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1
Introduction

The main topic of this text is the determination of all complete (k, 2)- and
(k, 3)-arcs in Desarguesian projective planes PG(2, q) up to equivalence.

Many attempts have been made to determine all complete (k, 2)-arcs in PG(2, q)
up to equivalence. For all but the smallest q this is infeasible without the use
of a computer. Full classifications for q ≤ 23 have been known for some time
[15, 26]. In [10] and [12], we presented a full classification of the complete
(k, 2)-arcs in PG(2, 23) and PG(2, 25), resp. PG(2, 27) and PG(2, 29). As far as
we know, we are the first to obtain a full classification in the cases, q = 25, 27
and 29. The spectra for q = 25 and q = 27, i.e. the values of k for which a com-
plete arc exists, have been computed before by Marcugini et al. [34, 31]. They
also found that in PG(2, 29) no arc of size k < 13 exists. Chao and Kaneta
found that the size m′(2, q) of the second largest complete arcs in PG(2, q) is
21 for q = 25, 22 for q = 27 and 24 for q = 29 [7]. They also proved that no
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1. Introduction

arc of size m′(2, q)− 1 exists for q = 25, 27 and 29. G. Kéri [26] has obtained a
classification of all arcs of size k ≥ q− 8 for values of q up to 32, in the context
of MDS codes. Our results agree with the partial results of [26].

People have also been working on determining all inequivalent complete (k, 3)-
arcs. For q ≤ 9, the classification was already done by Marcugini et al. [30, 32].
They also found that the largest size of a complete arc is 21 in PG(2, 11) and
23 in PG(2, 13) and that the smallest size of a complete arc in PG(2, 13) is 15
[29, 33]. For q = 13 they found the spectrum: there is a complete (k, 3)-arc
for each k, 15 ≤ k ≤ 23 [33]. We extended this to a full classification of all
complete (k, 3)-arcs in PG(2, 11) and PG(2, 13) [13]. Our programs reproduce
the results of Marcugini et al. More information on lower and upper bounds
on the maximum size of (k, n)-arcs can be found in [2, 20].

Our methods can also be used to classify the full set of (k, 2)-arcs and (k, 3)-
arcs, i.e., not necessarily only those that are complete, and in that case we
think we are the first to obtain a full classification of the (k, 2)-arcs for q =
23, 25, 27, 29. For q = 11, 13, we were the first to obtain a full classification of
all inequivalent (k, 2)- and (k, 3)-arcs.

In Chapter 4, we present the algorithms that we used to find the complete
(k, 2)- and (k, 3)-arcs in the projective plane PG(2, q). The algorithms are an
application of isomorph-free generation using canonical augmentation, as in-
troduced by B. Mckay [35]. We adapted this general technique to the particular
case of generating arcs in projective planes.

The results of the algorithms are presented in Chapters 5, 6 and 7. In Chap-
ter 5, the inequivalent complete arcs are listed according to the size of the
arc and the type of its automorphism group. We have also enumerated the
arcs that are not necessarily complete. For (k, 2)-arcs, we also listed the arcs
according to their size and to the type of algebraic curve into which they can
be embedded. For (k, 3)-arcs, we have also singled out the arcs that are regular
in the sense that every point of the arc lies on the same number of trisecants
to that arc.

We found some general constructions of arcs that also work for larger fields.
The general constructions are described in Sections 6.1, 6.2 and 6.3 for (k, 2)-
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arcs, and in Sections 7.1, 7.2 and 7.3 for (k, 3)-arcs. In the remaining part of
Chapters 6 and 7, for each q we present the arcs corresponding to the general
constructions and we give a geometric description of some arcs that have a
large stabilizer group.

In the hope of finding a faster algorithm to tackle the case q = 31 for (k, 2)-
arcs, we developed a second algorithm which generates (k, 2)-arcs starting
from subsets of a conic. This algorithm is explained in Chapter 8. An im-
plementation of this algorithm reproduces our previous results for q ≤ 25.
Unfortunately, it proved too slow for q > 25.

We have also worked on (k, 2)-arcs having a large intersection with a conic
(i.e., a large conical subset)[11]. An arc can intersect a conic in at most
(q + 3)/2 points when all points not on the conic are external to the conic.
For arcs containing at least one internal point, the maximum size of a conical
subset is (q + 1)/2. In Chapter 3, we discuss the arcs with a conical subset
of maximum size and 1 extra point (Section 3.7) and we give an explicit com-
plete classification, up to PGL-equivalence, for the cases of 2 internal points,
2 external points and the combination of 1 internal and 1 external point (Sec-
tion 3.3- 3.5). For the classification, we use the properties of the cyclic group
of all norm 1 elements of the field Fq2 . This has the advantage that the classi-
fication can be formulated without the use of groups, making it very straight-
forward (and efficient) to use in subsequent computer searches. We list the
results of these searches in Section 3.8. In Section 3.6, we prove that for an
arc with maximum size (q + 1)/2 the number of points internal to C can be at
most 4, and we give a complete classification of all arcs that attain this bound.

The subject of arcs is not only interesting in its purely geometrical setting.
Arcs have applications in coding theory, where they can be interpreted as
linear maximum distance separable codes (MDS codes). For instance, a linear
[k, d, k− d]q code C such that its dual code C⊥ has minimum distance equal to
d is called NMDS. Every [k, 3, k− 3]q NMDS code is equivalent to a (k, 3)-arc
in PG(2, q) containing at least three collinear points. A (k, 3)-arc is also the
complement of a t-fold blocking set with t = q− 2. (k, 2)-arcs are related to
superregular matrices (i.e., matrices with entries in F(q) where every minor is
non-zero), to linearly independent sets of vectors in vector spaces over Fq and
to optimal covering arrays.
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2
Preliminaries

The primary purpose of this chapter is to establish some notations. Most of
the properties described here belong to ‘mathematical folklore’ and shall be
given without proof.

2.1 Finite Field

Let Fq denote the field of q elements. (Fq is also called the Galois Field of order
q, notation Fq = GF(q).) Note that q must always be an integral power ph of
a prime p. p is called the characteristic of the finite field. When q is prime, we
can write Fq = Z/qZ. When q = ph, h > 1, we have Fq = {0, 1, α, . . . , αq−2}
where α is the root of a primitive polynomial of degree h over Fp. In Table 2.1,
we present the primitive polynomials that will be used for the fields of order
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2. Preliminaries

a prime power in the rest of this text.

q irreducible polynomial
8 α3 + α2 + α + 1 = 0
9 α2 + α− 1 = 0
16 α4 + α3 + 1 = 0
25 α2 + α + 2 = 0
27 α3 − α2 + 1 = 0

Table 2.1: Primitive polynomials for the fields Fq.

There exists a primitive generating element s in Fq such that

Fq = {0, 1, s, . . . , sq−2|sq−1 = 1}.
When q is not prime, the root α is such an element. We note F

∗
q for the set

Fq \ {0}. If q = ph, then Fp is a subfield of Fq. It is called the prime subfield of
Fq.

Let x be an element of Fq. Then:

• xq = x.

• The norm N(x) of x is given by N(x) = x · xp · xp2 · . . . · xph−1
.

• The trace tr(x) of x is given by tr(x) = x + xp + xp2
+ · · ·+ xph−1

.

An automorphism π of Fq is a one-to-one mapping Fq 7→ Fq : x 7→ xπ such
that

(x + y)π = xπ + yπ , (xy)π = xπyπ

for all x, y ∈ Fq. The map x 7→ xp is an automorphism of Fq, known as the
Frobenius automorphism. The elements of Fq fixed by the Frobenius automor-
phism are precisely those lying in the prime subfield Fp. Hence when q is
prime, the Frobenius automorphism is the identity. The group of automor-
phisms of Fq is cyclic of order h and is generated by the Frobenius automor-

phism. (This means that every automorphism has the form x 7→ xpi
for some

value of i with 0 ≤ i ≤ h− 1).
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2.2. Projective Plane

2.2 Projective Plane

Consider the Desarguesian projective plane PG(2, q)1 over the field Fq. PG(2, q)
contains q2 + q + 1 points and q2 + q + 1 lines. There are exactly q + 1 points
on each line and q + 1 lines through each point.

The points and lines of PG(2, q) satisfy the axioms of a projective plane:

• every two distinct points are on a unique common line,

• every two distinct lines contain a unique common point,

• there are four distinct points, no three of which are on a common line,

Points and lines of PG(2, q) can be represented by coordinate triples. Let X =
(x, y, z) ∈ F

3
q \ {(0, 0, 0)}. The point P with coordinates X shall be represented

by P(X) = P(x, y, z). Likewise, the line ℓ with coordinates Ut = (k, l, m)t shall
be represented by ℓ(k, l, m)t = ℓ(Ut). We write (x1, y1, z1) ≈ (x2, y2, z2) for
two triples that are equal up to a scalar factor. Two points P(X) and P(Y) are
the same if and only if X ≈ Y. Likewise, two lines ℓ(Ut) and ℓ(Vt) are the
same if and only if U ≈ V.

A point P(x, y, z) is incident with a line ℓ(k, l, m)t if and only if

XUt =
(

x y z
)





k
l
m



 = kx + ly + mz = 0.

With every non-singular matrix T = (tij) ∈ F
3×3
q we associate a bijection

mapping the point P(X) = P(x, y, z) onto P′(X′) = P′(x′, y′, z′) and the line
ℓ(Ut) = ℓ(k, l, m)t onto ℓ′(U′t) = ℓ′(k′, l′, m′)t with X′ = XT and U′t = T−1Ut.

1Although the theory of n-dimensional projective spaces PG(n, q) is very similar, we shall
restrict ourselves mainly to the case n = 2, the context of the remainder of this text.
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2. Preliminaries

In other words,

(

x′ y′ z′
)

=
(

x y z
)





t00 t01 t02
t10 t11 t12
t20 t21 t22









k′

l′

m′



 =





t00 t01 t02
t10 t11 t12
t20 t21 t22





−1 



k
l
m



 .

Such a bijection is called a projectivity or projective linear transformation. A
projectivity preserves the incidence between points and lines: a point P(X)
lies on a line ℓ(Ut) if and only if the image P′(X′) of P(X) lies on the image
ℓ′(U′t) of ℓ(Ut). Indeed, X′U′t = XTT−1Ut = XUt = 0. As with coordinate
triples, also the matrix T of a projectivity is only determined up to a scalar
factor.

The group of all projectivities of PG(2, q) is the projective general linear group
PGL(3, q) and has order q3(q3 − 1)(q2 − 1). A projectivity is uniquely deter-
mined by the four images of the vertices of a quadrangle. In other words,
PGL(3, q) acts transitively on ordered quadrangles.

A collineation in PG(2, q) is a bijection mapping points to points and lines to
lines, which preserves incidence. Clearly each projectivity is a collineation.
However, in general not all collineations are projectivities. The Frobenius au-
tomorphism mapping the point P(x, y, z) onto P′(xp, yp, zp) is a collineation,
but not a projectivity. The fundamental theorem of projective geometry states
that each collineation can be seen as a combination of a projectivity and a field
automorphism. Let ψ be a collineation, then there exists a non-singular matrix
T and a field automorphism σ, such that

ψ :
(

x y z
)

7→
(

x y z
)σ





t00 t01 t02
t10 t11 t12
t20 t21 t22





σ

ψ :





k
l
m



 7→











t00 t01 t02
t10 t11 t12
t20 t21 t22





−1






σ 



k
l
m





σ
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2.3. Projective Line

The group of all collineations of PG(2, q) is the collineation group PΓL(3, q)
and has order hq3(q3 − 1)(q2 − 1). PGL(3, q) is a subgroup of PΓL(3, q) and
[PΓL(3, q) : PGL(3, q)] = h. When q is prime, then PGL(3, q) = PΓL(3, q).

Two sets of points are called equivalent (or PΓL-equivalent) if there exists a
collineation mapping one set to the other. Note that we consider the collineations
of the full group PΓL(3, q) in this definition. If there exists a projectivity map-
ping one set of points to another, i.e., a collineation of PGL(3, q), then the sets
will be called PGL-equivalent. When q is a prime, both notions of equivalence
coincide.

Example 2.1 The smallest projective plane is PG(2, 2). It consists of 7 points
and 7 lines. Each point is lying on 3 lines, each line contains 3 points. This
plane is called the Fano plane and is depicted below.

(100) (001)

(010)

(011)

(101)

(110)
(111)

�

2.3 Projective Line

Let PG(1, q) be the projective line over the field Fq. PG(1, q) has exactly q + 1
points and each point P is determined by a coordinate pair X ∈ F

2
q \ {(0, 0)},

9



2. Preliminaries

again unique only up to a scalar factor. We will write both P(x, y) and P(X)
for the point P with coordinates X. We shall usually normalise the coordinates
of the points on the line as the set {(1, t)|t ∈ Fq} ∪ {(0, 1)}. Mapping t ∈ Fq to
(1, t) and ∞ to (0, 1) defines a one-one relation between Fq ∪{∞} and PG(1, q).
We say that t ∈ Fq ∪ {∞} is the coordinate of a point on the projective line.

With every non-singular matrix T =

(

a b
c d

)

, a, b, c, d ∈ Fq we asociate a

bijection mapping the point P(X) = P(x, y) onto P′(X′) = P′(x′, y′) with X′ =
XT. Such a bijection is called a projectivity or projective linear transformation.
The group of projectivities can be represented by its action on Fq ∪ {∞}: the
transformation t 7→ (b + dt)/(a + ct) is associated to an element of PGL(2, q)
in the following way:

(

1 t
)

7→
(

1 t
)

(

a b
c d

)

. (2.1)

A projectivity in PG(1, q) is uniquely determined by the images of three dif-
ferent points.

The group of all projectivities of PG(1, q) is the projective general linear group
PGL(2, q) and has order q(q2 − 1).

As before, the group PΓL(2, q) can be extended to the full group of all collineations
PΓL(2, q) by combining projectivities with field automorphisms.

2.4 Conic

A conic C is a set of q + 1 points of PG(2, q) whose coordinates (x, y, z) are the
zeroes of an absolutely irreducible quadratic form

Q(x, y, z) = ax2 + by2 + cz2 + dxy + eyz + f zx,

with a, b, c, d, e, f ∈ Fq. When q is odd, every conic C can be represented as a
symmetric matrix A: a point P(x, y, z) lies on C if and only if XAXt = 0, i.e.

10



2.4. Conic

if and only if

XAXt =
(

x y z
)





a d/2 f /2
d/2 b e/2
f /2 d/2 c









x
y
z



 = 0.

Consider a projectivity T ∈ PGL(3, q). Let C denote the conic represented
by the matrix A. Then the image C ′ of C by T is represented by the matrix
A′ = T−1 A(T−1)t. Indeed,

X′A′X′t = (XT)(T−1 A(T−1)t)(XT)t

= XTT−1 A(T−1)tTtXt

= XAXt

= 0.

One can always find a projectivity T that maps the conic C onto the conic wih
equation

y2 = xz.

We will call this conic the standard conic. It follows that all conics in PG(2, q)
are equivalent.

When q is even, we cannot represent the conic by the use of a symmetric
matrix, but we can still map each conic onto the standard conic. Hence also
for even q, all conics are equivalent.

In this text C will usually refer to the standard conic, unless explicitely noted
otherwise. When q is odd, the matrix representation of this conic is

XCXt =
(

x y z
)





0 0 1
0 −2 0
1 0 0









x
y
z



 = 0.

We usually represent the points of the standard conic by the following coor-
dinates: (0, 0, 1) and (1, t, t2) with t ∈ Fq. Mapping t ∈ Fq to (1, t, t2) and
∞ to (0, 0, 1) defines a one-one relation between Fq ∪ {∞} and C. This yields
a natural bijection between the conic and the projective line. It can be used
to show that the subgroup of PGL(3, q) that stabilizes C (the projective group
PGO(3, q) of order q(q2 − 1)) is isomorphic to the group PGL(2, q). Indeed,
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2. Preliminaries

consider a general element t 7→ (b + dt)/(a + ct) of PGL(2, q). Applied to the
point (1, t, t2) of C, this yields

(

1 t t2
)

7→
(

1 b+dt
a+ct ( b+dt

a+ct )
2
)

≈
(

(a + ct)2 (a + ct)(b + dt) (b + dt)2
)

=
(

1 t t2
)





a2 ab b2

2ac ad + bc 2bd
c2 cd d2



 .

This can be extended to all points (x, y, z) of PG(2, q):

(

x y z
)

7→
(

x y z
)





a2 ab b2

2ac ad + bc 2bd
c2 cd d2



 . (2.2)

A point P(x, y, z) which does not lie on the conic C is called external to C (resp.
internal to C) if and only if y2 − xz is a non-zero square (resp. a non-square)
in Fq. Three different points of the same conic are never collinear. We call
a line intersecting the conic in 0 (resp. 1 or 2) points an external line (resp.
tangent or secant). The intersection of a tangent ℓ and the conic C is called the
tangent point of ℓ. When q is odd, there are exactly two tangents and (q− 1)/2
secants through an external point of C. The tangent points of the two tangents
through an external point p will be called the tangent points of p. An internal
point does not lie on any tangent of C and hence lies on (q + 1)/2 secants.

When q is even, there are no internal points and the q + 1 tangents to a conic
are concurrent. The point of intersection is called the nucleus and for the
standard conic this is the point with coordinates (0, 1, 0).

A polarity π is a bijection mapping points to lines and lines to points, which
inverts incidence and such that π2 is the identity. The image of a line is called
the pole of the line, that of a point is called the polar line of the point. When
q is odd, the matrix A of a conic C is the matrix of a polarity. The polar line
of a point P(X) has coordinates AXt. The pole of a line ℓ(U) has coordinates
(A−1U)t. When C is the standard conic, the polar line of a point P(x, y, z) has
coordinates CXt = (z,−2y, x)t, the pole of a line ℓ(k, l, m)t has coordinates
(C−1U)t = (m,−l/2, k). The polarity of a conic C maps each point of C on the
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2.5. Cubic curve

tangent to C through that point. Also, each tangent to C is mapped onto its
tangent point. Internal points are mapped onto external lines, external points
are mapped onto secants and vice versa. The polar secant of an external point
is the line connecting the two tangent points of this external point.

It is well known that when q ≥ 4, there is a unique conic through each set of
5 points in which no three points are collinear. Also, two conics intersect in at
most 4 points.

2.5 Cubic curve

A cubic curve F is a set of points of PG(2, q) whose coordinates (x, y, z) are the
zeroes of an absolutely irreducible cubic form

F(x, y, z) = a1x3 + a2y3 + a3z3 + a4x2y + a5x2z +

a6xy2 + a7y2z + a8xz2 + a9yz2 + a10xyz,

with a1, . . . , a10 ∈ Fq.

An inflexion point of a cubic curve F is a point of F at which the tangent has
three-point contact. For odd q, the Hessian of the curve F is the curve H with
equation H(x, y, z) = 0, with

H(x, y, z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
∂2F

∂x∂y

∂2F

∂x∂z
∂2F

∂x∂y

∂2F

∂y2
∂2F

∂y∂z
∂2F

∂x∂z

∂2F

∂y∂z

∂2F

∂z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The inflexion points are the points P(x, y, z) of F satisfying H(x, y, z) = 0 and
∂F
∂x (x, y, z) ∂F

∂y (x, y, z) ∂F
∂z (x, y, z) 6= 0.

A singular point P(x, y, z) is a point of F for which ∂F
∂x (x, y, z) = ∂F

∂y (x, y, z) =
∂F
∂z (x, y, z) = 0.
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2. Preliminaries

Cubic curves have the interesting property that a group operation can be in-
troduced on the curve. The non-singular points of an absolutely irreducible
plane cubic curve F form an abelian group GF as follows: let P, Q be non-
singular points of F and let A be the third point on the line PQ that also lies
on the cubic F . Take a non-singular point O ∈ F as identity point. Then
P⊕ Q is the third cubic point on the line OA, with A the third point on the
line PQ.

P Q

A

O

P⊕Q

If P = Q, then P⊕ P = 2P is the third cubic point on the line OA, with A the
other point on the line that is tangent to F in the point P. If PQ is tangent to
F in the point P with P 6= Q, then P⊕ Q is the third cubic point on the line
OP. If A = O, then P⊕ Q = O′, the second point on the tangent through O.
If the line OA is tangent to F in A then P⊕Q = A.

In general, three points P, Q and R are collinear if and only if P⊕Q⊕ R = O′.
If the identity O is an inflexion, then O′ = O and three points P, Q and R are
collinear if and only if P⊕Q⊕ R = O. Also 2P⊕Q = O if Q is the other point
that lies on the tangent through P. For an inflexion point S we have 3S = 0.

2.6 Arcs

A (k, n)-arc S of PG(2, q) is defined to be a set of k points of the plane such
that at least one line of the plane meets S in n points but no line meets S in
more than n points.

14



2.6. Arcs

For n = 2, it is easily seen that k cannot be larger than q + 2. For every even
q examples of (q + 2) arcs are known. When q is odd, it can be proved that
(q + 2)-arcs do not exist. However, every conic is a (q + 1)-arc, and a well-
known theorem of Segre proves that also the converse is true when q is odd.
A (k, 2)-arc is called complete if and only if it is not contained in a (k + 1, 2)-arc.
By definition, a line of PG(2, q) intersects a k-arc in either 0, 1 or 2 points, in
which case it is called an external line, a unisecant or a bisecant, respectively. A
(k, 2)-arc is complete if and only if every point of the plane lies on at least one
bisecant of the arc. (The unisecants of a conic are its tangents, the bisecants
its secants.) By the above, when q is odd, a (q + 1)-arc always exists and is
complete. It can be proved however that a q-arc always is contained in a conic
and hence never is complete [19]. For q > 13, it can be proved that a (q− 1)-
arc is incomplete, except possibly for q, 37 ≤ q ≤ 89 [19]. For q, 13 < q < 31,
full classifications are known and no complete (q − 1)-arc occurs. In [26],
Kéri showed that for q = 31 the second largest size of a complete arc is 22,
hence also in PG(2, 31) each (q− 1)-arc is incomplete. For q ≤ 13, a complete
(q− 1)-arc exists for q = 7, 9, 11, 13 (see Chapter 6).

For n = 3 and q ≥ 4, it can be proved that k ≤ 2q + 1. It is well known that an
absolutely irreducible cubic curve always is a (k, 3)-arc. A (k, 3)-arc is called
complete if and only if it is not contained in a (k + 1, 3)-arc. By definition, a
line of PG(2, q) intersects a (k, 3)-arc in either 0, 1, 2 or 3 points, in which case
it is called an external line, a unisecant, a bisecant or a trisecant, respectively. A
(k, 3)-arc is complete if and only if every point of the plane lies on at least one
trisecant of the arc. We will often silently drop the requirement that at least
one line must contain 3 points, especially in Chapter 4 where the algorithms
are discussed. In other words, we will sometimes regard a (k, 2)-arc as a
special case of a (k, 3)-arc. Of course, for complete (k, 3)-arcs this is not an
issue because a (k, 2)-arc can never be a complete (k, 3)-arc.

In this text, the term “arcs” will always refer to (k, 2)- or (k, 3)-arcs. It will
always be clear from the context which of the two is meant. In some cases, it
can refer to either when describing some general aspects.

Let S be any (k, 2)-arc. Then we define a conical subset of S to be any subset
T of S of the form T = S ∩ C where C is a conic.
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2. Preliminaries

For further information on the geometrical properties of (k, 2)- and (k, 3)-arcs
we refer to [19].

2.7 Information on groups

Notations

Let V denote a finite set and let G denote a group with a right action on V.
Let s ∈ V, g ∈ G. We usually write sg for the image of s through the action of
g and hence sgh = (sg)h. Also, for g, h ∈ G, we write gh = h−1gh.

Sometimes it is more convenient to write σ(x) with x ∈ V, σ ∈ G. In this case
we have (σ1σ2)(x) = σ2(σ1(x)). Note the reversal of the order.

If S ⊆ V, we write Sg def
= {sg | s ∈ S} for the image of S through the action of

g and GS
def
= {g ∈ G | Sg = S} for the set stabilizer of S. If H ≤ G, i.e., if H

is a subgroup of G, then sH def
= {sh | h ∈ H} denotes the orbit of s through H,

and similarly, the orbit of S is denoted by SH .

The symmetric group on four elements

It is well known that PGL(3, q) acts sharply transitively on ordered quadran-
gles in PG(2, q). Hence any permutation of the 4 vertices of a quadrangle
can be extended uniquely to a projectivity. Therefore, with every choice of
quadrangle there corresponds an embedding of the symmetric group S4 on 4
elements in PGL(3, q). In particular, two choices of quadrangles lead to nice
representations of S4 in PGL(3, q).

First, consider the following quadrangle:

(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1).
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2.7. Information on groups

With this representation the group elements consist of two types of transfor-
mations: the permutations of the three coordinates and the transformations
changing the sign of one or more of the coordinates. The subgroup A4 (the
alternating group on 4 elements) of S4 then consists of the permutations of the
three coordinates of order 3 and changing the sign of exactly one coordinate.
Note that this representation only holds for q odd.

For a second representation, we look at PG(2, q) as the plane with equation
x + y + z + u = 0 in the three-dimensional projective space PG(3, q) and we
choose the following quadrangle:

(1, 1, 1,−3), (1, 1,−3, 1), (1,−3, 1, 1), (−3, 1, 1, 1).

With this representation the group consists of all permutations of the four
coordinates. The subgroup A4 then contains all even permutations of the four
coordinates.

Note that both representations of S4 are equivalent.

17





3
Arcs with large conical subsets

In this chapter we classify the (k, 2)-arcs in PG(2, q), q odd, which consist of
(q + 3)/2 points of a conic C and two points not on the conic but external to
C, or (q + 1)/2 points of C and two additional points, at least one of which is
an internal point of C. We prove that for arcs of the latter type, the number
of points internal to C can be at most 4, and we give a complete classification
of all arcs that attain this bound. Finally, we list some computer results on
extending arcs of both types with further points. The results are listed in
Section 3.8. In this chapter q is odd and “arcs” will always refer to (k, 2)-arcs.
Most of this chapter has been published in [11].

19



3. Arcs with large conical subsets

3.1 Introduction

As mentioned in Section 2.6, when q is odd an arc can be of size at most q + 1
and in that case it always coincides with the set of points of some conic C (and
is complete). It is natural to ask what the second biggest size for a complete
arc in PG(2, q) is.

Removing some points from a conic C yields an arc, but this arc is obviously
not complete. However, removing a sufficient number of points (at least (q−
1)/2, as will be shown later) it may be possible to extend the set thus obtained
to an arc by adding a point that does not belong to C. This new arc might not
be complete, but can be made complete by adding yet more points. This is
the kind of arc we will study in this chapter. For many values of q, arcs of this
type are among the largest ones known.

Fix an arc S and a conical subset T of S. The elements of U
def
= S \ T will be

called supplementary points and the number e = |U| of supplementary points
will be called the excess of the arc. In this chapter, we shall always assume that
e ≥ 1, i.e., that S is not fully contained in a conic.

Arcs of this type fall into two categories, depending on whether at least one
of the supplementary points is internal or not.

Theorem 3.1 Let q be odd and let S be an arc which is not a conic, then the

maximum size of a conical subset T of S is
q+3

2 . If |T| = q+3
2 , then all points of

U = S \ T are external points of the conic. If U contains at least one internal

point of C, then |T| ≤ q+1
2 .

Proof : When Q ∈ U is an external point, the arc property for S implies that
the two tangents through Q, and each of the (q− 1)/2 secants through Q, may
intersect T in at most one point, and hence that |T| ≤ (q + 3)/2.
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3.1. Introduction

Q

Likewise, when Q is an internal point, the (q + 1)/2 secants imply that |T| ≤
(q + 1)/2 (there are no tangents through Q in this case).

Q

We call conical subsets which attain these bounds large. We divide the arcs
with large conical subsets into three categories:

• An arc S of type I has a conical subset of size (q + 1)/2 where all sup-
plementary points are internal points of C.

• An arc S of type E has a conical subset of size (q + 3)/2 where all sup-
plementary points are external points of C.

• An arc S of type M (for ‘mixed’) has a conical subset of size (q + 1)/2
where some of the supplementary points are internal points of C and
some are external points.

Only a few arcs are known with large conical subsets and with an excess
greater than 2. We establish a simple theoretical framework for an extensive
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3. Arcs with large conical subsets

computer search for arcs of that type. In Sections 3.3, 3.4 and 3.5 we provide
a complete (computer-free) classification of all such arcs with excess 2, up to
projective equivalence. This classification forms the basis for a fast computer
program that classifies arcs with larger excess, for specific values of q. Results
of these searches are presented in Section 3.8.

Arcs of this type have also been studied by Pellegrino [37, 38], Korchmáros
and Sonnino [24, 25] and Davydov, Faina, Marcugini and Pambianco [14]. In
particular, our methods are similar to those of Korchmáros and Sonnino [25],
except for a few differences which we think are important:

• Instead of using the group structure of a cyclic affine plane of order q,
we use the properties of the cyclic group of norm 1 elements of the field
Fq2 . This has the advantage that much of the theory that is developed
subsequently can be formulated in terms of integers modulo q + 1, i.e.,
without the explicit use of groups.

• As a consequence, we were able to write down a complete classification
of the arcs of excess 2 and obtain an explicit formula for the number of
inequivalent arcs of that type.

• Korchmáros and Sonnino have used a computer algebra system (Magma)
to implement their computer searches. Because we do not need the
group functionality we could instead implement a very straightforward
(and efficient) program in Java.

Also note that Korchmáros and Sonnino only treat arcs of type E.

3.2 Notation and preliminary definitions

Before we proceed, we shall first establish some notations and list some ele-
mentary results. Similar notation and properties are used in [37, 38].

In what follows we shall use the abbreviation r
def
= 1

2 (q + 1).
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3.2. Notation and preliminary definitions

As in Section 2.4, for the points on C we shall mostly use coordinates (1, t, t2),
t ∈ Fq ∪ {∞}.

With every point Q of the plane that does not belong to C we associate an
involution σQ on the points of C, as follows: if P is a point of C, then σQ(P)
is the second intersection of the line PQ with C (or equal to P when PQ is
tangent to C).

Q

P1P2 P

σQ(P)

Let Q and P respectively have coordinates (a, b, c) and (1, t, t2) and let the
third point on the line PQ have coordinates (1, u, u2), then

0 =

∣

∣

∣

∣

∣

∣

1 t t2

1 u u2

a b c

∣

∣

∣

∣

∣

∣

= (t− u)(−atu + b(t + u)− c)

and hence u(b− at) = c− bt. It follows that σQ maps t to u = (c− bt)/(b− at),
or equivalently, that σQ acts like the element of PGL(2, q) represented by the
following matrix:

MQ
def
=

(

b c
−a −b

)

.

This involution can be extended to the entire plane as in (2.2).

On the plane σQ has exactly q + 2 fixed points: the point Q and the q + 1
points on the polar line of Q with respect to C. The lines fixed by σQ are the
q + 1 lines through Q and the polar line of Q.

It is easily proved that every involution of PGL(2, q) has trace zero and must
therefore be of the form σQ for some point Q not on C.
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3. Arcs with large conical subsets

Q is an external point to C if and only if b2− ac is a (non-zero) square of Fq. In
that case the two points of C whose tangents go through Q have coordinates
(1, t, t2) with t = c/(b±

√
b2 − ac).

Fix a non-square β of Fq and let L = Fq[
√

β] denote the quadratic extension
field of Fq. We write x̄ = xq for the conjugate of x ∈ L. Let α be a primitive
element of L. Then every element of L∗ can be written as αi for some exponent
i which is unique modulo q2 − 1. For i ∈ Zq2−1 define ci, si ∈ Fq to be the

‘real’ and ‘imaginary’ part of αi, i.e., αi def
= ci + si

√

β. The conjugate of αi

satisfies ᾱi = ci − si

√

β and

ci =
αi + ᾱi

2
, si =

αi − ᾱi

2
√

β

From α0 = 1 and αi+j = αi · αj, we derive

c0 = 1, s0 = 0, ci+j = cicj + sisjβ, si+j = cisj + sicj. (3.1)

Note that ci, si have properties that are similar to those of the cosine and sine,
and therefore it is also natural to define a ‘tangent’ ti ∈ Fq ∪ {∞}:

ti
def
= si/ci =

1
√

β

αi − ᾱi

αi + ᾱi
.

Let φ
def
= α/ᾱ = α1−q. Note1 that N(φ) = φq+1 = α1−q2

= 1 and φ
q+1

2 = −1.
Every element of L∗ of norm 1 can be written as φi for some exponent i which
is unique mod q + 1. We may now express ti directly in terms of φ as follows:

ti =







1
√

β

φi − 1
φi + 1

, when φi 6= −1,

∞, when φi = −1.
(3.2)

We have the following properties:

1In this chapter, N(x) = N
[

L : Fq

]

(x) = xx̄ = xq+1 for x ∈ L.
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3.2. Notation and preliminary definitions

Lemma 3.2

t0 = tq+1 = 0, tr = ∞, t−i = −ti,

ti+r =
1

tiβ
, ti+j =

ti + tj

1 + titjβ
, ti+(q+1) = ti.

Also, ti = tj if and only if i ≡ j (mod q + 1).

Proof : Recall that r = (q + 1)/2 and φr = −1.

It is easily seen that t0 = tq+1 = 0, tr = ∞ and t−i = −ti, using (3.2) and the
properties of φ.

For ti+r, we find

ti+r =
1

√

β

φiφr − 1
φiφr + 1

=
1

√

β

−φi − 1
−φi + 1

=

√

β

β

φi + 1
φi − 1

=
1

tiβ
.

Note that when φi = 1, then ti = 0 and ti+r = ∞ = tr.

Using (3.1), we find

ti+j =
si+j

ci+j
=

cisj + sicj

cicj + sisjβ
=

cisj+sicj

cicj

cicj+sisj β

cicj

=

sj

cj
+ si

ci

1 +
sisj β

cicj

=
ti + tj

1 + titjβ

This also implies ti+(q+1) = ti. We have ti = tj if and only if

φi − 1
φi + 1

=
φj − 1
φj + 1

φi+1 + φi − φj − 1 = φi+1 + φj − φi − 1

φi = φj,

i.e. if and only if i ≡ j (mod q + 1)

The index i of ti can be treated as an element of Zq+1. The sequence t0, t1, . . . , tq

contains every element of Fq ∪ {∞} exactly once.
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3. Arcs with large conical subsets

Let ℓ be an external line of C. Without loss of generality we may assume that
ℓ has equation x = βz. The points of ℓ may be numbered as Q0, Q1, . . . , Qq so
that Qi has coordinates (β, 1/ti, 1) ≈ (siβ, ci, si) for i 6= 0 and Q0 has coordi-
nates (0, 1, 0). The index i of Qi will be called the orbital index of Qi. Orbital
indices can be treated as elements of Zq+1. The point Qi is an external (resp.
internal) point of C if and only if c2

i − s2
i β is a square (resp. non-square). This

value is the norm of αi N(αi) = N(α)i, hence Qi is external (resp. internal) if
its orbital index i is even (resp. odd).

In a similar way, we number the points of the conic C as P0, P1, . . . , Pq where
Pi has coordinates (1, ti, t2

i ), for i 6= r and Pr has coordinates (0, 0, 1). Again,
the index i of Pi will be called its orbital index, and again it can be treated as
an element of Zq+1.

The following lemma illustrates that orbital indices are a useful concept in this
context.

Lemma 3.3 Let i, j, k ∈ Zq+1. Then

• Pi, Pj, Qk are collinear if and only if k ≡ i + j (mod q + 1).

• PiQk is a tangent to C if and only if k ≡ 2i (mod q + 1).

Proof :

Q2i

Qi+j

PiPi+r

Pj
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3.2. Notation and preliminary definitions

Pi, Pj, Qk are collinear if and only if Pj is the image of Pi under the action of
σQk

and vice versa. The action of σQk
on Pi is

(

1 ti

)

(

ck sk

−skβ −ck

)

=
(

ck − skβsi/ci sk − cksi/ci

)

≈
(

1− sksiβ/ckci sk/ck − si/ci

)

=
(

1− tktiβ tk − ti

)

≈
(

1 tk−ti
1−tkti β

)

=
(

1 tk−i

)

,

so Pj is the image of Pi under σQk
if and only if k − i ≡ j (mod q + 1) or

k = i + j (mod q + 1).

PiQk is a tangent to C if and only if the image of Pi under the action of σQk
is

again Pi which is only the case if k− i ≡ i (mod q + 1) or k = 2i (mod q + 1).

Lemma 3.4 The subgroup H of PGL(3, q) that leaves both the conic C and its
external line ℓ invariant, is a dihedral group of order 2(q + 1) whose elements
correspond to matrices of the following type2:

Mi
def
=

(

ci si

−siβ −ci

)

≈
(

1 ti

−tiβ −1

)

,

M′i
def
=

(

ci si

siβ ci

)

≈
(

1 ti

tiβ 1

)

.

Proof : The group H consists of all matrices of the form (2.2) that leave the
line ℓ invariant, i.e., such that





a2 ab b2

2ac ad + bc 2bd
c2 cd d2









1
0
−β



 ≈





1
0
−β



 ,

2Also for matrices, “≈” denotes equality up to a scalar factor.
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3. Arcs with large conical subsets

or equivalently

ac = bdβ, −β(a2 − b2β) = (c2 − d2β).

From this we obtain (c + a
√

β)2 = (bβ + d
√

β)2 and hence c + a
√

β = ±(bβ +
d
√

β). As a, b, c, d ∈ Fq but
√

β /∈ Fq, we find the solutions c = bβ, a = d and
c = −bβ, a = −d. In terms of matrices of PGL(2, q) and PGL(3, q) the results
are the following:

(

a b
±bβ ±a

)

,





a2 ab b2

±2abβ ±a2 + b2β) ±2ab
b2β2 abβ a2



 ,

which are exactly the matrices Mi and M′i when replacing b/a by ti.

We have

M′0 = 1, M′i = M′1
i, M′i = M0Mi,

M′i+j = M′i M′j Mi+j = Mi M0Mj.

(Again indices can be treated as belonging to Zq+1.) We shall call these group
elements reflections and rotations (reminiscent of similar transformations in the
Euclidian plane). Note that the reflections are precisely the involutions σQ for
the points of ℓ. Indeed Mi ≈ MQi

. Apart from these reflections, the group H
contains one more involution: the element M′r which could also be written as
σR, where R is the pole of ℓ, with coordinates (−β, 0, 1).

Lemma 3.5 The action of the reflections and rotations on C and ℓ is given by

Mi : Pj 7→ Pi−j, Qj 7→ Q2i−j,
M′i : Pj 7→ Pj+i, Qj 7→ Qj+2i.

