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Preface

For a little more than three years, blocking sets and related structures have
occupied my mind. Many of the ideas and thoughts I had during these years
are collected in this thesis. Its aim is to add to the knowledge of several
geometrical structures by exploring their connection with blocking sets.

In the first chapter, the field of research is situated. Basic definitions,
notations and some important theorems concerning finite projective and po-
lar spaces are recalled. Some objects living in these spaces are described.
Amongst those, blocking sets are handled in most detail, since they are cru-
cial in the study in subsequent chapters.

In Chapters 2 and 3, classification results for a certain type of blocking
sets are obtained. The blocking sets considered are equivalent to certain
optimal linear codes: linear codes meeting the Griesmer bound. Hence,
the classification results on blocking sets, which in this context are called
minihypers, immediately translate into classification results on linear codes
meeting the Griesmer bound. The results in Chapter 3 are refinements of
those in Chapter 2 in the case that the blocking sets satisfy some further
conditions.

The link with linear codes is not the only reason for the study of minihy-
pers in Chapters 2 and 3. In the following chapters, the classification results
are used to study other geometrical structures.

Partial t-spreads and t-covers of finite projective and polar spaces are
related to blocking sets. That is why the results from Chapters 2 and 3
can be used in Chapter 4 to study partial ¢-spreads and minimal t-covers.
They yield extendibility results for partial t-spreads and allow to describe the
structure of the set of multiple points of ¢-covers. Also divisibility conditions
for the existence of t-spreads in finite classical polar spaces are obtained and
constructions for small minimal t-covers are presented.

In Chapter 5, the attention is shifted towards partial ovoids and blocking
sets in finite classical polar spaces and to partial ovoids of the split Cayley
hexagon. Theorems are presented that allow to lift bounds on the size of
partial ovoids and blocking sets in a given dimension to bounds on the size
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of partial ovoids and blocking sets in higher dimensional spaces. Also small
blocking sets of Wy, 11(q) are studied. As in Chapter 4, the results from
Chapters 2 and 3 turn out to be useful: they allow to prove a new upper
bound for the size of a partial ovoid of the Hermitian variety H(4, ¢*) and to
restrict the possibilities for the size of a maximal partial ovoid of the split
Cayley hexagon.

The relation between blocking sets and Cameron-Liebler line classes is
explored in Chapter 6, and it is this relation that allows to prove new nonex-
istence results for Cameron-Liebler line classes.

In Appendix A, two theorems on blocking sets are proved that were used
in previous chapters. The first one shows that a small blocking set in a higher
dimensional projective space contains a planar blocking set. The second one
classifies the smallest double blocking sets in PG(2,4).

The second appendix presents two ways of constructing maximal sets of
mutually orthogonal Latin squares. One way is to start with maximal partial
spreads of finite projective spaces, the other one uses (non)existence results
on spreads and ovoids of hyperbolic quadrics.
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Chapter 1

Introduction

The objects studied in this thesis live in finite projective spaces and in sub-
structures of these spaces. This first chapter consists of two parts. The first
part briefly describes different objects and related terminology that will be
essential. The second part discusses blocking sets in some more detail.

Many of the objects and theorems from Section 1.1 exist in the general
case, but here only the finite case is considered.

1.1 Finite affine, projective and polar spaces

For more information on projective spaces, see Hirschfeld [68]. More
information on finite polar spaces can be found in Hirschfeld and Thas [70],
while generalised quadrangles are studied in detail in Payne and Thas [91].

1.1.1 Finite projective spaces and substructures

Let GF(q) denote the finite field of order ¢, ¢ a prime power, and let V' (n+1, q)
denote the (n + 1)-dimensional vector space over GF(q).

The n-dimensional projective space over GF(q), denoted by PG(n, q), is
defined as follows. It is the pair (D, ), where D denotes the set of all
subspaces of V' (n+ 1, q) and where I, the incidence relation, is containment.
A subspace U of dimension i + 1, ¢ > —1, of V(n + 1,q) is said to have
dimension i considered as element of PG(n,q). It is called an i-dimensional
subspace, or simply an i-space, of PG(n,q). A 0-space, respectively 1-space,
2-space, 3-space, (n—1)-space, of PG(n, q) is called a point, respectively line,
plane, solid, hyperplane, of PG(n,q). The (—1)-space is called the empty
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space. Often, subspaces of PG(n,q) are identified with the set of points
contained in them. In what follows, this will be done without further notice.

Since a point of PG(n,q) corresponds to a vector line in V(n +1,¢q), a
point P in PG(n, q) can be represented by a nonzero vector z in V(n+1, q);
this point is denoted by P(z). Two nonzero vectors represent the same point
if and only if they are a scalar multiple of each other. Similarly, a hyperplane
H is defined by a linear equation: it is a set of points whose representing

vectors T = (xg, X1, . .., T,) satisfy an equation woxg + w1y + . .. + upx, =0
for some u = (ug,u1,...,u,) in V(n+1,q) \ {0}; it is denoted by H(u).
An m-space is a set of points whose representing vectors = = (xg, x1, ..., T,)

satisfy an equation zA = 0, where A is an (n + 1) X (n — m)-matrix over
GF(q) of rank n — m.

Let m, and 7y be two subspaces of PG(n,q). Then (7., 7) denotes the
subspace generated by m, and w,. If P and () are two distinct points of
PG(n, q), then the line (P, @) joining P and () is sometimes denoted by PQ.
In general, if A and B are sets of points in PG(n,q), then AB denotes the
cone with vertex A and base B, i.e., the union of the set of points of all
lines joining an element of A with an element of B. In particular, if A and
B are subspaces of PG(n,q), then AB = (A, B). The Grassmann identity
gives the relation between the dimensions of two subspaces 7, and 7, and
the dimensions of their intersection and the subspace generated by them:

dim(m,) + dim(wg) = dim({m,., 7)) + dim (7, N 7).

In this thesis, many counting arguments will be used. The following identities
will prove to be useful.

Theorem 1.1.1 Let PG")(n,q) denote the set of all r-spaces in PG(n,q).
For0<r<n,
n+1 i
Hz‘;rn—rﬂ (¢ —1)
T2 (@ - 1)

Let x(s,r;n,q) denote the number of r-spaces containing a given s-space of
PG(n,q). For0<s<r <n,

IPG")(n,q)| =

H?:_rs—s-l—l (qz - 1)
H:‘Z{ (¢"=1)
Proof See e.g. [68, p. 85]. O

As PG(n,q) is often identified with its set of points, |PG(n,q)| denotes
PG (n,q)|. By the above, |PG(n,q)| = (¢"*' — 1)/(q — 1); this number
is often denoted by 6, or 6(n), and in the theory of minihypers, see Chap-
ters 2 and 3, by v,41.
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Tangents and secants

Let B be a set of points in the projective plane PG(2,q). A tangent to B is
a line of PG(2, ¢) intersecting B in exactly one point. A secant to B is a line
of PG(2,q) containing at least two points of B. An i-secant to B is a line
intersecting B in exactly ¢ points; sometimes ¢ is allowed to equal 0 or 1, in
which case the i-secant is not really a secant.

Polarities

Let S and S’ be two spaces PG(n,q), n > 2. A collineation ¢ : S — 5 is
an incidence-preserving bijection, i.e., for any two subspaces . and m, of S,
7. C 7 if and only if 7¥ C 7%. Now suppose that S’ is the dual space of
S, superimposed on S, i.e., the points of S’ are the hyperplanes of S, the
hyperplanes of S” are the points of S, the r-spaces of S” are the (n —r — 1)-
spaces of S, and incidence is reverse containment. A polarity of PG(n,q)
is a collineation from S to S’ with period two. Hence, it is an involutory
incidence-reversing permutation of PG(n,q). If ¢ is a polarity, then the
image of a point, respectively a hyperplane, is called its polar (hyperplane),
respectively its pole. Two points, respectively hyperplanes, that lie in one
another’s polar, respectively contain one another’s pole, are called conjugate.
A point or hyperplane that is conjugate to itself is called self-conjugate.

A polarity is uniquely defined if for each point P(Z) its image H(u) is
defined. It is known, see e.g. [68, p.34], that a polarity ¢ of PG(n,q) can
always be represented as

Uo l’g
U1 SL’?
=4 .
Unp, {L‘fl

or shorter 4! = AETQ, for some involutory field automorphism 6 of GF(¢) and
some nonsingular (n+1) x (n+ 1)-matrix A over GF(q) satisfying AT = +A
if =1and AT = Aif 6 # 1.

Note that GF(q) has a nontrivial involutory automorphism if and only if
q is a square. If ¢ is a square, then GF(q) has a unique nontrivial involutory
automorphism 6 : GF(q) — GF(q) : z + 2% = V4.

The following terminology is used.

1. char(GF(q)) > 2
o If AT = A and § = 1, then ¢ is called an ordinary polarity or an
orthogonal polarity. The set of self-conjugate points forms a quadric.
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o If nis odd, AT = —A, and § = 1, then ¢ is called a null polarity or
a symplectic polarity. All points of PG(n, q) are self-conjugate.

e If ¢ is a square, AT = Aand 0 : 7 — V4, then ¢ is called a Her-
matian polarity or a unitary polarity. The set of self-conjugate points
forms a Hermitian variety.

2. char(GF(q)) =2
o If AT = A, 6 =1, and not all diagonal elements of A equal zero, then
@ is called a pseudo-polarity. The set of self-conjugate points forms a
hyperplane of PG(n, q).
o If AT = A, 6 =1, and all diagonal elements of A equal zero, then ¢
is called a null polarity or a symplectic polarity. All points of PG(n, q)
are self-conjugate.
o If ¢ is a square, AT = A and 0 : x — V9, then ¢ is called a Her-
mitian polarity or a unitary polarity. The set of self-conjugate points
forms a Hermitian variety.

Varieties

If F' is a nonzero homogeneous polynomial in GF(q)[zo, z1, ..., ], then the
variety V (F') is the set of all projective points P(z) satisfying F'(z) = 0. If F/
is a non-degenerate quadratic form in GF(q)[xg,x1,. .., x,], then V(F) is a

nonsingular quadric in PG(n, q). Over GF(¢?), a Hermitian form F is an el-
ement of GF(¢?)[zo, x1, ..., z,] such that F = zH(z7)" where H = (h;;) # 0
is an (n 4 1) x (n + 1)-matrix over GF(¢®) satisfying h{; = hj. If F is
a non-degenerate Hermitian form in GF(q¢?)[zg, z1,. .., z,], then V(F) is a
nonsingular Hermitian variety in PG(n, ¢*). The standard forms for nonsin-
gular quadrics and Hermitian varieties are given in Table 1.1. In PG(2n, q),
there is—up to collineations—only one nonsingular quadric, the parabolic
quadric Q(2n,q). In PG(2n + 1, q), there are—up to collineations—exactly
two nonsingular quadrics, the hyperbolic quadric Q*(2n+ 1, ¢) and the ellip-
tic quadric Q= (2n +1,q). In PG(n, ¢*), there is—up to collineations—only
one nonsingular Hermitian variety H(n, ¢*).

Unitals

A unital U in PG(2, q), ¢ square, is a set of ¢,/q + 1 points such that every
line intersects U in either 1 or /g + 1 points. The classical unital is the
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space variety standard form
PG(2n,q) Q(2n,q) V(23 + 21T9 + . .. + Top_1Tay)
PG(2n+1,q9) QT (2n+1,q) V(zor) + 223 + .. . + TopTony1)
PG2n+1,q9) Q (2n+1,q9) V(f(zo,x1)+ xoxs + ...+ T2nTont1)
f is an irreducible quadratic polynomial over GF(q)

PG(n, %) H(n, ¢*) V(™ + 2™ )

Table 1.1: Standard forms of nonsingular quadrics and Hermitian varieties

set of points of a Hermitian curve, i.e., a nonsingular Hermitian variety in
PG(2, q), see above.

The trace function

If GF(qo) is a subfield of GF(q), ¢ = ¢¢, then the trace function Tr,_,, from
GF(q) to GF(qp) is defined as follows:

d—1

Trosg : GF(q) = GF(qo) : x — z+ 2% + 2% 4 2%

Grassmann coordinates

Although Grassmann coordinates can be introduced for subspaces of arbi-
trary dimension in PG(n, q), see e.g. [70], here they will only be considered
for lines in PG(n, q).

So, let [ be a line in PG(n,q), n > 2, and let P(xg,x1,...,x,) and
Q (Yo, Y1, - .-, Yn) be distinct points on I. For 0 < i < j < n, let p;; denote

the element z;y; — z;y; of GF(g). Then the ("}')-tuple

(plj)0§1<j§n = (p017 -« sy Pon, P12y - - -5 Piny - - - 7pn—17n)

defines a point P, in PG(("”;) —1,q). One easily checks that the (";1)-tuple
(pij) is, up to a scalar multiple, independent of the choice of the points P and
(@ on [. Hence, the point P, is uniquely defined by the line [. The coordinates
of P, are called the Grassmann coordinates of l. In the special case n = 3,
the Grassmann coordinates are also called Pliicker coordinates. In this case,
the set of points of PG(5,q) whose coordinates are Pliicker coordinates for
lines of PG(3, ¢) is the set of points of the hyperbolic quadric Q™ (5, ¢), which
is sometimes called the Klein quadric.
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1.1.2 Finite affine spaces

The (n + 1)-dimensional affine space over GF(q), AG(n + 1,¢), is the pair
(D, I), where D is the set of all cosets of subspaces of V(n + 1,¢q) and the
incidence relation I is containment. A coset of a subspace U of dimension
i, 1> —1, of V(n+1,q) is said to have dimension i considered as element
of AG(n,q). It is called an i-dimensional subspace, or simply an i-space, of
AG(n +1,q). A 0-space, respectively 1-space, 2-space, 3-space, n-space, of
AG(n + 1,q) is called a point, respectively line, plane, solid, hyperplane, of
AG(n+1,q). The (—1)-space is called the empty space. As in the projective
case, subspaces of AG(n + 1,q) are often identified with the set of points
contained in them.

AG(n,q) can be constructed from PG(n,q) in the following way. Let
H., be a hyperplane of PG(n,q) and define the set D as follows: D =
{U\ Hy : U is a subspace of PG(n,q)}. Let the incidence relation I be
containment. Then (D, ) = AG(n,q). So, in a way, PG(n, ¢) can be repre-
sented as PG(n, q) = AG(n, q) U Hy. If this representation is used, AG(n, q)
is called the affine part, while H., is called the hyperplane at infinity.

1.1.3 Finite polar spaces

A finite polar space P of rank k, k > 3, consists of a finite set P whose
elements are called points and a set of subsets of P, called subspaces, satisfying
the following properties.

1. A subspace with the subspaces contained in it is isomorphic with a
PG(d,q) for some —1 < d < k — 1; such a subspace is said to have
dimension d.

2. The intersection of any two subspaces is a subspace.

3. Given a subspace 7 of dimension k£ — 1 and a point P € P\ 7, there
exists a unique subspace 7’ containing P that intersects 7 in a subspace
of dimension k — 2. The subspace 7’ N7 consists of all points of 7 that
lie in subspaces of dimension 1 containing P.

4. There exist disjoint subspaces of dimension k — 1.

The projective index of a finite polar space of rank £ is by definition the
integer k — 1.

A finite generalised quadrangle or finite polar space Q of rank 2 with order
(s,t), s,t > 1, is an incidence structure S = (P, B, I) in which P and B are
finite nonempty disjoint sets of objects, respectively called points and lines,



1.1. Finite affine, projective and polar spaces 7

and where I is a symmetric incidence relation, I C (P xB)U(B xP), satisfying
the following properties.

1. Each point is incident with ¢ + 1 lines.
2. Each line is incident with s + 1 points.

3. Given two points P and @), P # @, there is at most one line [ satisfying
PIIlIQ.

4. Given a point P and a line [, P ¥ [, there exists a unique pair (Q, m) €
P x B satisfying PImIQ Il

A generalised quadrangle with order (s,t) is often denoted by GQ(s,t).
The following terminology and notations are used. Let Q = (P,B,I) be
a GQ(s,t). Two points P and @ of Q are called collinear, denoted by
P ~ (@, if there exists a line [ incident with both. Dually, two lines [
and m are called concurrent, denoted by | ~ m, if there exists a point P
incident with both. If A is a set of points of Q, then A+ denotes the set
{P€P:P~Qforall Q € A}. Similarly, if B is a set of lines of Q, then
B~ denotes the set {I € B: 1 ~ m for all m € B}. If A is a set of points of
Q or a set of lines of Q, then the set (A+)* is sometimes denoted by AL,

Finite classical polar spaces

The finite classical polar spaces of rank at least two are:

1. Wa,11(q), the polar space arising from a symplectic polarity ¢ of PG(2n+
1,q), n > 1. It consists of the subspaces m of PG(2n + 1, q) satisfying
T C ¥,

2. Q7 (2n+1,q), the polar space arising from a nonsingular elliptic quadric
of PG(2n + 1,q), n > 2. It consists of the subspaces of PG(2n + 1, q)
whose point set is contained in the quadric.

3. Q(2n, q), the polar space arising from a nonsingular (parabolic) quadric
of PG(2n,q), n > 2. It consists of the subspaces of PG(2n,q) whose
point set is contained in the quadric.

4. QT (2n + 1,q), the polar space arising from a nonsingular hyperbolic
quadric of PG(2n+1, q), n > 1. It consists of the subspaces of PG(2n+
1, q) whose point set is contained in the quadric.
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P rk(P) |P| G(P)]

Woni(g)  n+1 o (@+D(2+1)... (" +1)
Q(@2n+lg n UL (@4 1) ()
Q2n,q)  n — (¢+ D@ +1)... (" +1)
Qf(2n+1q) n+l CHEICEED 2G4 1)@+ 1) (00 D)

H(2n, ¢%) n (q2n_1q)2(q_2:+1+1) @+ D) +1).. . (¢ +1)

HEn+1,¢%) nt+1 C00E0 (1) (3 + 1) (@ + 1)

Table 1.2: Finite classical polar spaces: rank, number of points and number
of generators

5. H(n, ¢?), the polar space arising from a nonsingular Hermitian variety
in PG(n,¢*), n > 3. Tt consists of the subspaces of PG(n,¢*) whose
point set is contained in the variety.

Except for the quadrics in even characteristic, for each finite classical polar
space P in PG(n, q), there exists a polarity ¢ of PG(n, ¢) such that P consists
of the subspaces 7 of PG(n, q) that satisfy 7 C 7¥. If P is a nonsingular
quadric in PG(n, q), n odd, g even, then there exists a polarity ¢ such that
all subspaces 7 of P satisfy 7 C 7¥; however, they are not the only subspaces
of PG(n, q) that satisfy this property. The polarity corresponding to a finite
classical polar space will often be denoted by L.

A generator of a finite classical polar space P is a maximal totally isotropic
or maximal singular subspace of P, i.e., it is a subspace of P of dimension
k —1, where k — 1 is the projective index of P. The set of all generators of P
is denoted by G(P). In Table 1.2, the finite classical polar spaces are listed
with their rank, number of points and number of generators.

Let P be a non-singular quadric or Hermitian variety in PG(n,q). For
each point P of P, there exists a tangent hyperplane to P at P, which is
denoted by Tp(P) and which is the hyperplane of PG(n,q) that consists of
all the lines of PG(n,q) through P that either are contained in P or that
intersect P only in P. If 1, is a t-space of P, then T}, (P), the tangent space
to P at m, is by definition the (n — t — 1)-space of PG(n,q) that is the
intersection of all the tangent hyperplanes at points of m;. The tangent space
T, (P) intersects P in a cone 7P’ with vertex m; and base P’ a non-singular
quadric or Hermitian variety of the same type as P in an (n — 2t — 2)-space
skew to m;. If P is not the parabolic quadric in even characteristic, then
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T, (P) is the image of 7, under L, the polarity associated with P.

Other finite polar spaces?

There are several generalised quadrangles known that are not classical—for
an overview, see K. Thas [118]—but there exist no other finite polar spaces
of rank k& > 2 than the classical ones.

Theorem 1.1.2 (Veldkamp [125], Tits [121]) All finite polar spaces of
rank at least three are classical.

Isomorphism results

To finish this section, some isomorphism results are mentioned. If Q =
(P,B,I)is a GQ(s,t), then QF denotes the point-line dual of Q, i.e., QF =
(B,P,I)is a GQ(t,s).

Theorem 1.1.3 (Payne and Thas [91, §3.2])
1. If q is even, then Q(2n,q) is isomorphic to Wa,_1(q).
2. W3(q) is isomorphic to Q(4,q)P.
3. Ws(q) is isomorphic to W3(q)? if and only if q is even.

4. Q= (5,q) is isomorphic to H(3,¢*)P.

1.2 Blocking sets

Since blocking sets will play a crucial role in the thesis, this introduc-
tory section is quite extensive. It is however by no means complete. More
information can be found in the survey papers [15, 16] by Blokhuis.

A blocking set in PG(2,q) is a set of points in PG(2, ¢) that intersects
every line. Blocking sets that have no proper subset that is a blocking set
are called minimal. It is not hard to see that a blocking set contains at
least ¢ + 1 points and that a blocking set of size ¢ + 1 is necessarily a line.
Blocking sets that contain a line are called trivial. The projective plane
PG(2,2) has no nontrivial blocking set, but all other projective planes do.
In PG(2,q), q odd, respectively ¢ > 2 even, there exist so-called projective
triangles, respectively projective triads. These are minimal blocking sets of
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size 3(q + 1)/2, respectively (3¢ + 2)/2, all whose points lie on the sides of a
triangle, respectively three concurrent lines, see [40, 25].

The size of a nontrivial minimal blocking set in PG(2, ¢) must lie some-
where in the interval [q + 2, ¢ + ¢ + 1], but not all values are possible. The
following theorem gives an upper and a lower bound for the size of a non-
trivial minimal blocking set in PG(2, q).

Theorem 1.2.1 Let B be a minimal nontrivial blocking set in PG(2,q).
Then

1. (Bruen [24]) |B| > q+ \/q + 1, with equality if and only if B is a
Baer subplane.

2. (Bruen and Thas [30]) |B| < q,/q + 1, with equality if and only if
B is a unital.

Clearly, these lower and upper bounds can only be reached when ¢ is a
square. Substantial improvements to the lower bound when ¢ is not a square
are presented in the next theorem. Not much is known on blocking sets close
to the upper bound.

Notation 1.2.2 Let p be a prime. Then ¢, equals 273 when p € {2,3}
and 1 when p > 5.

Theorem 1.2.3 Let B be a nontrivial blocking set of PG(2,q), q > 2.
1. (Blokhuis [14]) If q is a prime, then |B| > 3(q¢+ 1)/2.

2. (Blokhuis [15], Blokhuis et al. [22]) If ¢ = p**™, p prime, e > 1,
then |B| > max(q + 1+ p*t g + 1+ c,¢*?).

The bound in the first case is sharp, since the projective triangle has size
3(¢ 4+ 1)/2. In the second case, the bound is sharp for certain values of g;
examples attaining it will be presented in Subsections 1.2.1 and 1.2.2.

What about blocking sets not too close to these upper and lower bounds?
The following paragraph is copied from [15].

One would expect the situation to be roughly the following. For
a large interval, say roughly from 2¢ to ¢./q — c¢ - ¢ for some
(possibly large) constant ¢, there exist minimal blocking sets of
every possible size. So, the excluded cardinalities are some small
ones, all at most 2¢, and on the other hand some large ones, all

close to q,/q.
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1.2.1 Small blocking sets

A blocking set is called small if it contains less than 3(q + 1)/2 points.
The following theorems show that not for all values of b € [¢+¢,,3(¢+1)/2],
small minimal blocking sets of size b exist. Here ¢ + ¢, denotes the size of
the smallest nontrivial blocking sets of PG(2, q).

Theorems 1.2.4 and 1.2.5 consider the specific cases where ¢ is a square
and a cube. Theorem 1.2.6 restricts the possibilities for b when ¢ = p", p > 7
prime.

Theorem 1.2.4 Let B be a blocking set in PG(2,q), q square, containing
neither a line nor a Baer subplane.

1. (Blokhuis et al. [22]) If ¢ > 16, ¢ = p", p prime, then |B| >
qg+1+ cpq2/3.

2. (Szényi [107]) If ¢ = p?, p prime, then |B| > 3(q+1)/2.
Theorem 1.2.5 Let ¢ = g3, qo = p", p > 7 prime, hy > 1.

1. (Polverino [95, 97|, Polverino and Storme [98]) In PG(2,q), the
smallest minimal nontrivial blocking sets that are not Baer subplanes
are:

(a) a minimal blocking set of size q+qi+1, projectively equivalent to the
set K = {(z,T(z),1) : 2 € GF(¢)} U{(z,T(x),0) : x € GF(q) \ {0}},
with T = Try_, the trace function from GF(q) to GF(q);

(b) a minimal blocking set of size q+ g2 + qo + 1, projectively equivalent
to the set K = {(x, 2%, 1) : x € GF(q)}U{(x,2%,0) : x € GF(q)\{0}}.

2. (Polverino [97]) If hy = 1, then these are the only minimal non-
trivial blocking sets of size smaller than 3(q +1)/2.

These blocking sets have the following structure. The first one has one point
that lies on qo + 1 (g2 + 1)-secants. It is called the vertex of the blocking
set. All other points of the blocking set lie on one (g7 + 1)-secant and g2
(go + 1)-secants. The second blocking set has one (g2 + g + 1)-secant and for
the remainder only (go + 1)-secants and tangents.

Let B be a small minimal blocking set in PG(2,q), ¢ = p", p prime.
The exponent e of B is the largest integer for which every line of PG(2,q)
intersects B in 1 (mod p°) points. Szényi [107] shows that the possible sizes
of small minimal nontrivial blocking sets are restricted to certain intervals. If
B is such a blocking set, then the interval | B| lies in depends on the exponent
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AG(2,q)

Figure 1.1: A Rédei type blocking set

of the blocking set. The lower bounds for these intervals were improved upon
by Blokhuis [15], while the upper bounds were refined by Polverino [96].

Theorem 1.2.6 (Sz6ényi [107], Blokhuis [15], Polverino [96]) Let B
be a small minimal nontrivial blocking set in PG(2,q), ¢ = p", p > 7 prime,
with exponent e. Then 1 <e < h/2 and

1+ (g+1)(p°+1) - VA
5 :

q+p°

pe+1

qg+1+ <|B| <

where A = [1+ (¢+ 1)(p° + 1)]> —4(p° + 1)(¢* + g+ 1).

For fixed ¢, these intervals are skew and nonempty. Moreover, each interval
contains an integer, and in between any two intervals an integer can be found.

1.2.2 Rédei type blocking sets

One easily sees that if B is a nontrivial blocking set, and [ is a line
containing m points of B, then |B| > ¢ + m. It suffices to consider the lines
through a point of [\ B. A blocking set of size ¢ + m for which there exists
a line intersecting it in m points, is called a Réde: type blocking set.

All Rédei type blocking sets can be constructed in the following way,
see Bruen and Thas [30]. It is depicted in Figure 1.1. Let PG(2,q) =
AG(2,q) Ulw. Let U be a set of ¢ points in AG(2,¢q). Then U U {uv Ny :
u # v € U} is a Rédei type blocking set of size ¢ + m, with m points on
the line at infinity, where m is the number of directions determined by U. In
practice, U is chosen in such a way that it does not determine the vertical
direction. This means that U has exactly one point on every vertical line.
Hence U can be considered as the graph of a function f : GF(q) — GF(q)



1.2. Blocking sets 13

and U = Uy = {(z, f(x)) : x € GF(q)}. The set Dy of directions determined
by f is given by

f@) = fy)

Dy =A{ pr—

rx #y € GF(q)}-

The size of the blocking set determined by a function f : GF(¢) — GF(q) is
given by |Uys| + |Ds| = ¢ + |Dy|. Below, some examples are given.

Examples 1.2.7 (see e.g. [16])

1. Let ¢ = ¢¢ and f : @ — Tryq(x). Then |Dy| = q¢/qo + 1 and the
corresponding blocking set has size g+ qS’l + 1. Note that the blocking
set in Theorem 1.2.5.1(a) is a special case of this one.

2. Let ¢ = ¢¢ and f : z — x%. Then |Df| = (¢ — 1)/(q — 1) and the
corresponding blocking set has size q + ng + ng + ...+ 1. Note that
the blocking set in Theorem 1.2.5.1(b) is a special case of this one.

3. Let ¢ be odd and f : x — 2@tD/2. Then |Dy| = (¢ + 3)/2 and
the corresponding blocking set has size 3(q + 1)/2. It is the projective
triangle.

Successive articles [99, 18, 17, 2] have pinned down the possible sizes of Dy
in increasingly smaller intervals, resulting in the following theorem.

Theorem 1.2.8 (Ball [2]) Let f be a function from GF(q) to GF(q), ¢ = p"
for some prime p. Let e be maximal such that any line with a direction
determined by Dy is incident with a multiple of p® points of the graph of f.
Then |Dy| =1 (mod p°) and one of the following holds:

L p*=1and(¢+3)/2 < [Ds| <gq;

2. GF(p®) = GF(qo) is a subfield of GF(q) and q/q0 + 1 < |Dy| <
(¢—1)/(q0 —1);

3. p°=q and |Dy| = 1.
Moreover if ¢¢ > 2, then the graph of f is GF(p°)-linear.

Note that the bounds in cases 2 and 3 are sharp. Examples 1.2.7.1 and 1.2.7.2
attain the ones in case 2, while a linear function attains the one from case 3.
For g odd, the lower bound in case 1 is sharp, see Example 1.2.7.3, while it
is easy to see that the upper bound is sharp for all g # 2.



14 Introduction

Remark 1.2.9 From the examples above, one might get the impression that
all small minimal blocking sets are of Rédei type. This is not true: Lunar-
don [80], and Polito and Polverino [94] construct small minimal blocking sets
that are not of Rédei type.

1.2.3 Multiple blocking sets

An s-fold blocking set in PG(2, q) is a set of points that intersects every line in
at least s points. It is called minimal if no proper subset is an s-fold blocking
set. A 1-fold blocking set is simply called a blocking set, while a 2-fold,
respectively 3-fold, blocking set is sometimes called a double, respectively
triple, blocking set. The following theorem indicates that, to obtain an s-
fold blocking set of small cardinality with s > 1, it is no longer interesting to
include a line in the set. In this way, there exists no such thing as a trivial
multiple blocking set.

Theorem 1.2.10 Let B be an s-fold blocking set of PG(2,q), s > 1.
1. (Bruen [27]) If B contains a line, then |B| > sq+ q— s+ 2.
2. (Ball [3]) If B does not contain a line, then |B| > sq + \/5q + 1.

If s is not too large, substantial improvements to this theorem have been
obtained for general ¢q. Also, for g a square and s not too large, the smallest
minimal s-fold blocking sets are classified.

Theorem 1.2.11 (Blokhuis et al. [22]) Let B be an s-fold blocking set
in PG(2,q) of size s(q+ 1)+ ¢ for some s > 1. For a prime p, let ¢, = 271/3
forpe{2,3} and ¢, =1 forp > 3.

