 Let $K e, K f$ be different points of \mathcal{O}.

1. If $K e$ and $K f$ are collinear then every point of the line $K e+K f$ belongs to \mathcal{O}. Apart from the points of $K e+K f$ there are no other points of \mathcal{O} collinear to both Ke and Kf.
2. If $K e$ and $K f$ are cohyperlinear, then there is a unique point of \mathcal{O} that is collinear to both $K e$ and $K f$. This point is $K c(e, f)$. In the incidence graph of $\mathcal{O}, K e$ and $K f$ are at mutual distance 4.
3. If Ke and Kf are almost opposite then there are no points of \mathcal{O} that are collinear to both $K e$ and $K f$. There is a unique point of \mathcal{O} that is collinear to Ke and cohyperlinear to $K f$. This point is $K q(f, e)$. In the incidence graph of \mathcal{O}, Ke and $K f$ are at mutual distance 6.
4. If $K e$ and $K f$ are opposite, then there are no points of \mathcal{O} that are collinear to both Ke and $K f$, or that are collinear to Ke and cohyperlinear to $K f$ (or vice versa). Every line of \mathcal{O} through $K f$ contains exactly one point of \mathcal{O} that is almost opposite to Ke. In the incidence graph of $\mathcal{O}, K e$ and $K f$ are at mutual distance 8.

These are the only possible relations between different points of \mathcal{O}.

Proof: The different cases of this theorem correspond to the 4 different cases of Theorem 3.41. They also correspond to 4 different cases of Theorem 5.16, but numbered in the opposite order. (The fifth case of Theorem 5.16 occurs when $K e=K f$.)

1. (Case 4 of Theorem 5.16.) Any point $K d$ collinear to both $K e$ and $K f$ must belong to the companion space in \mathbf{W} of $K Q(e)+K Q(f)$. By Proposition 5.18, the only octagonal elements of this 3-dimensional space are exactly those belonging to $K e+K f$.
2. (Case 3 of Theorem 5.16.) A point collinear to both $K e$ and $K f$ must belong to the intersection $q(\mathbf{W}, e) \cap q(\mathbf{W}, f)$, which by Theorem 5.16 is exactly $K c(e, f)$. Note also that $c(e, f)$ is octagonal by the same theorem.
3. (Case 2 of Theorem 5.16.) We have $q(\mathbf{W}, e) \cap q(\mathbf{W}, f)=\{0\}$, hence there are no points collinear to both $K e$ and $K f$.

Without loss of generality we may set $e=e_{0100}$ and $f=e_{\ldots}$. . If $K d \in \mathcal{O}$ is collinear to e and cohyperlinear to f, we must have $d \in q(\mathbf{V}, e)=\mathbf{V} E_{0110}$ and $[d, f]=0$. We easily compute that this implies $d \in K e_{-++-}$. Also $q(f, e)=$ e $E_{0110}=e_{-+}$ ++ .
4. (Case 1 of Theorem 5.16.) We have $q(\mathbf{W}, e) \cap q(\mathbf{W}, f)=\{0\}$, hence there are no points collinear to both $K e$ and $K f$.

Without loss of generality we may set $e=e_{0100}$ and $f=e_{0 \overline{1} 00}$. As in the previous case, if $K d \in \mathcal{O}$ is collinear to $K e$ and cohyperlinear to $K f$, we must have $d \in q(\mathbf{V}, e)=\mathbf{V} E_{0110}$ and $[d, f]=0$. This implies $d \in K e_{0010}$, but then d is not even semi-octagonal.

Finally, consider the hyperplane of elements $w \in \mathbf{W}$ such that $w \bar{e}=0$. Because f does not belong to this hyperplane, every line of \mathcal{O} through f intersects this hyperplane in a single point $K w \in \mathcal{O}$. By definition $w \bar{e}=0$, hence $K w$ is either almost opposite to $K e$, cohyperlinear to $K e$, collinear to $K e$ or equal to $K e$. The last possibility is easily ruled out, and the second and third possibility have been disproved above.

The following theorem provides some insight into the 'local structure' of \mathcal{O}.

Theorem 5.20 Let Kc be a point of \mathcal{O}. Then we may find octagonal elements $d, f \in$ \mathbf{W} with $d \bar{f}=1$ such that $\operatorname{Suz}(d, f)$ fixes c and acts doubly transitive on the lines of \mathcal{O} through Kc. These lines form a cone with vertex Kc and a Suzuki-Tits ovoid as a base. The semi-octagonal elements of $q(\mathbf{V}, c)$ form a 5-dimensional subspace of $q(\mathbf{V}, c)$

Let L be a line through $K c$. Then d, f can be chosen in such a way that $y\left(K_{\sigma}^{(2)} q(f, d)\right)$ fixes L and acts transitively on the remaining lines through Kc .

Proof: By Theorem 5.16 all points collinear with $K c$ must lie in $q(\mathbf{V}, c)$. Let $K c^{\prime}$ be a point of L different from $K c$. By Theorem 5.16 we may set $c=e_{0001}$ and $c^{\prime}=e_{++}$ + without loss of generality.

Every element $a \in q(\mathbf{V}, e)$ is of the form

$$
a=k_{1} e_{1000}+k_{2} e_{0001}+k_{3} e_{++++}+k_{4} e_{+--+}+k_{5} e_{+-++}+k_{6} e_{++-+}
$$

with $k_{1}, \ldots, k_{6} \in K$.
It is easily verified that a may be written as $a=c(c, b)$ with

$$
b=k_{1}^{\sigma} e_{\overline{1} 000}+k_{2}^{\sigma} e_{1000}+k_{3}^{\sigma} e_{0100}+k_{4}^{\sigma} e_{0 \overline{1} 00}+k_{5}^{\sigma} e_{00 \overline{1} 0}+k_{6}^{\sigma} e_{0010^{\prime}}
$$

which is an element of $\mathbf{B}_{1}+\mathbf{B}_{2}$ (cf. section 5.4). By Theorem 5.7 we can always apply an element of $\operatorname{Suz}\left(\mathbf{B}_{1}\right)$ to map b to b^{\prime} of the form

$$
b^{\prime}=k_{1}^{\sigma} e_{\overline{1} 000}+k_{2}^{\sigma} e_{1000}+e_{0100}+k^{\sigma} h_{0100}+k^{2 \sigma} e_{0 \overline{1} 00^{\prime}}
$$

Because the group $\operatorname{Suz}\left(\mathbf{B}_{1}\right)$ leaves c invariant, the same element will reduce $a=c(c, b)$ to

$$
a^{\prime}=c\left(c, b^{\prime}\right)=k_{1} e_{1000}+k_{2} e_{0001}+e_{++++}+k^{2} e_{+--+}
$$

Let us now compute $Q\left(a^{\prime}\right)$. We find

$$
Q\left(a^{\prime}\right)=k_{1}^{2} E_{\overline{1} 001}+k_{2}^{2} E_{1001}+E_{0101}+k^{2} E_{0001}+k^{4} E_{0 \overline{1} 01}
$$

and then $q\left(a^{\prime}, a^{\prime}\right)=k_{1}^{1+\sigma} e_{1000}$. Hence a^{\prime} (and a) is semi-octagonal if and only if $k_{1}=0$. It follows that the semi-octagonal elements form a 5-dimensional subspace of $q(\mathbf{V}, c)$.

Now assume $k_{1}=0$ and compute $\left[a^{\prime}, q\left(e_{--+{ }^{\prime}} a^{\prime}\right)\right]$. We have

$$
\begin{aligned}
q\left(e_{--+-^{\prime}} a^{\prime}\right) & =k_{2}^{\sigma} e_{+-++}+e_{-+++}+k^{\sigma} E_{--++} \\
{\left[a^{\prime}, q\left(e_{--+{ }^{\prime}} a^{\prime}\right)\right] } & =k^{2} e_{0001}
\end{aligned}
$$

and therefore $k=0$ when a is octagonal. Conversely, it is easily verified that $a^{\prime}=k_{2} e_{0001}+e_{++++}$is octagonal for every $k_{2} \in K$.

In other words, the octagonal elements of $q(\mathbf{V}, c)$ form a cone with vertex e_{0001} and with base the orbit of e_{++++}under the action of $\operatorname{Suz}\left(\mathbf{B}_{1}\right)$.

From the proof of Theorem 5.7 we know that every element b^{\prime} in the orbit of e_{0100} is either of the form $k e_{0100}$ with $k \in K$, or $k\left(e_{0 \overline{1} 00}+\ell_{0}^{\sigma} e_{00 \overline{1} 0}+\right.$ $N(\boldsymbol{\ell})^{\sigma} e_{0100}+T(\boldsymbol{\ell})^{\sigma} e_{0010}+\ell_{1} h_{0100}$) with $k \in K, \ell \in K_{\sigma}^{(2)}$ (in the notations of Theorem 5.7, $b^{\prime}=k d$ or $\left.b^{\prime}=k f^{\left(\ell_{e}\right)}\right)$.

Hence, every octagonal $a \in q(\mathbf{V}, c)$ must satisfy

$$
\begin{aligned}
a & =k_{2} e_{0001}+k e_{++++} \\
\text {or } a & =k_{2} e_{0001}+k\left(e_{+--+}+\ell_{0}^{\sigma} e_{+-++}+N(\boldsymbol{\ell})^{\sigma} e_{++++}+T(\ell)^{\sigma} e_{++-+}\right) .
\end{aligned}
$$

The first case, i.e., $a=k_{2} c+k c^{\prime}$, corresponds to a point $K a$ that belongs to the line L. The second case corresponds to the orbit of $a=k_{2} c+k e_{+--+}$under the action of $y\left(K_{\sigma}^{(2)} e_{0010}\right)$.

Comparing this with the results of section 5.3 we see that the base of the cone does indeed form a Suzuki-Tits ovoid in the space generated by $e_{+++{ }^{\prime}} e_{++-+}$,
e_{+--+}and e_{+-++}.
We end this section by establishing the two types of root groups for \mathcal{O}.

Proposition 5.21 Let $K d, K e$ be points of \mathcal{O} that are almost opposite. Then $y([d, e])$ fixes all elements (points and lines) on the shortest path joining $K d$ and $K e$ and all elements incident to (at least) one of those elements.

Let L be any line of \mathcal{O} through $K d$ and not on this path. Then the subgroup $y(K[d, e])$ of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ acts transitively on the points of L different from $K d$.

Proof: By Theorem 5.16 we may choose $d=e_{0001}$ and $e=e_{\ldots-\ldots}$ without loss of generality. Then $[d, e]$ is the semi-octagonal element e \qquad and $Q\left([d, e]^{\sigma / 2}\right)=$ $E_{1 \overline{1} 00}$.

The points on the shortest path joining $K d$ and $K e$ are $K d^{\prime}$ and $K e^{\prime}$ with $d^{\prime}=$ $q(e, d)=e_{+--+}$and $e^{\prime}=q(d, e)=e_{0 \overline{1} 00}$ and they are easily seen to be left invariant by $y([d, e])$. Hence also the lines on that path are left invariant, and all points on those lines.

Consider a line M through $K d^{\prime}$. M lies entirely inside the space $q\left(\mathbf{V}, d^{\prime}\right)=$ $\mathbf{V} E_{0 \overline{1} 01}$ which is generated by the following vectors:

$$
e_{01000^{\prime}} e_{0001^{\prime}} e_{+-++^{\prime}} e_{+--+^{\prime}} e_{--++^{\prime}} e_{---+} .
$$

It is easily seen that each of these vectors is left invariant by $y([d, e])$, hence so is M. (By symmetry, the same holds for lines through e^{\prime}.)

Finally, let L be a line through $K d$, not equal to $K d+K d^{\prime}$. From the proof of Theorem 5.20 we know that L lies on the cone with vertex $K d$ and a base belonging to the 4-dimensional space generated by $e_{++++^{\prime}} e_{+--+^{\prime}} e_{+-++^{\prime}} e_{++-+}$. Of these four vectors, the only one not left invariant by $y(k[d, e])$, for $k \in K$, is e_{+++}which maps to $e_{++++}+k e_{0001}=e_{++++}+k d$.

Now consider a point $K c$ of L. Using the notation of the proof of Theorem 5.20 we assign 'coordinates' k_{2}, \ldots, k_{5} to the element c. It is easily seen that the case $k_{3}=0$ occurs only when $c \in K d+K d$ '. Because k_{3} is the 'coordinate' that corresponds to e_{++++}, we find that c is mapped by $y(k[d, e])$ to $c+k k_{3} d$, which lies on the same line L.

Also, when k runs through K, the image of c encounters all points of the line L, except d.

The elements $y([e, f])$ of the proposition above are called point-elations of \mathcal{O} and the group $y(K[e, f])$ is a root group [26].

Proposition 5.22 Let $K b, K b^{\prime}$ be opposite points of \mathcal{O} and let $K d$ be a point of \mathcal{O} at distance 4 of both $K b$ and $K b^{\prime}$. Then

1. The subset of elements c of $q(\mathbf{V}, d)$ that satisfy $[c, b]=\left[c, b^{\prime}\right]=0$ is a 2dimensional subspace of the form $K d+K e$ where e is para-octagonal and $d=$ $q(e, e)$.
2. The group $y\left(K_{\sigma}^{(2)} e\right)$ fixes all points and lines on the unique path of length 8 joining $K b$ to $K b^{\prime}$ through $K d$.
3. $y\left(K_{\sigma}^{(2)} e\right)$ fixes all points incident with any of the four lines of the path.
4. $y\left(K_{\sigma}^{(2)} e\right)$ fixes all lines incident with any of the three 'middle' points of that path (i.e. $K d, K c(b, d)$ and $K c\left(b^{\prime}, d\right)$).
5. $y\left(K_{\sigma}^{(2)} e\right)$ acts transitively on the set of lines through $K b$ which are not on this path.

Proof: By Theorem 5.16 without loss of generality we may take $b=e_{0001}$ and $b^{\prime}=e_{000 \overline{1}}$. It is easily verified that the set of all $c \in \mathbf{W}$ such that $[b, c]=$ $\left[b^{\prime}, c\right]=0$ is the 5 -dimensional space \mathbf{B}_{1} in the notations of Section 5.4. By Theorem 5.7 the group $\operatorname{Suz}\left(\mathbf{B}_{1}\right)$ acts transitively on all octagonal elements of this space, hence without loss of generality we may choose $d=e_{0100}$.

In this case we have $Q(d)^{\sigma / 2}=E_{0110}$ and then the intersection of $q(\mathbf{V}, d)$ with \mathbf{B}_{1} is equal to $K d+K e$ with $e=e_{0010^{\prime}}$ proving statement 1 of this proposition.

Note that $y\left(K_{\sigma}^{(2)} e\right)$ fixes d, b and b^{\prime} (as elements of \mathbf{B}_{2}) and hence also $c(b, d)=$ e_{++++}and $c\left(b^{\prime}, d\right)=e_{-++-}$, proving statements 2 and 3 .

The three 'middle' points on the unique path of length 8 joining $K b$ to $K b^{\prime}$ through $K d$ correspond to e \qquad e_{010} and e \qquad For each of these three vectors e_{r}, the following table lists the generators $e_{r}, e_{s_{1}}, \ldots, e_{s_{4}}$ of the corresponding

5-dimensional subspace of semi-octagonal elements of $q\left(\mathbf{V}, e_{r}\right)$. (These results were obtained from the example used in the proof of Theorem 5.20 by applying an appropriate element of the form $N^{\prime}\left(e_{s}, e_{-s}\right)$, i.e., a symmetry of Φ_{O}.)

r	s_{1}	s_{2}	s_{3}	s_{4}
++++	0001	0100	-+++	++-+
0100	++++	-++-	+++-	-+++
-++-	0100	$000 \overline{1}$	-+--	+++-

Note that each of the listed vectors $e_{r}, e_{s_{i}}$ is left invariant by $y\left(K_{\sigma}^{(2)} e\right)$, except for e_{++-+}and e_{-+--}. Observe that $e_{++-+}=c\left(e, e_{0001}\right)$ and $e_{-+--}=c\left(e, e_{000 \overline{1}}\right)$. And hence, for $k \in K_{\sigma}^{(2)}$, using $e^{y(k e)}=k_{0}^{\sigma} d+e$ we obtain

$$
e_{++-+} \quad y(k e)=e_{++-+}+k_{0}^{\sigma} e_{++++^{\prime}} \quad e_{-+--} y(k e)=e_{-+--}+k_{0}^{\sigma} e_{-++-} .
$$

This proves statement 4.
Statement 5 was already proved as part of the proof of Theorem 5.16.
The group $y\left(K_{\sigma}^{(2)} e\right)$ is again a root group. The elements $y(k e)$ are called lineelations of \mathcal{O}, and in the special case $k_{0}=0$, i.e., $y(k e)=y\left(k_{1} d\right)$ they are the central elations with center $K d$. The central elations leave invariant all points at distance 4 of $K d$. Propositions 5.21 and 5.22 imply that \mathcal{O} is a Moufang polygon [26] and hence prove

Theorem 5.23 \mathcal{O} is the classical perfect Ree-Tits generalized octagon $\mathrm{O}(K, \sigma)$.

And so, after a quest spanning more than two hundred pages, we finally find our Grail.

A The Suzuki-Tits ovoid

In this chapter we want to provide an illustration of how the techniques of the main text can be applied to a much simpler example. We will fold the Lie algebra of type A_{3} to one of type B_{2} and finally twist it to obtain a Suzuki-Tits ovoid.