Proof : Note that t2i = 2ti/(1 + t2
i β) and

t2i−1 =
t2i − tj

1− t2itjβ
=

2ti − tj(1 + t2
i β)

1 + t2
i β− 2titjβ

.
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3.2. Notation and preliminary definitions

We have
Pj Mi =

(

1− titjβ ti − tj

)

=
(

1 ti−j

)

= Pi−j

and

Qj Mi =
(

β 1/tj 1
)





1 ti t2
i

−2tiβ −1− t2
i β −2ti

t2
i β2 tiβ 1





=
(

β(1− 2ti/tj + t2
i β) tiβ− (1 + t2

i β)/tj + tiβ t2
i β− 2ti/tj + 1

)

≈
(

β(tj − 2ti + t2
i tjβ) titjβ− 1− t2

i β + titjβ t2
i tjβ− 2ti + tj

)

≈
(

β
2titj β−1−t2

i β

t2
i tj β−2ti+tj

1
)

=
(

β 1/t2i−j 1
)

= Q2i−j.

Toghether with M′i = M0Mi, this implies

Pj M
′
i = Pj M0Mi = P−j Mi = Pi+j

and
Qj M

′
i = Qj M0Mi = Q−j Mi = Q2i+j

Note the factor 2 in the orbital index of the images of Qj. This ensures that
even orbital indices remain even and odd indices remain odd. Indeed, the
group H has two orbits on ℓ, one consisting of external points, the other of
internal points. Note that M′r stabilizes every point of ℓ.

The stabilizer Hk of Qk in H has order 4 and consists of M′0 (the identity),
M′r, Mk and Mk+r. Hk fixes Qk and Qk+r and interchanges Qi and Q2k−i for
i 6= k, k + r.

We now introduce some definitions that will be useful in the rest of this chap-
ter.

Let C be a conic and let U denote a set of points not on that conic (the supple-
mentary points of an arc S, say). Define the graph Γ(C, U) as follows:
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3. Arcs with large conical subsets

• Vertices are the elements of Zq+1,

• Two different vertices i, j are adjacent if and only if the line PiPj contains
a point of U.

Note that the degree of a vertex of Γ(C, U) is at most |U|.

Let S be an arc with corresponding conical subset T = C ∩ S. Write U = S \ T.
Denote by N(T) the set of orbital indices of vertices of T, i.e., the unique
subset of Zq+1 such that T = {Pi | i ∈ N(T)}. Since S is an arc, no pair of
points of T can be collinear with one of the supplementary points. Therefore,
in Γ(C, U), vertices of N(T) can never be adjacent. In other words, N(T) is an
independent set of Γ(C, U).

3.3 Arcs of type I with excess two

Let S denote an arc of type I with excess two, i.e., |T| = r = (q + 1)/2 and U
consists of two points that are internal to C.

As was explained in the introduction, each secant line through one of the
supplementary points intersects C in exactly one point of T. In particular,
since S is an arc, the line that joins the supplementary points cannot contain a
third point of S, and hence is not a secant line of C. Because the supplementary
points are internal, the line cannot be a tangent to C either and hence it must
be an external line.

Without loss of generality we may assume this line to be the line ℓ with equa-
tion x = βz (as in the previous section). All internal points on ℓ lie in a single
orbit of H, and therefore we may take the first of the supplementary points to
be Q1. The second supplementary point must have an odd orbital index, and
therefore is of the form Q2a+1. Note that the integer a is only determined up
to a multiple of r.

Consider the graph Γ = Γ(C, U) = Γ(C, {Q1, Q2a+1}). The edges of Γ are of
the form {j, 1− j} and {j, 2a + 1− j} (by Lemma 3.3) and therefore Γ must be
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3.3. Arcs of type I with excess two

a regular graph of order q + 1 and of degree 2, i.e., a union of pairwise disjoint
cycles.

Consider the cycle which contains vertex i. We can enumerate the consecutive
vertices in this cycle as follows:

. . . , i, 1− i, 2a + i, 1− 2a− i, 4a + i, 1− 4a− i, . . .

i

1− i

2a + i

1− 2(k− 1)a− i

2ka + i

Eventually this sequence starts to repeat, hence either the cycle has length
2n with i ≡ (2na) + i (mod q + 1), or length 2n + 1 with i ≡ 1− (2na) − i
(mod q + 1). The latter case is impossible as the graph only has two types of
edges and two consecutive edges never are of the same type, i.e. the number
of edges in the cycle must be even. Hence the first case applies and n is equal
to the order of 2a (mod q + 1), i.e., n is the smallest positive integer such that
na ≡ 0 (mod r). Note that n is independent of the choice of i and therefore
all cycles have the same size. This proves the following result.

Lemma 3.6 If S is an arc of type I with supplementary points Q1 and Q2a+1,
then Γ(C, U) consists of d disjoint cycles of length 2n, where n is the order of a
(mod r) and d = r/n, i.e., d = gcd(a, r).

Note that the largest independent set in a cycle of size 2n has size n and
consists of alternating vertices. We shall call these sets half cycles. There are

two disjoint half cycles in each cycle. In our particular example, let Zk
def
=
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3. Arcs with large conical subsets

k + 2aZq+1 = k + 2dZq+1. (Because a is a multiple of d, each multiple of
2a is also a multiple of 2d.) Define Z+

k = Zk, Z−k = Z1−k. Then Z+
k ∪ Z−k ,

k = 1, . . . , d, are the cycles that constitute Γ and Z+
k , Z−k are the corresponding

half cycles. It is now easy to see that the largest possible independent set of
Γ consists of d half cycles, one for each cycle, and therefore has size dn = r.
Recall that N(T) must be an independent set of Γ. This proves the following
result.

Theorem 3.7 Let a ∈ {1, . . . , r − 1}. Let d = gcd(a, r). Let S = T ∪
{Q1, Q2a+1}, with T ⊂ C and |T| = (q + 1)/2. Then S is an arc of PG(2, q)
if and only if N(T) can be written as the union of pairwise disjoint sets, of the
form

N(T) = Z±1 ∪ . . . ∪ Z±d ,

with independent choices of sign.

Every arc listed in Theorem 3.7 can be uniquely described by its signature
I(a; ǫ1, . . . , ǫd), where ǫk = ±1 depending on the choice made for the half
cycle Z±k .

Example 3.1 Consider the Galois Field F19. Then q + 1 = 20, r = 10 and we
find the following table for the values of a, n and d:

a n d
1,3,7,9 10 1
2,4,6 5 2
5,8 2 5

For a = 6, we have two cycles

1, 0, 13, 8, 5, 16, 17, 4, 9, 12, 1

2, 19, 14, 7, 6, 15, 18, 3, 10, 11, 2
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3.3. Arcs of type I with excess two

with

Z+
1 = {1, 13, 5, 17, 9} Z−1 = Z0 = {0, 8, 16, 4, 12}

Z+
2 = {2, 14, 6, 18, 10} Z−2 = Z19{19, 7, 15, 3, 11}

Hence, there are four arcs S of type I of size 12 with S \ T = {Q1, Q13}. These
are the arcs with signatures I(6, +, +), I(6, +,−), I(6,−, +) and I(6,−,−).
Note that some of these arcs are equivalent. For instance, the mapping M17 =
Ma+r+1 maps the first arc onto the last arc and the second onto the third arc.

Also, the points Q13 and Q9 = Q−11 are interchanged by M1 and M11. Hence,
each arc of type I(6; ǫ1, · · · , ǫd) is equivalent to an arc with a signature of the
form I(4; ǫ′1, · · · , ǫ′d). �

Of course, as mentioned in the above example, arcs with different signature
can still be projectively equivalent, even for fixed a. More work needs to be
done to enumerate all arcs of this type up to equivalence only.

Before we proceed, we want to point out that some caution is necessary when
q is small. Indeed, in the treatment above, we have always considered the
conic C as fixed. However, for a given arc S there could be several conical
subsets that are large. Fortunately, we have the following

Lemma 3.8 Let S be an arc with a conical subset T with excess e. Then the
excess e′ of any other conical subset T′ of S must satisfy

e′ ≥ |S| − e− 4 = |T| − 4.

Proof : Two different conics can intersect in at most 4 points. Hence also T
and T′ can intersect in at most 4 points. We have

|S|+ |S| = |T|+ e + |T′|+ e′ = e + e′ + |T ∪ T′|+ |T ∩ T′| ≤ e + e′ + |S|+ 4,

and therefore |S| ≤ e + e′ + 4.
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3. Arcs with large conical subsets

Corollary 3.9 If q ≥ 13, then an arc S of PG(2, q) of size |S| = (q + 5)/2 can
contain at most one conical subset with excess at most 2.

Proof : Assume S has a conical subset T with excess e ≤ 2. Then by Lemma
3.8, any other conical subset must have excess e′ ≥ (q + 5)/2− e− 4 ≥ 9−
2− 4 = 3.

Henceforth we shall assume that q ≥ 13.

With this assumption, S determines C uniquely. Any isomorphism between
any of the arcs listed in Theorem 3.7 must therefore leave C invariant, and also
the pair of supplementary points and the line ℓ. In other words, any isomor-
phism of this type must belong to the group H as defined in Lemma 3.4.

From Section 3.2 we know that the elements of H that fix Q1 are the following :

M′0 (the identity) : Pj 7→ Pj, Qj 7→ Qj,
M′r : Pj 7→ Pj+r, Qj 7→ Qj,
M1 : Pj 7→ P1−j, Qj 7→ Q2−j,
Mr+1 : Pj 7→ Pr+1−j, Qj 7→ Q2−j.

(3.3)

Note that the reflections M1 and Mr+1 interchange Q2a+1 and Q1−2a. In other
words, for every arc with a signature of the form I(a; ǫ1, · · · , ǫd) there is an
equivalent arc with a signature of the form I(r− a; ǫ′1, · · · , ǫ′d) (or I(−a; · · · ), if
you prefer as a ∈ Z

∗
r ). To enumerate all arcs up to isomorphism, it is therefore

sufficient to consider only those a that satisfy 1 ≤ a ≤ r/2.

We now consider the case where a is fixed.

Theorem 3.10 Let q ≥ 13, a ∈ {1, . . . , r − 1} d = gcd(a, r) and n = r/d.
Further, let Ha denote the subgroup of PG(3, q) that leaves the conic C invariant
and fixes the pair {Q1, Q2a+1}. Then the elements of Ha are as follows :
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3.3. Arcs of type I with excess two

1. When n 6= 2

Element of Ha Image of Z±k Image of

I(a; ǫ1, . . . , ǫd)

M′0 (identity) Z±k I(a; ǫ1, . . . , ǫd)

M′r Z±k I(a; ǫ1, . . . , ǫd) for n even,

Z±d+k = Z∓d+1−k I(a;−ǫd, . . . ,−ǫ1) for n odd.

Ma+1 Z±1−k = Z∓k I(a;−ǫ1, . . . ,−ǫd) for a/d even,

Z±d+1−k I(a; ǫd, . . . , ǫ1) for a/d odd.

Ma+r+1 Z±d+1−k I(a; ǫd, . . . , ǫ1) for n even, a/d odd,

Z±d+1−k I(a; ǫd, . . . , ǫ1) for n odd, a/d even,

Z±1−k = Z∓k I(a;−ǫ1, . . . ,−ǫd) for n odd, a/d odd.

2. When n = 2

Element of Ha Image of Z±k Image of

I(a; ǫ1, . . . , ǫd)

M′0 (the identity) Z±k I(a; ǫ1, . . . , ǫd)

M′r/2 Z±d+k = Z∓d+1−k I(a;−ǫd, . . . ,−ǫ1)

M′r Z±k I(a; ǫ1, . . . , ǫd)

M′3r/2 Z±d+k = Z∓d+1−k I(a;−ǫd, . . . ,−ǫ1)

M1 Z±1−k = Z∓k I(a;−ǫ1, . . . ,−ǫd)

Mr/2+1 Z±d+1−k I(a; ǫd, . . . , ǫ1)

Mr+1 Z±1−k = Z∓k I(a;−ǫ1, . . . ,−ǫd)

M3r/2+1 Z±d+1−k I(a; ǫd, . . . , ǫ1)

Proof : (Note that n = r/d and a/d can not both be even, for otherwise 2d
would be a divisor of both a and r, contradicting d = gcd(a, r). The case n = 2
is equivalent to a = r/2, and then d = a.)
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3. Arcs with large conical subsets

Note that Ha fixes the line ℓ and hence is a subgroup of H. Any element of
Ha must either fix the points Q1 and Q2a+1 or interchange them.

From (3.3) we easily derive that the identity and M′r will fix both points, and
so will M1 and Mr+1 provided that (2a + 1) ≡ 2− (2a + 1) (mod q + 1), i.e.,
when 4a ≡ 0 (mod q + 1), i.e., a = r/2.

Similarly, it is easily proved that the following elements of H are those that
map Q1 onto Q2a+1 :

M′a : Pj 7→ Pi+j, Qj 7→ Qj+2a,
M′a+r : Pj 7→ Pa+r+j, Qj 7→ Qj+2a,
Ma+1 : Pj 7→ Pa+1−j, Qj 7→ Q2a+2−j,
Ma+r+1 : Pj 7→ Pa+r+1−j, Qj 7→ Q2a+2−j.

and hence Ma+1 and Ma+r+1 interchange Q1 and Q2a+1, and so do M′a and
M′a+r when 4a ≡ 0 (mod q + 1), i.e., a = r/2.

To complete the proof, we compute the action of these isomorphisms on the
half cycles Zk. (And from these, the action on the signatures can be easily
computed.)

A rotation of the form M′i maps a vertex k of Γ to the vertex k + i. Hence
Zk = k + 2dZq+1 is mapped to k + i + 2dZq+1 = Zk+i. Similarly, the reflection
Mi maps k to i− k and hence Zk = k + 2dZq+1 to i− k− 2dZq+1 = Zi−k.

Note that indices of half cycles can be treated modulo 2d. For example, as r
is a multiple of d, Zk+r is equal to either Zk or Zk+d, depending on whether
n = r/d is even or odd. Similarly, Za+1−k is either Z1−k or Zd+1−k depending
on the parity of a/d.

(Although this theorem is valid for all a ∈ {1, . . . , r}, we only need it when
a ≤ r/2, as explained earlier.)

Example 3.2 For q = 19, H6 = {M′0, M′10, M7, M17}. The cycles are fixed by
M′0. M′10 maps each cycle onto its opposite cycle. M7 and M17 interchange Z±1
with Z±2 . �
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3.3. Arcs of type I with excess two

The group Ha in Theorem 3.10 contains precisely the projective equivalences
that exist among the arcs listed in Theorem 3.7, for fixed a. The information
given on the images of the signatures in the various cases allows us to compute
the automorphism groups of the corresponding arcs.

Corollary 3.11 Let q ≥ 13. Let HS denote the subgroup of PGL(3, q) that
leaves invariant the arc S with signature I(a; ǫ1, . . . , ǫd).

1. If n is even and n 6= 2, then

• HS = {M′0, M′r, Ma+1, Ma+r+1} if and only if ǫd = ǫ1, ǫd−1 = ǫ2, . . .,

• HS = {M′0, M′r} otherwise.

2. If n is odd and a/d is odd, then

• HS = {M′0, M′r} if and only if ǫd = −ǫ1, ǫd−1 = −ǫ2, . . . (d even),

• HS = {M′0, Ma+1} if and only if ǫd = ǫ1, ǫd−1 = ǫ2, . . .,

• HS = {M′0} otherwise.

3. If n is odd and a/d is even, then

• HS = {M′0, M′r} if and only if ǫd = −ǫ1, ǫd−1 = −ǫ2, . . . (d even),

• HS = {M′0, Ma+r+1} if and only if ǫd = ǫ1, ǫd−1 = ǫ2, . . .,

• HS = {M′0} otherwise.

4. If n = 2, then

• HS = {M′0, M′r/2, M′r, M′3r/2} if and only if ǫd = −ǫ1, ǫd−1 = −ǫ2, . . .
(d even),

• HS = {M′0, M′r, Mr/2+1, M3r/2+1} if and only if ǫd = ǫ1, ǫd−1 = ǫ2, . . .,

• HS = {M′0, M′r} otherwise.
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3. Arcs with large conical subsets

Example 3.3 For q = 19, the arcs with signatures I(6, +, +) and I(6,−,−)
have {M′0, M7} as stabilizer group. The arcs with signatures I(6, +,−) and
I(6,−, +) have {M′0, M′10} as stabilizer group. �

The theorems above provide us with sufficient information to count the num-
ber of arcs of type I for given q. Again we first consider the case where a is
fixed.

Lemma 3.12 Let Iq(a) denote the number of projectively inequivalent arcs S
with a signature of the form I(a; ǫ1, . . . , ǫd), with d = gcd(a, (q + 1)/2). Then

Iq(a) =

{

2d−2 + 2⌊
d−2

2 ⌋, when
q+1
2d is odd or

q+1
2d = 2,

2d−1 + 2⌊
d−1

2 ⌋, when
q+1
2d is even and

q+1
2d 6= 2.

(3.4)

Proof : The number Iq(a) is obtained by summing the value of 1/|SHa | over all
arcs S with a signature of the form I(a; ǫ1, . . . , ǫd), where Ha is as in Theorem
3.10 and |SHa | is the size of the orbit of Ha on this arc. We have |SHa | =
|Ha|/|HS|, where |HS| can be derived from Corollary 3.11.

The number of signatures with ǫd = ǫ1, ǫd−1 = ǫ2, . . . is equal to 2d/2 when d
is even, and to 2(d+1)/2 when d is odd, i.e., 2⌊(d+1)/2⌋ for general d. Similarly
the number of signatures with ǫd = −ǫ1, ǫd−1 = ǫ2, . . . is equal to 2d/2 when
d is even, and is zero when d is odd. The sum of these two values is equal to
2⌊(d+2)/2⌋ for general d.

The four cases of Corollary 3.11 now lead to the following values for Iq(a) =

∑ |HS|/|Ha| :

1. If n is even and n 6= 2, then

Iq(a) = 2⌊
d+1

2 ⌋ +
1
2
(2d − 2⌊

d+1
2 ⌋) = 2d−1 + 2⌊

d−1
2 ⌋.

2 and 3. If n is odd, then

Iq(a) =
1
2

2⌊
d+2

2 ⌋ +
1
4
(2d − 2⌊

d+2
2 ⌋) = 2d−2 + 2⌊

d−2
2 ⌋.
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4. If n = 2, then

Iq(a) =
1
2

2⌊
d+2

2 ⌋ +
1
4
(2d − 2⌊

d+2
2 ⌋) = 2d−2 + 2⌊

d−2
2 ⌋.

Example 3.4 I19(6) = 2. �

Theorem 3.13 Let q ≥ 13. The number Iq of projectively inequivalent arcs S
in PG(2, q) of size |S| = (q + 5)/2, with a conical subset T = S ∩ C of size
|T| = (q + 1)/2 such that the elements of S \ T are internal points of C, is given
by

∑
d

′⌈1
2

φ

(

q + 1
2d

)

⌉Iq(d)

where the sum is taken over all proper divisors d of (q + 1)/2, φ denotes Eulers
totient function, and Iq(d) is as given in Lemma 3.12.

Proof : The total number of inequivalent arcs is given by ∑
⌊r/2⌋
a=1 Iq(a). Note

that Iq(a) does not directly depend on a, but only on d = gcd(a, r). The
number of integers a, 1 ≤ a < r such that d = gcd(a, r) is equal to φ(r/d) =
φ(n). If we restrict ourselves to a ≤ r/2 we obtain φ(n)/2 values, except when
a = d = r/2 (or equivalently n = 2) in which case there is 1 value. Note that
φ(2) = 1 and hence ⌈ 1

2 φ(n)⌉ = 1 in this case.

Example 3.5 For q = 19, the proper divisors d of (q + 1)/2 are 1, 2 and 5 with
corresponding values φ(r/d) = 4, 4 and 1. With

I19(1) = 20 + 20 = 2

I19(2) = 20 + 20 = 2

I19(5) = 23 + 21 = 10

we find

I19 =
1
2
· 4 · 2 +

1
2
· 4 · 2 + ⌈1

2
· 1⌉ · 10 = 18.

�
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3.4 Arcs of type E with excess two

The arcs of type E are in many aspects very similar to those of type I in the
previous section. We shall therefore mainly focus on the differences between
both cases.

Arcs of type E have a conical subset T of size |T| = (q + 3)/2 (which is one
larger than in the other cases). As a consequence, not only must all secants
through a given supplementary point Q contain exactly one point of T, but
also the tangents through Q must contain a point of T. (The points of T on
these tangents will be called the tangent points of Q.) As a consequence, again
any line through two supplementary points must be external.

Hence, for an arc of type E with two supplementary points, we may without
loss of generality assume ℓ to be the line connecting these points, and assume
that one of the supplementary points is Q0 as all external points on ℓ lie
in a single orbit of H. Let the other supplementary point be Q2a for some
a ∈ Zr, a 6= 0. The tangent points for Q0 are P0 and Pr, and those of Q2a are
Pa and Pa+r (by Lemma 3.3).

Consider the graph Γ = Γ(C, U) = Γ(C, {Q0, Q2a}). The edges of Γ are of the
form {j,−j} or {j, 2a − j}, whenever such a set represents a pair and not a
singleton. Every vertex of this graph has degree 2, except the four vertices
0, r, a and a + r that correspond to the tangent points, which have degree 1.
It follows that Γ is the disjoint union of two paths and some (possibily zero)
cycles. We may enumerate the vertices of the cycle or path that contains i as
follows:

. . . , i,−i, 2a + i,−2a− i, 4a + i,−4a− i, . . . (3.5)
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i

−i

2a + i

−2(k− 1)a− i

2ka + i

0

2a

−2a

4a

For a cycle, this sequence eventually starts to repeat. For a path this sequence
stops at one of the values 0, r, a or a + r.

As before, define n to be the order of 2a (mod q + 1) and let d = gcd(a, r) =
r/n. Note that each of the vertices in (3.5) is equal to ±i (mod d). Also
note that 0, r, a, a + r are all divisible by d. Hence, if i 6= 0 (mod d), then (3.5)
denotes a cycle, and not a path. The cycle either has length 2n with i ≡ 2na + i
(mod q + 1), or length 2n + 1 with i ≡ −2na− i (mod q + 1). The latter case
is impossible as the graph only has two types of edges and two consecutive
edges never are of the same type, i.e. the number of edges in the cycle must
be even. Hence the cycle has length 2n and must contain all vertices that are
equal to ±i (mod d).

Also, if (3.5) would denote a cycle also in the case that i = 0 (mod d), then
again it would have length 2n and contain all vertices that are divisible by
d, including 0, r, a and a + r. This is a contradiction, and it follows that the
two paths together contain all vertices that are multiples of d. The following
lemma provides further information on the composition of these paths.

Lemma 3.14 The two paths that are components of Γ each contain n vertices.
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The end points of these paths are as follows :

n even n odd

a/d even a/d odd

0 · · · r 0 · · · a 0 · · · a + r
a · · · a + r r · · · a + r r · · · a

Proof : Consider the path that has vertex 0 as one of its end points. The
vertices of this path are 0, 2a,−2a, 4a,−4a, . . . and hence the other endpoint
must be an element of {r, a, a + r} that is a multiple of 2a (mod q + 1)). We
consider three cases :

1. Assume that r is a multiple of 2a, say r = 2ak (mod q + 1) for some k.
Note that k can always be chosen to satisfy 0 < k < n. We have 4ak = 2r = 0
(mod q + 1) and hence 2k must be a multiple of the order of 2a (mod q + 1),
which is n. Because 0 < k < n, this is only possible when k = n/2, hence
when n is even.

2. Assume that a is a multiple of 2a, say a = 2ak′ (mod q + 1), with 0 < k′ <
n. Then (2k′ − 1)a = 0 (mod q + 1) or (2k′ − 1)2a = 0 (mod q + 1) and n
divides 2k′ − 1. Hence n must be odd and k′ = (n + 1)/2. Note that in this
case an = 2ank′ = 0 (mod q + 1), and hence an/r = 0 (mod (q + 1)/r), i.e.,
an/r = a/d is even.

3. Assume that a + r is a multiple of 2a, say a + r = 2ak′′ (mod q + 1), with
0 < k′′ < n. Then (2k′′ − 1)2a = 2r = 0 (mod q + 1) and n divides 2k′′ − 1.
Hence n must be odd and k′′ = (n + 1)/2. In this case an = 2ank′′ − rn = r
(mod q + 1), and then an/r = a/d is odd.

It follows that the end point of the path that starts with 0 is completely de-
termined by the parity of n and of a/d, and must be as in the statement of
this lemma. To prove that each path contains exactly n vertices, it is sufficient
to show that each path has the same size. To prove this we shall establish an
automorphism of Γ that interchanges the two paths.
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3.4. Arcs of type E with excess two

Consider the map i 7→ a− i (mod q + 1). Note that i + j = 0 if and only if
(a− i) + (a− j) = 2a and that i + j = 2a if and only if (a− i) + (a− j) = 0.
So adjacent points are mapped onto adjacent points. Hence, this map is an
automorphism of Γ. Similarly, consider the map i 7→ i + r (mod q + 1). We
have (r + i) + (r + j) = i + j, and therefore again this is an automorphism
of Γ, and so is the product of these two maps, i.e., the map i 7→ a + r − i
(mod q + 1). In each of the three cases, two of these maps interchange the
paths, and one leaves them invariant (but interchanges their end points).

This provides us with the analogue of Lemma 3.6 :

Lemma 3.15 If S is an arc of type E with supplementary points Q0 and Q2a,
then Γ(C, S \ C) is the disjoint union of d− 1 cycles of length 2n and two paths
of n vertices each, where n is the order of a (mod r) and d = r/n, i.e., d =
gcd(a, r).

As in Section 3.3, we introduce the half cycles Zk
def
= k + 2aZq+1 = k + 2dZq+1.

The cycles of Γ can now be written as Zk ∪Z−k, with k in the range 1, . . . , d− 1.

Note that the largest independent set in a path with n vertices has size n/2
when n is even and size (n + 1)/2 when n is odd. To have an independent
set N(T) of size (q + 3)/2 = 2an + 1 in Γ it is therefore necessary that n is
odd, and then we need to take the largest possible independent set for each
component. This proves

Theorem 3.16 Let a ∈ {1, . . . , r − 1}. Let d = gcd(a, r), n = r/d. Let
S = T ∪ {Q0, Q2a}, with T ⊂ C and |T| = (q + 3)/2. Then S is an arc of
PG(2, q) if and only if n is odd and N(T) can be written as the union of pairwise
disjoint sets, of the form

N(T) = Π ∪Π′ ∪ Z±1 ∪ . . . ∪ Z±(d−1),

with independent choices of sign, and
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3. Arcs with large conical subsets

Π = {0,−2a,−4a, · · · r + a or a},
Π′ = {r, r− 2a, r− 4a, · · · a or r + a}( = Π + r).

(Theorem 3 of [14] corresponds to the special case n = 3 of this result.)

Corollary 3.17 When q + 1 is a power of 2 there are no arcs of type E with
excess larger than 1.

Proof : Indeed, n divides r and hence also q + 1, so n is even if q + 1 is a power
of 2.

We shall identify the arcs in Theorem 3.16 by their signature E(a; ǫ1, . . . , ǫd−1),
where ǫk = ±1 depends on the choice made for the half cycle Z±k.

Example 3.6 For q = 19 and a = 6 (n = 5 and a/d = 3 are odd), we have two
paths and one cycle:

0, 12, 8, 4, 16

10, 2, 18, 14, 6

1, 19, 13, 7, 5, 15, 17, 3, 9, 11, 1

with

Π = {0, 8, 16} Π′ = {10, 18, 6}
Z1 = {1, 13, 5, 17, 9} Z−1{19, 7, 15, 3, 11}

Hence, there are two arcs S of type E of size 13 with S \ T = {Q1, Q12}. These
are the arcs with signatures E(6, +) and E(6,−). Note that they are equivalent.
�

As before, we shall now determine what isomorphisms exist between arcs of
this type. Lemma 3.8 in this case has the following
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Corollary 3.18 If q ≥ 11, then an arc S of PG(2, q) of size |S| = (q + 7)/2
can contain at most one conical subset with excess at most 2.

Proof : Assume S has a conical subset T with excess e ≤ 2. Then by Lemma
3.8, any other conical subset must have excess e′ ≥ (q + 7)/2− e− 4 ≥ 9−
2− 4 = 3.

We shall therefore assume that q ≥ 11 for the remainder of this section.

From Section 3.2 we obtain the elements of H that fix Q0 :

M′0 (the identity) : Pj 7→ Pj, Qj 7→ Qj,
M′r : Pj 7→ Pj+r, Qj 7→ Qj,
M0 : Pj 7→ P−j, Qj 7→ Q−j,
Mr : Pj 7→ Pr−j, Qj 7→ Q−j.

(3.6)

The reflections M0 and Mr interchange Q2a and Q−2a, and hence to enumerate
all arcs up to isomorphism, it is therefore sufficient to consider only one of a
and r− a. Because n must be odd, r = nd is an odd multiple of d and hence
one of a/d and (r− a)/d must be odd and the other one must be even. In other
words, we may always assume that a/d is odd, without loss of generality.

Example 3.7 For q = 19, the points Q12 and Q8 = Q−12 are interchanged by
M0 and M10. �

Theorem 3.19 Let q ≥ 11, a ∈ {1, . . . , r − 1} d = gcd(a, r) and n = r/d.
Further, let Ha denote the subgroup of PG(3, q) that leaves the conic C invariant
and fixes the pair {Q0, Q2a}. If n and a/d are odd, then the elements of Ha are
as follows :
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Element of Ha Image of Image of Zk Image of

Π Π′ E(a; ǫ1, . . . , ǫd−1)

M′0 (the identity) Π Π′ Zk E(a; ǫ1, . . . , ǫd−1)

M′r Π′ Π Zd+k = Z−(d−k) E(a;−ǫd−1, . . . ,−ǫ1)

Ma Π′ Π Zd−k E(a; ǫd−1, . . . , ǫ1)

Ma+r Π Π′ Z−k E(a;−ǫ1, . . . ,−ǫd−1)

Proof : From (3.6) we easily derive that the identity and M′r are the only
transformations that will fix both Q0 and Q2a. Similarly, Ma and Ma+r are the
only transformations that interchange Q0 and Q2a. (We need not consider the
case 2a = r which would result in a larger subgroup, because then n would
be even.)

The reflection Ma maps Zk onto Za−k. Now, recall that half cycle indices are
determined modulo 2d. Because a/d is odd, we have a = d (mod 2d) and
therefore Za−k = Zd−k.

By Lemma 3.14 we know that the other endpoint of the path that starts in 0 is
a + r. Hence

Π = {0,−2a,−4a, · · · , r + 5a, r + 3a, r + a}
is mapped by Ma to

{a, 3a, 5a, · · · , r− 4a, r− 2a, r} = Π′.

The action of M′r on Π, Π′ and Zk is reasonably straightforward to compute
and then the last line of the table can be obtained from the identity Ma+r =
Ma M′r.

Example 3.8 For q = 19, H6 = {M′0, M′10, M6, M16}. The paths are fixed by
M′0 and M16 and interchanged by the other two. The half cycles are fixed by
M′0 and M6 and interchanged by the other two mappings. �
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Corollary 3.20 Let q ≥ 11. Let HS denote the subgroup of PGL(3, q) that
leaves invariant the arc S with signature E(a; ǫ1, . . . , ǫd−1).

If n and a/d are odd, and d > 1, then

• HS = {M′0, M′r} if and only if ǫd−1 = −ǫ1, ǫd−2 = −ǫ2, . . . (d odd),

• HS = {M′0, Ma} if and only if ǫd−1 = ǫ1, ǫd−2 = ǫ1, . . .,

• HS = {M′0} otherwise.

Otherwise, if n and a are odd and d = 1, then HS = {M′0, M′r, Ma, Ma+r} =
Ha.

Example 3.9 For q = 19 and a = 6, both arcs E(6, +) and E(6,−) have
{M′0, M6} as stabilizer group. �

Lemma 3.21 Let Eq(a) denote the number of projectively inequivalent arcs S
with a signature of the form E(a; ǫ1, . . . , ǫd−1), with d = gcd(a, (q + 1)/2).
Then

Eq(a) =

{

1, when d = 1,

2d−3 + 2⌊
d−3

2 ⌋, when d > 1.
(3.7)

Proof : As in the proof of Lemma 3.12, we sum the values of |HS|/|Ha| for all
possible signatures.

If d = 1, then there is clearly the one signature E(a).

Otherwise, when d > 1, the number of signatures with ǫd−1 = ǫ1, ǫd−2 =
ǫ2, . . . is equal to 2(d−1)/2 when d is odd, and to 2d/2 when d is even. Similarly
the number of signatures with ǫd−1 = −ǫ1, ǫd−2 = ǫ2, . . . is equal to 2(d−1)/2

when d is odd, and is zero when d is even. The sum of these two values is
equal to 2⌊(d+1)/2⌋ for general d.
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3. Arcs with large conical subsets

It follows that

Eq(a) =
1
2

2⌊(d+1)/2⌋ +
1
4
(2d−1 − 2⌊(d+1)/2⌋) = 2d−3 + 2⌊(d−3)/2⌋.

Example 3.10 E19(6) = 1. �

And using an argument similar to that of Section 3.3, this yields

Theorem 3.22 Let q ≥ 11. The number Eq of projectively inequivalent arcs S
in PG(2, q) of size |S| = (q + 7)/2, with a conical subset T = S ∩ C of size
|T| = (q + 3)/2 such that the elements of S \ T are external points of C, is given
by

∑
d

′ 1
2

φ

(

q + 1
2d

)

Eq(d)

where the sum is restricted to all proper divisors d of (q + 1)/2 such that (q +
1)/(2d) is odd, and where φ denotes Eulers totient function, and Eq(d) is as
given in Lemma 3.21.

Proof : The total number of inequivalent arcs is given by ∑
r
a=1 Eq(a). Note that

Eq(a) does not directly depend on a, but only on d = gcd(a, r). The number
of integers a, 1 ≤ a < r such that d = gcd(a, r) is equal to φ(r/d) = φ(n). If
we restrict ourselves to those a with a/d odd, we obtain φ(n)/2 values.

Example 3.11 For q = 19, the proper divisors d of (q + 1)/2 are 1, 2 and 5.
Only for d = 2 we have that (q + 1)/2d is odd and then φ(r/d) = φ(5) = 4
With

E19(2) = 2−1 + 2⌈
−1
2 ⌉ = 1

we find

E19 =
1
2
· 4 · 1 = 2.

�
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3.5. Arcs of type M with excess two

3.5 Arcs of type M with excess two

Again, in many respects the arcs of type M are similar to those of type I and
type E from the previous sections, and therefore again we will focus mainly
on the differences.

An arc S of type M has a conical subset T of size |T| = (q + 1)/2 and without
loss of generality we may assume that the external supplementary point is Q0
and the internal supplementary point is Q2a+1 for some a ∈ Zr. Every vertex
of the graph Γ = Γ(C, S \ C) has degree 2, except the two vertices 0, r that
correspond to the tangent points of Q0, which have degree 1. The graph is
therefore the disjoint union of a path and zero or more cycles.

The vertices of the path or cycle that contains vertex i are the following:

. . . , i,−i, 2a + 1 + i,−2a− 1− i, 4a + 2 + i,−4a− 2− i, . . .

i

−i

2a + 1 + i

−2a− 1− i

k(2a + 1) + i

−k(2a + 1)− i

0

2a + 1

−2a− 1

4a + 2

Note that every vertex in this path or cycle is equal to ±i mod 2a + 1, and
using similar arguments as in the previous section, we may conclude
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3. Arcs with large conical subsets

Lemma 3.23 If S is an arc of type M with supplementary points Q0 and Q2a+1,
then Γ(C, S \ C) is the disjoint union of h = ( f − 1)/2 cycles of length 2m
and one path of m vertices, where m is the order of 2a + 1 (mod q + 1) and
f = (q + 1)/m, i.e., f = gcd(2a + 1, q + 1).

Proof : A cycle has either length 2m with i ≡ m(2a + 1) (mod q + 1) or
length 2m + 1 with i ≡ −m(2a + 1)− i (mod q + 1). The latter case is again
impossible as the graph only has two types of edges and two consecutive
edges never are of the same type, i.e. the number of edges in the cycle must
be even. Hence, each cycle has length 2m and m is equal to the order of 2a + 1
(mod q + 1), i.e. m is the smallest positive integer such that m(2a + 1) ≡ 0
(mod q + 1). Note that m is independent of i and therefore all cycles have the
same size.

The path has endpoints 0 and r. Hence, the point r must be a multiple of
(2a+1), say r ≡ (2a + 1)k (mod q + 1) for some k. k can alwyas be chosen to
satisfy 0 < k < m. We have 2(2a + 1)k ≡ 2r ≡ 0 (mod q + 1) and hence 2k
must be a multiple of the order of (2a + 1) (mod q + 1), which is m. Because
0 < k < m, this is only possible when m = 2k, hence m must be even. Note
that the path contains all vertices that are multiple of 2a + 1 and hence has
size m.

As each cycle has length 2m and the path has size m, there are q+1−m
2m = f−1

2
cycles.

Note that in particular f must be odd and m must be even.

It also follows that N(T) is a union of half cycles Z′k
def
= k + (2a + 1)Zq+1 =

k + f Zq+1 and one half path, i.e., an independent set of size m/2 in the path
that joins 0 and r.

There are exactly m/2 + 1 half paths, which we will denote by Πk with k =
0, . . . , m/2. We have

Πk
def
= {0,−2a− 1,−2(2a + 1), . . . ,−(k− 1)(2a + 1)}∪ {(k + 1)(2a + 1), . . . , r},
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3.5. Arcs of type M with excess two

with special cases

Π0 = {2a + 1, 2(2a + 1), . . . , r},
Πm/2 = {0,−2a− 1,−2(2a + 1), . . . , (2a + 1) + r}.

Π0

0

2a + 1

−2a− 1 −(k− 1)(2a + 1)

k(2a + 1)

−k(2a + 1)

(k + 1)(2a + 1)
r

Πk

0

2a + 1

−2a− 1 −(k− 1)(2a + 1)

k(2a + 1)

−k(2a + 1)

(k + 1)(2a + 1)
r

Πm/2

0

2a + 1

−2a− 1 −(k− 1)(2a + 1)

k(2a + 1)

−k(2a + 1)

(k + 1)(2a + 1)
r

We find

Theorem 3.24 Let a ∈ {0, . . . , r − 1}. Let f = gcd(2a + 1, q + 1), m =
(q + 1)/ f , h = ( f − 1)/2. Let S = T ∪ {Q0, Q2a+1}, with T ⊂ C and
|T| = (q + 1)/2. Then S is an arc of PG(2, q) if and only if N(T) can be
written as the union of pairwise disjoint sets, of the form

N(T) = Πk ∪ Z′±1 ∪ . . . ∪ Z′±h,
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3. Arcs with large conical subsets

with independent choices of sign, and k ∈ {0, . . . , m/2}.

We shall identify these arcs by their signature M(a; k; ǫ1, . . . , ǫh), where ǫk =
±1 depends on the choice made for the half cycle Z′±k.