1. If g = p*™*' and s < q/2 — c,q*3 /2, then c > c,q*°.

2. If q is a square, s < ¢"/*/2 and ¢ < c,¢*®, then ¢ > s,/q and B
contains the union of s disjoint Baer subplanes.

3. If g=p? and s < ¢"/*/2 and c < p[% + 1/”—;11, then ¢ > s,/q and B
contains the union of s disjoint Baer subplanes.

Note that if B is nontrivial, then this theorem also holds when s = 1, see
Theorems 1.2.3 and 1.2.4.

Remark 1.2.12 In [3], a table with the sizes of the smallest s-fold blocking
sets in PG(2,q), s > 1, ¢ small, can be found. Many examples of such
blocking sets are described in [6, 4, 3].
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An s-fold blocking set is called smallif its size is smaller than sq+(q+3)/2.
As was the case for 1-fold blocking sets, see Theorem 1.2.6, the sizes of small
s-fold blocking sets are restricted to certain intervals.

Theorem 1.2.13 (Lovasz and Szényi [79]) Let B be a small minimal
s-fold blocking set in PG(2,q), ¢ = p", p prime, s < p with q > qo(s).

1. Then

14 (g+1)(2s — 14 p°) — VA
5 :

q/p°+1
pe+1

sq+s+pe[ -‘§|B|§

where A = [1+ (q+1)(2s — 1+ p%)> —4(s* + sp°)(¢* + ¢+ 1), for some
integer 1 < e < h/2.

2. If |B| lies in the interval belonging to e, then each line intersects B
in s (mod p°) points.

1.2.4 Blocking sets in higher dimensional spaces

In this subsection, only a few results are mentioned. More can be found in
the survey article [69] by Hirschfeld and Storme.

A blocking set with respect to t-spaces in PG(n,q) is a set of points that
intersects every t-space. In the literature, such a blocking set is sometimes
called an (n — t)-blocking set in PG(n, q).

Theorem 1.2.14 (Bose and Burton [23]) If B is a blocking set with
respect to t-spaces in PG(n,q), then |B| > |PG(n —t,q)|. Equality holds if
and only if B is an (n — t)-space.

A blocking set with respect to t-spaces that contains an (n — t)-space is
called trivial. The smallest nontrivial blocking sets with respect to t-spaces
are characterised in the following theorem.

Theorem 1.2.15 (Beutelspacher [13], Heim [65]) In PG(n,q), the
smallest nontrivial blocking sets with respect to t-spaces are cones with vertex
an (n —t — 2)-space m,_4_o and base a nontrivial blocking set of minimal
cardinality in a plane skew to m,_;_o.

In PG(n,q), a blocking set with respect to hyperlanes is simply called
a blocking set. For this case, Theorem 1.2.15 was already proved by Bruen
in [26]. This result was improved upon.
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Theorem 1.2.16 (Storme and Weiner [105]) Let B be a blocking set
in PG(n,q), n >3, ¢ = p" square, p > 3 prime, of cardinality smaller than
or equal to the cardinality of the second smallest nontrivial blocking set in
PG(2,q). Then B contains a line or a planar blocking set of PG(n,q).

In Chapter 3 a result of this kind will be useful. It is however a bit
unfortunate that the cases p = 2,3 are excluded, since using this theorem
would also limit the ensuing results to p > 3. Strengthening the condition
on the size of B, it is possible to prove the theorem for general ¢ square,
excluding only the cases ¢ = 4 and ¢ = 9. The proof is based on the proof of
Theorem 1.2.16 in [105].

Theorem 1.2.17 Let B be a blocking set in PG(n, q), n > 3, ¢ = p" square,
p prime, ¢ > 16, of cardinality smaller than q + cpq2/3. Then B contains a
line or a Baer subplane of PG(n,q).

Proof See Section A.l. O



Chapter 2
Minihypers

Minihypers were introduced by Hamada and Tamari in [64]. Usually, specific
classes of minihypers are studied because of their connection with linear
codes meeting the Griesmer bound. In this chapter, classification results on a
particular class of minihypers are presented. They were published in Designs,
Codes and Cryptography in P. Govaerts and L. Storme, On a particular
class of minihypers and its applications. 1. The result for general q [56].
These results translate immediately into classification results on linear codes
meeting the Griesmer bound, but that is not the main reason for their study
here. As will be shown in Chapters 4 and 5, they will be useful in proving
various new results on partial spreads and covers of finite projective spaces,
and on partial spreads, covers and partial ovoids of finite polar spaces.

2.1 Preliminaries

Definition 2.1.1 An {f, m;n, q}-minihyper is a pair (F,w), where F is a
subset of the point set of PG(n, ¢) and w is a weight function w : PG(n, q) —
N: P — w(P), satistying

1. w(P)>0& PeF,
2. Y pepw(P) = f,and
3. min{> peyw(P): He PG V(n, q)} =m.

Remark 2.1.2 It is clear that a minihyper (F, w) is uniquely defined by its
weight function w. We hold on to the notation (F,w), since often minihy-
pers without weights, i.e., minihypers where w is a mapping onto {0, 1}, are
studied, in which case the minihyper can be identified with the set F' and is
simply denoted by F.
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In what follows, expressions such as “Consider [ points of the minihyper
(F,w)” will be encountered. What is meant is the following “Consider a
weight function w' : PG(n,q) — N satisfying ZPGPG(W]) w'(P) = 1 and
w'(P) < w(P) for each point P”. This terminology originates from the case
where the minihyper is one without weights, and is not unnatural when the
minihyper (F,w) is considered as a multiset. Following this terminology, a
point of a minihyper (F,w) is a point of PG(n, ¢) with positive weight, and
a set of points of PG(n, q) is said to be contained in (F,w) if it is contained
in . For a subspace m of PG(n,q) and a minihyper (F,w), the minihyper
obtained by restricting w to 7 is denoted by (F,w)Nx. The parameter f of
the minihyper (F,w) is denoted by |(F,w)].

2.1.1 Minihypers and blocking sets

Minihypers without weights are simply multiple blocking sets in PG(n, q).
Indeed, from the definition, an { f, m;n, ¢}-minihyper F' is an m-fold blocking
set in PG(n, ¢q). Conversely, every m-fold blocking set B in PG(n, ¢) that is
not an (m + 1)-fold blocking set, is a {|B|, m; n, ¢}-minihyper.

2.1.2 Linear codes meeting the Griesmer bound

In this subsection, the relation between a certain class of minihypers and
linear codes meeting the Griesmer bound is explained. Since the coding
theoretical aspect of the minihypers will not be used in this thesis, the infor-
mation provided here is very concise. For an introduction to coding theory,
see Hill [66].

A linear [n, k, d; q]-code C'is a k-dimensional subspace of the n-dimensional
vector space V (71, q) over GF(q) having minimum Hamming distance d.

From an economical point of view, it is interesting to use linear codes
having a minimal length n for given k, d and ¢. Every linear [n,k,d;ql-
code satisfies n > Zf:_ol [%-‘, see [58, 104]. This inequality is known as the
Griesmer bound.

Suppose that ¢ is a prime power and d > 1, k£ > 2. Then d can be written
in an unique way as d = ¢! — E;:OQ gt with @ >1and 0 < ¢ < q—1,
1=20,1,...,k — 2. Using such an expression for d, the Griesmer bound for
an [, k, d; g]-code can be expressed as n > Qv — Ef:_OQ Civig1.

Theorem 2.1.3 (Hamada [60])! Let ¢ be a prime power and let k, 6 and
CG,1=0,1,...,k—2, be integers satisfying k> 3,0 >1,0<( <q—1 and

1See also Remark 2.1.4



2.1. Preliminaries 19

(€0, €ty Cra) # 0. Let d = 0" — 12 ¢iq". Then there is a one-to-one
correspondence between the set of all nonequivalent [n, k, d; q|-codes meeting
the Griesmer bound and the set of all

k—2 k—2
{Z Civitt, Z Guik — 1, q} -minihypers (F,w)
i=0 i=0

satisfying w(P) < 0 for each point P in PG(k —1,q).

Let C' be an [n,k,d; g]-code meeting the Griesmer bound and let G =
(1T - - gnT) be a (kxn)-generator matrix of C. Then, foreachi € {1,2,...,7},
g; is a nonzero vector in V' (k, q); hence it defines a point P(g;) in PG(k—1, ¢).
Now define a weight function v’ : PG(k — 1,¢q) — N:

w'(P)=|{ie{1,2,....a}: P = P(g)}].

If d = ¢ — Zf;g Gq', with @ and ¢, i = 1,2,...,k — 2, as above, then
max{w'(P): P € PG(k—1,q)} = 6. Let w: PG(k—1,9) - N: P
w(P) = 0 — w'(P) be a weight function and let F' = {P € PG(k — 1,¢q) :
w(P) > 0}. Then (F,w) is a {357 Giyr, Yore Gui; k — 1, ¢}-minihyper.

Starting with a minihyper (F,w) with parameters of this type and an
integer 6 satisfying 6 > max {w(P): P € PG(k —1,q)}, this construction
can be reversed in the obvious way.

Remark 2.1.4 In the literature, there are various references for Theo-
rem 2.1.3, most of them to papers by Hamada (with or without co-authors).
However, the idea of the correspondence between [n, k, d; ¢]-codes and mul-
tisets in PG(k — 1,¢) already appears in Belov [8], where many examples
of linear codes meeting the Griesmer bound are constructed. These exam-
ples are codes, called of Belov type, arising from sets of disjoint subspaces in
PG(k —1,q), at most ¢ — 1 of any given dimension.

2.1.3 Notations and preliminary results

Theorem 2.1.3 shows that, in order to characterise all [n, k, d; g]-codes meet-
ing the Griesmer bound for given values of k, d and ¢, it suffices to solve the
following problem.

Problem 2.1.5 Characterise all

n—1 n—1
{Z Civisa, Z G n, q} -minihypers (F, w)
i=0

1=0
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satisfying w(P) < 6 for each point P, for given values of n, ¢ and (;, i =
0,1,....,n— 1.

It explains why minihypers with these parameters are of particular interest
to coding theory, and why many papers studying them have appeared. In
this section, some of the results from those papers are mentioned.

The following theorem shows some classification results on minihypers,
so on linear codes meeting the Griesmer bound, for general values of n, ¢ and
(i, with the restriction that > (; is not too big. Note that the minihypers
under consideration are minihypers without weights.

Theorem 2.1.6 Let F be a {d . Gvit1, Do Gii3 1, ¢} -manihyper.

1. (Hamada and Helleseth [62], Hamada and Maekawa [63])
If 3770 0 G < /4, then F is the disjoint union of ¢, n-spaces, (p—1
(n — 1)-spaces, ..., y points in PG(n,q).

2. (Ferret and Storme [51]) If > (G < 2,/q, ¢ > qo, then F
consists of the disjoint union of either

(a) ¢, n-spaces, (1 (n — 1)-spaces, ..., and (y points, or

(b) one subgeometry PG(21+1,,/q), for some integer | with 1 <1 < n,
Cn m-spaces, ..., Gy1 (I+1)-spaces, G —/q — 1 I-spaces, G—1 (I —1)-
spaces, ..., and Cy points, or

(c) one subgeometry PG(2l,/q), for some integer | with 1 <1 <n, ¢,

n-spaces, ..., Gy1 ([+1)-spaces, ¢—1 l-spaces, (—1 —/q (I—1)-spaces,
.., and (y points.

Notation 2.1.7 For the remainder of this chapter,

e E(n,q) denotes the set of all n-tuples ¢ = (¢o,C1,. .., Cuy) of integers
Gsuch that ( #0and 0< < qg—1fori=0,1,...,n—1;

e E(n,q) denotes the set of all n-tuples { = ((o, (1, ..., Ca1) of integers
¢; such that ¢ # 0 and either
() C € B(n,q), or

(b)> CO =q and (C17<27 IR Crhl) € E<n - 17Q)7 or

c

() G=0C=...=01=0,0G=gq and (1,042, C1) €
E(n —1— X, ¢q) for some integer A in {1,2,...,n—1};

e E.(n,q) denotes the set of all (n + 1)-tuples ¢ = (¢o,C1, .-+, Caot, Cn)
of integers (; such that either
(a) (=0, or
(b) gn =0 and (CO) Cla fety Cn—l) € E(TL, q)v or
(¢) ¢ =1(0,0,...,0,1).
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The notations E(n, ¢) and E(n, q) were introduced by Hamada, while Eqy (1, )
is added in order to state Theorem 2.1.8 and Lemma 2.1.9, straightforward
generalisations of the corresponding theorem in [61] and lemma in [62]. Note
that each integer o, 0 < a < wv,41, can be written in a unique way as

o = E?:o GiVit1, with (§07 Cly--ns Cn) S Eext(na C])-

Theorem 2.1.8 (cf. Hamada [61]) Let ({o, 1, - - -, () belong to Ee(n, q),
n>1.

L Ifm > >0 Gug, then f > 377 Guipy for any {f,m;n,q}-minihyper
(F,w).

2. If (F,w) is a minihyper in PG(n, q)satisfying |(F,w)| = > " Gvit
and |(F,w)NH| > Y"" , Gu; for every hyperplane H in PG(n, q), then
(Fow) is a {d°1 o GUit1, D ieg Giis 1, ¢} -minshyper.

Lemma 2.1.9 (cf. Hamada and Helleseth [62]) Suppose that (F,w)

is a {0 o GUit1s i GiVis 1, g} -minihyper for some integers n, q and ¢,
i=0,1,...,n, such that n > 1, 3" G =h, h < q, and ({o, (i, .-, ) €

Eext (n7 Q) .

(1) If there exists a hyperplane H in PG(n,q) such that |(F,w)N H| =

E?;OI m;v;11 for some ordered set (mg,mq, ..., mpy_1) in Eeq(n—1,q),
then (F,w) N H is a {310 mivis1, S o1y mivi;n — 1, qt-minihyper in
H.

(ii) There exists no hyperplane H in PG(n,q) satisfying |(F,w) N H| =
E?;l m;vi11 for any ordered set (mg,mq,...,My_1) in Eeg(n — 1,q)

with Y1 m; > h.

(iii) In the case where (y = 0 and q > 2h — 1, there is no hyperplane H
in PG(n, q) satisfying |(F,w) N H| = Z;:ol m;vir1 for any ordered set
(mo,m1, ... ,mu_1) in Eegg(n —1,q) with Z;‘:ol m; < h.

Remark 2.1.10 In the original papers of Hamada, and Hamada and Helle-
seth, Theorem 2.1.8 and Lemma 2.1.9 were stated for minihypers without

Welghts and 6 = (C07 Cla R Cnfh 0) with (C07 Ch R Cnfl) € E(”a q) How-
ever, the proofs provided there are also valid when weights are introduced,

and it is not hard to check that the results also hold for ¢ € {0, (0,0,...,0,1)}.

The reason for the generalisation of the original theorem and lemma is that
it allows us to state the following corollary.
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Corollary 2.1.11 Let (F,w) be a {d> ;" GUit1, Y rq GiVi; 1, ¢ }-minihyper
satisfyingn > 1, >"" ¢ =h < q and (o, C1, - - -, Ca) € Eexi(n,q). Suppose
is an r-dimensional subspace of PG(n,q), 1 < r <n, such that |7,N(F,w)| =
Y oi_oMiVis1 for some (mo,my,...,m,) € Ee(r,q). Then m N (F,w) is a
{0y mivig, Yoo muvi; T, g} -manthyper satisfying > m; < h.

Proof The result clearly holds for » = n, and, by Lemma 2.1.9, for r = n—1.
So assume it holds for all (r+1)-spaces and let 7, be an r-space, 1 <r < n—2,
such that |m, N (F,w)| = >_;_,m;v;41 for some (mg, my,...,m,) € Eex (1, q).

There are v,_, (r + 1)-spaces through 7. Together they cover all points
of (F,w). Hence, the average number of points of (F,w) in an (r + 1)-space
through 7, equals

E?:o GiVig1 — E::o m;Vi41 d

-~ + ; MVt (2.1)
Using the fact that > Gvig1 < vpy1 and > muviy < vy, straight-
forward calculations show that (2.1) is smaller than v,,» + 1. Hence, there
exists an (r + 1)-space m,,1 through 7, containing at most v,,o points of
(F,w). So, there exists an (r + 2)-tuple (lo,l1,...,lr41) € Eext(r + 1,9)
such that |(F,w) N 1| = Z::& liviy1. By assumption, 7.1 N (F,w) is
a {Z:iol Livigr, Y i_g Livi;T + 1, ¢}-minihyper satisfying Z:iol l; < h. Ap-
plying Lemma 2.1.9 on m,.,; and its hyperplane 7, yields the desired result:
mN(F,w)isa {d . miviy1, Y _o miv;; T, ¢ p-minihyper satisfying Y7 m; <
h. O

Corollary 2.1.12 Let F be a {D> ;. GVit1, Y 1q Gi¥i; 1, ¢ -minihyper sat-
isfyingn > 1, 3" G =h < q and (Co,C1, ..., Cn) € Eet(n,q). Then every
r-space m,, 1 < r < n, intersects F in a {d> _omivit1, YoMV T, q}-
minihyper F N, satisfying > ._ m; < h.

Proof In this case, the minihyper F' is a set of points. Let m,. be an ar-
bitrary r-space in PG(n,q). Then 7, intersects F' in a < v,y points. But
every number o < v, can be written in a unique way as a = Egol MVit1
with (mg,mq,...,mp11) € Eexi(r + 1,¢). Applying Corollary 2.1.11 yields
the result. a

Theorem 2.1.13, respectively Theorem 2.1.14, gives some more intersec-
tion properties of these minihypers, respectively some intersection properties
of subspaces of PG(n, q).

Theorem 2.1.13 (Hamada [61]) Let m be any integer such that 1 < m <
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Figure 2.1: The configuration of Theorem 2.1.14

n. If there exists a

n—1 n—1
{Z CiVitt, Z Ciuisn, q} -manihyper
i=0 i=0

(F,w) for some ordered set (Co, (1, -, Coo1) in E(n,q), then:

L [(F,w)nQ > 300 | Guivim for any (n —m)-space Q in PG(n, q)
and the equality holds for some (n — m)-space 2 in PG(n,q).

2. In the special case m = 2, |(F,w)NA| > S0 Gui_y for any (n—2)-
space A in PG(n,q) and |(F,w) NG| = 3.1} (i1 for some (n — 2)-
space G in PG(n,q). Let H;, j =0,1,...,q, be the ¢ + 1 hyperplanes
in PG(n, q) that contain G. Then (F,w)N H; is a

n—1 n—1
{5j + Z Givi, Z Givi—1; M, Q} -manihyper
=1 =1

in H; for j =0,1,...,q, where the §; are some non-negative integers

such that 3 1_;0; = Co.

Theorem 2.1.14 (Hamada and Maekawa [63]) Let G be any (n — 2)-
space in PG(n,q) and let Hy, Hy, ..., H, be the ¢+ 1 hyperplanes in PG(n, q)
that contain G. Let 2 < X\ < n, let B be a (A —2)-space in G and let A; be a
(A=1)-space in H;, i =0,1,...,q, such that GNA; = B, see Figure 2.1. For
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Jj=2,3,...,q, denote the (A\—1)-space H; N (A, A1) by E;. Suppose that «,
2 < a <gq, is an integer for which E, N A, = B. Let A be an (n — 3)-space
in G and let D, = G N (Ey, Ay).

1. In the case B C A and D, ¢ A, let 11,11y, ..., 11, be the q hyper-
planes in PG(n,q) different from H, that contain the (n — 2)-space
(A, E,). Then there exists a hyperplane 11 in {II;,Il,, ... II,} such
that |H N (ngo Az)| = Ux—1-
2. In the case B ¢ A, |(A, Ey) N (Ui, Ai)| = va.
Remark 2.1.15 1. In the original statement of Theorem 2.1.14 in [63],
there is a small error in the notations of the second case.

2. For sake of completeness, in Theorem 2.1.14 a third case could be
added. If D, C A (this implies that B C A) and if II;, II,, ..., I, are
the ¢ hyperplanes in PG(n, ¢) different from H, that contain the (n—2)-
space (A, E,), then there exists a hyperplane II in {II;, II,,... II;}
such that [TIN (UL, A:)| = va.

2.1.4 Statement of the problem

In this chapter and the next one, a subcase of Problem 2.1.5 will be consid-
ered.

Problem 2.1.16 Characterise all
{641, 0v,; n, ¢} -minihypers (F, w)
satisfying w(P) < 6 for each point P, for given values of n, ¢, u and 4.

A sum of t-dimensional subspaces is a weight function w : PG® (n,q) —
N : m — w(m). Such a sum induces a weight function on subspaces of
smaller dimension. Let 7, be a subspace of dimension r < ¢, then w(7,) =
D rePG® (n.g)mom W(T). In particular, the weight of a point is the sum of the
weights of the t-spaces passing through it. In the case that w is a mapping
onto {0, 1}, the sum w can be identified with the set A of t-spaces with weight
1.

Example 2.1.17 Let Wy, Wy, ..., W;s be 6 p-spaces in PG(n, ¢q), where 1 <
d<g—1land 1< pu<n-—1. For each point P in PG(n,q), let w(P) denote
the number of p-flats W in {Wy, Wy, ..., W;s} such that P € W, and let F’
be the set of points P in PG(n,q) for which w(P) > 1. Then (F,w) is a
{6v,41, 0v,; n, ¢}-minihyper.
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It will be shown in Theorems 2.2.5 and 2.2.7 that, in a way, the converse
of the result in the previous example holds—under certain restrictions on
and p. The concept of a sum of p-spaces was introduced because the u-spaces
need not be distinct.

2.2 The classification result

Lemma 2.2.1 Let (F,w) be a {0v,11,0v,;n,q}-minihyper satisfying § > 0,
0<pu<n-—1 Ifm_, is an (n —p — 1)-space containing no points
of (F,w), then all hyperplanes through m,_,_1 contain exactly dv, points of
(F,w).

Proof Clearly, the lemma holds for 6 = 0. So assume 6 > 0. Hence
p > 0 and n > 2. There are v, hyperplanes through m,_,_1, and each
point of (F,w) occurs in v, of these. Thus the average number of points
of (F,w) in the hyperplanes through m,_,_1 is [(F,w)|v,/v,11 = dv,, which
is the minimum number of points of (F,w) in a hyperplane. Therefore all
hyperplanes containing m,_,_; contain exactly dv, points of (F,w). O

Corollary 2.2.2 Suppose (F,w) is a {0v,41,0v,;n, q}-minihyper satisfying
0>0and0 < p<n-—1. If H is a hyperplane containing more than dv,
points of (F,w), then every (n—pu—1)-space in H contains at least one point

of (F,w).

Proof Suppose that in H there exists an (n — p — 1)-space disjoint from
(F,w). By Lemma 2.2.1, H contains exactly dv, points of (F,w), a contra-
diction. O

Lemma 2.2.3 Let (F,w) be a {6v,11,0v,;n, q}-minihyper satisfying 1 <
0 < (¢g+1)/2,0 < pu < n-—1, and containing a p-space m,. Then the
minthyper (F',w') defined by the weight function w', where

o w(P)=w(P)—1, for Pem,, and
e w/(P)=w(P), for P € PG(n.q) \ .
is a {(0 — 1)vu41, (0 — 1)v,; n, q}-minihyper.

Proof The lemma holds obviously for 6 =1, u =0 orn < 2,solet § > 1,
@ >0and n > 2.

It is clear that (F',w’) is a {(0 — 1)v,41,> 0;n, ¢}-minihyper. We will
show that it is a {(6 — 1)v,41, (0 — 1)v,; n, ¢}-minihyper. Suppose that this
is not the case. By Theorem 2.1.8, this is equivalent to supposing that there
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exists a hyperplane H containing less than (6 — 1)v, points of (F',w’). If
|H N7, = vy, then |(F,v')NH| = |(F,w)NH|— |HNnm,| > (06— 1)y,
a contradiction. Hence |H N 7TM| = Vu+41, S0 H contains m,. Since v,41 <
|(F,w)N H| < vy + (0 — 1)v, < 20,44, there exists a point P in 7, with
weight w(P) = 1.

Consider this point P in the p-space m,. Less than (6 — 1)v, points of
(F,w) are in H but not in m,. There exists an (n — 1 — 1)-space through P
in H containing no other points of (F,w). This can be seen in the following
way.

Clearly, if 1 = n — 1, then this (n — g — 1)-space is the point P itself. So,
assume that u < n — 1. Since the number of lines through P that lie in H
but not in 7, equals

n—1
¢ -1 ¢" -1

— >qgt>(0—1
q—1 q—l_q ( o

there exists a line 7 through P in H containing no other points of (F,w).
Now assume that through P there exists an r-space 7., 1 <r <n —pu—1,
contained in H, that contains no other points of (F,w). In H, there are
Up—1—p — Uy > ¢* > (6 — 1)v, (r + 1)-spaces through =, that intersect 7,
in P. Hence, at least one of them, say m,,1, contains no point of (F,w)
different from P. Repeating this argument for increasing values of r, a chain
m C my C ... C mp_pu—1 of subspaces m; in H is obtained that contain P but
no other point of (F,w).

Let m,_,—1 be such an (n—p—1)-space and denote the v, hyperplanes in
PG(n, q) through 7,1 by H =: Hy, Hy, Hs, ..., H,,, where m = v,.; — 1.
Without loss of generality, we can assume that |(F,w)NH;| > |(F,w)NHy| >

. > |(F,w) N Hy| > dv,. Since (i) (F,w) N m,—,—1 consists of only one
point P, which has weight one, and which is contained in every hyperplane
H;, and (i) |(F,w) N (PG(n,q) \ mp—u—1)| = 6v,11 — 1 and every point in
PG(n, q)\m,—,—1 is contained in v, hyperplanes H;, (2.2) holds. It is obtained
by counting the size of the set {(P, H;) : P € H;, P € PG(n,q),0 <i < m},
where each pair (P, H;) is counted w(P) times.

(Frw) N B+ S [(Fow) 0 H = v + 000,00 — 1. (2.2)

i=1

If [(F,w) N Hy| = dv,, it follows that |(F,w) N H| = v,41 + v, (6v,41 — 1) —
mév, = v,+1 + (6 — 1)v,, a contradiction. Hence |(F,w) N Hy| > dv,. By
Corollary 2.2.2, the points of (F,w) must block every (n — u — 1)-space in
H,. The smallest set blocking every (n — p — 1)-space in PG(n — 1,q) is
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a p-space in PG(n — 1,q), having v, points, see Theorem 1.2.14. Thus
[y 0 (F,w)] 2 vy

Let  be the greatest integer in {1, 2, ..., m} for which |(F, w)NH;| > dv,,.
Then it follows from the above results that « > 1 and |(F,w)NH;| > v,y for
i=1,2,...,2. Hence, by (2.2), vyq1 +v,(0vu41 — 1) > (. + 1)vyq1 + (g1 —
x — 1)6v,. Since v,41 > dv,, it follows that = < (6 — 1)v,/((¢g — d)v, +1) <
(0 —=1)/(g—=46). But 1 < § < (¢ + 1)/2, which implies that = < 1, a
contradiction.

It can be concluded that the hyperplane H does not exist and that (F’, w’)
is indeed a {(6 — 1)v,41, (6 — 1)v,; n, ¢}-minihyper. O

Notation 2.2.4 For ¢ = 2, let ¢, equal 2. For ¢ > 2, let ¢ + ¢, denote the
size of the smallest nontrivial blocking sets in PG(2, q).

As mentioned in Section 1.2, in PG(2,q), ¢ odd, respectively ¢ # 2 even,
there exist nontrivial blocking sets of size 3(¢+ 1)/2, respectively (3¢ + 2)/2.
Hence, for given ¢, if § is an integer with 6 < ¢;, then 0 < (¢+1)/2 and every
blocking set of size ¢ + d in PG(2, ¢) contains a line.

Theorem 2.2.5 If (F,w) is a {d(q¢ + 1),0;n,q}-minthyper satisfying 0 <
d < €4, then w is the weight function induced on the points of PG(n,q) by a
sum of § lines. Moreover, this sum is unique.

Proof It is clear that the theorem holds for 6 = 0 orn < 2, solet § > 0
and n > 2. We proceed in two steps.

1. Assume all points of (F,w) have weight greater than or equal to k& >
1 and there exists a point P with weight k. Consider an (n — 2)-
dimensional subspace 7,_s through P containing exactly k points of
(F,w), i.e., k times the point P; the existence of such a subspace ,_2
is proved in the same way as the existence of m,_,_1 was proved in
Lemma 2.2.3. Let Hy, Hy,...,H, be the ¢ + 1 hyperplanes through
Tn_2. Then the following equation holds:

q
> I(Fw) N H| = [(Fw)| + gl (F,w) N mya| = 6(q + 1) + gk
=0

Therefore there exists a hyperplane H;, say Hj, that contains more
than § points of (F,w). By Corollary 2.2.2; the points of (F,w) N H
form a blocking set in Hj. Since each hyperplane H; contains at least
0 — k points of (F,w) outside 7, o, Hy contains at most d(q + 1) —
q(0 — k) points of (F,w). All these points have weight at least k, hence,
considered as points of PG(n, q), there are at most w <q+6
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of them. Using Theorem 1.2.15, it can be concluded that the blocking
set (F,w) N Hy in Hy contains a line, and since P is the only point of
(F,w) in 7,_o, this line must pass through P.

2. Let P be a point of (F,w) with minimal weight. In step one, it was
shown that there exists a line [ through P completely contained in
(F,w). Now construct a new minihyper (F’,w’) in PG(n,q) in the
following way:

e for P’ in PG(n,q) \ I: w'(P') = w(P’), and
e for P onl: w'(P') =w(P)—1.

By Lemma 2.2.3, (F',w’) isa {(6 — 1)(¢ + 1),6 — 1; n, ¢}-minihyper.

Repeating steps 1 and 2, the minihyper can be downsized until all points
have weight zero. This implies that (F,w) is induced by a sum of § lines.

Since § < (¢ + 1)/2, there is only one sum of ¢ lines that induces (F,w).
Indeed, if w; and wy were two such sums, and if wy(l) > wy(l) for some
line [ in PG(n, q), then through each of the points of | there would pass a
line m # [ for which wy(m) < wy(m). Hence § would be at least ¢ + 1, a
contradiction. a

Remark 2.2.6 For minihypers without weights satisfying n > 3,0 < ,/q+1,
this result was already known, see Theorem 2.1.6.1.

Theorem 2.2.7 If (F,w) is a {6v,41,0v,;n, q}-minihyper satisfying 0 <
0 <€ and p <n—1, then w is the weight function induced on the points of
PG(n,q) by a sum of § pu-spaces. Moreover, this sum is unique.

Proof Note that the theorem clearly holds for ;1 = 0 and that Theorem 2.2.5
states the result for © = 1. To obtain the general result, induction on p will be
used. So, let (F,w) be a {6v,11,0v,; n, ¢}-minihyper satisfying 1 < p <n—1
and suppose the theorem holds for all positive integers y/ smaller than u.

By Theorem 2.1.13, there exists an (n — 2)-space G in PG(n,q) such
that |(F,w) N G| = dv,_1, and any (n — 2)-space G in PG(n, ¢) for which
|(F,w) NG| = 6v,_, satisfies the following. Let Hy,..., H,; be the ¢ + 1
hyperplanes through G. Then (F,w) N H; is a {év,, 0v,_1;n, ¢}-minihyper
with weights in H;. Using the induction hypothesis, (F,w) N H; is a sum of
d (u — 1)-spaces.