To keep the length of this chapter within bounds we have omitted the descriptions of the corresponding root systems and Chevalley groups although they can easily be constructed using the techniques of the main text. We have also left out most of the proofs.

- This chapter is largely independent of Chapters $2-5$. We do however occasionally refer to concepts which were introduced in Chapter 1. To illustrate the similarity with the main text, notations will often be 'inherited' : for example, in the main text the symbol \mathbf{V} denotes the 27-dimensional module of type E_{6}, while here it will denote the 4-dimensional module of type A_{3}, which plays an equivalent role in the construction.

A. 1 Modules for the Lie algebra of type A_{3}

Consider a 4-dimensional vector space \mathbf{V} over a field K and denote its dual by \mathbf{V}^{*}. Choose a base $\left(e_{1}, \ldots, e_{4}\right)$ of \mathbf{V} and a base $\left(\eta_{1}, \ldots, \eta_{4}\right)$ of \mathbf{V}^{*} in such a way that

$$
e_{i} \eta_{j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

We may represent an element $a \in \mathbf{V}$ by a row vector (a[1]a[2]a[3]a[4]) where $a[i]=a \eta_{i}$ denotes the i th coordinate of a with respect to the chosen base. Similarly, we may represent $\alpha \in \mathbf{V}^{*}$ by the column vector $(\alpha[1] \cdots \alpha[4])^{T}$,
where $\alpha[i]=e_{i} \alpha$ denotes the i th coordinate of α with respect to the dual base. With these notations we obtain the following expressions for the inner and tensor product of $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$:

$$
\begin{aligned}
a \alpha= & (a[1] a[2] a[3] a[4])\left(\begin{array}{l}
\alpha[1] \\
\alpha[2] \\
\alpha[3] \\
\alpha[4]
\end{array}\right)=a[1] \alpha[1]+\cdots+a[4] \alpha[4], \\
\alpha \otimes a= & \left(\begin{array}{l}
\alpha[1] \\
\alpha[2] \\
\alpha[3] \\
\alpha[4]
\end{array}\right)(a[1] a[2] a[3] a[4]) \\
= & \left(\begin{array}{llll}
a[1] \alpha[1] & a[2] \alpha[1] & a[3] \alpha[1] & a[4] \alpha[1] \\
a[1] \alpha[2] & a[2] \alpha[2] & a[3] \alpha[2] & a[4] \alpha[2] \\
a[1] \alpha[3] & a[2] \alpha[3] & a[3] \alpha[3] & a[4] \alpha[3] \\
a[1] \alpha[4] & a[2] \alpha[4] & a[3] \alpha[4] & a[4] \alpha[4]
\end{array}\right) .
\end{aligned}
$$

Denote by \mathbf{L} the set of all linear transformations $A \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ such that $\operatorname{Tr} A=0$. It is easily seen that $\operatorname{dim} \mathbf{L}=15$. An element A of \mathbf{L} can be regarded as a 4×4 matrix over K. We write $A[i, j]$ for the element at row i and column j of this matrix, i.e., $A[i, j]=e_{i} A \eta_{j}$. If $a \in \mathbf{V}$ and $\alpha \in \mathbf{V}^{*}$, then $\alpha \otimes a \in \mathbf{L}$ if and only if $a \alpha=0$.

The standard Lie product $[A, B] \stackrel{\text { def }}{=} A B-B A$ makes \mathbf{L} into a Lie algebra of type A_{3}. The action $a^{A} \stackrel{\text { def }}{=} a A$ of \mathbf{L} on \mathbf{V} makes \mathbf{V} into a 4-dimensional module of \mathbf{L} and so does the action $\alpha^{A} \stackrel{\text { def }}{=}-A \alpha$ of A on \mathbf{V}^{*}. Note that $a^{A} \alpha+a \alpha^{A}=0$ and $\alpha^{A} \otimes a+\alpha \otimes a^{A}=[\alpha \otimes a, A]$, hence both operations are 'compatible' with L.

Define $\mathbf{V} \wedge \mathbf{V}$ to be the vector space of all antisymmetric bilinear forms L on \mathbf{V}^{*}. We will write $L \alpha \beta$ for $L(\alpha, \beta)$ with $\alpha, \beta \in \mathbf{V}^{*}$. In other words, $L \in \mathbf{V} \wedge \mathbf{V}$ if and only if $L \alpha \alpha=0$ for all $\alpha \in \mathbf{V}^{*}$ (and hence $L \alpha \beta=-L \beta \alpha$). Note that we may also regard $\mathbf{V} \wedge \mathbf{V}$ as a subspace of $\operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$, with $L \alpha \in \mathbf{V}$ for all
$\alpha \in \mathbf{V}^{*}$.
For every $a, b \in \mathbf{V}$ we define $a \wedge b \in \operatorname{Hom}\left(\mathbf{V}^{*}, \mathbf{V}\right)$ as follows :

$$
(a \wedge b) \alpha \beta \xlongequal{\text { def }}\left|\begin{array}{ll}
a \alpha & a \beta \\
b \alpha & b \beta
\end{array}\right| \text { or }(a \wedge b) \alpha=(a \alpha) b-(b \alpha) a \text {. }
$$

Note that $a \wedge a=0$ and $a \wedge b=-b \wedge a$. It is easily proved that $a \wedge b \in \mathbf{V} \wedge \mathbf{V}$ and that the elements $e_{i} \wedge e_{j}$ with $1 \leq i<j \leq 4$ form a base for $\mathbf{V} \wedge \mathbf{V}$. Hence $\mathbf{V} \wedge \mathbf{V}$ has dimension 6 .

For $L \in \mathbf{V} \wedge \mathbf{V}$ we write $L[i, j] \stackrel{\text { def }}{=} L \eta_{i} \eta_{j}$. Then $L[i, i]=0$ and $L[i, j]=-L[j, i]$. Also

$$
L=\sum_{i<j} L[i, j]\left(e_{i} \wedge e_{j}\right) \text { and }(a \wedge b)[i, j]=\left|\begin{array}{ll}
a[i] & a[j] \\
b[i] & b[j]
\end{array}\right| .
$$

Dually, let $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ denote the vector space of all antisymmetric bilinear forms Λ on \mathbf{V}. Write $a b \Lambda$ for $\Lambda(a, b)$. Again we may regard $b \Lambda$ as an element of \mathbf{V}^{*} and hence $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ as a subspace of $\operatorname{Hom}\left(\mathbf{V}, \mathbf{V}^{*}\right)$. For $\alpha, \beta \in \mathbf{V}^{*}$ we define $\alpha \wedge \beta \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ as follows :

$$
a b(\alpha \wedge \beta) \stackrel{\text { def }}{=}\left|\begin{array}{ll}
a \alpha & a \beta \\
b \alpha & b \beta
\end{array}\right| \text { or } b(\alpha \wedge \beta)=(b \beta) \alpha-(b \alpha) \beta \text {. }
$$

As before, $\alpha \wedge \alpha=0$ and $\alpha \wedge \beta=-\beta \wedge \alpha . \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ has dimension 6 with base elements $\eta_{i} \wedge \eta_{j}($ for $i<j)$. If we write $\Lambda[i, j] \stackrel{\text { def }}{=} e_{i} e_{j} \Lambda$, then

$$
\Lambda=\sum_{i<j} \Lambda[i, j] \eta_{i} \wedge \eta_{j} \text { and }(\alpha \wedge \beta)[i, j]=\left|\begin{array}{ll}
\alpha[i] & \alpha[j] \\
\beta[i] & \beta[j]
\end{array}\right| .
$$

It is easily verified that the following action of \mathbf{L} on $\mathbf{V} \wedge \mathbf{V}$ establishes $\mathbf{V} \wedge \mathbf{V}$ as a 6 -dimensional module of \mathbf{L} :

$$
(a \wedge b)^{A} \stackrel{\text { def }}{=} a A \wedge b+a \wedge b A, \text { for } a, b \in \mathbf{V}, A \in \mathbf{L}
$$

When $L \in \mathbf{V} \wedge \mathbf{V}$ and $\Lambda \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$ we define the product $L \cdot \Lambda$ from the following property:

$$
(a \wedge b) \cdot(\alpha \wedge \beta) \stackrel{\text { def }}{=} a b(\alpha \wedge \beta)=(a \wedge b) \alpha \beta=\left|\begin{array}{ll}
a \alpha & a \beta \\
b \alpha & b \beta
\end{array}\right| .
$$

This definition is sound because the defining formula is linear and antisymmetric in the symbols a and b. We have

$$
\begin{array}{ll}
L \cdot(\alpha \wedge \beta)=L \alpha \beta, & \\
\text { for } \alpha, \beta \in \mathbf{V}^{*}, L \in \mathbf{V} \wedge \mathbf{V} \\
(a \wedge b) \cdot \Lambda=a b \Lambda, & \\
\text { for } a, b \in \mathbf{V}, \Lambda \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}
\end{array}
$$

It is easily shown that $\left(e_{i} \wedge e_{j}\right) \cdot\left(\eta_{k} \wedge \eta_{l}\right)$ is non-zero only when $\{i, j\}=\{k, l\}$ and therefore

$$
L \cdot \Lambda=\sum_{i<j} L[i, j] \Lambda[i, j] .
$$

Now, let $a, b, c, d \in \mathbf{V}$. Define $(a \wedge b)^{*}$ to be the unique element of $\operatorname{Hom}\left(\mathbf{V}, \mathbf{V}^{*}\right)$ satisfying

$$
c d(a \wedge b)^{*} \stackrel{\text { def }}{=}\left|\begin{array}{llll}
a[1] & a[2] & a[3] & a[4] \\
b[1] & b[2] & b[3] & b[4] \\
c[1] & c[2] & c[3] & c[4] \\
d[1] & d[2] & d[3] & d[4]
\end{array}\right|,
$$

for all $c, d \in \mathbf{V}$. We find

$$
\begin{aligned}
& \left(e_{1} \wedge e_{2}\right)^{*}=\eta_{3} \wedge \eta_{4}, \quad\left(e_{2} \wedge e_{3}\right)^{*}=\eta_{1} \wedge \eta_{4}, \\
& \left(e_{1} \wedge e_{3}\right)^{*}=\eta_{4} \wedge \eta_{2}, \quad\left(e_{2} \wedge e_{4}\right)^{*}=\eta_{3} \wedge \eta_{1} \text {, } \\
& \left(e_{1} \wedge e_{4}\right)^{*}=\eta_{2} \wedge \eta_{3}, \quad\left(e_{3} \wedge e_{4}\right)^{*}=\eta_{1} \wedge \eta_{2} .
\end{aligned}
$$

These expressions can be extended to a linear operator $*$ on $\mathbf{V} \wedge \mathbf{V}$ (with values in $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$). Using coordinates we find (for $L \in \mathbf{V} \wedge \mathbf{V}$):

$$
\begin{aligned}
& L^{*}[1,2]=L[3,4] \quad L^{*}[2,3]=L[1,4] \\
& L^{*}[1,3]=L[4,2] \quad L^{*}[2,4]=L[3,1] \\
& L^{*}[1,4]=L[2,3] \quad L^{*}[3,4]=L[1,2]
\end{aligned}
$$

For $L, M \in \mathbf{V} \wedge \mathbf{V}$ the expression $L \cdot M^{*}$ defines a symmetric bilinear form on $\mathbf{V} \wedge \mathbf{V}$ with associated quadratic form \#, given by

$$
L^{\#}=L[1,2] L[3,4]+L[1,3] L[4,2]+L[1,4] L[2,3] .
$$

Note that $L \cdot L^{*}=2 L^{\#}$. Finally, composition of $L, L^{\prime} \in \mathbf{V} \wedge \mathbf{V}$ and $\Lambda, \Lambda^{\prime} \in$ $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ is denoted by \circ :

$$
\begin{array}{llll}
a(L \circ \Lambda) & \stackrel{\text { def }}{=} L(a \Lambda), & \alpha(\Lambda \circ L) & \stackrel{\text { def }}{=}(L \alpha) \Lambda, \\
a\left(\Lambda^{\prime} \circ L \circ \Lambda\right) & \stackrel{\text { def }}{=}[L(a \Lambda)] \Lambda^{\prime}, & \alpha\left(L^{\prime} \circ \Lambda \circ L\right) & \stackrel{\text { def }}{=} L^{\prime}[(L \alpha) \Lambda]
\end{array}
$$

for $a \in \mathbf{V}$ and $\alpha \in \mathbf{V}^{*}$.

Proposition A. 1 Let $L \in \mathbf{V} \wedge \mathbf{V}$. Then $L \circ L^{*}=L^{\#}$, and dually $L^{*} \circ L=L^{\#}$, i.e.,

$$
(L \alpha) L^{*}=L^{\#} \alpha, \quad L\left(a L^{*}\right)=L^{\#} a, \quad \text { for all } a \in \mathbf{V}, \alpha \in \mathbf{V}^{*} .
$$

Proposition A. 2 Let $L \in \mathbf{V} \wedge \mathbf{V}, L \neq 0$. Then the following are equivalent :

1. L is of the form $L=a \wedge b$ for some $a, b \in \mathbf{V}$.
2. $\operatorname{rank} L=2$, i.e., $\operatorname{dim} L \mathbf{V}^{*}=2$.
3. $L^{\#}=0$.
4. $L \alpha \wedge L \beta=(L \alpha \beta) L$ for all $\alpha, \beta \in \mathbf{V}^{*}$.
5. $L \circ \Lambda \circ L=(L \cdot \Lambda) L$ for every $\Lambda \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$.

An element L of $\mathbf{V} \wedge \mathbf{V}$ satisfying one of these conditions is called isotropic and we define the isotropic elements of $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$ in a dual way. Because the expression for $L^{\#}$ is self-dual, $L \in \mathbf{V} \wedge \mathbf{V}$ is isotropic if and only if L^{*} is isotropic.

- The notion of isotropy can also be defined for other A_{3}-modules. Every element of \mathbf{V} and of \mathbf{V}^{*} is isotropic. An element A of \mathbf{L} will be isotropic if and only if rank $A=1$. This is the case if and only if A can be written as $\alpha \otimes a$ for some $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$.

We define the geometry \mathcal{A} of points, lines and planes as follows :

- The points of \mathcal{A} are the 1-dimensional subspaces of \mathbf{V},
- the planes of \mathcal{A} are the 1-dimensional subspaces of \mathbf{V}^{*},
- the lines of \mathcal{A} are the 1-dimensional subspaces generated by isotropic elements of $\mathbf{V} \wedge \mathbf{V}$,
with the following incidence :
- A point $K a$ is incident with a line $K L$ if and only if there exists $\beta \in \mathbf{V}^{*}$ such that $a=L \beta$,
- a line $K L$ is incident with a plane $K \alpha$ if and only if $L \alpha=0$,
- a point $K a$ is incident with a plane $K \alpha$ if and only if $a \alpha=0$.

Because $a=L \beta$ and $L \alpha=0$ implies $L \alpha \beta=-a \alpha=0$, incidence of points, lines and planes is 'transitive'.

The reader will have guessed that \mathcal{A} is the geometry of points, lines and planes of a projective space of dimension 3 with the classical notion of incidence. The coordinates $L[i, j]$ are Plücker coordinates of the line $K L$ (and $L^{\#}=0$ is the equation of the Klein quadric).

The following proposition provides several links between algebraic properties of $\mathbf{V}, \mathbf{V}^{*}$ and $\mathbf{V} \wedge \mathbf{V}$, and geometrical properties of \mathcal{A}.

Proposition A. 3 Let $a, b \in \mathbf{V}-\{0\}, \alpha, \beta \in \mathbf{V}^{*}-\{0\}$ and $L, M \in \mathbf{V} \wedge \mathbf{V}-\{0\}$ be such that $L^{\#}=M^{\#}=0$. Then

1. If $K a$ and $K b$ are different points then $K(a \wedge b)$ is the unique line joining $K a$ and K b.
2. If $K a$ is not incident with $K L$, then $K\left(a L^{*}\right)$ is the unique plane containing both $K a$ and $K L$.
3. If the line $K L$ is not incident with the plane $K \alpha$ then $K(L \alpha)$ is the unique point they have in common.
4. If $K \alpha$ and $K \beta$ are different planes, then $K(\alpha \wedge \beta)^{*}$ is the unique line incident with both planes.
5. Two different lines $K L$ and $K M$ intersect if and only if $K L$ and $K M$ lie in the same plane if and only if $L \cdot M^{*}=0$. In that case the linear operator $M^{*} L$ has rank 1 and can be written as α a where $K a$ is the intersection point and $K \alpha$ is the plane containing $K L$ and $K M$.