Example 3.12 Again consider the Galois Field F19. We find the following table
for the values of a, m and f :

a m f
1,3,4,5,6,8,9 20 1

2,7 4 5

For a = 2, we have one path and two cycles:

0, 5, 15, 10

1, 4, 16, 9, 11, 14, 6, 19, 1

2, 18, 7, 13, 12, 8, 17, 3, 2

with
Π0 = {5, 10}, Π1 = {0, 10}, Π2 = {0, 15}

Z′1 = {1, 16, 11, 6} Z′−1 = Z19 = {4, 9, 14, 19}
Z′2 = {2, 7, 12, 17, } Z−2 = Z18{18, 13, 8, 3}

Hence, there are twelve arcs S of type M of size 12 with S \ T = {Q0, Q5}.
These are the arcs with signatures

M(2, 0, +, +) M(2, 0, +,−) M(2, 0,−, +) M(2, 0,−,−)

M(2, 1, +, +) M(2, 1, +,−) M(2, 1,−, +) M(2, 1,−,−)

M(2, 2, +, +) M(2, 2, +,−) M(2, 2,−, +) M(2, 2,−,−).

Note that some of these arcs are equivalent. �
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As before, we shall now determine what isomorphisms exist between arcs of
this type. Among the elements of H that fix Q0 the reflections M0 and Mr

interchange Q2a+1 and Q−2a−1 and hence for every arc with a signature of the
form M(a; k; ǫ1, . . . , ǫh) there is an equivalent arc with a signature of the form
M(r− a− 1; k; ǫ1, . . . , ǫh). In what follows we may therefore restrict ourselves
to a ∈ {0, 1, . . . , ⌊(r− 1)/2⌋}.

Example 3.13 For q = 19, the points Q5 and Q−5 = Q15 are interchanged by
M0 and M10. �

Theorem 3.25 Let q ≥ 13, let a ∈ {0, . . . , r− 1}, let f = gcd(2a + 1, q + 1)
and m = (q + 1)/ f . Further, let Ha denote the subgroup of PG(3, q) that leaves
the conic C invariant and fixes the pair {Q0, Q2a+1}. If m is even, then the
elements of Ha are as follows :

1. When m 6= 2

Element of Ha Image of Πk Image of Z′k Image of

M(a; k; ǫ1, . . . , ǫh)

M′0 (the identity) Πk Z′k M(a; k; ǫ1, . . . , ǫh)

M′r Πm/2−k Z′k M(a; m/2− k; ǫ1, . . . , ǫh)

2. When m = 2

Element of Ha Image of Πk Image of Z′k Image of

M(a; k; ǫ1, . . . , ǫh)

M′0 (the identity) Πk Z′k M(a; k; ǫ1, . . . , ǫh)

M′r Π1−k Z′k M(a; 1− k; ǫ1, . . . , ǫh)

M0 Πk Z′−k M(a; k;−ǫ1, . . . ,−ǫh)

Mr Π1−k Z′−k M(a; 1− k;−ǫ1, . . . ,−ǫh)

Proof : Note that the case m = 2 is equivalent to 2a + 1 = r = f . Also note
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that in general r = (m/2) f and hence Z′k+r = Z′k.

Since Q0 is an external point of C, and Q2a+1 is an internal point, there are
no elements of Ha that interchange Q0 and Q2a+1. The elements of H that fix
Q0 are M′0, M′r, M0 and Mr. The first two always fix Q2a+1, the latter only if
2a + 1 = r.

The rotation M′r maps Πk onto the set

{r, r− 2a− 1, r− 2(2a + 1), . . . , r− (k− 1)(2a + 1)}
∪{r + (k + 1)(2a + 1), . . . , 0}

= {0, . . . ,−(m/2− k− 1)(2a + 1)} ∪ {(m/2− k + 1)(2a + 1), . . . , r}

and this is the half path Πm/2−k. When m = 2 the half paths are the singletons
Π0 = {r} and Π1 = {0}. These are left invariant by M0 and interchanged by
Mr.

Although this theorem is valid for all a ∈ {0, . . . , r− 1}, we only need it when
0 ≤ a ≤ ⌊(r− 1)/2⌋, as explained earlier.

Example 3.14 For q = 19, H2 = {M′0, M′10}. �

Corollary 3.26 Let q ≥ 13. Let HS denote the subgroup of PGL(3, q) that
leaves invariant the arc S with signature M(a; k; ǫ1, . . . , ǫh). If m is even and
m 6= 2, then

• HS = {M′0, M′r} if and only if k = m/4

• HS = {M′0} otherwise.

Example 3.15 For q = 19, the arcs with signatures M(2, 0,±,±) and M(2, 2,±,±)
have {M′0} as stabilizer group. The arc with signatures M(2, 1,±,±) has
{M′0, M′10} as stabilizer group. �
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Lemma 3.27 Let Mq(a) denote the number of projectively inequivalent arcs S
with a signature of the form M(a; k; ǫ1, . . . , ǫh), where 2h + 1 = gcd(2a +
1, q + 1). Then

Mq(a) =

{

2h−1, when h = (q− 1)/4,
(⌊ q+1

4(2h+1)
⌋+ 1)2h, when h < (q− 1)/4,

(3.8)

Proof : For a given k there are 2h arcs of the requested signature. There are
m/2 + 1 possible values of k.

When m/2 is odd, we therefore have Mq(a) = 1
2 (m/2 + 1)2h. When m/2 is

even, m 6= 2, we have Mq(a) = 2h + 1
2 (m/2)2h = 1

2 (m/2 + 2)2h. In both cases
this can be written as (⌊m/4⌋+ 1)2h.

When m = 2 we have Mq(a) = 1
4 (m/2 + 1)2h = 2h−1.

Example 3.16 M19(2) = 8. �

Theorem 3.28 Let q ≥ 13. The number Mq of projectively inequivalent arcs S
in PG(2, q) of size |S| = (q + 5)/2, with a conical subset T = S ∩ C of size
|T| = (q + 1)/2 such that S \ T consists of an internal and an external point of
C, is given by

∑
h

′⌈1
2

φ

(

q + 1
2h + 1

)

⌉Mq(h)

where the sum is restricted to all proper odd divisors 2h + 1 of q + 1 such that
(q + 1)/(2h + 1) is even, and where φ denotes Eulers totient function, and
Mq(h) is as in Lemma 3.27.

Proof : Note that the value of Mq(a) only depends on h. Hence for all a such
that gcd(2a + 1, q + 1) = 2h + 1 = f we have the same value. There are exactly
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φ((q + 1)/ f ) such values of 2a + 1 in the range 1, . . . , q. But of these values
we only need to consider half, except in the case f = r in which all of them
need to be considered. But then φ((q + 1)/(2h + 1)) = φ(2) = 1 and hence
⌈ 1

2 φ(n)⌉ = 1.

Example 3.17 For q = 19, the proper odd divisors 2h + 1 of q + 1 are 1 and 5
and (q + 1)/(2h + 1) is even in both cases. The corresponding values φ((q +
1)/(2h + 1)) are φ(20) = 8 and φ(4) = 2. With

M19(0) = (5 + 1)20 = 6

M19(2) = (1 + 1)22 = 8

we find

M19 =
1
2
· 8 · 6 +

1
2
· 2 · 8 = 24 + 8 = 32.

�

3.6 Arcs of type I with excess 3 or 4

In this section we shall prove that an arc of type I cannot have an excess larger
than 4 and we shall explicitely describe the arcs that reach this bound. The
techniques we use are related to those of Korchmáros and Sonnino [24] who
prove a similar result for arcs of type E (but with restrictions on the values of
q).

Note that an arc of type I with excess 4 does not need to be complete. It is
theoretically possible that further points can be added that are external to the
conic C. However, an exhaustive computer search for values up to q = 503
did not produce such an example.

Consider an arc S of type I with conical subset T = C ∩ S as before. We shall
use the following criterion to determine whether S is an arc.
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Lemma 3.29 Let T be a subset of a conic C of size |T| = (q + 1)/2. Let U be a
set of internal points of C. Then S = T ∪U is an arc if and only if

• no three points of U are collinear.

• every line joining two points of U is an external line of C,

• σQ(T) = C \ T for all points Q of U,

with σQ as defined in Section 3.2.

Proof : We divide the triples of points of S into the following four categories:

1. Triples of points of U. The first hypothesis of this lemma is satisfied if and
only if no such triple is collinear.

2. Triples of points of T. These can never be collinear, as T lies on a conic.

3. Triples consisting of two points Q, Q′ ∈ U and one point of T. Clearly, if
QQ′ is an external line it does not intersect C and hence this triple cannot be
collinear. Conversely, as was already explained in the introduction, if QQ′ is
a secant line, at least one of its points must belong to T, yielding a collinear
triple of this type. (QQ′ can not be a tangent to C, because Q, Q′ are internal.)

4. Triples consisting of one point Q ∈ U and two points P, P′ ∈ T. By defini-
tion of σQ, P, P′, Q are collinear if and only if σ(P) = P′. As a consequence, no
collinear triple of this type exists if and only if σQ(T) and T are disjoint, for
all Q ∈ U. Since T contains exactly half of the points of C, this is equivalent
to the third hypothesis of this lemma.

We use this lemma to show that there are plenty of arcs of type I with excess
3.

Theorem 3.30 Let a ∈ {1, . . . , r− 1}. Let d = gcd(a, r), n = r/d. Consider
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the arc S with signature I(a; ǫ1, . . . , ǫd). Let R be the pole of ℓ, i.e., the internal
point with coordinates (−β, 0, 1).

Then S ∪ {R} is an arc if and only if 4|q + 1, n is odd and
ǫ1 = ǫd, ǫ2 = ǫd−1, . . .

Proof : The conical subset T of S is the set

T = Z
ǫ1
1 ∪ · · · ∪ Z

ǫd
d ,

and then
C \ T = Z

−ǫ1
1 ∪ · · · ∪ Z

−ǫd
d .

By Theorem 3.10 it follows that σR(T) = M′r(T) = C \ T if and only if n is odd
and ǫ1 = ǫd, ǫ2 = ǫd−1, . . .

The polar line of Q2a+1 is the line [1,−2/t2a+1, β] and intersects ℓ in Q2a+1+r.
Because Q2a+1+r lies on the polar line of Q2a+1 and on the polar line of R, the
polar line of Q2a+1+r is the line RQ2a+1. RQ2a+1is an external line if and only
if its pole Q2a+1+r is an internal point which is the case if and only if r is even.

Similarly, also RQ1 is an external line if and only if r is even.

From Lemma 3.29 the claim follows.

Define ∆̂T to be the group of all projectivities that either fix both sets T and
C \ T, or interchange them. ∆̂T fixes the conic C and hence is a subgroup of
PGL(2, q). Define ∆T to be the subgroup of ∆̂T that fixes T (and hence also
C \ T).

The group ∆̂T is never trivial. Indeed, for every supplementary point Q the
involution σQ interchanges T and C \ T and hence belongs to ∆̂T . It also
follows that ∆T is a proper subgroup of ∆̂T , of index 2.

Lemma 3.31 ∆T does not contain any element of order p (where p is the char-
acteristic of the field).
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Proof : Suppose ρ ∈ ∆T has order p. Then orbits of ρ on C have size p or 1.
T must be a union of orbits of ρ and since |T| = (q + 1)/2 ≡ 1/2 (mod p), ρ
must have at least (p + 1)/2 fixed points in T, and similarly, in C \ T. Hence
ρ must have at least p + 1 fixed points on C. Hence ρ = 1 since the identity is
the only element of PGL(2, q) that fixes more than two points.

To obtain a list of candidates for ∆̂T we may use the classification of sub-
groups of PGL(2, q), as given in [6, Theorem 2] for example. The subgroups
of PGL(2, q) that satisfy Lemma 3.31 are isomorphic to one of the following:

1. A cyclic group Cd where d divides q− 1 or q + 1,

2. A dihedral group D2d where d divides q− 1 or q + 1,

3. The alternating group A4,

4. The symmetric group S4,

5. The alternating group A5.

The alternating groups can be ruled out immediately as candidates for ∆̂T ,
because they have no subgroups of index 2.

The first two cases are dealt with in the following lemmas.

Lemma 3.32 If ∆̂T is cyclic, then the excess of S can be at most 1.

Proof : A cyclic group contains at most one element of order 2, hence ∆̂T

contains at most one element that may function as σQ with Q an internal
point of C. (Note that σQ determines Q uniquely.)

Lemma 3.33 If ∆̂T is a dihedral group, then the excess of S can be at most 3. In
case of equality S is as described in Theorem 3.30
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3. Arcs with large conical subsets

Proof : A dihedral group can be generated by two of its involutions. These
two involutions can always be written as σQ, σQ′ with Q, Q′ 6∈ C, Q 6= Q′.
Both involutions fix the line QQ′ and hence ∆̂T also fixes this line. Every
other involution of ∆̂T must therefore be of the form σR where either R is the
pole of QQ′ or else lies on the line QQ′.

Because QQ′ can contain at most two supplementary points of S, the excess
of S cannot be larger than three and in that case the pole of QQ′ must be one
of the supplementary points.

This leaves only the case where ∆̂T is isomorphic to S4 (and then ∆T is iso-
morphic to A4). All instances of the subgroup S4 of PGL(2, q) are conjugate,
so without loss of generality we may choose a fixed representation.

For the remainder of this section, instead of the standard conic, we shall use
X2 + Y2 + Z2 = 0 as the equation of C and S4 the subgroup of all transfor-
mations of the form (x, y, z) 7→ (±x,±y,±z) optionally combined with any
permutation of the coordinates. (Obviously, this group leaves the value of
X2 + Y2 + Z2 invariant and hence fixes C.) The subgroup A4 then corresponds
to a combination of one or more sign changes and an even permutation of the
coordinates.

The set S4 \ A4 contains exactly six involutions, hence there are six candidates
for σQ and hence at most six supplementary points Q. These involutions
consist of a single transposition of two coordinates, optionally combined with
a sign change of the third coordinate. (x, y, z) 7→ (y, x,−z) is an example
of such an involution. The corresponding point Q of this involution is the
intersection point of the (q + 1)/2 lines PP′ through the points P(a, b, c) and
P(b, a,−c), a, b, c ∈ Fq. These lines have equation −c(a + b)X + c(a + b)Y +
(a2 + b2)Z = 0, their intersection point Q is the point with coordinates(1, 1, 0).

The other points corresponding to the involutions are the the images of Q
through S4, i.e. (±1,±1, 0), (0,±1,±1) and (±1, 0,±1). (Note that changing
the sign of both non-zero coordinates does not change the point itself.)

There are seven lines that contain at least two of these candidate points. Each
of the four lines with an equation of the form Z = ±X ± Y contains three of
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3.6. Arcs of type I with excess 3 or 4

these points:

Z = X−Y Z = Y− X Z = X + Y Z = −X−Y

(1, 1, 0) (1, 1, 0) (1, 0, 1) (1,−1, 0)
(0,−1, 1) (−1, 0, 1) (−1, 1, 0) (0, 1,−1)
(1, 0, 1) (0, 1, 1) (0, 1, 1) (1, 0,−1)

The other three lines have equations X = 0, Y = 0, Z = 0 and each contain
two candidate points.

(0−11) (011)

(−110)

(−101)

(101)

(110)

It is easily seen that the largest subset of candidate points such that no three
are collinear has size 4. Without loss of generality we may choose this set to
be U = {Q, Q′, Q′′, Q′′′}, with

Q = (1,−1, 0), σQ(x, y, z) = (y, x, z)
Q′ = (1, 1, 0), σQ′(x, y, z) = (y, x,−z)
Q′′ = (1, 0,−1), σQ′′(x, y, z) = (z, y, x)
Q′′′ = (1, 0, 1), σQ′′′ (x, y, z) = (z,−y, x)

(3.9)

Note that three of these involutions already generate the whole group S4.

In view of Lemma 3.29 we will investigate the conditions for a candidate point
to be an internal point of C, and for a line joining two candidate points to be
external to C.
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Lemma 3.34 Consider the plane PG(2, q) with q odd. A point with coordinates
of the form (±1,±1, 0), (0,±1,±1) or (±1, 0,±1) is an internal point of the
conic C with equation X2 + Y2 + Z2 = 0 if and only if q ≡ 5 or 7 (mod 8).

The line with equation X = 0 (and similarly Y = 0 or Z = 0) is an external line
of C if and only if q ≡ 3 (mod 4).

A line with an equation of the form Z = ±X ± Y is an external line of C if and
only if q ≡ 5 (mod 6).

Proof : Consider a point Q with coordinates (1,±1, 0). (The other cases will
be left to the reader.) This point is internal to C if and only if its polar line is
external to C. The polar line of this point has equation X±Y = 0, i.e., Y = ∓X.
The intersection points of this line with the conic satisfy 2X2 + Z2 = 0. Hence
there will be two intersections or zero, according to whether −2 is a square in
Fq, or not.

The intersection of X = 0 with the conic yields Y2 + Z2 = 0 and has solutions
if and only if −1 is a square in Fq. The intersection of Z = ±X ± Y with the
conic yields X2 + Y2 + (X±Y)2 = 0, and hence X2± XY + Y2 = 0, which has
solutions if and only if −3 is a square in Fq.

When p is a prime, −2 is a square modulo p if and only if p ≡ 1 or 3 (mod 8).
When q = ph with h even, every element of the prime field is a square, but
then also q ≡ 1 (mod 8). When h is odd, −2 is a square in Fq if and only
if it is a square modulo p, but in that case also q ≡ p (mod 8). Hence, for
general odd q, −2 is a square in Fq if and only if q ≡ 1 or 3 (mod 8). As a
consequence, the point Q is internal if and only if q ≡ 5 or 7 (mod 8).

Similarly, −1 is a square if and only if q ≡ 1 (mod 4) and −3 is a square if
and only if q ≡ 1 (mod 6) or q ≡ 0 (mod 3).

Lemma 3.35 Let q ≡ −1 (mod 24). Then S4 acts semiregularly on C (i.e.,
every orbit has size 24).
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3.6. Arcs of type I with excess 3 or 4

Proof : To prove semiregularity we shall prove that no element of S4 stabilizes
a point of C. For this it is sufficient to prove this for one element σ of each
conjugacy class of S4. We have the following cases:

1. σ is an involution of S4 \ A4. Then σ = σQ for one of the ‘candidate points’
Q discussed above. By Lemma 3.34 Q must be an internal point and then σQ

cannot have fixed points on C.

2. σ is an involution of A4. Without loss of generality we may take σ to be the
map (x, y, z) 7→ (x, y,−z). A fixed point of σ therefore either has x = y = 0
or z = 0. A fixed point that belongs to C must therefore satisfy x2 + y2 = 0,
which is not possible, as −1 is not a square in Fq.

3. σ has order 3. Take σ(x, y, z) = (y, z, x). A fixed point of σ must satisfy
∣

∣

∣

∣

x y
y z

∣

∣

∣

∣

=

∣

∣

∣

∣

y z
z x

∣

∣

∣

∣

=

∣

∣

∣

∣

z x
x y

∣

∣

∣

∣

= 0.

Together with x2 + y2 + z2 = 0 this yields x2 + xy + y2 = 0 and this has no
solution because −3 is not a square in Fq.

4. σ has order 4. If σ fixes a point, then so does σ2, an involution that was
already treated before.

Combining the various lemmas in this section we obtain the following result.

Lemma 3.36 Let q ≡ −1 (mod 24). Let d = (q + 1)/24. Let O1, . . . , Od

denote the orbits of S4 on C. For i = 1, . . . , d write Oi = O+
i ∪O−i , where O±i

are orbits of A4 on C.

Then
S

def
= O±1 ∪ · · · ∪O±d ∪ {Q, Q′, Q′′, Q′′′}, (3.10)

for any choices of signs, is an arc of type I and excess 4 (with Q, Q′, Q′′, Q′′′ as
defined in (3.9)).
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The information we obtained so far is sufficient to state the following result.

Theorem 3.37 An arc in PG(2, q) of type I can have at most excess 4. If the
excess is 4 then q ≡ −1 (mod 24) and the arc is as described in Lemma 3.36.

Theorem 3.38 Let q ≡ −1 (mod 24). Let d = (q + 1)/24. The number of
projectively inequivalent arcs in PG(2, q) of type I with excess 4 is 2d−1. The
automorphism group of each arc is of type 22.

Proof : By Lemma 3.36 all arcs of this type are equivalent to one of the form
(3.10), with d choices of sign. Hence, there are 2d arcs of this form. We shall
prove that each arc S of this form is isomorphic to exactly one other arc S− of
this form, and hence that the number of inequivalent arcs is 2d−1.

We first determine the automorphism group of S. Any automorphism of S
must fix the conic C and the set U = {Q, Q′, Q′′, Q′′′}. The stabilizer of U in
PGL(3, q) is a symmetric group of degree 4, acting on U by permuting the 4
points. (This group is not to be confused with the group S4 = ∆̂T .) Of these
24 permutations, only the following also leave C invariant:

the identity (x, y, z) 7→ (x, y, z)
(Q Q′)(Q′′ Q′′′) (x, y, z) 7→ (x,−y,−z)
(Q Q′′)(Q′ Q′′′) (x, y, z) 7→ (x, z, y)
(Q Q′′′)(Q′ Q′′) (x, y, z) 7→ (x,−z,−y)

(Q Q′) (x, y, z) 7→ (x,−y, z)
(Q′′ Q′′′) (x, y, z) 7→ (x, y,−z)
(Q Q′′′ Q′ Q′′) (x, y, z) 7→ (x, z,−y)
(Q Q′′ Q′ Q′′′) (x, y, z) 7→ (x,−z, y)

They form a subgroup of type D8 of S4 (the dihedral group of order 8). Also
D4 = D8 ∩ A4 is isomorphic to the Klein group 22 (consisting of the first four
elements listed above).

Now, any element of S4 \ A4 (and therefore also any element of D8 \ D4)
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3.7. Arcs with excess one

interchanges the orbits O+
i and O−i , for all i, and hence maps S to the arc

S− = (C \ T) ∪U in which each orbit O±i is replaced by the orbit O∓i . On the
other hand, any element of A4 (and therefore any element of D4) leaves every
O±i invariant and hence fixes S. It follows that the automorphism group of S
is D4, and that S− is the only other arc of the same form that is equivalent to
S.

3.7 Arcs with excess one

In this section we regard the arcs of type I and E with excess one (type M has
excess at least two).

First, consider the arcs of type E with excess one.

Lemma 3.39 The subgroup H of PGL(2, q) that leaves both the conic C and an
external point invariant, is isomorphic to the dihedral group of order 2(q − 1)
consisting of the following elements:

{

Nk : t 7→ kt,

N′k : t 7→ k/t,
(3.11)

with k ∈ F
∗
q and t ∈ Fq ∪ {∞}.

Proof : We may without loss of generality assume that the external point is
Q0(0, 1, 0). Its tangent points are P0(1, 0, 0) and Pr(0, 0, 1).

The group that stabilizes the conic C and the point Q0 is equal to the group
that stabilizes the conic and the polar line P0Pr of Q0. Hence, H consists of all
matrices of the form (2.2) that stabilize the points P0 and Pr or interchanges
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them. In the first case, we find c = 0 and b = 0 and hence the matrix




1 0 0
0 d/a 0
0 0 d2/a2





In the second case we find a = 0 and d = 0 and hence the matrix




0 0 1
0 c/b 0

c2/b2 0 0



 .

These are exactly the mappings of (3.11), but here in terms of matrices.

Because an arc of type E with excess one contains exactly one conic point
on each of its (q− 1)/2 secants through the external point, there are 2(q−1)/2

different arcs of type E with the same supplementary point. Among these arcs
some are equivalent. This equivalence depends on the choice of the points on
the secants. The stabilizer group of such an arc always is a subgroup of the
dihedral group of order 2(q− 1). Because the number of possible subgroups
is large, we did not attempt to classify them.

Arcs among these with a lot of symmetry are those with the stabilizer group
isomorphic to the dihedral group of order q− 1 consisting of those elements
Nk, N′k for which k is a square in F

∗
q . An example of such an arc is the arc

consisting of Q0, P0, Pr and the points with coordinates (1, t, t2) with t a square
in F

∗
q .

Secondly, consider the arcs of type I with excess one.

Lemma 3.40 The subgroup H of PGL(2, q) that leaves both the conic C and an
internal point invariant, is isomorphic to the dihedral group of order 2(q + 1)
consisting of the following elements:

{

Mi : Pj 7→ Pi−j,

M′i : Pj 7→ Pj+i,
(3.12)

with i ∈ Zq+1.

66



3.8. Computer results

Proof : The group that stabilizes the conic C and an internal point is equal to
the group that stabilizes the conic and the corresponding polar line, which is
external. Hence, we can apply Lemma 3.4.

For similar reasons as for arcs of type E, there are 2(q+1)/2 different arcs of type
I with the same supplementary point and again, some of them are equivalent.

When (q + 1)/2 is odd, arcs with a lot of symmetry are those with stabilizer
group isomorphic to a dihedral group of order q + 1 consisting of the elements
Mi, M′i with i even. An example of such an arc is the arc consisting of the
internal point R with coordinates (−β, 0, 1) and the points Pj, with j even.

The arcs of type E with excess one are also discussed in [39], those of type I
are discussed in [23].

3.8 Computer results

As was already mentioned in the introduction, one of our motivations for the
theoretical treatment of the previous sections is to provide a basic setting for a
computer program to search for arcs with excess larger than two: we use the
theorems of the previous sections to quickly generate all large arcs with excess
two up to equivalence, and then use an exhaustive search to try to extend each
of these arcs with further supplementary points.

In Tables 3.2 and 3.3 we list the numbers of inequivalent arcs of types I, E
and M with excess two, for field orders smaller than 256. In these tables Na

denotes the number of all inequivalent arcs with excess two, as computed from
the formulae in Theorems 3.13, 3.22 and 3.28, while Ni denotes the number of
(inequivalent) incomplete arcs with excess two, as found by computer.

By Corollaries 3.9 and 3.18, we do not list values for q smaller than 13 (for type
I and M) or 11 (for type E). Note that some of the numbers Na are already quite
large, even for reasonably small values of q. As our program for finding arcs
with larger excess needs to investigate each arc of excess 2 separately, this puts
a limit on the values of q for which we could still find results in a reasonable
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time. If for this reason no further results could be obtained we have left the
Ni-column blank for the corresponding value of q.

q 3 external pts 4 external pts
13 1
17 1
19 1
27 3
43 1
59 1

Table 3.1: Number of inequivalent complete arcs of type E in PG(2, q) of excess at least
three.

In Table 3.1 we list the number of inequivalent complete arcs of excess at least
3 that can be obtained by extending an arc of type E of excess two. These arcs
are necessarily of type E themselves, because in this case the conic section is
too large to allow supplementary points that are internal. Our results agree
with those of [25], and although we managed to investigate larger values of q,
we did not find any new examples.

In Table 3.4 we list the number of inequivalent complete arcs of excess larger
than two that are extensions of an arc of excess two of type I. The first two
columns are the arcs of type I that were discussed in Section 3.6. The arcs in
the last two columns are of type M.

Finally in Table 3.5 we list the arcs of excess at least three that can be obtained
from an arc of type M of excess two (and hence are themselves of type M
too). The second and third columns are copies of the last two columns of
Table 3.4, as obviously (containing two internal points) these arcs can also be
constructed from an arc of type I and excess two.
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q type I type E type M
Na Ni Na Ni Na Ni

11 1 0
13 3 1 3 1 16 7
17 6 0 5 2 27 14
19 18 3 2 1 32 11
23 39 7 3 0 40 1
25 6 0 6 0 74 10
27 48 4 3 3 64 1
29 20 0 14 0 116 14
31 96 0 0 0 72 1
37 9 0 9 0 346 10
41 51 0 32 0 618 20
43 548 6 5 1 184 0
47 1200 20 36 0 144 0
49 30 0 22 0 2202 18
53 154 0 87 0 4284 31
59 8616 47 160 2 464 0
61 15 0 15 0 16624 15
67 32928 9 8 0 800 0
71 67207 78 537 0 380 0
73 18 0 18 0 131414 18
79 263416 24 72 0 416 0
81 20 0 20 0 524708 20
83 529134 149 2116 0 2472 0
89 8582 0 4342 0 2097904 192
97 129 0 81 0 8389229 45

101 32936 0 16544 0 16778288 288
103 16785550 14 18 0 1032 0
107 33624706 533 32935 0 17136 0
109 1126 0 594 0 67109736 104
113 131373 0 65828 0 134219454 548
121 30 0 30 0 536871842 23
125 525352 0 262962 0 1073744892 1115
127 1073807856 0 0 0 1056 0
131 2148567242 1043 524860 0 132248 0

Table 3.2: Number of inequivalent large arcs of types I, E and M in PG(2, q), q ≤ 131.
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q type I type E type M
Na Ni Na Ni Na Ni

137 2098231 0 1049644 0 8589939722
139 8590009516 81 4580 0 263392 0
149 8407258 0 4204736 0 68719486844
151 68720001653 27 0 4476 0
157 39 0 39 0 274877908504
163 549756338256 20 0 2098832 0
167 1099580854798 33560130 0 7760 0
169 65904 0 33104 0 2199023258752
173 134225990 0 67117112 0 4398046545524
179 8796363720868 134292172 0 8391616 0
181 6492 0 3324 0 17592186047176
191 70369834769136 536887296 0 2112 0
193 48 0 48 0 140737488357680
197 2147518740 0 1073775818 0 281474976844528
199 281475010795762 262686 0 26968 0
211 2251799847239784 26 0 134220536 0
223 18014398777992520 24768 0 3312 0
227 36028865873183538 34359869548 536877816 0
229 4196506 0 2099310 0 72057594037943304
233 137439222744 68719742540 144115188076908684
239 288230652112857584 137443412112 5600 0
241 2695 0 1415 0 576460752303427803
243 576460752840294520 30 0 2147487368 0
251 2305844109801372844 549756443182 4294979568 0

Table 3.3: Number of inequivalent large arcs of types I, E and M in PG(2, q), 131 <

q < 256.
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q 3 internal pts, 4 internal pts, 2 internal pts, 2 internal pts,
1 external pt 2 external pts

13 1
19 2
23 3 1 1
27 3
43 5
47 10 2
59 28
67 8
71 42 4
79 16
83 82

103 12
107 277
131 1052
139 261

Table 3.4: Number of inequivalent complete arcs in PG(2, q) that can be obtained by
extending a large arc of type I and excess 2 with at least one point.
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q 1 int. pt, 2 int. pts, 2 int. pts, 1 int. pt, 1 int. pt,
2 ext. pts 1 ext. pt 2 ext. pts 3 ext. pt 7 ext. pts

13 6 1
17 11 1
19 5 1
23 1
25 10
27 1
29 9
31 1
37 10
41 13
49 14
53 20
61 15
73 18
81 20
89 102
97 33

101 152
109 62
113 283
121 23
125 1115

Table 3.5: Number of inequivalent complete arcs of type M in PG(2, q) of excess at
least three.
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4
Generation of (k, 2)- and (k, 3)-arcs

In this chapter we describe the algorithms that are used to find a full classifi-
cation (up to equivalence) of all complete (k, 2)-arcs and (k, 3)-arcs in PG(2, q).
The algorithms used are an application of isomorph-free backtracking using
canonical augmentation which we have adapted to the case of subset gen-
eration in projective planes. The results of the algorithms are described in
Chapters 5, 6 and 7.

4.1 Isomorph-free generation

The natural way to generate all complete arcs of a given (finite) projective
plane is to use a backtracking algorithm which recursively generates every
(k + 1)-arc S′ from a k-arc S such that S ⊆ S′. At each step in the recursion
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a point s is taken which does not belong to S and S′ is set equal to S ∪ {s}.
Typically, to avoid generating every arc more than once, the points of the
projective plane are numbered in a certain way, and a point s is added to S
only if it has a sequence number larger than that of any point of S. Also s is
only added when it does not lie on a bisecant of S, and if for a given S no
such s can be found, S is checked for completeness.

In most applications we do not seek to generate every single complete arc, but
only one arc for each equivalence class, i.e., one representative of each orbit
of G = PΓL(3, K) (or PGL(3, K)). It is well known that filtering out equivalent
arcs at the end of the standard generation process, or even after all arcs of a
given size have been generated, is simply too costly in time and memory. In
our programs we have instead used a technique for isomorph-free generation
called canonical augmentation which was developed by B. McKay [35]. For
further details we refer the reader to that paper, or to [21, Section 4.2.3] which
gives a comprehensive description of these methods in the setting of codes
and designs.

4.1.1 Canonical augmentation

Let V denote a finite set of size |V| = n and let G denote a group with a right
action on V. In our case V is the set of points of PG(2, q) and G is PGL(3, q)
or PΓL(3, q), but the algorithms below work in a more general setting.

If H is a subgroup of G, then the partition of V into orbits of H is denoted
by H\\V. We define the base size of an orbit SH to be the size |S| of one (and
hence of all) of its representatives.

An orbit O′ = S′G is said to augment an orbit O if and only if S′ can be written
as S′ = S ∪ {s} with s /∈ S and S ∈ O. In other words, O′ augments O if a
representative of O′ (and hence every representative) can be obtained from a
representative of O by adding a single element of V. In that case the base size
of O′ will be one larger than the base size of O.

Algorithms 1 and 2 which we shall describe below can be used to generate,
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up to equivalence, all subsets S that satisfy a certain property P(S), where P

is a set predicate with the following characteristics:

1. P is group invariant: P(S) if and only if P(Sg), for every S ⊆ V and g ∈ G;

2. P is hereditary: if P(S) then P(S′) for every subset S′ of S.

Because P is group invariant, we may also regard P as a predicate on set orbits.
In other words, if O ∈ G\\2V (2V is the set of all subsets of V), then we write
P(O) if and only if P(S) holds for some S ∈ O (and then for all S ∈ O).

Algorithms 1 and 2 take as input a set of orbits Ain ⊆ G\\2V that satisfy P.
They generate as output a set Aout ⊆ G\\2V of orbits that augment elements
of Ain. In the following section, we prove that if we initialize Ain to contain
all orbits of a fixed base size k that satisfy P, we will end up with te set Aout
of all orbits of base size k + 1 that satisfy P. Hence, to generate all orbits that
satisfy P, we start with Ain = {∅} and iterate the algorithm to generate all
orbits of subsequent base sizes. In this way we finally obtain all orbits that
satisfy P.

In practice it is not always necessary to start from the empty set and to avoid
having to store the sets Aout at each stage it is better to convert the breadth-
first search which we describe here to an equivalent depth-first search. Also,
instead of working with orbits directly, we represent each orbit by a single
representative.

The algorithms make use of a special function F : 2V → 2V which needs to
be chosen carefully (and whose choice depends on the particular problem).
We shall however postpone the precise definition of F to Section 4.2.3. For
now we only list the properties F is required to satisfy to make the algorithms
work.

1. For all S, S ⊆ V, S 6= ∅, we have F(S) ∈ GS\\S,

2. For all S ⊆ V, g ∈ G, we have F(Sg) = F(S)g.
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Note that GSg\\Sg = (GS\\S)g, and hence both requirements do not contradict
each other. Also, it follows immediately that F(S)h = F(S) for all h ∈ GS.

Informally, F singles out a special orbit of GS in S, for every S.

4.1.2 The algorithms

Algorithm 1 provides a first method for isomorph-free generation of sets us-
ing the technique of canonical augmentation. Lemmas 4.1 and 4.2 below show

Algorithm 1 Isomorph-free generation

Input: Ain ⊆ G\\2V

Output: Aout ⊆ G\\2V

1: Aout = ∅

2: for all O ∈ Ain do

3: Choose S ∈ O ❶

4: for all O ∈ GS\\(V \ S) do

5: Choose s ∈ O ❷

6: S′ ← S ∪ {s}
7: if P(S′) and s ∈ F(S′) then

8: Add S′G to Aout ❸

9: end if

10: end for

11: end for

that the resulting set Aout is independent of the choices of orbit represen-
tatives made at statements ❶ and ❷, and hence that the algorithm is well-
defined.

Lemma 4.1 The result of Algorithm 1 is independent of the choice of the repre-
sentative s of the orbit O at statement ❷.

Proof : Assume we choose s̄ ∈ O instead of s. Then s̄ = sh for some h ∈ GS and
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4.1. Isomorph-free generation

hence on line 6 we obtain S′ = S ∪ {s̄} instead of S′. We have S′ = S ∪ {s̄} =
Sh ∪ {sh} = (S ∪ {s})h = S′h, and hence P(S′) holds if and only if P(S′) does.
Likewise, s ∈ F(S′) if and only if s̄ = sh ∈ F(S′)h = F(S′h) = F(S′). It follows
that statement ❸ will be executed for S′ if and only if it would be executed

for S′, and because S′
G

= S′hG = S′G, in both cases exactly the same element
is added to Aout.

Lemma 4.2 The result of Algorithm 1 is independent of the choice of the repre-
sentative S of the orbit O at statement ❶.

Proof : Assume we choose S̄ ∈ O instead of S. Then S̄ = Sg for some g ∈ G.
The set of orbits O traversed by the loop on line 4 is now GS̄\\(V \ S̄) =
GSg\\(V \ Sg) = G

g
S\\(V \ S)g = (GS\\(V \ S))g.

Hence, for every O which we encounter for the original choice of S, we now
obtain a new element Ō = Og. The element chosen on line 5 can now be
written as s̄ = sg ∈ Ō, and on line 6, S′ is replaced by S′ = Sg ∪ {sg} = S′g.
As in the proof of Lemma 4.1 we have P(S′) if and only if P(S′) and s ∈ F(S′)
if and only if s̄ ∈ F(S′). It again follows that statement ❸ will be executed for
S′ if and only if it would be executed for S′ with the original choice of S. And

again S′
G

= S′gG = S′G.

We are now ready to prove that Algorithm 1 indeed does what we expect of
it.

Theorem 4.3 Let k ∈ {1, . . . , |V| − 1}. If Ain is initialized to the set of all
orbits O of base size k such that P(O), then Algorithm 1 terminates with Aout
equal to the set of all orbits O′ of base size k + 1 such that P(O′).

Moreover, statement ❸ of Algorithm 1 is executed at most once for every such
O′.

Proof : We need to prove that statement ❸ of Algorithm 1 is executed exactly
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4. Generation of (k, 2)- and (k, 3)-arcs

once for every orbit O′ = S′G that satisfies P(O′) and such that |S′| = k + 1.

Let O′ denote an orbit of this type, and let T′ ∈ O′. From P(O′) it follows
that P(T′) (by definition). Let t ∈ F(T′) and define T = T′ \ {t}. Note that
|T| = k and because P is hereditary, that P(T). Hence TG ∈ Ain and therefore
O = TG is one of the orbits that will be considered by the loop of line 2.

By Lemma 4.2 we may without loss of generality choose S = T in statement
❶. When O = tGT (which is certainly considered by the loop at line 4, as
t ∈ V \ T) we may without loss of generality choose s = t in statement ❷, by
Lemma 4.1. In this case S′ = T′, P(S′) is satisfied and also s ∈ F(S′), and
therefore S′G = T′G = O′ is added to Aout in statement ❸. Hence, statement
❸ is called at least once for each of the orbits O′ of the requested type.