Let G’ be an (n — 2)-space such that |(F,w) N G’| = dv,_1. Let P be a
point of (F,w) with minimal weight. If P ¢ G’, then let G be an (n — 2)-
space containing P and satisfying |(F,w) N G| = dv,—1. To see that such a
space (G exists, suppose that P € H \ G', where H is one of the hyperplanes
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through G'. From the above, H N (F,w) is a sum of § (u — 1)-spaces. Since
there are v,_, respectively v,,_,, vp_,—1, (n — 2)-spaces in H through P,
respectively through P and a (u — 1)-space in H containing P, through P
and a (4 — 1)-space in H not containing P, and since p > 1, there exists an
(n—2)-space G through P in H that intersects each one of the ¢ (11—1)-spaces
in a (pu — 2)-space. Thus G contains dv,_; points of (F,w).

Denote the ¢ + 1 hyperplanes through G by Hy, ..., H,. From the above,
(F,w) N H; is a sum of § (u — 1)-spaces A;1, Ajo, ..., Ajs, and this sum is
unique. Moreover, each one of these (u — 1)-spaces intersects G in a (u — 2)-
space, such that GN(F,w) is a sum of 0 (u—2)-spaces By, B, ..., Bs, which
is also unique. Number the spaces B; and A;; in such a way that B; C A;;
forall j € {1,...,0} and i € {0,1,...,q}.

Case 1. The point P has weight one. There is exactly one (u — 2)-
space in G N (F,w) through P, e.g. Bj, and exactly one (u — 1)-space in
H;N(F,w) through P. By the convention above, this (u — 1)-space is A;;.
Now suppose the (@ — 1)-spaces Agi, A1, ..., Ay do not form a p-space
through P, i.e., suppose UL, An # (Ao, A11). Let E; = H; N (Ao, Aur).
Then there exists an integer o € {2,...,q} such that E, # A,. Let
D, =GN (E,, As). This is a (¢ — 1)-space in G containing B;. As B,
j=2,...,0,intersects B in a subspace in G with dimension at most p—3,
it follows that (B;, By) has dimension at least p — 1.

Since the number of (n — 3)-spaces in G through By, respectively through
a (u— 1)-space in G, through a subspace of dimension greater than pu — 1,
equals v,_,, respectively equals v,_,_1, is smaller than v,_,_;, and since
Vp—py—1 < Up_,, there exists an (n — 3)-space A in G satisfying By C
A By & A,...,Bs ¢ A and D, ¢ A. This configuration is depicted in
Figure 1.

By Theorem 2.1.14, there exists a hyperplane I through (A, F,, ) such that
TN (Ui Ai1)| = vu—1. Now consider a (p— 1)-space A;;, where j > 1. It
intersects G in the (p—2)-space B;. Since IING = A, it can be concluded
that IINA;;, j > 1, is a (u—2)-space. Now count the points of (F, w) in II:
there are at most v,—1 + (6 —1)(¢ + 1)v,—1 < dv, of them, a contradiction.
We conclude that the spaces Ay, ..., A, form a p-space through P.

Case 2. The point P has weight k > 1. In H;,i=0,...,q, all (u— 1)-
spaces have weight zero or at least k. Indeed, suppose this is not the case,
suppose there is a (u — 1)-space 7 in Hy with positive weight at most
k — 1. Since each point in this (@ — 1)-space has weight at least k, we need
more than ¢ > ¢ other (u — 1)-spaces in Hy with weight greater than zero
to cover the points of m. This is impossible. In H;, there are exactly k
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Figure 2.2: Reconstructing the p-spaces
For given k, the (u — 1)-spaces Ay, in H;, 0 < [ < ¢, through By form a
[L-Space.

(1 — 1)-spaces through P. Since the weight of a point of (F,w) is at least
k, these k (1 — 1)-spaces must in fact be one (u — 1)-space A;; counted k
times. The other (u — 1)-spaces in H; intersect G in (u — 2)-spaces not
containing P. Repeating the arguments from Case 1, it follows that the
k-fold (pu — 1)-spaces A;; form a k-fold u-space through P.

In both cases, there exists a p-space through P. By Lemma 2.2.3, this
p-space can be deleted, resulting in a {(d —1)v,41, (6 —1)v,; n, ¢}-minihyper
(F" w').

Repeating this technique for downsizing the minihyper, the desired result
is obtained: (F,w) is a sum of § p-spaces. Uniqueness of this sum can be

proved in the same way as the uniqueness of the sum of lines in Theorem 2.2.5.
O



Chapter 3

More minihypers:
Improvements for ¢ square

The results in the previous chapter are weakest in the case that ¢ is a square,
since in that case the smallest nontrivial blocking sets have size q + /q + 1.
However, these blocking sets in PG(2, ¢) have a very nice structure, and there
are several results on the size of the second smallest nontrivial blocking sets
in PG(2,q), q square, see Section 1.2. These two facts allow to improve
Theorem 2.2.7 in the case that ¢ is a square under the condition that all
points of the minihyper have weight one. The results collected in this chapter
were published in Journal of Combinatorial Theory. Series A in P. Govaerts
and L. Storme, On a particular class of minihypers and its applications. II.
Improvements for q square [55].

3.1 Introduction

In this chapter, improvements to Theorem 2.2.7 are obtained in the case
that ¢ is a square. However, one extra assumption is made: the minihypers
under consideration are minihypers without weights. Remember that such
minihypers are denoted by F', the set of points with weight one. So, it is the
aim to classify

{6v,41,0v,; n, ¢}-minihypers F

in PG(n,q), q square, for all 6 < a for some integer a, where the intention
is (of course) to obtain a classification for a as large as possible. If 6 < /g,
then, by Theorem 2.1.6.1, such a minihyper consists of a disjoint union of
p-spaces. For larger 0, other examples exist.



32 More minihypers

Example 3.1.1 Let ¢ be a square, 1 < 6 < ¢—1,1 < pu < (n—1)/2
and k < §/(\/q +1). Let Dy, D,,...,D; be k mutually disjoint subspaces
PG(2u + 1,,/q) in PG(n,q) and let Wi, Ws, ..., W), I = § — k(\/q + 1),
be | mutually disjoint p-spaces in PG(n,q) that are skew to U¥_, D;. Then
F = (U D) U (U_W;) is a {6v,41,0v,; n, ¢}-minihyper, since |PG(2u +
1,/9)| = (/g + 1)v,41, and since a hyperplane intersects D; in a subspace
PG(s, /q) for some s € {210 — 1,24, 2+ 1}.

It will be shown in Theorem 3.4.1 that, for § not too large, the converse
holds: a {0v,41, 6v,; n, ¢}-minihyper F in PG(n, ¢), ¢ square, consists of the
disjoint union of yi-spaces and subspaces PG(2u + 1, /q).

Although the minihypers that will be studied are minihypers without
weights, due to the use of projection arguments, weighted minihypers will
appear. For those, the following terminology will be used. A simple point
of a minihyper (F,w) is a point with weight one, while a multiple point of
(F,w) is a point with weight at least two.

3.2 The case p=1

The case p = 1—the smallest nontrivial possibility for p—is handled first.
The results obtained in this section will be used to study the situation for
larger .

To obtain the classification of {d(¢+1), d; n, ¢}-minihypers F', a projection
argument will be used. For n > 3, the minihyper F' will be projected from a
point onto a hyperplane, yielding a new minihyper (F’,w) in PG(n — 1, q).
By then, the structure of (F”, w) will be known, and (F”, w) will be “lifted”
to the original minihyper F'. The knowledge of the structure of (F’ w) will
prove to be sufficient to determine the structure of F'.

For n > 4, the new minihyper (F”, w) will be, like F', one without weights,
but for n = 4, it will not be possible to exclude the existence of multiple points
in (F’,w), see Lemma 3.2.1. That is why, in the study of the minihyper in
three dimensions, (a small number of) multiple points will be allowed.

Because of the strategy chosen, the cases n = 3 and n = 4 are handled
separately in Subsections 3.2.1 and 3.2.2, after which the general case is
handled by induction in Subsection 3.2.3.

Lemma 3.2.1 Consider a {0(q + 1),0;n, q}-minihyper F' without weights,
where ¢ > 16 and § < ¢°/3/v/2 + 1. If n > 4, then F can be projected from
a point into a hyperplane resulting in a {6(q + 1),d;n — 1, q}-minihyper F'.
If n = 4, then F can be projected from a point into a solid resulting in a
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{6(q +1),8;3, qy-minihyper (F',w) with less than ¢*/*/2 + 1 multiple points
(counted according to their weight).

Proof The number of secants to F', counting a secant containing m points
of F precisely () times, equals §(¢ + 1)(6(¢ + 1) — 1)/2. The sum of these
secants, counting a point that lies on m secants m times, contains less than
6%(q+1)%/2 points of PG(n, ¢). This number is smaller than (¢'/4/4+41/2)vs.

In the case n > 4, there exists a point R not lying on any secant. Project-
ing F' from R onto a hyperplane not containing R, a {d(¢ + 1),6;n — 1,¢}-
minihyper F” is obtained.

In the case n = 4, there exists a point R lying on less than ¢*/*/4 + 1/2
secants, where a secant is counted (’;) times if it contains m points of F. But
since m > 2 implies that (ZL) > m/2, the union of these secants through R
contains less than ¢*/4/2+1 points of F. Thus, if F is projected from R onto
a solid not containing R, then the resulting structure is a {§(¢ + 1), 6; 3, ¢}~
minihyper (F', w) with less than ¢'/* /2+1 multiple points (counted according
to their weight). O

Remark 3.2.2 If (F,w) is a {6(q¢ + 1),0;n, ¢}-minihyper, 6 < g, then by
Corollary 2.1.11, every plane 7 intersects it in an {mq(q + 1) +mg, m; 2, q}-
minihyper (F”,w’) for some (mg, m;) € E(2,q) U {(0,0)} with mg +m; < 4.
Denote by my(m) the integer my corresponding to the plane w. If my(7) is
zero, then 7 is said to be poor; if 7 is not poor, then it is called rich.

Since these planar intersections of the minihyper will show up in the
proofs in this section, they are studied in the following lemma. The parameter
¢, from Section 1.2 is used. It equals 271/3 when p < 3 and 1 otherwise.

Lemma 3.2.3 If F is an {m1(q + 1) + mo, m1; 2, q}-minihyper (without
weights), ¢ > 16 square, ¢ = p", p prime, and my +my = a < q5/8/\/§+ 1,
then my < c,q"/% and either F contains a disjoint union of m; Baer subplanes
ormi; =1 and F' contains a line.

Proof Note that ¢ > 16 implies that ¢°/%/v/2 + 1 < ¢,¢*/®. Four cases can
be distinguished.

Case 1. Assume m; = 1. The conditions of Theorem 1.2.4 are fulfilled.
Hence F contains a line or a Baer subplane. Note that m; < ¢,q'/°.

Case 2. Assume 2 <m; < q1/4/2. In this case, Theorem 1.2.11 can be
applied. It states that F' contains the disjoint union of m; Baer subplanes.
Hence |F| > my(q + /g +1). But |F| = my(q + 1) + my, implying that
mo > /qmy. Therefore a = mg +my > (/g + 1)m;. Since o < cpq2/3, it
follows that m; < cpq1/6.
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Case 3. Assume m; > q'/4/2, and F contains no line. Theorem 1.2.10
says that |F| > myq + \/miq + 1. Substituting the second appearance of
m; in this expression by the lower bound m; > ¢'/4/2, and using the fact
that | F| = miq +my +my, yields mg +m; > ¢°/®/v/2+ 1, a contradiction.
Hence this case cannot occur.

Case 4. Assume m; > q'/4/2, and F contains a line. Then Theo-
rem 1.2.10 states that |F| > miq+ q — my + 2. But ¢ > 16, implying
q > 2¢** > 2a > 2my + my, such that |F| > my(q+ 1) + myg, a contradic-
tion.

This concludes the proof of the lemma. O

Remark 3.2.4 One easily sees that if, under the conditions of Lemma 3.2.3,
I contains the disjoint union of m; Baer subplanes, then F' cannot contain
a line.

3.2.1 The smallest dimension

In this subsection {§(q¢ + 1), d; 3, ¢ }-minihypers (F,w) with 6 < (¢+1)/2
are studied. Here (F,w) will always denote such a minihyper, but, progress-
ing in the subsection, further assumptions will be made. By Lemma 2.1.9, if
7 is a plane, then 7 intersects (F, w) in a {m1(q+1)+mg, my; 2, ¢}-minihyper
satisfying mg 4+ m; = §. Hence, for such a minihyper, every plane 7 satisfies

|(F,w) N w| = qmy(m)+ 9. (3.1)

Lemma 3.2.5 If1 is a line containing o points of (F,w), and a plane 7 is
counted my(m) times, then there are exactly o planes through .

Proof Let m;,i = 0,...,q, be the ¢ + 1 planes in PG(3,¢q) containing I.
Then

Z‘(Faw)ﬂﬁ\ =alg+1)+6(g+1) —a.
By (3.1),

<

(gma(m) +9) = (a+9)q + 0.

o

i=

Thus Y7

omi(m) = a. O

Lemma 3.2.6 Through a point P of weight «, if a plane 7 is counted mq ()
times, there are exactly aq + o planes.
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Proof Consider the set {(P’, ) : m a plane,7 3> P, P’ € PG(3,q), P’ € 7}.
Count the elements of this set in the following way. A pair (P’, ) is counted
w(P’) times. Then

al@+q+1)+6(g+1) —a)g+1) =0(" +q+1)+q_ m(m).

Therefore ) _,mi(m) = ag + 9. O

Lemma 3.2.7 A linel containing a point P not in (F,w), contains at most
0 points of (F,w).

Proof Suppose [ contains « points of (F,w). By Lemma 3.2.5, counting
a plane my(m) times, there pass exactly « planes through [. Each one of
them contains P. By Lemma 3.2.6, counting a plane m;(7) times, there are
exactly ¢ planes passing through P, implying that o < 9. O

If P is a point of PG(3,q), ¢ square, then a Baer cone B with vertex P
is a set of points that is the union of ¢ + /g + 1 lines on P that form a Baer
subplane in the quotient space on P. These ¢ + /g + 1 lines are called the
lines of the cone, while the planes of the cone are the g + /g + 1 planes on
P that contain /g + 1 of these lines.

Lemma 3.2.8 Suppose q is a square and (F,w) is a {d(¢ + 1),;3,q}-
minihyper with § < €, where q + €, denotes the size of the second smallest
nontrivial minimal blocking sets in PG(2, q). Suppose furthermore that (F, w)
contains no line. If P is a point of (F,w) with minimal weight, then the set
of rich planes through P contains the set of planes of a Baer cone B with
verter P.

Proof Note that, by the condition imposed on 4, 6 < (¢ + 1)/2. Hence the
previous lemmas can be applied.

Case 1. The point P has weight one. By Lemma 3.2.6, there exist at
most ¢ + 0 planes 7 through P that satisfy m(7) > 1.

By Lemma 3.2.5, every line [ through P lies in at least one of these planes.
Thus, in the quotient geometry of P—describe it by using a plane 7 not
through P—the lines corresponding to the planes through P sharing at
least a 1-fold blocking set with (F,w), i.e., the planes with m; > 1, form
a dual blocking set B. Since |B| < ¢+ d, B contains a dual line or a dual
Baer subplane. Suppose B contains a dual line, i.e., B contains all lines
through some point R of m. Then there are ¢ + 1 planes with m; > 1
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through the line PR, a contradiction since, by Lemma 3.2.7, this implies
that all points of PR are points of (F,w). So B contains a Baer subplane,
and the set of rich planes through P contains the set planes of a Baer cone
B with vertex P.

Case 2. The point P has weight a > 1. A plane intersects (F,w) in
a {mi(q + 1) + mg, m1;2, ¢}-minihyper, but since the minimal weight of
a point in the minihyper is «, if a plane 7 satisfies m(w) > 0, then
my(m) > a. By Lemma 3.2.6, Y _,mi(7) = ag + d, such that there exist
at most g + ¢ such planes.

The rest of the arguments can be copied from Case 1.
This concludes the proof. O

Lemma 3.2.9 Suppose (F,w) is a minihyper satisfying the conditions from
Lemma 3.2.8. Assume furthermore that (F,w) has a simple point P and that
§ < @*®/\/2+ 1. Let B be the Baer cone with vertex P from Lemma 3.2.8.
Then every plane E; of B with mi(E;) = 1 contains a unique Baer subplane
B(E;) consisting of points of (F,w), and this Baer subplane is contained in

B.

Proof The proof of this lemma is based on the proof of Lemma 2.2 of [87].
Denote by Ep, Ex, ..., Eqy g the planes of B and by a;, i =0,1,...,¢+ /g,
the number of points of (F,w) in E; that are not on B. Keeping in mind that
a point outside B lies on exactly one plane of B, while a point of B\ {P} lies
on exactly /g + 1 planes of B, the points of (F,w) can be counted, resulting

mn
q++/q q+1

1
1=0 \/64—1 1=0
q++/q a+/q

Z ai:5q+\/§—\/az my(E;). (3.2)

or

Since through P, there are exactly ¢ + 0 (not necessarily distinct) rich
planes, there are at most 0 — /g — 1 different planes 7 of B with m,(7) > 1.

Let E;, be a plane of B with m,(E;,) = 1, and denote the lines of B in
Ei, by lo, by, ...l 5. Since my(E;) = 1, by Lemma 3.2.3, the intersection
E;, N (F,w) contains a unique Baer subplane B(E;,) = mp. Therefore |I; N
ng| € {1,\/q+ 1}, fori € {0,1,...,/q}.

If a;, < ¢ —/q, then |mp N B| > 2,/q+ 1. Thus, in this case at least two
lines [; contain more than one point of . So, they are lines of mp, such
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that P € mp, implying that there are at least three lines /; that contain more
than one point of mp. It follows that 7 C B.

Since (3.2) implies that Z‘jjf a; < 0(q — /q), it holds that B(E;) ¢ B
for at most A := (Z?:(}/a a;)/(q — /q) < ¢ planes E; of B with m,(E;) = 1.

Now suppose that E;, is a plane of B with my(E;,) = 1 and that B(E},)
is not contained in B. Then a;, > q — V/q such that F; contains at most
0 + /g points of (F,w) in B. Denote the lines of B in E;, by Iy, l},..., I -.
Then at most 1+ §/,/q of these lines can contain at least /g + 1 points
of (F,w). Thus at least /g — 0/,/q of these lines contain less than 1+ ,/q
points of (F,w). For such a line I}, no plane F; through I’ can contain a Baer
subplane of points of (F,w) contained in B. Counting the number of planes
of B that do not contain a Baer subplane contained in B consisting entirely
of points of (F,w) yields

Ad i1z 14 (i Ve

implying that 30 > ¢ + /g + 2, a contradiction. O

Lemma 3.2.10 Suppose (F,w) is a minihyper satisfying the conditions
from Lemma 3.2.9. Through every simple point P of (F,w), there exists
a Baer subgeometry D := PG(3,,/q) consisting entirely of points of (F,w).
Furthermore, this Baer subgeometry is unique.

Proof Let B denote the Baer cone with vertex P from Lemma 3.2.9. Let
Eo, Ey, ..., E._1 be the planes of B satisfying m(E;) = 1. Note that r >
q—90+2/q+2.

Let 7 € {Ey, Eh, ..., 1} and denote the lines of B in 7 by lo, l1, ..., s
Suppose « of these lines contain more than one Baer subline consisting of
points of (F,w). Then [7N(F,w)| = ¢+6 > ¢+,/q+1+a(,/g—1), such that
a < ¢/8/y/2. Call the lines of B in 7 containing exactly one Baer subline
consisting of points of (F,w) good lines.

Let m and 7’ be two distinct elements of {Ey, E1,..., E,_1} intersect-
ing in a good line. Denote by B, respectively B’, the Baer subplane of
7, respectively 7', consisting of points of (F,w). Define D as the subspace
PG(3,,/q) spanned by B and B’. The good lines of 7 and 7’ define more than
(v/a— q"/®/v/2)? planes of B intersecting 7 as well as 7’ in a good line. Thus
there are at least ¢ —3¢*/®/v/2+ /g +¢"/*/2 planes E; of B with my (E;) = 1
that intersect m as well as 7’ in a good line. Since the Baer subplanes of
(F,w) in these planes have two Baer sublines in common with D, they are
contained in D.
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Let 7 be one of these planes. Then there exists some line of 7* on P
that is contained in at least (¢ — 3¢°%/v2+ /g +¢"/*/2 - 1)/(\/a+ 1) >
Va —3¢"/#/\/2 planes of B whose Baer subplane is contained in D. Therefore,
more than ¢ — 3¢%/%/v/2 + v/q+ 1 lines of B have a Baer subline consisting of
points of (F, w) that is contained in D. Denote these lines by mq, my, ..., m,.

Suppose that there exists a point P’ of D that does not belong to (F,w).
Then it lies on § < ¢°/®/+/2+1 rich planes. The ¢ planes of D through P’ but
not through P, intersect each of the lines mg, my, ..., m, in a point of (F, w).
Therefore they contain more than ¢ — 3¢%%/v/2 + V/q + 1 points of (F,w).
Since this number is greater than J, these planes are rich. So, there are more
than ¢ rich planes through P, implying that P’ € (F,w), a contradiction.

Hence all points of D belong to (F,w). It remains to be shown that this
subgeometry D is unique. Suppose that this is not the case, i.e., suppose
that D; and D, are two distinct subspaces PG(3,,/q) on the simple point
P consisting entirely of points of (F,w). Then D; and D, share at most a
Baer subplane and a point. Two distinct Baer planes, one of D; and one of
D», intersect in at most a Baer line and a point, and thus contain at least
2q +2.,/q + 2 — \/q — 2, which is greater than ¢ + ¢, points of (F,w).

Now take a look at all the planes of D; and Dy on P. A plane 7 of D,
that is not a plane of D, (and vice versa) contains more than ¢ points of
(F,w) and thus satisfies mi(m) > 1. A plane 7 of D; that is also a plane
of Dy has more than ¢ + ¢ points of (F,w) and thus m;(7) > 2, unless for
maybe one plane whose Baer subplane belongs to D; as well as to Dy. This
means that there are at least 2¢ +2,/g + 1 rich planes (counted according to
their weight) on P, a number greater than ¢ + 0, a contradiction. a

Theorem 3.2.11 [f (F,w) is a {6(q+1),; 3, ¢}-minihyper, ¢ > 16 square,
0 < q5/8/\/§+ 1, containing less than ¢'/*/2 + 1 multiple points (counted ac-
cording to their weight), then (F,w) is a sum of lines and Baer subgeometries
PG(3,./q), and this sum is unique.

Proof By Lemma 2.2.3, if (F,w) contains a line, then it can be deleted in
order to obtain a new minihyper with parameters {(d —1)(¢+1),0 —1; 3, ¢}.
This process can be repeated until a minihyper not containing any lines is
obtained.

So, suppose that (F,w) does not contain a line. Let P be a simple
point of (F,w). By Lemma 3.2.10, there exists a unique Baer subspace
D = PG(3, \/q) consisting entirely of points of (F,w) on P.

Construct in the following way a new minihyper (F’,w’) defined by the
weight function w’,

o W'(P)=w(P)—1,for Pe D, and
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e w'(P)=w(P), for P € PG(3,q)\ D.

Then (F',w') is a {(0 — /g —1)(¢+1),6 — /g — 1; 3, ¢}-minihyper.

For suppose that this is not the case. Then, by Theorem 2.1.8, there
exists a plane 7 that contains less than 6 — /g — 1 points of (F',w’). Let
|7 N (F,w)| = mi(q + 1) + myg, with mg 4+ m; = 6.

Case 1. 7ND =PG(2,,/q).

Deleting D, 7 contains (m; —1)q+mgo +my — /g — 1 points of (F',w'). If
my were zero, then 7 could not have contained PG(2,,/q). Therefore, this
number is at least d — /¢ — 1. Thus, the next case has to occur.

Case 2. 7N D =PG(1,,/q).

Deleting D, 7 contains mi(q + 1) + mo — /g —1 > § — /g — 1 points of
(F',w'), a contradiction.

So, a subspace PG(3, ,/q) contained in (F,w) can be deleted, resulting in
a similar minihyper. Deleting subspaces PG(3,,/q) until there are no more
simple points, what remains is a {§*(¢ + 1), 6*; 3, ¢}-minihyper, 6* > 0, with
nothing but multiple points. But the number of multiple points is smaller
than ¢'/*/2 + 1, implying 6* = 0.

It follows that (F,w) is a sum of lines and subspaces PG(3,,/q). Since
§ < ¢”®*/\/2 + 1, there are at most ¢°/%/v/2 + 1 lines and ¢'/®/+/2 subspaces
PG(3,,/q) contained in this sum. A line not contained in this sum cannot be
covered by the lines and subspaces PG(3,,/q) of this sum; also, a subspace
PG(3,,/q) not contained in this sum cannot be covered by the lines and
subspaces PG(3,,/q) of this sum. Hence (F,w) can be written in a unique
way as a sum of lines and subspaces PG(3, \/q). O

3.2.2 One dimension up

We continue with the study of {4(g+1), d; 4, ¢}-minihypers F', minihypers
without weights, where ¢ > 16 is a square and § < ¢°/*/v/2 + 1.

Lemma 3.2.1 states that F' can be projected from a point R ¢ F into
a solid not containing R, resulting in a {d(¢ + 1), J; 3, ¢}-minihyper (F’, w)
with less than ¢'/4/2 4 1 multiple points. Such a minihyper (F',w) is—as
shown in the preceding subsection—a sum of lines and subspaces PG(3, ,/q).
In this subsection the minihyper (F”,w) shall be “lifted” from PG(3,q) to
the minihyper F' in PG(4, q).
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Lemma 3.2.12 There is a one-to-one correspondence between lines of F
and lines of (F',w).

Proof Clearly, if [ is a line of F' in PG(4, ¢), then [ is projected onto a line
of (F',w) in PG(3,q).

Now suppose [ is a line of (F’,w) in PG(3,¢q). Since there are less than
¢*/*/2 4+ 1 multiple points in (F',w), in the minihyper F in PG(4,¢q), the
plane Rl contains less than ¢ + 1 +¢"/*/2+1 < ¢+ v/q + 1 points of F. By
Corollary 2.1.12, this plane contains a line consisting of points of F'. Clearly,
this line is projected onto [. a

So every line of (F’,w) is the projection of a line of F'. Removing one
by one all lines of F, by Lemma 2.2.3, a {6*(q + 1),0*; 4, ¢}-minihyper F*
is obtained. Denote this new minihyper again by F' and the corresponding
minihyper in PG(3, q) by (F’,w). Both then do not contain any line.

Lemma 3.2.13 FEvery point of F' is contained in at least two Baer subplanes
that are completely contained in F.

Proof Let P be a point of F. Since there are v, lines through P but only
d(¢ + 1) — 1 points of F different from P, there exists a line [ through P
containing no other point of F'. On [, there are v3 planes. So, through [ and
therefore through P, there exists a plane 7w containing no point of F' other
than P. If all solids on 7 would contain exactly ¢ points of F', then |F'| would
equal 1+ (¢4 1)(6 — 1), a contradiction. Thus, on 7, there exists a solid 3
containing more than ¢ points of F'. By Lemma 2.1.9, it contains at least
q + 1 points, and, by Corollary 2.2.2, the points of w3 N F' block all planes
in m3. But m3 contains at most ¢ + § points of F' (since all other solids on
7 must also contain at least ¢ points) and no line of F'. Therefore it must
contain a Baer subplane 7g consisting of points of F', see Theorem 1.2.17.
Since F'Nm = {P}, the point P is contained in 7p.

Denote by 7" the plane of PG(4, ¢q) that contains mp. Let m be a line
containing P but no other point of F', and m ¢ #’. On m, there are ¢*>+¢q+1
planes, ¢® of which intersect 7’ only in the point P. Since there are less than
d(g+1) points of F' outside 7', at least one of them, say 7*, contains no point
of F other than P. As in the previous argument, there exists a solid on 7*
that contains a Baer subplane 73 consisting of points of F'. Also as above,
P is contained in 7. Clearly, 7 is distinct from 7p. O

Lemma 3.2.14 Through every point of F that is projected onto a sim-
ple point of (F',w), there exists a subspace PG(3,,/q) consisting entirely of
points of F.
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Figure 3.1: Projecting and “lifting” the minihyper
The Baer 3-spaces from the projected minihyper (F”’,w) can be lifted to
reconstruct the original minihyper F'.

Proof Let P’ be a simple point of (F’, w) and let D’ be the unique subspace
PG(3, \/q) consisting of points of (F’, w) that contains P’. Let P be the point
of F' that is projected onto P’. Let mp; and mpo be two Baer subplanes
through P that consist of points of F', see Lemma 3.2.13. Their projections,
T and 7} o, are Baer subplanes of (F’, w). Since a Baer subplane consisting
of points of (F”,w) is contained in exactly one subspace PG(3, \/q) consisting
of points of (F', w), both 7} | and 7} , must be contained in D', which implies
that 73 ; and 7 , intersect in a Baer subline. As there are less than ¢'/*/2+1
multiple points, also mp; and 7o intersect in a Baer subline. Denote the
subspace PG(3, /q) that is spanned by 7, and 72 by D.

Let S be a point of 754 \ g that is projected onto a simple point S,
and let 753 be a second Baer subplane consisting of points of F' through .S,
see Lemma 3.2.13. As above, mp 3 intersects mp ;1 and 7p o in a Baer subline,
implying that 7p 3 is contained in D. This situation is depicted in Figure 3.1.

Now let V' be any simple point of D'\ (7, U, Ump;). Let V be
the point of F' that is projected onto V. There exists a Baer subplane 7g
consisting of points of F' through V. Let 7 be the projection of 5. Then
7z is a plane of D" and intersects either

(i) 73, and 7, in two different Baer sublines, in which case mp intersects
7p,1 and mp 2 in two Baer sublines and thus 7 C D; or

(ii) 75, and 7y, in w5, N 74, in which case it has to intersect 75 4 in
some other Baer subline, implying that 7 intersects m; and 73 in two
different Baer sublines and 7g C D.

In both cases, V' is contained in D. Therefore, D contains more than ¢./q +



42 More minihypers

q+ /7 — q"/*/2 points of F.