A. 2 Modules for the Lie algebra of type B_{2}

Consider the special element $\infty=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$. We have $\infty^{*}=\eta_{1} \wedge \eta_{2}+$ $\eta_{3} \wedge \eta_{4}$ and $\infty^{\#}=1$. For $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ we define $\bar{a} \stackrel{\text { def }}{=} a \infty^{*}, \bar{\alpha} \stackrel{\text { def }}{=} \infty \alpha$. Note that $\bar{a} \in \mathbf{V}^{*}, \bar{\alpha} \in \mathbf{V}$. In terms of coordinates this reads

$$
\bar{a}=\left(\begin{array}{r}
a[2] \\
-a[1] \\
a[4] \\
-a[3]
\end{array}\right), \quad \bar{\alpha}=\left(\begin{array}{llll}
\alpha[2] & -\alpha[1] & \alpha[4] & -\alpha[3]
\end{array}\right) .
$$

We have $\overline{\bar{a}}=\infty\left(a \infty^{*}\right)=\infty^{\#} a=a$, for all $a \in \mathbf{V}$, by Proposition A.1. Also $a \bar{b}=a b \infty^{*}=-b a \infty^{*}=-b \bar{a}$, for $a, b \in \mathbf{V}$, because $\infty^{*} \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$. Using a similar argument we find that $a \bar{a}=0$ for all $a \in \mathbf{V}$.

Denote by \mathbf{J} the subspace of \mathbf{L} generated by all products of the form $\bar{a} \otimes a$ with $a \in \mathbf{V}$. We find

$$
\bar{a} \otimes a=\left(\begin{array}{cccc}
a[1] a[2] & a[2]^{2} & a[2] a[3] & a[2] a[4] \\
-a[1]^{2} & -a[1] a[2] & -a[1] a[3] & -a[1] a[4] \\
a[1] a[4] & a[2] a[4] & a[3] a[4] & a[4]^{2} \\
-a[1] a[3] & -a[2] a[3] & -a[3]^{2} & -a[3] a[4]
\end{array}\right)
$$

Hence, if $A \in \mathbf{J}$, the elements of A must satisfy the following conditions :

$$
\begin{array}{rlll}
A[1,1]+A[2,2] & =0, & A[1,4] & =A[3,2], \\
A[3,3]+A[4,4] & =0, & A[2,3]=A[4,1] \\
A[1,3]+A[4,2] & =0, & & \\
A[2,4]+A[3,1] & =0 . & &
\end{array}
$$

From this information it can easily be proved that $\operatorname{dim} \mathbf{J}=10$.

Proposition A. 4 Let $A \in \mathbf{L}$. Then $A \in \mathbf{J}$ if and only if $a A \bar{b}=b A \bar{a}$ for all $a, b \in \mathbf{V}$.

It is a consequence of this proposition that \mathbf{J} is a Lie algebra and that the operation $a, b \mapsto a \bar{b}$ is compatible with \mathbf{J}. J turns out to be an algebra of type B_{2}.

The operator ${ }^{\top}$ can be extended to $\mathbf{V} \wedge \mathbf{V}$ by setting $\overline{b \wedge c} \stackrel{\text { def }}{=} \bar{b} \wedge \bar{c}$. We have

$$
a(\overline{b \wedge c})=a(\bar{b} \wedge \bar{c})=(a \bar{c}) \bar{b}-(a \bar{b}) \bar{c}=(b \bar{a}) \bar{c}-(c \bar{a}) \bar{b}=\overline{(b \wedge c) \bar{a}}
$$

and hence, in general $a \bar{L}=\overline{L \bar{a}}$, for all L in $\mathbf{V} \wedge \mathbf{V}$. Expressed in terms of coordinates, this yields

$$
\begin{aligned}
& \bar{L}[1,2]=L[1,2], \quad \bar{L}[2,3]=L[4,1], \\
& \bar{L}[1,3]=L[2,4], \quad \bar{L}[2,4]=L[1,3], \\
& \bar{L}[1,4]=L[3,2], \quad \bar{L}[3,4]=L[3,4] .
\end{aligned}
$$

For $L \in \mathbf{V} \wedge \mathbf{V}$ consider the expression $L \cdot \infty^{*}=L[1,2]+L[3,4]$. (We have $(a \wedge b) \cdot \infty^{*}=a \bar{b}$.) Denote the subspace of all elements $L \in \mathbf{V} \wedge \mathbf{V}$ satisfying $L \cdot \infty^{*}=0$ by T . It follows that T has dimension 5 . From the coordinate expressions for \bar{L} and L^{*} it follows that $L \in \mathbf{T}$ if and only if $\bar{L}+L^{*}=0$.

Let $A \in \mathbf{L}, a, b \in \mathbf{V}$. Then

$$
(a \wedge b)^{A} \cdot \infty^{*}=a A b \infty^{*}+a b A \infty^{*}=a A \bar{b}-b A \bar{a},
$$

and this is 0 whenever $A \in \mathbf{J}$. Hence \mathbf{T} is a 5 -dimensional \mathbf{J}-module (but not an L-module).

The space \mathbf{T} can also be interpreted as a subspace of \mathbf{L}. For $L \in \mathbf{V} \wedge \mathbf{V}$ define \hat{L} to be the following linear transformation

$$
\hat{L}: a \mapsto a \hat{L} \stackrel{\text { def }}{=} L \bar{a}, \quad \text { for } a \in \mathbf{V}
$$

Then

$$
\begin{aligned}
\operatorname{Tr} \hat{L} & =e_{1} \hat{L} \eta_{1}+\cdots+e_{4} \hat{L} \eta_{4}=L \overline{e_{1}} \eta_{1}+\cdots+L \overline{e_{4}} \eta_{4} \\
& =-L[2,1]+L[1,2]-L[4,3]+L[3,4]=2 L \cdot \infty^{*}
\end{aligned}
$$

Hence $\hat{L} \in \mathbf{L}$ when $L \in \mathbf{T}$.
Consider $L=a \wedge b$ and let $A \in \mathbf{J}$. Let $c \in \mathbf{V}$, then $c \hat{L}=(a \bar{c}) b-(b \bar{c}) a$ and

$$
\begin{aligned}
c \widehat{L^{A}} & =(a A \bar{c}) b-(b \bar{c}) a A+(a \bar{c}) b A-(b A \bar{c}) a \\
& =(a \bar{c}) b A-(b \bar{c}) a A+(c A \bar{a}) b-(c A \bar{b}) a \\
& =c \hat{L} A-c A \hat{L}=c[\hat{L}, A]=c \hat{L}^{A} .
\end{aligned}
$$

This proves that \mathbf{T} and $\widehat{\mathbf{T}}$ are equivalent as \mathbf{J}-modules.

We define a geometry \mathcal{B} of points and lines as follows:

- The points of \mathcal{B} are the points of \mathcal{A}.
- The lines of \mathcal{B} are the lines $K L$ of \mathcal{A} for which L belongs to \mathbf{T}.

Incidence between points and lines of \mathcal{B} is the same as in \mathcal{A}.

Proposition A. 5 Let $K L$ denote a line of \mathcal{A}. Then $K L$ is a line of \mathcal{B} if and only if one of the following conditions holds:

1. $\bar{L} \circ L=0$,
2. $L=a \wedge b$ with $a, b \in \mathbf{V}$ such that $a \bar{b}=0, a \in \mathbf{V}$.

Proposition A. 6 Let $a, b \in \mathbf{V}-\{0\}, \alpha, \beta \in \mathbf{V}^{*}-\{0\}$ and $L, M \in \mathbf{T}-\{0\}$ be such that $L^{\#}=M^{\#}=0$. Then

1. The points $K a$ and $K b$ are collinear if and only if $a \bar{b}=0$.
2. The point $K a$ is incident with the line $K L$ if and only if $L \bar{a}=0$.
3. If a point $K a$ is not incident with a line $K L$, then $K L \bar{a}$ is the unique point incident with $K L$ and collinear to $K a$ and $K(L \bar{a} \wedge a)$ is the unique line incident with Ka that intersects KL.

The reader will have recognized the geometry \mathcal{B} as the symplectic (generalized) quadrangle $W(K)$.

A. 3 The case of characteristic 2

When the characteristic of the base field K is equal to 2 the module \mathbf{T} is no longer irreducible. Indeed, it may easily be derived that in this case $\infty^{A}=0$
for all $A \in \mathbf{J}$. It therefore makes sense to consider the quotient module $\mathbf{Q} \stackrel{\text { def }}{=}$ $\mathrm{T} / \mathrm{K} \infty$ which is now a 4 -dimensional module for J .

Many of the operations on \mathbf{T} also have meaning on \mathbf{Q}. For example, because $\infty \cdot L^{*}=0$ and $L \cdot \infty^{*}=0$ for all $L \in \mathbf{T}$, the dot product $(L+K \infty) \cdot(M+$ $K \infty)^{*} \stackrel{\text { def }}{=} L \cdot M^{*}$ is well-defined for any two elements of \mathbf{Q}. Likewise, given $a \in \mathbf{V}$ we have $\infty \bar{a} \wedge a=\overline{\bar{a}} \wedge a=a \wedge a=0$, and hence also $(L+K \infty) \bar{a} \wedge a \stackrel{\text { def }}{=}$ $L \bar{a} \wedge a$ is independent of the choice of the representative.

We introduce the following linear transformation $\mu: \mathbf{V} \rightarrow \mathbf{Q}:$

$$
\begin{array}{ll}
\mu\left(e_{1}\right)=e_{1} \wedge e_{4}+K \infty, & \mu\left(e_{2}\right)=e_{2} \wedge e_{3}+K \infty, \\
\mu\left(e_{3}\right)=e_{2} \wedge e_{4}+K \infty, & \mu\left(e_{4}\right)=e_{1} \wedge e_{3}+K \infty .
\end{array}
$$

The following proposition indicates that μ acts as a kind of 'orthogonal' transformation between the modules \mathbf{V} and \mathbf{Q}.

Proposition A. 7 Let $a, b \in \mathbf{V}$. Then $\mu(a) \cdot \mu(b)^{*}=a \bar{b}$.

It is a well-known fact that the generalized quadrangle \mathcal{B} is self-dual when char $K=2$, and it would therefore not be unexpected if this property would be reflected in the form of a polarity which interchanges the modules \mathbf{V} and Q. The map μ is a likely candidate, but it will turn out that we need to be more inventive. One reason is that the operation $L \bar{a}$ which is used to represent incidence in \mathcal{B} cannot be easily generalized to elements $L+K \infty$ of \mathbf{Q}.

We will instead introduce yet another operator $Q(\cdot)$. Let $a \in \mathbf{V}$. Define $Q(a)$ to be the unique bilinear form on \mathbf{V}^{*} satisfying

$$
Q(a) \bar{b} \bar{c}=(\mu(b) \bar{a} \wedge a) \cdot \mu(c)^{*}, \quad \text { for all } b, c \in \mathbf{V} .
$$

It can be proved that $Q(a) \overline{b b}=0$ for all $a, b \in \mathbf{V}$, and hence $Q(a)$ is antisymmetric. We may compute the coordinates of $Q(a)$ from the definition. For
example, we have

$$
\begin{aligned}
& Q(a)[1,2]=Q(a) \eta_{1} \eta_{2}=Q(a) \overline{e_{2} e_{1}}=\left(\mu\left(e_{2}\right) \bar{a} \wedge a\right) \cdot \mu\left(e_{1}\right)^{*} \\
& \quad=\left[\left(e_{2} \wedge e_{3}\right) \bar{a} \wedge a\right] \cdot\left(e_{1} \wedge e_{4}\right)^{*} \\
& \quad=\left[\left(e_{2} \bar{a}\right) e_{3}+\left(e_{3} \bar{a}\right) e_{2}\right] \cdot\left(\eta_{2} \wedge \eta_{3}\right) \\
& \quad=\left(e_{2} \bar{a}\right) \eta_{2}+\left(e_{3} \bar{a}\right) \eta_{3}=a[1] a[2]+a[4] a[3] .
\end{aligned}
$$

In a similar way we obtain

$$
\begin{aligned}
Q(a)[1,2] & =a[1] a[2]+a[3] a[4], & & Q(a)[3,4]=a[1] a[2]+a[3] a[4], \\
Q(a)[1,3] & =a[4]^{2}, & & Q(a)[2,3]=a[2]^{2}, \\
Q(a)[1,4] & =a[1]^{2}, & & Q(a)[2,4]=a[3]^{2} .
\end{aligned}
$$

It follows that $Q(a)[1,2]+Q(a)[3,4]=0$ and hence $Q(a) \in \mathbf{T}$. Also

$$
Q(a)^{\#}=(a[1] a[2]+a[3] a[4])^{2}+a[1]^{2} a[2]^{2}+a[3]^{2} a[4]^{2}=0,
$$

so $Q(a)$ is isotropic.
From the coordinate expression we also derive the following identity :

$$
\mu^{-1}(Q(a)+K \infty)=a^{\text {frob }}
$$

where $a^{\text {frob }}$ denotes the vector $\left(a[1]^{2} \cdots a[4]^{2}\right)$, i.e., the vector obtained by applying the Frobenius morphism to the coordinates of a.

Proposition A. 8 Let $a, b \in \mathbf{V}$, then

1. $Q(a)=0$ if and only if $a=0$.
2. $Q(a) \cdot Q(b)^{*}=(a \bar{b})^{2}$.
3. $Q(Q(a) \bar{b})=Q(b) \bar{a}^{\text {frob }} \wedge a^{\text {frob }}$.

Comparing the last result with Proposition A.6, we obtain the following geometrical interpretation.

Proposition A. 9 The map defined by $K a \mapsto K Q(a), K Q(a) \mapsto K a^{\text {frob }}$, for $a \in \mathbf{V}$, is a correlation of \mathcal{B}, i.e., it maps points of \mathcal{B} onto lines of \mathcal{B}, lines onto points and preserves incidence.

Note that this map is quadratic (and not linear), and is not an involution.

A. 4 The Suzuki-Tits ovoid

In what follows, we will restrict ourselves to fields K of characteristic 2 which have a field automorphism σ with the property

$$
\left(k^{\sigma}\right)^{\sigma}=k^{2}, \quad \text { for every } k \in K
$$

(Such fields are perfect, i.e., $K^{2}=K$.) An automorphism with these properties is called a Tits automorphism of K.

We may now use σ to make the correlation of the previous section into a true polarity of \mathcal{B}, by interchanging a^{σ} with $Q(a)$. We leave it to the reader to verify that indeed $Q(a) \bar{b}^{\sigma}=0$ if and only if $Q(b) \bar{a}^{\sigma}=0$, for all $a, b \in \mathbf{V}$.

Consider the set \mathcal{O} of all absolute points of this polarity, i.e., the points $K a$ of \mathcal{B} such that a^{σ} is incident with $Q(a)$, or equivalently, such that $Q(a) \bar{a}^{\sigma}=0$.

Expressed in coordinates, $K a$ belongs to \mathcal{O} if and only if the following system of equations is satisfied :

$$
\begin{array}{llll}
a[1]^{\sigma} a[1] a[2]+a[1]^{\sigma} a[3] a[4]+a[3]^{\sigma} a[1]^{2}+a[4]^{\sigma} a[4]^{2} & =0 \\
a[2]^{\sigma} a[1] a[2]+a[2]^{\sigma} a[3] a[4]+a[3]^{\sigma} a[3]^{2}+a[4]^{\sigma} a[2]^{2} & =0, & (i i) \\
a[1]^{\sigma} a[2]^{2}+a[2]^{\sigma} a[4]^{2}+a[3]^{\sigma} a[1] a[2]+a[3]^{\sigma} a[3] a[4] & =0, & \text { (iii) } \\
a[1]^{\sigma} a[3]^{2}+a[2]^{\sigma} a[1]^{2}+a[4]^{\sigma} a[1] a[2]+a[4]^{\sigma} a[3] a[4] & =0 \tag{iv}
\end{array}
$$

These equations are not independent. For instance, we find

$$
a[1](i v)^{\sigma}=a[4]^{\sigma}(i)+(i)^{\sigma}, \quad a[1]^{\sigma}(i i i)=a[3]^{\sigma}(i)+(i v)^{\sigma},
$$

and therefore equations (i) and (ii) are sufficient to define \mathcal{O} when $a[1] \neq 0$. In that case, setting $t=a[3], u=a[4]$, the first two equations reduce to

$$
\begin{array}{ll}
a[2]+t u+t^{\sigma}+u^{2+\sigma} & =0, \\
a[2]^{1+\sigma}+a[2]^{\sigma} t u+t^{2+\sigma}+u^{\sigma} a[2]^{2} & =0 .
\end{array}
$$

The first equation yields a value for $a[2]$ which may be substituted into the second equation and it turns out that this does not induce any further restrictions on the parameters t and u.

When $a[1]=0$ we have $a[4]=0$ by (i) and then $a[3]=0$ by $(i i)$.
This proves that the set \mathcal{O} consists of all points of the form

$$
K(0,1,0,0) \text {, or } K\left(1, t u+t^{\sigma}+u^{2+\sigma}, t, u\right) \text {, with } t, u \in K .
$$

This is the standard parameter representation [26, Section 7.6.12] for the points of the Suzuki-Tits ovoid, which proves that \mathcal{O} is indeed what we intended.

B Een algebraïsche aanpak van de perfecte veralgemeende achthoeken van Ree-Tits en verwante meetkundes

1 Inleiding en overzicht

Van alle veralgemeende veelhoeken die verband houden met algebraïsche groepen zijn de veralgemeende achthoeken wellicht het minst grondig bestudeerd. Misschien is dit omdat er slechts één familie van voorbeelden van dergelijke objecten is gekend of omdat deze zogenaamde veralgemeende achthoeken van Ree-Tits en hun inbeddingen in een projectieve ruimte niet gemakkelijk kunnen worden geconstrueerd.