Now assume that statement ❸ is called for O′ in two different occasions, say
for O′ = S′1

G and for O′ = S′2
G. Because S′1 and S′2 are representatives of

the same orbit, there exists g ∈ G such that S′1 = S′2
g. Lines 6 and 7 of the

algorithm imply that

S′1 = S1 ∪ {s1} for some s1 ∈ F(S′1),
S′2 = S2 ∪ {s2} for some s2 ∈ F(S′2).

Now F(S′1) = F(S′2
g) = F(S′2)

g and therefore both s1 and s
g
2 belong to F(S′1),

an orbit of GS′1
. Hence, there exists h ∈ GS′1

such that sh
1 = s

g
2 .

We have
Sh

1 = S′h1 \ {sh
1} = S′1 \ {s

g
2} = S

′g
2 \ {s

g
2} = S

g
2 ,

and therefore S1 and S2 belong to the same orbit O of G.

Because line 2 of the algorithm only visits each orbit of G at most once, and
line 3 chooses exactly one representative of that orbit, it follows that S1 = S2.

This also implies that Sh
1 = S

g
2 = S

g
1 , and hence hg−1 ∈ GS1

. Now, s2 = s
hg−1

1 ,
and therefore s1 and s2 belong to the same orbit O of GS1

. Because line 4 of
the algorithm only visits each orbit of GS on (V \ S) at most once, and line
5 chooses exactly one representative of that orbit, we may now derive that
s1 = s2 and therefore S′1 = S′2.
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4.1. Isomorph-free generation

It is crucial to the efficiency of the algorithm that statement ❸ will be executed
at most once for every such orbit O′. It allows us to implement Aout as a list
instead of a set, in other words, that elements can simply be added to the end
of Aout without the need to check for duplicates.

Without this property, adding elements to Aout would be a costly operation,
not only because Aout is very large, but also because checking for equality of
elements is quite expensive. Indeed, because an orbit is represented by one of
its representatives, testing whether two orbits are equal amounts to deciding
whether two elements are in the same orbit and this is difficult to do fast,
especially because the elements in this case are sets of points.

The fact that we represent an orbit by one of its elements exposes a weak point
of Algorithm 1: the inner loop of the algorithm visits every orbit O exactly
once, which again implies that we need to determine whether two elements
belong to the same orbit. Fortunately in this case elements are points and not
entire sets. However, the group for which we need to compute the orbits is
the stablizer group GS, which is different for every iteration of the outer loop,
and is non-trivial to compute.

For this reason, it is sometimes more convenient to use Algorithm 2 which
is a simple variant of the first algorithm. Algorithm 2 tries to augment the
set S with every possible s ∈ V \ S, and not with just one s for each orbit of
GS. Instead of adding the resulting orbits S′G immediately to Aout they are
gathered into a set B, which is then added every time to Aout in its entirety.
This time B is a true set and not a simple list: contrary to Algorithm 1 it may
now happen that the same orbit is added more than once to B in statement
❹. Hence, avoiding the computation of GS comes at the cost of an extra check
for duplicates in a set of sets of points B, albeit a small one.

We now prove that the algorithm is well-defined.

Lemma 4.4 The result of Algorithm 2 is independent of the choice of the repre-
sentative S of the orbit O at statement ❹.
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4. Generation of (k, 2)- and (k, 3)-arcs

Algorithm 2 Isomorph-free generation without the need to compute GS

Input: Ain ⊆ G\\2V

Output: Aout ⊆ G\\2V

1: Aout = ∅

2: for all O ∈ Ain do

3: Choose S ∈ O ❹

4: B = ∅

5: for all s ∈ V \ S do

6: S′ ← S ∪ {s}
7: if P(S′) and s ∈ F(S′) then

8: Add S′G to B ❺

9: end if

10: end for

11: Add all elements of B toAout ❻

12: end for

Proof : Assume we choose S ∈ O instead of S. Then S = Sg for some
g ∈ G. We obtain (V \ S) = (V \ S)g, so the algorithm runs through each
s̄ ∈ (V \ S) instead of each s ∈ (V \ S). However, for each s̄ there exists
a s ∈ (V \ S) such that s̄ = sg. On line 6, the element S′ is replaced by
S′ = S ∪ {s̄} = Sg ∪ {sg} = s′g. We have P(S′) if and only if P(S′) and
s ∈ F(S′) if and only if s̄ ∈ F(S′). It follows that statement ❻ will be executed
for S′ if and only if it would be executed for S′ with the original choice of

S, and because S′
G

= S′gG = S′G, in both cases exactly the same element is
added to B.

Theorem 4.5 Let k ∈ {1, . . . , |V| − 1}. If Ain is initialized to the set of all
orbits O of base size k such that P(O), then Algorithm 2 terminates with Aout
equal to the set of all orbits O′ of base size k + 1 such that P(O′).

Proof : We need to prove that statement ❺ of Algorithm 2 is executed at least
once for every orbit O′ = S′G that satisfies P(O) and such that |S′| = k + 1.

Let O′ denote an orbit of this type, and let T′ ∈ O′. From P(O′) it follows

80



4.1. Isomorph-free generation

that P(T′) (by definition). Let t ∈ F(T′) and define T = T′ \ {t}. Note that
|T| = k and because P is hereditary, that P(T). Hence TG ∈ Ain and therefore
O = TG is one of the orbits that will be considered by the loop of line 2.

By Lemma 4.4 we may without loss of generality choose S = T in statement
❹. As t ∈ (V \ S), T′ = T ∪ {t} will be considered in line 6 and will be added
to B in ❺. Hence, statement ❺ is called at least once for each of the orbits O′
of the requested type.

Lemma 4.6 In Algorithm 2, every orbit S′G is added to at most one B in step
❺ and hence is added to Aout at most once.

Proof : Assume the algorithm tries to add S′G1 to a set B1 and S′G2 to a set B2

in step ❺, with S′G1 = S′G2 . There exists a g ∈ G such that S′1 = S
′g
2 . From lines

6 and 7 of the algorithm it follows that

S′1 = S1 ∪ {s1} for some s1 ∈ F(S′1)
S′2 = S2 ∪ {s2} for some s2 ∈ F(S′2)

Also F(S′1) = F(S
′g
2 ) = F(S′2)

g which implies that both s1 and s
g
2 belong to

F(S′1), an orbit of GS′1
. Hence, there exists h ∈ GS′1

such that sh
1 = s

g
2 . We have

Sh
1 = S′h1 \ {sh

1} = S′1 \ {s
g
2} = S

′g
2 \ {s

g
2} = S

g
2 ,

and therefore S1 and S2 belong to the same orbit O of G. This leaves us two
cases, either S1 = S2 or S1 6= S2. If S1 6= S2, then lines 2 and 3 of the algorithm
imply that only one of these sets is considered during generation, and hence
either S′G1 is added to B1 or S′G2 is added to B2. If S1 = S2 then S′1 and S′2 are
added to the same set B.

We have programmed both algorithms in the case of k-arcs. For smaller q, we
have run them both as an additional validity check.

In Section 4.4.3, we explain some additional speed improvements that turn
out to be useful in practice.
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4. Generation of (k, 2)- and (k, 3)-arcs

4.2 Isomorph-free generation for (k, 3)-arcs

In this section, for P(S) we consider the predicate “S is a (k, 2)-arc or a (k, 3)-
arc of PG(2, q)” (often simply referred to as “arcs” in this section). Recall that
we often silently drop the requirement that at least one line must contain 3
points in a (k, 3)-arc. This means that we sometimes regard a (k, 2)-arc as a
special case of a (k, 3)- arc. Of course, for complete (k, 3)-arcs this is not an
issue because a (k, 2)-arc can never be a complete (k, 3)-arc.

The predicate is group invariant and hereditary as required for the algorithm.
Indeed, for every subset T ⊂ S it holds that if S is an arc, then so is T. Also
Sg with g ∈ G is an arc if and only if S is an arc.

Note that “being a complete arc” is not a hereditary property and can therefore
not be used as predicate P. Instead we generate all arcs (up to equivalence)
and discard the incomplete arcs at the end.

4.2.1 Invariants

We were able to obtain significant speed improvements to the basic algorithms
of Section 4.1 by making use of certain invariants of the arcs being generated.

Let S be a (k, 3)-arc, let ℓ be a line of the plane, let p be a point of the plane.
Denote the number of points of S on ℓ by dS(ℓ), the number of bisecants of
S through p by bS(p) and the number of trisecants of S through p by tS(p).
Note that dS(ℓ), bS(p) and tS(p) are invariant for the group G in the sense
that dS(l) = dSg(lg), bS(p) = bSg(pg) and tS(p) = tSg(pg) for all g ∈ G. Hence
it follows that dS(ℓ), bS(p) and tS(p) are also invariant for the group GS.

For every line ℓ of the plane we define the following line invariant:

IS(ℓ)
def
= h1(dS(ℓ)) + ∑

p∈ℓ\S
(h2(bS(p)) + h3(tS(p))) (4.1)

where h1, h2, h3 denote simple hash functions (cf. Section 4.4.5). Again IS
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4.2. Isomorph-free generation for (k, 3)-arcs

satisfies ISg(ℓg) = IS(ℓ) for every g ∈ G. Note that IS can be computed very
efficiently if we keep track during the course of the algorithms of the values
of dS(ℓ), bS(p) and tS(p) for all lines and points of the plane.

For every point p of the plane we define a point invariant:

IS(p)
def
= ∑

ℓ,p∈ℓ

h(IS(ℓ)), (4.2)

where h denotes a simple hash function (cf. Section 4.4.5). Here we also have
ISg(pg) = IS(p) for every g ∈ G. The computation of the point invariant
values for all points in the arc S is not very efficient, but we do not need to
compute them for every generated arc S. In many cases tS(p) is itself already
a sufficiently strong invariant for our purposes and IS(p) is only used when
this turns out not to be the case.

The functions tS and IS each induce a partition on S which we will denote by
tS\\S, resp. IS\\S. Two points p, p′ belong to the same part U ∈ tS\\S (IS\\S)
if and only if tS(p) = tS(p′) (IS(p) = IS(p′)), and in that case we shall write

tS(U)
def
= tS(p) (IS(U)

def
= IS(p)). We will call elements of these partitions

t-quasi-orbits and I-quasi-orbits of S.

Note that U ∈ tS\\S satisfies Ug = U for every g ∈ GS and therefore any
t-quasi-orbit U is a union of orbits of GS on S. The same holds for all I-quasi-
orbits. In particular, every singleton t- or I-quasi-orbit {p} must be a true
orbit of GS. In other words, GS\\S is a refinement of tS\\S and of IS\\S. The
sets U are called quasi-orbits because we hope the invariants to be sufficiently
strong such that the sets are true orbits in most of the cases.

4.2.2 Canonical form

While the invariants tS and IS play a crucial role in the canonical augmentation
algorithm, there are (rare) occasions where they are not sufficient to ensure
isomorph-free generation. In those cases we need to use a so called canonical
form can (S) of the generated set S. A canonical form is a map can : 2V 7→ 2V

such that
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4. Generation of (k, 2)- and (k, 3)-arcs

• can (S) ∈ SG

• can (S) = can (T) if and only if SG = TG.

In other words, can (·) chooses one particular representative in every orbit
of G\\2V . We simply call can (S) the canonical form of S. Fortunately, the
data we gather to compute the invariants can also be put to good use when
constructing such a canonical form. We want to construct a canonical form
for S in which certain known points have minimal point invariant values.

Let JS denote one of the point invariants (IS or tS) of the previous section. To
describe the canonical form which was used in our algorithms, we introduce
the following ordering on the quasi-orbits of S: let U, U′ ∈ JS\\S, then U < U′

if and only if |U| < |U′| or |U| = |U′| and JS(U) < JS(U′). In other words,
we order the quasi-orbits first according to size and then according to point
invariant value. This ordering has the interesting property that it is group
invariant in the following sense: if U < U′ in JS\\S, then Ug < U′g in JSg\\Sg.

It is very easy to see that the two points p1 and p2 with minimal invariants,
i.e., satisfying JS(p1) ≤ JS(p2) ≤ JS(p) for all p ∈ S − {p1, p2}, can always
be mapped by a projectivity to two chosen points, say the points e1, e2 with
coordinates (1, 0, 0) and (0, 1, 0). We would like to extend this principle to
four points, but there are some complications.

The first complication already arises for the point p3 with third smallest in-
variant. We have two possibilities: if p1, p2, p3 are not collinear, then p3 can be
mapped to e3(0, 0, 1), otherwise it can be mapped to f3(1, 1, 0).

We can however be sure that if the third point cannot be mapped to e3(0, 0, 1)
then the fourth point can (otherwise there would be four points on the same
line). More generally, among the five points with smallest invariants, we will
always be able to find four that form a quadrangle. The fourth point of the
quadrangle can then be mapped to e4(1, 1, 1). Whence the following defini-
tion :

Let JS denote an invariant (in our case JS = IS or tS). Then an arc S will be
called J-quasi-canonical if and only if the following conditions are satisfied :
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4.2. Isomorph-free generation for (k, 3)-arcs

• e1, e2, e3, e4 ∈ S,

• JS(e1) ≤ JS(e2) ≤ JS(e3) ≤ JS(e4)

• There exist at most one point p ∈ S − {e1, e2, e3, e4} such that JS(p) <

JS(e4).

• If such p exists, it lies on at least one of the lines eiej, or equivalently,
{e1, e2, e3, e4, p} is not a (5, 2)-arc.

• If such p lies on exactly one line eiej, then JS(p) ≥ JS(ei) and JS(p) ≥
JS(ej).

Proposition 4.7 Let S be a (k, 3)-arc of PG(2, q) with |S| ≥ 5. Then SG

contains at least one J-quasi-canonical element.

Proof : We can always find a set P = {p1, . . . , p5} ⊆ S of 5 points of S that
satisfy the condition JS(p1) ≤ JS(p2) ≤ · · · ≤ JS(p5). (Take p1 to be one of the
points of S for which JS is minimal, take p2 to be one of the points of S−{p1}
for which JS is minimal, . . . )

Now define the point p∗ as follows :

• If no three points among p1, . . . , p5 are collinear, then p∗
def
= p5.

• If P contains exactly one collinear triple, say pi pj pk with i < j < k, then

p∗
def
= pk.

• If P contains two collinear triples, then p∗ is the point these triples have
in common.

Define P′ = P − {p∗}. By the choice of p∗, P′ contains no collinear triples.
Write P′ = {pi, pj, pk, pℓ} with i < j < k < ℓ. Now, there exists a (unique)
projectivity g that maps pi to e1, pj to e2, pk to e3 and pℓ to e4.

We leave it to the reader to verify that Sg is J-quasi-canonical.
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The proof of this proposition is constructive and can easily be extended to an
algorithm which finds all J-quasi-canonical elements of SG.

Fix an ordering on the points of the plane and extend this to a lexical ordering
of subsets of points of equal size. We are finally in a position to define the
canonical form of a (k, 3)-arc. Let S denote a (k, 3)-arc with k ≥ 5.

1. If the t-quasi-orbit partition of S contains at least one singleton, then
define can (S) to be the smallest of all t-quasi-canonical arcs in SG with
respect to this lexical ordering.

2. Otherwise, define can (S) to be the smallest of all I-quasi-canonical arcs
in SG with respect to this lexical ordering.

Although the definition of the canonical form is rather involved, in practice it
can be computed quite efficiently, especially when all relevant invariant values
are known beforehand.

There are two places in our algorithms where the canonical form can be useful.
First, it is used to construct the function F (Section 4.2.3). Second, it can be
used to decide whether two arcs belong to the same orbit of G (Section 4.2.4).

4.2.3 The function F

We use the point invariants and the canonical form to construct the function
F which we have used in Algorithms 1 and 2.

For (k, 3)-arcs we define F as follows:

1. If the t-quasi-orbit partition of S contains at least one singleton, then we
define F(S) to be the singleton {p} for which tS(p) is minimal.

2. Otherwise, if the I-quasi-orbit partition of S contains at least one sin-
gleton, then we define F(S) to be the singleton {p} for which IS(p) is
minimal.
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3. Otherwise F(S)
def
= e

hGS
1 where h ∈ G is such that S = can (S)h and e1

is as in Section 4.2.2. In simple terms: F selects that orbit of GS whose
representative corresponds to e1 in the canonical form of S.

Note that the definition of the function F is independent of the choice of h.
Indeed, suppose S = (can (S))h = (can (S))h′ with h, h′ ∈ G. Then can (S) =

Sh−1
= Sh′−1

, so Sh−1h′ = S. This implies h−1h′ ∈ GS and hence h−1h′GS = GS.
So hGS = h′GS.

The following proposition shows that F satisfies the necessary properties to
be safely applied in Algorithms 1 and 2 (cf. Section 4.1.1):

Proposition 4.8 Let F(S) be defined as above. Then

1. For all S, S ⊆ V, S 6= ∅, F(S) is an orbit of GS on S;

2. For all S ⊆ V, g ∈ G, we have F(Sg) = F(S)g.

Proof : 1. In the first and second case of the definition F(S) is a singleton
quasi-orbit of S and hence a true orbit of GS on S. Otherwise, F(S) is of

the form e
hGS
1 which is a GS-orbit of eh

1 . And because e1 ∈ can (S), we have
eh

1 ∈ (can (S))h = S.

2. Let JS denote one of the invariants tS or IS. Because the J-quasi-orbit
partition for Sg is the image by g of the J-quasi-orbit partition of S, either both
will contain singletons or neither. Hence F(S) and F(Sg) either both satisfy
the conditions of the first (or second) part of the definition, or neither do.

In the first case we have JSg(pg) = JS(p) for all singleton quasi-orbits {p} of
S, and hence if {p} is the singleton for which JS is minimal, then {p′} = {pg}
will be the singleton for which JSg is minimal, with the same value. Hence
F(Sg) = F(S)g in that case.

Otherwise Sg and S are in the same G-orbit, and hence have the same canon-
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ical form can (S) = can (Sg). If S = (can (S))h, then Sg = (can (S))hg and

therefore F(Sg) = e
hgGSg

1 = e
hGSg
1 = F(S)g.

Computing F(S) is fast in most cases. Indeed, the majority of (partial) arcs
encountered in the course of the algorithm have a trivial automorphism group
and therefore all orbits have size 1. Moreover, if the automorphism group is
non-trivial, it is often small enough to contain at least a few orbits of size 1.
When orbits have size 1, we expect (some of) the quasi-orbits also to have size
1, and indeed in practice this often turns out to be the case. As a consequence,
we hardly ever need to compute the canonical form of S in order to determine
whether s ∈ F(S′) (line 7 of the algorithms).

Also note that we only use the point invariant IS(p) if there is no unique value
among all values tS(p) for all p ∈ S. For instance, for q = 11 this only happens
in 41% of the cases, for q = 13 in 38% of the cases .

4.2.4 Orbit membership

In statement ❺ of Algorithm 2 we need to decide whether two arcs (say S′

and T′) belong to the same orbit of G. This is a non-trivial task. Fortunately,
we can use the point invariant values that already have been computed as
a preliminary test: two non-isomorphic sets always have different invariant
values. Therefore, we store the J-point invariant values of the points p of the
arc S′, resp. T′ in a sorted list LS′ , resp. LT′ according to the ordering defined
in Section 4.2.2. If the lists LS′ and LT′ are different, then S′ and T′ cannot
belong to the same orbit (this turns out to happen in most of the cases). If the
lists are equal however, we compute can (S)′ and can (T)′ and compare them
for equality (they are equal if and only if S′G = T′G).

When line 8 is reached during the algorithm, the computation of F(S′) has
already been done in line 7. Hence, at this point we already know whether
the t-quasi orbit partion of S′ contains a singleton or not. The arc T′ to which
S′ is compared, was already part of the set B, so for this set F(T′) was also
already determined. If one of the sets S′ or T′ contains a singleton t-quasi
orbit, then for this set the I-point invariant values were not determined yet,
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and then we take J = t. If none of the sets contains a singleton, the values
IS′(p) and IT′(p) have been computed in line 7, so then we take J = I.

4.3 Isomorph-free generation for (k, 2)-arcs

In Section 4.3 we described the algorithm for the generation of (k, 3)-arcs. The
generation of (k, 2)-arcs can be done in a very similar way. The major part
of the algorithm is the same except for some changes (mostly simplifications)
that will be explained in this section.

For P(S) we now consider the predicate “S is a (k, 2)-arc of PG(2, q)”.

We no longer have the values tS(p) for points p in S as trisecants do not exist
for (k, 2)-arcs. Therefore we reduce (4.1) to

IS(ℓ)
def
= ∑

p∈ℓ\S
h2(bS(p)), (4.3)

in which we have also dropped the value dS(ℓ) because it can be derived from
the values bS(p).

For (k, 3)-arcs bS (bS and tS are linear dependent) was itself already a suffi-
ciently strong point invariant for our purposes and IS(p) was only used when
this turned out not to be the case. For (k, 2)-arcs, each point p in the arc has
the same value bS(p) = k− 1. Therefore, the t-point invariant is of no use in
this case and hence we only use the I-point invariant values.

Also, the definition of quasi-canonical arcs turns out to be easier: four points
of the arc with minimal invariants, i.e. I(p1) ≤ I(p2) ≤ I(p3) ≤ I(p4) ≤
I(p) for all p ∈ S− {p1, p2, p3, p4}, can always be mapped to the four points
e1, e2, e3, e4 by a projectivity. Hence, a (k, 2)- arc S will be called quasi-canonical
if and only if e1, e2, e3, e4 ∈ S and IS(e1) ≤ IS(e2) ≤ IS(e3) ≤ IS(e4). We have
the following proposition:
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Proposition 4.9 Let S be an arc of PG(2, q) with |S| ≥ 4. Then SG contains at
least one quasi-canonical element.

The canonical form of a (k, 2)-arc S with k ≥ 4 can now be defined as the
lexically smallest of all quasi-canonical elements of SG.

In the definition of the function F, the first item can be dropped which again
makes the definition more simple.

4.4 Additional remarks

We end this chapter with some additional information on the actual imple-
mentation of the generation algorithms.

4.4.1 Initial Configurations

In Section 4.1.1 we explained that it is not always necessary to start the genera-
tion from the empty set. In the case of (k, 2)-arcs we start with the unique orbit
of (4, 2)-arcs in PG(2, q) and we take the set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}
as representative for this orbit. For (k, 3)-arcs we need one additional orbit,
the unique orbit of sets of size 4 in which at least 3 points are collinear. A
representative of this set is {(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)}.

4.4.2 Computation of invariants

During the course of the algorithms we keep track of several quantities instead
of recomputing them every time we need them. For example, for each line we
store whether it is an external line, a unisecant, a bisecant (or a trisecant) of
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the current arc S. Whenever we augment S to S′ = S ∪ {s}, we only need to
update this information for the lines through s, which can be done in time
O(q). Likewise, for every point p we keep track of the current number bS(p)
of bisecants through that point. For (k, 3)-arcs we also store the number tS(p)
of trisecants. When S is augmented to S′, and a line ℓ is promoted from
unisecant to bisecant (or from bisecant to trisecant), we simply add one to this
value bS(p) (or tS(p)) for each point on ℓ. The values of bS(p) (or tS(p)) also
help us in determining which points can be added to the current arc for it
to remain an arc: we only consider those points s that satsify bS(p) = 0 (or
tS(p) = 0).

The values of the point and line invariants IS are computed anew every time
we need them. However, we only need to compute IS(p) for points p ∈ S, and
as a consequence, we also do not need to compute IS(ℓ) when ℓ is an external
line of S. In the case of (k, 3)-arcs, we even only compute IS(p) for points
p ∈ S if there was no singleton t-quasi orbit. If a singleton t-quasi orbit was
found, we do not compute IS(ℓ) for any line of the plane.

Programs that use canonical augmentation usually benefit from an optimiza-
tion technique that consists of avoiding the computation of canonical forms as
much as possible. In our case profiling statistics show that for larger q indeed
little running time is still spent in constructing canonical forms. Instead most
of the effort goes into calculating point and line invariants.

It might be possible to further decrease the number of canonical forms which
need to be computed by using ‘better’ invariants, i.e., invariants for which the
quasi-orbits more closely resemble the true stabilizer orbits. One way to ob-

tain such invariants would be as follows: define a new line invariant I′S(ℓ)
def
=

∑p∈ℓ h′(IS(p)), and from this, a new point invariant I′S(p)
def
= ∑ℓ,p∈ℓ h′′(I′S(ℓ))

using some simple hash functions h′ and h′′. This strategy can even be re-
peated several times to obtain further invariants I′′S , I′′′S , . . .

However, each step in this process takes O(q3) of computation time (with the
simplifying assumption that we need the invariant values for all points and
all lines). Because the determination of invariant values is already the major
bottleneck of the program, using these new invariants would probably slow
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4. Generation of (k, 2)- and (k, 3)-arcs

down the generation process rather than speed it up.

4.4.3 Some small improvements

In Section 4.1 we presented two variants of the same algorithm. One variant
makes use of the set stabilizer of the partial arc which we obtain, the other
does not, but requires further checks to make sure that no two isomorphic
arcs are ever generated. In the first algorithm, the set stabilizer of the arc has
to be recomputed for every iteration, a non-trivial task.

However, in some cases too much work is done. Indeed, whenever GS is
trivial, and the point s has a unique value of IS(s), then also GS′ must be trivial
(with S′ = S ∪ {s}), and therefore there is no need to compute GS′ explicitly.
Also, when a sufficient number of points of S have a value of IS that is unique
(four points for (k, 2)-arcs, five for (k, 3)-arcs), this again implies that GS is
trivial (when G = PGL(3, q)).

Because we compute the values of IS in the course of the algorithm anyway,
these extra checks allow us to make some simple shortcuts. Note that a trivial
stabilizer group implies trivial orbits, making it easy to ensure that we select
not more than one point for each orbit, a crucial step in the algorithm. As
mentioned before, it turns out that almost all arcs that are encountered have a
trivial automorphism group.

In our program we use a combination of Algorithm 1 and 2. Whenever an arc
S′ of size k has a trivial stabilizer group, we use Algorithm 1 to find the arcs
of size k + 1 containing S′. If however S′ has a non-trivial stabilizer group, we
use Algorithm 2 in the following level of the generation.

This idea is essentially a toned down version of a similar technique Brinkmann
and McKay used for generating posets up to isomorphism [5].
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4.4.4 Computational group methods

In the algorithm descriptions above we have left out any details about the
computational group methods involved. Where most authors favour the use
of permutation group techniques for problems like these, we have instead
chosen to represent elements of PGL(3, q) as 3× 3 matrices, and subgroups of
PGL(3, q) as lists of such elements.

There were several reasons for this decision. Matrices use little storage space
and provide an easy way to compute the unique projectivity that maps one
4-arc to another. Also the subgroups involved tend to be small. As has already
been indicated before, the algorithms turn out to spend only a small part of
their time doing group operations, and hence the particular choice of group
representations is probably irrelevant for this type of problem.

One drawback of the matrix representation is that it does not allow elements
of PΓL(3, q) \ PGL(3, q) to be represented easily.

However, we did extended our programs to use PΓL-equivalence. If the stabi-
lizer group GS of the arc S in PGL(3, q) is the same as the stabilizer group ΓS

of S in PΓL(3, q), then an orbit of PΓL(3, q) is the union of multiple orbits of
PGL(3, q) if q is a prime power. This means that fewer arcs need to be consid-
ered during the course of the algorithm when using PΓL-equivalence, making
the program significantly faster. We ran both versions of the programs, and
the fact that for each k they resulted in the same number of PGL-equivalent
arcs is an aditional indication that our pograms work correctly.

4.4.5 Further implementation details

Field elements

We use the numbers 0, 1, . . . , q− 1 to represent the q elements of a finite field
Fq. Field operations are implemented by table lookup. This is fast and works
for prime and prime power fields alike. If α is a generating element of Fq,
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then αi is represented by i + 1 (and 0 by 0).

Numbering of points and lines

In our programs we have numbered the points (and lines) of the plane in
the following way: first, we normalize the coordinates of a point (line) such
that the first non-zero coordinate always is equal to 1. Then we number the
points (lines) according to a lexical ordering of the normalized coordinate
triples. Hence, the point with coordinates (0, 0, 1) has number 0, a point with
coordinates (0, 1, a) has number a + 1, and a point with coordinates (1, a, b)
has number (a + 1)q + b + 1.

Hash functions

In Section 4.2.1, for every line ℓ we would like to store a multiset containing
the values bS(p) and tS(p) for every non-arc point on ℓ. Such a multiset is an
invariant for the line. Multisets however are difficult to work with. Therefore,
we try to attach an integer to each multiset in such a way that different sets
correspond to different integers as much as possible. Taking just the sum of
the elements of the multiset (i.e. h(x) = x) is not a good idea because then
many different sets will turn out to correspond to the same integer. Instead,
we translate the values bS(p) and tS(p) to larger integers using hash functions
in order to spread out the sums. For the invariant IS(ℓ) we also take into
account the value of dS(ℓ) in order to spread out the sums even more. The
point invariants IS(p) are computed in a similar way.

In Section 4.3, the hash function h2(bS(p)) is equal to 2bS(p). When using bit
shift operations, this can be computed very efficiently if we keep track of the
values bS(p) during the course of the algorithm. Indeed, the values bS(p)
always change with ±1 which corresponds to a simple bit shift in 2bS(p).
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4.4.6 Parallelization

We have written our programs in such a way that we can split the generation
of arcs over several processors. The splitting program asks for the parameters
depth k, modulus m and step i. Then for the arcs of size k + 1 and larger only
part of the arcs are generated. The modulus determines the number of parts
into which the generation is split. The step determines which part of the
generation is done. This is done in the following way: we generate all arcs up
to size k. If the arc S of size k has number n in the generation of all arcs of size
k, then the arcs S′ = S∪ {s} of size k + 1 are only generated if n ≡ i (mod m).

4.5 Consistency check

We have also run a consistency check based on the principle of ‘double count-
ing’, somewhat similar to the method used by Östergård and Pottonen in their
generation of perfect binary one-error-correcting codes [36].

Let Ak denote the number of pairs (S, p) where S is an arc of size k and p is a
point of S. We shall count Ak in two different ways. Clearly, Ak is k times the
total number of arcs of size k. By the orbit-stabilizer theorem, we have

Ak = k ∑
S∈Sk

|G|
|GS|

,

where Sk contains one representative for each equivalence class of arcs of size
k.

We can also compute Ak in a different way, by counting all pairs (T, p) where
S = T ∪ {p}. This yields

Ak = ∑
T∈Sk−1

n(T)
|G|
|GT |

,

where n(T) denotes the number of points of the plane that can be added to T
to create a new arc. Both formulas should yield the same result.
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4. Generation of (k, 2)- and (k, 3)-arcs

In order to compute the values of these formulas, we need to know the size of
the stablizer group GS and the number n(S) for each arc S generated by our
program. These are not so difficult to compute.

We ran the test for all q ≤ 27 for (k, 2)-arcs and for all q ≤ 11 for (k, 3)- arcs.
Both formulas did indeed yield the same results. For q = 29 ((k, 2)-arcs) and
q = 13 ((k, 3)-arcs) we did not run the test because this would have taken too
long.
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5
Results

Using the algorithms from Chapter 4 we have been able to compute a full
classification of the projectively distinct complete (k, 2)-arcs in PG(2, q) for all
q ≤ 29 and of the projectively distinct complete (k, 3)-arcs for all q ≤ 13. In
this chapter, we have summarised the results in tables.

Most well-known constructions produce arcs that have an interesting (and
often large) automorphism group. For this reason we have computed the au-
tomorphism groups of all complete arcs (see Section 5.1 and 5.4). We have
studied some of the arcs with the larger automorphism groups in more de-
tail, in order to describe them in a more elegant way than by just listing the
coordinates of their points.

Sometimes general families of arcs can be described as special subsets of cubic
curves or pairs of conics. Therefore, we have also computed for each (k, 2)-arc
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the type of algebraic curve of lowest degree into which it can be embedded
(see Section 5.2) and we have used this table to pick out some arcs to have
a closer look at. For (k, 3) arcs, we have investigated some arcs lying for the
greater part on a cubic curve.

In Chapter 6 and resp. 7, we discuss the results of the algorithm. We there
give geometric descripions of the arcs whose stabilizer groups are underlined
in the tables of Section 5.1, resp. 5.4.

5.1 The complete (k, 2)-arcs of PG(2, q), q ≤ 29

For each of the complete (k, 2)-arcs we have determined the subgroups GS of
PGL(3, q) and ΓS of PΓL(3, q) that stabilize the set S of points of the arc. Note
that GS = ΓS when q is prime. The results are summarised in the tables below.

In these tables k denotes the size of the arcs in the corresponding column, and
Nk the number of inequivalent complete arcs of size k.

For each k we specify a list of possible stabilizer groups GS and ΓS and the
corresponding number of k-arcs that have an automorphism group of that
type. (We use the ‘Atlas’-notation for the groups [9].) The numbers listed
refer to PΓL-inequivalent arcs and not to PGL-inequivalent arcs.

When q = ph with h > 1, there are three cases:

1. If GS = ΓS, then [ΓS : GS] = 1 and the orbit of S through Γ is the union

of h disjoint orbits of G corresponding to the arcs S, Sσ, . . . and Sσh−1
.

These h arcs are therefore PΓL-equivalent but PGL-inequivalent. Hence
the number of PGL-inequivalent k-arcs with a group of that type is h
times the number listed.

2. If [ΓS : GS] = h, then SG = SΓ (and hence S, Sσ, . . . Sσh−1
are PGL-

equivalent). In that case the number of inequivalent arcs of the given
type is the same whether we regard PGL(3, q) or PΓL(3, q) as the group
defining equivalence.
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5.1. The complete (k, 2)-arcs of PG(2, q), q ≤ 29

3. If GS 6= ΓS and [ΓS : GS] 6= h, then [ΓS : GS] divides h. The orbit of S
through Γ is the union of h/[ΓS : GS] disjoint orbits of G. In this text,
this only occurs when q = 16: then [ΓS : GS] = 2 and the number of
PGL-inequivalent arcs is two times the number listed.

In Chapter 6 we give geometric descriptions of the arcs whose automorphism
groups are underlined in the tables.

Our programs, which were written in Java, were run on an Ubuntu Linux
desktop system with a dual core AMD Athlon 64 X2 4400+ processor (for
q ≤ 25), on a Debian Linux system with two quad core Intel Xeon X5355
2.66GHz processors (for q = 27) and on a cluster of Debian Linux systems
with 56 quad core Intel Xeon X3220 2.40GHz processors (for q = 29).

Using only a single core, the cases q ≤ 19 take less then 1 hour, the case
q = 23 takes approximately one day of CPU time, the case q = 25 takes about
ten days, the case q = 27 takes approximately 33 days of CPU time and the
case q = 29 takes approximately 1870 days (five years) of CPU time. To store
the results (in compressed form) we need about 130GByte of disk space.