Suppose D is not completely contained in F', i.e., suppose there exists a
point W € D\ F. There exist ¢+ /¢ + 1 planes through W that intersect D
in a Baer subplane. In each such plane, there are ¢ — /g lines that intersect
D only in W, and two such planes intersect in a line that contains a Baer
subline of D. Thus there exist (¢+/q+1)(¢ —/q) = ¢* — \/q lines in planes
of D that intersect D only in W. But since this number is greater than
d(q+ 1), at least one of these lines, say [, is skew to F'. Let ™ be the plane
through [ that intersects D in a Baer subplane. Denote this Baer subplane
by mg. On [, there exists a plane ©’ skew to F. All hyperplanes through
7’ contain exactly 0 points of F. But one of these solids has to contain
7, which contains mg. Since every Baer subplane of D contains more than
q++/q— q'/*/2 points of F, a contradiction is obtained. O

Theorem 3.2.15 If F' is a {0(q + 1),;4, q}-minihyper, ¢ > 16 square,
§ < @®®/\V2+ 1, then F is a unique disjoint union of lines and subspaces

PG (3, /q)-

Proof For the moment, assume that the minihyper F' does not contain any
line. Let P be a point of F' that is projected onto a multiple point of (£, w)
(if it exists). There exists a Baer subplane mp; consisting of points of F' and
containing P. Since (F”,w) contains less than ¢'/4/4 + 1/2 distinct multiple
points, there exists a point P» of mp; that is projected on a simple point of
(F',w). There exists a second Baer subplane 7p 5 consisting of points of F
on P, and PG(3,,/q) := (7,1, 7p2) is contained in F. Therefore, through
every point of F', there exists a Baer subspace PG(3, \/q) consisting of points
of F.

Now suppose that there exists a point P of F' that is contained in two
distinct subspaces PG(3,,/q) of F. Clearly, a subspace PG(3,,/q) of I is
projected onto a subspace PG(3,,/q) of (F',w). Hence P’, the projection of
P, is a multiple point. Therefore, there has to exist another point P, of F
that is projected onto P. Through this new point there exists a subspace
PG(3,,/q) of F', which is projected onto a third subspace PG(3, \/q) through
P’. (Note that P, cannot be contained in one of the first two Baer subspaces,
since otherwise PP, would contain at least /g + 1 points of a subspace
PG(3,./q) of F'and (F', w) would have a point with weight at least ,/g+1.)
It follows that P’ has weight at least three, implying that there exists another
point P3 of F mapped onto P’. Continuing along this line of thought, a
contradiction is obtained the moment that the weight of P exceeds ¢*/*/2+1.
Hence P is contained in a unique subspace PG(3, ,/q) consisting of points of

F.
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Recall that in the proof of Theorem 3.2.11, it was demonstrated how a
subspace PG(3, ,/q) can be deleted from a minihyper. Resuming the study of
the original minihyper F', it is now clear that F' can be written as a disjoint
union of lines and subspaces PG(3,,/q). An argument similar to the one in
the previous subsection shows that this union is unique. O

3.2.3 Arbitrary dimensions

Induction on the dimension is used to settle the case p = 1.

Theorem 3.2.16 If F is a {0(q+ 1),0;n,q}-minthyper, ¢ > 16 square, 6 <
q5/8/\/§+ 1, n > 3, then F is a unique disjoint union of lines and subspaces

PG(3,/q)-

Proof The theorem holds for n = 3 by Theorem 3.2.11 and for n = 4 by
Theorem 3.2.15. So suppose n > 5, and suppose it holds for all n’ < n.

By Lemma 3.2.1, F' can be projected from a point R ¢ F onto a minihyper
F'in PG(n —1,q), R ¢ PG(n — 1,q). By induction, F” is a unique disjoint
union of lines and subspaces PG(3, /7).

If [ is a line of F’, then Rl is a plane in PG(n, q) containing exactly g+ 1
points of F'. By Corollary 2.1.12, it contains a line, which can be deleted
with the standard procedure, Lemma 2.2.3. Conversely, if [ is a line of F|,
then it is projected onto a line of F’. From now on, assume that F' nor F’
contains a line.

So F' is a unique disjoint union of subspaces PG(3,,/q). Let P be a
point of F. Through P, there exists an (n — 2)-space containing no other
points of F' and there exists a hyperplane H containing this (n— 2)-space and
satisfying § < |[FFN H| < g+ 6. By Corollary 2.2.2 and Theorem 1.2.17, this
hyperplane has to contain a Baer subplane mp consisting entirely of points
of F" and containing P. Let 7 be the plane containing 7. Since the number
of lines through P not contained in 7 equals v, — vy > d(q + 1), there exists
a line m on P not in 7 containing no other points of F'. A similar argument
shows that there exists a plane m on P containing no other points of F' and
intersecting 7 in P. Continuing along this line of thought, the existence of an
(n — 2)-space m,_» containing P but no other points of F' and intersecting m
in P is demonstrated. As above, through m,_, there exists a hyperplane H*
containing a Baer subplane containing P and consisting entirely of points of
F. Since H* intersects 7 in a line, this Baer subplane is different from 7.

Taking into account that F’ has no multiple points, and using the tech-
niques from the proof of Lemma 3.2.14, it is seen that through every point
of F there exists a subspace PG(3,,/q) consisting entirely of points of F.
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Now the study of the original minihyper that may contain lines can be
resumed. As in the proof of Theorem 3.2.15, F' is a unique disjoint union of
lines and subspaces PG(3, ,/q). O

3.3 The case =2

The second case is handled. In this section, F' denotes a {§(¢*>+q+1),0(q+
1); n, ¢}-minihyper, ¢ > 16 square, 0 < ¢°/®/y/2 41, and n > 5.

Lemma 3.3.1 If P is a point of I’ that is contained in two lines of F', then
the plane spanned by these two lines consists entirely of points of F.

Proof Denote by 7 the plane generated by these two lines. Then |7 N F| =
my(q + 1) + myg for some pair (my,mg) € E(2,¢q) or 7 C F.

Suppose the first possibility occurs. Then m; +my < 0, and 7N F is a
{mi(q + 1) + mg, m1; 2, ¢}-minihyper. By Lemma 3.2.3 and Remark 3.2.4,
7 N F contains a union of m; Baer subplanes, but no lines, a contradiction.

Hence, the second possibility must occur, and 7 is contained in F. O

By the standard argument, Lemma 2.2.3, a plane 7 contained in F' can
be deleted from F, resulting in a new {(6 —1)(¢*+q+1), (6 —1)(¢+1);n, q}-
minihyper. So, from now on, assume that no point of F' is contained in two
lines of F'. The following lemma shows that this implies that I’ contains no
lines.

Remark 3.3.2 In PG(3,¢), a plane intersects a subspace PG(3,,/q) in at
least a Baer subline. Therefore, if A is an (n — 2)-space containing exactly
0 points of I, if H is a hyperplane containing A, and if D is a subspace
PG(3,,/q) of N H, then DN A is a Baer subline in A.

Lemma 3.3.3 If F' contains no planes, then it contains no lines.

Proof Suppose F' contains a line [ but no plane, and consider a point P on
[. Through P, there exists an (n — 2)-space A that intersects F' in exactly
0 points. Let Hy, Hy,...,H, be the ¢ + 1 hyperplanes containing A. By
Theorem 2.1.13, they intersect F' in {§(q + 1),d;n — 1, ¢}-minihypers. As
seen in the previous section, such a minihyper is a unique disjoint union of
lines and subspaces PG(3, ,/q).

Suppose, without loss of generality, that [ is contained in Hy. Then, since
F contains no plane, in H;, i = 1,2,...,q, there exists a subspace PG(3, \/q)
of F' that contains P. Denote this subspace PG(3,,/q) by E;.
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AN

Figure 3.2: The minihyper without planes: two steps from the proof of
Lemma 3.3.3

Every point @) of FFN A lies on a unique Baer subline consisting of points
of FNA. Indeed, every point of ' N A lies in at most one line completely
contained in I’ and |[FNA| = § < ¢*/®/v/2+1. Therefore there exists a hyper-
plane H through A intersecting F in a disjoint union of Baer subgeometries
PG(3,,/q). Hence, F N A is the disjoint union of §/(\/g+ 1) < ¢"/®/v2+1
Baer sublines, see Remark 3.3.2. Note that this implies that 6 > /g + 1.
Since two distinct Baer sublines intersect in at most two points, it is impos-
sible that @ lies on a second Baer subline contained in F' N A.

Denote the Baer subline of F'in A on P by I3 and the line (over GF(¢?))
containing it by I’. The present configuration is depicted in Figure 3.2. There
exists an (n — 2)-space A’ through P containing exactly ¢ points of F' satis-
fying I" ¢ (A’,1). This can be seen as follows.

Since there are v, lines through P, §(¢*> + ¢ + 1) — 1 points in F'\ {P}
and ¢ + 1 lines through P in (I,]), there exists a line m; on P satisfying
m NF ={P}and m ¢ (I',l). Hence, I" ¢ (m,{). Similarly, there exists a
plane 7y containing m; satisfying me N F' = {P} and 7y ¢ (I, m,1). Hence
' ¢ (m,1). Continuing this argument inductively, see Figure 3.2, one sees
that there exists an (n — 3)-space m,_3 through m,_4 skew to F'\ {P} such
that m,_3 & (', m,_4,1). Hence I" & (m,_3,1).

There are ¢> + g + 1 (n — 2)-spaces containing 7,,_3.

e Since each one of them contains at least § points of F', the number of
points of F' that needs to be distributed among these (n — 2)-spaces,
after they have all received their minimum number of § points, is ¢> +q.

e By Corollary 2.1.12, an (n — 2)-space that contains more than § points
of F' contains at least ¢ + 1 points of F.

Taking into account that 6 > /g +1, it follows that there are less than ¢+ 26
(n — 2)-spaces through 7,_3 with more than § points of F'. There are ¢ + 1
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(n — 2)-spaces through 7, 3 in (I',m, _3,1). Since g +25+q+1 < ¢®>+q+1,
there exists an (n — 2)-space A’ through P containing exactly d points of F’
and satisfying A" ¢ (I, w,_3,1). This subspace A’ satisfies I’ ¢ (A’ [).

All hyperplanes through A’ intersect F'in a {6(g+1), d; n—1, ¢}-minihyper.
Let H be the hyperplane through A’ containing [. Then H intersects H; in
an (n — 2)-space A; containing P, i = 1,2,...,¢q. But A; N E; is at least a
Baer subline. Let [p; be a Baer subline through P in A; N E;. Now suppose
that [p; = I, for some ¢ # j. Then this Baer line lies in H;NH; = A. Hence
it equals I, a contradiction, since I" € (A’,l) = H. Therefore lg; # lp; for
1 # 7, and the following configuration exists.

In H, which intersects F' in a unique disjoint union of lines and subspaces
PG(3,/q), there exists a point P of F' contained in a line [ of F" and ¢ Baer
sublines lg;, ¢ =1,2,...,q, of I

e Baer 3-spaces. The hyperplane H contains at most §/(,/g + 1) <
q'/®/v/2+1 subgeometries PG(3, ,/q) of F. Such a subspace PG(3, \/q)
contains at most ¢ + 1 points of I’ on the ¢ Baer sublines; this occurs
when it contains two points on one of these Baer sublines and one point
on all the others. For, if it would intersect two of these ¢ Baer sublines
in two points, then it would also contain their intersection point, which
is the point P; a contradiction, since P is already contained in the line (.
The subspaces PG(3, ,/7) therefore contain less than (¢/%/v/2+1)(g+1)
points on lp1,lp2,...,lp4 In total there are at least ¢,/q points of
F, different from P, on these lines. Hence, there are more than gq'/*
points left that should be covered by lines of H N F.

e Lines. The hyperplane H contains at most ¢§ lines of F'. Hence, there
exists a line m of F containing at least g¢'/*/6 > ¢°/® points of F
on the Baer sublines lp1,lp2,...,lp, This line cannot contain two
points of the same Baer subline [ ;. Thus, the following configuration
is obtained in a plane m = (m, P), see Figure 3.3.

1. A point P € F;
2. a line m not containing P and consisting entirely of points of F’;
3. more than ¢°/3(,/g — 1) + 1+ ¢ + 1 points of F in 7.
This implies that 7 intersects F' in more than ¢+¢ points. By Lemma 3.2.3,

7 intersects F' in at least a 2-fold blocking set, and therefore contains a
disjoint union of Baer subplanes. This is impossible by Remark 3.2.4.

So, assuming that F' contains no plane is the same as assuming that F
contains no line. a
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Figure 3.3: The minihyper without planes: an impossible configuration
Note that k > ¢°/%.

Lemma 3.3.4 Suppose F' is a {0(q + 1),0;n — 1,q}-minihyper, ¢ > 16
square, § < q5/8/\/§+1 containing no lines. Iflg is a Baer subline contained
in F', then lp is contained in a unique subspace PG(3,./q) of F'.

Proof The number of Baer 3-subspaces in F’ not containing /g is not big
enough to cover [p. O

Lemma 3.3.5 If F' contains no planes and P 1is a point of F, then P is
contained in a unique subspace PG(5,,/q) of F'.

Proof Let A be an (n — 2)-space on P containing exactly ¢ points of F'
and denote the ¢ + 1 hyperplanes on A by Hy, Hy,..., H,. By Lemma 3.3.3,
they intersect F' in {d(q¢+ 1),9;n — 1, ¢}-minihypers that are disjoint unions
of subspaces PG(3,,/q). Looking in a hyperplane H;, it can be seen that
P lies on a unique Baer subline of "N A, and that F' N A is a uniquely
determined union of disjoint Baer sublines. Let (g be the Baer subline of
FNA containing P, and denote by PG(3, /q)1, respectively PG(3, 1/q)2, the
subspace PG(3,,/q) of Hy N F, respectively H, N F', containing P.

Let I’ be a line in H; containing P and intersecting PG(3,,/q); in a
Baer subline I’y different from lp. Note that [FF'N{'| < §. Through I, there
exists an (n — 2)-space A’ containing exactly d points of F'. Each hyperplane
through A’ intersects F'in a {0(¢+1),;n—1, ¢}-minihyper, i.e., in a disjoint
union of subspaces PG(3,,/q), and none of these hyperplanes can contain
PG(3,,/q)2- Otherwise, P would lie on two distinct Baer sublines (one on
and one on PG(3, ,/q)2NA’), which is false. So each one of these hyperplanes
intersects PG(3, /q)2 in a Baer subline or a Baer subplane. Therefore in each
hyperplane through A’, there exists a subspace PG(3,/q) of F' containing
the Baer subline I’; and this Baer subline or Baer subplane of PG(3,/q)2.
Therefore PG(4, \/q) := (I, PG(3,/q)2) is contained in F.

Now, letting the line [’ vary, one sees that (PG(3,./q)1,PG(3,/q)2) =:
PG(5,,/q) is contained in F'. Hence, P is contained in a subspace PG(5, \/q)
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of F. It remains to be shown that this subspace PG(5, ,/q) is unique.
Suppose P is contained in two subspaces PG(5,,/q): PG(5,,/q): and
PG(5,/q)2- Let A be an (n—2)-space containing P and satisfying |[ANF| =
. Then A intersects PG(5,/q); in a Baer subline /p;, i = 1,2. Since Ig; N
Ip2 # 0, it follows that i1 = 2. Now let Hy, Hy, ..., H, be the hyperplanes
on A. They all contain exactly d(¢q + 1) points of .. Denote by PG(3,1/q)i ;
the intersection of PG(5,,/q); and H;, i = 1,2 and j = 0,1,...,¢q. Then
PG(3,/q)1,; NPG(3,,/q)2; D Ip1 (= Ip2), and Hj intersects F' in a unique
disjoint union of subspaces PG(3,/q), j = 0,1,...,q. Hence, PG(3,/q)1,; =
PG(3,,/q)s,; for j =0,1,...,q, such that PG(5,/q)1 = PG(5, \/q)2-
Therefore, this subspace PG(5,,/g) is unique. O

Now return to the general case where the minihyper F' is allowed to
contain planes.

Theorem 3.3.6 If I is a {6(¢*> + ¢+ 1),0(q + 1);n, ¢}-minihyper, ¢ > 16,
§ < ¢®®/V2+ 1, then F is a unique disjoint union of planes and subspaces

PG(5, /q)-

Proof If F' contains planes, these can be deleted, see Lemma 2.2.3, and the
remaining points form a disjoint union of subspaces PG(5,,/q). Hence, F
is a disjoint union U of planes and subspaces PG(5,,/q). It remains to be
shown that this union is unique.

Suppose that in F' a subspace PG(5, \/q) =: D exists that does not belong
to U. Clearly, a plane can contain at most ¢+ ,/q+1 points of D. Therefore,
by removing planes, at most 0(q+/¢+1) points of D can be removed. What
is left of F' is a disjoint union of less than ¢'/%/v/2 + 1 subspaces PG(5, \/q).
Such a subspace PG(5, /) can contain at most ¢°+ ¢/q + ¢+ /g + 2 points
of D. Therefore not all points of D can be points of F', a contradiction.

Similarly, there cannot exist a plane contained in I’ that does not belong
toU. a

3.4 The general case

In this section, {dv,41,0v,;n, ¢}-minihypers are studied, where ¢ > 16 is a
square and 0 < ¢%/%/v/2 + 1.

Theorem 3.4.1 A {6v,1,6v,;n, q}-minihyper F, ¢ > 16 square, § < ¢°/%/v/2+
1, u>1,2u+1 < n, is a unique disjoint union of pu-spaces and subgeometries

PCG(2u+1,./7).
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Proof In the previous sections, the theorem was proved for u € {1,2}.
So, assume that g > 3 and that it holds for all ¢/ < u. Let A be an
(n—2)-space containing exactly dv,_; points of F'. Then, by Corollary 2.1.11
or 2.1.12, AN Fis a {0v,—_1, 6v,_9;n — 2, ¢}-minihyper. By induction, it is
a disjoint union of (p — 2)-spaces and subspaces PG(24 — 3,,/q). Denote
by Hy, Hi,...,H, the ¢ + 1 hyperplanes containing A. Then F'N H; is a
{6v,,0v,_1;n — 1, ¢}-minihyper for ¢ = 0,1,...,q, i.e., a disjoint union of
( — 1)-spaces and subspaces PG(21 — 1, ,/q).

Since these unions are unique, if A is a (u — 2)-space, respectively a
subspace PG(2i — 3,,/q), of F' in A, then each hyperplane H; contains a
(e — 1)-space, respectively a subspace PG(2p — 1, ,/g), of F that contains A.

Suppose A is a (u — 2)-space in AN F. Let By, respectively Bs, be the
(1 — 1)-space in Hy N F, respectively Hy N F', that contains A. If I; and [y
are two lines of B; and B, intersecting in a point of A, then, by the same
argument as in Lemma 3.3.1, the plane (ly,[5) is contained in F. It follows
that the p-space (Bj, Bs) is contained in F. It can be removed with the
standard argument of Lemma 2.2.3.

So, assume that A N F' is a union of subspaces PG(2u — 3,,/7). Let G
be a subspace PG(2p — 3,,/q) in AN F and let Ey, respectively Es, be the
subspace PG (21— 1,,/q) of H; N F, respectively Hy N F', containing it. Now
let [ be aline in Hy, [ ¢ A, intersecting F; in a Baer subline /5 containing a
point P of G. Note that | N F| < . Through [, there exists an (n — u — 1)-
space my,_,—1 such that m,_,_1NF =[NF. If an (n— p)-space contains more
than 0 points of F', then it contains at least ¢ + 1 points of F. Therefore
there exists an (n — p)-space m,_, through m,_,_; intersecting F' in exactly
 points. All (n — 2)-spaces through m,_, intersect F' in dv,_; points. Let
A’ be such an (n — 2)-space. All hyperplanes through A’, denote them by
Hj, Hy, ..., H}, intersect I in a {dv,, 6v,_1;n, ¢}-minihyper, a disjoint union
of subspaces PG(2u — 1,,/q).

Hence in Hj, there exists a subspace PG(2u—1,,/q) =: E] of I, intersect-
ing [ in the Baer subline l5. Now H] intersects Hy in an (n — 2)-space, which
in its turn intersects £ in a subspace PG(2u — 2,,/q) or PG(2u — 3,.,/q).
Since this subspace PG (21 — 2,,/q) or PG(2u — 3, ,/q) contains P, it must
be contained in E,. In the first case, (PG(2u —2,,/9), ) is contained in F;
in the second case, (PG(21 — 3,,/q),lp) is contained in F. But repeating
this argument for Hj, i = 0,1,...,q, proves that (I, E>) =: PG(2u,/q) is
contained in /. Now the line | can be varied, so (£, Ey) =: PG(21+ 1, /q)
is contained in F.

Therefore every point of F'is contained in a subspace PG(2u + 1,,/q) of
F.
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Now suppose that some point P of F is contained in two subspaces
PG(2u +1,,/q), say Dy and Dy, of F. Let m,_o be an (n — 2)-space con-
taining P and intersecting I’ in dv,_; points. The ¢ + 1 hyperplanes H;,
i=0,1,...,q, on m,_o intersect F in {dv,, 0v,_1;n—1, ¢}-minihypers, which
are unique disjoint unions of (y — 1)-spaces and subspaces PG(21 — 1,,/q).
Now D; and D, intersect H; in subspaces PG(2u — 1,,/q), denote them by
E;, and E; 5, but since they both contain P, they must be equal. This holds
fori =0,1,...,q. Hence, the subspaces PG(2u + 1, ,/q) are disjoint.

It can be concluded that F'is a disjoint union of p-spaces and subspaces
PG(2p +1,,/q). By counting arguments, similar to those used in the previ-
ous sections, this union is unique. O

Now the main result of this chapter easily follows.

Theorem 3.4.2 A {dv,41,0v,;n, q}-minthyper F, ¢ > 16 square, § <
¢PB/NV2+1, > 1, is a unique disjoint union of p-spaces and subgeometries

PG(2u+1,./7).

Proof The condition 2 4+ 1 < n from Theorem 3.4.1 is not necessary. In-
deed, suppose that F is a minihyper with the correct parameters in PG(n, q),
n < 2u+ 1. Embed PG(n, q) in PG(7’, q) for some n’ > 2u+ 1. In PG(n/, q),
F is still a minihyper, and it has the same parameters as in PG(n, ¢). There-
fore F'is as described in Theorem 3.4.1. O



Chapter 4

Partial spreads and covers

In this chapter, (non)existence results on partial ¢-spreads and t-covers in
finite projective and polar spaces are presented. Some of these are applica-
tions of the classification results on minihypers from Chapters 2 and 3. The
results from Section 4.2 and Subsection 4.3.1 were published in [56] and [55],
the papers containing the results on minihypers from Chapters 2 and 3. The
results from Sections 4.5 and 4.6 and those from Subsection 4.7.1 were pub-
lished in Furopean Journal of Combinatoricsin P. Govaerts, L. Storme, and
H. Van Maldeghem, On a particular class of minihypers and its applications.
II1. Applications [57].

There will be two introductory sections in this chapter. Section 4.1 will
consider the terminology and some known results on partial ¢-spreads and
t-covers in finite projective spaces; Section 4.4 will do the same for partial
t-spreads and t-covers in finite classical polar spaces.

4.1 Introduction for projective spaces

A partial t-spread of PG(n, q) is a set of mutually disjoint t-spaces in PG(n, q).
A t-cover of PG(n, q) is a set of t-spaces of PG(n, ¢) that covers the point set
of PG(n,q). A t-spread of PG(n,q) is a set of t-spaces in PG(n, ¢) that is a
partial t-spread as well as a t-cover of PG(n,q). In other words, a t-spread
of PG(n,q) is a set of t-spaces in PG(n,q) that partitions the point set of
PG(n,q). lf nisodd and t = (n+1)/2, then a (partial)t-spread, respectively
t-cover, of PG(n, q) is simply called a (partial) spread, respectively cover, of
PG(n,q).

When studying these structures, the following questions turn up in a
natural way.

Question 4.1.1 When do t-spreads in PG(n, q) exist?
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Question 4.1.2 If ¢-spreads do not exist, what is the size of the sets “clos-
est” to it? That is, what is the size of the largest partial ¢t-spreads and the
size of the smallest t-covers in PG(n, q)?

Question 4.1.1 is answered in Subsection 4.1.1.

For t-covers, Question 4.1.2 has been answered satisfactorily: the size
of the smallest t-covers in PG(n, ¢) is known, examples are known, and the
structure of the set of points that are covered more than once is also known.
These results are discussed in Subsection 4.1.3. For partial t-spreads less is
known: for some cases the size of the largest partial ¢-spreads of PG(n,q)
is known, but for others there is a substantial gap between the best known
upper bounds and the largest known examples, see Subsection 4.1.3.

Given a nonempty partial t-spread S’ of PG(n, q), new partial t-spreads
can be constructed by removing elements from S’. A partial ¢-spread that
cannot be constructed in this way from a larger partial t-spread is called
maximal. So, a maximal partial ¢-spread is a partial ¢-spread that cannot
be extended to a larger one. Similarly, a minimal t-cover C is a t-cover that
cannot be constructed by adding a t-space to a smaller ¢-cover, i.e., removing
any element of C yields a set that is no longer a t-cover.

Once the questions on the size of the largest partial ¢-spreads and smallest
t-covers are solved, the following questions can be asked.

Question 4.1.3 What are the possible sizes of maximal partial ¢-spreads
and minimal t-covers in PG(n, ¢)?

Although already several results towards the solution of this question
are known, in this chapter, only the situation “close to” t-spreads will be
considered, that is, only large partial t-spreads and small t-covers will be
studied.

4.1.1 t-Spreads

Since a t-spread of PG(n,q) partitions the point set of PG(n,q), it can
only exist if |PG(t, ¢)| divides |PG(n, ¢)|. This condition is equivalent to the
condition that t+1 divides n+1, see e.g. Lemma 4.5.1. But also the converse
is well-known to be true, see e.g. [39, p. 29]: if t + 1 divides n+ 1, then there
exist t-spreads in PG(n, ¢). Below, a proof is included since it is constructive
and not long.

Theorem 4.1.4 PG(n,q) has a t-spread if and only if (t+1) divides (n+1).
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Proof (from [68, p. 93]) It suffices to show that if 41 divides n+1, then
PG(n, q) has a t-spread. So, assume n + 1 = k(t + 1). If F' is an irreducible
polynomial of degree t + 1 over GF(q) and « is a root of F' in GF(¢'*),
then every element x of GF(¢'*1) can be written x = zg + z1a + ... + 20,
where x; € GF(q), for all 7 € {0,...,t}. Hence, k elements xo, X1, - -, Xk—1
of GF(¢"™) can be written x; = zj0 + i + ... + xyat, where z;; € GF(q),
ie{0,...,k—1},j€{0,...,t}. The n+ 1 elements z;; will be interpreted
as coordinates of a point in PG(n, ¢). Thus each point of PG(n, q) is given
by a k-tuple (xo, ..., Xx_1) of elements of GF(¢"™).

Let To,...,7Tk_1 be any elements, not all zero, of GF(¢'™'). Then the
equations xo/70 = X1/T1 = ... = Xk—1/Tk—1 define a t-space m; in PG(n, q).
Each k-tuple 7 = (79, ..., Tx_1) corresponds to a point P(7) in PG(k—1, ¢'*1).
As P(7) varies in PG(k—1,¢"™), so the corresponding ¢-space m; in PG(n, q)
varies through a partition of PG(n, q).

Indeed, every point of PG(n,q) lies in one of the t-spaces m; in PG(n, q)
thus defined. As the number of points of PG(n,¢) matches the number of
points in PG(k — 1, ¢"*!) times the number of points in PG(t, ¢), the t-spaces
7 in PG(n, q) are disjoint and form a t¢-spread in PG(n, q). O

Let S be a t-spread in PG(n,q) and let U be a subspace of PG(n,q).
Then S is said to induce a spread in U if UNV € {(, V} for every element
V of §. A t-spread S is called geometric if S induces a spread in (V, V) for
any two elements V, V' of S. Segre [100] shows that a geometric t-spread of
PG(k(t +1) — 1,q) gives rise to a projective space J(S) of dimension k — 1
and order ¢**! in the following way: the points of J(S) are the elements of
S, the blocks of J(S) are the subspaces (V, V') for any two distinct elements
V, V" of § and incidence is inherited from PG(k(t + 1) — 1, q).

A t-requlus in PG(2t+1, q) is a set R of ¢+ 1 mutually skew ¢-spaces with
the property that every line intersecting three elements of R intersects all
elements of R. If t = 1, then it is simply called a regulus. A line intersecting
all elements of R is called a transversal of R and the set of transversals of
R is denoted by RT. If t = 1, then also RT is a regulus which is called
the opposite requlus of R and which is denoted by R°PP. It is known, see
e.g. [39, p. 221], that for any three mutually disjoint ¢-spaces Vi, V5 and V3
in PG(2t + 1, ¢), there exists a unique t-regulus R(V;, V4, V3) containing V;,
Vo and V3. A t-spread S in PG(2t + 1, q) is called regular if for every triple
(V1, Vo, Vi) of elements of S, the whole regulus R(V1, Va2, V3) is contained in
S.

Concerning the existence of regular and geometric t-spreads, the following
is known, see e.g. [100].
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Theorem 4.1.5 1. PG(n,q) contains a geometric t-spread if and only
if t + 1 divides n + 1.

2. If S is a geometric t-spread in PG(n,q) with n > 2t + 1, then S
induces a reqular t-spread in (V, V') for any two distinct elements V, V'

of S.

3. Fvery finite projective space of dimension 2t + 1 contains a reqular
t-spread.

Remark 4.1.6 Part 3 of this theorem is an immediate corollary of parts 1
and 2.

4.1.2 Partial t-spreads

Remember the notation vy for [PG(k, q)|.

Clearly, a partial t-spread in PG(n,q) contains at most |v,.1/ve1] t-
spaces. The deficiency § of a partial t-spread S’ is the number of elements S’
has less than this upper bound, so d = |v41/ve11] — |S']. In the particular
case that t+1 divides n+1, it is the number of elements that S’ has less than
a t-spread of PG(n, q). The holes of a partial t-spread §" are those points of
PG(n, q) that are not covered by &', i.e., those points that lie in no element
of §. In the particular case that ¢ + 1 divides n + 1, the number of holes
equals dv;, 1, where 0 is the deficiency of the partial ¢-spread.

Theorem 4.1.7 Letn+1=k(t+1)+r, 1 <r <t. Suppose S’ is a partial

r qk(t+1)_1

t-spread of PG(n,q) of size q P

1. (Beutelspacher [11]) Ifr =1, then s > q — 1.

2. (Drake and Freeman [41]) If r > 1, then s > |0] + 1, where
20 = \/1+4¢" (¢ = ¢") — (24" = 2¢" + 1).

To get a clearer view on the upper bound of Drake and Freeman, the value
of 6 can be approximated.

Corollary 4.1.8 Letn+1=Fk(t+1)+7r, 1 <r <t. Suppose S’ is a partial

r qk(t+l)71

t-spread of PG(n, q) of size q N
1. If r=1, then s > ¢q" — 1.

2. If r>1andt+1 > 2r, thensz%—l.

2r—t—1

3. Ifr>1andt+1<2r, thensz%—q 5

+ 1.
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In [11], Beutelspacher gives a construction for partial t-spreads in PG(n, q),
r qk(t+1)_1

n+1=k(t+1)+r, of size ¢ 1 — ¢ + 1. Let

Urtr € Uspy1)y1r-1 € -+« © Uperyer—1 = PG(n,q)
be a chain of subspaces in PG(n,q), dim(Usiq1y4r—1) = i(t +1) +7 — 1,
i=1,2,..., k. Take a partition §; by t-spaces of Ugjr1)¢s+1)4r—1 \ Ujt+1)4r—1
for each j € {1,...,k —1}. Let m be a t-space in U,,. Then

S = Uigjau18; U{m}
is a maximal partial ¢-spread of size qrql;ff:i::l —¢" 4+ 1in PG(n,q). This is
the largest known example.
Hence, for » = 1, Beutelspacher’s bound is sharp, and for » > 1, Drake
and Freeman’s bound is approximately halfway in between the trivial upper
bound and the largest known example.