De gebruikelijke manier waarop een Ree-Tits-achthoek wordt gedefinieerd, is als een cosetmeetkunde van een Ree-groep. Deze groep construeert men door de Chevalley-groep van type F_{4} over een veld K van karakteristiek 2 te vlechten (Engels: to twist). De Ree-Tits-achthoek kan ook worden geconstrueerd met behulp van een speciale coördinatisatie van de hand van H. van Maldeghem [26] die dan zelf weer is gebaseerd op eigenschappen van de Ree-groepen, namelijk de commutatierelaties uit [24].

Wat er voor de Ree-Tits-achthoek ontbreekt en wel bestaat voor alle andere klassieke veralgemeende veelhoeken, is een expliciete inbedding in één of andere projectieve ruimte. Het hoofddoel van deze tekst is om precies een dergelijke inbedding op te stellen (in een 25-dimensionale projectieve ruimte)
waarbij de punten (en rechten) van een Ree-Tits-achthoek een deelverzameling vormen van de punten (en rechten) uit de projectieve ruimte. We leiden expliciete 'formules' af die je op de projectieve coördinaten van een punt kunt toepassen om te bepalen of het al dan niet tot de achthoek behoort. Bovendien beschrijven we hoe je aan de hand van de coördinaten van twee punten van de achthoek kan bepalen of ze al dan niet collinear zijn, en meer algemeen, wat hun onderlinge afstand is.

Deze 'formules' zijn niet zo elementair als bij de andere veralgemeende veelhoeken. We bewijzen bijvoorbeeld dat een punt Ke tot de Ree-Tits-achthoek behoort als en slechts als zowel $e^{2}=0$ als $q([e, \mathbf{V}], e)=0$. De eerste van deze uitdrukking staat voor een stelsel van 26 kwadratische vergelijkingen in 26 variabelen (de 26 coördinaten van e). De tweede uitdrukking correspondeert met 676 veeltermenvergelijkingen van de derde graad in 26 variabelen, waaraan bovendien nog een veldautomorfisme σ van K te pas komt. (Vergelijk dit bijvoorbeeld met de formules die je nodig hebt om de punten van een splitCayley zeshoek te definiëren: één enkele vergelijking in zeven onbekenden volstaat hier.)

In deze tekst wordt de Ree-Tits-achthoek, en de metasymplectische ruimte waartoe zijn punten en rechten behoren, vanuit drie verschillende perspectieven bekeken: groepentheoretisch, meetkundig en algebraïsch, waarbij we ons vooral concentreren op het laatste aspect. We doen dit in vier opeenvolgende stappen: eerst behandelen we de Lie-algebra (en groep) van type E_{6} voor een algemeen veld (Hoofdstuk 2), dan beschouwen we de subalgebra van type F_{4} in algemene karakteristiek (Hoofdstuk 3) en daarna meer specifiek voor karakteristiek 2 (Hoofdstuk 4). Tot slot bekomen we een beschrijving van de veralgemeende Ree-Tits-achthoek voor een perfect veld (Hoofdstuk 5).

Appendix A illustreert de algemene technieken uit de tekst op een veel eenvoudiger voorbeeld: we reduceren de Lie-algebra van type A_{3} naar één van type B_{2} en bekomen uiteindelijk de structuur van een Suzuki-Tits-ovoïde. Deze appendix staat los van de rest van de tekst.

- De nummering en betiteling van de paragrafen in deze samenvatting loopt parallel met die van de hoofdstukken en paragrafen in de tekst.

2 De Lie-algebra van type E_{6} en verwante structuren

2.1 Een wortelsysteem van type E_{6}

We hebben ervoor gekozen het bekende wortelsysteem van type E_{6} te introduceren op een minder conventionele manier. We baseren ons hierbij op het feit dat de Weyl-groep van type E_{6} kan worden geïnterpreteerd als automorfismegroep van de veralgemeende vierhoek $\mathcal{Q}=Q^{-}(5,2)$ met puntenverzameling \mathcal{P} en rechtenverzameling \mathcal{L}.

De 27 punten van \mathcal{Q} kunnen we representeren als vectoren in een 6-dimensionale reële vectorrruimte \mathbf{P}. Het Euclidisch inproduct van twee punten p, q in die ruimte geeft aan of ze adjacent zijn of niet, op de volgende manier:

$$
p \cdot q=\left\{\begin{align*}
4 / 3, & \text { als en slechts als } p=q, \tag{2.2}\\
1 / 3, & \text { als en slechts als } p \not \perp q, \\
-2 / 3, & \text { als en slechts als } p \sim q .
\end{align*}\right.
$$

De 72 wortels van het wortelsysteem Φ van type E_{6} zijn alle verschillen $p-q$ van punten p, q waarvoor $p \cdot q=1 / 3$. Uit de waarden van de inproducten van wortels en punten, of van wortels onderling, kunnen opnieuw heel wat combinatorische eigenschappen worden afgeleid:

$r \cdot s=$	als en slechts als
2	$r=s$
1	$r-s \in \Phi$
0	$r-s, r+s \notin \Phi$
-1	$r+s \in \Phi$
-2	$r=-s$

$p \cdot r=$	als en slechts als
1	$p-r \in \mathcal{P}$
0	$p+r, p-r \notin \mathcal{P}$
-1	$p+r \in \mathcal{P}$

Met elke wortel $r \in \Phi$ komen zes zogenaamde basispunten $p_{0}, \ldots, p_{5} \in \mathcal{P}$ overeen die we kunnen gebruiken om \mathbf{P} te coördinatiseren. Punten krijgen dan coördinaten van de vorm $300000,2 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1}, 1111 \overline{2} \overline{2}$, of permutaties hiervan (een streepje boven getal moet gelezen worden als een minteken). Wortels hebben coördinaten van de vorm 111111, 111 $\overline{2} \overline{2} \overline{2}, \overline{3} 30000$, $\overline{1} \overline{1} \overline{1} 222$, 111111, of permutaties hiervan.

Elke wortel r bepaalt een orthogonale spiegeling w_{r} in \mathbf{P} die r afbeeldt op $-r$ en elk element invariant laat van het hypervlak dat loodrecht staat op r. De groep voortgebracht door deze spiegelingen is de Weyl-groep $W\left(E_{6}\right)$ van het wortelsysteem. Deze groep bezit belangrijke transitiviteitseigenschappen. Zo is hij bijvoorbeeld transitief op alle paren uit $\mathcal{P} \times \mathcal{P}, \Phi \times \mathcal{P}$ of $\Phi \times \Phi$ met een gegeven inproduct en op alle (geördende) cocliques (verzamelingen van onderling niet-adjacente punten) van grootte 2, 3, 4 en 6 (Propositie 2.5). Voor cocliques van grootte 5 zijn er twee banen, afhankelijk van of ze tot een coclique van grootte 6 kunnen worden uitgebreid, of niet.

Neem een vast automorfisme ω van \mathcal{Q}, van orde 3 en met de bijkomende eigenschap dat het de punten van \mathcal{P} in 9 banen verdeelt die elk samenvallen met een rechte. Deze negen rechten vormen een spread Σ. Door gebruik te maken van deze spread, kan je de 6 basispunten van elke wortel r partitioneren in 3 positieve en 3 negatieve basispunten:

$$
\begin{align*}
& p \cdot r=-1, p \cdot r \omega=1, p \cdot r \omega^{2}=0, \text { wanneer } p \text { een positief basispunt is, } \\
& p \cdot r=-1, p \cdot r \omega=0, p \cdot r \omega^{2}=1, \text { wanneer } p \text { een negatief basispunt is. } \tag{2.13}
\end{align*}
$$

Het belang van het onderscheid tussen beide soorten basispunten zal tot uiting komen in de volgende paragrafen.

2.2 De Lie-algebra van type E_{6} over K

Beschouw een 27-dimensionale vectorruimte \mathbf{V} over een veld K met basisvectoren e_{p} die elk met een verschillend punt $p \in \mathcal{P}$ overeenkomen. De corresponderende duale ruimte \mathbf{V}^{*} heeft canonische basisvectoren η_{q} (met $q \in \mathcal{P}$) die voldoen aan $e_{p} \eta_{q}=\delta_{p q}$. Element van $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ zullen we identificeren met matrices die rechts inwerken op \mathbf{V} en links of \mathbf{V}^{*}.

Op V introduceren we de volgende trilineaire vorm:

$$
\left\langle e_{i}, e_{j}, e_{k}\right\rangle \stackrel{\text { def }}{=}\left\{\begin{align*}
1, & \text { als }\{i, j, k\} \in \Sigma, \tag{2.15}\\
-1, & \text { als }\{i, j, k\} \in \mathcal{L}-\Sigma, \\
0, & \text { in alle andere gevallen. }
\end{align*}\right.
$$

Met behulp van deze vorm kunnen we ook het bilineair product \times definiëren dat een paar $a, b \in \mathbf{V}$ afbeeldt op een element $a \times b$ uit \mathbf{V}^{*} en voldoet aan de eigenschap $c(a \times b) \stackrel{\text { def }}{=}\langle c, a, b\rangle$, voor alle $c \in \mathbf{V}$. Daarnaast introduceren we ook een kwadratische operator .\# en een cubische vorm $D: a^{\#}=\frac{1}{2} a \times a$, $D(a)=\frac{1}{3} a a^{\#}=\frac{1}{6}\langle a, a, a\rangle$. (Deze definities kunnen ook een betekenis krijgen wanneer char $K=2$ of 3.) Voor elk van deze bewerkingen bestaat er ook een 'duaal' equivalent voor \mathbf{V}^{*}.

De belangrijkste eigenschap van deze operatoren is de volgende (Propositie 2.10):

$$
\begin{align*}
(a \times b) \times(c \times d) & +(a \times c) \times(b \times d)+(a \times d) \times(b \times c) \\
& =\langle a, b, c\rangle d+\langle b, c, d\rangle a+\langle c, d, a\rangle b+\langle d, a, b\rangle c \tag{2.24}
\end{align*}
$$

voor alle $a, b, c, d \in \mathbf{V}$. De tekst bevat vele andere formules die hiervan onmiddellijk kunnen worden afgeleid.

We kunnen nu de Lie-algebra $\widehat{\mathbf{L}}$ op de volgende manier definiëren: zij bestaat uit alle lineaire transformaties A die voldoen aan de eigenschap

$$
\begin{equation*}
a \times a A+A a^{\#}+\tau(A) a^{\#}=0, \quad \text { voor alle } a \in \mathbf{V} \tag{2.41}
\end{equation*}
$$

waarbij $\tau(A)$ een element is van K dat enkel afhangt van A. We bewijzen gemakkelijk dat τ een lineaire functionaal is en dat $\widehat{\mathbf{L}}$ een Lie-algebra is over K met de gebruikelijke definitie van de Lie-haak $([A, B] \stackrel{\text { def }}{=} A B-B A)$. Er geldt $\tau([A, B])=0$, voor alle $A, B \in \widehat{\mathbf{L}}$ en dus is de kern \mathbf{L} van τ opnieuw een Lie algebra.

De algebra $\widehat{\mathbf{L}}$ kan ook gedefinieerd worden als de algebra voortgebracht door alle lineaire transformaties $a * \alpha$ met $a \in \mathbf{V}$ en $\alpha \in \mathbf{V}^{*}$, waarbij

$$
\begin{equation*}
b(a * \alpha) \beta \stackrel{\text { def }}{=}(b \alpha)(a \beta)-(\alpha \times \beta)(a \times b), \quad \text { voor alle } b \in \mathbf{V}, \beta \in \mathbf{V}^{*} \tag{2.34}
\end{equation*}
$$

Dat beide definities van $\widehat{\mathbf{L}}$ equivalent zijn, wordt bewezen in Stelling 2.19. (We hebben $\tau(a * \alpha)=a \alpha$.)

Propositie 2.22 toont aan dat L de gekende Lie-algebra is van type E_{6} over K en dat we een Chevalley-basis voor deze algebra kunnen construeren aan de
hand van elementen van de vorm

$$
\begin{equation*}
E_{r} \stackrel{\text { def }}{=} e_{q} * \eta_{p}, \quad H_{r} \stackrel{\text { def }}{=} e_{q} * \eta_{q}-e_{p} * \eta_{p} \tag{2.44,2.48}
\end{equation*}
$$

waarbij $p, q \in \mathcal{P}, r \in \Phi$ en $r=q-p$.
Met behulp van deze basiselementen definiëren we ook nog een inproduct op \mathbf{L}, als volgt (zij $r, s \in \Phi$):

$$
\begin{array}{lll}
E_{r} \cdot E_{s} & \stackrel{\text { def }}{=} \begin{cases}-1 & \text { wanneer } r=-s, \\
0 & \text { wanneer } r \neq-s .\end{cases} \\
E_{r} \cdot H_{s}=H_{s} \cdot E_{r} & \stackrel{\text { def }}{=} 0 \tag{2.68}\\
H_{r} \cdot H_{s} & \stackrel{\text { def }}{=} r \cdot s .
\end{array}
$$

(Deze definitie kan gemakkelijk uitgebreid worden naar $\widehat{\mathbf{L}}$.) Er volgt andere dat $(a * \alpha) \cdot A=a A \alpha$ en dat $A \cdot \mathbf{1}=\tau(A)$, voor alle $a \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ en $A \in \widehat{\mathbf{L}}$.

2.3 Isotrope elementen

We noemen een $e \in \mathbf{V}$ isotroop wanneer $e^{\#}=0$. Op analoge wijze noemen we $\eta \in \mathbf{V}^{*}$ isotroop wanneer $\eta^{\#}=0$. Een element E van de Lie-algebra \mathbf{L} heet isotroop wanneer we het kunnen schrijven als $E=e * \eta$ waarbij zowel e als η isotroop zijn, en bovendien $e \eta=0$.

Typische voorbeelden van isotrope elementen zijn de basiselementen e_{p} (resp. η_{q}) van $\mathbf{V}\left(\right.$ resp. $\left.\mathbf{V}^{*}\right)$ en de elementen E_{r} uit de Chevalley-basis van \mathbf{L}.

Isotrope elemenen hebben vele interessante eigenschappen (Proposities 2.27 en 2.28), waarvan we hier slechts enkele vermelden: zij $e \in \mathbf{V}$ en $E \in \mathbf{L}$ isotroop, zij $a, b \in \mathbf{V}, A \in \mathbf{L}$, dan geldt $(e \times a) \times(e \times b)=\langle e, a, b\rangle e,(a E)^{\#}=0$, $a E \times b E=0$ en $E A E=(E \cdot A) E$.

Een verwant begrip is dat van isotrope deelruimte van \mathbf{V} : een deelruimte heet isotroop als en slechts als al zijn elementen isotroop zijn. Uit bovenstaande volgt bijvoorbeeld dat $\mathbf{V} E$ steeds een isotrope deelruimte is van \mathbf{V} wanneer $E \in \mathbf{L}$ isotroop is.

2.4 Automorfismen

An automorfisme g is een lineaire afbeelding van \mathbf{V} (en bij extensie, van \mathbf{V}^{*} en $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$) die de algebraïsche basisbewerkingen op \mathbf{V} 'bewaart': voor elke $a, b, c \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ en $A \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ geldt $a^{g} \alpha^{g}=a \alpha, a^{g} A^{g} \alpha^{g}=a A \alpha$, $\left(a^{g}\right)^{\#}=\left(a^{\#}\right)^{g}, a^{g} \times b^{g}=(a \times b)^{g},\left\langle a^{g}, b^{g}, c^{g}\right\rangle=\langle a, b, c\rangle, a^{g} * \alpha^{g}=(a * \alpha)^{g}$, ...Automorfismen beelden isotrope elementen af op isotrope elementen en laten \mathbf{L} invariant.

In Propositie 2.30 introduceren we een basisvoorbeeld van een dergelijk automorfisme, namelijk de lineaire afbeelding $x(E)$, met E een isotroop element van L, gedefinieerd op de volgende manier:

$$
\begin{align*}
a^{x(E)} & =a-a E, & & \text { voor alle } a \in \mathbf{V} \\
\alpha^{x(E)} & =\alpha+E \alpha, & & \text { voor alle } \alpha \in \mathbf{V}^{*} \tag{2.84}\\
A^{x(E)} & =A+[E, A]-(E \cdot A) E, & & \text { voor alle } A \in \widehat{\mathbf{L}}
\end{align*}
$$

De groep die door alle dergelijke $x(E)$ wordt voortgebracht, noteren we als $\widehat{\mathrm{E}}_{6}(K)$. Dit is een zogenaamde Chevalley-groep van type E_{6}.

Stellingen 2.34-2.38 beschrijven de banen van $\widehat{\mathrm{E}}_{6}(K)$ op de isotrope elementen van $\mathbf{V}, \mathbf{V}^{*}$ en \mathbf{L} (er is telkens één niet-triviale baan) en op paren van dergelijke isotrope elementen. Deze banen blijken sterk verwant aan de banen van de Weyl-groep $W\left(\mathrm{E}_{6}\right)$ op paren van punten en wortels.