PG(2,5)

k = 6

Nk = 1

GS #

PGL(2, 5) 1

PG(2,7)

k = 6 k = 8

Nk = 2 Nk = 1

GS # GS #

A4 1 PGL(2, 7) 1

4 : 32 1

PG(2,8)

k = 6 k = 10

Nk = 1 Nk = 1

ΓS GS # ΓS GS #

S4 S4 1 PΓL(2, 8) PGL(2, 8) 1
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PG(2,9)

k = 6 k = 7 k = 8 k = 10

Nk = 1 Nk = 1 Nk = 1 Nk = 1

ΓS GS # ΓS GS # ΓS GS # ΓS GS #

S5 A5 1 7 : 6 7 : 3 1 D16 D8 1 PΓL(2, 9) PGL(2, 9) 1

PG(2,11)

k = 7 k = 8 k = 9 k = 10 k = 12

Nk = 1 Nk = 9 Nk = 3 Nk = 1 Nk = 1

GS # GS # GS # GS # GS #

7 : 3 1 2 5 2 1 A5 1 PGL(2, 11) 1

22 1 3 1

D8 1 S3 1

D10 1

8 : 2 1

PG(2,13)

k = 8 k = 9 k = 10 k = 12 k = 14

Nk = 2 Nk = 29 Nk = 21 Nk = 1 Nk = 1

GS # GS # GS # GS # GS #

S3 1 1 17 1 1 S4 : 3 1 PGL(2, 13) 1

D14 1 2 4 2 11

3 5 22 4

4 1 4 2

32 2 S3 2

S4 1
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5.1. The complete (k, 2)-arcs of PG(2, q), q ≤ 29

PG(2,16)

k = 9 k = 10 k = 11 k = 12

Nk = 2 Nk = 501 Nk = 30 Nk = 9

ΓS GS # ΓS GS # ΓS GS # ΓS GS #

3 3 1 1 1 342 1 1 19 2 2 2

6 3 1 2 1 14 2 1 2 6 3 1

2 2 116 2 2 8 S3 S3 3

22 2 4 4× 2 2 1 D10 D10 1

4 1 3 D12 S3 1

4 2 3 32 : 2 32 : 2 1

4 4 2

S3 S3 3

23 23 10

2D4 23 2

8 : 2 4 1

D20 D10 1

PG(2,16)

k = 13 k = 18

Nk = 1 Nk = 2

ΓS GS # ΓS GS #

13 : 12 13 : 3 1 [144] [36] 1

PΓL(2, 16) PGL(2, 16) 1
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PG(2,17)

k = 10 k = 11 k = 12 k = 13 k = 14 k = 18

Nk = 560 Nk = 2644 Nk = 553 Nk = 8 Nk = 1 Nk = 1

GS # GS # GS| # GS # GS # GS #

1 341 1 2569 1 336 1 1 D8 1 PGL(2, 17) 1

2 179 2 75 2 152 2 4

3 10 3 18 3 1

22 8 22 18 4 1

4 7 4 1 S3 1

S3 9 S3 20

Q8 1 D8 2

A4 2 A4 1

8 : 2 1 D12 2

D18 1 S4 3

S4 1

102



5.1. The complete (k, 2)-arcs of PG(2, q), q ≤ 29

PG(2,19)

k = 10 k = 11 k = 12 k = 13 k = 14

Nk = 29 Nk = 9541 Nk = 30135 Nk = 2232 Nk = 70

GS # GS # GS # GS # GS #

1 1 1 9501 1 28301 1 2090 1 8

2 18 2 36 2 1640 2 137 2 35

3 1 3 4 3 82 3 3 22 14

22 2 22 47 S3 2 4 8

4 1 4 11 S3 4

S3 2 S3 37 D12 1

D5 2 D8 4

A4 1 32 2 k = 20

A5 1 A4 3 Nk = 1

D12 1 GS #

D18 1 PGL(2, 19) 1

32 : 2 2

S4 3

S4 : 3 1
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PG(2,23)

k = 10 k = 12 k = 13 k = 14

Nk = 1 Nk = 112449 Nk = 4341514 Nk = 1828196

GS # GS # GS # GS #

S3 1 1 107770 1 4339330 1 1810741

2 4387 2 1959 2 17147

3 151 3 223 4 85

4 7 S3 2 22 222

22 30 D22 1

S3 97

D8 3

D12 2

S4 2

PG(2,23)

k = 15 k = 16 k = 17 k = 24

Nk = 58361 Nk = 564 Nk = 5 Nk = 1

GS # GS # GS # GS #

1 57184 1 213 2 5 PGL(2, 23) 1

2 1040 2 275

3 110 3 3

S3 27 4 5

22 41

S3 14

D8 11

D16 1

16 : 2 1
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PG(2,25)

k = 12 k = 13 k = 14

Nk = 606 Nk = 4072545 Nk = 29151431

ΓS GS # ΓS GS # ΓS GS #

1 1 290 1 1 4070197 1 1 29089885

2 1 37 2 1 1827 2 1 11972

2 2 223 2 2 464 2 2 48897

3 3 21 3 3 41 3 3 55

22 2 13 22 2 6 22 2 157

22 22 4 4 2 1 22 22 210

S3 3 3 4 4 1 4 2 95

S3 S3 11 s3 3 2 4 4 73

6 3 1 6 3 5 S3 S3 40

D12 S3 2 6 6 1 6 3 11

32 : 2 32 : 2 1 D8 22 22

D8 D8 2

4× 2 4 4

A4 A4 1

D12 D12 1

D12 S3 3

6× 2 6 1

3 : D8 D12 1

13 : 4 D26 1
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PG(2,25)

k = 15 k = 16 k = 17

Nk = 5709597 Nk = 124577 Nk = 434

ΓS GS # ΓS GS # ΓS GS #

1 1 5701537 1 1 119311 1 1 313

2 1 2214 2 1 977 2 1 18

2 2 5415 2 2 4112 2 2 84

3 3 386 3 3 24 3 3 3

22 2 9 22 2 23 4 2 2

S3 3 10 22 22 83 4 4 3

S3 S3 14 4 2 2 S3 S3 6

6 3 10 4 4 6 6 3 1

D10 5 1 5 5 1 4× 2 4 1

D12 S3 1 S3 S3 17 8 4 3

6 3 5

D8 22 1

D8 D8 8

4× 2 4 1

8 4 1

D10 D10 2

D16 D16 1

D16 D8 2
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PG(2,25)

k = 18 k = 21

Nk = 41 Nk = 1

ΓS GS # ΓS GS # ΓS GS #

2 1 1 32 32 1 21 : 6 21 : 3 1

2 2 4 A4 A4 1

22 2 1 D12 D12 1 k = 26

22 22 8 D12 S3 2 Nk = 1

S3 S3 5 D16 D8 1 ΓS GS #

6 3 1 S3 × 3 32 4 PΓL(2, q) PGL(2, q) 1

D8 22 2 32 : 2 32 : 2 1

D8 D8 2 S4 S4 1

Q8 4 1 S2
3 32 : 2 1

4× 2 22 1 [144] [72] 1

4× 2 4 1

PG(2,27)

k = 12 k = 13 k = 14

Nk = 7 Nk = 221429 Nk = 106320273

ΓS GS # ΓS GS # ΓS GS #

S3 S3 6 1 1 221342 1 1 106238792

S4 S4 1 2 2 14 2 2 81129

3 1 31 3 1 15

3 3 42 22 22 224

4 4 101

6 2 7

12 4 3

D14 D14 2
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PG(2,27)

k = 15 k = 16 k = 17

Nk = 198631499 Nk = 20335114 Nk = 276112

ΓS GS # ΓS GS # ΓS GS #

1 1 198614859 1 1 20291521 1 1 274230

2 2 15506 2 2 42834 2 2 1861

3 1 192 3 1 223 3 1 21

3 3 936 3 3 159

6 2 2 22 22 235

S3 S3 4 4 4 19

6 2 49

S3 S3 42

D8 D8 12

32 3 1

12 4 2

6× 2 22 12

A4 22 3

SL(2, 3) Q8 1

13 : 6 D26 1
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PG(2,27)

k = 18 k = 19 k = 22

Nk = 950 Nk = 5 Nk = 1

ΓS GS # ΓS GS # ΓS GS #

1 1 534 2 2 2 7 : 6 D14 1

2 2 333 6 2 1

3 1 3 S3 S3 2 k = 28

3 3 19 Nk = 1

22 22 30 ΓS GS #

4 4 3 PΓL(2, 27) PGL(2, 27) 1

S3 S3 25

9 3 1

A4 A4 1

32 : 2 32 : 2 1
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PG(2,29)

k = 13 k = 14 k = 15 k = 16

Nk = 708 Nk = 171139332 Nk = 7402140892 Nk = 4776509549

GS # GS # GS # GS #

1 688 1 170929611 1 7402054723 1 4775412456

3 19 2 208889 2 78862 2 1092537

13 : 3 1 4 212 3 7266 3 2530

2 : 2 612 5 11 4 104

D8 6 S3 29 2 : 2 1643

D14 2 D10 1 5 7

S3 210

7 1

D8 39

Q8 1

D10 11

A4 4

D14 5

D30 1
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5.1. The complete (k, 2)-arcs of PG(2, q), q ≤ 29

PG(2,29)

k = 17 k = 18 k = 19 k = 20

Nk = 271929757 Nk = 2457679 Nk = 4190 Nk = 57

GS # GS # GS # GS #

1 271852322 1 2421150 1 3615 1 1

2 77365 2 35080 2 546 2 26

4 68 3 525 3 21 22 18

7 1 22 529 S3 8 4 1

D14 1 4 91 D8 4

S3 263 D10 6

6 1 D20 1

D8 14

Q8 4

A4 13

D12 5

S4 4

PG(2,29)

k = 21 k = 24 k = 30

Nk = 2 Nk = 1 Nk = 1

GS # GS # GS #

S3 2 PSL(2, 7) 1 PGL(2, 29) 1

111



5. Results

5.2 Geometric forms of the complete (k, 2)-arcs

Many constructions of (k, 2)-arcs have been described in the literature: some
arcs are constructed by adding a small number of points to a subset of a conic
[23, 39], some can be obtained as unions of subsets of two distinct conics [17]
and others as subsets of points of cubic curves [18, 41, 42, 43]. For this reason
we enumerate the complete (k, 2)-arcs according to their size (columns) and
to the type of algebraic curve into which they can be embedded (rows) (the
numbers listed refer to PΓL-inequivalent arcs). Each arc is listed with its most
specific type. For example, an arc all of whose points belong to an irreducible
cubic can also be embedded on a quartic, but will only be listed in the row
labelled ‘irred. cubic’.

Note that any set of 5 (resp. 9, 14, 20) points always lies on a curve of at least
degree 2 (resp. 3, 4, 5), and hence we have restricted ourselves to conics, cubics
and quartics. Clearly the only complete arc which lies on a conic is the conic
itself.

When the (cubic or quartic) curve to which the arc belongs is reducible, it
contains a component curve of lower degree. In that case we have catalogued
the arc in a different way. For example, when an arc belongs to a cubic curve
which consists of a conic and a line, then the arc can always be obtained
by adding at most two points to a subset of a conic, and similar situations
occur with reducible quartics. For reasons of brevity we left out the qualifier
‘irreducible’ in the table for the case of an irreducible cubic with one or two
extra points. (If in that case the cubic is reducible, we obtain arcs that can be
obtained from a subset of a conic by adding 3 or 4 points.)

q=5
6 total

conic 1 1

q=7

6 8 total

conic 1 1

conic + 1 point 1 1
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5.2. Geometric forms of the complete (k, 2)-arcs

q=8

6 10 total

conic + 1 point 1 1 2

q=9
6 7 8 10 total

conic 1 1

conic + 1 point 1 1

conic + 2 points 1 1 2

q=11
7 8 9 10 12 total

conic 1 1

irred. cubic 2 2

conic + 1 point 3 3

conic + 2 points 1 6 1 8

cubic + 1 point 1 1

q=13
8 9 10 12 14 total

conic 1 1

irred. cubic 14 4 18

conic + 1 point 1 2 3

conic + 2 points 1 13 2 16

conic + 3 points 4 4

cubic + 1 point 11 11

conic + 4 points 1 1
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5. Results

q=16
9 10 11 12 13 18 total

irred. cubic 2 21 1 1 25

conic + 1 point 6 1 7

conic + 2 points 32 1 33

conic + 3 points 119 7 1 127

cubic + 1 point 323 7 330

conic + 4 points 4 2 6

cubic + 2 points 10 5 15

2 conics 1 1

other 1 1

q=17
10 11 12 13 14 18 total

conic 1 1

irred. cubic 19 2 9 1 31

conic + 1 point 5 7 12

conic + 2 points 35 27 3 65

conic + 3 points 122 307 17 446

cubic + 1 point 379 1071 23 1 1474

conic + 4 points 282 96 1 1 380

cubic + 2 points 948 396 1344

2 conics 9 4 13

irred. quartic 1 1
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5.2. Geometric forms of the complete (k, 2)-arcs

q=19
10 11 12 13 14 20 total

conic 1 1

irred. cubic 2 18 25 2 2 49

conic + 1 point 7 21 28

conic + 2 points 3 51 85 1 140

conic + 3 points 7 857 536 9 1 1410

cubic + 1 point 17 3589 911 26 4543

conic + 4 points 932 3925 83 2 4942

cubic + 2 points 4087 24166 337 4 28594

2 conics 465 1082 28 1575

irred. quartic 1 692 33 726
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5. Results

q=23
10 12 13 14 15

conic

irred. cubic 32 21 6 7

conic + 1 point 48 59

conic + 2 points 92 453 147 3

conic + 3 points 1 854 5513 715 8

cubic + 1 point 1941 5577 676 28

conic + 4 points 8965 72263 6112 46

cubic + 2 points 96323 429343 15495 157

2 conics 4203 1443866 130824 1083

irred. quartic 39 2384430 1674162 3020

other 54009

q=23
16 17 24 total

conic 1 1

irred. cubic 4 70

conic + 1 point 107

conic + 2 points 695

conic + 3 points 7091

cubic + 1 point 2 8224

conic + 4 points 6 87392

cubic + 2 points 2 541320

2 conics 48 1580024

irred. quartic 52 4061703

other 450 5 54464
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5.2. Geometric forms of the complete (k, 2)-arcs

q=25
12 13 14 15

irr.cubic 1 24 23 3

conic + 1 67 48

conic + 2 1 148 613 66

conic + 3 9 2949 5003 297

cubic + 1 18 3154 3409 381

conic + 4 85 45638 55273 2338

cubic + 2 468 355525 155364 4257

2 conics 21 1099870 1434419 49669

irr.quart. 3 2565237 27497260 220805

other 5431733

q=25
16 17 18 21 total

irr.cubic 5 2 4 62

conic + 1 115

conic + 2 3 831

conic + 3 6 8264

cubic + 1 28 6990

conic + 4 34 1 103369

cubic + 2 74 1 515689

2 conics 521 1 7 2584508

irr.quart. 784 11 2 30284102

other 123122 418 28 1 5555302
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5. Results

q=27
12 13 14 15 16

conic

irr.cubic 1 31 6 3

conic + 1 79 69

conic + 2 7 527 561 96

conic + 3 61 8792 4689 202

cubic + 1 136 4435 2261 270

conic + 4 2 1667 123432 43818 1255

cubic + 2 5 17104 387014 65361 2272

2 conics 48557 3713947 1087165 21750

irr.quart. 153896 102082095 7159569 30705

other 190267990 20278492

q=27
17 18 19 22 28 total

conic 1 1

irr.cubic 4 1 46

conic + 1 148

conic + 2 1191

conic + 3 1 1 13746

cubic + 1 24 7126

conic + 4 3 170177

cubic + 2 48 2 471806

2 conics 104 8 4871531

irr.quart. 61 14 2 109426342

other 275871 921 2 1 210823277
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5.2. Geometric forms of the complete (k, 2)-arcs

q=29
13 14 15 16 17

conic

irr.cubic 25 106 18 3

conic + 1 508 305

conic + 2 266 3761 2769 249

conic + 3 6518 64204 17739 620

cubic + 1 4218 20893 8600 942

conic + 4 2 117712 849236 139307 2755

cubic + 2 36 486746 1292115 145957 4327

2 conics 140 4295022 26135224 2873149 35581

irr.quart. 530 166228825 251767733 5520429 12258

other 7122007620 4767801073 271872717

q=29
18 19 20 21 24 30 total

conic 1 1

irr.cubic 20 2 3 177

conic + 1 813

conic + 2 14 7059

conic + 3 12 89093

cubic + 1 67 34720

conic + 4 43 1109055

cubic + 2 83 1 1929265

2 conics 471 4 4 33339595

irr.quart. 277 4 1 423530057

other 2456692 4183 46 2 12164142333
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5. Results

5.3 The (k, 2)-arcs of PG(2, q), q ≤ 29, not neces-

sarily complete

Finally, in the following two tables we list the number of PGL-inequivalent
k-arcs in PG(2, q), q ≤ 29, not necessarily complete. To obtain these results
we used the same algorithms of Chapter 4, except that we do not filter for
completeness. Running times are essentially the same as for complete arcs.

q = 5 q = 7 q = 8 q = 9 q = 11 q = 13 q = 16 q = 17
k = 4 1 1 1 1 1 1 1 1
k = 5 1 1 1 2 2 3 4 4
k = 6 1 3 5 7 15 26 61 74
k = 7 1 2 4 21 80 454 733
k = 8 1 2 2 21 181 2633 5441
k = 9 2 1 5 110 6014 17633

k = 10 1 1 2 27 4899 21064
k = 11 1 2 1171 6814
k = 12 1 2 587 629
k = 13 1 260 15
k = 14 1 100 4
k = 15 30 1
k = 16 9 1
k = 17 3 1
k = 18 2 1

120



5.3. The (k, 2)-arcs, not necessarily complete

q = 19 q = 23 q = 25 q = 27 q = 29
k = 4 1 1 1 1 1
k = 5 5 6 8 4 10
k = 6 117 257 365 174 682
k = 7 1768 7613 14114 8261 41301
k = 8 20361 172416 419385 311313 1933469
k = 9 115492 2235523 7490938 7348659 58423579
k = 10 280104 15032508 74026338 101047498 1072049736
k = 11 235320 46333282 366007216 744145433 11123944005
k = 12 55708 56846595 806719354 2665334400 60140705285
k = 13 2733 23362684 690593155 4145194407 153994534160
k = 14 83 2634266 195308347 2452359922 167238862321
k = 15 5 64773 15070303 472714330 67799467128
k = 16 4 692 263843 24808360 8854773945
k = 17 1 41 1492 290532 314349510
k = 18 1 22 222 1431 2540088
k = 19 1 6 58 183 7280
k = 20 1 4 29 82 1477
k = 21 1 9 32 646
k = 22 1 5 15 293
k = 23 1 1 4 98
k = 24 1 1 3 43
k = 25 1 1 10
k = 26 1 1 5
k = 27 1 1
k = 28 1 1
k = 29 1
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5. Results

5.4 The complete (k, 3)-arcs of PG(2, q), q ≤ 13

For the complete (k, 3)-arcs we have also determined the subgroups GS of
PGL(3, q) and ΓS of PΓL(3, q) that stabilize the set S of points of the arc. The
results are summarised in the tables below.

Our programs, which were written in Java, were run on a cluster of Debian
Linux systems with 56 quad core Intel Xeon X3220 2.40GHz processors. The
generation of all complete arcs of PG(2, 11) up to equivalence takes approxi-
mately 6 hours of CPU time. For q = 13 it takes approximately 152 days of
CPU time. The generation for all q ≤ 9 takes less than half an hour. To store
the results (in compressed form) we need about 35 MByte of disk space for
q = 11 and about 14 GByte for q = 13.

PG(2,5)

k = 9 k = 10 k = 11

Nk = 2 Nk = 2 Nk = 2

GS # GS # GS #

S3 1 3 2 D8 1

D12 1 5 : 4 1

PG(2,7)

k = 9 k = 11 k = 12 k = 13 k = 14 k = 15

Nk = 1 Nk = 8 Nk = 69 Nk = 44 Nk = 2 Nk = 1

GS # GS # GS # GS # GS # GS #

[216] 1 1 1 1 55 1 23 1 1 S4 : 3 1

2 4 2 4 2 15 6 1

22 1 3 7 3 2

S3 2 S3 1 22 2

32 1 S3 2

3S3 1
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5.4. The complete (k, 3)-arcs of PG(2, q), q ≤ 13

PG(2,8)

k = 11 k = 12 k = 13 k = 14 k = 15

Nk = 2 Nk = 8 Nk = 230 Nk = 158 Nk = 19

ΓS GS # ΓS GS # ΓS GS # ΓS GS # ΓS GS #

2 2 1 1 1 6 1 1 193 1 1 157 1 1 7

2A4 23 1 3 1 1 3 1 5 6 2 1 3 1 4

3 3 1 2 2 22 2 2 1

6 2 1 3 3 1

3 3 6 12 4 1

4 12 1 22 22 2

S3 S3 1 S3 S3 1

3S3 S3 1 3A4 A4 2

PG(2,9)

k = 12 k = 13 k = 14

Nk = 4 Nk = 245 Nk = 3673

ΓS GS # ΓS GS # ΓS GS #

4 2 1 1 1 177 1 1 3577

D12 S3 1 2 1 30 2 1 79

32 : Q8 32 : 4 1 2 2 27 2 2 12

32 : D12 32 : 6 1 22 2 3 22 2 4

3 3 2 4 4 1

6 3 2

S3 3 1

22 22 2

D12 S3 1
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5. Results

PG(2,9)

k = 15 k = 16 k = 17

Nk = 4014 Nk = 335 Nk = 4

ΓS GS # ΓS GS # ΓS GS #

1 1 3704 1 1 296 1 1 1

2 1 115 2 1 21 2 1 2

2 2 125 2 2 7 2 2 1

4 2 1 3 3 5

22 2 10 6 3 1

3 3 28 4 4 1

6 3 4 22 22 1

S3 3 13 5 5 1

4 4 1 12 6 1

22 22 3 (3 : 4) : 2 3 : 4 1

D8 22 1

6 6 1

6× 2 6 1

S3 S3 3

D12 S3 3

D10 D10 1
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5.4. The complete (k, 3)-arcs of PG(2, q), q ≤ 13

PG(2,11)

k = 13 k = 14 k = 15 k = 16

Nk = 5 Nk = 146 Nk = 71584 Nk = 1574490

GS # GS # GS # GS #

2 1 1 138 1 70705 1 1573677

6 1 2 8 2 794 2 613

S3 2 3 56 3 196

D10 1 22 6 22 1

4 2 6 2

6 2 S3 1

S3 15

D10 2

S4 2

PG(2,11)

k = 17 k = 18 k = 19 k = 20 k = 21

Nk = 2082781 Nk = 259585 Nk = 4176 Nk = 15 Nk = 2

GS # GS # GS # GS # GS #

1 2078955 1 259174 1 4055 1 13 7 : 3 2

2 3782 2 234 2 76 2 2

22 20 3 166 3 35

4 9 22 1 22 5

5 5 4 4 4 1

8 1 5 1 S3 3

D8 5 S3 3 19 : 3 1

Q8 1 A4 1

D10 3 S4 1
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5. Results

PG(2,13)

k = 15 k = 16 k = 17 k = 18

Nk = 33 Nk = 95497 Nk = 27833779 Nk = 487287851

GS # GS # GS # GS #

1 13 1 95149 1 27819765 1 487274273

2 4 2 314 2 13907 2 10588

3 10 3 25 3 54 3 2927

6 3 4 4 22 26 22 2

S3 2 6 1 4 1 4 11

[36] 1 S3 4 6 1 6 13

S3 23 S3 18

D8 2 32 15

3S3 1

S4 1

31+2
+ 1

[36] 1
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5.5. Regular (k, 3)-arcs of PG(2, q), q ≤ 13

PG(2,13)

k = 19 k = 20 k = 21 k = 22 k = 23

Nk = 644018777 Nk = 96109026 Nk = 2300204 Nk = 9669 Nk = 7

GS # GS # GS # GS # GS #

1 643963031 1 96105103 1 2297792 1 9618 1 5

2 55128 2 3733 2 1954 2 28 2 1

3 459 3 161 3 425 3 16 4 1

22 78 22 2 22 9 4 4

4 59 4 24 4 3 6 1

6 1 6 3 6 8 S3 1

S3 14 S3 6 7 1

D8 7 32 2

D12 2

D14 1

3S3 2

5.5 Regular (k, 3)-arcs of PG(2, q), q ≤ 13

Among the complete (k, 3)-arcs of PG(2, q), 7 ≤ q ≤ 13 there are a few that
are regular in the sense that every point of the arc lies on the same number of
trisecants to that arc (and hence also the same number of bisecants and unise-
cants). We list some information on these arcs in the following table. k denotes
the size of the arcs, u, b and t denote the number of unisecants, bisecants and
trisecants respectively through each point of the arc and # denotes the number
of distinct arcs up to PΓL-equivalence of that size with corresponding number
of unisecants, bisecants and trisecants.
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5. Results

PG(2, 7) PG(2, 8) PG(2, 9)

# k u b t # k u b t # k u b t

1 9 4 0 4 1 15 0 4 5 4 15 1 4 5

1 14 1 1 6 4 15 2 2 6

1 15 0 2 6 2 16 1 3 6

PG(2, 11) PG(2, 13)

# k u b t # k u b t

2 15 3 4 5 2 15 6 2 6

7 15 4 2 6 4 17 4 4 6

9 16 3 3 6 1 18 5 1 8

21 17 2 4 6 30 18 4 3 7

1 18 1 5 6 12 18 3 5 6

11 18 2 3 7 2 19 2 6 6

1 19 3 0 9 1 21 2 4 8

2 21 1 2 9 3 21 3 2 9

5.6 The (k, 2)- and (k, 3)-arcs of PG(2, q), q ≤ 13,
not necessarily complete

Below we list the number of PGL-inequivalent arcs in PG(2, q), q ≤ 13, not
necessarily complete. To obtain these results we used the same algorithm of
Chapter 4, except that we do not filter for completeness. Running times are
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5.6. The (k, 2)- and (k, 3)-arcs, not necessarily complete

essentially the same as for complete arcs.

q = 5 q = 7 q = 8 q = 9 q = 11 q = 13
k = 4 2 2 2 2 2 2
k = 5 3 4 3 5 5 7
k = 6 8 17 20 31 52 88
k = 7 13 54 100 192 564 1429
k = 8 13 181 507 1343 6764 25851
k = 9 16 526 2250 8232 70555 405923

k = 10 7 907 6681 36573 574777 5175927
k = 11 2 923 12664 111833 3520995 52242283
k = 12 395 12781 209172 15291648 403124643
k = 13 65 5822 211818 44020760 2282452775
k = 14 4 871 97050 76936027 9001288813
k = 15 1 43 16386 73157838 23188169036
k = 16 734 32916332 36058738738
k = 17 6 5884405 30742092308
k = 18 333858 12779923892
k = 19 4467 2246238494
k = 20 17 140208097
k = 21 2 2507054
k = 22 9805
k = 23 7
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6
Special (k, 2)-arcs in

PG(2, q), q ≤ 29

One of the purposes of doing a computer classification as in this text is to
gain further insight into the general class of objects under investigation. In
our case we hope to find patterns in the vast amount of data which may for
instance allow us, or other researchers, to derive new general constructions of
arcs that also work for larger fields. Using the results presented in Chapter 5,
we managed to discover several general types of arc. These are described in
Sections 6.1, 6.2 and 6.3. In Sections 6.4-6.14, we have a closer look at some of
the arcs for each q up to 29.
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

6.1 Well-known constructions

Some (k, 2)-arcs have well-known constructions that can be generalized. Ex-
amples have already been given in Chapter 3. We describe three more con-
structions below.

First, it is well known that a conic has size q + 1 and is a (q + 1, 2)-arc. Also,
when q is odd, it is the largest possible arc in PG(2, q). When q is even, the
conic is not a complete arc: one can always add the nucleus to the conic. This
new set is a (q + 2, 2)-arc and is called a hyperoval.

Secondly, consider an absolutely irreducible cubic curve F . As mentioned
before, the rational non-singular points of the cubic form an abelian group
GF . If the order of F is even, then we can find a (k, 2)-arc of size |GF | /2 (see
[42]):

Lemma 6.1 Consider the abelian group GF of an absolutely irreducible cubic
curve F with an even number of points. Let HF be a subgroup of index 2 of
GF with identity O. Let O′ be the second point on the tangent through O. If
O′ ∈ HF , then the coset H∗F = GF\HF of HF is a (k, 2)-arc. If O′ /∈ HF ,
then the subgroup HF itself is a (k, 2)-arc.

Proof : Three points P, Q and R are collinear if and only if P⊕ Q⊕ R = O′.
First, assume O′ ∈ HF and let P, Q, R ∈ H∗F .

P⊕Q⊕ R ∈ P⊕ P⊕ HF ⊕ P⊕ HF = 3P⊕ HF = P⊕ HF = H∗F

in which the last step makes use of 2P ∈ HF (because HF is a subgroup of
index 2 of GF ). This implies P⊕Q⊕ R 6= O′. Hence three points of the coset
H∗F never are collinear and H∗F is a (k, 2)-arc.

Secondly, assume O′ /∈ HF and let P, Q, R ∈ HF . Then P⊕ Q⊕ R ∈ HF and
again P ⊕ Q⊕ R 6= O′. Therefore, in this case three points of HF are never
collinear and hence HF is a (k, 2)-arc.
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6.2. Some arcs with automorphism group S4

Note that if O is an inflexion point, then O′ = O ∈ HF .

A third kind of a known arc is related to a Singer cycle. A projectivity g which
permutes the points of PG(2, q) in a single cycle is called a cyclic projectivity
or Singer cycle. The order of a Singer cycle is q2 + q + 1. Let a, b ∈ R, such that
ab = q2 + q + 1. The a-th power of a Singer cycle then has order b and the
orbit xga

of a point x ∈ PG(2, q) has size b. In some cases, such an orbit xga
is a

(k, 2)-arc. In that case it is called a cyclic arc [40]. The subgroup of the Singer
cycle generated by ga is evidently a group of automorphisms of the arc, but
usually the full stabilizer group GS turns out to be somewhat larger.

For every field of square order, an orbit of the (q +
√

q + 1)-th power of a
Singer cycle always is a complete arc of size q−√q + 1. Alternatively, this arc
can be constructed as an intersection of two Hermitian curves [4, 16, 22]. For
q = 9 this arc has size 7 with ΓS ≈ 7 : 6 and GS ≈ 7 : 3, for q = 16 it has size 13
with ΓS ≈ 13 : 12 and GS ≈ 13 : 3 and for q = 25 it has size 21 with ΓS ≈ 21 : 6
and GS ≈ 21 : 3.

Note that also (k, 3)-arcs can often be constructed in this way.

6.2 Some arcs with automorphism group S4

Among the results, there are some arcs that accept the symmetric group S4
of degree 4 (and order 24) as a group of automorphisms. These arcs can be
generalized to other values of q. There are three types of arc, one of size 10,
one of size 12 and one of size 18.

Theorem 6.2 Let a ∈ Fq, q odd. Let S∗(a) denote the set of points of PG(2, q)
with coordinates of the form (a,±1,±1), (±1, a,±1) or (±1,±1, a), with in-
dependent choices of sign.

Then S∗(a) (= S∗(−a)) is a (12, 2)-arc of PG(2, q) if and only if

a /∈ {0,±1,±2,±
√
−1,±

√
−3,

1
2
(±1±

√
−7)}. (6.1)
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

If these conditions hold, then

• If a2 = −2, the points of S∗(a) lie on the conic C with equation

C : x2 + y2 + z2 = 0,

• Otherwise, S∗(a) is the disjoint union of three sets C0 ∩ C1, C1 ∩ C2,
C2 ∩ C0 of size 4 which are the pairwise intersections of the three conics
C0, C1, C2 with equations

C0 : (a2 + 1)x2 = y2 + z2,

C1 : (a2 + 1)y2 = z2 + x2,

C2 : (a2 + 1)z2 = x2 + y2.

Proof : We leave it to the reader to verify that |S∗(a)| = 12 if and only if
a 6= 0, 1 or −1.

We first consider the case a2 = −1. Note that in that case the four points with
coordinates (a, 1,±1) and (−1, a,±1) lie on the line with equation x = ay, and
then S∗(a) is not an arc.

If a2 6= −1, the conics C0, C1, C2 are nondegenerate. It is easily seen that any
point with coordinates of the form (a,±1,±1) lies on the conic C1 and C2.
Similarly (±1, a,±1) ∈ C2 ∩ C0 and (±1,±1, a) ∈ C0 ∩ C1. It also follows that
C0 ∩ C1 ∩ C2 will be nonempty if and only if a2 = 1 or a2 = −2. In the first
case |S∗(a)| < 12, in the second case we have C0 = C1 = C2 = C.

Because different (nondegenerate) conics can intersect in at most 4 points, this
proves our claim that S∗(a) is the disjoint union of these three intersections,
when (6.1) holds and a2 6= −2.

The set S∗(a) is not an arc if and only if there exist three different points of
S∗(a) that are collinear. Note that for any pair of points in S∗(a) there is a
conic Ci, i = 0, 1, 2 that contains this pair. Because conics are arcs, a third
point of S∗(a) collinear to this pair cannot lie on that same conic. It follows
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6.2. Some arcs with automorphism group S4

that any collinear triple must consist of one point with coordinates of the
form (a,±1,±1), one with coordinates of the form (±1, a,±1) and one with
coordinates of the form (±1,±1, a).

In other words, S∗(a) is not an arc if and only if
∣

∣

∣

∣

∣

∣

∣

a ±1 ±1
±1 a ±1
±1 ±1 a

∣

∣

∣

∣

∣

∣

∣

= 0,

for at least one of the 64 different sign combinations in this determinant.

By multiplying the second and third rows and columns of this determinant
by −1 if necessary, we may reduce this condition to

∣

∣

∣

∣

∣

∣

∣

a 1 1
1 ±a ±1
1 ±1 ±a

∣

∣

∣

∣

∣

∣

∣

= 0,

which, after multiplying the second and third row by a and subtracting the
first row, reduces to

(1± a2)(1± a2) = (1± a)(1± a),

with 16 different combinations of signs. Note however that the left hand side
of this equation can only take three different values and the same holds for
right hand side. This leaves us 9 conditions in all. The following table lists
the 9 differences between the possible values of the left hand sides (rows) and
right hand sides (columns):

(1 + a)2 (1− a)2 1− a2

(1 + a2)2 a(a− 1)(a2 + a + 2) a(a + 1)(a2 − a + 2) a2(a2 + 3)

(1− a2)2 a(a− 2)(a + 1)2 a(a + 2)(a− 1)2 a2(a− 1)(a + 1)

1− a4 −a(a + 1)(a2 − a + 2) −a(a− 1)(a2 + a + 2) −a2(a− 1)(a + 1)

(Note that the second column can be obtained from the first by substituting
−a for a. This is a consequence of the fact that S∗(a) = S∗(−a).)
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

The set S∗(a) is not an arc if and only if any of the 9 entries in this table
becomes zero, or equivalently, if and only if at least one of the factors of one
of these entries becomes zero. These factors are

a, a− 1, a + 1, a− 2, a + 2, a2 + 3, a2 − a + 2, a2 + a + 2,

whence the values of a listed in (6.1).

Clearly any permutation of the three coordinates fixes S∗(a). Also, changing
the sign of one or more of the coordinates fixes S∗(a). The group generated by
these transformations is therefore a group of automorphisms of S∗(a). This
group is isomorphic to the symmetric group S4 (see Section 2.7).

We can also represent the arc S∗(a) as embedded in the hyperplane of PG(3, q)
with equation x + y + z + u = 0. The arc then consists of the points whose
coordinates are the permutations of (a, a,−a − 2,−a + 2). The group S4 of
automorphisms acts on this representation by permuting the four coordinates.

Coordinates for the points of the arc S∗(a) for the case q = 27 were already
given by Marcugini et al. [31], where it is also mentioned that the arc consists
of a single orbit of its group S4 of automorphisms. They also report that there
are three conics that each intersect the arc in 8 points. However, they did not
provide a description for general q.

In general the arc S∗(a) is not complete. The following theorem shows that
for q = 1 mod 4 and for certain values of a, (at least) six additional points can
be added.

Theorem 6.3 Let q = 1 mod 4. Let a, i ∈ Fq, such that i2 = −1. Let S∗(a)
be defined as in Theorem 6.2. Let I denote the set of six points whose coordinates
are permutations of (1, i, 0). (I is a subset of the conic C : x2 + y2 + z2 = 0.)

Then S∗(a) ∪ I is an (18, 2)-arc of PG(2, q) if and only if

a /∈ {0,±1,±2,±i,±2i,±i
√

3,±i± 1,
1
2
(±1± i

√
7),

1
2
(±i±

√
−5± 4i)}.

(6.2)
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6.2. Some arcs with automorphism group S4

Proof : Note that the coordinates (1, i, 0) and (i,−1, 0) represent the same
point (analogous for the other points in I). Hence I is an orbit of size 6 of S4.

For S∗(a)∪ I to be an arc S∗(a) must be an arc, and therefore all conditions of
Theorem 6.2 must be fullfilled. Also I must be an arc, but this is trivially true
as I is a subset of a conic.

Therefore, if S∗(a) is an arc then S∗(a) ∪ I will not be an arc if and only if it
contains a collinear triple that intersects both S∗(a) and I.

Because S4 acts transitively on S∗(a) and I we may without loss of generality
assume that the collinear triple contains the point P with coordinates (1, 1, a).

Interchanging the first two coordinates leaves P invariant and the stabilizer of
P splits I into three pairs as follows:

Q1 = (1, i, 0) and Q′1 = (i, 1, 0),
Q2 = (0, 1, i) and Q′2 = (1, 0, i),
Q3 = (0, i, 1) and Q′3 = (i, 0, 1).

Hence, taking Q1, Q2 and Q3 as representatives for these orbits, it suffices to
show that for each i = 1, 2, 3 the line PQi contains no other points of S∗(a)
and I.

However, applying the simultanous substituion of z by −z and a by −a to
Q2 yields Q3 and leaves P invariant. This implies that PQ3 will contain a
third point of S∗(a) ∪ I if and only if PQ2 does so. Hence we do not need to
investigate the line PQ3.

We have:

1. PQ1 has equation f1(x, y, z) = ax + iay− (i + 1)z = 0,

2. PQ2 has equation f2(x, y, z) = (i− a)x− iy + z) = 0.

In Table 6.1 we list the values of fi(r) for each point r in the sets S∗(a) and
I. For S∗(a) ∪ I to be a (k, 2)-arc, both colums f1(r) and f2(r) may contain
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

f1(r) f2(r)

ax + iay− (i + 1)z (i− a)x− iy + z

S∗(a) (1, 1, a) 0 0

(−1,−1, a) −2(i + 1)a 2a

(1,−1, a) −2ia 2i

(−1, 1, a) −2a 2(a− i)

(1, a, 1) (a− 1)(ia + i + 1) −(a− 1)(i + 1)

(1, a,−1) ia2 + a + i + 1 −(i + 1)a + i− 1

(−1, a,−1) ia2 − a + i + 1 −(i− 1)a− i− 1

(−1, a, 1) (a + 1)(ia− i− 1) −(i− 1)(a + 1)

(a, 1, 1) (a− 1)(a + i + 1) −(a− 1)(a− i + 1)

(a,−1,−1) a2 − ia + i + 1 −a2 + ia + i− 1

(a, 1,−1) a2 + ia + i + 1 −a2 + ia− i− 1

(a,−1, 1) (a + 1)(a− i− 1) −(a + 1)(a− i− 1)

I (1, i, 0) 0 −a + i + 1

(1, 0, i) a− i + 1 2i− a

(0, 1, i) ia− i + 1 0

(0, i, 1) −(a + i + 1) 2

(i, 1, 0) 2ia −(ia + i + 1)

(i, 0, 1) ia− i− 1 −ia

Table 6.1: Lists the values of fi(r) for each of the points in the left column (cf. proof of
Theorem 6.3) and Theorem 7.2.
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6.2. Some arcs with automorphism group S4

q a S∗(a) S∗(a) ∪ I

11 ±3 complete

13 ±3,±4 complete

17 ±3,±5,±6 complete

±7 not complete complete

±8 not complete

19 ±3,±5,±7,±8,±9 complete

±6 not complete

23 ±7,±8 complete

±3,±4,±5,±6,±11 not complete

25 ±α9 not complete not complete

±α2,±α7,±α10,±α11 not complete

±α4,±α8 not complete complete

27 ±α7,±α8,±α11 complete

±α,±α2,±α3,±α4,±α5 not complete

±α6,±α9,±α10,±α12 not complete

29 ±4,±6,±9,±10 not complete complete

±3,±5,±11,±13,±14 not complete

Table 6.2: Lists the values of a for which an arc of type S∗(a) or S∗(a) ∪ I exists for all
q ≤ 29.

at most two zeroes. We find that apart from the conditions of Theorem 6.2, a
also needs to satisfy a 6= ±2i,±i± 1 and a2 ± ai + (1± i) 6= 0.

When a2 = −2 all points of this arc lie on the conic C. When a2 6= −2 each of
the conics C0, C1, C2 (cf. Theorem 6.2) contains two points of I.

In Table 6.2 we present the values of a for which an arc of type S∗(a) of size 12
or S∗(a) ∪ I of size 18 exists for all q ≤ 29. If the arc exists, the table mentions
whether the arc is complete or not. If the set is not a (k, 2)-arc, then the space
is left blank.
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

For a = 1, the set S∗(a) reduces to a set of size 4. This set lies on the conic
with equation x2 + y2 − 2z2 = 0 and therefore is a (k, 2)-arc. This arc never is
complete. In some cases, the set I can be added to S∗(1):

Theorem 6.4 Let q = 1 mod 4. Let i ∈ Fq, such that i2 = −1. Let S∗(1) de-
note the set of points of PG(2, q) with coordinates (1, 1, 1), (−1, 1, 1), (1,−1, 1)
or (1, 1,−1). Let I be defined as in Theorem 6.3.

Then S∗(1) ∪ I is a (10, 2)-arc of PG(2, q) if and only if i 6= ±2.

Proof : To prove that S∗(1) ∪ I is an arc, we have to show that no triple
of collinear points of S∗(1) ∪ I exists. Both sets S∗(1) and I are arcs, so a
collinear triple must contain at least one point of both sets. Because of the
automorphisms of S∗(1) we may chose an arbitrary element of this set as the
first point of each triple, say R(1, 1, 1). Permuting the coordinates leaves P
invariant. The set I is also left invariant when permuting the coordinates.
Therefore, taking Q1(1, i, 0) as representative of this orbit, it suffices to show
that the line RQ1 does not contain any other point of S∗(1) ∪ I. This line has
equation f (x, y, z) = x + iy− (i + 1)z = 0. The values of f (r) for each point r
of S∗(1) ∪ I are listed in Table 6.3. Clearly, when i 6= ±2, this colum contains
no three zeroes, so S∗(1) ∪ I is indeed a (k, 2)-arc.