Partial spreads in PG(2t + 1, ¢q)

When PG(n,q) has a t-spread, then there is a gap between the size of a ¢-
spread and the size of the largest maximal partial t-spreads different from a
t-spread. Various results concerning the size of this gap have been obtained,
especially in the case where PG(n,q) has spreads, i.e., in the case where
n=2t+1.

Theorem 4.1.9 (Mesner [83]) If S’ is a mazimal partial spread with de-
ficiency 0 > 0 in PG(3,q), then § > /q+ 1. In the case of equality, the set
of holes forms a subspace PG(3,/q).

In the same article [83], an example of such a maximal partial spread is
presented: a maximal partial spread of size 14 in PG(3,4); its lines cover the
points of PG(3,4) \ PG(3,2). The maximal partial spreads with deficiency 3
in PG(3,4) were classified by van Dam [122]. Blokhuis and Metsch [19] prove
that for ¢ > 4 no maximal partial spreads with deficiency /g + 1 exist. An
outline of their proof is given in the proof of Theorem 4.2.3, since the same
technique works for the case considered in Theorem 4.2.3.2.

Several improvements to Theorem 4.1.9 are now known. The following
one works for any non-square prime power ¢ and is based on an extendibility
result for nets [84].

Theorem 4.1.10 (Metsch [84]) IfS’ is a mazimal partial spread of PG(3, q),
q not a square, with deficiency § > 0, then § satisfies 863 —185%+85+4 > 3¢>.
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Also for ¢ a square, improvements to Theorem 4.1.9 were obtained. Re-
member that, for ¢ square, g + €, denotes the size of the second smallest
nontrivial blocking sets in PG(2, q).

Theorem 4.1.11 (Metsch and Storme [87]) Suppose S’ is a maximal
partial spread of PG(3,q), ¢ > 4 square, with deficiency 6 > 0. If 6 < €,
then 0 = k(,/q + 1) for some integer k > 2, and the set of holes of S' is the
disjoint union of k Baer subgeometries PG(3, /q).

Substituting the bounds from Theorem 1.2.4, the following corollary is
obtained.

Corollary 4.1.12 Suppose S’ is a maximal partial spread of PG(3,q), ¢ > 4
square, with deficiency 6 > 0. If either

1. ¢>16 and § < c,¢*® + 1, or
2. q=p*, p prime, and § < (¢ +1)/2,

then 0 = k(,/q + 1) for some integer k > 2, and the set of holes of S’ is the
disjoint union of k Baer subgeometries PG(3, /q).

Also for ¢ a cube, Theorem 4.1.9 was improved upon.

Theorem 4.1.13 (Metsch and Storme [87]) Suppose S’ is a mazimal
partial spread of PG(3,q), with deficiency 6 > 0.

L Ifqg=q q=0p", ho>1odd, p>T prime, and § < qf +qo + 1,
then § = ¢2 +qo+ 1, and the set of holes forms a projected subgeometry
PG(5,q0) in PG(3, 63).

2. If = q3, qo = p"™, ho > 2 even, p > 7 prime, and § < g3 + qo + 1,
then either 6 = k(\/q + 1) for some integer k > 2, and the set of
holes of 8" is the disjoint union of k Baer subgeometries PG(3,/q),
or § = g2 + qo+ 1 and the set of holes forms a projected subgeometry
PG(5,q0) in PG(3,q).

In fact, Theorem 4.1.10 also holds for partial t-spreads in PG(2t + 1, q),
but in the cases where t > 2, Metsch and Storme improved upon it. See also
Remark 4.2.5.

Theorem 4.1.14 (Metsch and Storme [87]) Suppose S’ is a maximal
partial t-spread of PG(2t + 1,q), t > 2, with deficiency & satisfying 3¢ >
853 — 1642 + 84 + 4.
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1. If g = p", p prime, h > 3 prime, and § < q—2, then § =0 (mod vy,),
and the set of holes is the disjoint union of projected subgeometries
PG(h(t+1) —1,p).

[\)

. If g =17p"%, p prime, r the largest nontrivial divisor of rs, s > 1, and
§<(¢—1)/(¢"" = 1) =1, where r' is the largest divisor of rs different
from r, then § = 0 (mod v,s/v,), and the set of holes is the disjoint
union of projected subgeometries PG(s(t +1) — 1,p").

4.1.3 t-Covers

The excess € of a t-cover C in PG(n,q) is defined as follows: ¢ = |C| —
[Unt1/Ves1], where vgi1, as defined in Chapter 2, equals |[PG(k, q)|. It is the
number of elements C has more than the lower bound [v,41/viy1] on |C].
In the particular case that ¢t + 1 divides n + 1, it is the number of elements
that C has more than a t-spread of PG(n, q). The multiple points of a t-cover
are the points of PG(n, q) that are covered more than once, i.e., that lie in
more than one element of the t-cover. The surplus of a point of PG(n, q) is
the number of elements of C that contain it minus one. Sometimes, surplus
is considered as a weight function mapping a point P of PG(n,q) onto a
nonnegative integer surplus(P). In the particular case that ¢t + 1 divides
n + 1, the number of multiple points—counted according their surplus—
equals ev; 1, where ¢ is the excess of the t-cover. Considering surplus as a
function, it can easily be modified to act on any set A of points in PG(n, q):
surplus(A) = > pe4surplus(P). In particular, if ¢ + 1 divides n + 1, then
surplus(PG(n, q)) = evi11.

Theorem 4.1.15 (Beutelspacher [12]) Letn+1 = k(t+1)+r, 1 <r <t.
k(t+1) _q

If C is a t-cover of PG(n,q), then |C| > e + 1.

In the same article, Beutelspacher gives examples of t-covers reaching this
lower bound for every ¢, n and t. Let

Uitr € Usits1y1r-1 € - .. C Ukg1)4r-1 = PG(n, q)

be a chain of subspaces in PG(n,q), dim(Usyt1)sr—1) = i(t +1) +r — 1,
i=1,2,..., k. Take a partition S; by t-spaces of Ui 1)@41)1r—1 \ Ujs1)4r-1
for each j € {1,...,k — 1}. Consider a (t — r)-space U;_, in U, and let
S={n% 7' ,,...,7% } be an (r — 1)-spread in the quotient geometry of
Ui, in Usy,. Then Uy, can be covered by the ¢" + 1 t-spaces (U;_,, 7% ),
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k=0,1,...q". Call this cover C'. Then

CzC’U( U SJ)

1<j<k-1

is a t-cover of PG(n, q) of size ¢" ql;ifllil + 1.

In a way, as the following theorem of Eisfeld shows, all t-covers meeting
the lower bound “look like” the examples given by Beutelspacher.

Theorem 4.1.16 (Eisfeld [46]) If C is a t-cover of PG(n,q), n+ 1 =
k(t+1)4+r, 1 <r<t, of sizeq" qz(:f:l +1, then there exists a (t —r)-space
U of PG(n,q) such that every point of PG(n,q) \ U is contained in exactly
one element of C and every point of U is contained in exactly ¢"+1 elements

of C.

4.2 Partial t-spreads in projective spaces

In Theorem 4.2.2, it is shown that the holes of a partial ¢t-spread are dis-
tributed in a special way. They form a minihyper in PG(n, ¢) with the same
parameters as the minihypers studied in Chapters 2 and 3. Hence, the results
from those chapters allow to make some observations on the structure of the
partial t-spreads.

Notation 4.2.1 If a and b are two integers, then a|b denotes a divides b.

Theorem 4.2.2 Let S’ be a partial t-spread of PG(n, q), t+1|n+1, with de-
ficiency § < q, and let F' be the set of holes of S'. Then F' is a {6vyy1, dvg;n, q}-
mainihyper.

Proof Let S be a t-spread of PG(n,q) and let H be a hyperplane of
PG(n,q). Suppose a elements of S are contained in H and § elements of S
intersect H in a (t — 1)-space. Then

n+1
q —1
=1 - 4.1
t+1_1 t_l n_ 1
o ypl oL (4.2)
q—1 g—1 q¢-1

Now suppose o’ elements of S’ are contained in H and (' elements of S’
intersect H in a (¢t — 1)-space. Then

qn+1 _ 1

O/ + B, = m - 5, (43)
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t+1_1 t_l n_ 1
o2 N Sl Sty (4.4)
q—1 q—1 q—1

Three cases can be distinguished.

Case 1. Assume o > «a. Let o/ = o + a. Substituting this equation in
qt+171

(4.4) and taking (4.2) into account, BEBI > 45 is obtained. The right
hand side of this inequality is greater than ¢, such that 8 > ' + aq + 1.
Adding o’ to both sides of this inequality leads to § > a(q — 1) 4+ 1, which

implies 0 > ¢, a contradiction.

Case 2. Assume o' = a. In this case the number of holes in H equals
t

04 -1 = 5’015.

q—1

Case 3. Assume o < a. Let o = o +a’ and note that, by (4.2) and (4.3),
B '=a+ —0—«a'. The number of holes in H equals

|IFNH| = v, —d'vy — B
= Uy — QU1 + d've — v — Bug + dvg + vy
= v, —QUi — Pu+a v — avg + dvp + avy — a'vg
o
= v+ d (v — vp).

So, in this case, H contains more than dv; holes.

Therefore, F' consists of dvyyq points and |F N H| > dv, for any hyperplane
H. By Theorem 2.1.8, F'is a {0v441, 0v; m, ¢ }-minihyper. O

Recall the definition of ¢, from Notation 2.2.4.

Theorem 4.2.3 Suppose t + 1 divides n+ 1 and let S' be a mazimal partial
t-spread with deficiency § in PG(n, q).

1. If 6 > 0, then § > ¢,.

2. If g > 16 is a square and § < ¢®/®/v/2+ 1, then § =0 (mod /g + 1)
and the set of holes is the disjoint union of subgeometries PG(2t +
1,1/q). Moreover, if 6 >0 andn < /q+1, then 6 > 2(\/g+1).

Proof Let &’ be such a maximal partial t-spread. By Theorem 4.2.2, the set
of holes forms a {0v,1, dvy; n, ¢}-minihyper. Now Theorems 2.2.7 and 3.4.2
can be applied.

1. If § < €4, then the set of holes forms a disjoint union of § ¢-spaces.
Since &’ is maximal, § equals zero.
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2.

If ¢ > 16 is a square and § < ¢*®/v/2 + 1, then the set of holes is a
disjoint union of t-spaces and subgeometries PG(2t+1,/q). Since S’ is
maximal, it cannot contain a t-space. Therefore it consists of a disjoint
union of subspaces PG(2t + 1, ,/q). Hence, § =0 (mod /g +1).

If n < /q+ 1, then the case 6 = /g + 1 cannot occur. This follows
from the weight argument of Blokhuis and Metsch [19]. They define
a weight function f : AG(n,¢*) — GF(¢®) on the points (z1,...,x,)
of AG(n,¢®) by f(z1,...,2z,) = (I[[L, )7 . The weight of a set of
points is the sum of the weights of the points in that set. In [19], it is
proved that f has the following properties:

(1) if s > 1, then the weight of AG(n, ¢*) is zero;

(2) if n(g — 1) < (¢° — 1), then the weight of every subspace of
AG(n, §°) is zero; and

(3) if e is an integer, 1 < e < n, then the weight of AG(e, ¢) (with
its natural embedding in AG(n, ¢°)) is non-zero.
This weight function is then used to prove that for ¢ > 2, it is not possi-
ble to partition the set of points outside a Baer subspace of PG(3, ¢?) by
lines. But this proof works just as well to prove that if n < ,/g+1, then
it is impossible to partition the set of points of PG(n, ¢) outside a sub-
space PG(2t+1,,/q) by t-spaces. Indeed, suppose that such a partition
exists and let H,, be a hyperplane intersecting the subspace PG(2t +
1,,/q) in a subspace PG(2t, ,/q) and write PG(n,q) = Hx UAG(n,q).
Then this partition induces a partition of AG(n,q)\ AG(2t+1,,/q) by
t-spaces. Now the weight of AG(n,q) can be calculated in two ways.
By (1), it equals zero, but by (2) and (3) it is non-zero, a contradiction.

This concludes the proof. O

Substituting the bounds on blocking sets from Theorems 1.2.1 and 1.2.3,
immediately yields the following corollary.

Corollary 4.2.4 Suppose t+ 1 divides n+1 and let S" be a mazximal partial

t-spre
1
2

-~ w

ad with deficiency 6 > 0 in PG(n, q).

. If q is a prime, then 6 > (¢ +1)/2.

. If q is a square, then 6 > \/q+ 1.

. If g = p**tY p prime, e > 1, then § > max(p*™! + 1, ¢,¢%° + 1).

. If ¢ > 16 is a square and § < ¢°/%/\/2+1, then § =0 (mod /g + 1)
and the set of holes is the disjoint union of subgeometries PG(2t +
1,1/q). Moreover, if § > 0 and n(y/q—1) < q—1, then § > 2(\/q+1).
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The preceding results are generalisations of the Metsch-Storme results
on maximal partial 1-spreads in PG(3,¢) and maximal partial ¢-spreads in
PG(2t + 1, q) that were mentioned before. They are generalisations in the
sense that they hold for partial ¢-spreads in PG(n, ¢) for every ¢ and n that
satisfy t+1|n+ 1. However, for n = 2t+ 1, the bounds on § in the theorems
of Metsch and Storme are better.

Remark 4.2.5 Note that the bounds on ¢ in Theorem 4.1.14 are quite a
lot better than the ones from Theorem 4.2.3. Theorem 4.1.14 was obtained
using the link between partial t-spreads in PG(2t + 1,¢) and translation
nets, and using the extendibility result on nets from [84]. It is not clear how
this strategy can be modified to apply it to partial t-spreads in PG(n,q),
t+1|n+1.

Improvements to Theorem 4.2.3 in the spirit of Theorem 4.1.13 were
obtained by Ferret and Storme. They prove a new characterisation result
on the corresponding minihypers and use Theorem 4.2.2 to translate it to a
theorem on partial ¢-spreads.

Theorem 4.2.6 (Ferret and Storme [50]) Suppose S’ is a mazximal par-
tial t-spread with deficiency & of PG(n,q), where t + 1|n+ 1. If ¢ = p3ho,
ho > 1, p > 7 prime, and § < 2¢*/3 — 4¢'/3, then the set of holes of S'
is the disjoint union of (projected) subspaces PG(3t + 2,¢*?) and subspaces
PG(2t + 1, /q).

4.3 t-Covers in projective spaces

In the first part of this section, the result on minihypers from Chapter 2 is
applied to t-covers of PG(n, q), giving a characterisation of the set of multiple
points.

In the second part, small line covers of PG(4, q) are studied. The structure
of the set of multiple points of the second-smallest line covers of PG(4, q) is
determined and a construction for small minimal line covers of PG(4,¢q) is
presented.

4.3.1 Application of the results on minihypers

Theorem 4.3.1 shows that the multiple points of a t-cover are distributed in a
special way. They form a minihyper in PG(n, ¢) with the same parameters as
the minihypers studied in Chapters 2. Hence, the results from that chapter
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allow to make some observations on the structure of the set of multiple points
of a t-cover.

Theorem 4.3.1 Let C be a t-cover of PG(n,q), t + 1|n + 1, with excess
e < q. Let F be the set of multiple points of C and let w(P) = surplus(P)
for P € PG(n,q). Then (F,w) is a {eviy1, €vi;n, q}-minihyper.

Proof This proof closely resembles the proof of Theorem 4.2.2. Let S be
a t-spread of PG(n,q) and let H be a hyperplane of PG(n,q). Suppose
a elements of S are contained in H and [ elements of S intersect H in a
(t — 1)-space. Then

n+1
_¢ -1
t+1 t n
¢ -1 ¢ —-1 q¢"-1
= . 4.6
i | (4.6)

Now suppose o elements of C are contained in H and ' elements of C
intersect H in a (t — 1)-space. Then

_qt+1_1 ) ’
t+1_1 t_l n_1

Again, three cases can be distinguished.

Case 1. Assume o < a. Let o +a = «a. Substituting this equation
n (4.8) and taking (4.6) into account, the inequality £=2 > q“ L s
obtamed the right hand side of which is greater than ¢, such that B/
f+aq+1. Adding o to both sides of this inequality leads to e > a(qg—1)+1,
which implies € > ¢, a contradiction.

t
¢—-1 _
—1 EV¢.

Case 2. Assume o = a. In this case ) .y w(P) =¢

Case 3. Assume o >a. Let @/ = a+d. Since d > 1, o/ + 5 =
a+f+eand Y,y w(P) = a'viy + vy — vy, it follows from (4.6) that
EPGH w(P) = vy + a/(vt+1 — ’Ut) > EVt.

Hence, (F,w) consists of evy,1 points—counted according their surplus—and
|(F,w) N H| > ev; for any hyperplane H. By Theorem 2.1.8, (F,w) is an
{eviy1, €vy; n, ¢ }-minihyper. O

Recall the the definition of ¢, from Notation 2.2.4.
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Theorem 4.3.2 Supposet+1|n+1 ande < ¢;. IfC is at-cover of PG(n,q)
with excess e, then its multiple points form a sum of € t-spaces.

Proof Immediate from Theorems 2.2.7 and 4.3.1. O

Remark 4.3.3 Theorem 4.3.2 was already proved for the case of a line cover
in PG(3, ¢) in Blokhuis et al. [21].

Example 4.3.4 In [21], the authors give examples of minimal line covers
in PG(3,q) of excess € for each € € {0,1,...,q — 1} U{0,2,4,...,2¢}. Al
the examples given have the property that the multiple points form a sum of
lines, also in the cases where € > ¢,. These examples can be used to construct
minimal (2n — 1)-covers of PG(4n — 1, ¢q).

Consider PG(3,q¢") = V(4,q¢") (mod GF(¢")). Identify V(4,¢") with
V(4n,q). Now in V(4n, ¢), a point of PG(3, ¢"), which is in fact a V (1, ¢")(=
V(n,q)), defines a PG(n — 1, ¢). Similarly, a line of PG(3, ¢") defines a sub-
space PG(2n — 1, q) of PG(4n — 1, ¢).

The line covers of PG(3, ¢") therefore yield (2n—1)-covers of PG(4n—1, q).
The lines of PG(3,¢") that form the weighted sum of lines now become
subspaces PG(2n—1, q) of PG(4n —1, q) that form a weighted sum with sum
of the weights equal to 9.

4.3.2 Small line covers in PG(4, q)

By Theorem 4.1.15, a line cover of PG(4, ¢q) has size at least ¢®> + ¢ + 1, in
which case, by Theorem 4.1.16, there exists a point P that is covered exactly
q + 1 times, while all other points are covered only once. In this subsection,
line covers that are a little bit larger are studied.

Distribution of the multiple points

The distribution of the multiple points of a line cover of size ¢* + ¢ + 2 in
PG(4, q) is determined.

Suppose that C is a line cover of size ¢* + ¢ + 2 in PG(4,q). Then
surplus(PG(4, q)) = 2g+1. Let H be a hyperplane and suppose H contains x
lines of C. Counting points according their multiplicity, xq + ¢* + ¢+ 2 points
of H are covered by the elements of C. Hence, surplus(H) =1 (mod ¢) such
that surplus(H) € {1,q + 1,2¢ + 1}.

Suppose 7 is a plane with surplus ¢ + a, a > 2. Then all hyperplanes
through 7 have surplus 2¢+ 1. Counting the surplus of PG(4, ¢) by counting
the surplus in the hyperplanes through 7 yields g+a+(¢+1)(2g+1—g—a) =
2q + 1, implying a = ¢ + 1. Similarly, if 7 is a plane with surplus a > 2,
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then—since every hyperplane through 7 has surplus at least ¢ + 1-—counting
the surplus of PG(4, ¢) shows that a > q.

The same counting argument can be applied to lines and points of PG(4, q).
In this way, a list with the possible surpluses of subspaces of PG(4, ¢) is ob-
tained:

surplus(P) € {0,1,¢q,¢q+ 1,2¢+ 1} for each point P,
surplus({) € {0,1,¢,q+ 1,2¢+ 1} for each line [,
surplus(7) € {0,1,¢,q+ 1,2¢+ 1} for each plane m,
surplus(H) € {l,q+1,2¢+ 1} for each hyperplane H,
surplus(¥) = 2¢+1 for ¥ = PG(4, q).

Case 1. There exists a point P with surplus 2q + 1. Any hyperplane
not containing P has surplus 0, a contradiction.

Case 2. There exists a point P with surplus q + 1. In this case, there
exists no point P’ with surplus ¢, since a hyperplane containing P’ but
not P would have surplus q. So, all points different from P with positive
surplus have surplus 1. Call these points P, P, ..., P, and consider the
line PP, = [. Suppose there exists a point P;, 2 < i < ¢, that does not
lie on the line . Then any hyperplane H containing [ but not P; satisfies
g+ 1 < surplus(H) < 2¢ + 1, a contradiction. Hence, all points with
positive surplus lie on the line [.

Case 3. There exists a point P with surplus q. Suppose there exists
a second point P’ with surplus q. Then there is one remaining point P”
with positive surplus. It has surplus 1. If P, P’ and P” are collinear,
then a hyperplane intersecting PP’ in P has surplus ¢, a contradiction.
But if P, P’ and P” are not collinear, then a hyperplane containing PP’
but not P” has surplus 2¢, also a contradiction. Hence, there exists no
second point with surplus ¢ and all remaining points with positive surplus
have surplus 1. Call these points Py, Ps, ..., Py+1 and denote the line P, P,
by [. Suppose that P; does not lie on [ for some 3 < i < ¢+ 1 and
consider a hyperplane H containing [ but not P;. If H contains P, then
g+ 1 < surplus(H) < 2q + 1, a contradiction. But also if H does not
contain P, a contradiction is obtained, since then 1 < surplus(H) < ¢+ 1.
Hence the points P, P, ..., P,y lie on a line [.

Case 4. All points with positive surplus have surplus 1.

Case 4.1. There exists a line | with surplus g+ 1. Consider a point P with
surplus 1 that does not lie on [. The plane (P, [) has surplus greater than
q + 1, hence surplus 2¢ + 1, implying there are no points with positive
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surplus outside (P,1). Since 2¢ + 1 < ¢* + ¢ + 1, there exists a line I’
with surplus smaller than ¢ 4+ 1 joining P to a point of [. Consider a
hyperplane intersecting (P, [) in . This hyperplane has surplus at least
g+1, implying that it contains a point with positive surplus outside (P, (),
a contradiction.

Case 4.2. All lines with surplus greater than 1 have surplus q. Let [ be a
line with surplus ¢ and let P, P, ..., P, be the points on [ with surplus
1. Let P be a point outside [ with surplus 1. Now consider a hyperplane
H containing [ but not P. It has surplus ¢ + 1. Hence, in H there is
only one point P’ outside [ with positive surplus. But all lines joining
P’ to a point in {Py, P, ..., P,} must have surplus at least ¢. Hence
q = 2 and there are five points P, P, ..., P; with surplus 1. Note that
no plane contains more than three of these points. For, such a plane
would contain all points with positive surplus, and there would exist a
hyperplane intersecting it in a line with surplus 2. Let 7 = (Py, P, Ps).
Since H = (Py, 7) contains more than ¢ + 1 points with positive surplus,
it contains all points with positive surplus. Hence P, P, ..., P lie in a
hyperplane that any four of them generate. Such a set of points is the set
of points of an elliptic quadric Q™ (3, q).

Theorem 4.3.5 Suppose C is a line cover of PG(4,q) of size ¢ + q + 2.
Then the multiple points are distributed in PG(4,q) in one of the following
ways:

1. there exists one point P with surplus q and there is a line skew to P
on which every point has surplus 1, or

2. there exists one point P with surplus ¢+ 1 and there is a line through
P on which every point different from P has surplus 1, or

3. ¢ = 2 and there are five points with surplus 1 that form an elliptic
quadric Q= (3,q) in a hyperplane.

Remark 4.3.6 1. In [13], Beutelspacher notes that in PG(n,2), n > 3,
a set of five points in a 3-space such that any four of these points gener-
ate the 3-space, is a nontrivial blocking set with respect to hyperplanes.

2. Surely, there exist line covers of PG(4,q) whose multiple points are
distributed as in cases 1 and 2 from Theorem 4.3.5. It suffices to take a
line cover of minimal cardinality ¢ +¢+1 of PG(4, ¢) and to add a line
skew to, respectively through, the unique multiple point. However, such
a cover is not minimal. Below, minimal examples will be constructed.
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3. Since in case 3 of Theorem 4.3.5 the set of multiple points contains no
line, a line cover of size 12 in PG(4, 2) with such a set of multiple points
is necessarily minimal. A computer search, using the share package
PG [36] for the computer algebra system GAP [52], shows that such
covers in PG(4,2) do exist. The implementation of these searches can
be found on the website http://cage.rug.ac.be/ pg/thesis/.

A construction

Let PG(4,q) be embedded in PG(5,q) and let m be a plane in PG(4,¢q).
Consider a regular plane spread Sy = {m,71,..., 73} in PG(5, ¢) containing
7, see Theorem 4.1.5. The planes m; of Sy, 1 < i < ¢ intersect PG(4, q)
in lines /;. These lines [; partition the point set of PG(4,¢) \ 7. Let &; =
{l;,...,1z}. Consider two distinct lines I;; and l;,, 1 < 4y < is < ¢*. The
corresponding planes 7;; and 7;, define, together with 7, a regulus R =
{m, 7, ..., m,} of planes in Sy. The transversals to R define for each point
on [;, a unique point on each element of R. All these points lie in the 4-space
(m,1;;) = PG(4, ), hence they lie on the lines [;,, .. .,l;, and one further line
[ in 7. In this way, any two lines [;, and [;, of &; define a regulus of lines, all
of which but one are contained in Si; the remaining line is contained in 7.
Call such a line regulus special. Hence, ¢?(¢®> + ¢ + 1) special reguli exist.

Suppose that there exist two special line reguli R; and R, that have
two lines in common. If these lines both are lines of S;, then—since two
such lines uniquely define a special regulus—the reguli are equal. If one
of these two lines is a line [ in 7 and the second one is a line [;, for some
i € {1,...,¢*}, then both R; and R, are contained in the 3-space (I,[;).
Consider the intersection of the planes of Sy with (I,1;). A plane of Sy can
neither be skew to it, nor be contained in it. Let « denote the number of
planes of S, intersecting (I,l;) in a line and 8 = ¢*> + 1 — a the number
of planes of S, intersecting it in a point. Since S, is a spread of PG(5, q),
alg+ 1)+ (@ +1-a)=¢+q¢*+q+1, implying a = ¢+ 1. So, also in this
case R; = R».

Since there are ¢* lines of &), and no two distinct special line reguli
have more than one line in common, there are exactly ¢? special line reguli
containing a given line [ C 7.

Using these special line reguli, minimal covers of PG(4, ¢) can be con-
structed. Let P be a point in 7 and let C; be the set of lines in 7 through P.
Let [ be a line in 7. Let Ry, Ry, ..., R, be the special line reguli containing
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[ and consider the line cover

q2

G U (B \ {1})

=1

of size ¢ + ¢+ 1. Now replace « of the sets R; \ {I} by R;*®, the opposite
regulus of R;. If P does not lie on [, then in this way a minimal cover of size
¢ + q+ 1+ a can be obtained for every a in {0,1,...,¢?}. If P lies on [,
then in this way a minimal cover of size ¢® + ¢ + a can be obtained for every
a in {1,2,...,¢*}, since in the cover obtained by the replacing procedure,
the line [ can be deleted.

Theorem 4.3.7 There exist minimal line covers of size ¢> + q+ 1+ a in
PG(4,q) for all a in {0,1,...,q¢*}.

Remark 4.3.8 1. If P €l and a = 2 in the above construction, then
a minimal line cover of size ¢® + q + 2 of PG(4, q) is obtained whose
multiple points are distributed as in case 2 of Theorem 4.3.5. If P & [
and o = 1 in the above construction, then a minimal line cover of size
¢ +q+2 of PG(4, q) is obtained whose multiple points are distributed
as in case 1 of Theorem 4.3.5.

2. In the construction above, the multiple points always form a sum of
lines and ¢ points. These ¢ points are in fact ¢ times the same point.

4.4 Introduction for polar spaces

Let P,, denote a finite classical polar space of rank k in PG(n,q) and let
1 <t<k-—1. A partial t-spread of P, is a set of mutually disjoint ¢-spaces
on P,. A t-cover of P, is a set of t-spaces on P,, that covers the point set of
P,.. A t-spread of P,, is a set of t-spaces on P, that is a partial ¢t-spread as
well as a t-cover of P,.. In other words, a t-spread of P, is a set of t-spaces on
P,, that partitions the point set of P,,. If t = k —1, i.e. when the elements of
the partial t-spread or t-cover are generators of P, then a (partial) ¢-spread,
respectively t-cover, of P, is simply called a (partial) spread, respectively
cover, of P,,.

Many articles have been published on the (non)existence of spreads of
P,, but it is only recently—with a very limited number of exceptions—that
papers have started to appear that study partial t-spreads or t-covers of P,
where t # k — 1 with k£ the rank of the polar space.
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P rk(P) s(P)
Wani1(q) n+1 ¢"+1
Q (2n+1,q) n ¢t +1

Q(2n,q) n " +1
Q*2n+1,9) n+l ¢"+1
H(2TL, q2) n q2n+1 + 1

H2n+1,¢*) n+1 ¢ 1+1

Table 4.1: Finite classical polar spaces: rank and size of a spread

Clearly, if P, has a spread, then vy divides |P,|. Using the values from
Table 1.2, one easily checks that this is always the case and that the size of
a hypothetical spread of P,,, which will here be denoted by s(P,), is as given
in Table 4.1. However, unlike the projective case, divisibility of |P,| by vy
does not imply the existence of a spread of P,,. In Table 4.2, an overview is
presented of the cases where it known whether P,, has a spread or not.

The deficiency § of a partial t-spread S’ of P, equals by definition 6 =
||Pul/viz1] — |S’|. The holes of a partial t-spread of P,, are those points of
P, that lie in no element of S’. A partial t-spread of P, is called mazximal if
it is not contained in a larger partial t-spread of P,,.

The excess € of a t-cover C of P, equals by definition € = |C|—[|P,|/vi41].
The multiple points of a t-cover are the points of P, that lie in more than
one element of C. The surplus of a point of P, is the number of elements of
C that contain it minus one. Sometimes, surplus is considered as a weight
function mapping a point P of P, onto a nonnegative integer surplus(P). A
t-cover of P, is called minimal if it has no proper subset that is a t-cover of

P.

Known results

The results on partial t-spreads and t-covers of finite classical polar spaces
that are stronger than the ones obtained in Sections 4.6 and 4.7 are stated
below.