Zo zijn er bijvoorbeeld drie soorten banen op paren van niet-triviale isotrope elementen van \mathbf{V}, namelijk banen met representanten $\left(e_{p}, e_{q}\right)$ met $p \not \perp q$, $\left(e_{p}, e_{q}\right)$ met $p \sim q$ en $\left(e_{p}, \ell e_{p}\right)$, waarbij $p, q \in \mathcal{P}$ en $\ell \in K-\{0\}$ (Stelling 2.35). Deze corresponderen met de drie banen van $W\left(\mathrm{E}_{6}\right)$ op $\mathcal{P} \times \mathcal{P}$. Dezelfde banen kunnen ook worden vastgelegd met behulp van algebraïsche bewerkingen op \mathbf{V} : in het eerste geval gaat het om paren (e, f) waarvoor $e \times f \neq 0$, in het tweede geval is $e \times f=0$ maar $K e \neq K f$, en in het derde geval hebben we $f=\ell$ e. De andere stellingen bieden gelijkaardige informatie in de andere gevallen.

In zekere zin zijn deze stellingen de meest belangrijke uit het hoofdstuk, omdat ze toelaten algemene eigenschappen van (paren) isotrope elementen af te leiden door ze enkel te bewijzen voor isotrope elementen van de vorm e_{p}, η_{q}
of E_{r}. Zo rekenen we bijvoorbeeld gemakkelijk uit dat $\operatorname{dim} \mathbf{V} E_{r}=6$ en hieruit volgt dan onmiddellijk dat $\operatorname{dim} \mathbf{V} E=6$ voor elk isotroop element E van \mathbf{L}.

2.5 Nog meer E_{6}-modules

Behalve $\mathbf{V}, \mathbf{V}^{*}$ en \mathbf{L} bestuderen we ook nog enkele andere modules voor de Lie-algebra \mathbf{L}, namelijk $\mathbf{V} \wedge \mathbf{V}$ (en de duale $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$), $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ (die in zekere zin zelf-duaal blijkt te zijn) en $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$. Bij elk van deze modules horen weer enkele nieuwe bewerkingen en kan ook het concept 'isotroop' worden ingevoerd.

Zo zijn isotrope elementen van $\mathbf{V} \wedge \mathbf{V}$ van de vorm $e \wedge f$ met $e, f \in \mathbf{V}$ isotroop en $e \times f=0$, of in andere woorden, met $K e+K f$ een isotrope deelruimte van V. (De bewerking ' \wedge ' is het welbekende antisymmetrische 'wedge'-product.) De niet-triviale isotrope elementen van $\mathbf{V} \wedge \mathbf{V}$ vormen opnieuw één enkele baan voor $\widehat{E}_{6}(K)$. Op analoge wijze zijn de isotrope elementen van $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ van de vorm $d \wedge e \wedge f$, waarbij $K d+K e+K f$ een isotrope deelruimte is van \mathbf{V}. Ook de niet-triviale elementen van de vorm $\eta \otimes e \in \operatorname{Hom}(\mathbf{V}, \mathbf{V})$ vormen een baan van $\hat{\mathrm{E}}_{6}(K)$, met $e \in \mathbf{V}, \eta \in \mathbf{V}^{*}$ isotrope elementen die voldoen aan $e \eta=0$ en $e * \eta=0$. (De bewerking ' \otimes ' is het welbekende 'uitproduct'.)

Deze isotrope elementen kunnen ook op andere manieren worden bekomen: zo kan je bovenstaande $\eta \otimes e$ ook steeds schrijven als $E F$ met E, F isotrope elementen van \mathbf{L} waarvoor $E F=F E$. Ook voor isotrope elementen van $\mathbf{V} \wedge \mathbf{V}$ en $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$ bestaan er alternatieve schrijfwijzen die gebruik maken van de nieuwe operatoren die hier werden ingevoerd.

2.6 De meetkunde \mathcal{E}

Het einddoel van Hoofdstuk 2 is de introductie van de meetkunde \mathcal{E} en aan te tonen dat deze meetkunde inderdaad van het type E_{6} is (Proposities 2.562.57). Deze meetkunde bezit de volgende 6 verschillende types:

1. De punten van \mathcal{E} zijn de isotrope 1-ruimten van \mathbf{V}, t.t.z., de verzamelingen $K e$ waarbij e een isotroop element is van $\mathbf{V}-\{0\}$.
2. De rechten van \mathcal{E} zijn de isotrope 1-ruimten van $\mathbf{V} \wedge \mathbf{V}$, t.t.z., de verzamelingen $K(e \wedge f)$ waarbij e, f een isotrope 2-ruimte van \mathbf{V} voortbrengen.
3. De vlakken van \mathcal{E} zijn de isotrope 1-ruimten van $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$, t.t.z., de verzamelingen $K(d \wedge e \wedge f)$ waarbij d, e, f een isotrope 3-ruimte van \mathbf{V} voortbrengen.
4. De duale rechten van \mathcal{E} zijn de isotrope 1-ruimten van $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$, t.t.z., de verzamelingen $K(\eta \wedge \varphi)$ waarbij η, φ een isotrope 2 -ruimte van \mathbf{V}^{*} voortbrengen.
5. De duale punten van \mathcal{E} zijn de isotrope 1-ruimten van \mathbf{V}^{*}, t.t.z., de verzamelingen $K \eta$ waarbij η een isotroop element is van $\mathbf{V}^{*}-\{0\}$.
6. De simplexen van \mathcal{E} zijn de isotrope 1-ruimten van L, t.t.z., de verzamelingen $K E$ waarbij E een isotroop element is van $L-\{0\}$.

Incidentie tussen types kan uitgedrukt worden met behulp van de verschillende algebraïsche bewerkingen, zoals aangegeven in de volgende tabel:

	$e \in \mathbf{V}$	$L \in \mathbf{V} \wedge \mathbf{V}$	$P \in \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$	$\Lambda \in \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	$\eta \in \mathbf{V}^{*}$
$E \in \mathbf{L}$	$\begin{gathered} e \in \mathbf{V} E \\ E \times e=0 \end{gathered}$	$\begin{gathered} L \mathbf{V}^{*} \leq \mathbf{V} E \\ E \times L \mathbf{V}^{*}=0 \end{gathered}$	$\begin{gathered} P \mathbf{V}^{*} \mathbf{V}^{*} \leq \mathbf{V} E \\ E \times P \mathbf{V}^{*} \mathbf{V}^{*}=0 \end{gathered}$	$\begin{aligned} & \mathbf{V} \Lambda \leq E \mathbf{V}^{*} \\ & \mathbf{V} \Lambda \times E=0 \end{aligned}$	$\begin{aligned} & \eta \in E \mathbf{V}^{*} \\ & \eta \times E=0 \end{aligned}$
e		$e \in L \mathbf{V}^{*}$	$e \in P \mathbf{V}^{*} \mathbf{V}^{*}$	$\begin{aligned} & \mathbf{V} \Lambda \leq e \times \mathbf{V} \\ & e * \mathbf{V} \Lambda=0 \end{aligned}$	$\begin{gathered} e \in \eta \times \mathbf{V}^{*} \\ \eta \in e \times \mathbf{V} \\ e * \eta=0 \end{gathered}$
L			$L \mathbf{V}^{*} \leq P \mathbf{V}^{*}$	$L \mathbf{V}^{*} * \mathbf{V} \Lambda=0$	$\begin{gathered} L \mathbf{V}^{*} \leq \eta \times \mathbf{V}^{*} \\ L \mathbf{V}^{*} * \eta=0 \end{gathered}$
P				$P \mathbf{V}^{*} \mathbf{V}^{*} * \mathbf{V} \Lambda=0$	$\begin{gathered} P \mathbf{V}^{*} \mathbf{V}^{*} \leq \eta \times \mathbf{V}^{*} \\ P \mathbf{V}^{*} \mathbf{V}^{*} * \eta=0 \end{gathered}$
Λ					$\eta \in \mathbf{V} \Lambda$

Alle elementen e, L, P, Λ, η en E in deze tabel zijn isotroop. Incidentie is symmetrisch en anti-reflexief. Wanneer een cel meerdere relaties bevat dan zijn ze equivalent.

3 De Lie-algebra van type F_{4} en verwante structuren

3.1 Een wortelsysteem van type F_{4}

Kies een vaste rechte L_{∞} in de veralgemeende vierhoek \mathcal{Q} en noem ze de rechte op oneindig. Schrijf $\mathcal{P}^{*} \stackrel{\text { def }}{=} \mathcal{P}-L_{\infty}$. Met behulp van deze rechte construeren we een lineaire transformatie - op de volgende manier: elk punt van z van L_{∞} wordt afgebeeld op $-z$ en elk punt p van \mathcal{P}^{*} wordt afgebeeld op $\bar{p}=$ $p+p_{\infty}$ waarbij p_{∞} het unieke punt is van L_{∞} dat adjacent is met p (de punten $\left\{p, p_{\infty},-\bar{p}\right\}$ vormen de unieke rechte door p die L_{∞} snijdt). De afbeelding $p \mapsto-\bar{p}$ is een automorfisme van \mathcal{Q} die Σ invariant laat, punten afbeeldt op punten en wortels op wortels.

De verzameling $\Phi_{F} \stackrel{\text { def }}{=}\left\{\left.\frac{1}{2}(r+\bar{r}) \right\rvert\, r \in \Phi\right\}$ vormt een wortelsysteem van type F_{4} (Propositie 3.6) in een 4-dimensionale reële deelruimte \mathbf{P}_{F} van $\mathbf{P} . \Phi_{F}$ kan men ook beschouwen als een projectie van Φ op deze ruimte, door de afbeelding $x \mapsto(x+\bar{x}) / 2$.

Het wortelsysteem Φ_{F} bevat 24 zogenaamd lange wortels (de elementen van $\Phi_{F} \cap \Phi$) en 24 korte wortels (die niet tot Φ behoren). De verzamelingen van lange en korte wortels noteren we respectievelijk als Φ_{L} en Φ_{S}. Met een geschikte basis voor \mathbf{P}_{F} krijgen de lange wortels coördinaten van de vorm $(\pm 1, \pm 1,0,0)$ (of permutaties hiervan) en corresponderen de korte wortels met viertallen van de vorm $(\pm 1 / 2, \pm 1 / 2, \pm 1 / 2, \pm 1 / 2)$ of $(\pm 1,0,0,0)$ (of permutaties hiervan). Elke $s \in \Phi_{S}$ is een projectie $s=(p+\bar{p}) / 2$ van een uniek punt $p \in \mathcal{P}^{*}$. Daarenboven kunnen we s ook schrijven als projectie $s=(r+\bar{r}) / 2$ van een paar $\{r, \bar{r}\} \subseteq \Phi-\Phi_{L}$. Er is precies één dergelijk paar voor elke korte wortel.

Omdat niet alle wortels van Φ_{F} even lang zijn, gebruiken we in deze context bij voorkeur het product $\langle r, s\rangle \stackrel{\text { def }}{=} 2 r \cdot s / r \cdot r$ in plaats van het gewone inproduct $r \cdot s$. Toegepast op twee wortels van Φ_{F} heeft dit product steeds een gehele waarde uit het gebied $-2, \ldots,+2$.

De Weyl-groep $W\left(F_{4}\right)$ van Φ_{F} bezit opnieuw enkele belangrijke transitiviteitseigenschappen: hij is transitief op de korte wortels, op de lange wortels, op paren (r, s) van korte wortels met een gegeven waarde van $\langle r, s\rangle$, op paren van lange wortels (r, s) met een gegeven $\langle r, s\rangle$, en analoog voor gemengde paren. De groep kan ook op een zodanige manier gedefinieerd worden dat hij inwerkt op \mathbf{P} (in plaats van op het kleinere \mathbf{P}_{F}) en dan vormen ook \mathcal{P}^{*} en L_{∞} banen van $W\left(\mathrm{~F}_{4}\right)$ (Propositie 3.8).

3.2 De Lie-algebra van type F_{4} over K

Kies een vast element $\infty \in \mathbf{V}$ met de eigenschap $D(\infty)=1$ en definieer de lineaire operator • als volgt:

$$
\begin{array}{lll}
\bar{a} & \stackrel{\text { def }}{=} \\
\bar{\alpha} & \left(a \infty^{\#}\right) \infty^{\#}-\infty \times a, & \text { voor } a \in \mathbf{V} \tag{3.18}\\
\overline{=}(\infty \alpha) \infty-\infty^{\#} \times \alpha, & \text { voor } \alpha \in \mathbf{V}^{*}
\end{array}
$$

Deze lineaire transformatie kan op een eenvoudige manier worden uitgebreid naar andere L-modules en gedraagt zich als een soort polariteit voor de algebraische bewerkingen op deze modules. Voor $a, b \in \mathbf{V}, \alpha \in \mathbf{V}^{*}$ en $A, B \in \mathbf{L}$ gelden bijvoorbeeld $\overline{\bar{a}}=a, \overline{\bar{\alpha}}=\alpha, \overline{a \times b}=\bar{a} \times \bar{b}, a \bar{A} \alpha=\alpha A \bar{a}, \overline{a * \alpha}=\bar{\alpha} * \bar{a}$, $\bar{A} \cdot \bar{B}=A \cdot B, \overline{a \wedge b}=\bar{b} \wedge \bar{a}, \ldots$. Isotrope elementen worden steeds afgebeeld op isotrope elementen.

We definiëren nu de Lie-algebra \mathbf{J} als de deelalgebra van \mathbf{L} waarvan de elementen A voldoen aan één van de volgende (equivalente) eigenschappen:

$$
\infty A=0, A \bar{\infty}=0 \text { of } a A \bar{a}=0 \text { voor elke } a \in \mathbf{V}
$$

Elk element van \mathbf{J} voldoet dan automatisch aan de eigenschap $A+\bar{A}=0$.
Propositie 3.19 toont aan dat \mathbf{J} de gekende Lie-algebra is van type F_{4} over K en dat we een Chevalley-basis voor deze algebra kunnen construeren aan de hand van elementen E_{r}, H_{r} met $r \in \Phi_{L}$ samen met nieuwe basiselementen van de vorm

$$
\begin{equation*}
E_{s} \stackrel{\text { def }}{=} E_{u}+E_{\bar{u}}=E_{u}-\overline{E_{u}}, \quad H_{s} \stackrel{\text { def }}{=} H_{u}+H_{\bar{u}}=H_{u}-\overline{H_{u}}, \tag{3.38,3.41}
\end{equation*}
$$

met $s \in \Phi_{S}$ en $u \in \Phi$ zodanig dat $s=(u+\bar{u}) / 2$.
De deelruimte \mathbf{W} van \mathbf{V} waarvan de elementen a voldoen aan $a \bar{\infty}=0$ is een 26-dimensionale J-module. De elementen e_{p} behoren tot \mathbf{W} wanneer $p \in \mathcal{P}^{*}$ maar dit is niet het geval voor $p \in L_{\infty}$.

3.3 Automorfismen van W

Bij de studie van de Lie-algebra van type F_{4} blijkt de eerdere definitie van automorfisme niet langer sterk genoeg. In Hoofdstuk 3 beperken we ons daarom tot zogenaamde automorfismen van \mathbf{W}. Dit zijn automorfismen die voldoen aan de bijkomende eigenschap $\infty^{g}=\infty$ en daardoor meteen ook aan

$$
\begin{equation*}
\bar{a}^{g}=\overline{a^{g}}, \quad \bar{A}^{g}=\overline{A^{g}}, \quad \alpha^{g}=\overline{\alpha^{g}} . \tag{3.48}
\end{equation*}
$$

Voor een automorfisme g van \mathbf{W} geldt ook dat $\mathbf{W}^{g}=\mathbf{W}$ en $\mathbf{J}^{g}=\mathbf{J}$.
Is E een isotroop element van \mathbf{L} dat ook tot \mathbf{J} behoort, dan is $x(E)$ een automorfisme van \mathbf{W}. Behoort E niet tot \mathbf{J} dan is

$$
\begin{equation*}
x^{\prime}(E) \stackrel{\text { def }}{=} x(E) x(-\bar{E})=x(-\bar{E}) x(E) \tag{3.49}
\end{equation*}
$$

een automorfisme van \mathbf{W}. De groep voortgebracht door deze beide types van automorfisme van \mathbf{W} noteren we als $\widehat{\mathrm{F}}_{4}(K)$ en is een Chevalley-groep van type F_{4}.

Stellingen 3.25-3.28 beschrijven de banen van $\widehat{\mathrm{F}}_{4}(K)$ op de isotrope elementen van \mathbf{W} en \mathbf{J} (er is telkens éen niet-triviale baan) en op paren van dergelijke isotrope elementen. In twee gevallen zijn de banen van $\widehat{F}_{4}(K)$ eenvoudigweg de doorsneden van banen van $\widehat{E}_{6}(K)$ met $\mathbf{W} \times \mathbf{J}$ en $\mathbf{J} \times \mathbf{J}$.

Bij de banen op isotrope paren $(e, f) \in \mathbf{W} \times \mathbf{W}$ daarentegen zijn er 5 soorten banen, wat 2 meer is dan bij de gelijkaardige situatie voor de algebra van type E_{6}. (Dit houdt verband met het feit dat de Weyl-groep $W\left(\mathrm{~F}_{4}\right)$ vijf banen heeft op $\mathcal{P}^{*} \times \mathcal{P}^{*}$.)

De corresponderende paren (e, f) voldoen nu aan

1. $e \bar{f}=\ell \in K-\{0\}$,
2. $e \bar{f}=0$ maar $e \times f \neq 0$,
3. $e \bar{f}=0, e \times f=0$ maar $e * \bar{f} \neq 0$,
4. $\overline{e f}=0, e \times f=0, e * \bar{f}=0$ maar $K e \neq K f$,
5. $e=\ell f \operatorname{met} \ell \in K-\{0\}$.