In the following table we list the values of q for wich the set S∗(1) ∪ I is an
arc.

q S∗(1) ∪ I

9 complete

13 complete

17 complete

29 not complete

The symmetric group S4 clearly is a group of automorphisms of the sets S∗(a),
S∗(1) and I. However, in some cases, S4 is not the full automorphism group
of S∗(a). For instance, if q ≡ 1 (mod 3) and a3 = 1, a 6= 1, then (x, y, z) 7→
(x, ay, a2z) extends the group of automorphisms of S∗(a) to S4 : 3.
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6.3. Some arcs with automorphism group A5

f1(r)

x + iy− (1 + i)z

S∗(1) (1, 1, 1) 0

(1, 1,−1) 2 + 2i

(1,−1, 1) −2i

(−1, 1, 1) −2

I (1, i, 0) 0

(1, 0, i) 2− i

(0, 1, i) 1

(0, i, 1) −2− i

(1,−i, 0) 2

(1, 0,−i) i

Table 6.3: Lists the values of f (r) for each of the points in the left column (cf. proof of
Theorem 6.4).

6.3 Some arcs with automorphism group A5

For q = 0, 1 or 4 mod 5, q odd, we will describe two sets of points in the plane
that are (k, 2)-arcs having the alternating group on five elements as a group of
automorphisms.

Theorem 6.5 Let q = 0, 1 or 4 mod 5, q odd. Let τ =
√

5+1
2 . Consider the

following sets:
R = {(0, 1,±τ), (1,±τ, 0), (±τ, 0, 1)}

S = {(0,±τ,±τ−1), (±τ,±τ−1, 0), (±τ−1, 0,±τ), (±1,±1,±1)}.
The set R is a (6, 2)-arc of PG(2, q). The set S is a (10, 2)-arc of PG(2, q) if and
only if q 6= 0 mod 5.
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

The alternating group A5 of order 60 generated by

ψ1 : (x y z) 7→ (x − y z),

ψ2 : (x y z) 7→ (y z x),

ψ3 : (x y z) 7→ 1
2
(x y z)







τ−1 −τ 1
1 τ τ−1

−1 τ−1 τ






,

acts as a group of automorphisms for both sets.

Proof : Note that
√

5 only exists when q = 0, 1 or 4 mod 5. Also note that
τ−1 = τ − 1, τ2 = τ + 1 and τ3 = 2τ + 1.

Note that |R| = 6 if and only if τ 6= 0 and |S| = 10 if and only if τ 6= 0 and
1 6= −1. (If τ = 0 then

√
5 = −1 and then 5 = 1, so q is even.) Hence, if q is

odd then |S| = 6 and |S| = 10.

To prove that the set R is a (k, 2)-arc we shall show that no triple of different
points of the set is collinear. Because A5 is a transitive group of automor-
phisms of the set R, we may choose an arbitrary element of R as the first point
of each triple in the set, say R0(0, 1, τ).

The automorphism ψ3 splits R into the singleton orbit {R0} and the set {R1, . . . R5}
with:

R1 = (0, 1,−τ),
R2 = (τ, 0, 1), R3 = (−τ, 0, 1),
R4 = (1, τ, 0), R5 = (−1, τ, 0).

Taking R1 as a representative of this second orbit, it is now easily seen that
the line R0R1 with equation x = 0 intersects R in at most two points if and
only if τ 6= 0, which implies q is even. Hence, for the set R to be a (6, 2)-arc, q
must be odd.

Similarly, to prove that the set S is a (k, 2)-arc we shall show that no collinear
triple of different points of the set exists. Again, we may choose an arbitrary

142



6.3. Some arcs with automorphism group A5

element of S as the first point of each triple in the set, say S0(1, 1, 1).

ψ2 leaves the point S0 invariant and splits S \ S0 into three orbits {S1, S2, S3},
{S4, S5, S6} and {S7, S8, S9}:

S1 = (−1, 1, 1), S2 = (1,−1, 1), S3 = (1, 1,−1),
S4 = (0, τ, τ−1), S5 = (τ, τ−1, 0), S6 = (τ−1, 0, τ),
S7 = (0, τ,−τ−1), S8 = (τ,−τ−1, 0), S9 = (−τ−1, 0, τ).

Hence, taking S1, S4 and S7 as representatives of these two orbits, it suffices
to show that the lines through these points and S0 intersects S in at most two
points:

1. the line S0S1, with equation f1(x, y, z) = y− z = 0,

2. the line S0S4, with equation f2(x, y, z) = −τx− y + (1 + τ)z = 0,

3. the line S0S7, with equation f3(x, y, z) = −(2 + τ)x + y + (1 + τ)z = 0.

f1(r) f2(r) f3(r)

−(2 + τ)x + y

y− z −τx− y + (1 + τ)z +(1 + τ)z

(1, 1, 1) 0 0 0

(−1, 1, 1) 0 2τ 2(τ + 2)

(1,−1, 1) −2 2 −2

(1, 1,−1) 2 −2(τ + 1) −2(τ + 1)

(0, τ, τ−1) 1 0 2τ

(τ, τ−1, 0) τ − 1 −2τ −2(τ + 1)

(τ−1, 0, τ) −τ 2τ 2

(0, τ,−τ−1) 2τ − 1 −2τ 0

(τ,−τ−1, 0) 1− τ −2 −4τ

(−τ−1, 0, τ) −τ 2(1 + τ) 4τ

Table 6.4: Lists the values of fi(r) for each of the points in the left column (cf. proof of
Theorem 6.5).
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

In Table 6.4 we list the values of fi(r) for each of the 10 points r of S. For S to
be a (k, 2)-arc, none of these colums may contain more than 2 zeroes. We find
that q must be even together with the following 4 conditions:

τ 6= 0 7→
√

5 6= −1

τ 6= 1/2 7→
√

5 6= 0

τ 6= 1 7→
√

5 6= 1

τ 6= −1 7→
√

5 6= −3

τ 6= −2 7→
√

5 6= 3

It holds that
√

5 = ±1 if and only if 5 = 1 and then q even. Also
√

5 = ±3 if
and only if 5 = 9 and then q even.

√
5 = 0 if and only if 5 = 0 or q = 0 mod

5. Hence, for the set S to be a (10, 2)-arc, q must be odd and q 6= 0 mod 5.

Note that substituting
√

5 for −
√

5, replaces τ with −τ−1 = 1− τ and results
in isomorphic sets R and S.

Also note that the set R∪−R considered as a subset of R
3 is the set of vertices

of an icosahedron. The set and S∪−S is the set of vertices of a dodecahedron.

In the following table, we indicate for all q ≤ 29, q = 0, 1, 4 mod 5 whether the
set is a (complete) 2-arc or not.

q R S

5 complete not a 2-arc
9 complete complete

11 not complete complete
19 not complete complete
25 not complete not a 2-arc
29 not complete not complete

For q = 5 the set R is the conic, while for q = 9 the set S is the conic. In both
cases the conic has equation x2 + y2 + z2 = 0.
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6.4. Special (k, 2)-arcs for q = 8

For q = 9 the group of automorphisms in PΓL(3, q) is the symmetric group S5
on 5 elements.

6.4 Special (k, 2)-arcs for q = 8

In what follows let α denote a primitive generating element of F8 which satis-
fies α3 + α2 + 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k2.

General constructions

The unique (complete) arc of size 10 is a hyperoval. It is a conic together
with its nucleus. Its automorphism group GS is isomorphic to PGL(2, 8), ΓS

is isomorphic to PΓL(2, 8).

The complete arc of size 6 with GS ≈ ΓS ≈ S4

PG(2, 8) contains a complete arc of size 6 having S4 as automorphism group.
A representative of the arc is the set of points with the following coordinates:

S : (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, α4), (1, 1, α6).

Consider the following three elements of order 2 of the automorphism group
of the arc S:

φ1 : (x y z) 7→ (y x z),

φ2 : (x y z) 7→ (x + y y α4y + z),

φ3 : (x y z) 7→ (y x x + y + z),

and consider the four lines with the following coordinates:

[1, 1, α3], [1, 1, α], [1, α5, α], [1, α2, α3]
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

The action of φ1, φ2 and φ3 on these lines generates the symmetric group on
four elements.

By applying the Frobenius automorphism φ : k 7→ k2 to S and GS, one finds
the other two complete arcs Sφ and Sφ2

and their automorphism groups. Note
that these groups are conjugate but not equal.

6.5 Special (k, 2)-arcs for q = 9

In what follows let α denote a primitive generating element of F9 which sat-
isfies α2 + α− 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k3.

General constructions

The unique (complete) arc of size 10 is a conic with automorphism group GS

isomorphic to PGL(2, 9), ΓS isomorphic to PΓL(2, 9). This arc also corresponds
to the complete arc S that is described in Section 6.3 and to the arc S∗(1) ∪ I
as described in Section 6.2.

The unique complete arc of size 6 is the complete arc R discussed in Sec-
tion 6.3.

For every field of square order a complete arc of size q−√q + 1 exists (Sec-
tion 6.1). For q = 9 it has size 7 with ΓS ≈ 7 : 6 and GS ≈ 7 : 3.

The unique complete arc of size 8 with GS ≈ D8 and ΓS ≈ D16

This is an arc of type E with two external points as described in Section 3.4.
A representative of this arc consists of the points with coordinates (1, t, t2)
with t = α2, α4, α5, α7, together with the two external points with coordinates
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6.6. Special (k,2)-arcs for q = 11

(0, 1, 0) and (1, 1, α) and the tangent points of (0, 1, 0) with coordinates (1, 0, 0)
and (0, 0, 1). The automorphism group GS is isomorphic to the dihedreal
group of order 8, ΓS is isomorphic to that of order 16. Note that this arc has
size q− 1 which is exceptionally.

6.6 Special (k,2)-arcs for q = 11

General constructions

The unique (complete) arc of size 12 is a conic with automorphism group
isomorphic to PGL(2, 11). This arc also is of type S∗(a) as described in Sec-
tion 6.2.

The unique complete arc of size 10 corresponds to the complete arc S as de-
scribed in Section 6.3. Note that this arc has size q− 1, which is exceptional.

There is a unique complete arc of size 7 with GS ≈ 7 : 3 which can be con-
structed as an orbit of the 19th power of a Singer cycle (see Section 6.1).

6.7 Special (k,2)-arcs for q = 13

General constructions

The unique (complete) arc of size 14 is a conic with automorphism group
isomorphic to PGL(2, 13).

In PG(2, 13) there is an arc of size 8 with automorphism group isomorphic to
the dihedral group D14. It is an arc of type I with excess 1 as described in
Section 3.7.

When applying Theorem 6.2 to q = 13, we find that S∗(a) is an arc only for
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

the values a = ±3,±4. These arcs are equivalent and have S4 : 3 as group of
automorphisms. Note that an arc of size q− 1 is exceptional.

PG(2, 13) has a unique complete arc of size 10 having S4 as group of automor-
phisms. It is the arc S∗(1) ∪ I described in Theoreom 6.4 with i = 5.

The two complete arcs of size 9 with GS ≈ 32

PG(2, 13) contains 2 complete arcs of size 9 with the same automorphism
group 32. This group can be represented by

φ1 : (x, y, z) 7→ (x, 3y, 9z)

and
φ2 : (x, y, z) 7→ (y, 4z, x).

The first arc S1 consists of the points of the orbit of the point with coordinates
(1, 1,−1), while the second arc S2 consists of the points of the orbit of the point
with coordinates (1, 2, 1). Each arc lies on a cubic with respective equations
C1 and C2:

C1 ↔ x3 − 3y3 + 4z3 − 6xyz = 0

C2 ↔ x3 − 3y3 + 4z3 + 3xyz = 0.

Note that each cubic of the form x3 − 3y3 + 4z3 − cxyz = 0 is invariant for φ1
and φ2.

The points of the first cubic C1 are:

(-4,4,1) (-4,1,1) (-3,4,1) (1,-6,1) (-6,-2,1) (-5,-3,1)
(3,3,1) (-1,-1,1) (3,-1,1) (-2,-6,1) (-6,4,1) (-4,-5,1)
(4,-3,1) (1,-3,1) (1,-4,1) (-2,-1,1) (3,-2,1) (-5,-5,1),

(6.3)

in which the left hand side contains the 9 points of S1.

The abelian group of C1 is of type 2× 32 and can be represented as follows.
Take O(1, 1,−1) to be the point of reference. Then the element (3,−1, 1) has
order 3 and permutes the columns in each part of (6.3). The element (1,−3, 1)
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6.8. Special (k, 2)-arcs for q = 16

also has order 3 and permutes the rows in each part of (6.3). Finally, the
element (−6, 4, 1) has order 2 and maps the points on the left hand side of
(6.3) to the points at the corresponding positions on the right hand side.

The points of the second cubic C2 are:

(1,2,1) (2,2,1) (2,4,1) (-6,-4,1) (-1,6,1) (5,-5,1)
(5,6,1) (5,-1,1) (-4,6,1) (4,5,1) (6,-2,1) (-2,1,1)
(6,-3,1) (3,5,1) (6,5,1) (2,-6,1) (-5,3,1) (-3,2,1)

(6.4)

in which the left hand side contains the 9 points of S2.

The abelian group of C2 looks very similar to that of C1. It also is 2 × 32.
We now take O(1, 2, 1) to be the point of reference. The elements (2, 2, 1) and
(5, 6, 1) have order 3. The first element permutes the columns in each part of
(6.4), the second permutes the rows in each part of (6.4). Finally, the element
(−6,−4, 1) has order 2 and maps the points on the left hand side of (6.4) to
the points at the corresponding positions on the right hand side.

See Section 6.1 for more information on half cubics.

6.8 Special (k, 2)-arcs for q = 16

In what follows let α denote a primitive generating element of F16 which sat-
isfies α4 + α3 + 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k2.

General constructions

PG(2, 16) has two complete arcs of size 18. One arc is a conic toghether with
its nucleus, also called a regular hyperoval. It has PGL(2, 16) as automorphism
group GS and PΓL(2, 16) as ΓS.
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

The other arc of size 18 is an irregular hyperoval called the Lunelli-Sce hyperoval
[28]. It consists of the four points with coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1)
and (1, 1, 1) and the 16 points with coordinates (x, f (x), 1) with

f (x) = x12 + x10 + α2x8 + x6 + α14x4 + α3x2.

The automorphism group GS of this arc has order 36, ΓS has order 144. For
more details, we refer to Bill Cherowitzo’s hyperoval webpage [8].

As mentioned in Section 6.1, a complete arc of size q−√q + 1 exists for every
field of square order. For q = 16 it has size 13 with ΓS ≈ 13 : 12 and GS ≈
13 : 3.

6.9 Special (k,2)-arcs for q = 17

General constructions

The unique (complete) arc of size 18 is a conic with automorphism group
isomorphic to PGL(2, 17). This arc also corresponds to the arc S∗(a) ∪ I as
described in Section 6.2.

In PG(2, 17) there is a unique complete arc of size 10 with the dihedral group
D18 as automorphism group. It is an arc of type I with excess 1 as described
in Section 3.7.

When applying Theorem 6.2 to q = 17, we find that the set S∗(a) is an
arc for all values a = ±3,±5,±6,±7,±8. This arc is only complete for
a = ±3,±5,±6. These three arcs are not equivalent. Adding a set I to S∗(±7)
as in Theorem 6.3 yields the complete arc of size 18 that is the conic.

Applying Theorem 6.4 to PG(2, 17) with i = 4 yields a unique complete arc of
type S∗(1) ∪ I of size 10 having S4 as group of automorphisms.
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The unique complete arc of size 10 with GS ≈ Q8
and the unique complete arc of size 10 with GS ≈ 8 : 2

There is a unique complete arc of size 10 in PG(2, 17) that has the quaternion
group of order 8 as automorphism group. We list coordinates for the points
of one respresentative below.

(5, 8,±1) (3, 2,±1)

(8,−5,±1) (2,−3,±1)

(1, 0, 0) (0, 1, 0)

The group is generated by the following linear transformations:

±1 : (x y z) 7→ (x y z)







1 0 0
0 1 0
0 0 ±1







±i : (x y z) 7→ (x y z)







4 0 0
0 −4 0
0 0 ±1






,

±j : (x y z) 7→ (x y z)







0 1 0
−1 0 0
0 0 ±1






,

±k : (x y z) 7→ (x y z)







0 4 0
4 0 0
0 0 ±1






,

such that i2 = j2 = k2 = ijk = −1.

If we replace the points (1, 0, 0) and (0, 1, 0) by (1, 4, 0) and (1,−4, 0), then we
obtain another complete 10-arc having the quasidihedral group of order 16
(≈ 8 : 2) as automorphism group. This group consists of the elements of Q8
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6. Special (k, 2)-arcs in PG(2, q), q ≤ 29

together with the following eight elements:

±l : (x y z) 7→ (x y z)







5 5 0
−5 5 0
0 0 ±1







±m : (x y z) 7→ (x y z)







5 −5 0
5 5 0
0 0 ±1






,

±n : (x y z) 7→ (x y z)







3 3 0
3 −3 0
0 0 ±1






,

±o : (x y z) 7→ (x y z)







−3 3 0
3 3 0
0 0 ±1






,

such that l4 = m4 = −1 and n2 = o2 = 1. Note that mo = m3.

The two complete arcs of size 12 with GS ≈ D12

The projective plane PG(2, 17) has two inequivalent complete arcs of size 12
with the dihedral group of order 12 as group of automorphisms. Both arcs
can be partitioned into two sets of size 6 and each of these sets is contained in
a conic. If we take one of the conics of each arc to be the conic C with equation
x2 − 3y2 = z2, then we find the following representatives for the arcs: both
arcs contain the six points with the following coordinates:

(1, 0, 1), (−8,−2, 1), (8,−2, 1), (−1, 0, 1), (8, 2, 1), (−8, 2, 1).

The remaining points of the first arc S1 lie on the conic C1 with equation
x2 − 3y2 = −7z2. These 6 arc points are

(0, 5, 1), (4,−6, 1), (4, 6, 1), (0,−5, 1), (−4, 6, 1), (−4,−6, 1).
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The remaining points of the second arc S2 lie on the conic C2 with equation
x2 − 3y2 = −6z2. These 6 arc points are

(0, 6, 1), (−2, 3, 1), (−2,−3, 1), (0,−6, 1), (2,−3, 1), (2, 3, 1).

The automorphism group of both arcs is the same, and can be generated by

φ1 : (x y z) 7→ (x − y z),

φ2 : (x y z) 7→ (x y z)







−8 −2 0
−6 −8 0
0 0 1






.

The transformation φ1 has order 2. φ2 has order 6 and permutes the 6 arc
points of each conic in the above order. We also have φ

φ1
2 = φ−1

2 .

6.10 Special (k,2)-arcs for q = 19

General constructions

The unique (complete) arc of size 20 is a conic with automorphism group
isomorphic to PGL(2, 19).

The arc of size 10 with A5 as group of automorphisms corresponds to the arc
S described in Section 6.3.

The unique complete arc of size 12 with the dihedral group D18 as automor-
phism group is an arc of type E with excess 1 as described in Section 3.7.

When applying Theorem 6.2 to q = 19, we find that S∗(a) is an arc except
for the values a = 0,±1,±2,±4. For a = ±6, the arc is not complete. For
a = ±3,±5,±9, the arcs have S4 as group of automorphisms. For a = ±7,±8
the automorphism group is larger: it is S4 : 3. Note that the arcs S∗(7) and
S∗(8) are equivalent.

Finally, there are two complete arcs of size 14 in PG(2, 19) that can be embed-
ded onto a non-singular irreducible cubic curve with one rational inflexion
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point. In Section 6.1 we showed that a subgroup of index two of the abelian
group of the curve is an arc.

The first arc lies on the curve with equation C1 ↔ z2y + x3 − 8y3 = 0. This
curve is of type (i), as classified in [19, Theorem 11.54]. It is a non-singular
equianharmonic cubic curve. The inflexion point has coordinates (0, 0, 1). The
abelian group of the 28 rational non-singular points of the cubic is isomorphic
to 7× 22. This group has three subgroups of order 14. A coset of each of these
subgroups yields a (k, 2)-arc. These three arcs are equivalent. The abelian
group can be generated by the element of order 14 with coordinates (7, 7, 1)
and the element of order 2 with coordinates (3, 1, 0). The arc points are the 14
points in the orbit of the first generator.

The second arc lies on the curve with equation C2 ↔ z2y + x3 + 6xy2 + 3y3 =
0. This curve is also of type (i), as classified in [19, Theorem 11.54]. It is a non-
singular general cubic curve. The inflexion point has coordinates (0, 0, 1). The
abelian group of the 28 rational non-singular points of the cubic is isomorphic
to the cyclic group of order 28 and can be generated by the element with
coordinates (0, 5, 1). The arc points are the 14 odd multiples of this generator,
in other words they correspond to a coset of a subgroup of index two.

The automorphism group GS of both arcs is a cyclic group of order 2 contain-
ing the following automorphism: (x, y, z)→ (x, y,−z).

6.11 Special (k,2)-arcs for q = 23

General constructions

The unique (complete) arc of size 24 is a conic with automorphism group
isomorphic to PGL(2, 23).

There is a unique complete arc of size 14 with automorphism group isomor-
phic to the dihedral group D22. It is an arc of type E with excess 1 as described
in Section 3.7.
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PG(2, 23) has two inequivalent complete arcs of size 12 with automorphism
group isomorphic to the symmetric group on 4 elements. These are the arcs
S∗(a) as described in Theorem 6.2 with a = ±7,±8. The set S∗(a) also is an
arc for a = ±3,±4,±5,±6,±11, but in these cases the arc is not complete.

The unique complete arc S with GS ≈ 16 : 2

PG(2, 23) contains a unique complete arc of size 16 with an automorphism
group of size 32. The arc can be partitioned into two sets of size 8 each of
which is contained in a conic.

We may choose coordinates in such a way that the first set S1 consists of
the points with coordinates of the form (1, 0,±1), (1,±1, 0) and (1,±9,±9).
These points lie on the conic C1 with equation y2 + z2 = x2. The second set S2
contains all points with coordinates of the form (1,±2,±8) and (1,±8,±2).
These points lie on the conic C2 with equation y2 + z2 = −x2.

The collineations

φ1 : (x, y, z) 7→ (x, 9(y− z), 9(y + z)),

φ2 : (x, y, z) 7→ (x,−y, z)

leave S1, S2, C1 and C2 invariant. φ1 has order 8, φ2 is an involution and
together they generate a dihedral group of order 16 with orbits S1 and S2.

To obtain the full automorphism group of the arc, we need to add the collineation

φ3 : (x, y, z) 7→ (x,−2y + 8z,−8y− 2z)

of order 16, which interchanges S1 and S2 (and C1 and C2). Note that φ2
3 = φ1.

The full group has the following presentation: 〈φ2, φ3 | φ16
3 = φ2

2 = 1, φ
φ2
3 =

φ7
3〉.
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6.12 Special (k,2)-arcs for q = 25

In what follows let α denote a primitive generating element of F25 which sat-
isfies α2 + α + 2 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k5.

General constructions

The unique (complete) arc of size 26 is a conic with automorphism group
GS ≈ PGL(2, 25) and ΓS ≈ PΓL(2, 25).

Secondly, PG(2, 25) has a unique complete arc S of size 14 with GS isomorphic
to the dihedral group of order 26, and ΓS isomorphic to the semidirect product
13 : 4. This arc is of type I with excess 1 as described in Section 3.7.

As mentioned in Section 6.1, a complete arc of size q−√q + 1 exists for every
field of square order. For q = 25 it has size 21 with ΓS ≈ 21 : 6 and GS ≈ 21 : 3.
This arc was already discovered by Chao and Kaneta [7].

In PG(2, 25), the set S∗(a) described in Theorem 6.2 is an arc for the following
values of a: ±α2,±α4,±α7,±α8,±α9,±α10,±α11. This arc however never is
complete. The arcs S∗(±α4) and S∗(±α8) both can be extendend with the set
I as described in Theorem 6.3 with i = ±α6. They turn out to be equivalent in
PΓL(3, q) and have S4 as group of automorphisms.

The unique complete arc S with |GS| = 72 and |ΓS| = 144

There is one more unique complete arc in PG(2, 25) with a large automor-
phism group. We do not know whether this type of arc can be generalized to
other fields. We list coordinates for the points of one representative S below.
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We have |S| = 18, |GS| = 72 and |ΓS| = 144.

(1, α2, α3) (α4, 1, α) (0, α13, 1) (0, 1, α17) (α17, 0, 1) (1, α17, 0)

(α3, 1, α2) (α, α4, 1) (1, 0, α13) (1, α20, α5) (α5, 1, α20) (α20, α5, 1)

(α2, α3, 1) (1, α, α4) (α13, 1, 0) (α15, α10, 1) (1, α15, α10) (α10, 1, α15)
(6.5)

The group GS is generated by the following linear transformations:

φ1 : (x y z) 7→ (z x y),

φ2 : (x y z) 7→ (x y z)







α8 0 α8

1 1 0
0 α16 α16






,

φ3 : (x y z) 7→ (x y z)







α 1 α3

α20 1 α23

α9 α22 1






,

φ4 : (x y z) 7→ (x y z)







α17 α15 α3

α8 α19 α22

α9 α 1






.

The transformation φ1 permutes the coordinates cyclicly. This corresponds to
a permutation of the rows in the left hand part of (6.5) and a permutation of
the columns in the right hand part, leaving the columns on the left and the
rows on the right invariant. The transformation φ2 has exactly the opposite
effect: it permutes the columns on the left and the rows on the right, and
leaves invariant the rows on the left and the columns on the right. We have
φ3

1 = φ3
2 = 1 and φ1φ2 = φ2φ1.

The element φ3 maps the points on the left hand side of (6.5) to the points
at the corresponding positions on the right hand side. φ3 has order 4. The
element φ4 has order 4, but leaves the two sides of (6.5) invariant, instead of
interchanging them. It fixes the points of S with coordinates (0, α13, 1) and
(1, α17, 0). Moreover, we have φ2

4 = φ2
3.

Finally note that φ′ : (x, y, z) 7→ (x5, z5, y5), which belongs to PΓL(3, 25) but
not to PGL(3, 25), is also an automorphism of S which again interchanges the
left hand side and the right hand side of (6.5).
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6.13 Special (k,2)-arcs for q = 27

In what follows let α denote a primitive generating element of F27 which sat-
isfies α3− α2 + 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k3.

General constructions

First, the unique (complete) arc of size 28 is a conic with GS ≈ PGL(2, 27) and
ΓS ≈ PΓL(2, 27).

Secondly, the unique complete arc of size 16 with GS ≈ D26 is an arc of type
E with excess 1 as described in Section 3.7. The full automorphism group ΓS

of the arc is isomorphic to the semidirect product 13 : 6.

There is a unique complete arc of size 19 in PG(2, 27) that can be embedded
onto a non-singular irreducible cubic curve with one rational inflexion point.
This curve has equation z2y + x3 − α5x2y + α2y3 = 0, and is of type (ii)a, as
classified in [19, Theorem 11.54]. The inflexion point has coordinates (0, 0, 1).
The abelian group of the 38 rational non-singular points of the cubic is iso-
morphic to the cyclic group of order 38 and can be generated by the element
with coordinates (1, α3, 1). The arc points are the 19 odd multiples of this
generator, in other words they correspond to a coset of a subgroup of index
two. In Section 6.1 we proved that this construction yields an arc. The auto-
morphism group GS of this arc is a cyclic group of order 2, while ΓS is a cyclic
group of order 6.

If we apply Theorem 6.2 to q = 27, there are 24 values of a (see Table 6.1) which
lead to an arc S∗(a) of size 12 with an automorphism group isomorphic to the
symmetric group on 4 elements. Only in the cases a = ±α7,±α8,±α11 this
arc turns out to be complete. (And these six cases yield PΓL-equivalent arcs.)
This example is of special significance because 12 is the smallest size for a
complete arc in PG(2, 27).
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The two complete arcs of size 14 with GS = ΓS ≈ D14

The projective plane PG(2, 27) has two inequivalent complete arcs of size 14
with the dihedral group of order 14 as group of automorphisms. Both arcs
can be partitioned into two sets of size 7 and each of these sets is contained
in a conic. If we take one of the conics of each arc to be the conic C with
equation xz = y2, then we find the following representatives for the arcs: both
arcs contain the points with coordinates (1, t, t2) with t one of the elements in
the following list:

α, α2,−α5, ∞, α5,−α2,−α,

where t = ∞ corresponds to the point (0, 0, 1).

The remaining points of the first arc S1 lie on the conic C1 with equation
x2 − α11y2 − α11z2 + α9xz = 0. These 7 arc points are

(1,−α10, α6), (1, α7, α3), (1, α3, 1), (1, 0, α12), (1,−α3, 1), (1,−α7, α3), (1, α10, α6).

The remaining points of the second arc S2 lie on the conic C2 with equation
x2 − α8y2 − α11z2 + α5xz = 0. These 7 arc points are

(1, α9, 0), (1, α3, α8), (1,−α4, α25), (1, 0,−1), (1, α4, α25), (1,−α3, α8), (1,−α9, 0).

The automorphism group of both arcs is the same, and can be generated by

φ1 : (x y z) 7→ (x − y z),

φ2 : (x y z) 7→ (x y z)







1 −α9 −α5

α8 −α10 α9

−α3 −α8 1






.

The transformation φ1 fixes the points (0, 0, 1), (1, 0, α12) and (1, 0,−1), and
reverses the order of the points of S1 and S2 as listed above. φ2 has order 7
and permutes the 7 arc points of each conic.

The unique complete arc of size 22 with GS ≈ D14 and ΓS ≈ 7 : 6

PG(2, 27) has a unique complete arc of size 22 with D14 as automorphism
group GS and 7 : 6 as ΓS. This arc was described by Chao and Kaneta [7]. It
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consists of 14 points of a conic, 7 external points to this conic and 1 internal
point. This last point is a fixed point of the automorphism group.

The unique complete arc of size 16 with GS ≈ Q8 and ΓS ≈
SL(2, 3)

PG(2, 27) also has a unique complete arc of size 16 with GS isomorphic to
the quaternion group of order 8. We list coordinates for the points of one
representative of the arc below.

(0, 1,±1) (α2, α,±1)

(1, 0,±1) (α,−α2,±1)

(α9, α12,±1) (α5, α7,±1)

(α12,−α9,±1) (α7,−α5,±1)

All points of this arc lie on the quartic with equation x4 + y4 − z4 − α7x3y +
α7xy3 = 0. The group GS is generated by the following eight linear transfor-
mations:

±1 : (x y z) 7→ (x y z)







1 0 0
0 1 0
0 0 ±1







±i : (x y z) 7→ (x y z)







0 1 0
−1 0 0
0 0 ±1






,

±j : (x y z) 7→ (x y z)







α9 α12 0
α12 −α9 0
0 0 ±1






,

±k : (x y z) 7→ (x y z)







−α12 α9 0
α9 α12 0
0 0 ±1






,

such that i2 = j2 = k2 = ijk = −1. To obtain ΓS we need to add the auto-
morphism φ′ : (x, y, z) 7→ (α12x3, y3 − α9x3, z3) which belongs to PΓL(3, 27) \
PGL(3, 27). The group ΓS is isomorphic to SL(2, 3).
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A complete arc of size 18 with GS = ΓS ≈ S3

There are 25 inequivalent complete arcs of size 18 with GS = ΓS ≈ S3, but
only one of them consists of 15 (=(q + 3)/2) points of a conic together with 3
points external to this conic (cf. Chapter 3). This arc was already described by
Davydov et al. [14].

The unique complete arc of size 18 with GS = ΓS ≈ 32 : 2

There is a unique complete arc of size 18 with an automorphism group of size
18. The arc can be partitioned into two sets of size 9 each of which is contained
in a conic. We list coordinates of one representative of the arc below.

(1, 0, 0) (0, 1, 0) (0, 0, 1) (α14, 1, 1) (1, α14, 1) (1, 1, α14)

(α9, α16, 1) (1, α9, α16) (α16, 1, α9) (α11, 1, α8) (α8, α11, 1) (1, α8, α11)

(α9, 1, α16) (α16, α9, 1) (1, α16, α9) (α11, α8, 1) (1, α11, α8) (α8, 1, α11)
(6.6)

The nine points in the left hand part of (6.6) lie on the conic with equation
xy + xz + yz = 0, those in the right hand part on the conic with equation
α2x2 + α2y2 + α2z2 + xy + xz + yz = 0.

The group GS = ΓS is generated by the projective transformations φ1, φ2, φ3,
represented as follows:

φ1 : (x y z) 7→ (z x y),

φ2 : (x y z) 7→ (x z y),

φ3 : (x y z) 7→ (x y z)







α9 α16 1
1 α9 α16

α16 1 α9






.

We have φ3
1 = φ2

2 = φ3
3 = 1, φ1φ3 = φ3φ1, φ

φ2
1 = φ−1

1 and φ
φ2
3 = φ−1

3 .

The transformation φ1 permutes the coordinates cyclicly. This corresponds
to a permutation of the columns in the left hand part and in the right hand
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part of (6.6), leaving the rows invariant. The transformation φ3 has exactly the
opposite effect: it permutes the rows and leaves invariant the columns in (6.6).

6.14 Special (k,2)-arcs for q = 29

General constructions

The unique (complete) arc of size 30 is a conic with automorphism group
GS ≈ PGL(2, 29).

There is a unique complete arc of size 16 with automorphism group isomor-
phic to the dihedral group of order 30. It corresponds to an arc of type I with
excess 1 as discussed in Section 3.7.

Applying Theorem 6.2 to the case q = 29 yields 18 values of a for which
S∗(a) is a 12-arc (see Table 6.1). None of these arcs are complete, but for
eight of these the set I can be added, i.e. when a = ±4,±6,±9,±10. This
results in four inequivalent complete arcs of size 18 with automorphism group
isomorphic to the symmetric group on 4 elements.

The smallest size for a complete arc in PG(2, 29) is 13. There is a unique
complete arc of that size with an automorphism group of size 39. It can be
constructed as the orbit of the 67th power of a Singer cycle as described in
Section 6.1. The automorphism group of the arc is isomorphic to the semi-
direct product 13 : 3.

The 2 complete arcs of size 14 with GS ≈ D14

Like PG(2, 27) also PG(2, 29) has two inequivalent complete arcs of size 14
with the dihedral group of order 14 as automorphism group. Again, both arcs
can be partitioned into two sets of size 7 and each of these sets is contained
in a conic. If we take one of the conics of each arc to be the conic C with
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equation y2 = xz, then we find the following representatives for the arcs: both
arcs contain the points with coordinates (1, t, t2) with t one of the elements of
the following list:

1, 7, 72 = −9, 73 = −5, 74 = −6, 75 = −13, 76 = −4

The remaining points of the first arc S1 lie on the conic C1 with equation y2 =
−4xz. These are the points (1, t, 7t2) for the same values of t. The remaining
points of the second arc S2 lie on the conic C2 with equation y2 = −9xz. These
are the points (1, t,−13t2), again for the same values of t. The automorphism
group of both arcs is the same, and can be generated by

φ1 : (x y z) 7→ (x 7y 72z),

φ2 : (x y z) 7→ (z y x).

We have φ
φ2
1 = φ−1

1 .

φ1 acts like t 7→ 7t on both arcs. φ2 corresponds to t 7→ 1/t on the conic
C, t 7→ −4/t on S1 \ C and t 7→ −9/t on S2 \ C. It fixes the points (1, 1, 1),
(1,−5, 1) of S1 and (1, 1, 1), (1, 7, 1) of S2.

The unique complete arc of size 20 with GS ≈ D20

There is a unique complete arc of size 20 with the dihedral group of order 20
as group of automorphisms. The arc can be partitioned into two sets of size
10 and each of these sets is contained in a conic.

We may choose coordinates in such way that the first conic C1 has equation
x2 + y2 + 10z2 = 0. The arc points on this conic are the following:

(1, 4, 6) (1, 10, 4) (1,−3, 12) (1, 6, 11) (1,−7,−13)

(1,−4, 6) (1,−10, 4) (1, 3, 12) (1,−6, 11) (1, 7,−13)
(6.7)

The second conic C2 then has equation −11xz + 5y2 − z2 = 0, the arc points
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on C2 are:

(1,−7,−14) (1,−9,−5) (0, 1, 11) (1, 10, 8)

(1, 0, 0) (1, 0,−11)

(1, 7,−14) (1, 9,−5) (0,−1, 11) (1,−10, 8)
(6.8)

The automorphism group of the arc can be generated by

φ1 : (x y z) 7→ (x y z)







4 1 2
−1 −1 −7
−9 12 7






,

φ2 : (x y z) 7→ (x − y z).

φ1 has order 10 and permutes the 10 arc points of each conic in a clockwise or-
der in (6.7) and (6.8). The involution φ2 fixes the points (1, 0, 0) and (1, 0,−11)

of C2 and none of the points of C1. We have φ
φ2
1 = φ−1

1 .

The two complete arcs of size 21 with GS ≈ S3

The third largest size of a complete arc in PG(2, 29) is 21. There are two arcs
of this size. The first arc consists of the points

(1, 0, 0) (1, 5, 10) (1, 4, 9) (1,−3,−2)

(0, 1, 0) (1, 10, 5) (1, 9, 4) (1,−2,−3)

(0, 0, 1) (5, 1, 10) (4, 1, 9) (−3, 1,−2)

(10, 1, 5) (9, 1, 4) (−2, 1,−3)

(5, 10, 1) (4, 9, 1) (−3,−2, 1)

(10, 5, 1) (9, 4, 1) (−2,−3, 1),

(6.9)

the second arc consists of the points

(1, 0, 0) (1, 2, 8) (1, 5, 13) (1,−3,−5)

(0, 1, 0) (1, 8, 2) (1, 13, 5) (1,−5,−3)

(0, 0, 1) (2, 1, 8) (5, 1, 13) (−3, 1,−5)

(8, 1, 2) (13, 1, 5) (−5, 1,−3)

(2, 8, 1) (5, 13, 1) (−3,−5, 1)

(8, 2, 1) (13, 5, 1) (−5,−3, 1).

(6.10)
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The automorphism group of these arcs is the symmetric group of degree three,
which is clearly visible in (6.9) and (6.10) as a permutation group of the coor-
dinates.

The unique complete arc of size 24

The unique complete arc of size 24 has an interesting structure which can be
described in various ways. It consists of the points of the well-known Klein
quartic [27] on F29. Its automorphism group is PSL(2, 7) ≈ PSL(3, 2), of order
168.

The Klein quartic can be represented by the simple equation

x3y + y3z + z3x = 0.

The automorphism group of this curve is generated by the following elements:

φ1 : (x, y, z) 7→ (z, x, y),

φ2 : (x, y, z) 7→ (74x, 72y, 7z),

φ3 : (x y z) 7→ (x y z)







−7 8 −2
8 −2 −7
−2 −7 8







(with φ3
1 = φ7

2 = φ2
3 = 1).

An alternative representation of this curve, in three dimensions, is given by

x4 + y4 + z4 + u4 = 19xyzu, x + y + z + u = 0,

which displays the action of the symmetric group S4 (a subgroup of PSL(2, 7))
on the arc. In this representation, the points of the arc correspond to the 24
permutations of the coordinates (1, 4, 9, 15).