Theorem 4.4.1 (J. A. Thas [114, 115])

1. The polar spaces Q~(4n+1,q), n > 1, and Q" (4n+3,q), n > 0, both
have linespreads.

2. If 8" is a partial spread of QT (dn+1,q), n > 1, then |S'| < 2.
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P Restrictions Spreads References
Woi1(q) — yes [1, 74, 81, 93],
110, 117)
Q (2n+1,q9) qeven yes [44, 111, 112]
n=2 yes [91, 113, 117]
Q(2n,q) g even yes [44, 111, 112, 117]
n = 3, ¢ odd with ¢ prime yes (34, 44, 74 75, 76],
or g =0or2 (mod 3) (88, 101, 111, 112]
n = 2m, q odd no (109, 115]
Qt(2n+1,9) n=2m no [70]
n=2m+1, q even yes [44, 111, 112]
n=1 yes
n = 3, ¢ odd with ¢ prime yes (34, 44, 74, 75, T6],
or g=0or2 (mod 3) [88, 101, 111, 112]
H(2n, ¢%) n=2q=2 no (*)
H(2n+1,¢%) — no  [112, 115]

(*) Brouwer, unpublished

Table 4.2: Existence of spreads in finite classical polar spaces

The references are copied from [116].
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3. If §' is a partial spread of H(2n + 1,¢*), n > 1 and n odd, then
|8/| S q2n+1 _ qn+1 +qn + 1.

4. If 8 is a partial spread of H(5,q?), then |S'| < ¢*(¢* +q¢—1).
Theorem 4.4.2 (Eisfeld et al. [47, 48], Eisfeld et al. [49])

1. Let 8 be a partial (n—1)-spread of QT (2n+1,q). Then |S'| < ¢*+q¢
forn=2and |S'| < ¢t +q—1 forn > 2.

2. Let C be an (n—1)-cover of Q*(2n+1,q). Then |C| > ¢" ™' +2q¢ + 1.
For q even, this bound is sharp.

3. Let C be a plane cover of Q(5,q). Then |C| > ¢* + q. This bound is
sharp.

4. Let C be a cover of Q(4,q), q odd. Then |C| > ¢*+1+ (¢—1)/3.

5. Let C be a cover of Q(4,q), q even, q > 32, of size ¢*> + 1 + r, where
0 <r<./q. ThenC contains a spread of Q(4,q).

Theorem 4.4.3 (Ebert and Hirschfeld [45]) The largest partial spreads
in H(3,9) have size 16.

4.5 t-Spreads in polar spaces

Clearly, if a polar space P admits a t-spread, then |PG(¢, ¢)| divides |P|. In
this section, this condition is rewritten in a more convenient expression. In
order to do this, two lemmas are stated, followed by the actual simplification
of the divisibility condition. The greatest common divisor of two integers a

and b is denoted by (a, b).

Lemma 4.5.1 Let a and b be nonnegative integers, a +b > 1. Then (¢* —
L,¢"—1) = ¢ - 1.

Proof This lemma is well known. It can be proved as follows. The lemma
clearly holds if a = b, a =0 or b = 0, so suppose a > b > 0. Let d and r be
nonnegative integers that satisfy a = d-b+r, r < b. Then (a,b) = (b, 7).
Repeating this procedure, (a,b) is obtained the moment that r equals zero.

Executing the Euclidean division, one sees that (¢ — 1,¢* — 1) = (¢* —
1,q" — 1) where r satisfies a = d- b+ r, r < b. Therefore, the Euclidean
algorithm can be applied directly to the exponents of q. This proves the
lemma. a
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Lemma 4.5.2 Let a and b be nonnegative integers, a +b > 1. Then

¢ +1 ifa/(a,b) is odd and b/(a,b) is even,
d =1 1if q is even,

d=2if qis odd.

a b_ 1) —
(¢"+1.¢ —1) d otherwise, where {

Proof Induction on a+b will be used. Therefore, the cases a =0and b =0
are considered first. If a = 0, then (2,¢® — 1) equals 1 if ¢ is even and 2 if ¢
is odd. This is in accordance with the lemma, since in this case b/(a,b) = 1.
If b= 0, then (¢*+1,0) = ¢* + 1. Clearly, in this case the conditions a/(a, b)
odd and b/(a,b) even are satisfied.

For the induction process, the following equalities will be needed. All of
them are obtained by using the algorithm of Euclides.

If a > b, then (¢® +1,¢® — 1) = (¢ +1,¢* —1). If b > a, then
(¢°+1,¢°—1) = (¢*+1,¢"2+1). Since it is the intention to apply induction,
the right hand side of this equation is not satisfactory. Therefore the following
equation will be used: if n > m, then (¢" + 1,¢™ + 1) = (¢™ + 1,¢" ™ —1).
Thus, if b > a, then b > 2a implies (¢* +1,¢" — 1) = (¢ +1,¢*"2* — 1), and
b < 2a implies (¢° +1,¢" — 1) = (¢ 2+ 1,¢**" - 1).

Now suppose that a,b > 0, a # 0 # b, and that the lemma holds for all
a’, b, where a’ +b < a-+b. It remains to be shown that it also holds for a, b.

Suppose a > b. Then (¢°+1,¢" —1) = (¢®*+1,¢" — 1), which equals by
induction

q @ 41 if (a —b)/(a — b,b) is odd and b/(a — b, b) is even,
d =1 if q is even,
d =2 if ¢ is odd.

d otherwise, where

Note that (a,b) = (a — b,b), implying b/(a — b,b) = b/(a,b). Furthermore,
under the assumption that b/(a,b) is even, a/(a,b) odd implies that (a —
b)/(a —b,b) is odd, and (a — b)/(a — b,b) odd implies that a/(a,b) is odd.

The cases a < b < 2a and b > 2a are handled in a similar way. O

Theorem 4.5.3 Suppose P s a polar space that has a t-spread. If P is
1. a symplectic space Wo,11(q), then t +1|2n+ 2;
2. a parabolic quadric Q(2n,q), then t + 1|2n;
3. a hyperbolic quadric QT (2n+1,q), then t +1|n+1;
4. an elliptic quadric Q~(2n+1,q), then t+ 1| n;

5. a Hermitian variety H(2n,¢*), then t + 1| n;
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6. a Hermitian variety H(2n + 1,¢%), then t +1|n+ 1.

Proof If the polar space P has a t-spread, then (¢ —1)/(¢—1) divides
Pl

1. If P = Wy,11(q) has a t-spread, then it follows immediately from Ta-
ble 1.2 and Lemma 4.5.1 that ¢ + 1|2n + 2.

2. If P = Q(2n,q) has a t-spread, then it follows immediately from Ta-
ble 1.2 and Lemma 4.5.1 that ¢t + 1| 2n.

3. Suppose P = QT (2n+1, ¢) has a t-spread. Then ¢"™' —1] (¢"+1)(¢" ™' —
1). If t +1|n+ 1, then this condition is fulfilled.

Now suppose that ¢t + 1 does not divide n + 1. Denote (¢t + 1,n + 1)
by a and (t 4+ 1,n) by b. By Lemma 4.5.2, ¢"*' — 1| (¢® — 1)(¢" + 1).
Therefore a +b > t+ 1 and ab < t + 1. We now consider possible
solutions for {a,b}. If a, respectively b, equals one, then b € {t,t+ 1},
respectively a € {t,t + 1}. If {a,b} = {1,t}, then ¢ |t + 1, implying
that ¢ = 1, such that (2,n + 1) = (2,n) = 1, a contradiction. If
{a,b} = {1,t 4+ 1}, then, as t + 1 does not divide n + 1, a equals 1.
Therefore ¢ — 1] (¢ — 1)(¢"™* + 1), a contradiction. If a = b = 2,
then 2 would divide n as well as n 4+ 1, a contradiction. Finally, if
{a,b} ={z > 2,y > 2}, thent+1 < a+b < ab < t+1, a contradiction.

Therefore we may conclude that ¢t +1|n + 1.

4. Suppose P = Q(2n+1, ¢q) has a t-spread. Then ¢'™'—1|(¢""*+1)(¢"—
1). An argument similar to the one in Case 3 shows that ¢ + 1| n.

5. Suppose P = H(2n, ¢?) has a t-spread. Then ¢2¢+) 1 (¢**+14-1)(¢*"—
1). An argument similar to the one in Case 3 shows that 2t 4 2| 2n.

6. Suppose P = H(2n + 1,¢?) has a t-spread. Then ¢?*+D — 1] (¢*"*2 —
1)(¢**' +1). An argument similar to the one in Case 3 shows that
2 + 2|20 + 2.

This concludes the proof of the theorem. O

In the following corollary, the case where P = H(2n + 1, ¢?) is omitted,
since J. A. Thas [112, 115] proved that H(2n + 1, ¢*) has no spread.

Corollary 4.5.4 (1) Suppose thatt is even and that P = Wa,11(q) has
a spread. Then P has a t-spread if and only if t +1|2n + 2.
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(ii) Suppose that t is even and that P = Q(2n,q) has a spread. Then P
has a t-spread if and only if t + 1| 2n.

(iii) Suppose P = Q1 (2n+1,q) has a spread. Then P has a t-spread if
and only if t +1|n+ 1.

(iv) Suppose P = Q™ (2n+1,q) has a spread. Then P has a t-spread if
and only if t + 1| n.

(v) Suppose P = H(2n, q¢*) has a spread. Then P has a t-spread if and
only if t + 1| n.

Proof From the divisibility conditions, it follows that it is possible to con-
struct a t-spread in each element of the spread. The union of such ¢-spreads
forms a t-spread of P. O

Remember the overview of the known results on (non)existence of spreads
in polar spaces in Table 4.2. Using this overview and Corollary 4.5.4, the
following results on the existence of t-spreads are obtained.

Corollary 4.5.5 1. If P = Wa,11(q) and t is even, then P has a t-
spread if and only if t + 1| 2n + 2.

2. If t is even and P = Q(2n,q) satisfies either n > 2 and q is even,
orn = 3 and q is an odd prime, orn = 3, q is odd and q = 0 or 2
(mod 3), then P has a t-spread if and only if t + 1| 2n.

3. If P =Qt(2n + 1,q) satisfies eithern =1, orn =2n"+1,n" > 1
and q is even, orn = 3 and q is an odd prime, or n = 3, q s odd and
¢=0 or2 (mod 3), then P has a t-spread if and only if t +1|n + 1.

4. If P = Q (2n+ 1,q) satisfies either n = 2, orn > 2 and q 1is even,
then P has a t-spread if and only if t + 1| n.

4.6 Partial t-spreads in polar spaces

As was the case for projective spaces, see Section 4.2, the holes of a partial
t-spread in a finite classical polar space are distributed in a special way. They
form a minihyper in PG(n, ¢) with the same parameters as the minihypers
studied in Chapters 2 and 3. Hence, also in this case, the results from those
chapters will allow to make some observations on the structure of the partial
t-spreads.
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Theorem 4.6.1 Let P be a classical polar space in PG(n, q) whose size ad-
mits a t-spread, i.e., that satisfies the necessary conditions of Theorem 4.5.3.
If 8" is a partial t-spread of P with deficiency 6 < q, then the set F' of holes
forms a {dvi1, dvg; n, q}-minihyper.

Proof The proof very closely resembles the proof of Theorem 4.2.2. Denote
the number |P|(¢ — 1)/(¢"™" — 1) by o, i.e., o is the size of a hypothetical
t-spread of P. Let H be an arbitrary hyperplane of PG(n, ¢q). Consider the
system of equations

a+f=o, (4.9)
AUty + 61),5 = |H N P| (410)

One verifies that for any classical polar space P and for any hyperplane H
the solutions «, 8 to this system are integers. This means that the point
set of H NP can be partitioned in « sets of size v;41 and B sets of size vy
satisfying @ + 8 = 0. Below, such a partition will be denoted by A. Note
that if P has a t-spread S, then the set {m, N H : m; € S} is such a partition.

Now suppose that H contains o’ elements of §" and intersects 3’ elements
of 8 in a (t — 1)-space. Then o and f’ satisfy

o+ 5 =0—09, (4.11)

O/’Ut+1 + /Blvt S |H N P| (412)
Let A ={m N H :m € §'} and consider the following cases.

Case 1. Assume o > «a. Let o = a + a for some positive integer a. A
partition A as above of H NP has « elements of size v;,;. Using the
inequality aqu; < avyyq, it follows that if A’ has a elements of size v
more than A, then the number 8’ of elements of A’ that have size v, is
more than qa less than §, the number of elements of A that have size v;.
In other words, 8’ < 8—gqa. This means that o+ 3, which equals o+ /54,
is smaller than oo+ 8 — (¢ — 1)a. Since a is greater than zero, this implies
that the deficiency ¢ of S’ is at least ¢, a contradiction.

Case 2. Assume o = a. Then, by (4.11), 5’ = 8 — ¢, implying that the
number of holes in H equals dvy.

Case 3. Assume o < a. If o + (' would equal o, then there would be
at least vy, — vy holes in H. But since o + 3/ < o, there are at least
Vir1 — vy + vy holes in H. This number is greater than quv;, which in its
turn is greater than dv,.
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So, every hyperplane of PG(n,q) contains at least dv; holes. Clearly, the
total number of holes in P is dv;,1. Theorem 2.1.8 states that such a set is
a {0vy11, 0vg; n, q}-minihyper. O

Remark 4.6.2 The proofs of the different cases are in fact the same proofs
as in the respective cases of Theorem 4.2.2. They are only formulated in a
slightly more geometrical way.

Remember the definition of ¢, in Notation 2.2.4.

Corollary 4.6.3 Let P be a finite classical polar space in PG(n,q) whose
size admits a t-spread. Suppose furthermore that if P = W,(q), then q is
even.

1. BEvery partial t-spread 8" of deficiency 6 < e, of P can be extended to
a t-spread of P.

2. Suppose q > 16 is a square, and § < ¢*/®/V2 + 1. If & is a
mazimal partial t-spread of P of deficiency o, then the set of holes
forms a disjoint union of subgeometries PG(2t+1,,/q), implying § = 0
(mod /g +1).

Proof Using Theorems 2.2.7 and 3.4.2, it is clear that these corollaries hold
in the case that P is a quadric or a Hermitian variety. To see that they also
hold for the remaining case, the symplectic space Wa,1(g) with ¢ even, it
suffices to remember Theorem 1.1.3.1, which states that, for ¢ even, Wy, 1(q)
is isomorphic to Q(2n + 2, q). O

Remark 4.6.4 Suppose that n < ,/q. If the point set of P or the point set
of PG(n, ¢) \ P can be partitioned by a set of subspaces of PG(n, ¢) that may
have different dimensions (but greater than zero), then the weight argument
of Blokhuis and Metsch [19] that was mentioned in the proof of Theorem 4.2.3
shows that also the case § = \/q + 1 of Corollary 4.6.3.2 cannot occur. This
holds in particular for P = W, (q), g even, since all points of PG(n,q) are
absolute with respect to the polarity corresponding to P.

Corollary 4.6.5 If ¢ > 16 is a square, n < \/q, t +1[2n+2, and §' is a
mazimal partial t-spread of Wan,1(q), q even, of deficiency 6 < ¢°/3/v/2 41,
then § = k(\/q + 1) for some k > 2, and the set of holes forms a disjoint
union of k subgeometries PG(2t + 1,,/q).

A nonsingular quadric Q, in PG(n,q) cannot contain a Baer subspace
of dimension d greater than the dimension of a generator of Q,, since such
a Baer subspace would generate a totally singular subspace of dimension d.
Consequently, Corollary 4.6.3.2 can be refined in the case that P is a quadric.
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Corollary 4.6.6 Suppose Q,, is a nonsingular quadric in PG(n,q) whose
size admits a t-spread, where ¢ > 16 1s a square, and 2t+1 is greater than the
dimension of a generator of Q,. Then, every partial t-spread of deficiency
§ < ¢°®/V/2+1 can be estended to a t-spread of Q.

Corollary 4.6.3 does not include the case P = W,,(q), ¢ odd. This case
is considered separately, obtaining a result similar to the result on partial
ovoids on the generalised hexagon H(q), see Subsection 5.4.2. Unfortunately,
we have to restrict ourselves to partial n-spreads of Wa,11(q).

Corollary 4.6.7 Let 8’ be a maximal partial n-spread of Wa,11(q), q odd,
with deficiency 0. Suppose that either 0 < €, or ¢ > 16 is a square and
§ < q°®/\/2+1. Then § is even.

Proof By the previous theorems, the set of holes is a unique disjoint union
of n-spaces and—in the case that ¢ is a square—subspaces PG(2n + 1, /7).
Note that each Baer subspace PG(2n + 1,,/q) yields an additional amount
of \/q+ 1 to the deficiency. Since /g + 1 is even, these Baer subspaces can
be omitted from the remainder of the discussion.

Note that if 7, is an n-space consisting entirely of holes, then m, is one of
the spaces of the unique disjoint union of n-spaces and subspaces PG(2n +
1,,/q). Otherwise d would clearly have to be greater than g.

So, suppose 7, is an m-space consisting entirely of holes. Since &' is
maximal, 7, # 7,-. Let P € 7~ and suppose P is covered by an element 7/,
of & Then ! C P+ and 7, C P+. But P! is 2n-dimensional, implying
that 7/, N, # 0, a contradiction.

Therefore, also m;- consists entirely of holes. As m, # w1, it follows
that m, and 7+ must be distinct n-spaces from the unique disjoint union
of n-spaces and subspaces PG(2n + 1,,/q) that the set of holes consists of.
Hence, each n-space m, in the minihyper corresponding to &', is paired to a
unique n-space 7 in this minihyper. Therefore, the number of n-spaces in
the minihyper is even. a

4.7 t-Covers in polar spaces

In the first part of this section, the result on minihypers from Chapter 2 is
applied to t-covers of finite classical polar spaces giving a characterisation of
the set of multiple points.

In the second part, the uniqueness of the smallest line cover of Q(4, 3) is
proved. This cover will later on, in Section 5.5, be used to construct blocking
sets of Wa,11(q).
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4.7.1 Application of the results on minihypers

As was the case for t-covers of projective spaces, the multiple points of a
t-cover of a finite classical polar space are distributed in a special way. They
form a minihyper in PG(n, ¢) with the same parameters as the minihypers
studied in Chapter 2. Hence, the results from that chapter allow to make
some observations on the structure of the set of multiple points of a t-cover.

Theorem 4.7.1 Let P be a finite classical polar space in PG(n,q) whose
size admits a t-spread, i.e., that satisfies the necessary conditions of Theo-
rem 4.5.3. If C is a t-cover of P with excess € < q, then the weight function
w(P) = surplus(P) for P € P defines an {ev11, cve; n, q}-minihyper (F, w),
where F is the set of multiple points of P, i.e., the set of points of P that
are covered at least twice by elements of C.

Proof This proof is very similar to the proof of Theorem 4.3.1.

Denote the number |P|(q — 1)/(¢"T' — 1) by o, i.e., o is the size of a hy-
pothetical t-spread of P. Now let H be an arbitrary hyperplane of PG(n, q).
Consider the system of equations

a+f=o,
AVp41 + /B'Ut = |H N P|
For any classical polar space P and for any hyperplane H, the solutions «, 8
to this system are integers.

Now suppose that H contains o elements of C and intersects 5 elements
of Cin a (t — 1)-space. Then o’ and /3’ satisfy
o+ 8 =0+e,
O/UH_1 + Bl'l}t Z |an|
As in the proof of Theorem 4.3.1, one verifies that o’ > «. So, for each
hyperplane H of PG(n,q), > pcgrpw(P) > vy Clearly, > pepw(P) =

ev;11. Theorem 2.1.8 states that such a set is an {ev,11, ev; n, ¢}-minihyper.
O

Corollary 4.7.2 Let P be a finite classical polar space in PG(n,q) whose
size admits a t-spread. If C is a t-cover of P with excess € < €, then the
function surplus is the weight function induced on the point set of P by a
sum of § t-spaces.

Remark 4.7.3 Corollary 4.7.2 was proved by Eisfeld et al. [49] in the special
case that P is a finite classical generalised quadrangle, i.e., when P is either
Q7(3,q), Q(4,q9), Q= (5,q), H(3,¢%), H(4,¢*) or W5(q) and C is a line cover
of P.
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Figure 4.1: The smallest cover of Q(4,3)

4.7.2 The smallest cover of Q(4,3)

Remember from Section 4.4 the following theorem.

Theorem 4.7.4 (Eisfeld et al. [49]) Let C be a cover on Q(4,q), q odd.
Then |C] > ¢*+1+ (¢ —1)/3.

In the same article [49], the following construction of a minimal cover of
Q(4, q) of size ¢*> + 1+ (q — 2) is given. Fix a line [ on Q(4, ¢) and consider
the set C’ of all ¢* + ¢ lines different from [ that intersect [. Now let H be a
3-space containing [ that intersects Q(4, ¢) in a hyperbolic quadric Q™ (3, q)
and let R be the regulus of Q7 (3,¢) that does not contain . Then the set
C = (C'\R)U(RCPP\{i}) is a minimal cover of Q(4, q) of size ¢*+ 1+ (q¢—2).

Theorem 4.7.5 (Blokhuis et al. [21]) IfC is a minimal cover with excess
1 of a generalised quadrangle, then there exists a line | in the generalised
quadrangle that does not belong to the cover, all points of which are covered
twice.

Using this theorem, it is not hard to show that in the case ¢ = 3, the
construction above gives the only cover of size 11 on Q(4, 3).

Theorem 4.7.6 A cover C of Q(4,3) has size at least 11. If C is a cover of
Q(4,3) of size 11, then there exist two disjoint lines I and m on Q(4,3) such
that C consists of, see also Figure 4.1,

e the lines different from [ that intersect | but not m, and
e the lines different from [ of the regulus on Q(4,3) containing | and m.

Proof By Theorem 4.7.5, there exists a line [ on Q(4,3), [ & C, such that
through each point of [ there pass exactly two lines of C. Denote the re-
maining lines of Q(4, 3) intersecting | by m;, i = 1,...,4. Every point of
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Q(4,3) \ 1 lies on exactly one line of C. Let m be one of the three remaining
lines of C not intersecting [. Then m contains a point on each of the lines m;,

1 =1,...,4. Looking only at my, ms and mg, it follows that [ and m belong
to the opposite regulus of R(mq, ms, mg). Clearly, also the two remaining
lines of C belong to this regulus. O

This theorem can be dualised, see Theorem 5.5.1.

Remark 4.7.7 Very recently, the minimal covers of size 12 of Q(4,3) were
characterised, see [54]. They are always the known example. Using the
notation of generalised quadrangles, they are a set [\ {I} for some line [ of

Q(4,3).






Chapter 5

Partial ovoids and blocking sets

Various results on partial ovoids and blocking sets are presented. Some
of them are applications of the results on minihypers from Chapters 2 and 3.
Those results are collected in Subsections 5.4.1 and 5.4.3, and were published
in European Journal of Combinatorics in P. Govaerts, L. Storme, and H.
Van Maldeghem, On a particular class of minithypers and its applications.
II1. Applications [57].

5.1 Introduction

Let P,, denote a finite classical polar space of rank k in PG(m,¢*), where
q* = ¢* if P,, is a Hermitian variety and ¢* = ¢q otherwise. A partial ovoid
O’ of P, is a set of points of P, such that no generator of P,, contains more
than one point of O'. A blocking set B of P,, is a set of points of P,, that
has nonempty intersection with every generator of P,,. A set O of points on
P, that is both a partial ovoid and a blocking set is called an ovoid of P,,.
Hence an ovoid of P, is a set of points of P, that intersects every generator
of P,, in exactly one point.

Suppose that O is an ovoid of P,, and count the elements of the set
{(P,G): P € O,G € G(Pn), P € G}, where G(P,,) is the set of generators
of P, in two ways. The equality |O| - |G(Pp—2)| = 1-|G(Py,)| is obtained.
Hence, if P,, has an ovoid, then |G(P,,_2)| divides |G(P,,)|. Using the values
from Table 1.2, one easily checks that this is always the case and that the
size of a hypothetical ovoid of P,,, which will here be denoted by o(P,,), is
as given in Table 5.1. However, divisibility of |G(P,,)| by |G(Py,_2)| does not
imply the existence of an ovoid of P,,. In Table 5.2 an overview is presented
of the cases where it is known whether P,, has an ovoid or not.
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P rk(P) o(P)
Wani1(q) n+1 ¢"+1
Q (2n+1,q) n ¢t +1

Q(2n,q) n " +1
Q*2n+1,9) n+l ¢"+1
H(2TL, q2) n q2n+1 + 1

H2n+1,¢*) n+1 ¢ 1+1

Table 5.1: Finite classical polar spaces: rank and size of an ovoid

Remark 5.1.1 The size of a hypothetical ovoid of P equals the size of a
hypothetical spread of P, see Tables 4.2 and 5.2. This fact is explained by
Shult and Thas [103], who introduce m-systems, certain sets of subspaces
on finite classical polar spaces, the extremal cases of which are on one side
ovoids and on the other side spreads of these polar spaces.

If O is a partial ovoid of P,,, then the deficiency of O’ is by definition
the number o(P,,,) — |O’|. A partial ovoid of P,, is called mazimal if it is not
contained in a larger partial ovoid of P,,.

If B is blocking set of P,,, then the excess of B is by definition the number
|B| —0(P,,). A blocking set of P, is called minimal if it has no proper subset
that is a blocking set of P,,.

5.2 Ovoids on Q(6,q)

In the theory of minimal ¢-fold blocking sets, t mod p results have proved
to be very useful. Such results tell “how” a subspace intersects the mini-
mal ¢-fold blocking sets: in ¢ (mod p) points. They make the blocking sets
easier to handle and have made several classification theorems possible. The-
orems 1.2.6 and 1.2.13 are examples of ¢ mod p results.

One can hope that similar results for other objects will prove to be equally
fruitful. Ball [5] proves a 1 mod p result for ovoids on the quadric Q(4, q).

Theorem 5.2.1 (Ball [5]) Let O be an ovoid on Q(4,q), ¢ = p", p prime.
FEvery elliptic quadric Q(3,q) on Q(4,q) intersects O in 1 (mod p) points.

The following theorem uses the previous one to show that also for ovoids
of Q(6,q), a 1 mod p property holds.

Theorem 5.2.2 An ovoid O of Q(6,q), ¢ = p", p prime, intersects every
elliptic quadric Q(5,q) on Q(6,q) in 1 (mod p) points.
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P Restrictions Ovoids References
Wa,i1(q) n =1, q even yes  [109]
n =1, q odd no [109]
n>2 no [112]
Q (2n+1,q9) — no [112]
Q(2n,q) n=2 yes  [74, 81,93, 117]
n > 3, q even no [112]
n=3,q=3" yes  [74, 111, 112]
n=3q=>5,7 no [90]
n >4, q odd no [59]
QT(2n+1,q9) n=1,2 yes  [67]
n =3, ¢ odd with ¢ prime  yes  [34, 44, 74, 75, 76],
or g =0or 2 (mod 3) (88, 101, 111, 112]
g =p", p prime and no [20]
(5.19) holds
H(2n, ¢°) — no [112]
H2n+1,¢*) n=1 yes  [91, 113, 117]
q = p", p prime and no [89]

(5.20) holds

Table 5.2: Existence of ovoids in finite classical polar spaces

The references are copied from [116].
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Proof Let P € Q(6,q)\ O and let 74 be a 4-space in Tp(Q(6, ¢q)) that does
not contain P. Then m,; intersects Q(6,¢) in a parabolic quadric Q4 and
Tp(Q(6,9)) NO is projected from P onto an ovoid O* of Q4. Every elliptic
quadric Q™ (3, q) of Q4 contains exactly 1 (mod p) points of O*. Hence, for
each point P € Q(6,¢)\ O, every cone PQ™(3,¢) on Q(6, ¢) shares 1 (mod p)
points with O.

Let Q; be any elliptic quadric Q™ (5, ¢) on Q(6, ¢) and denote the hyper-
plane of PG(6, ¢q) containing it by H. Consider a line [ of Q™ (5, ¢q) skew to
O. Such a line exists since Q™ (5, ¢) has no ovoids, see Table 5.2. Denote the
points on [ by P, P, ..., P,. The tangent hyperplanes Tp,(Q(6,q)) intersect
H in 4-spaces Tp,(Qj ) for each i € {0,1,...,q}. Let

T3 = TP()(QL;) N TPl (Qg)
= TP0<Q<67Q>> ﬂTP1<Q<67Q)) NH.
Suppose |13 N O| = x. The 4-spaces Tp,(Q; ) C Tp,(Q(6,q)),i=0,1,...,q,

define a pencil of 4-spaces through 73 in H. Since |Tp,(Q; )NO| =1 (mod p),
counting the number of points of O in this pencil of 4-spaces yields

Qs NO] = (¢+1)-1—qx (modp)
= 1 (mod p).
Since Q5 was chosen arbitrarily, the theorem is proved. a

Remark 5.2.3 It is not necessary to prove a similar result for higher di-
mensional parabolic quadrics, since it is known that such quadrics have no
ovoids, see Table 5.2.

5.3 Inductive theorems

In this section, two theorems are proved. The first, respectively second, one
“lifts” an upper, respectively a lower, bound on the size of partials ovoids,
respectively blocking sets, of a finite classical polar space in a space with
given dimension to an upper, respectively a lower, bound on the size of
partial ovoids, respectively blocking sets, of finite classical polar spaces of
the same type in higher dimensional spaces.

The same proof can be applied to lift bounds on the size of partial ovoids
and to lift bounds on the size of covers. Also, the proof is independent of
the type of the polar space considered. To fix ideas, suppose a lower bound
on the size of minimal blocking sets of H(2n, ¢*) exists, i.e., suppose every
blocking set of H(2n, ¢*) has size greater than ¢! + 1 + €.
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Figure 5.1: Two ways of counting the number of elements in the set X

Consider the variety H(2n + 2,¢*) and denote it by Ha,,o. Let P be a
point on Hy, 5. Remember that the tangent hyperplane at P to Hg, s is
denoted by Tr(Ha,i2). If m, is a hyperplane in Tp(Hs, o) not containing
P, then 7y, intersects Ha, o in a Hermitian variety H(2n,¢?). And, if B is
a blocking set of Hy,12 and P € Hy,.0 \ B, then P projects the points of
B N Tp(Hapy2) onto a blocking set of H(2n, ¢*) in ma,.

Now suppose B is a blocking set of Hy,, 5 of size ¢*" T34 1+4¢’ and consider
the set

X:{(P,Q,G)IPG H2n+2\B,QGB,GGQ(H2n+2),PQQG}.

The size of this set can be counted in two ways. One way to count it is to
start with the point P, then choose @) in Tp(Hs,.2) N B and finish with a
generator G containing both P and (). The second way to count the size of
the set is to start with the point () € B, then take a generator GG containing
it, followed by a point P € G\ B. These two approaches are depicted in
Figure 5.1.

The size of the set X is given by

on+3 1 2n+2 1
x| = <(q +2)(q ) _q2n+3_1_8’).
> —1
)
A1+ @+ D@+ @ D), (B

(ii) (iif)

where (i) equals the number of points of Hy, 1o \ B, (ii) denotes the average
number of points of B in a tangent hyperplane Tp(Hs,12) at a point P €
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Ho,ni2 \ B, and (iii) equals the number of generators of Ha, o through a line
of Hopqo.
An upper bound on the size of X is given by

) (i) ‘ ~ g

(iii)

2(n+1) _ 1
X< (@ +14+) (P + D@ +1) .. (¢ +1) <q7 _ 1),

(5.2)
since (i) equals the number of points of B, (ii) is the number of generators
of Ha,p2 through a point of Hs, 4o, and (iii) is the maximal number of points
of Hy, 12 \ B in a generator of Ha, 1.