Opnieuw zijn deze stellingen heel belangrijk omdat ze toelaten algemene eigenschappen van isotrope elementen af te leiden door deze enkel te bewijzen voor eenvoudige voorbeelden zoals e_{p} en E_{r} met $p \in \mathcal{P}^{*}, r \in \Phi_{L}$.

3.4 F-isotrope deelruimten

Ook het begrip 'isotrope deelruimte' dient te worden ingeperkt wanneer we werken met F_{4}-modules. We noemen een deelruimte van $\mathbf{W} F$-isotroop wanneer ze isotroop is en bovendien geldt dat $e * \bar{f}=0$ voor elk paar elementen e, f uit die deelruimte. Een element $e \wedge f$ (resp. $d \wedge e \wedge f$) uit $\mathbf{W} \wedge \mathbf{W}$ (resp. $\mathbf{W} \wedge \mathbf{W} \wedge \mathbf{W}$) noemen we F-isotroop als de corresponderende deelruimte F-isotroop is. Niet alle isotrope elementen uit $\mathbf{W} \wedge \mathbf{W}$ en $\mathbf{W} \wedge \mathbf{W} \wedge \mathbf{W}$ zijn ook F-isotroop.

3.5 De meetkunde \mathcal{F}

Het einddoel van Hoofdstuk 3 is de introductie van de meetkunde \mathcal{F} en aan te tonen dat deze meetkunde inderdaad van het type F_{4} is (Proposities 3.373.39). Deze meetkunde bezit de volgende 4 verschillende types:

1. De hyperrechten van \mathcal{F} zijn de isotrope 1-ruimten van \mathbf{J}, t.t.z., de verzamelingen $K E$ waarbij E een isotroop element is van $\mathbf{J}-\{0\}$.
2. De vlakken van \mathcal{F} zijn de 1-ruimten $K P$ van $\mathbf{W} \wedge \mathbf{W} \wedge \mathbf{W}$ waarbij P Fisotroop is.
3. De rechten van \mathcal{F} zijn de 1-ruimten $K L$ van $\mathbf{W} \wedge \mathbf{W}$ waarbij L F-isotroop is.
4. De punten van \mathcal{F} zijn de isotrope 1-ruimten van \mathbf{V}, t.t.z., de verzamelingen $K e$ waarbij e een isotroop element is van $\mathbf{W}-\{0\}$.

Punten, rechten, vlakken en hyperrechten van \mathcal{F} kunnen ook worden geïnterpreteerd als punten, rechten, vlakken en simplexen van \mathcal{E}, met dezelfde definitie van incidentie. Niet alle rechten of vlakken van \mathcal{E} zijn echter rechten of vlakken $\operatorname{van} \mathcal{F}$, zelfs wanneer al hun punten ook punten zijn van \mathcal{F}.

Tot slot van Hoofdstuk 3 bewijzen we nog (Stelling 3.41) dat er vijf relaties mogelijk zijn tussen punten $K e$ en $K f$ van \mathcal{F}, en dat deze relaties kunnen worden uitgedrukt met behulp van de gekende algebraische bewerkingen. Twee punten zijn ofwel overstaand, schieroverstaand, cohyperlineair, collineair of gelijk aan elkaar. Er bestaat een 1-1-correspondentie tussen deze begrippen en de vijf banen van $\widehat{F}_{4}(K)$ die we hierboven hebben opgesomd in paragraaf 3.3.

4 De Lie-algebra van type F_{4} wanneer char $K=2$

In Hoofdstukken 4 en 5 beperken we ons tot een veld K met karakteristiek 2.

4.1 Twee Lie-algebras isomorf met W

Zij $a, b \in \mathbf{V}$. Definieer

$$
\begin{array}{ll}
S(a) & \stackrel{\text { def }}{=} a * \bar{\infty}+(a \bar{\infty}) \mathbf{1}, \\
{[a, b]=[b, a]} & \stackrel{\text { def }}{=} a S(b)=b S(a)=(a \bar{\infty}) b+(b \bar{\infty}) a+(a \times b) \times \bar{\infty}, \tag{4.1}\\
a^{2} & \stackrel{\text { def }}{=}(a \bar{\infty}) a+a^{\#} \times \bar{\infty}=(a \times \infty)^{\#}+\left(\infty a^{\#}\right) \infty .
\end{array}
$$

De bewerking.2 voldoet aan $(a+b)^{2}=a^{2}+[a, b]+b^{2}$ voor alle $a, b \in \mathbf{V}$. M.a.w., dit is de kwadratische operator die op een natuurlijke manier is verbonden met de bilineaire Lie-haak (die nu symmetrisch is omdat char $K=2$). Een element e van \mathbf{W} is isotroop als en slechts als $e^{2}=0$.

De Lie-haak maakt van \mathbf{W} een Lie-algebra die isomorf is met de Lie-algebra $S(\mathbf{W})$, een ideaal van \mathbf{J} (Proposities 4.2-4.3). De algebra \mathbf{J} is dus niet langer irreduciebel. Zij nu $s \in \Phi_{S}, p \in \mathcal{P}^{*}$, zodat $s=(p+\bar{p}) / 2$, dan schrijven we $e_{s} \stackrel{\text { def }}{=} e_{p}$ en $h_{s} \stackrel{\text { def }}{=}\left[e_{s}, e_{-s}\right]=e_{p_{\infty}}+\infty$. Met deze notatie geldt $S\left(e_{s}\right)=$ E_{s} en $S\left(h_{s}\right)=H_{s}$. De elementen van de vorm E_{s} en H_{s} kunnen dienen als basiselementen van $S(\mathbf{W})$.

Het ligt voor de hand om ook de quotient-algebra $\mathbf{Q} \stackrel{\text { def }}{=} \mathbf{J} / S(\mathbf{W})$ van dichterbij te bekijken. Propositie 4.6 toont aan dat veel van de basisbewerkingen (zoals Lie-haak, kwadratische operator, inproduct) ook in \mathbf{Q} een zinnige definitie kunnen krijgen. Het blijkt zelfs dat \mathbf{Q} als Lie-algebra isomorf is met $S(\mathbf{W})$, maar vooraleer we dit kunnen bewijzen dienen we eerst nog enkele nieuwe begrippen te introduceren.

Beschouw de lineaire transformatie \dagger van \mathbf{P}_{4} die inwerkt op de basiselementen op de volgende manier

$$
1000^{+} \stackrel{\text { def }}{=} 1001, \quad 0100^{+} \stackrel{\text { def }}{=} 0110, \quad 0010^{+} \stackrel{\text { def }}{=} 01 \overline{1} 0, \quad 0001^{+} \stackrel{\text { def }}{=} 1001 .
$$

(We gebruiken een verkorte notatie voor coördinaten van wortels: $\overline{1} 001$ staat bijvoorbeeld voor ($-1,0,0,1$).)

Er geldt $r^{\dagger} \cdot s^{\dagger}=2 r \cdot s, r^{\dagger \dagger}=2 r$ en $\langle r, s\rangle=\left\langle r^{\dagger}, s^{\dagger}\right\rangle$. Elke korte wortel wordt door \dagger afgebeeld op een lange wortel, en elke lange wortel op het dubbele van een korte wortel.

Definieer nu de $\mu: \mathbf{V} \rightarrow \mathbf{Q}$ als volgt:

$$
\begin{align*}
& \mu\left(e_{s}\right) \stackrel{\text { def }}{=} E_{s^{+}}+S(\mathbf{W}), \\
& \mu\left(h_{s}\right) \stackrel{\text { def }}{=} H_{s^{+}}+S(\mathbf{W}) . \tag{4.12}
\end{align*}
$$

Stelling 4.10 bewijst dat μ voldoet aan

$$
\begin{align*}
& \mu(\infty)=0, \quad \mu\left(a^{2}\right) \quad=\mu(a)^{2}, \\
& \mu([a, b])=[\mu(a), \mu(b)], \mu(a) \cdot \mu(b)=a \bar{b}, \tag{4.13}
\end{align*}
$$

voor elke $a, b \in \mathbf{V}$. Er volgt ook dat μ een isomorfisme is tussen \mathbf{W} en \mathbf{Q}.

4.2 Dualiteit

$Z \mathrm{Zij} e$ een isotroop element van \mathbf{W}. $\mathrm{Zij} Q(e)$ het unieke element van $\operatorname{Hom}(\mathbf{V}, \mathbf{V})$ dat voldoet aan

$$
\begin{equation*}
a Q(e) \bar{b} \stackrel{\text { def }}{=} e A B \bar{e} \quad \text { voor } a, b \in \mathbf{V}, A \in \mu(a)+S(\mathbf{W}), B \in \mu(b)+S(\mathbf{W}) . \tag{4.14}
\end{equation*}
$$

(De waarde van de uitdrukking $s A B \bar{e}$ is onafhankelijk van de specifieke keuze voor A en B wanneer e isotroop is.)

De kwadratische operator $Q(\cdot)$ beeldt isotrope elementen e van \mathbf{W} af op isotrope elementen $Q(e)$ van \mathbf{J} en behoudt in zekere zin ook vele van de eigenschappen van paren (e, f) van isotrope elementen van \mathbf{W} (Stelling 4.12). We hebben bijvoorbeeld:

- $Q(e) \cdot Q(f)=(e \bar{f})^{2}$,
- als $e \bar{f}=0$ dan $Q([e, f])=[Q(e), Q(f)]$,
- als $[e, f]=0$ dan geldt $Q(e) Q(f)=0$ als en slechts als $e * \bar{f}=0$,
- als $e * \bar{f}=0$ dan $Q(e+f)=Q(e)+Q(f)$.

Noteren we $e^{\text {frob }}$ voor het element dat je bekomt door het Frobenius-morfisme $k \mapsto k^{2}$ toe te passen op de coördinaten van e, dan bewijzen we bovendien dat

$$
\begin{equation*}
Q(e)=\mu\left(e^{\mathrm{frob}}\right) \bmod S(\mathbf{W}) \tag{4.17}
\end{equation*}
$$

en

$$
\begin{equation*}
Q(e Q(f))=f^{\text {frob }} Q(e) * f^{\text {frob }}, \tag{4.18}
\end{equation*}
$$

voor alle isotrope elementen e en f uit \mathbf{W}.

4.3 Het graafendomorfisme van $\widehat{\mathrm{F}}_{4}(K)$

Zij e een isotroop element van \mathbf{W}. Definieer

$$
\begin{equation*}
x(e): \mathbf{V} \rightarrow \mathbf{V}: a \mapsto a^{x(e)} \stackrel{\text { def }}{=} a+[e, a]+(a \bar{e}) e \tag{4.20}
\end{equation*}
$$

Het element $x(e)$ behoort tot $\widehat{\mathrm{F}}_{4}(K)$ (steeds onder de voorwaarde char $K=2$).
Propositie 4.17 legt een verband tussen de elementen $x(e)$ van deze vorm, en de elementen $x(E)$ met E een isotroop element van J: zij $g \in \widehat{\mathrm{~F}}_{4}(K)$ en definieer

$$
\begin{equation*}
g^{+} \stackrel{\text { def }}{=} \mu g \mu^{-1} \tag{4.28}
\end{equation*}
$$

dan geldt $g^{\dagger} \in \widehat{\mathrm{F}}_{4}(K)$, en

$$
\begin{equation*}
x(e)^{\dagger}=x(Q(e)), \quad x(E)^{\dagger}=x\left(e^{\prime}\right) \tag{4.29}
\end{equation*}
$$

voor elk isotroop element $e \in \mathbf{W}$ en $E \in \mathbf{J}$, waarbij e^{\prime} het unieke element voorstelt van \mathbf{W} waarvoor $E=\mu\left(e^{\prime}\right)$.

De afbeelding \dagger is het zogenaamde graafendomorfisme van $\widehat{\mathrm{F}}_{4}(K)$. Propositie 4.18 toont het verband aan tussen dit endomorfisme en de operator $Q(\cdot)$:

$$
\begin{equation*}
Q\left(e^{g}\right)=Q(e)^{g^{+}}, \quad \text { voor elke isotrope } e \in \mathbf{W} \text { en elke } g \in \widehat{\mathrm{~F}}_{4}(K) . \tag{4.34}
\end{equation*}
$$

5 De perfecte veralgemeende achthoeken van Ree-Tits

In Hoofdstuk 5 veronderstellen we dat het basisveld K karakteristiek 2 heeft, perfect is (m.a.w., dat $K^{2}=K$) en een zogenaamd Tits-automorfisme σ bezit, m.a.w., een automorfisme met de eigenschap $\left(k^{\sigma}\right)^{\sigma}=k^{2}$, voor alle $k \in K$. Is K een eindig veld, dan bestaat er een Tits-automorfisme als en slechts als de orde van K een oneven macht is van 2.

We schrijven e^{σ} voor het element dat je bekomt wanneer je σ toepast op alle coördinaten van $e \in \mathbf{W}$. Is e isotroop dan is ook e^{σ} isotroop en geldt $Q\left(e^{\sigma}\right)=$ $Q(e)^{\sigma}$.

5.1 Een wortelsysteem van type ${ }^{2} \mathrm{~F}_{4}$

Net zoals we in Hoofdstuk 3 het wortelsysteem Φ_{F} hebben geconstrueerd als een projectie van Φ, definiëren we nu het wortelsysteem Φ_{O} (van type ${ }^{2} F_{4}$) als projectie van Φ_{F} :

$$
\Phi_{O} \stackrel{\text { def }}{=}\left\{\sqrt{2} r+r^{\dagger} \mid r \in \Phi_{S}\right\} .
$$

(Dit wortelsysteem wordt afgebeeld in Figuur 5.1 op bladzijde 194.)
Afhankelijk van de waarde van $r \cdot r^{\dagger}(1,0$ of -1$)$ hebben de wortels $\sqrt{2} r+r^{\dagger}$ drie mogelijke lengtes (lang, intermediair of kort). De hoeken tussen twee verschillende wortels zijn steeds veelvouden van $\pi / 8$.
$Z \mathrm{Zij} s=\sqrt{2} r+r^{\dagger}$ een wortel van Φ_{O} dan definiëren we $w_{s}^{\prime \prime} \stackrel{\text { def }}{=} w_{r}^{\prime} w_{r^{+}}$wanneer $r \cdot r^{\dagger}=0$ en $w_{s}^{\prime \prime} \stackrel{\text { def }}{=} w_{r}^{\prime} w_{r^{+}} w_{r}^{\prime} w_{r^{+}}$in andere gevallen. De groep voortgebracht door alle elementen $w_{s}^{\prime \prime}$ van deze vorm noteren we als $W\left({ }^{2} \mathrm{~F}_{4}\right)$ en fungeert als een soort Weyl-groep van Φ_{O}, isomorf met de dihedrale groep van orde 16.
$W\left({ }^{2} F_{4}\right)$ verdeelt de wortels van Φ_{O} in drie banen (afhankelijk van hun lengte). Twee wortelparen zijn equivalent onder $W\left({ }^{2} F_{4}\right)$ als en slechts als ze corresponderende lengtes hebben en hetzelfde inproduct.

5.2 Octagonaliteit en de Ree-groep ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$

Beschouw $a, e \in \mathbf{W}$ met e isotroop. Definieer de operator $q(\cdot, \cdot)$ als volgt:

$$
\begin{equation*}
q(a, e) \stackrel{\text { def }}{=} a Q(e)^{\sigma / 2}=a Q\left(e^{\sigma / 2}\right) \tag{5.6}
\end{equation*}
$$

en schrijf $q(\mathbf{V}, e)$ voor de verzameling van elementen $q(a, e)$ met $a \in \mathbf{V}$.

We noemen $e \in \mathbf{W}$ semi-octagonaal wanneer e isotroop is en $q(e, e)=0$. We noemen e octagonaal wanneer e isotroop is en $e \in q(\mathbf{V}, e)$ (en dan is e meteen ook semi-octagonaal). We noemen e para-octagonaal wanneer e isotroop is maar niet semi-octagonaal. $\mathrm{Zij} r \in \Phi_{S}$, dan is e_{r} para-octagonaal wanneer $r \cdot r^{\dagger}=$ -1 , semi-octagonaal wanneer $r \cdot r^{\dagger}>=0$ en octagonaal wanneer $r \cdot r^{\dagger}=+1$.

Vooraleer we verdergaan dienen we nog één nieuwe bewerking in te voeren: zijn $e, f \in \mathbf{W}$ isotrope elementen waarvoor $[e, f]=0$, dan definiëren we $c(e, f)$ als het unieke element uit \mathbf{W} waarvoor $\mu(c(e, f))=(e * \bar{f})^{\sigma / 2}$.