Chao and Kaneta [7] had already discovered this arc (and the order of its
automorphism group) by computer but did not give an explicit description of
its points or mention the connection with the Klein quartic.
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7
Special (k, 3)-arcs in

PG(2, q), q ≤ 13

We continue our investigation of special arcs with the (k, 3)-arcs in PG(2, q),
q ≤ 13. As in the case of (k, 2)-arcs, we managed to discover several general
types of arc, using the results presented in Chapter 5. These arcs are described
in Sections 7.1, 7.2 and 7.3. In Sections 7.5- 7.8, we have a closer look at some
of the arcs for each q up to 13.
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7.1 Some arcs with automorphism group S4

Among the results, we again found some arcs that accept the symmetric group
S4 as a group of automorphisms and that can be generalized to other values
of q. In Section 6.2, we described the conditions for which the set S∗(a) of 12
points is a (k, 2)-arc. The conditions for which this same set now is a (k, 3)-arc
are somewhat relaxed and will be described in this section.

Theorem 7.1 Let a ∈ Fq, q odd. Let S∗(a) denote the set of points of PG(2, q)
with coordinates of the form (a,±1,±1), (±1, a,±1) or (±1,±1, a), with inde-
pendent choices of sign. Let S∗(∞) be the set of points with coordinates (1, 0, 0),
(0, 1, 0) or (0, 0, 1).

The set S∗(a) (= S∗(−a)) is a (12, 3)-arc of PG(2, q) if and only if

a /∈ {0,±1,±
√
−1}. (7.1)

The set S∗(a) ∪ S∗(∞) is a (15, 3)-arc if and only if a satisfies (7.1).

The set S∗(a) ∪ S∗(0) is a (18, 3)-arc if and only if a satisfies (7.1) and

a 6= ±2, a2 ± a± 2 6= 0. (7.2)

The group S4 acts as a group of automorphisms for each of these sets.

Proof : Note that |S∗(a)| = 12 if and only if a 6= 0,±1 or ∞ and that |S∗(0)| =
6.

The symmetric group of order 24 acts transitively on S∗(a), S∗(0) and S∗(∞)
(cf. Section 6.2).

To prove that S∗(a) is an arc we show that no quadruple of different points of
S∗(a) is collinear. Because S4 is a transitive group of automorphisms, we may
chose an arbitrary element of S∗(a) as the first point of each quadruple, say
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7.1. Some arcs with automorphism group S4

P0(a) = (1, 1, a).

We will also use a second type of symmetry to reduce the number of quadru-
ples we need to consider: substituting −a for a everywhere permutes the
points of S∗(a) and therefore S∗(a) = S∗(−a). Hence, for what follows, all
conditions we derive for a must also hold for −a.

Interchanging the first two coordinates leaves P0(a) invariant and the stabi-
lizer of P0(a) splits S∗(a) \ {P0(a)} into a singleton orbit {P1(a)} and 5 pairs
{Pi(a), P′i (a)}, as follows:

P1(a) = (−1,−1, a),
P2(a) = (1,−1, a), P′2(a) = (−1, 1, a),
P3(a) = (1, a, 1), P′3(a) = (a, 1, 1),
P4(a) = (−1, a,−1), P′4(a) = (a,−1,−1),
P5(a) = (a,−1, 1), P′5(a) = (−1, a, 1),
P6(a) = (a, 1,−1), P′6(a) = (1, a,−1).

Hence, taking P1(a), . . . , P6(a) as representatives of these 6 orbits, it suffices to
show that for each i = 1, . . . , 6 the line P0(a)Pi(a) intersects S∗(a) in at most
three points.

In fact, it is not necessary to investigate all six of these cases. Note for instance
that applying (x, y, z) → (y, x,−z) to P3(a) yields P5(−a) and applying the
same transformation to P0(a) yields P0(−a). Hence P0(a)P5(a) will intersect
S∗(a) in at most three points, if and only if P0(a)P3(a) does so. The same
relation exists between P0(a)P6(a) and P0(a)P4(a).

We may therefore restrict ourselves to the first four cases:

1. P0(a)P1(a), with equation f1(x, y, z) = x− y = 0,

2. P0(a)P2(a), with equation f2(x, y, z) = ax− z = 0,

3. P0(a)P3(a), with equation f3(x, y, z) = (a + 1)x− y− z = 0,

4. P0(a)P4(a), with equation f4(x, y, z) = −(1 + a2)x + (1 − a)y + (1 +
a)z = 0.
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

In the first part of Table 7.1 we list the values of fi(r) for each of the 12 points
r of S∗(a).

For S∗(a) to be a (k, 3)-arc, none of the colums for f1(r) . . . f4(r) may contain
more than 3 zeroes for rows that correspond to S∗(a). From the columns for
f1(r) and f2(r) we find the conditions 2 6= 0, a 6= 0, a 6= ±1 and a2 6= ±1.
f3(r) yields the extra condition that not both a2 + a + 2 and a2 + a− 2 can be
zero. This only happens when 4 = 0, which was already excluded bij f1(r).
From f4(r), we know that at most one of −a3 − a + 2 = 0, −a3 − a− 2 = 0
and a2 + 3 = 0 is allowed. When both −a3 − a + 2 and −a3 − a− 2 are zero,
we again find 4 = 0. When both −a3 − a + 2 = 0 and a2 + 3 = 0, we find
3a− a + 2 = 0 or 2a + 2 = 0, while when both −a3− a− 2 = 0 and a2 + 3 = 0,
we find 3a− a− 2 = 0 or 2a− 2 = 0.

Hence, when q is odd and a satisfies (7.1), no four different points of S∗(a) lie
on the same line, and we may conclude that S∗(a) is indeed a (12, 3)-arc.

Because S∗(a) is a (k, 3)-arc and S∗(∞) only contains three points, a line con-
taining four points of S∗(a) ∪ S∗(∞) must contain at least one point of S∗(a)
and one point of S∗(∞). By symmetry, we may again choose the element
P0(a) = (1, 1, a) of S∗(a) as the first point of such a line. The stabilizer of P0(a)
splits S∗(∞) into the singleton {T1(0, 0, 1)} and the pair {T2(0, 1, 0), T′2(1, 0, 0)}.
Hence, it suffices to show that P0(a)T1 and P0(a)T2 intersect S∗(a) ∪ S∗(∞) in
at most three points. It is easily computed that P0(a)T1 = P0(a)P1(a) and
P0(a)T2 = P0(a)P2(a) and hence again by inspecting the colums for f1(r) and
f2(r) we see that no additional conditions are needed for S∗(a) ∪ S∗(∞) to be
a (k, 3)-arc.

Finally, consider the set S∗(a) ∪ S∗(0). It is easily checked that the set S∗(0)
never contains more than three points on a line and when (7.1) is satisfied
neither does S∗(a). The set S∗(0) has four trisecants and three bisecants. The
trisecants have equations x± y± z = 0 with independent choices of sign, the
bisecants are the lines with equations x = 0, y = 0 and z = 0.

A line containing four points of S∗(a) ∪ S∗(0) is one of three types. First, we
have the lines that are trisecants of S∗(a) and contain one point of S∗(0). To
avoid such lines, we must be sure that no columns of Table 7.1 contain more
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7.1. Some arcs with automorphism group S4

f1(r) f2(r) f3(r) f4(r)

−(1 + a2)x

x− y ax− z (a + 1)x− y− z +(1− a)y + (1 + a)z

S∗(a) (1, 1, a) 0 0 0 0

(−1,−1, a) 0 −2a −2a 2a(1 + a)

(1,−1, a) 2 0 2 2(−1 + a)

(−1, 1, a) −2 −2a −2(1 + a) 2(a2 + 1)

(1, a, 1) 1− a −1 + a 0 −2a(−1 + a)

(1, a,−1) 1− a 1 + a 2 −2(a2 + 1)

(−1, a,−1) −1− a 1− a −2a 0

(−1, a, 1) −1− a −1− a −2(1 + a) 2(1 + a)

(a, 1, 1) −1 + a a2 − 1 a2 + a− 2 −a3 − a + 2

(a,−1,−1) 1 + a a2 + 1 a2 + a + 2 −a3 − a− 2

(a, 1,−1) −1 + a a2 + 1 a(1 + a) −a(a2 + 3)

(a,−1, 1) 1 + a a2 − 1 a(1 + a) −a(a2 − 1)

S∗(0) (1, 1, 0) 0 a a −a(1 + a)

(−1, 1, 0) −2 −a −2− a a2 − a + 2

(1, 0, 1) 1 −1 + a a a(1− a)

(−1, 0, 1) −1 −1− a −2− a a2 + a + 2

(0, 1, 1) −1 −1 −2 2

(0,−1, 1) 1 −1 0 2a

S∗(∞) (1, 0, 0) 1 a 1 + a −a2 − 1

(0, 1, 0) −1 0 −1 1− a

(0, 0, 1) 0 −1 −1 1 + a

Table 7.1: Lists the values of fi(r) for each of the points in the left column (cf. proof of
Theorem 7.1).
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

than three zeroes in rows corresponding to S∗(a)∪ S∗(0). This yields the extra
conditions a 6= −2, a2 ± a + 2 6= 0 and a2 + a± 2 6= 0. Second, we have the
lines that are bisecants of S∗(a) and bisecants of S∗(0). Such a line must be
one of x = 0, y = 0 and z = 0, but none of the points (a,±1,±1), (±1, a,±1)
or (±1,±1, a) lies on such a line. Last, we have the lines that are trisecants
of S∗(0) and contain one point of S∗(a). Because ±1± 1± a 6= 0, this case
also never occurs. Hence, when (7.1) and (7.2) are satisfied, S∗(a) ∪ S∗(0) is a
(k, 3)-arc.

As with (k, 2)-arcs, in some cases we can add the set I of size 6 to S∗(a):

Theorem 7.2 Let q = 1 mod 4. Let a, i ∈ Fq, such that i2 = −1. Let S∗(a)
be defined as in Theorem 7.1. Let I denote the set of six points whose coordinates
are permutations of (1, i, 0). (I is a subset of the conic C : x2 + y2 + z2 = 0.)

Then S∗(a) ∪ I is an (18, 3)-arc of PG(2, q) if and only if

a /∈ {0,±1,±i,±i± 1,±2i)}. (7.3)

Proof :

To prove this theorem, we can follow the proof of Theorem 6.3. For S∗(a) to
be a (k, 3)-arc we now have the conditions (7.1). Also instead of no collinear
triple, we can now have no collinear quadruples in S∗(a) ∪ I. Therefore in
Table 6.1, we cannot have more than three zeroes in each colum.

Apart from the conditions a /∈ {0,±1,±i} of Theorem 7.1, we also find the
following conditions: from the first colum a 6= ±i ± 1. Also no two of ia2 ±
ia + i± 1 can be zero at the same time. However, this yields no new conditions.
From the second colum, we find that a 6= ±i and a 6= ±2i.

In Theorem 6.4, we proved that the set S∗(1) ∪ I is a (k, 2)-arc if i 6= ±2. If we
drop this condition, then S∗(1) ∪ I still remains a (k, 3)-arc. Indeed, Table 6.3
will still contain at most 3 zeroes (cf. proof of Theorem 6.4).
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7.2. (k, 3)-arcs from half conics

Also note that the line x = y always intersects S∗(a) ∪ S∗(0) ∪ S∗(∞) in four
points (when a 6= 0), hence this set is never a (k, 3)-arc. Also, the line x = 0
intersects S∗(a) ∪ S∗(0) ∪ I and S∗(a) ∪ S∗(∞) ∪ I in four points, so these sets
neither are (k, 3)-arcs.

In Table 7.2 we present the values of a for which an arc of type S∗(a), S∗(a) ∪
S∗(∞), S∗(a)∪ S∗(0) or S∗(a)∪ I exists for all q ≤ 29. If the arc exists, the table
mentions whether the arc is complete or not (NC stands for not complete). If
the set is not a (k, 3)-arc, then the space is left blank.

Again, in some cases, S4 is not the full automorphism group of S∗(a). For
instance, if q ≡ 1 (mod 3) and a3 = 1, a 6= 1, then (x, y, z) 7→ (x, ay, a2z)
extends the group of automorphisms of S∗(a) to S4 : 3.

7.2 (k, 3)-arcs from half conics

For q = 11 the table of the complete (k, 3)-arcs lists 6 complete (k, 3)-arcs
with an automorphism group of type D10. In this section we shall describe
how to construct these arcs and show that this construction can be generalised
to other (small) fields, yielding arcs having a cyclic group of order q−1

2 or a
dihedral group Dq−1 as a group of automorphisms.

Let q be odd. Let D ∈ F
∗
q . Denote by CD the conic with equation xz = Dy2.

This conic belongs to the pencil of conics that are tangent to the lines x = 0
and z = 0 in the points P and Q with coordinates (1, 0, 0) and (0, 0, 1). These
tangents intersect in the point R with coordinates (0, 1, 0).
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

q a S∗(a) S∗(a) ∪ S∗(∞) S∗(a) ∪ S∗(0) S∗(a) ∪ I

5 ±2 NC

7 ±2,±3 NC NC

9 ±α,±α3 NC NC

11 ±2 NC NC

±4,±5 NC complete

±3 NC NC complete

13 ±2 NC NC NC

±3 NC NC NC NC

±4 NC NC NC

±6 NC NC complete

17 ±2 NC NC NC

±3,±5 NC NC NC

±6,±7,±8 NC NC NC NC

19 ±2 NC NC

±3,±4,±5,±6,
NC NC NC

±7,±8,±9

23 ±2,±9,±10 NC NC

±3,±4,±5,
NC NC NC

±6,±7,±8± 11

25 ±α,±α5 NC NC NC

±α2,±α3,±α4,±α7,
NC NC NC NC

±α8,±α9,±α10,±α11

27 ±α,±α2,±α3,±α4,

NC NC NC±α5 ± α6,±α7,±α8,

±α9,±α10,±α11,±α12

29 ±2,±7,±8 NC NC NC

±13,±11 NC NC NC

±3,±4,±5,±6,
NC NC NC NC

±9,±10,±14

Table 7.2: Lists the values of a for which an arc of the types in the colums exists for all
q ≤ 29.
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7.2. (k, 3)-arcs from half conics

R(010)

P(100) Q(001)

z = 0 x = 0

Except for P and Q, all points of CD can be given coordinates of the form
(1, t, Dt2) with t ∈ F

∗
q . We shall call t the parameter of the corresponding point

of CD.

Let C+
D denote the set of all points of CD whose parameter is a non-zero

square. Likewise, let C−D denote the set of all points of CD with a parameter
that is not a square. Note that CD = C+

D ∪ C−D ∪ {P, Q}. The sets C+
D and C−D

will be called half conics.

The sets C+
D and C−D are left invariant by a dihedral group of order q − 1

generated by the projective transformations

φ1 : (x, y, z) 7→ (x, α2y, α4z)

and
{

φ2 : (x, y, z) 7→ (z, y, x) if D is a square,

φ3 : (x, y, z) 7→ (z, αy, α2x) if D is a non-square.

with α a generator of the multiplicative group of Fq. The sets C+
D and C−D are

interchanged by φ2 if D is a non-square, and by φ3 if D is a square. In terms of
parameters t, the dihedral group is generated by t 7→ α2t (φ1) and t 7→ 1/Dt
(φ2) or t 7→ α/Dt (φ3).

Note that any transformation of the form (x, y, z) 7→ (x, y, kz) with k ∈ F
∗
q ,

maps C+
D onto C+

kD. Also, the transformation (x, y, z) 7→ (x, αy, α2z) maps C+
D

onto C−D .

As a consequence, when considering a number of half conics, without loss of
generality we may take one of them to be C+

1 .
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

It turns out that for smaller values of q we can construct (k, 3)-arcs by taking
the union of three such half conics, yielding arcs of size 3

2 (q − 1). We have
generated by computer all arcs of this form for q ≤ 79. The results (up to
equivalence) are listed in Table 7.3 (together with their automorphism group).
We conjecture that for q > 19 no arcs of this type exist.

q = 5 q = 11 q = 13

C+
1 ∪ C−1 ∪ C+

2 [120] C+
1 ∪ C−1 ∪ C+

5 D10 C+
1 ∪ C−1 ∪ C+

7 D12

C+
1 ∪ C−1 ∪ C+

3 D4 C+
1 ∪ C−1 ∪ C+

7 D10 C+
1 ∪ C+

2 ∪ C+
4 6

q = 7 C+
1 ∪ C−1 ∪ C+

9 D10 C+
1 ∪ C+

2 ∪ C+
11 6

C+
1 ∪ C−1 ∪ C+

2 D6 C+
1 ∪ C+

2 ∪ C+
3 5 C+

1 ∪ C+
4 ∪ C+

6 6

C+
1 ∪ C−1 ∪ C+

4 D6 C+
1 ∪ C+

2 ∪ C+
4 5 q = 19

C+
1 ∪ C−1 ∪ C+

5 D6 C+
1 ∪ C+

2 ∪ C+
5 5 C+

1 ∪ C+
7 ∪ C+

11 [162]

C+
1 ∪ C−1 ∪ C+

6 [54] C+
1 ∪ C+

2 ∪ C+
10 5 C+

1 ∪ C+
8 ∪ C+

11 9

C+
1 ∪ C+

2 ∪ C+
3 D6 C+

1 ∪ C+
4 ∪ C+

5 D10

C+
1 ∪ C+

2 ∪ C+
4 [54] C+

1 ∪ C+
4 ∪ C+

7 5

C+
1 ∪ C+

3 ∪ C−2 32 C+
1 ∪ C+

4 ∪ C+
9 D10

q = 9 C+
1 ∪ C+

8 ∪ C+
9 5

C+
1 ∪ C−1 ∪ C+

−α S4 C+
1 ∪ C+

2 ∪ C−10 5

C+
1 ∪ C−1 ∪ C+

−α3 S4 C+
1 ∪ C+

4 ∪ C−9 D10

C+
1 ∪ C+

α ∪ C+
α2 4

C+
1 ∪ C+

α ∪ C+
α3 3 : 4

C+
1 ∪ C+

α2 ∪ C+
−α 4

with α = 1 +
√
−1, i.e., α2 + α = 1.

Table 7.3: Complete list of arcs, up to equivalence, that consist of three ‘half conics’
(for q ≤ 79)

The arcs of this type can be roughly divided into three kinds:

176



7.2. (k, 3)-arcs from half conics

• those that contain two half conics with the same index D, i.e., almost the
full conic CD,

• those that use three half conics of the same sign,

• those that use half conics of two different signs, and never with the same
index

The following lemma shows that those of the first and third kind will never
be complete arcs

Lemma 7.3 Let D, E, F ∈ Fq, D 6= E. If S = C+
D ∪ C+

E ∪ C−F is a (k, 3)-arc, then
so is S ∪ {P, Q}.

Proof : First note that no line through Q(0, 0, 1) can already contain 3 points
of S. If that were the case, then each of these points would have the same mid-
dle coordinate (assuming coordinates are normalized to have first coordinate
equal to 1). But the middle coordinates of C+

D and C+
E are squares, while those

of C−F are not.

By symmetry, also no line through P(1, 0, 0) can already contain 3 points and
finally, the line joining P and Q, i.e., the line with equation y = 0 does not
intersect S.

Lemma 7.4 Let q ≡ −1 (mod 4) (i.e., −1 is not a square). Let D, E, F ∈ Fq,
D 6= E 6= F 6= D. If S = C±D ∪ C±E ∪ C±F (with independent choices of sign) is a
(k, 3)-arc, and {D, E, F} contains at least one square and one non-square, then also
S ∪ {R} is a (k, 3)-arc.

Proof : A line through R(0, 1, 0) intersects S in points that have the same last
coordinate. If −1 is not a square, then a half conic C±D can contain at most one
point with a given last coordinate, and that last coordinate will be a square if
and only if D is a square. As D, E, F are not all squares or all non-squares, the
line can not contain 3 points of S.
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

From the proofs of these lemmas it follows that all three points P, Q, R can be
added when the conditions of both lemmas are both satisfied.

The converse is not true: if neither lemma is satisfied this does not necessarily
imply that an arc S = C±D ∪ C±E ∪ C±F is complete. In fact we only find the
following three complete arcs of size 3

2 (q− 1): in PG(2, 11), C+
1 ∪C+

4 ∪C+
5 and

C+
1 ∪ C+

4 ∪ C+
9 are complete. In PG(2, 19) the set C+

1 ∪ C+
7 ∪ C+

11 is complete.

There are two arcs of the second kind that merit special attention. For q = 7
and q = 19 the sets C+

1 ∪ C+
ω ∪ C+

ω2 with ω3 = 1, ω 6= 1 are (k, 3)-arcs. These
arcs admit an additional symmetry (x, y, z) 7→ (x, y, ωz) that permute the
three half conics. For q = 7, this arc is the set C+

1 ∪ C+
2 ∪ C+

4 . It is the set
S1 from Theorem 7.5 which is not complete. For q = 19, this arc is the set
C+

1 ∪ C+
7 ∪ C+

11 which is complete.

Note that the two arcs for q = 9 with S4 as automorphism group are arcs of
the type as described in Section 7.1 with a = α3 for C+

1 ∪ C−1 ∪ C+
−α and a = α

for C+
1 ∪ C−1 ∪ C+

−α3 .

For completeness we would like to point out that the complete (13, 3)-arc with
group D10 for q = 11, can be constructed by combining two half conics (C+

1
and C+

3 ) and the three points P, Q and R.

7.3 (k,3)-arcs from cubic curves

7.3.1 The Hessian configuration

Let q ≡ 1 (mod 3). Then the field Fq contains an element ω 6= 1 such that
ω3 = 1 (and hence ω2 + ω + 1 = 0).
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7.3. (k,3)-arcs from cubic curves

Consider the set H of the nine points with the following coordinates :

(1,−1, 0) (0, 1,−1) (−1, 0, 1)

(1,−ω, 0) (0, 1,−ω) (−ω, 0, 1)

(1,−ω2, 0) (0, 1,−ω2) (−ω2, 0, 1)

The set H is called the Hessian configuration and has many interesting proper-
ties [1, 19]. It is a (9, 3)-arc such that every point lies on exactly 4 trisecants and
no bisecants. There are 12 trisecants in all. The configuration of points and
trisecants represents an affine plane AG(2, 3) embedded in PG(2, q). (Note
that for q = 7 this arc is complete and regular.)

(1,−1, 0) (0, 1,−1) (−1, 0, 1)

(1,−ω, 0) (0, 1,−ω) (−ω, 0, 1)

(1,−ω2, 0) (0, 1,−ω2) (−ω2, 0, 1)

H is the set of intersection points of the Hesse pencil of cubic curves generated
by xyz = 0 and x3 + y3 + z3 = 0. In fact, H is the set of nine inflection points
for each of the irreducible cubics in this pencil.

Every cubic curve in the Hesse pencil is left invariant by the group G18 (of
order 18) that is generated by the permutations of the coordinates together

179



7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

with the transformation σω : (x, y, z) 7→ (x, ωy, ω2z). For specific curves in
the pencil the automorphism group can be larger. The group of projective
transformations that leaves H itself invariant has order 216.

Let Cc denote the cubic of the Hessian pencil with equation x3 + y3 + z3 +
cxyz, with c ∈ Fq. Cc is irreducible (and non-singular) if and only if c 6=
−3,−3ω,−3ω2. In that case, the Abelian group associated with Cc (with one
of its inflection points chosen as neutral element) has H as a subgroup. It
follows that |Cc| must be divisible by |H| = 9. The following table lists the
largest possible value of |Cc| for finite fields not larger than 256.

q maxc |Cc| q maxc |Cc| q maxc |Cc|
4 9 64 81 157 180
7 9 67 81 163 189

13 18 73 90 169 189
16 18 79 90 181 207
19 27 97 117 193 216
25 36 103 117 199 225
31 36 109 126 211 234
37 45 121 144 223 252
43 54 127 144 229 252
49 63 139 162 241 270
61 72 151 171 256 288

For many fields these cubic curves Cc provide (k, 3)-arcs of a reasonably
large size. All listed sizes lie in the interval [q +

√
q − 1, q + 2

√
q + 1] and

in some cases (q = 4, 25, 64, 121, 256) the upper bound (the Hasse bound) is
even reached.

We shall be interested in the cubic curve C1, i.e., the curve with equation
x3 + y3 + z3 + xyz = 0. Consider the set H1 of the nine points with the
following coordinates :

(1, 1,−1) (1,−1, 1) (1,−1,−1)

(1, ω,−ω2) (1,−ω, ω2) (1,−ω,−ω2)

(1, ω2,−ω) (1,−ω2, ω) (1,−ω2,−ω)
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7.3. (k,3)-arcs from cubic curves

It is easily seen that each of these points belongs to the curve C1.

Both H and H1 are orbits of G18. The set Ĥ def
= H ∪H1 is an (18, 3)-arc. The

tangent to the curve C1 in a point of H1 intersects a point of H. (For example,
the line x + y + 2z = 0 is a tangent at (1, 1,−1) and intersects H in (1,−1, 0).)
Apart from these 9 tangents (which are bisecants to the arc) all other lines
connecting two points of H1 are trisecants.

As a consequence Ĥ is a subgroup of the Abelian group of the curve C1, and
hence |C1| is a multiple of 18. Note that H is a subgroup of index 2 of Ĥ, and
hence the corresponding coset H1 is necessarily a (9, 2)-arc (which does not
lie on a conic).

The (9, 2)-arc H1 can be extended to a (k, 3)-arc in other ways. Consider for
example the set Sω :

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(ω2, 1, 1) (1, ω2, 1) (1, 1, ω2)

which consists of two orbits of G18, each of size 3. It is easily seen that this set
is a (6, 2)-arc, and that the 15 bisecants have the following equations :

x = 0, y = 0, z = 0,

x = y, y = z, z = x,
x = ωy, y = ωz, z = ωx,
x = ω2y, y = ω2z, z = ω2x,

ωx + y + z = 0, x + ωy + z = 0, x + y + ωz = 0,

forming three orbits of G18 (of sizes 3, 9, 3). By considering one line in each
orbit, it is easily seen that no bisecant of Sω intersects H1 in more than one
point. As both Sω and H1 are (k, 2)-arcs, this proves that H1 ∪ Sω is a (15, 3)-
arc.

There is another way to extend H1 to an arc with interesting properties. Con-
sider the set H′1 obtained by extending H1 with the following orbit of G18 :

(1, 1, 1), (1, ω, ω2), (1, ω2, ω)
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

In other words, H′1 contains the 12 points with coordinates that are of the
form (±1,±1,±1), (±1,±ω,±ω2) or (±1,±ω2,±ω). The symmetric group
S4 acts on H′1 by permuting the coordinates and allowing independent sign
changes of the coordinates. Together with σω this group extends to a group
G72 of automorphisms of type S4 : 3, of size 72.

In fact, applying the transformation z 7→ ωz shows that H′1 is equivalent
to S∗(ω) of Theorem 7.1 and therefore a (12, 3)-arc (and even a (12, 2)-arc
provided the characteristic of the field is not 7).

By the same theorem it can be extended to a (15, 3)-arc by adding the points
(1, 0, 0), (0, 1, 0) and (0, 0, 1), still with G72 as a group of automorphisms, and
to an (18, 3)-arc provided the characteristic of the field is not 5 or 7. The latter
arc no longer has σω as an automorphism.

7.3.2 A (18,3)-arc with GS ≈ 31+2
+

Theorem 7.5 Let q ≡ 1 (mod 3). Let ω ∈ Fq, ω 6= 1 such that ω3 = 1. Let
c ∈ Fq.

Consider the sets S1 and S2(c) of points with the following coordinates :

S1 S2(c)

(1, 1, 1) (1, 1, ω) (1, 1, ω2) (1, 0, c) (ω, 0, c) (ω2, 0, c)

(1, ω, 1) (1, ω, ω) (1, ω, ω2) (0, c, 1) (0, c, ω) (0, c, ω2)

(1, ω2, 1) (1, ω2, ω) (1, ω2, ω2) (c, 1, 0) (c, ω, 0) (c, ω2, 0)

(7.4)

Then S1 ∪ S2(c) is an (18, 3)-arc if and only if c 6= 0 and c3 6= ±1. The group
G27 ≈ 31+2

+ of size 27, generated by the elements

(x, y, z) 7→ (x, ωy, z), (x, y, z) 7→ (x, y, ωz), (x, y, z) 7→ (y, z, x),

is a group of automorphisms of S1 ∪ S2(c).
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7.3. (k,3)-arcs from cubic curves

Proof : Note that |S1| = |S2(c)| = 9, as c 6= 0.

First consider the case c3 = −1, i.e., c = −1, −ω or −ω2. In that case S2(c)
is precisely the Hesse configuration H. Then the trisecant of H with equation
x + y + z = 0 intersects S1 in the additional points (1, ω, ω2) and (1, ω2, ω)
and therefore S1 ∪ S2(c) is not an (18,3)-arc. Henceforth we shall assume that
c3 6= −1.

It is easily verified that G27 leaves both S1 and S2(c) invariant. If we extend G27
to G54 by the map which interchanges two coordinates, then G54 still leaves S1
invariant, but not S2(c) (unless c = 1, ω or ω2, i.e., c3 = 1).

The stabilizer of (1, 1, 1) in G54 consists of the 6 coordinate permutations and
has three orbits on S1. It is therefore easily seen that the lines connecting
(1, 1, 1) with any other point of S1 have equations

x = y, x + ωy + ω2z = 0

or an equation obtained from these by permuting x, y, z.

It follows that S1 is a (9, 3)-arc in which every point lies on three trisecants
(the orbit of G54 of the first equation above) and two bisecants (the orbit of the
second equation). It also follows that if c3 6= 1 then no point of S2(c) lies on a
trisecant of S1. Likewise, if c3 6= −1, then no point of S2(c) lies on a bisecant
of S1.

As a consequence, any line which intersects S1 ∪ S2(c) in more than three
points, must intersect S2(c) in more than two points. To determine these lines,
consider the stabilizer of (1, 0, c) in G27. It consists of the 3 transformations
that multiply the y-coordinate by either 1, ω or ω2 and has 5 orbits on S2(c).
The lines connecting (1, 0, c) with any other point of S2(c) have equations

y = 0, cx +
1
c

y− z = 0, cx− c2y− z = 0,

or equations derived from these by multiplying the coefficient of y by ω or
ω2.

If c3 = −1,−ω or −ω2, i.e., if c9 = −1, then some of these lines will coincide
and each point will then lie on 4 trisecants of S2(c). The case c3 = −1 was
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

already excluded. If c3 = −ω or −ω2, then it is easily verified that all 18
points of S1 ∪ S2(c) lie on the (irreducible) cubic with equation x3 − c3y3 +
c6z3, making it an (18, 3)-arc.

If c9 6= −1, then the only line through (1, 0, c) which intersects S2(c) in more
than two points is the line with equation y = 0. Clearly this line does not
contain a point of S1, hence again S1 ∪ S2(c) is an (18, 3)-arc.

The set S1 consists precisely of the nine intersection points of the pencil of
cubics generated by x3 = y3 and y3 = z3. In this pencil, consider the three
cubics C, C′, C′′ with equations

C : c3(x3 − y3) = z3 − y3

C′ : c3(z3 − x3) = y3 − x3,

C′′ : c3(y3 − z3) = x3 − z3.

Note that these cubics coincide if and only if c6− c3 + 1 = 0 and then all points
of S1 ∪ S2(c) belong to that cubic. Otherwise, each of the cubics C, C′, C′′

intersects S2(c) in precisely three points, corresponding to the three rows in
(7.4).

7.4 Special (k,3)-arcs for q = 7

In PG(2, 7), the two arcs of size 11 with automorphism group S3 consist of
three ‘half’ conics (as defined in Section 7.2) and two extra points. Using the
notations of that section, these arcs are

S11 = C+
1 ∪ C−1 ∪ C+

4 ∪ {P, Q},
S′11 = C+

1 ∪ C+
2 ∪ C+

3 ∪ {P, R}.

Also, adding the points P, Q and R to the last arc in Table 7.3 for q = 7 yields
a complete arc:

S12 = C+
1 ∪ C+

3 ∪ C−2 ∪ {P, Q, R}.

184



7.5. Special (k,3)-arcs for q = 8

The automorphism group of this arc is 32.

The unique complete arc of size 9 in PG(2, 7) corresponds to the Hessian
configuration described in Section 7.3.1.

7.5 Special (k,3)-arcs for q = 8

In what follows let α denote a primitive generating element of F8 which satis-
fies α3 + α2 + 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k2.

The complete arc of size 11 with ΓS ≈ 2A4 and GS ≈ 23

In PG(2, 8), there is a unique complete arc of size 11 consisting of 8 points on
a conic and three collinear points not on that conic. If we take this conic C
to have equation y2 = xz, then the arc points on the conic have coordinates
(1, t, t2) with t ∈ F8. The three other arc points lie on the line ℓ with equation
x = 0. This line is tangent to C in the point with coordinates (0, 0, 1) which
is not an arc point. Each triple of points on ℓ (not containing (0, 0, 1)) can be
added to the set of arc points of the conic. However, only for 7 of these triples
the arc is complete and these 7 arcs all turn out to be equivalent. Their group
GS is isomorphic to 23 and consist of the 8 elements

φu : (x y z) 7→ (x y z)







1 u u2

0 1 0
0 0 1






, u ∈ Fq.

Adding the frobenius automorphism σ and its square σ2 yields the automor-
phism group ΓS which is isomorphic to 2A4.
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The two complete arcs of size 15 with ΓS ≈ 3A4 and GS ≈ A4

Consider the set T of the following twelve points:

(1, α4, α) (α2, α, 1) (α4, α2, α) (α, 1, α4)

(1, α, α2) (α4, α2, 1) (α, α4, α2) (α2, 1, α)

(1, α2, α4) (α, α4, 1) (α2, α, α4) (α4, 1, α2)

In PG(2, 8) there are 24 points not lying on a line of the subplane PG(2, 2).
The set T contains 12 of these points. We find three ways to split up these 12
points into two conical subsets. The equations of the corresponding conics are
given below.

y2 = xz y2 + z2 = xz

x2 = xz + yz x2 + z2 = xz + yz

x2 + y2 = yz x2 + y2 + z2 = yz

Also consider the following three sets of points of the line z = 0:

T1 T2 T3

(1, 0, 0) (1, α, 0) (α, 1, 0)

(0, 1, 0) (1, α2, 0) (α2, 1, 0)

(1, 1, 0) (1, α4, 0) (α4, 1, 0)

The three points of the set T1 lie in the respective intersections of the three
conic pairs given above.

We find that the sets T ∪ T1 and T ∪ T2 are non-equivalent complete (15, 3)-
arcs. The set T ∪ T3 is however not an arc.

The three sets all have the alternating group on 4 elements A4 as automor-
phism group. It can be generated by

φ1 : (x, y, z) 7→ (x + y, x, z)

of order 3 and
φ2 : (x, y, z) 7→ (x + z, y, z)
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7.6. Special (k,3)-arcs for q = 9

φ′2 : (x, y, z) 7→ (x, y + z, z)

of order 2. Note that the group A4 is a subgroup of the stabilizer of the line z =
0 in PGL(3, 2). Adding the Frobenius automorphism yields the automorphism
group ΓS ≈ 3A4.

These arcs were already discovered by Bierbrauer [3].

7.6 Special (k,3)-arcs for q = 9

In what follows let α denote a primitive generating element of F9 which sat-
isfies α2 + α− 1 = 0. The Frobenius automorphism σ of the field corresponds
to k 7→ k3.

The unique complete arc of size 14 with ΓS ≈ GS ≈ 4

In PG(2, 9), none of the arcs consisting of three ‘half’ conics as defined in
Section 7.2 are complete. Using the same notations, we find that adding the
points P and R to the sets yield the following two complete arcs:

S14 = C+
1 ∪ C+

α ∪ C+
α2 ∪ {P, R},

S′14 = C+
1 ∪ C+

−α ∪ C+
α2 ∪ {P, R}.

These arcs are PGL-inequivalent, but PΓL-equivalent and have a cylic auto-
morphism group of order 4.

The unique complete arc of size 15 with ΓS ≈ GS ≈ D10

In PG(2, 9), there is a unique complete arc having the dihedral group of order
10 as a group of automorphisms. It consists of all points of a conic C1, together
with half of the points of a second conic C2. If C1 has equation y2 = xz, then
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

C2 has equation x2 + y2 − α2z2 + αxz. The points occur in three orbits of size
5 under the action of the automorphism group:

(1, α, α2) (1, α2,−1) (1, 0, 0) (1,−α2,−1) (1,−α, α2)

(1, 1, 1) (1,−α3,−α2) (0, 0, 1) (1, α3,−α2) (1,−1, 1)

(1, α2, 0) (1, 1, α3) (1, 0, α6) (1,−1, α3) (1,−α2, 0)

D10 is generated by

φ1 : (x y z) 7→ (x − y z)

and

φ2 : (x y z) 7→ (x y z)







α3 α −α3

−1 1 −1
−1 1 α3






.

Note that φ
φ1
2 = φ−1

2 .

The unique complete arc of size 12 with ΓS ≈ 32 : Q8 and GS ≈
32 : 4 and the unique complete arc of size 12 with ΓS ≈ 32 : D12
and GS ≈ 32 : 6

In PG(2, 9), the nine points

(1, 0, 1) (0, 1, 1) (1, 1,−1)

(1,−1, 1) (0, 0, 1) (−1, 1, 1)

(1, 1, 1) (0, 1,−1) (1, 0,−1)

(7.5)

together with the points (1,−1, 0), (0, 1, 0), (1, 0, 0) and (1, 1, 0) on the line
z = 0 form a projective subplane PG(2, 3). The other six points on the line
z = 0 are the points (1, t, 0) with t ∈ {α, α2, α3, α5, α6, α7}. The union of any
three of these six points together with the nine points of (7.5) is a (k, 3)-arc
that always turns out to be complete. Among these arcs we find two orbits.

The first orbit consists of 12 isomorphic arcs having ΓS ≈ 32 : Q8 and GS ≈
32 : 4 as group of automorphisms. A representative S of this orbit consists of
the points of (7.5) and the three points (1, α, 0), (1, α5, 0) and (1, α7, 0).
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The second orbit consists of 8 isomorphic arcs with ΓS ≈ 32 : D12 and GS ≈
32 : 6. A representative S′ of this orbit consists of the points of (7.5) and the
three points (1, α, 0), (1, α6, 0) and (1, α7, 0).

The group 32 can be generated by the following linear transformations:

φ±1 : (x, y, z) 7→ (x± z, y, z),

φ±2 : (x, y, z) 7→ (x, y± z, z),

φ±3 : (x, y, z) 7→ (x± z, y± z, z),

The group GS ≈ 32 : 4 of the arc S is then obtained by adding the element

i : (x, y, z) 7→ (−x + y, x + y, z)

of order 4. The group Q8 can be generated by the following elements:

±1 : (x, y, z) 7→ (x, y,±z),

±i : (x, y, z) 7→ (−x + y, x + y,±z),

±j : (x, y, z) 7→ (−y3, x3,±z),

±k : (x, y, z) 7→ (−x3 − y3,−x3 + y3,±z3)

such that i2 = j2 = k2 = ijk = −1. Note that the subgroup 32 is left invariant
under conjugation by Q8 and therefore ΓS is of type 32 : Q8.