By the assumption that every blocking set of H(2n,¢?) has size greater
than ¢*"™! +1 +¢, it follows that u > e. Substituting this inequality in (5.1)
and comparing the thus obtained expression with (5.2) yields

q4n+3 + q4n+1 + ...+ q2n+5 + q2n + q2n72 + ..+ q2

g >e . 5.3
q4n+1+q4n—1+“'+q2n+1+q2n+q2n—2+.”+1+5 ( )

The same counting argument can be applied to the other finite classical
polar spaces. Suppose every blocking set of P, has size greater than o(P,,)+
e. Let B be a blocking set of P, 12 of size o(P,,12) + €.

If P, = H(2n + 1,4?%), then

€/>€ q4n+5+q4n+3+.”+q2n+5+q2n+2+q2n+'“+q2 '
q4n+3 + q4n+1 + ...+ q2n+3 + q2n+2 + q2n+1 + q2n + an—Q + ...+ 1 + ’
5)

3
(5-4)

if P, =Q (2n+1,q), then

, q2n+2+q2n+1++qn+3+qn+qn71++q
g€ >e¢ ST R ; (5.5)
q +q¢"+ ... +1+¢

if P, = Q(2n,q), then

q2n_|_q2n71_|___._|_qn+1_|_2qn+qn71+qn72+.”_|_1+8’

if P, = Q" (2n+1,q), then

(5.6)

. q2n+2_|_q2n+1_'_“._'_q

g >¢€ )
q2n+1_|_q2n+_|_qn+2_|_2qn+1+2qn_|_qnl_|_qn2_|_+1_|_<€ )
5.7

if P = W2n+1(Q)7 then

q2n+2+q2n+1+...+qn+2+2qn+1_|_qn_|_qnfl_|__“_i_1_|_8' :




5.3. Inductive theorems 87

If € is not too big, i.e., if some upper bound that is not too large exists
for the size of a blocking set of P,,, then the occurrence of € in the denom-
inator can be replaced by its upper bound and the new inequality can be
approximated to obtain bounds on &' that allow to immediately apply in-
duction. Indeed, if in the respective cases—maintain the same ordering as
above—¢ < ¢! e < ¢ e < ¢®, e < P e < ¢® and € < ¢, then
e > (¢* — 1)e, where ¢* = ¢* if P, is a Hermitian variety and ¢* = ¢ in the
other cases. Hence, Theorem 5.3.1 is proved. Since Q¥ (5,¢) has ovoids, for
the polar spaces QT (2n + 1, ¢) the condition n > 3 is imposed.

Theorem 5.3.1 Suppose that P, is a finite classical polar space. Suppose
that, if P, = H(2n,q?), then n > 2 and ¢ < ¢*"1; if P, = H(2n + 1, ¢?),
thenn > 1 and e < ¢*; if Pru = Q= (2n+ 1,q), then n > 2 and ¢ < ¢**; if
P = Q(2n,q), thenn > 2 and e < ¢* 7, if Py = QT (2n+1,q), thenn > 3
and € < ¢*; if P = Wani1(q), then n > 1 and e < ¢***1. If every blocking
set of Py, has size greater than o(P,,) +¢€, then, for each i > 0, every blocking
set of Ppioi has size greater than o(Py,19:) + (¢* — 1)'e, where ¢* = ¢* if Py,
1s a Hermitian variety and ¢* = q in the other cases.

The bounds on € in Theorem 5.3.1 are no restriction, since for each of
the polar spaces handled, there exist blocking sets whose size is smaller than
€9, where ¢p denotes the upper bound on ¢ from Theorem 5.3.1. Indeed, if
P is a finite classical polar space with rank r in PG(m, ¢), then one easily
checks that B, as defined below, is such a blocking set:

e if P, is a Hermitian variety, then let B = P, N 7,,_ry1, Where w11
is an (m — r 4 1)-space intersecting P, in a nonsingular Hermitian
variety;

e if P, is a quadric, then let B = P,, N m_r11, Where m,, .11 is an
(m — r + 1)-space intersecting P, in a nonsingular quadric;

e if P, is a symplectic space, then let B = 7, .1, where 7, .1 is any
(m —r + 1)-space in PG(m, q).

Hence the bounds on € in Theorem 5.3.1 can be omitted.

Theorem 5.3.2 Suppose that P, is a finite classical polar space. Suppose
that, if P, = H(2n,¢*), then n > 2; if P, = H(2n + 1,¢?), then n > 1;
if P = Q (2n+ 1,q), then n > 2; if P,, = Q(2n,q), then n > 2; if
P = Q (2n+1,q), then n > 3; if Py = Waui1(q), then n > 1. If every
blocking set of Py, has size greater than o(P,,) + €, then, for each i > 0,
every blocking set of Ppio: has size greater than o(Ppy2:) + (¢* — 1)'e, where
q* = ¢* if P, is a Hermitian variety and ¢* = q in the other cases.
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For partial ovoids of the finite classical polar spaces the same technique
as above can be used. Suppose in these cases that every partial ovoid of
P has size smaller than o(P,,) — ¢ and that O is a partial ovoid of Py, o
of size 0o(Py42) — ¢'. Then the inequalities obtained are very similar to the
inequalities (5.3) throughout (5.8). It suffices to replace in the latter ¢ by
o', the occurrence of € in the numerator by § and the occurrence of “4¢” in
the denominator by “—d”.

Also Theorem 5.3.1 can be copied. And, in the case of partial ovoids, it
is immediately clear that the bound on § disappears.

Theorem 5.3.3 Suppose that P, s a finite classical polar space. Suppose
that, if Pp, = H(2n,q?), then n > 2; if P, = H2n + 1,¢%), then n > 1;
if Pm = Q (2n + 1,q), then n > 2; if P,, = Q(2n,q), then n > 2; if
P = Q" (2n+1,q), then n > 3; if P, = Wai1(q), then n > 1. If every
partial ovoid of Py, has size smaller than o(P,,) — 0, then, for each i > 0,
every partial 0void of Py, 9; has size smaller than o(Pyp19:) — (¢* —1)'0, where
g = ¢ if Py, is a Hermitian variety and ¢* = q in the other cases.

Remark 5.3.4 Note that the strict inequalities in this section can be re-
placed by non-strict inequalities, replacing “less than” by “at most” and
“oreater than” by “at least”.

Other inductive bounds for the size of partial ovoids are known.

Theorem 5.3.5 (Klein [77]) Let O(P) denote the size of the largest partial
ovoids of the finite classical polar space P.

(i) Forn>3,0(Q (2n+1,q)) < -LE-(0(Q™(2n — 1,q)) — 2) + 2.

qn—1+1

(ii) Forn >2, O(Wz,11(q)) < qiji?il(O(WZn—l(Q)) —2)+2.

The upper bounds on the size of partial ovoids, respectively blocking sets,
of finite classical polar spaces arising from application of these inductive
theorems on known bounds are presented in Subsection 5.4.3, respectively
Subsection 5.5.2.

5.4 Partial ovoids

This section consists of three parts. In the first one, an upper bound on the
size of partial ovoids of H(4, ¢?) is proved. In the second one, partial ovoids
with small deficiency on the split Cayley hexagon H(g) are studied and a
theorem reminiscent of Corollary 4.6.7 is obtained. The third part collects
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known upper bounds on the size of partial ovoids and applies Theorems 5.3.3
and 5.3.5 to lift them to higher dimensions. It also compares the new bounds
with the Blokhuis-Moorhouse bounds.

5.4.1 Partial ovoids of H(4, ¢?)

A k-cap or partial ovoid of size k of a generalised quadrangle (GQ) is a
set of k points on the GQ, no two of which are collinear. It is called complete
or maximal if no points can be added to obtain a larger cap. A blocking set
of a GQ is a set of points on the GQ that has nonempty intersection with
every line. It is called minimal if the removal of a point from this set yields a
set that no longer blocks every line of the GQ. A set of points of a GQ(s,t)
that is a cap as well as a blocking set necessarily has size st + 1 and is called
an ovoid of the GQ. If O’ is a cap of a GQ 9, then a line external to O’, or
simply an external line, is a line not containing any point of O'.

Since H(4,¢%) is a GQ(q¢? ¢*), known results on k-caps of GQ’s can be
used in order to study partial ovoids on H(4, ¢?).

Theorem 5.4.1 (Payne and Thas [91, §2.7]) Suppose Q is a GQ(s,1).

1. Any (st — p)-cap of Q with 0 < p < t/s is contained in a uniquely
defined ovoid of Q. Hence if Q has no ovoid, then any k-cap of Q

necessarily satisfies k < st —t/s.

2. Let O' be a complete (st —t/s)-cap of Q = (P,B,I). Let B' be the set
of lines incident with no point of O'; let P be the set of points on (at
least one) line of B'; and let T’ be the restriction of I to the points of P’
and the lines of B'. Then Q' = (P',B’,I') is a subquadrangle of order

(s,t/s).

From the theorem of Buekenhout and Lefevre [31] and Theorem 5.4.1.2, it
follows that if O’ is a complete (¢° —q)-cap of H(4, ¢*), then the external lines
to O" on H(4, ¢*) form a Hermitian variety H(3,¢?). In the next corollary, it
is shown that such caps do not exist.

Corollary 5.4.2 H(4,¢*) has no complete cap of size ¢° — q.

Proof Suppose that Hy := H(4,¢?) has a complete cap O’ of size ¢° — q.
Denote by Hjz the Hermitian variety H(3, ¢?) that consists of the lines of Hy
external to O" and by 73 the solid containing Hz. Let [ be a line in w3 that
intersects Hz in a Hermitian variety H(1,¢?); denote this variety by H;. In
73 there are ¢? + 1 planes through [, ¢ + 1 of which intersect Hj in a cone
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3

Figure 5.2: Intersections of H(4, ¢%)

PH,, for some P € Hs; the other ¢ — ¢ planes intersect Hs in a Hermitian
variety H(2, ¢?).

Let P; and P, be two distinct points of Hz such that the cones PH; and
P,H; lie on H3. Now consider the solids Tp, (Hy) and Tp,(H4). They intersect
in a plane 7 containing neither P, nor P,, but containing [. Clearly, 7 is
not contained in m3; so it intersects 73 in [. The plane 7 intersects Hy in
a Hermitian variety H(2,¢?) containing H;; denote this variety by H,. The
present configuration is depicted in Figure 5.2.

There are ¢® + 1 solids on 7, ¢ + 1 of which intersect Hy in a cone P/H,,
i = 0,1,...,q; the ¢> — ¢ other ones intersect Hy in a Hermitian variety
H(3,4¢%). The vertices P/, i = 0,1,...,q, are collinear and the line joining
them is the polar line of 7, a (¢ + 1)-secant to Hy that is skew to 7. Since Py
and Ps lie on this line, all ¢ + 1 of these points lie in Hs.

Now suppose m contains x points of O’ and count the points of O’ by
counting the points of O’ in the hyperplanes through 7. This yields

¢ —q=z+ @+ —q—2)+ (@ - +1-2), (59

since each one of the ¢+ 1 cones P/Hy, i =0,1,...,q, contains ¢*+1—(q+1)
points of O" and each one of the ¢*—¢ nonsingular Hermitian varieties H(3, ¢?)
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through H, contains ¢® 4+ 1 points of O’ since they do not contain external
lines to O’. From (5.9), x can be calculated, yielding © = ¢ — 1/¢, which is
not an integer. A contradiction is obtained. O

Remark 5.4.3 This result was proved independently by K. Thas in [119].

As seen above, the external lines in H(4, ¢?) to a hypothetical complete
partial ovoid of size ¢° — ¢ would have formed a Hermitian variety H(3, ¢?).
One might suspect that, for a complete partial ovoid O’ of size ¢° — ¢ — x
of H(4, ¢?), x small, and a given external line to O’ in H(4, ¢*), through this
line there exists a Hermitian variety H(3,¢?) that contains many external
lines. This actually happens, and this observation can be used to improve
upon the bound on the size of partial ovoids of H(4,¢?) that is implied by
Corollary 5.4.2. To obtain the new bound, once more results on caps of GQ’s
will be used.

Theorem 5.4.4 (Payne and Thas [91, §2.7]) Suppose Q is a GQ(s,t)
and let O" be an (st — p)-cap of Q. Let B' be the set of lines of Q incident
with no point of O'. Then every line of B' is concurrent with t+ p other lines
of B'. If O is complete, then any point on a line of B' is incident with at
most p other lines of B'.

Also a result on the extendibility of partial ovoids of H(3,¢?) will be
applied. Tt is an immediate corollary to Corollary 4.6.3.1, since H(3,¢?)
is the dual of Q(5,¢q), see Theorem 1.1.3.4. For the definition of ¢,, see
Notation 2.2.4.

Corollary 5.4.5 Fuvery partial ovoid of H(3, ¢?) of deficiency 6 < €, can be
extended to an ovoid of H(3, ¢*).

Theorem 5.4.6 If O’ is a partial ovoid of H(4,¢?), then |O'| < ¢® — (4q —
1)/3.

Proof 1In [112], J. A. Thas proves that H(4, ¢*) has no ovoid. By Theo-
rem 5.4.1.2 and Corollary 5.4.2, this implies that a partial ovoid of H(4, ¢%)
has size smaller than ¢° — ¢q. This proves the theorem for q € {2, 3}.

Now, suppose by way of contradiction that O’ is a maximal partial ovoid
of H(4, ¢?) of size ¢° — q — x, v < (¢ — 1)/3. By the arguments above, x > 0
and ¢ > 3. The main part of this proof will consist of showing that through
each external line to O, there exists a Hermitian variety H(3, ¢*) containing
more than (¢* + ¢ + 2¢®> + ) /2 + ¢ + 1 external lines.

A counting argument shows that the number of external lines equals (g +
1+2)(¢>+1). Let [ be an external line. Then through [, there exists a plane
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7 containing ¢ points of O’. This plane intersects H(4,¢?) in a cone; denote
its vertex by P. Denote the hyperplanes through = by Hy, Hy, ..., Hpyq,
and define the deficiency ¢; of H; in the following way: d; = ¢*+1—|H;NO’|.
Each hyperplane H; has—since [ contains no point of O'—a “deficiency of 1
in the plane 7”. Denoting the deficiency of H; outside 7 by d. = ¢; — 1, the
points of O’ can be counted, resulting in

?+1
g+ (I —q—08)=¢—q—u,
=1
or
?+1

d di=q+a (5.10)
=1

Now suppose ¢ is an odd prime, respectively ¢ = p*¢, ¢ = p?**!; here

p is a prime and e is a positive integer. By Corollary 5.4.5, any partial
ovoid on H(3,¢?) of deficiency at most (q + 1)/2, respectively p¢, p°™!, can
be extended to an ovoid of H(3,¢?). Suppose that ¢ hyperplanes have a
deficiency §; > (q + 1)/2, respectively §; > p°, &; > p°™!; then these satisfy
80 > (q+1)/2, respectively 6/ > p®, d; > p®*1 such that, by (5.10)

q+x x

€< Qﬁ, respectively & < p® + ]%, E<p°+ pras (5.11)
Substitution of z < ¢ yields
& < 4, respectively £ < 2p°©, & < 2p°,
such that in all three cases ¢ satisfies
£<q. (5.12)

Three—not necessarily disjoint—types of hyperplanes H; can be distin-
guished:

(i) a tangent hyperplane;
(i) hyperplanes with deficiency greater than (g+1)/2, respectively p¢, p**t;

(iii) non-tangent hyperplanes with deficiency at most (¢+1)/2, respectively
e e+1
p,p .
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The hyperplanes of type (iii) intersect H(4, ¢*) in a Hermitian variety H(3, ¢*)
and O in a cap of this variety that is extendible to an ovoid of this variety.
Therefore, for each such hyperplane, there exists a point P’ on [ that lies on a
pencil of g+ 1 external lines in this hyperplane. Taking into account that, as
implied by Theorem 5.4.4, no point of [ can lie on two of the aforementioned
pencils, by (5.12), there are at least ¢*> — ¢ > 3 such points on .

Let L, M, N be three points of [, each one lying on a pencil of ¢ + 1
external lines: [,11,...,l5; [,mq,...,mg; [,n1,...,ng. Define an E-line as
being an external line different from [ that intersects a line /;, a line m; and
a line ny,.

We now show that such an E-line exists. By Theorem 5.4.4, there are
at least ¢* external lines not through L that intersect one of the lines [;,
t=1,...,q. Let v denote the number of external lines skew to Uje{l,...,q} m;.
Amongst these are the external lines different from [ that intersect [ in a
point different from M. There are at least ¢® such lines. Surely they are
different from the ¢* external lines not containing L that intersect a line [;.
Let 4" denote the number of external lines skew to (J{_, nx. Then, there are
at least

¢ = (=)= (= (5.13)
E-lines.

An upper bound on v can be obtained as follows. Let ( denote the number
of external lines through M. Then ¢ € {¢+1,...,g+ 2+ 1} and the number
of external lines intersecting (Jj_, m; equals, by Theorem 5.4.4, ((1 — ¢) +
q*+¢*> +qr+q. The total number of external lines equals (¢*+1)(¢+z+1),
implying v = (z+ 1)¢®> — ¢* + ((¢ — 1) — qw + z + 1. Therefore v is maximal
when ¢ is maximal and

v < (z+1)¢. (5.14)

Clearly, this bound on  is also a bound on '

Substituting = < (¢ + 1)/3 in these bounds for v and 4" and taking into
account that ¢ > 2, it follows that (5.13) is greater than zero. Therefore
E-lines exist.

Let I* be an E-line. Then [* intersects a line [;, a line m;, and a line
ng, say ly, my, and ny. Hence, [ and [; lie in the solid (I,[*), such that
all lines [;, i = 1,2,...,¢, lie in (/,0*). Similarly, also the lines m; and ny,
J,k=1,2,...,q, are contained in this solid.

This means that all lines [, [;, m;, n, and all E-lines are contained in a
common Hermitian variety H(3,¢?) and that the E-lines are exactly those
external lines different from [ that intersect both a line /; and a line m;.
Denote the variety H(3,¢?) by Hs.
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As seen before, there are at least ¢* external lines not through L that
intersect one of the lines l;, 1 = 1,...,q. At least ¢* — (v — ¢®) of those are
E-lines. Therefore, in Hs, there are at least 1 + 3¢ + ¢* — (7 — ¢®) external
lines. By (5.14) and the fact that x < (¢ — 1)/3, it follows that there are
more than (¢* + ¢ + 2¢® + ) /2 + ¢ + 1 external lines in Hs.

Now consider an external line I’ not in Hs. Note that since x > 0, such
a line exists. Through !, there exists a Hermitian variety H(3,¢?), say Hj,
containing more than (¢* + ¢® + 2¢> + 2)/2 + ¢ + 1 external lines. But Hs
and Hj have at most ¢+ 1 lines in common. This implies that there are more
than
G P+

2
external lines. However, this number is the exact number of external lines, a
contradiction. a

2 +q+1l=(¢+1+2)(*+1)

In Subsection 5.4.3, this bound will be lifted to a bound on the size of
partial ovoids of H(2n, ¢?), n > 3.

5.4.2 Partial ovoids in the split Cayley hexagon

For information on generalised hexagons, see Van Maldeghem [123].

Let ¢ be a prime power and let H(g) be the split Cayley hexagon, i.e., the
generalised hexagon defined in the following way. The points of H(q) are the
points of PG(6, ¢) on the quadric Q(6, ¢) with equation xyxy + x125 + Toxs =
x3; the lines are the lines of this quadric whose Grassmann coordinates satisfy
the equations

P12 = P34, D23 = Pas, Po2 = —P3s,
Po3 = D56, Po1 = P36, P13 = —DPa4s,

and incidence is the natural one. Opposite points of H(q) are points that are
at distance 6 from each other in the incidence graph of H(g) (and that is
also the maximal possible distance). The generalised hexagon H(g) has the
property that the set of points collinear with a given point P in H(q) is the
point set of a unique plane P+ contained in Q(6,q). An ovoid of H(q) is a set
of ¢ + 1 mutually opposite points. A simple counting argument yields that
every point outside a given ovoid of H(q) is collinear with exactly one point of
the ovoid, see also [123, Chapter 7]. Hence, if O is an ovoid of H(q), then the
set of ¢> + 1 planes P+, with P € O, is a plane spread of Q(6,q). A partial
ovoid of H(q) is a set of mutually opposite points; it is called mazimal if no
point of H(q) is opposite every point of the partial ovoid. The deficiency of a
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partial ovoid containing k points is § = ¢ + 1 — k. Remember the definition
of €, from Notation 2.2.4.

Theorem 5.4.7 If the deficiency § of a mazximal partial ovoid of H(q) is
smaller than €,, or if q¢ is a square and 0 is smaller than q5/8/\/§ + 1, then
0 s even.

Proof Let O be a maximal partial ovoid of H(q) with deficiency 0 satisfying
the conditions above. The set of planes P+, with P € (0, is a partial plane
spread &’ of Q(6,¢q), and hence by Corollaries 4.6.3.1 and 4.6.6, there exists
a set §* of & planes of Q(6,¢) such that &' US* is a spread of Q(6,q). Let
7* be any plane belonging to S*. If 7* were equal to a plane P+, for some
point P of H(gq), then {P} U O would be a partial ovoid, a contradiction.
Hence, the point set of 7* defines a set of ¢* + ¢+ 1 points of H(g) at mutual
distance four in the incidence graph of H(q).

By the third paragraph of the proof of Theorem 6.3.1 of [123], these
¢*> + q + 1 points are a subset of the point set of a subhexagon of order (1, q)
of H(g), the remaining points of which form a plane 7 of Q(6, ¢). This plane
is uniquely defined by the following property: the point set of 7 is the set of
points of H(q) that are collinear with exactly g 4+ 1 points of 7*, and such a
set of ¢ + 1 points of 7* is the point set of a line of 7*; all lines of 7* arise in
this way. Note that, since there are ¢ 4 1 lines of H(q) through every point
of H(q), every line of H(g) containing a point of 7 contains a point of 7*, and
vice versa.

Assume by way of contradiction that a point P of m belongs to an element
7' of S’. Let n’ = QF, with Q € @'. The line PQ contains a unique point
of m*, a contradiction. Hence all points of 7 are contained in elements of S*,
implying that 7 € §*. Since 7* was arbitrary in §*, it can be concluded that
0 is even. O

Corollary 5.4.8 A partial ovoid of H(q), q even, has size at most ¢> — 1.

Proof The previous result says that every partial ovoid of H(q) of size ¢* can
be extended to an ovoid. But for ¢ even, H(q) has no ovoid, see Thas [112].
It can be concluded that a partial ovoid of H(q) has size at most ¢ — 1. O

For ¢ = 2, this bound is sharp. An example of a partial ovoid of H(2)
consisting of seven points can be obtained using the description of H(2) from
Van Maldeghem [124]. Let 7 be the projective plane of order two. The point
set of H(2) is the set of points, lines and point-line pairs of 7. There are
two kinds of lines: (1) the triples {P,[,{P,1}}, with P a point of 7 incident
with the line [ of m; (2) the triples {{P, I}, {P1,l1},{ P, l2}}, where P and
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[ are as above, and {P, P, P,} is the point set of [, while {l,[1,ls} is the
set of lines incident with P in 7. Incidence is natural. By Proposition 3
of [124], two non-incident point-line pairs {P, [} and {Q, m} of 7w correspond
to two opposite points in H(2) if and only if either P is incident with m or
() is incident with [, but not both. Now represent the point set of 7 as the
integers modulo 7. The lines of 7 are the translates of the set {1,2,4}. It
is easily checked that the seven translates of the point-line pair {0, {1,2,4}}
define a set of seven mutually opposite points in H(2), and hence a maximal
partial ovoid.

5.4.3 More bounds on the sizes

The bounds on the size of partial ovoids of finite classical polar spaces are
examined. The inductive arguments of Section 5.3 are applicable if the polar
space under consideration has no ovoid. For an overview of (non)existence
results for ovoids of finite classical polar spaces, see Table 5.2.

Applying triality, see e.g. [120], on Corollary 4.6.3.1 in the case that
P =Q"(7,q), Theorem 5.4.9.1 is obtained.

Theorem 5.4.9 1. If Q*(7,q) has no ovoid, then a partial ovoid O" of
Qt(7,q) satisfies |O'| < ¢ +1 —¢€,. On the other hand, if Q™ (7,q)
has an ovoid, then any partial ovoid of QT (7,q) of size ¢ + 1 — & with
§ < ¢4 can be extended to an ovoid of Q1 (7,q).

In the case that q is a square, these results can be improved by replacing
in the previous statement “e;” by “CrIN2+17.

2. (Theorem 5.4.6) If O’ is a partial ovoid of H(4,q¢*), then |O'| <
@ +1-2/3(2¢+1).

3. (Tallini [108]) If O’ is a partial ovoid of W3(q), q odd, then |O'| <
2
g +1—q.

4. (Thas [115]) If O’ is a partial ovoid of Ws(q), then |O'| < ¢ +1 —
qg+1.

5. (Thas [115]) If O is a partial ovoid of Q= (5,q), then |O'| < ¢* +
1—q(g—1).
Note that for all ¢ for which it is at present known whether or not Q* (7, ¢)

has an ovoid, the answer is positive: for ¢ even, ¢ = 3", ¢ = 2 mod 3 or ¢ an
odd prime, QT (7, ¢q) has an ovoid, see Table 5.2 for references.
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Corollary 5.4.10 1. If Q*(7,q) has no ovoid, then a partial ovoid O’
of QT (2n+1,q), n > 3, satisfies |O'] < ¢+ 1— (g — 1)"3¢,.

In the case that q is a square, the result by replacing in the previous
statement “e,” by “¢®/8/v2+17.

2. If O" is a partial ovoid of H(2n,q*), n > 2, then |O'| < ¢*" ™ +1 —
2/3(¢> = 1)"2(2¢ + 1).

3. If O is a partial ovoid of Wan41(q), n > 1, q odd, then |O'| < ¢"* +
1—q¢"Yg+1)+1.

4. If O’ is a partial ovoid of Wa,11(q), n > 2, q even, then |O'| <
qn+1 + 1 — qn—l + 1.

5. If O is a partial ovoid of Q=(2n + 1,q), n > 2, then |0'] < ¢"™ +
1—q"2%(¢*—q+1)+ 1.

Proof Apply Theorem 5.3.3 to the first two cases of Theorem 5.4.9 and
apply Theorem 5.3.5 to the other cases of Theorem 5.4.9. O

Also the following upper bounds on the sizes k of partial ovoids—which
are sometimes called k-caps—are known. Bounds (5.15), (5.16), and (5.17)
were proved by Blokhuis and Moorhouse [20]; bound (5.18) by Moorhouse [89].

Theorem 5.4.11 (Blokhuis and Moorhouse [20], Moorhouse [89])
If K is a k-cap of the finite classical polar space P, naturally embedded in
PG(n,q) with ¢ = p" and p prime, then

_1\"
k< <p+" ) 41 (5.15)
n

If P arises from a quadric in PG(n, q), then (5.15) can be improved to

k§{<p+z_1>—<p+z_3>]h+1. (5.16)

If P arises from a quadric in PG(n, q) and if n and q are both even, then (5.16)

can be improved to
kE<nh+1. (5.17)

If P arises from a Hermitian variety in PG(n,q*), ¢ = p", then (5.15) is

improved to
h
I < p+n—1 2_ p+n—2 2
n n

+1. (5.18)




98 Partial ovoids and blocking sets

H(2n,¢?) Wauii(g), godd Q (2n+1,q)

n Po Po Po
1 — 3 -
2 ) 5) 11
3 11 11 13
4 17 17 19
) 23 23 29
6 29 29 37
7 37 41 47
8 47 53 59
9 59 59 71
10 71 73 83

Table 5.3: Comparing the bounds on the size of partial ovoids

Corollaries 5.4.12 (i) If g =", p prime, n > 1, and

p+2n p+2n—2
& — 5.1
b >(2n—|—1) ( m+1 ) (5.19)
then the polar space QT (2n + 1, q) has no ovoid.

(ii) If ¢ =p", p prime, n > 1, and

2 2
o1 p+2n p+2n—1
> — 5.20
b <2n+1) < m+1 )’ (5:20)

then the polar space H(2n + 1, ¢?) has no ovoid.

Remark 5.4.13 It is not immediately clear when the bounds of Theorem 5.4.11
are better than those of Corollary 5.4.10, but the following holds. For
H(2n, ¢*), respectively Wa,41(q), ¢ odd, Q= (2n + 1,q), and a fixed n, there
exists a prime p, such that for each ¢ = p", p > po, the bound of Corol-
lary 5.4.10 is better, but such that for each ¢ = p”, p < po, the bound of
Theorem 5.4.11 is at least as good. A few of these values for p, are given
in Table 5.3. For Ws,,,11(q), ¢ even, n > 2, the bound of Theorem 5.4.11 is
always better.

5.5 Blocking sets

In the first part of this section, the smallest blocking set in W3(3) is described
and a (small) blocking set of Wy, 11(q) is constructed, while the second part
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Figure 5.3: The smallest blocking set on W3(3)

discusses bounds on the sizes of blocking sets of finite classical polar spaces.

5.5.1 A small blocking set on Wy,;;(q)

Remember Theorem 4.7.6. As Q(4, ¢) is the dual of W3(q), see Theorem 1.1.3.2,
dualising, the following result is obtained. It is stated in the language of gen-
eralised quadrangles.

Theorem 5.5.1 A blocking set B of W3(3) has size at least 11. If |B| = 11,
then there exist two points P and Q on W3(3), P # Q, such that B consists
of, see also Figure 5.3,

e the points of PL\ (Q*+ U{P}), and

e the points of {P,Q}* \ {P}.

This construction can be extended to a construction for general n and q.

Theorem 5.5.2 The symplectic space Wa,11(q) has a blocking set of size
qn+1 + qn _ qn—l_

Proof Let m,_; be a totally singular (n — 1)-space and m,,; = 7~ ;. Take
a point @ outside m,,; and let 7/ := 7,4 N QL and 7/, _, = T, N Q*.
Let m, = (m,—1,Q). Then the set of points B = (7,41 Um,) \ (M1 U T,),
see Figure 5.4, is a blocking set of Wy, ,1(¢). Indeed, suppose by way of
contradiction that there exists a totally singular n-space NV skew to B. Now N
intersects 7,1 in a subspace with dimension at least zero. Since N contains
no point of B, N N m,41 is of the form (7}, 7}), for some 7} C 7/, \ m,_1,
m Cmpog,and =1 <a <1, -1<b<n—-1
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_ 1
Tn+1 = Ty g

Figure 5.4: A small blocking set on Wy, 11(q)

Case 1. Assume a = —1. In this case, N N7, is contained in 7,_; and
NN, = m;. Since N is totally singular, N C (7). Also 7,1 C (m7)*.
But dim(N) = n, dim(7m,41) = n + 1 and dim((7})*) = 2n — b. Hence,
dim(N N 7,41) > b+ 1, a contradiction.