In dit hoofdstuk zijn we voornamelijk geïnteresseerd in automorfismen g van \mathbf{W} die ook nog aan de volgende eigenschap voldoen:

$$
\begin{equation*}
\left(a^{g}\right)^{\sigma}=\left(a^{\sigma}\right)^{g^{+}}, \quad \text { voor alle } a \in \mathbf{W} \tag{5.8}
\end{equation*}
$$

Propositie 5.4 stelt dat een dergelijk automorfisme voldoet aan $q\left(a^{g}, e^{g}\right)=$ $q(a, e)^{g}, q\left(\mathbf{V}, e^{g}\right)=q(\mathbf{V}, e)^{g}$ en $c\left(e^{g}, f^{g}\right)=c(e, f)^{g}$, voor alle $a, e, f \in \mathbf{W}$ waarvoor deze uitdrukkingen gedefinieerd zijn. Een voorbeeld wordt gegeven door het automorfisme

$$
\begin{equation*}
y(e) \stackrel{\text { def }}{=} x\left(Q(e)^{\sigma / 2}\right) x(e) x(q(e, e)) \tag{5.9}
\end{equation*}
$$

met $e \in \mathbf{W}$ isotroop (Propositie 5.5). De deelgroep van $\widehat{F}_{4}(K)$ voortgebracht door alle groepselementen van deze vorm noteren we als ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ en is een zogenaamde Ree-Tits-groep of vervlochten (Engels: twisted) Chevalley-groep van type ${ }^{2} \mathrm{~F}_{4}$. Deze groep bewaart de begrippen octagonaliteit, semi- en paraoctagonaliteit.

Vooraleer we een studie maken van de Ree-Tits-groep zelf, bekijken we eerst enkele van haar kleinere deelgroepen. Hiertoe is het handig om paren $\left(k_{0}, k_{1}\right)$, $\left(\ell_{0}, \ell_{1}\right)$ van elementen van K te behandelen als elementen \boldsymbol{k}, ℓ van een algebraïsche structuur $K_{\sigma}^{(2)}$ waarop we een optelling, een spoor en een norm definiëren op de volgende manier:

$$
\begin{align*}
& \boldsymbol{k} \oplus \boldsymbol{\ell} \\
& \stackrel{\text { def }}{=}\left(k_{0}+\ell_{0}, k_{1}+\ell_{1}+k_{0}^{\sigma} \ell_{0}\right) \tag{5.18}\\
& T(\boldsymbol{k}) \stackrel{\text { def }}{=} k_{0}^{1+\sigma}+k_{1}, \\
& N(\boldsymbol{k}) \stackrel{\text { def }}{=} k_{0}^{2+\sigma}+k_{0} k_{1}+k_{1}^{\sigma}=k_{0} T(k)+k_{1}^{\sigma}=k_{0} k_{1}+T(k)^{\sigma} .
\end{align*}
$$

Is $e \in \mathbf{W}$ isotroop, dan schrijven we

$$
\begin{equation*}
y(k e) \stackrel{\text { def }}{=} y\left(k_{0} e\right) y\left(k_{1} q(e, e)\right) \tag{5.20}
\end{equation*}
$$

en dan bewijst Propositie 5.6 dat

$$
\begin{equation*}
y(k e) y(\boldsymbol{\ell} e)=y((\boldsymbol{k} \oplus \boldsymbol{\ell}) e), \quad \text { voor alle } \boldsymbol{k}, \boldsymbol{\ell} \in K_{\sigma}^{(2)} \tag{5.21}
\end{equation*}
$$

en bijgevolg dat de verzameling $y\left(K_{\sigma}^{(2)} e\right)$ een deelgroep vormt van ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$.

5.3 De Suzuki-Tits-ovoïde en de Suzuki-groep

Beschouw twee octagonale elementen $d, f \in \mathbf{W}$ met $d \bar{f}=1$. Schrijf $e \stackrel{\text { def }}{=}$ $q(f, d), g \stackrel{\text { def }}{=} q(d, f)$ en $h \stackrel{\text { def }}{=}[d, f] . \mathrm{Zij} \mathbf{B}(d, f)$ de deelruimte van \mathbf{W} voortgebracht door d, e, f, g, h. Dan is $\mathbf{B}(d, f)$ een deelalgebra van \mathbf{W}.

De deelgroep van $\widehat{\mathrm{F}}_{4}(K)$ die wordt voortgebracht door $y\left(K_{\sigma}^{(2)} e\right)$ en $y\left(K_{\sigma}^{(2)} g\right)$ noteren we als $\operatorname{Suz}(d, f)$ en is een zogenaamde Suzuki-groep of vervlochten Che-valley-groep van type ${ }^{2} \mathrm{~B}_{2}$. Deze groep werkt transitief op octagonale elementen van $\mathbf{B}(d, f)-\{0\}$ en op de paren $\left(b_{1}, b_{2}\right)$ van dergelijke elementen waarvoor $b_{1} \bar{b}_{2}=1$ (Stelling 5.7). De stabilisator van een octagonaal element is een deelgroep van de vorm $y\left(K_{\sigma}^{(2)} b\right)$.

De verzameling 1-ruimten $K b$ van $\mathbf{B}(d, f)$ waarbij b octagonaal is, noemen we een Suzuki-Tits-ovoïde van de 4-dimensionale projectieve ruimte geassocieerd met $\mathbf{B}(d, f)$. De term 'ovoïde' duidt aan dat drie dergelijke 1-ruimten nooit tot een gemeenschappelijke 2-ruimte zullen behoren.

5.4 Transitiviteitseigenschappen van ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$

Beschouw $\mathbf{B}_{1}=\mathbf{B}\left(e_{0100}, e_{0 \overline{1} 00}\right)$ and $\mathbf{B}_{2}=\mathbf{B}\left(e_{0001}, e_{000 \overline{1}}\right)$ met corresponderende Suzuki-groepen $\operatorname{Suz}_{1}=\operatorname{Suz}\left(\mathbf{B}_{1}\right)$ en $\operatorname{Suz}_{2}=\operatorname{Suz}\left(\mathbf{B}_{2}\right)$. \mathbf{B}_{1} en \mathbf{B}_{2} snij-
den in de 1-ruimte $K h_{1000}$ en genereren dus samen een 9-dimensionale deelruimte $\mathbf{B}_{1}+\mathbf{B}_{2}$. (Deze ruimte is een Lie-algebra van type B_{4}). De deelgroep Suz_{1} laat elk element van \mathbf{B}_{2} invariant, en de deelgroep Suz_{2} laat elk element van \mathbf{B}_{1} invariant. We combineren deze beide groepen samen met een element $N \in \widehat{\mathrm{~F}}_{4}(K)$ dat \mathbf{B}_{1} en \mathbf{B}_{2} omwisselt, tot een groep $2 \operatorname{Suz}^{2}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$.

Stelling 5.10 vertelt ons dat de banen van deze groep op de semi-octagonale elementen van $\mathbf{B}_{1}+\mathbf{B}_{2}$ de volgende zijn:

1. De triviale baan $\{0\}$,
2. Een baan van niet-triviale octagonale elementen. Deze elementen behoren ofwel tot \mathbf{B}_{1}, ofwel tot \mathbf{B}_{2}.
3. Een baan van semi-octagonale elementen die niet octagonaal zijn. Dat zijn precies die elementen die kunnen geschreven worden als de som van een niet-triviaal octagonaal element uit \mathbf{B}_{1} en een niet-triviaal octagonaal element uit \mathbf{B}_{2}.

Deze eigenschappen vormen een eerste stap in het bewijs van Stelling 5.11 die de banen bepaalt van de grotere groep ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ op alle semi-octagonale elementen van \mathbf{W}. We vinden opnieuw drie banen:

1. De triviale baan $\{0\}$,
2. Een baan van niet-triviale octagonale elementen.
3. Een baan van semi-octagonale elementen die niet octagonaal zijn.

5.5 Paren octagonale elementen

En zo komen we stilaan bij de voornaamste resultaten uit Hoofdstuk 5.
Stelling 5.16 beschrijft de banen van ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ op paren niet-triviale octagonale elementen uit W. Net zoals in Hoofdstuk 3 zijn er 5 soorten banen: elke baan
van ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$ kan je bekomen door uit één van de banen van $\widehat{\mathrm{F}}_{4}(K)$ op paren van isotrope elementen enkel de paren van octagonale elementen te selecteren.

Dit betekent dat je dezelfde algebraische bewerkingen kan gebruiken als voorheen om te bepalen in welke baan een specifiek paar octagonale elementen (e, f) zich bevindt. Je kan echter ook gebruik maken van de nieuwe operatoren uit dit hoofdstuk. Zo blijkt bijvoorbeeld dat $q(e, f)=0$ als en slechts als $[e, f]=0$ en $f \in q(\mathbf{V}, e)$ als en slechts als $[e, f]=0$ en $e * \bar{f}=0$.

We noemen een deelruimte van \mathbf{W} octagonaal als en slechts als al zijn elementen octagonaal zijn. Het blijkt dat octagonale deelruimten steeds F-isotroop te zijn en hoogstens dimensie 2 kunnen hebben.

5.6 De Ree-Tits-achthoek

Het hoofddoel van Hoofdstuk 5 (en van het volledige werk) is de introductie van de meetkunde \mathcal{O} :

1. De punten van \mathcal{O} zijn de octagonale 1-ruimtes van \mathbf{W}.
2. De rechten van \mathcal{O} zijn de octagonale 2-ruimtes van \mathbf{W}.

Alle punten en rechten van \mathcal{O} zijn dus ook punten en rechten van \mathcal{F} en collineariteit in \mathcal{O} is dit keer wel dezelfde als in \mathcal{F}. Stelling 5.19 vertelt ons dat \mathcal{O} een veralgemeende achthoek is en dat puntenparen met een onderlinge afstand die gelijk is aan $8,6,4,2$ of 0 respectievelijk overstaand, schieroverstaand, cohyperlinear, collinear dan wel gelijk zijn.

Tot slot tonen Proposities 5.21 en 5.22 aan dat \mathcal{O} een zogenaamde Moufangveelhoek is en bijgevolg niets anders dan de perfecte veralgemeende achthoek $\mathrm{O}(K, \sigma)$ van Ree-Tits.

Bibliography

[1] Aschbacher M., "The 27-dimensional module for E_{6}, I", Invent. Math., 89 (1987), pp. 159-195.
[2] Aschbacher M., "Some multilinear forms with large isometry groups", Geometriae Dedicata, 25 (1988), pp. 417-165.
[3] Aschbacher M., "The 27-dimensional module for E_{6}, II", J. London Math. Soc., 37 (1988), pp. 275-293.
[4] Aschbacher M., "The 27-dimensional module for E_{6}, III", Trans. Amer. Math. Soc., 321 (1990), pp. 45-84.
[5] Aschbacher M., "The 27-dimensional module for E_{6}, IV", J. Algebra, 191 (1991), pp. 23-39.
[6] Brouwer A. E., A. M. Cohen \& A. Neumaier, Distance-regular Graphs, Springer Verlag, Berlin (1989).
[7] Brouwer A. E., "Strongly Regular Graphs", in The CRC Handbook of Combinatorial Designs (eds. Colbourn Ch. J \& J. H. Dinitz), CRC Press, New York (1996), pp. 667-685.
[8] Carter R. W., Simple groups of Lie type, John Wiley \& sons, London (1972).
[9] Cohen A. M., "An axiom system for metasymplectic spaces", Geometriae Dedicata, 12 (1982), pp. 417-433.
[10] Cohen A. M. \& B. N. Cooperstein, "The 2-spaces of the standard $E_{6}(q)$ module", Geometriae Dedicata, 25 (1988), pp. 467-480.
[11] Cohen A. M., "Point-line spaces related to buildings", in Handbook of Incidence Geometry, Buildings and Foundations (ed. F. Buekenhout), NorthHolland, Amsterdam (1995), pp. 647-737.
[12] Cohen A. M., A. Steinbach, R. T. Ushirobira \& D. B. Wales, "Lie algebras generated by extremal elements", J. Algebra, 236(1) (2001), pp. 122-154.
[13] Conway J. H., R. T. Curtis, S. P. Norton, R. A. Parker \& R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford (1985).
[14] Coolsaet K., "Algebraic structure of the perfect Ree-Tits generalized octagons," Innovations in Incidence Geometry, 1 (2005), pp. 67-131.
[15] Coolsaet K., "On a 25-dimensional embedding of the Ree-Tits generalized octagon", in preparation.
[16] Feit W. \& G. Higman, "The Non-Existence of Certain Generalized Polygons", J. Algebra 1 (1964), pp. 114-131.
[17] Freudenthal H., Oktaven, Ausnahmegruppen, und Oktavengeometrie, second edition, Math. Inst. der Rijksuniversiteit, Utrecht (1951), also available in Geometriae Dedicata, 19 (1985), pp. 7-63.
[18] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York (1977).
[19] Nestorov V., "Generation of pairs of short root subgroups in Chevalley groups", St. Petersburg Math. J., 16 (2005), pp. 1051-1077.
[20] Payne S. E. \& J. A. Thas, Finite Generalized Quadrangles, Pitman Res. Notes Math Ser. 110, Longman, London, Boston, Melbourne (1984).
[21] Tent K., "Very homogeneous generalized n-gons of finite Morely Rank", J. London Math. Soc. 62(1) (2000), pp. 1-15.
[22] Tits J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics 386, Springer (1974).
[23] Tits J., "A local approach to buildings", in The Geometric Vein. The Coxeter Festschrift (eds. Davis Ch., B. Grünbaum \& F. A. Sherk), Springer-Verlag, New York (1981), pp. 519-547.
[24] Tits J., "Moufang octagons and the Ree groups of type ${ }^{2} \mathrm{~F}_{4}$ ", Amer. J. Math. 105 (1983), 539-594.
[25] Tits J. \& R. Weiss, Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2002).
[26] Van Maldeghem H., Generalized Polygons, Birkhäuser verlag, Basel, (1998).
[27] Zel'manov E.I. \& A.I. Kostrikin, "A theorem on sandwich algebras", Proceedings of the Steklov Institute of Mathematics, 4 (1991).

List of symbols

Below we give a list of symbols from Chapters 1-5 together with a reference to the page where they are introduced. (Note that Appendix A assigns a different meaning to some of these symbols.)

$a_{i j}$	Point orthogonal to r in the standard notation for points of \mathcal{P}	pg. 33
A	General Lie algebra	8
$\mathbf{B}(d, f)$	5-dimensional space containing a Suzuki-Tits ovoid	202
$\mathbf{B}_{1}, \mathbf{B}_{2}$	Special examples of $\mathbf{B}(d, f)$	210
e_{p}	Canonical base vector of \mathbf{V} associated with $p \in \mathcal{P}$	45
e_{s}	Canonical base vector of \mathbf{W} associated with $s \in \Phi_{S}$	172
E_{r}	Canonical base vector of \mathbf{L} associated with $r \in \Phi$	53
E_{S}	Canonical base vector of \mathbf{J} associated with $s \in \Phi_{S}$	136
\mathcal{E}	Geometry of type E_{6}	110
$\widehat{E}_{6}(K)$	Chevalley group of type E_{6}	74
\mathcal{F}	Geometry of type F_{4}	161
$\widehat{\mathrm{F}}_{4}(\mathrm{~K})$	Chevalley group of type F_{4}	144
${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	Ree group	199
G	Cartan subalgebra of \mathbf{J}	138
G_{S}	Cartan subalgebra of $S(\mathbf{W})$	172
G_{L}	Cartan subalgebra of \mathbf{Q}	173