The group GS′ ≈ 32 : 6 can be generated by the elements φ±1, φ±2, φ±3 to-
gether with

ψ6 : (x, y, z) 7→ (−x, x− y, z).

of order 6. The group D12 can be generated by ψ6 and

ψ2 : (x, y, z) 7→ (x3,−y3, z3)

of order 2 with ψ
ψ2
6 = ψ−1

6 . Note that the subgroup 32 is left invariant under
conjugation by D12 and therefore ΓS is of type 32 : D12.
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The unique complete arc of size 16 with ΓS ≈ (3 : 4) : 2 and
GS ≈ 3 : 4

The points of this arc are the 16 rational points of a non-singular irreducible
cubic curve with equation yz2 + α2y3 + x3− xy2 = 0. This cubic is of type (ii)b,
as classified in [19, Theorem 11.54] and is the cubic with the largest number
of points in PG(2, 9). The automorphism group GS of this arc is isomorphic
to the semi-direct product 3 : 4 and can be generated by

φ1 : (x, y, z) 7→ (x + y, y, z)

and
φ2 : (x, y, z) 7→ (x− α2y,−y, α2z).

Note that φ3
1 = φ4

2 = 1 and φ
φ2
1 = φ−1

1 . To obtain ΓS we need to add the
automorphism

φ3 : (x, y, z) 7→ (x3,−y3, α2z3)

of order 2. We have φ
φ3
1 = φ1 and φ

φ3
2 = φ2

2 .

7.7 Special (k,3)-arcs for q = 11

The unique complete arc of size 19 with GS ≈ 19 : 3

There is a unique complete arc of size 19 with GS ≈ 19 : 3 which can be
constructed as an orbit of the 19th power of a Singer cycle (cf. Section 6.1).

Note that this arc is regular: through each point there are 0 bisecants, and
hence 9 trisecants and 3 unisecants.

The 2 complete arcs of size 21 with GS ≈ 7 : 3

These two arcs each consists of the union of three orbits of size 7 of the 19th
power of a Singer cycle (cf. Section6.1). The automorphism group of both arcs
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7.7. Special (k,3)-arcs for q = 11

is the group 7 : 3.

Note that again the arcs are regular: in both cases each point of the arc lies on
9 trisecants, and hence 2 bisecants and 1 unisecant.

The complete arcs with GS ≈ S4

When applying Theorem 7.1 to q = 11, we find that S∗(a) ∪ S∗(∞) is an arc
for all values of a, except for the values 0 and ±1 (as −1 is non-square in F11).
This arc is only complete for 4 of these values, i.e. when a = ±4 or a = ±5.
(Note that S∗(a) = S∗(−a).) This results in two inequivalent complete arcs of
size 15 both having S4 as automorphism group. These arcs are regular: each
point lies on 6 trisecants, 2 bisecants and 4 unisecants.

Also according to Theorem 7.1, the values a = ±3 are the only ones for which
S∗(a) ∪ S∗(0) is an arc in PG(2, 11). This arc is complete and has again S4 as
automorphism group. In this case, the set S∗(a) is a complete (k, 2)-arc. The
twelve points of S∗(a) each lie on 5 trisecants, 7 bisecants and 0 unisecants.
The six points of S∗(0) each lie on 7 trisecants, 3 bisecants and 2 unisecants.

The complete arcs with GS ≈ D10

As mentioned in Section 7.2, PG(2, 11) contains six complete arcs up to iso-
morphism that have the dihedral group of order 10 as group of automor-
phisms.

When using the same notations as in Section 7.2, we find the following com-
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plete (k, 3)-arcs up to isomorphism:

S13 = C+
1 ∪ C+

3 ∪ {P, Q, R}
S15 = C+

1 ∪ C+
4 ∪ C+

9

S′15 = C+
1 ∪ C+

4 ∪ C+
5

S17 = C+
1 ∪ C−1 ∪ C+

9 ∪ {P, Q}
S′17 = C+

1 ∪ C−1 ∪ C+
5 ∪ {P, Q}

S′′17 = C+
1 ∪ C+

4 ∪ C−9 ∪ {P, Q}

Because all indices that appear are squares in F11, the group D12 is generated
by the transformations φ1 and φ2 as defined in Section 7.2.

The complete arcs with GS ≈ 5

There are 6 complete arcs in PG(2, 11) with a cyclic automorphism group of
order 5. Each of these contain 3 ‘half’ conics as defined in Section 7.2. These
arcs are the following (using the same notations):

S17 = C+
1 ∪ C+

2 ∪ C+
3 ∪ {P, R}

S′17 = C+
1 ∪ C+

2 ∪ C+
4 ∪ {P, R}

S′′17 = C+
1 ∪ C+

2 ∪ C+
10 ∪ {P, R}

S′′17 = C+
1 ∪ C+

4 ∪ C+
7 ∪ {P, R}

S′′′′17 = C+
1 ∪ C+

8 ∪ C+
9 ∪ {P, R}

S18 = C+
1 ∪ C+

2 ∪ C−10 ∪ {P, Q, R}
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7.8 Special (k,3)-arcs for q = 13

The unique complete arc of size 18 with GS ≈ S4

Applying Theorem 7.1 to q = 13 yields the values a = ±3,±4,±6 for which
S∗(a) ∪ S∗(0) is an arc. Only for a = ±6 this arc turns out to be complete and
has S4 as automorphism group.

This arc is regular: each point lies on 7 trisecants, 3 bisecants and 4 unisecants.

The complete arcs of size 21 with GS ≈ D12

PG(2, 13) contains two complete arcs having the dihedral group of order 12 as
group of automorphisms. Both arcs consist of the same three ‘half’ conics as
defined in Section 7.2, together with three points. Using the same notations
we find

S = C+
1 ∪ C−1 ∪ C+

7 ∪ {P, Q, R}
S′ = C+

1 ∪ C−1 ∪ C+
7 ∪ {(1, 0, 7), (1, 0, 8), (1, 0, 9)}

Because 7 is a non-square in F13, the group D12 is generated by φ1 and φ3 as
defined in Section 7.2.

The complete arcs of size 20 with GS ≈ 6

The arcs constructed in Section 7.2 can be completed in many ways. Adding
the points P(1, 0, 0) and R(0, 1, 0) to each one of the arcs yields three complete
and one incomplete arc. The incomplete arc is the one discussed above to
which the point Q(0, 0, 1) can be added as well. The other three arcs are the
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following (using the notations of Section 7.2:

S20 = C+
1 ∪ C+

2 ∪ C+
4 ∪ {P, R}

S′20 = C+
1 ∪ C+

2 ∪ C+
11 ∪ {P, R}

S′′20 = C+
1 ∪ C+

4 ∪ C+
6 ∪ {P, R}.

These three arcs all have a cyclic automorphism group of order 6.

Arcs related to the Hessian configuration

Because 13 ≡ 1 (mod 3), the arcs defined in Section 7.3.1 exist in PG(2, 13).
The set Ĥ = H∪H1 is a complete (18, 3)-arc for q = 13. Its group of automor-
phisms has size 36: it can be obtained by extending G18 with the following
generator, of order 4 :

(x y z) 7→ (x y z)







1 1 9
9 1 1
9 3 9







The (15, 3)-arc H1 ∪ Sω also is complete for q = 13 and has the same group of
automorphisms of size 36 as Ĥ.

The unique complete arc of size 18 with GS ≈ 31+2
+

For q = 13 and c = −2, the (18, 3)-arc S1 ∪ S2(−2) as defined in Section 7.3.2
is complete with 31+2

+ as group of automorphisms.

Cubic curves of size 21

The largest size of a cubic curve in PG(2, 13) turns out to be 21, with two
examples up to isomorphism.
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The first example corresponds to the following equation

xy(x + y) = −6z3.

This is an irreducible cubic curve with three inflection points (coordinates:
(1,0,0), (0,1,0), (1,-1,0)) and three inflectional tangents that are concurrent (x =
0, y = 0 and x + y = 0, intersecting in (0, 0, 1).)

The automorphism group G of this curve has size 18, is of type 3S3 and is
generated by the permutations of x, y and −x − y and the cyclic element
z 7→ 3z (with 33 = 1).

Apart from the three inflection points, the curve has 18 additional points,
which form an orbit of G. The points are those whose coordinates (x, y, z)
satisfy {x, y,−x− y} = {1, 2,−3} and z3 = 1.

The points P0, . . . , P20 of this curve can be numbered in a way that reflects the
Abelian group of the curve (which is cyclic of order 21) :

P0 : (1, 0, 0) P7 : (0, 1, 0) P14 : (1,−1, 0)

P1 : (1, 2, 1) P8 : (2,−3, 1) P15 : (−3, 1, 1)

P2 : (6, 4, 1) P9 : (4, 3, 1) P16 : (3, 6, 1)

P3 : (5,−4, 1) P10 : (−4,−1, 1) P17 : (−1, 5, 1)

P4 : (−4, 5, 1) P11 : (5,−1, 1) P18 : (−1,−4, 1)

P5 : (4, 6, 1) P12 : (6, 3, 1) P19 : (3, 4, 1)

P6 : (2, 1, 1) P13 : (1,−3, 1) P20 : (−3, 2, 1)

(7.6)

Pi, Pj, Pk are collinear if and only if i + j + k ≡ 0 (mod 21).

The automorphism group G can also be easily expressed in terms of this point
numbering: the cyclic permutation (x, y, z) 7→ (y,−x − y, z) is equivalent to
Pi 7→ Pi+7, Pi 7→ P−i interchanges x and −x− y, and Pi 7→ P4i corresponds to
z 7→ 3z (each time with index aritmetic modulo 21).

The automorphism group has two orbits of size 3 in the plane. A first orbit
consists of the inflection points P0 ,P7 and P14, the second orbit corresponds
to the points with coordinates (1, 1, 0), (−2, 1, 0) and (1,−2, 0). Both orbits lie
on the line with equation z = 0.
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These six points have an important property: every line through these points,
except the line z = 0, intersects the orbit of 18 non-inflection points in at most
two points.

For the first orbit this is an immediate consequence of the fact that all 21
points lie on an irreducible cubic curve. For the second orbit, consider the
representative point (1, 1, 0). From (7.6) we compute the values of (y− x)/z
for each point Pi that is not an inflection point.

Pi P1 P2 P3 P4 P5 P6

(y− x)/z 1 −2 4 −4 2 −1

Pi P8 P9 P10 P11 P12 P13

(y− x)/z −5 −1 3 −6 −3 −4

Pi P15 P16 P17 P18 P19 P20

(y− x)/z 4 3 6 −3 1 5

The number of times a specific value k occurs in this table, is equal to the
number of intersection points with the line x − y + kz = 0 through (1, 1, 0).
For k = ±2,±5,±6 there is one intersection point, for k = ±1,±3,±4 there
are two, but never three. This proves our claim.

From this we conclude that adding any three of these six points to the 18
non-inflection points of the cubic yields a (21,3)-arc, giving a total of 6 non-
equivalent (21,3)-arcs for q = 13. These arcs turn out to be complete. Only
two of them have G as group of automorphisms. (The others have a cyclic
automorphism group of order 3 or 6.)

The second example of a cubic curve of size 21 corresponds to the curve C21
with equation

x2y + y2z + 4z2x = 0.

This cubic has no inflection points. Its automorphism group is the group 32

of size 9 and is generated by the transformations

(x, y, z) 7→ (x, 3y, 9z), (x, y, z) 7→ (y, 4z, x).

The group has one orbit of size 3, with points (1, 0, 0), (0, 1, 0) and (0, 0, 1),
and 20 orbits of size 9 (on the points of PG(2, 13)). The cubic C21 consists of
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7.8. Special (k,3)-arcs for q = 13

the orbit of size 3 and two orbits of size 9, with representatives (1,−1,−2)
and (1,−1, 5). It is a complete (21, 3)-arc.

Finally, it turns out that the same group leaves invariant a different (21,3)-arc
which does not lie on a cubic. It consists of the orbit of size 3 together with
the two orbits of size 9 with representatives (1, 1, 2) and (1, 1, 6).

Regular arcs for q = 13

From Section 5.5 we know that PG(2, 13) contains several (k, 3)-arcs that are
regular. We shall only discuss those of size 21.

The first (21,3)-arc of this type has automorphism group of type S3. Each
point lies on 8 trisecants (and 4 bisecants and 2 unisecants). The points of this
arc can be given by the following coordinates

(1,−1, 3) (1, 3,−1) (−1, 1, 3) (−1, 3, 1) (3, 1,−1) (3,−1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(1, 1, 4) (1, 4, 1) (4, 1, 1)

(1, 2, 5) (1, 5, 2) (2, 1, 5) (2, 5, 1) (5, 1, 2) (5, 2, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(7.7)

The group S3 acts by permuting the coordinates. The first three rows of (7.7)
form a (12,2)-arc consisting of all points of the conic 2(x2 + y2 + z2) = (x +
y + z)2 except those on the line x + y + z = 0, i.e., (1, 3, 9) and (1, 9, 3).

The second regular (21, 3)-arc has a cyclic automorphism group of size 3. Each
point lies on 9 trisecants, 2 bisecants and 3 unisecants. The points of this arc
can be given by the following coordinates.

(1, 0, 0) (1, 2, 2) (1, 0, 2) (1, 2, 4) (1,−2,−4) (1, 4, 3) (1, 5, 3)

(0, 0, 1) (2,−5, 1) (0,−5, 1) (2, 3, 1) (−2,−3, 1) (4,−1, 1) (5,−1, 1)

(0, 1, 0) (−5, 4, 2) (−5, 4, 0) (3, 4, 2) (−3, 4,−2) (−1, 4, 4) (−1, 4, 5)
(7.8)

The automorphism group is generated by the transformation (x, y, z) 7→ (y, 4z, x)
which we encountered before, and cyclically permutes the rows of (7.8).
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7. Special (k, 3)-arcs in PG(2, q), q ≤ 13

The third and fourth (21, 3)-arc of this type are the two arcs discussed in the
following section.

The unique regular complete arc of size 21 with GS ≈ D14

For q = 13, there is one complete arc having the dihedral group of order 14 as
automorphism group. Let C1 be the conic with equation x2 + z2 + 6xy + 6yz +
11xz = 0 and C2 the conic with equation xz = y2. Then the arc consists of
all points of C1 together with the points of C2 with coordinates (1, t, t2) with t
one of the elements in the following list:

5, 2, 3, 1, 9, 7, 8 (7.9)

The points of C1 have the following coordinates:

(1, 5, 2), (1, 1, 5), (1, 2, 0), (0, 1, 0), (0, 1, 7), (1, 8, 8), (1, 9, 7) (7.10)

(1, 5, 9), (1, 8, 11), (1, 1, 4), (1, 0, 1), (1, 10, 10), (1, 9, 6), (1, 2, 3) (7.11)

The automorphism group can be generated by

φ1 : (x, y, z) 7→ (z, 12y + 10z, x + 6y + 9z)

of order 7 and
φ2 : (x, y, z) 7→ (z, y, x)

of order 2. For the arc points on C2 φ1 corresponds to t 7→ 12/t + 10 and φ2 to
t 7→ 1/t. The order of the points listed in (7.9), (7.10) and (7.11) corresponds
to consecutive applications of φ1. This order is reversed by φ2. We have
φ

φ2
1 = φ−1

1 .
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8
Generation of (k, 2)-arcs from

conical subsets

In this chapter we describe a second algorithm that generates all complete
(k, 2)-arcs in PG(2, q) up to equivalence. As in Chapter 4, this algorithm makes
use of the principle of canonical augmentation. However, generation is now
started from conical subsets instead of from single points. Although this al-
gorithm seemed promising, it did not give us new results as it runs too slow
to even reach q = 27. However, it reproduces our results for all q ≤ 25 and
hence confirms the correctness of our programs.
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8. Generation of (k, 2)-arcs from conical subsets

8.1 Isomorph-free generation from conical subsets

In order to verify the results of the generation of (k, 2)-arcs described in the
previous chapters, we developped an algorithm that is totally independent to
that of Chapter 4. Not only did we want to reproduce our results, we also
hoped to find the classification of all complete (k, 2)-arcs in PG(2, 31).

8.1.1 Canonical augmentation

Where the algorithm for generating arcs in Chapter 4 starts from a singleton
S and adds points to S at each step of the recursion, this algorithm starts the
generation from the largest conical subsets of the resulting arcs. Note that
each subset of size five of an arc is a conical subset since a conic is determined
by five points. Hence, the set of conical subsets to start the generation from
can be restricted to only those of size at least five.

Let E denote the set of all subsets of size at least 5 of all conics of PG(2, q).
Then we denote with E(S) the set of all conical subsets of size at least five of
a (k, 2)-arc S. Note that E(S) ⊆ E for every (k, 2)-arc S.

The idea is to first generate all possible subsets of conics of size at least 5 up
to equivalence. Then, for each such set T we recursively add points to it in
all possible ways until a complete arc S is obtained, which has T as a conical
subset.

To ensure uniqueness up to equivalence, only those arcs S are retained for
which the original conical subset T is maximal among all conical subsets of
S, according to some specific ordering. This ordering is derived from a more
general ordering on all equivalence classes of subsets of conics in the plane,
and shall be explained in more detail later. Note that maximality of T is
defined only up to the action of the stabilizergroup GS of S. In other words,
if T is maximal, and g ∈ GS, then also Tg is maximal. The GS-orbit of all
‘maximal’ conical subsets of S shall be denoted by F(S). A precise definition
of F will be given in section 8.1.4. To make the algorithm work, the function
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8.1. Isomorph-free generation from conical subsets

F must satisfy the following properties:

1. For all S, S ⊆ V, |S| ≥ 5, we have F(S) 6= ∅, F(S) ⊆ E(S),

2. For all S, S ⊆ V, |S| ≥ 5, we have F(S) ∈ GS\\E(S),

3. For all S, S ⊆ V, g ∈ G, we have F(Sg) = F(S)g.

Note that property 2 and 3 are analogous to the required properties of the
function F in Section 4.1.1.

8.1.2 The algorithm

Consider the following algorithm.

Algorithm 3 Generation From Conical Subsets

Output: Aout ⊆ G\\2V

1: Aout = ∅

2: for all O ∈ G\\E do

3: Choose T ∈ O ❶

4: B = ∅

5: for all complete arcs S ∈ 2V such that T ⊆ S do

6: if T ∈ F(S) then

7: Add SG to B ❷

8: end if

9: end for

10: Add B to Aout
11: end for

Note that it is very similar to that of Chapter 4. Again, B is a true set. It
may happen that the same orbit is added more than once to B in ❷. To
decide whether two arcs belong to the same orbit of G in ❷, one can use any
canonical form for (k, 2)-arcs. We used the same canonical form as defined in
Section 4.3.
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8. Generation of (k, 2)-arcs from conical subsets

For the algorithm to be well-defined, the set E must be group invariant for
the group G, which is indeed the case. Also, the resulting set Aout must be
independent of the choice of the orbit representative made at statement ❶.
This is true because if we choose another set T′ ∈ O, then, due to the third
property of F, for each arc S with T ∈ F(S) we find an arc S′ with T′ ∈ F(S′)
such that S and S′ are part of the same orbit SG of G .

Analogously to the proofs of Lemma 4.5 and 4.6, one can prove that the result
of Algorithm 3 is the set Aout of all G-orbits of complete (k, 2)-arcs of size at
least 5 and that every orbit SG is added to at most one B in ❷ and hence is
added to Aout at most once.

8.1.3 The line canonical form of a conical subset

To be able to define an ordering on conical subsets in PG(2, q), we define
some kind of a canonical form for conical subsets. As all conics are equivalent
under the action of G = PGL(3, q) and can be identified with the projective
line PG(1, q), with every conical subset we may associate a subset of PG(1, q).
For that reason, we first define a canonical form for subsets L of the projective
line.

We fix an ordering on the points of the line and extend this to a lexical ordering
of subsets of points of equal size. We define the canonical form can (L) of a
subset L of PG(1, q) to be the smallest subset in the orbit LH , H = PGL(2, q)
with respect to this lexical ordering.

We now define the line canonical form lcan (T) of a conical subset T to be the
canonical form of the corresponding subset L on the projective line.

Although the line canonical form of a conical subset T is not part of the orbit
TG, G = PGL(3, q), it is an invariant for G of this conical subset and it satisfies
the second property of a canonical form (cf. Section 4.2.2): two conical subsets
having the same line canonical form are part of the same orbit in G\\E and
conversely.
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8.1. Isomorph-free generation from conical subsets

We define the following ordering on subsets of the projective line: we first
order them according to size and in case of equal size, we order them lexically
according to their canonical form. The elements of G\\E can then be ordered
lexically according to their line canonical form.

8.1.4 The function F

The function F used in the algorithm has to determine whether a given conical
subset of an arc is maximal or not.

To define a function F we cannot directly use the line canonical form of conical
subsets. The line canonical form is an invariant of the group G, while we need
F(S) to be an orbit of GS. Therefore, we denote a set of all conical subsets of
S having the same line canonical form as a quasi-orbit of GS on E(S). Each
quasi-orbit then is the union of orbits of GS on E(S). Note that every singleton
quasi-orbit of GS is of course a true orbit of GS.

Let F′(S) = {T1, . . . , Tm} be the quasi-orbit of all conical subsets Ti of the arc
S whose line canonical forms are maximal among all conical subsets of S (in
the sense that their size is largest and in case of equal size their line canonical
form is lexically largest). (Note that T1, . . . , Tm all have the same line canonical
form.) We can now define the function F as follows:

1. If F′(S) is a singleton, then F(S) = F′(S).

2. Otherwise, if h ∈ G such that Sh = can (S), then we define F(S) to
be the orbit T

GS
l , where Th

l is lexically smallest among all images Th
i of

all Ti ∈ F′(S), i = 1, . . . , m. (If F′(S) is exactly one orbit of GS, then
F(S) = F′(S).)

Note that with these definitions, the funtion F satisfies the needed properties
for Algorithm 3. To prove this we first need the following lemma:
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8. Generation of (k, 2)-arcs from conical subsets

Lemma 8.1 For all S ⊆ V, g ∈ G, we have F′(S)g = F′(Sg).

Proof : The line canonical form of a conical subset is an invariant for the group
G. Hence, the set of all conical subsets of S with maximal line canonical form
will not change under the action of an element g ∈ G

Proposition 8.2 Let F(S) be defined as above. Then,

1. For all S, S ⊆ V, |S| ≥ 5, we have F(S) 6= ∅, F(S) ⊆ E(S),

2. For all S, S ⊆ V, |S| ≥ 5, F(S) is an orbit of GS on S;

3. For all S, S ⊆ V, g ∈ G, we have F(Sg) = F(S)g.

Proof : 1. This follows immediately from the definitions of F′ and F.

2. By definition, F′(S) is the union of orbits of GS\\E(S), so in the first case
F(S) is indeed a single orbit of GS\\E(S). In the second case, F(S) is of the
from T

GS
l which is a GS-orbit of Tl and Tl ∈ E(S), so here F(S) is also a single

orbit of GS\\E(S).

3. Because of Lemma 8.1, either both F′(S) and F′(Sg) are singletons or nei-
ther. Hence F(s) and F(Sg) either both satisfy the conditions of the first part
of the definition of F, or neither do.

In the first case, when F′(S) and F′(Sg) are singletons, the proof follows im-
mediately.

In the second case, S and Sg are part of the same orbit of G and hence have
the same canonical form can (S) = can (Sg). So, if Sh = can (S) for some
h ∈ G, then can (Sg) = (Sg)g−1h. Because of Lemma 8.1, F′(S)h = F′(Sh) =

F′(can (S)) and F′(Sg)g−1h = F′(Sh) = F′(can (S)).
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Assume T is lexically smallest among all conical subsets of F′(can (S)). Then

F(S) = Th−1GS and F(Sg) = T(g−1h)−1GSg = Th−1gG
g
S using GSg = (GS)g. As

F(S)g = (Th−1GS)g = Th−1gG
g
S , we find F(S)g = F(Sg).

8.2 Improvements

In practice, to generate the complete arcs S in line 5 of Algorithm 3 we use a
recursive algorithm adding one point at each step of the recursion. To avoid
generating the same arcs from the same set T several times, we number the
points of the plane and only add a point to an arc S if its number is larger
then the points in S \ T. (See line 10 and 24 in Generate of Algorithm 4.)

Algorithm 4 Generation From Conical Subsets

Output: Aout ⊆ G\\2V

1: Aout = ∅

2: for all O ∈ G\\E do

3: Choose T ∈ O ❶

4: B = ∅

5: Generate (0,B, T)
6: Add B to Aout
7: end for

The definition of the function F can help us improve the speed of the algo-
rithm. Indeed, a complete arc S will only be kept if the original conical subset
T from which the generation was started, is an element of F(S). From the
definition of F, we know that such a conical subset is maximal in size among
all conical subsets of the resulting arc T. Hence, when we find a conical subset
that is larger than the starting one during generation, then the further genera-
tion from the current arc is stopped. An analogous procedure can be followed
when during generation a conical subset is met that has equal size but has a
larger line canonical form than the conical subset T from which the generation
was started. (See line 17 in Generate of Algorithm 4.)

However, in the first steps of the recursion, we do not need to compute all
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8. Generation of (k, 2)-arcs from conical subsets

Algorithm 4 Generation From Conical Subsets (continued)

8: procedure Generate(start,B, T)
9: S← T

10: for i← start to q2 + q + 1 do

11: if si /∈ S then

12: S← S ∪ {si}
13: larger← f alse
14: if |S| ≥ 2 |T| − 4 then

15: T ← all conical subsets of S containing si

16: for all conical subsets T′ in T do

17: if |T′| > |T| or (|T′| = |T| and lcan (T′) > lcan (T)) then

18: larger← true
19: go to 23
20: end if

21: end for

22: end if

23: if not(larger) then

24: Generate (i + 1,B, S)
25: end if

26: end if

27: end for

28: end procedure
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conical subsets of the current arc S: if |S| < 2 |T| − 4 with T the conical subset
from which the generation was started, then each conical subset of size at least
|T| of S must contain at least 5 points of T and hence is equal to T as a conic
is uniquely determined by 5 points. Hence, the arc S cannot contain conical
subsets that are greater than T with respect to the ordering of conical subsets
as defined in Section 8.1.3. (See line 14 in Generate of Algorithm 4.)

Also when computing all conical subsets of S, we only need to compute those
ones containing the last added point si. Indeed, a conical subset not containing
si and greater then T would already have stopped the generation in a previous
step of the recursion. (See line 15 in Generate of Algorithm 4.)

8.3 Remarks

Generation of the set E

In Algorithm 3, only one conical subset in each orbit O of G\\E is needed.
Hence, in practice we do not need to generate the full set E of conical subsets:
only one representative for each orbit in E is sufficient. As all conics are
equivalent under the action of G = PGL(2, q) and can be identified with the
projective line, we can even restrict ourselves to the orbits of the projective
line.

To generate all subsets of PG(1, q) up to equivalence, we use essentially the
same algorithms as those of Chapter 4 but with a trivial predicate P and the
following definition of F.

F(S)
def
= ehGS where h ∈ G is such that S = can (S)h and e is the smallest

point in can (S),

where “the smallest point” is the smallest point in the ordering as chosen in
Section 8.1.3 to define the canonical form of a line subset.
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8. Generation of (k, 2)-arcs from conical subsets

Mapping the points with coordinates (1, t) of PG(1, q) onto the points with
coordinates (1, t, t2) in PG(2, q) then yields the conical subsets corresponding
with the generated line subsets.

Some more improvements

Apart from the ones described above, we added some further improvements
which are not included in the pseudocode in Algorithm 4:

During generation, we want the original set T to stay maximal among all
conical subsets. Hence, when a conical subset T′ of equal size is found, we
ensure that no other point of the corresponding conic of T′ will be added to
the arc in a next step of the recursion. For this, we keep track of these so called
“forbidden” points at each level of the recursion.

Another an improvement is the following: we order the set of the line canon-
cical forms and give the conical subsets a canonical index corresponding to this
ordering. During the algorithm, we keep track of these indices instead of the
line canonical form of the conical subsets itselfs. In this way, we need less
memory space and comparing indices is faster than comparing conical sub-
sets. We also compute the list of possible child indices of each conical subset.
A child index of a conical subset T is the canonical index of a set T ∪ p, p ∈ C
in which C is the conic corresponding to the conical subset. This allows us in
advance to forbid points that would yield and arc with a conical subset that is
equal in size but larger in line canonical form.

Results

As explained in Section 8.2, we tried to make the basic Algorithm 3 more
efficient in order to improve speed. With those adaptations, we managed to
compute the complete arcs in PG(2, q), q ≤ 25. However, for q > 25 our
program is too slow. Yet, the results for q ≤ 25 are exactly the same as our
results described Section 5 and hence this program confirms the correctness
of our previous program.
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Nederlandstalige samenvatting

In dit werk hebben we ons toegespitst op het vinden van alle complete (k, 2)-
en (k, 3)-bogen in Desarguesiaanse projectieve vlakken PG(2, q) op equivalen-
tie na.

We herhalen kort enkele definities.

Een (k, n)-boog S in PG(2, q) is een verzameling van k punten in het vlak zodat
minstens één rechte van het vlak S snijdt in n punten, maar zodat geen enkele
rechte de verzameling S snijdt in meer dan n punten. Een (k, n)-boog is com-
pleet als en slechts als deze niet bevat is in een (k + 1, n)-boog. In het geval van
(k, 3)-bogen laten we vaak stilzwijgend de eis vallen dat minstens één rechte 3
punten van de boog moet bevatten (vooral in Hoofdstuk 4 waar het algoritme
wordt besproken). Dit betekent dat we een (k, 2)-boog soms als een speciaal
geval van een (k, 3)-boog beschouwen. Bij complete (k, 3)-bogen vormt dit
geen probleem aangezien een (k, 2)-boog nooit een complete (k, 3)-boog kan
zijn.

In deze tekst verwijst de term “boog” altijd naar een (k, 2)- of (k, 3)-boog. Uit
de context zal altijd blijken welke van de twee bedoeld wordt.

In het eerste hoofdstuk hebben we ons geconcentreerd op (k, 2)-bogen met
grote conische deelverzamelingen. Een conische deelverzameling van een (k, 2)-
boog S is elke deelverzameling T van S van de vorm T = S∩C, waarbij C een
kegelsnede in het vlak is.

Als q oneven is, dan kan een boog hoogstens q + 1 punten bevatten. In dat
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geval valt de boog samen met de verzameling punten van een kegelsnede C.
Zo’n boog bestaat altijd en het ligt dus voor de hand om na te gaan wat de
volgende mogelijke grootte is van een complete boog in PG(2, q). Door het
verwijderen van enkele punten van een kegelsnede C bekomt met een boog
die niet meer compleet is. Als men nu een voldoende aantal punten verwij-
dert, dan is het mogelijk om de bekomen verzameling uit te breiden met pun-
ten die niet op de kegelsnede C liggen totdat men een complete boog bekomt.
Als alle punten die niet op de kegelsnede liggen extern zijn ten opzichte van
C, dan kan de boog hoogstens (q + 3)/2 punten van de kegelsnede bevat-
ten. Als minstens 1 boogpunt intern is ten opzichte van C, dan is de grootte
van de doorsnede hoogstens (q + 1)/2. Voor vele waarden van q behoren
deze bogen tot de grootste bogen die gekend zijn. Het zijn deze types bogen
die we verder onderzocht hebben. We bespreken de bogen met een conische
deelverzameling van maximale grootte en 1 extra punt. Ook hebben we een
complete classificatie opgesteld voor de bogen met een conische deelverza-
meling van maximale grootte en 2 extra punten. Hierbij zijn drie gevallen
mogelijk: 2 interne punten, 2 externe punten en de combinatie van 1 intern
en 1 extern punt. Deze bogen worden respectievelijk bogen van het type I met
excess 2, bogen van het type E met excess 2 en bogen van het type M met excess 2
genoemd. Deze bogen zijn niet noodzakelijk compleet. Er zijn echter slechts
weinig bogen van deze types gekend die meer dan twee extra punten bevat-
ten. De theoretische classificatie van de bogen van deze types vormen de basis
van een snel computerprogramma dat zoekt naar bogen met meer dan twee
extra punten. De classificatie en de resultaten van het computerprogramma
worden beschreven in Hoofdstuk 3

Voor het vinden van alle complete (k, 2)- en (k, 3)-bogen in Desarguesiaanse
projectieve vlakken PG(2, q) hebben we specifieke algoritmes opgesteld. Voor
het implementeren van deze algoritmes gebruiken we de programmeertaal
Java.

We zijn gestart met het implementeren van de standaardtechniek voor het
genereren van complete bogen. Deze methode gebruikt een backtracking-
algoritme dat recursief elke (k + 1)-boog S′ genereert uit een k-boog S zodat
S ⊆ S′. Om te voorkomen dat elke boog meer dan één keer gegenereerd
wordt, worden de punten van het vlak genummerd en wordt een punt s alleen
toegevoegd aan S als zijn volgnummer groter is dan deze van alle punten
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in S. Equivalente bogen worden telkens nadat alle bogen van een bepaalde
grootte zijn gevonden, uitgefilterd. Dit algoritme werkt correct maar levert
maar resultaten binnen een aanvaardbare tijd als q ≤ 19. We zijn dan ook op
zoek gegaan naar andere en betere algoritmen om k-bogen te genereren.

Een eerste algoritme, dat besproken wordt in Hoofdstuk 4, maakt gebruik
van canonical augmentation, een techniek voor isomorfvrije generatie ontwor-
pen door B. McKay. Deze algemene techniek hebben we aangepast aan het
specifieke geval van het genereren van deelverzamelingen S in projectieve
vlakken die voldoen aan een bepaalde eigenschap P(S) waarbij P groepsin-
variant en erfelijk is. In onze implementaties van het algoritme beschouwen
we voor P(S) het predicaat "S is een (k, 2)-boog van PG(2, q)" of "S is een
(k, 2)- of (k, 3)-boog van PG(2, q)", afhankelijk van het feit of we complete
(k, 2)- of (k, 3)-bogen wensen te genereren. Het algoritme zelf werkt ook voor
andere predicaten.

Het basisidee van het algoritme is het gebruik van een functie F die aan twee
eigenschappen voldoet. De functie moet een speciale baan bepalen in de
verzameling van alle banen van de stabilisatorgroep van de boog S op de pun-
ten van S. Bovendien moet de functie F groepsinvariant zijn. Het algoritme
werkt dan als volgt: hebben we een boog S van grootte k, dan worden daaruit
bogen van grootte k + 1 gegenereerd door alle overige punten s van het vlak te
proberen toe te voegen. Is de nieuwe verzameling S′ = S ∪ {s} ook een boog,
dan behouden we deze boog enkel en alleen als het laatst toegevoegde punt s
behoort tot de speciale baan F(S′) van de nieuwe boog. Om de snelheid van
ons programma op te drijven, hebben we zorgvuldig gebruik gemaakt van
een speciale functie die invariant is voor de punten van de boog. Het is een
functie IS die aan elk punt van de boog S een geheel getal IS(p) hecht zodanig
dat IS(p) = IS(p′) als p en p′ in dezelfde baan zitten van de statibilisatorgroep
van de boog.

Van dit eerste algoritme hebben we twee varianten: de eerste variant maakt
telkens gebruik van de stabilisatorgroep van de boog S die we verkrijgen in
de loop van het algoritme. De tweede variant gebruikt deze stabilisatorgroep
niet, maar vereist extra controles om er zeker van te zijn dat nooit twee iso-
morfe bogen gegenereerd worden. Beide varianten zijn geprogrammeerd en
leveren dezelfde resultaten op. Ze reproduceren alle eerdere, door anderen

211



NEDERLANDSTALIGE SAMENVATTING

gevonden resultaten. Bovendien zijn we er met dit algoritme als eerste in ge-
slaagd om alle complete (k, 2)-bogen van PG(2, 25), PG(2, 27) en PG(2, 29) en
alle complete (k, 3)-bogen van PG(2, 11) en PG(2, 13) te vinden. Deze resul-
taten worden voorgesteld aan de hand van tabellen in Hoofdstuk 5.

De meeste bogen met een algemeen gekende contructie hebben een interes-
sante (en vaak ook grote) stabilisatorgroep. Daarom bepaalden we de stabili-
satorgroep voor elk van de complete bogen. We bestudeerden een aantal van
de bogen met grotere stabilisatorgroep in de hoop die bogen op een elegan-
tere manier te kunnen beschrijven dan enkel aan de hand van een opsomming
van de coördinaten van de punten in de boog. In sommige gevallen kunnen
bogen ook beschreven worden als speciale deelverzamelingen van kubische
krommen of van de unie van twee kegelsneden. Daarom hebben we voor
elke (k, 2)-boog het type van de algebraïsche kromme met de laagste graad
bepaald waarop de boog ligt. Voor de (k, 3)-bogen maakten we een lijst van
de bogen die regulier zijn in de zin dat elk punt van de boog op een zelfde
aantal trisecanten van de boog ligt.

Bij het bestuderen van de bogen vonden we een aantal algemene constructies
van bogen die ook werken voor grotere waarden van q. We vonden construc-
ties van (k, 2)- en (k, 3)-bogen die alle gestabiliseerd worden door de sym-
metrische group S4 en we vonden constructies van bogen met de alternerende
groep A5 als stabilisatorgroep. Ook beschrijven we bogen bestaande uit de
unie van drie halve kegelsnedes en bogen die opgebouwd worden uit deel-
verzamelingen van kubische krommen. Deze algemene constructies worden
beschreven in het begin van Hoofdstuk 6 en Hoofdstuk 7. In het tweede deel
van deze hoofdstukken worden voor elke q telkens de bogen uit deze con-
structies opgesomd en wordt een geometrische beschrijving gegeven van een
aantal bijkomende bogen met een grotere stabilisatorgroep.

Een tweede algoritme voor het vinden van alle (k, 2)-bogen gaat op een to-
taal andere manier te werk en is gebaseerd op het idee van een conische
deelverzameling. Het idee bestaat erin eerst alle mogelijke deelverzamelin-
gen van kegelsnedes van grootte minstens 5 (op equivalentie na) te genereren.
Daarna worden aan elke verzameling T recursief punten toegevoegd totdat
een complete boog S die T als conische deelverzameling bezit, bereikt is. Om
uniciteit op equivalentie na te garanderen, worden bogen enkel en alleen be-
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houden als de conische deelverzameling T van waaruit de boog opgebouwd
werd, maximaal is onder alle conische deelverzamelingen van S. Om het be-
grip maximaal te kunnen definiëren, werd een vaste totale ordening op de
equivalentieklassen van deelverzamelingen van kegelsnedes ingevoerd. Dit
algoritme wordt besproken in Hoofdstuk 8. Een implementatie van dit al-
goritme heeft geen resultaten opgeleverd voor grotere waarden van q, het
reproduceert wel de eerder gevonden resultaten voor q ≤ 25.
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zijn. Sofie en Sara, merci om mijn zusjes te zijn. Ik weet dat jullie altijd zullen
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doctoraat begon en je vele hulp thuis zorgde ervoor dat ik het ondanks de
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