$h_{\text {s }}$	Element of \mathbf{W}_{∞} associated with $s \in \Phi_{S} \quad \mathrm{p}$	pg. 173
$h_{r}(k)$	Special element $n_{r}(-1) n_{r}(k)$ of $\widehat{\mathrm{E}}_{6}(K)$	77
$h_{s}(k)$	Special element $n_{s}(-1) n_{s}(k)$ of $\widehat{F}_{4}(K)$, when $s \in \Phi_{S}$	147
H_{p}	Element of \mathbf{H} associated with $p \in \mathcal{P}$	54
H_{r}	Element of \mathbf{H} associated with $r \in \Phi$	54
H_{s}	Element of \mathbf{G} associated with $s \in \Phi_{S}$	127
H	Cartan subalgebra of \mathbf{L}	45
$\widehat{\mathrm{H}}$	Cartan subalgebra of $\widehat{\mathbf{L}}$	45
$\operatorname{Hom}(\mathbf{T}, \mathrm{T})$	Algebra of linear transformations on \mathbf{T}	8
J	Lie algebra of type F_{4}	130
K	Base field for all algebras	8
$K_{\sigma}^{(2)}$	$K \times K$ endowed with a special group structure	201
L_{∞}	Line at infinity of \mathcal{Q}	115
\mathcal{L}	Lines of \mathcal{Q}	28
L	Lie algebra of type E_{6}	52
$\widehat{\mathbf{L}}$	Lie algebra with L as a subalgebra of co-dimension 1	51
$n(e, f)$	Special element $x(e) x(f) x(e)$ of $\widehat{\mathrm{F}}_{4}(\mathrm{~K})$	186
$n(E, F)$	Special element $x(E) x(F) x(E)$ of $\widehat{\mathrm{E}}_{6}(K)$	76
$n^{\prime}(E, F)$	Special element $x^{\prime}(E) x^{\prime}(F) x^{\prime}(E)$ of $\widehat{\mathrm{F}}_{4}(K)$	146
$n_{r}(k)$	Special element $x_{r}(k) x_{-r}\left(k^{-1}\right) x_{r}(k)$ of $\widehat{\mathrm{E}}_{6}(K)$	77
$n_{s}(k)$	Special element $x_{s}(k) x_{-s}\left(k^{-1}\right) x_{s}(k)$ of $\widehat{\mathrm{F}}_{4}(K)$, when $s \in \Phi_{S}$	$\Phi_{S} 146$
$N(\boldsymbol{k})$	'Norm' of $\boldsymbol{k} \in K_{\sigma}^{(2)}$	201
$N(d, f)$	Special element $y(d) y(f) y(d) y(f) y(d)$ of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	206
$N^{\prime}(e, f)$	Special element $y(e) y(f) y(e)$ of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	208
\mathcal{O}	Ree-Tits generalized octagon	225
p_{i}	Base point of r in the standard notation for points of \mathcal{P}	33
\mathcal{P}	Points of \mathcal{Q}	28
\mathcal{P}^{*}	Points of $\mathcal{Q}-L_{\infty}$	115
P	Real 6-dimensional space generated by \mathcal{P} (or Φ)	30
\mathbf{P}_{F}	Real 4-dimensional space generated by Φ_{F}	120
\mathbf{P}_{O}	Real 2-dimensional space generated by Φ_{O}	193

q_{j}	Base point of $-r$ in the standard notation for points of \mathcal{P}	pg. 33
\mathcal{Q}	The generalized quadrangle $Q^{-}(5,2)$	28
Q	Quotient algebra $\mathbf{J} / S(\mathbf{W})$ in characteristic 2	170
Suz (d, f)	Suzuki group	203
$\mathrm{Suz}_{1}, \mathrm{Suz}_{2}$	Special examples of $\operatorname{Suz}(d, f)$	210
$T(\boldsymbol{k})$	'Trace' of $\boldsymbol{k} \in K_{\sigma}^{(2)}$	201
T, \mathbf{T}_{i}	General A-module	10
V	E_{6}-module of dimension 27	45
\mathbf{V}^{*}	Dual vector space of \mathbf{V}	45
V_{∞}	3-dimensional subspace of \mathbf{V} 'at infinity'	135
$\mathbf{V} \wedge \mathrm{V}$	Double wedge product of \mathbf{V}	99
$\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$	Triple wedge product of \mathbf{V}	102
w_{r}	Reflection in the hyperplane orthogonal to r	36
w_{s}^{\prime}	Generator of W (F_{4})	122
$w_{s}^{\prime \prime}$	Generator of W $\left({ }^{2} \mathrm{~F}_{4}\right)$	193
W	F_{4}-module of dimension 26	130
\mathbf{W}^{*}	Dual module of \mathbf{W}	130
\mathbf{W}_{∞}	2-dimensional subspace of W 'at infinity'	135
$W\left(\mathrm{E}_{6}\right)$	Weyl group of type E_{6}	38
$W\left(\mathrm{~F}_{4}\right)$	Weyl group of type F_{4}	122
$W\left({ }^{2} \mathrm{~F}_{4}\right)$	${ }^{\prime}$ Weyl group' of type ${ }^{2} \mathrm{~F}_{4}$	193
$x(e)$	Generating element for $\widehat{\mathrm{F}}_{4}(K)$ when char $K=2$	186
$x(E)$	Generating element for $\widehat{E}_{6}(K)$	73
$x^{\prime}(E)$	Generating element for $\widehat{\mathrm{F}}_{4}(K)$	143
$x_{r}(k)$	The element $x\left(k E_{r}\right) \in \widehat{\mathrm{E}}_{6}(K)$	73
$x_{s}(k)$	The element $x^{\prime}\left(k E_{u}\right) \in \widehat{\mathrm{F}}_{4}(K)$, when $s=(u+\bar{u}) / 2 \in \Phi_{S}$, $u \in \Phi$	143
$y(e)$	Generating element for ${ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	198
$y_{s}(k)$	The element $y\left(k e_{s}\right) \in{ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	199
$y(k e)$	The element $y\left(k_{0} e\right) y\left(k_{1} q(e, e)\right) \in{ }^{2} \widehat{\mathrm{~F}}_{4}(K)$	201

$\epsilon_{i j k}$	Equal to $\left\langle e_{i}, e_{j}, e_{k}\right\rangle$ ($-1,0$ or 1)	pg. 46
η_{q}	Canonical base vector of \mathbf{V}^{*} associated with $-q \in-\mathcal{P}$	45
μ	Isomorphism between \mathbf{W} and \mathbf{Q}	175
Φ	Root system of type E_{6}	31
Φ_{F}	Root system of type F_{4}	120
Φ_{S}, Φ_{L}	Short roots, long roots of Φ_{F}	121
Φ_{O}	'Root system' of type ${ }^{2} \mathrm{~F}_{4}$	193
π_{i}	Fundamental root for Φ	36
π_{i}^{\prime}	Fundamental weight for Φ	37
ψ_{i}	Fundamental root for Φ_{F}	120
ψ_{i}^{\prime}	Fundamental weight for Φ_{F}	125
σ	Tits endomorphism of K	191
Σ	Regular spread of \mathcal{Q}	41
ω	Defining automorphism for Σ	41
1	Identity transformation on V	50
∞	Element of \mathbf{V} that defines \mathbf{W} and \mathbf{J}	127
$\overline{1} \overline{2} \quad \overline{3}$	Root coordinate shorthand for $-1,-2$ or -3	33
+ -	Root coordinate shorthand for $1 / 2$ and $-1 / 2$	123
$p \sim q$	p is collinear with q (in \mathcal{Q})	27
$p \perp q$	$p \sim q$ or $p=q$	27
$p \cdot q$	Inner product on \mathbf{P}	30
p_{∞}	Unique point of L_{∞} adjacent to $p \in \mathcal{P}^{*}$	116
r^{*}	Co-root corresponding to $r \in \Phi$	6
Φ^{*}	Dual root system of Φ	6
$\langle r, s\rangle$	Cartan integer for roots r, s	36
$a[p]$	' p th' coordinate of $a \in \mathbf{V}$, i.e., $a \eta_{p}$	45
$\alpha[p]$	'pth' coordinate of $\alpha \in \mathbf{V}^{*}$, i.e., $e_{p} \alpha$	45
$A[p, q]$	' p, q th' entry of matrix $A \in \widehat{\mathbf{L}}$, i.e., $e_{p} A \eta_{q}$	45
\cdots	Involution used to create Φ_{F} from Φ	115
\bigcirc	Polarity which 'folds' L into J	127
. ${ }^{+}$	Linear map from Φ_{S} to Φ_{L}	174
. ${ }^{+}$	Graph endomorphism of $\widehat{\mathrm{F}}_{4}(K)$	189
.frob	Frobenius map	182
$\boldsymbol{k} \oplus \boldsymbol{\ell}$	Group operation in $K_{\sigma}^{(2)}$	201

The following are 'generic' symbols, i.e., symbols that are generally used to represent a certain kind of element, but do not indicate one specific object. Because there are only so many letters and fonts, several of these symbols are sometimes used to mean something different from what is stated here. We hope their meaning shall always be clear from context.

a, b, c	Elements of \mathbf{V}
A, B, C	Elements of \mathbf{L}
e, f	Isotropic elements of \mathbf{V}
E, F	Isotropic elements of \mathbf{L}
g	Element of a Chevalley group
k, ℓ	Elements of K
k, ℓ	Elements of $K_{\sigma}^{(2)}$
L	Element of $\mathbf{V} \wedge \mathbf{V}$
p, q	Points of \mathcal{P}
P	Element of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$
r, s, t	Roots of Φ
$z, z^{\prime}, z^{\prime \prime}, z_{i}$	Points of L_{∞}
α, β, γ	Elements of \mathbf{V}^{*}
η, φ	Isotropic elements of \mathbf{V}^{*}
Λ	Element of $\mathbf{V}^{*} \wedge \mathbf{V}^{*}$
Π	Element of $\mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$

We end with a list of all operations on Lie algebra modules which were introduced in the main text.

$a \alpha$	$\mathbf{V}, \mathbf{V}^{*} \rightarrow K$	bilinear	pg. 45
$\langle a, b, c\rangle$	$\mathbf{V}, \mathbf{V}, \mathbf{V} \rightarrow K$	trilinear, symmetric	45
$\langle\alpha, \beta, \gamma\rangle$	$\mathbf{V}^{*}, \mathbf{V}^{*}, \mathbf{V}^{*} \rightarrow K$	trilinear, symmetric	46
$a \times b$	$\mathbf{V}, \mathbf{V} \rightarrow \mathbf{V}^{*}$	bilinear, symmetric	46
$\alpha \times \beta$	$\mathbf{V}^{*}, \mathbf{V}^{*} \rightarrow \mathbf{V}$	bilinear, symmetric	46
$a^{\#}$	$\mathbf{V} \rightarrow \mathbf{V}^{*}$	quadratic	46
$\alpha^{\#}$	$\mathbf{V}^{*} \rightarrow \mathbf{V}$	quadratic	46
$D(a)$	$\mathbf{V} \rightarrow K$	cubic	46
$D(\alpha)$	$\mathbf{V}^{*} \rightarrow K$	cubic	46
$a A$	$\mathbf{V}, \widehat{\mathbf{L}} \rightarrow \mathbf{V}$	bilinear	45
$A \alpha$	$\widehat{\mathbf{L}}, \mathbf{V}^{*} \rightarrow \mathbf{\mathbf { V } ^ { * }}$	bilinear	45
$[A, B]$	$\widehat{\mathbf{L}}, \widehat{\mathbf{L}} \rightarrow \widehat{\mathbf{L}}$	bilinear, antisymmetric	51

$a * \alpha$	$\mathbf{V}, \mathbf{V}^{*} \rightarrow \widehat{\mathbf{L}}$	bilinear	pg. 50
$\tau(A)$	$\widehat{\mathbf{L}} \rightarrow K$	linear	51
$A \cdot B$	$\widehat{\mathbf{L}}, \widehat{\mathbf{L}} \rightarrow K$	bilinear, symmetric	62
L α	$\mathbf{V} \wedge \mathbf{V}, \mathbf{V}^{*} \rightarrow \mathbf{V}$	bilinear	99
$a \Lambda$	$\mathbf{V}, \mathbf{V}^{*} \wedge \mathbf{V}^{*} \rightarrow \mathbf{V}^{*}$	bilinear	99
$a \wedge b$	$\mathrm{V}, \mathrm{V} \rightarrow \mathrm{V} \wedge \mathrm{V}$	bilinear, antisymmetric	99
$\alpha \wedge \beta$	$\mathbf{V}^{*}, \mathbf{V}^{*} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	bilinear, antisymmetric	99
$\alpha \times A$	$\mathbf{V}^{*}, \mathbf{L} \rightarrow \mathbf{V} \wedge \mathbf{V}$	bilinear, needs $A \alpha=0$	100
$A \times a$	$\mathbf{L}, \mathbf{V} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	bilinear, needs $a A=0$	100
$P \alpha$	$\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}, \mathbf{V}^{*} \rightarrow \mathbf{V} \wedge \mathbf{V}$	bilinear	102
$a \Pi$	$\mathbf{V}, \mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	bilinear	103
$a \wedge b \wedge c$	$\mathbf{V}, \mathbf{V}, \mathrm{V} \rightarrow \mathbf{V} \wedge \mathrm{V} \wedge \mathrm{V}$	trilinear, antisymmetric	103
$\alpha \wedge \beta \wedge \gamma$	$\mathbf{V}^{*}, \mathbf{V}^{*}, \mathbf{V}^{*} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	trilinear, antisymmetric	103
$A \times B$	$\mathbf{L}, \mathrm{L} \rightarrow \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$	bilinear, antisymmetric, needs $A B=0$	99
$(A \times B)^{*}$	$\mathbf{L}, \mathbf{L} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	bilinear, antisymmetric, needs $A B=0$	103
$X(a, b, c)$	$\mathbf{V}, \mathbf{V}, \mathbf{V} \rightarrow \mathbf{V}^{*} \wedge \mathbf{V}^{*} \wedge \mathbf{V}^{*}$	trilinear, antisymmetric, needs $K a+K b+K c$ to be isotropic	104
$X(\alpha, \beta, \gamma)$	$\mathbf{V}^{*}, \mathbf{V}^{*}, \mathbf{V}^{*} \rightarrow \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}$	trilinear, antisymmetric, needs $K \alpha+K \beta+K \gamma$ to be isotropic	104
$\alpha \otimes a$	$\mathbf{V}^{*}, \mathbf{V} \rightarrow K$	bilinear	108
\bar{a}	$\mathbf{W} \rightarrow \mathbf{W}^{*}$	linear	127
$a \bar{b}$	$\mathbf{W}, \mathbf{W} \rightarrow K$	bilinear, symmetric	
$a * \bar{b}$	$\mathbf{W}, \mathbf{W} \rightarrow \mathbf{J}$	bilinear	
$S(a)$	$\mathbf{W} \rightarrow \mathbf{J}$	linear	166
[a,b]	$\mathbf{W}, \mathbf{W} \rightarrow \mathbf{W}$	bilinear, (anti)symmetric	166
a^{2}	$\mathbf{W} \rightarrow \mathbf{W}$	quadratic	166
$Q(e)$	$\mathbf{W} \rightarrow \mathbf{J}$	quadratic, needs e to be isotropic	177
$q(a, e)$	$\mathbf{W}, \mathbf{W} \rightarrow \mathbf{W}$	$q(k a, \ell e)=k \ell^{\sigma} q(a, e)$ needs e to be isotropic	195
$c(e, f)$	$\mathbf{W}, \mathbf{W} \rightarrow \mathbf{W}$	$c(k e, \ell f)=k^{\sigma / 2} \ell^{\sigma / 2} c(e, f)$ needs $K e+K f$ to be isotrop	$\begin{aligned} & 196 \\ & \text { opic } \end{aligned}$

Index

almost opposite, 164
automorphism
of $\mathbf{V}, 73$
of W, 143
base point, 31, 33
positive vs. negative, 42
Buekenhout diagram, 15
building, 17
Chevalley basis, 9
for $E_{6}, 61$
for $F_{4}, 140$
Chevalley group, 11
of type $E_{6}, 75$
of type $\mathrm{F}_{4}, 144$
of type ${ }^{2} F_{4}$, see Ree group
of type ${ }^{2} B_{2}$, see Suzuki group
co-root, 124
coclique, 38
cohyperlinear, 164
commutation relations, 90
when char $K=2,187$
companion space
in J, 160
in L, 98
in $\mathbf{V}, \mathbf{V}^{*}, 97,98$
compatible operation, 13
compatible pair, 43
coordinates in $\mathbf{V}, \mathbf{V}^{*}, 45$
Coxeter diagram, 7, 18
Dickson presentation, 50
double six, 28, 31
dual line, 110
dual point, 110
dual root system, 6
for $F_{4}, 124$
Dynkin diagram, 5
E-root, 122
elation
central elation, 232
line-elation, 232
point-elation, 230
F-isotropic element
of $\mathbf{W} \wedge \mathbf{W}, 158$
of $\mathbf{W} \wedge \mathbf{W} \wedge \mathbf{W}, 159$
F-isotropic subspace, 157
F-root, 122
Frobenius endomorphism, 182
fundamental system of roots, 5
for $E_{6}, 36$
for $F_{4}, 120$
fundamental weights, 7
for $E_{6}, 37$
for $\mathrm{F}_{4}, 125$
generalized polygon, 3
generalized quadrangle, 27
geometry, 17
\mathcal{E} of type $\mathrm{E}_{6}, 110$
\mathcal{F} of type $\mathrm{F}_{4}, 161$
graph endomorphism of $\widehat{\mathrm{F}}_{4}(K), 189$
hyperline, 161
incidence geometry, 3
intersection property, 20, 162
isotropic element
of $\widehat{\mathbf{L}}, 69$
of $\mathbf{V}, \mathbf{V}^{*}, 68$
of $\mathbf{V} \wedge \mathbf{V}, \mathbf{V}^{*} \wedge \mathbf{V}^{*}, 102$
of $\mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V}, 107$
isotropic subspace, 68
Jacobi identity, 8
kernel, 196
Lie algebra, 8
J of type $F_{4}, 130$
L of type $E_{6}, 52$
line at infinity, 115
long root, 122
metasymplectic space, 163
module, 10
O-root, 193
octagonal, 196
opposite, 164
orbits
of $2 \mathrm{Suz}^{2}, 210$
of ${ }^{2} \widehat{\mathrm{~F}}_{4}(K), 214,221$
of Suz, 204
of $W\left(\mathrm{E}_{6}\right), 38$
of $\widehat{E}_{6}(K), 80-94$
of $\widehat{\mathrm{F}}_{4}(\mathrm{~K}), 147-156$
$\operatorname{ofW}\left(\mathrm{F}_{4}\right), 125$
para-octagonal, 196
reduction process, 79
Ree group, 199
Ree-Tits octagon $\mathcal{O}, 225$
root groups for $\mathcal{O}, 229$
root system, 4
Φ of type $\mathrm{E}_{6}, 31$
Φ_{F} of type $F_{4}, 120$
Φ_{O} of type ${ }^{2} \mathrm{~F}_{4}, 193$
semi-octagonal, 196
short root, 121
simplex, 110
spread, 41
standard basis for $\widehat{\mathbf{L}}, 59$
standard notation for points of \mathcal{P}, 34
Suzuki group, 204
Suzuki-Tits ovoid, 206, 233
Suzuki-Tits ovoid), 245
tensor product, 108
Tits endomorphism, 191
wedge product, 99
triple wedge product, 103
Weyl group, 7
of type $E_{6}, 38$
of type $\mathrm{F}_{4}, 122$
of type ${ }^{2} \mathrm{~F}_{4}, 194$