Case 2. Assume a=0. In this case, N contains a point of 7/, \ m,_1.
This means that it cannot contain a point of m,_1 \ 7/, _,—the line joining
such a point and a point of N N (7, \ m,—1) would contain a point of B.
Now N N 7,41 = Py for some point P € ), \ ,_, and some 7; C 7},_,,

—1<b<n-—2 Asin the first case, N C (P7;)t. Also 7, = (Q, m,_1) C

(Pr)*, since Py C wk | and Pr; C Q*. But dim(N) = n, dim(rw,) =n

and dim((Pr;)*) = 2n — b — 1. Hence, dim(N Nm,) > b+ 1. However,

NNm, = NNm,_1 since NNB ={. So NNw, = NNm,_; = NN7/,_, = 7},

which has dimension b, a contradiction.

Case 3. Assume a = 1. In this case, N contains a line of 7}, \ m,_1. Asin
the second case, it cannot contain a point of 7, 1 \ 7, 5. Now NN, =
Im} for some line [ C 7, \ 7,_, and some 7, C 7, 5, —1 < b < n — 3.
Note that b # n — 2 since 7, is not totally singular. As in the second
case, N C (I,m;)*. Also, m, C (I, m})*. But dim(N) = n, dim(n,) = n
and dim({l,7;)*) = 2n — b — 2. Hence, dim(N N m,) > b+ 2. However,
NN, = NNm,—1 = NNm,,_, = 7, which has dimension b, a contradiction.

It is easily checked that |B| = ¢"™ +¢" — ¢" L. O

Remark 5.5.3 1. We are now investigating whether, in the case ¢ = 3,
this blocking set is the smallest blocking set of Wa,,11(q).
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2. For ¢ even, smaller blocking sets of Wy, 1(q) exist. For n = 1,
Wa,11(q), g even, has ovoids, see Table 5.2. For n > 1, g even, the
smallest blocking sets of Wa,11(q) are characterised by Metsch [86],
see Theorem 5.5.7; they have size ¢"*! + ¢" 1.

3. Also the dual of Remark 4.7.7 holds: the minimal blocking sets of
size 12 of W3(3) are always the known example. Using the notation of

generalised quadrangles, they are a set P\ {P} for some point P of
W3(3).

5.5.2 More bounds on the sizes

In this subsection, known results on (the size of) the smallest blocking sets
of finite classical polar spaces are collected. Remember that Table 5.2 gives
an overview of the known (non)existence results on ovoids of finite classical
polar spaces. The results below consider the cases where the polar space has
no ovoid.

Theorem 5.5.4 (Eisfeld et al. [49])
1. If B is a blocking set of W3(q), q odd, then |B| > ¢*+ 1+ (¢—1)/3.

2. Suppose B is a blocking set of H(4,¢*). If ¢ = 3, then |B| > ¢° + 3;
if =4, then |B| > ¢® +4; if ¢ > 5, then |B| > ¢° + 5.

Using Theorem 5.3.2, the following corollary is obtained.

Corollary 5.5.5 1. If B is a blocking set of Wa,11(q), q odd, n > 1,
then |B| > ¢"*' + 1+ (¢ — 1)"/3.

2. Suppose B is a blocking set of H(2n,¢?), n > 2.

o Ifq=2, then |B‘ > q2"+1 + 1+ (qQ _ 1)71—2_
o Ifqg=23, then |B| > ¢* ™ +1+2(¢*> —1)" 2
o [fq=4, then |B| > q2”+1 + 14+ 3(q2 _ 1)n72'
o Ifq=5, then |B| > ¢! +1+4(¢* — 1)" 2.
Remember that the smallest blocking sets of W3(3) were determined in

Theorem 5.5.1.
The following bounds are sharp.
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Theorem 5.5.6 (Metsch [85]) If B is a blocking set of Q = Q~(2n+1,q),
n > 2, then |B| > ¢""' + ¢""'. Let L denote the associated polarity in
PG(2n + 1,q). Then equality is reached if and only if B = (U+\U)NQ for
a subspace U of dimension n — 2 with U C Q).

Theorem 5.5.7 (Metsch [86])

1. If B is a blocking set of Wan41(q), n > 1, q even, then |B| > ¢"™* +
g L. Equality is reached if and only if B consists of the points outside
the vertex of a cone with an (n — 2)-dimensional vertex over an ovoid

in a Ws(q).

2. If B is a blocking set of Q(2n,q), n > 2, q even, then |B| > ¢"+q¢" 2.
Equality is reached if and only if B consists of the points outside the
vertex of a cone with an (n — 3)-dimensional vertex over an ovoid in a

Q(4,q).

Remark 5.5.8 The case n = 3 of Theorem 5.5.7.2 was independently proved
by De Beule and Storme [38].

Theorem 5.5.9 (De Beule and Storme [37])

1. Suppose that either q =5, q =7, or ¢q =n = 3. If B is a minimal
blocking set of Q(2n,q), n > 3, then either |B| > ¢"+q" 2 orn=q=3
and B is an ovoid of Q(6,3). In the former case, equality is reached if
and only if B consists of the points outside the vertex of a cone with
an (n — 3)-dimensional vertex over an ovoid in a Q(4,q).

2. If B is a blocking set of Q(2n,3), n > 4, then |B| > ¢" + ¢" 3.
Equality is reached if and only if B consists of the points outside the
vertex of a cone with an (n — 4)-dimensional vertex over an ovoid in a

Q(6,3).



Chapter 6

Cameron-Liebler line classes

Cameron-Liebler line classes were introduced by Cameron and Liebler [32] in
an attempt to classify collineation groups of PG(n, ¢) that have equally many
point orbits and line orbits. In their paper, they conjectured which groups
these are. It is now known (T. Penttila, private communication, 2002) that
the conjecture is true, but there is no classification yet of Cameron-Liebler
line classes. In this chapter, some new nonexistence results are presented. Ex-
cept for those in Section 6.7, they are collected in P. Govaerts and L. Storme,
On Cameron-Liebler line classes, which is submitted to Advances in Geom-
etry.

6.1 Introduction

Definition 6.1.1 A Cameron-Liebler line class is a set of lines in PG(3, q)
that intersects every spread of PG(3, ¢) in the same number of lines.

Following Penttila [92], a cliqgue in PG(3, q) is either the set of all lines
through a point P, denoted by star(P), or dually the set of all lines in a plane
7, denoted by line(m). The planar pencil of lines in a plane 7 through a point
P is denoted by pen(P, ).

Cameron-Liebler line classes have many interesting intersection proper-
ties, several of which define them.

Definition 6.1.2 (Cameron and Liebler [32], Penttila [92]) Let £ be
a set of lines in PG(3,q) and let x, be its characteristic function. Then
L is called a Cameron-Liebler line class if one of the following equivalent
conditions is satisfied.

1. There exists an integer = such that |[£ N S| = z for all spreads S.
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2. There exists an integer x such that all regular spreads S contain
exactly z lines of L.

3. For every regulus R in PG(3,q), |R N L| = |R°PP N L|.

4. There exists an integer x such that for every incident point-plane pair
(P, )

|star(P) N L| + |line(m) N L| =z + (¢ + 1)|pen(P,m) N L|.  (6.1)

5. There exists an integer x such that for every line [ of PG(3, q)

H{m e L£:mmeets I,m # 1} = (¢+ Dz + (¢* — 1)xe(l). (6.2)

6. There exists an integer x such that for every two skew lines [ and m
of PG(3,q)

[{n € L :n meets both [ and m}| =z + q(xc(I) + xc(m)).  (6.3)

It follows from the proof of the equivalence of these properties that the
number x in each of these statements is the same. It is called the parameter
of the Cameron-Liebler line class. Note that the first definition implies that
r€{0,1,2,...,¢> + 1}. Cameron and Liebler [32] showed that a Cameron-
Liebler line class of parameter x consists of z(¢* + ¢ + 1) lines and that the
only Cameron-Liebler line classes for x = 1 are the cliques, and for x = 2
the unions of two disjoint cliques. They also noticed that the complement
of a Cameron-Liebler line class with parameter = is a Cameron-Liebler line
class with parameter ¢> + 1 — x. So, it suffices to study Cameron-Liebler
line classes with parameter z < |[(¢? + 1)/2]. Thus, the case ¢ = 2 was
immediately solved. In their paper, Cameron and Liebler conjectured that
no other Cameron-Liebler line classes exist.

Penttila [92] shows that for ¢ # 2 there exist no Cameron-Liebler line
classes with parameter x = 3 or x = 4, with possible exception of the cases
(x,q) € {(4,3),(4,4)}. Bruen and Drudge [28] prove the nonexistence of
Cameron-Liebler line classes with parameter 2 < = < ,/g. Drudge [43]
excludes the existence of a Cameron-Liebler line class with parameter z = 4
in PG(3,3), and proves that for ¢ # 2 there exist no Cameron-Liebler line
classes with parameter 2 < x < ¢,, where q + ¢, denotes the size of the
smallest nontrivial blocking sets in PG(2, q), see Section 6.2. He also gives
a counterexample to the conjecture of Cameron and Liebler: a Cameron-
Liebler line class with parameter x = 5 in PG(3, 3), in this way settling the
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q = p", p prime 0<z<(?+1)/2 Existence References
any q r=0 yes
r=1 yes [32]
x=2 yes [32]
q>2 r=3 1no [92]
3<x <24 —2 no Thm 6.4.5
qg>4 r=4 no [92]
q odd r=(¢4+1)/2 yes 43, 29]
q=3 =4 1no [43]
qg=4 r=4 no Thm 6.7.6
q square 3 < < min(e, — 1, @) no Thm 6.5.1
¢ cube not square 3 < x < min(e) — 1,¢%°) no Thm 6.6.1
p=T
¢ cube and square 3 <z < min(e) — 1,¢%*) no Thm 6.6.3
p=>T

Table 6.1: (Non)existence of Cameron-Liebler line classes with parameter x

in PG(3,¢q)

case ¢ = 3. Bruen and Drudge [29] then construct a Cameron-Liebler line
class with parameter z = (¢* + 1)/2 for any odd gq.

In this chapter, new bounds on x for nonexistence of Cameron-Liebler line
classes are obtained. Theorem 6.4.5 gives a new bound for general g # 2,
while Theorem 6.5.1, respectively Theorems 6.6.1 and 6.6.3, improves upon it
for ¢ square, respectively ¢ = p3*, p > 7 prime, h > 1. Finally, Theorem 6.7.6
proves the nonexistence of Cameron-Liebler line classes with parameter 4 in
PG(3,4). In Table 6.1, an overview is given of (non)existence results for
Cameron-Liebler line classes.

These theorems will be proved by studying how the lines of the Cameron-
Liebler line class are distributed among the cliques of PG(3, ¢). In the proofs,
these cliques will be assumed to be of the form star(P) for some point P, but
the dual arguments show that the considered properties also hold for cliques
of the form line(w) for a plane .

To study the lines of the Cameron-Liebler line class in a clique, Drudge’s
approach [43] is followed. A clique C and its lines correspond to a projective
plane and its points in the following way. If C = star(P), then it suffices
to take the quotient space with respect to P. If C = line(r), then the dual
plane can be considered. In this way, the lines of the line class in a clique
correspond to a set of points in a plane.
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6.2 Cameron-Liebler line classes and block-
ing sets

The following two lemmas show where (multiple) blocking sets show up in
the study of Cameron-Liebler line classes.

Lemma 6.2.1 (Drudge [43]) Let £ be a Cameron-Liebler line class with
parameter x. If C is a clique satisfying x < [CNL| < g+ x, then CN L
forms a blocking set B in C. If there exist no Cameron-Liebler line classes
with parameter x — 1, then B is nontrivial.

Lemma 6.2.2 Let L be a Cameron-Liebler line class with parameter x. If C
is a clique satisfying x+ a(q+1) < |CNL|, then CNL forms an (a+ 1)-fold
blocking set in C.

Proof Suppose C = star(P) is a clique satisfying z + a(¢+ 1) < |C N L|.
Let 7 be any plane through P. By (6.1) and the fact that |line(7) N L] is at
least zero, it can be concluded that |pen(P, ) N L] is greater than «. O

6.3 Two lemmas

Lemma 6.3.1 Let L be a Cameron-Liebler line class with parameter x <
q®> + 1. Then there exists a clique containing at most x lines of L.

Proof Let[bealine notin £. By (6.2), there are (¢g+1)x lines of £ meeting
[. This implies that there exists a point P on [ that satisfies |star(P)NL| < z.
O

Lemma 6.3.2 If L is a Cameron-Liebler line class with parameter 0 < x <
q, then there exists a clique C satisfying z < |[CNL| < q+ .

Proof Suppose that £ is a Cameron-Liebler line class with parameter 0 <
x < q and that there exists no clique C satisfying = < [CN L] < ¢+ =.

Suppose C = star(P) is a clique satisfying 0 < |C N L] < z. Then there
exists a plane 7 through P containing exactly one line of C N L. By (6.1),
g+ 1 <|line(m) N L] < q + z, a contradiction. Dually, there exists no plane
7 satisfying 0 < |line(7m) N L] < x.

Suppose C = star(P) is a clique satisfying |[C N L] = 0. Then every plane
7 through P satisfies |pen(P,7) N L] = 0. By (6.1), |line(7) N L| = z, a
contradiction with the preceding paragraph.
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The previous observations show that there exist no cliques containing at
most x lines of £, a contradiction by Lemma 6.3.1. O

6.4 The general case

In this section, assume that £ is a Cameron-Liebler line class in PG(3, q),
q > 2, with parameter x < ¢, and that no Cameron-Liebler line classes
with parameter x — 1 exist. Recall that Penttila [92] proves that for ¢ > 2,
no Cameron-Liebler line classes with parameter 3 exist. As in the previous
chapters, for ¢ > 2, ¢, is defined by the fact that ¢ + ¢, denotes the size of
the smallest nontrivial blocking sets in PG(2, q).

Lemma 6.4.1 There exists no clique C satisfying x < |CNL| < g+min(e, —
1,x).

Proof Immediate from Lemma 6.2.1 and the definition of ¢,. O

Corollary 6.4.2 (see also Drudge [43]) There exist no Cameron-Liebler
line classes with parameter 2 < x < e, — 1.

Proof In this case Lemma 6.4.1 contradicts Lemma 6.3.2. O

For the remainder of this section, assume that x > ¢,.

Lemma 6.4.3 There exists no clique C satisfying x—e,+1 < |CNL| < g+1.

Proof If C = star(P) were a clique satisfying x — ¢, + 1 < |[CNL| < ¢+ 1,
then there would exist a plane 7 through P for which |pen(P,7) N L| = 1.
By (6.1), this plane satisfies x < |line(m) N L| < ¢ + ¢, — 1, a contradiction
by Lemma 6.4.1. O

Lemma 6.4.4 There exists no clique C satisfying 0 < |[C N L| < ¢, — 1.

Proof If C = star(P) were a clique satistying 0 < [CNL| < ¢,—1, then there
would exist a plane 7 through P for which |pen(P,7)NL| = 0. By (6.1), this
plane satisfies x —e; +1 < |line(7) N L] < z, a contradiction by Lemma 6.4.3.

]

Theorem 6.4.5 In PG(3,q), ¢ > 2, there exist no Cameron-Liebler line
classes with parameter 2 < x < 2¢, — 2.

Proof If z < 2¢,— 2, then the intervals of Lemmas 6.4.3 and 6.4.4 partially
overlap, implying that there exists no clique containing less than ¢ + 1 lines
of £. This is contradictory to Lemma 6.3.1. O
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Corollary 6.4.6 In PG(3,q), q prime, ¢ > 2, there exist no Cameron-
Luebler line classes with parameter 2 < x < q.

Proof Use Theorem 1.2.3.1. O

6.5 Improvements for ¢ square

Theorem 6.5.1 In PG(3,q), q square, there exist no Cameron-Liebler line
classes with parameter 2 < x < min(e;, — 1,¢**), where q + €, denotes the
size of the smallest nontrivial blocking sets in PG(2, q) not containing a Baer
subplane.

Proof Suppose that £ is a Cameron-Liebler line class with parameter 2 <
r < min(e, — 1, ¢*/*), and assume that no Cameron-Liebler line classes with
parameter x — 1 exist.

Suppose C = star(P) is a clique satisfying = < [C N L| < ¢+ x. By
Lemma 6.2.1 and the restriction x < ¢ — 1, in the plane corresponding to
C, CN L contains a Baer subplane 7p. Since there are at most r — /g — 1
points of C N L outside 7p, there exists a (/g + 1)-secant to C N L. Denote
the corresponding plane through P by 7. Since |pen(P,7) N L| = /g + 1,
it follows from (6.1) that ¢,/ + /g + 1 < [line(7r) N L] < ¢\/q + . By
Lemma 6.2.2, line(m) N L is a ,/g-fold blocking set in line(w). Comparing the
upper bound on [line(r) N £| with the known lower bounds for the size of
multiple blocking sets from Theorem 1.2.10 yields a contradiction.

So, in contradiction with Lemma 6.3.2, there exists no clique C satisfying
r<|[CNL|<q+ux. O

Corollary 6.5.2 Let g be a square, g = p”, p prime.

1. Ifq > 16, then there exist no Cameron-Liebler line classes in PG(3, q)
with parameter 2 < x < c,¢*/3, where ¢, equals 273 when p € {2,3}
and 1 when p > 5.

2. If p> 3 and h = 2, then there exist no Cameron-Liebler line classes
in PG(3, q) with parameter 2 < x < ¢3/*.

Proof Immediate by Theorems 6.5.1 and 1.2.4. O

6.6 Improvements for ¢ = ¢

Theorem 6.6.1 Let ¢ = g3 = p*°, p > 7 prime, hy > 1 odd, and let
q + €, denote the size of the smallest nontrivial blocking sets in PG(2, q)
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containing neither a minimal blocking set of size q + g3 + 1, nor one of size
q+aq+qo+1. InPG(3,q), there exist no Cameron-Liebler line classes with
parameter 2 < x < min(e) — 1, ¢%°).

Proof Suppose that £ is a Cameron-Liebler line class with parameter 2 <
r < min(e; — 1, ¢°/%), and assume that no Cameron-Liebler line classes with
parameter x — 1 exist.

Suppose C = star(P) is a clique satisfying = < |[C N L| < ¢+ z. By
Lemma 6.2.1 and the restriction x < €/ — 1, in the plane corresponding to
C, C N L contains either a minimal blocking set of size ¢ + ¢ + 1 or one of
size ¢ + g3 + go + 1. In both cases, C N £ has a (g5 + 1 + a)-secant for some
0<a<x— qS — 1. Let 7 be the plane through P defined by this secant.
By (6.1), it satisfies (¢+1)(¢2 +a) +1 < |line(m)NL| <z +q2q+ag+a+1,
By Lemma 6.2.2, line(r) N £ forms a (g3 + a)-fold blocking set in line(r).
However, comparing the upper bound for |line(7) N £| with the known lower
bounds for the size of multiple blocking sets from Theorem 1.2.10 yields a
contradiction.

So, in contradiction with Lemma 6.3.2, there exists no clique C satisfying
r<|CNLI<q+m o

Corollary 6.6.2 Let ¢ = p3, p > 7 prime. There exist no Cameron-Liebler
line classes in PG(3,p®) with parameter 2 < x < ¢°/S.

Proof In this case €, = (¢ + 3)/2, see Theorem 1.2.5. O

Theorem 6.6.3 Let ¢ = ¢5 = p*™, p > 7 prime, hg > 1 even, and let g+ €,

denote the size of the smallest nontrivial blocking sets in PG(2, q) containing
neither a Baer subplane, nor a minimal blocking set of size ¢ + q5 + 1, nor
one of size ¢+ g3 + qo + 1. In PG(3,q), there exist no Cameron-Liebler line
classes with parameter 2 < x < min(e) — 1,¢%/*).

Proof A combination of the proofs of Theorems 6.5.1 and 6.6.1 yields this
result. O

Corollary 6.6.4 Let ¢ = p5, p > 7 prime. There exist no Cameron-Liebler
line classes in PG(3,q) with parameter 2 < x < ¢*/4.

Proof By Theorem 6.6.3, it suffices to show that €, —1 > ¢*’*. Suppose
that this is not the case, i.e., suppose that there exists a minimal nontrivial
blocking set different from the three enumerated in Theorem 6.6.3 of size
smaller than ¢+ 1+ ¢34, A result of Polverino and Storme [98] says that the
exponent e of this blocking set must be 1. But a small minimal blocking set
with exponent e = 1 has size at least g+1+(g+p)/(p+1), see Theorem 1.2.6.
This number is greater than ¢ + 1 + ¢*/*, a contradiction. O
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6.7 The smallest open case

The smallest open case is the case of a Cameron-Liebler line class with
parameter = 4 in PG(3,4). In this section, it is proved that no such
Cameron-Liebler line classes exist.

When knowing the number of lines of a Cameron-Liebler line class £ in
a given clique, the following lemma gives severe restrictions on the possible
intersections of other cliques with L.

Lemma 6.7.1 Suppose L is a Cameron-Liebler line class with parameter x.
Then there exists an integer 0 < o < x such that there exists a point through
which there are exactly o lines of C and such that

1. for each point P: |star(P)NL| =« (mod ¢+ 1), and
2. for each plane 7: |line(m) N L] =z — « (mod g+ 1).

Proof The proof of Lemma 6.3.1 shows that there exists a point P such
that [star(P) N L] < z. Let o = |star(P) N L|. Equation (6.1) shows that
each plane 7 containing P satisfies |line(m) N L| = x —a (mod ¢+ 1). Again
applying (6.1), now on the planes 7 through P and the points contained in
them shows that for each point @, |star(Q) N L| = a (mod ¢+ 1). A final
application of (6.1) proves the lemma for all planes. O

Remark 6.7.2 The preceding lemma shows that for Cameron-Liebler line
classes, some sort of “mod(q + 1) property” is valid, similar to the 1 mod p
and ¢t mod p results for minimal 1-fold and ¢-fold blocking sets in PG(2, q),
q = p", p prime, see Subsections 1.2.1 and 1.2.3, and to the 1 mod p results
for ovoids on Q(4, q) and Q(6, q), see Section 5.2. Of course, the exact value
for o is missing in Lemma 6.7.1.

In the proof of the nonexistence of Cameron-Liebler line classes with
parameter x = 4 in PG(3,4), intersection properties of double blocking sets
of size 12 in PG(2,4) will be used. These properties are an easy corollary of
the following theorem, which is proved in Section A.2.

Theorem 6.7.3 Up to isomorphism, there are exactly three double blocking
sets of size 12 in PG(2,4). If B is such a double blocking set, then either

1. B consists of the set of points of three nonconcurrent lines, or

2. there exist two lines | and m intersecting in a point P such that B
consists of the set of points on | and m and three noncollinear further
points, one on each of the three remaining lines through P, or
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3. there exist three lines ly, ly and l3 through a point P and a fourth line
[ not through P such that B consists of the points of [; \'l, 1 = 1,2,3,
and the two points of | not on any of the lines l;, i € {1,2,3}.

Proof See Section A.2. |

Corollary 6.7.4 Suppose that B is a 2-fold blocking set of size 12 in PG(2,4).
Then, using the numbering from the theorem above, either B is of type 1 and

has nine 2-secants, nine 3-secants and three 5-secants, or B is of type 2 and

has ten 2-secants, six 3-secants, three 4-secants and two 5-secants, or B is of

type 3 and has twelve 2-secants and nine 4-secants.

Remark 6.7.5 In [78], Laskar and Sherk define the type of a double blocking
set as follows. If B is a double blocking set in PG(2, ¢) and B has 7; i-secants,
i =0,1,...,q9+ 1, then the type of B is (|B|; 72, T3,...,74+1). In the same
article, they determine all possible types of double blocking sets in PG(2, q),
q < 4. Hence, the intersection properties from Corollary 6.7.4 above were
already proved in that paper.

Theorem 6.7.6 There exist no Cameron-Liebler line classes with parameter

r =4 in PG(3,4).

Proof Suppose L is a Cameron-Liebler line class in PG(3, 4) with parameter
x = 4. Let C be a clique. Note that ¢, = 3, since a Baer subplane in
PG(2,q = 4) has size ¢ + 3. Hence, by Lemmas 6.4.3 and 6.4.4, |[C N L| ¢
{0,1,3,4}. By Lemma 6.7.1, |C N L] = 2 (mod 5) for each clique C. Hence
ICNL|e{2,7,12,17} for each clique C.

Suppose there exists a clique C satisfying [CNL| = 17. Assume C = line()
for some plane 7. Then, for each point P in m:

17+ |star(P) N L] = 4 + 5|pen(P, m) N L. (6.4)

Therefore, |pen(P, )N L| > 3 for each P € 7. In 7, exactly four lines do not
belong to C. Take a point ) on the intersection of two (or more) such lines.
Then |pen(Q, ) N L| < 3, hence |pen(Q, w) N L] = 3. For this point Q, (6.4)
yields |star(Q) N L] =2 < 3 = |pen(Q, 7) N L|, a contradiction.

It can be concluded that |CNL| € {2,7, 12} for each clique C. Remember,
from the end of Section 6.1, that a clique and its lines can be identified with
a projective plane and its points. If |C N L| = 2, then C N L is a set of two
points in C. If |C N L| = 7, then C N L is a nontrivial blocking set of size
seven, hence a Baer subplane in C. If |C N L] = 12, then C N L is a double
blocking set of size 12 in C.
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In the last case, CN L cannot contain a line. Indeed, suppose for instance
that in this case C = star(P) contains a line ¢. This line ¢ is a line in the
quotient geometry of P and the following identities hold: |pen(P, (P,¢)) N
L| = 5 and |star(P) N L| = 12. Hence, by (6.1), |line({(P,¢)) N C| = 17, a
contradiction. So, if |C N L] = 12, then C N £ must be a blocking set of the
third type of Theorem 6.7.3.

Let P be a point such that |star(P)NL| = a = 2, see Lemma 6.7.1. Let 7
be a plane through P that contains exactly one line of £ through P. Then,
by (6.1), [line(r) N L] = 7 and line(w) N £ forms a dual Baer subplane in
line(m). Now take a point P’ in 7 that lies on three lines of 7 N L. Then
lpen(P’,m) N L] = 3, and |star(P") N L] = 12. Hence, the double blocking set
in the quotient space with respect to P’ contains a 3-secant, pen(P’, 7). But
this double blocking set is of the third type of Theorem 6.7.3, which has no
3-secants, see Corollary 6.7.4. A contradiction is obtained. a



Appendix A

Two results on blocking sets

Two theorems are proved that were used in this thesis.
A.1 Small blocking sets in PG(n,q)

In chapter 3, a result was needed that shows that “small” blocking sets in
PG(n,q), ¢ = p" square, contain a planar blocking set. Such a theorem exists,
see Theorem 1.2.16, but unfortunately it excludes the cases where p = 2 or
p = 3. Using basically the same techniques as in Storme and Weiner [105],
the result can be proved for any square ¢ > 16, when the restriction on the
size of the blocking set is strengthened. This proof can be found below.

Lemma A.1.1 ([105]) Let B be a blocking set in PG(n,q), n > 3.

1. If P is a point not in B and H is a hyperplane not containing P,
then the projection of B from P into H is a blocking set in H.

2. If 7 is a plane intersecting B in more than |B| — q points, then BN
15 a blocking set in m. So, B contains a planar blocking set.

3. Suppose |B| < 2q. If the projection B" of B from a point P ¢ B into
a hyperplane H not containing P contains a line, then B contains a
blocking set in a plane of PG(n, q).

Lemma A.1.2 ([105]) Let B be a blocking set in PG(3,q), q square, of
smaller size than the second smallest nontrivial blocking sets in PG(2,q) and
suppose B does not contain a planar blocking set. Project B from a point
P, € B onto a plane ™ not containing Py. Then the projection of B contains
a Baer subplane mp ;. Let S € B be a point whose projection S" belongs to
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P

Figure A.1: Projecting the blocking set on a plane

mp1. Now project B from a second point Py € P\S, P, ¢ {P\,S,5'}, P» & B,
onto w. Then also this projection of B contains a Baer subplane mp 2, and

the following hold.

1. The point S" belongs to mp 2, and the dual Baer subline of mp 1 through
S" coincides with the dual Baer subline of wp o through S’. This config-
uration is depicted in Figure A.1.

2. The Baer cones Pimp1 and Pomp o intersect in the union of a Baer
subspace D1y = PG(3,,/q) and the line P\P,. The points Pi and P;
belong to Dis.

Theorem A.1.3 If B is a blocking set in PG(3,q), ¢ > 16 square, with
|B| < q+ c,¢*3, then B contains a planar blocking set.

Proof Suppose that B is a blocking set in PG(3, q) that satisfies the as-
sumptions of the theorem, but that does not contain a planar blocking set.
A contradiction will be obtained.

Consider the configuration of Lemma A.1.2 with the extra requirement
that S is chosen in such a way that it is the unique point of B on the line
P, S, see Figure A.1. Denote the cones from the lemma by C; and C5. Then
CiNB >q++/q+1. Hence, |CiNCyNB| > |CiNB|+|ConB|—|B| >
q— q2/3 +2,/q + 2. Since C; and Cj intersect in Do U PP and S is the
unique point of B on P P,

D1 N B|>q—¢*? +2/q+ 1. (A.1)

Let P; be a point on PP, P3 & Dy, P ¢ B and P; € w. Then Pj
defines a Baer cone U3 = P3mp 3 that intersects C in a Baer subspace D3 =
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PG(3,./q) union the line PiP; = P, P,. Since P; € D3, it follows that
D12 7£ D13. As before,

|IDisNB| > q—¢*3 +2/q+ 1. (A.2)
From (A.1) and (A.2), it can be concluded that
‘D12QD13QB‘ Z q—3q2/3+4\/a—|—2

For ¢ > 16, this number is greater than 2(,/g+1). It is known, see Sved [106],
that two distinct Baer 3-spaces intersecting in more than 2(,/g + 1) points,
intersect either in a Baer subplane, or in a Baer subplane union a point.
Hence, the points of D1y N D13 N B, except for at most one, lie in a plane.
Thus there exists a plane in PG(3, ¢) containing at least ¢ — 3¢%/3 + 4,/q+1
points of B. One easily checks that, for ¢ > 16, this number is greater than
¢*/3. By Lemma A.1.2, B contains a planar blocking set, a contradiction. O

Theorem A.1.4 If B is a blocking set in PG(n,q), n > 3, ¢ > 16 square,
with |B| < q+ c,¢*/3, then B contains a planar blocking set.

Proof (cf. [105]) The previous theorem is the case where n = 3. So, let
n > 4, and assume the theorem holds for all n’ < n.

Project B from a point P ¢ B onto a hyperplane H not containing P.
This projection contains a planar blocking set B;. If B; contains a line,
then Lemma A.1.1 shows that B contains a planar blocking set. So, assume
By does not contain a line. Then |[PB; N B| > ¢+ /g +1. Let H be a
hyperplane containing P By, and project B onto H' from a point outside H'.
The projection contains at least ¢ + /¢ + 1 and less than ¢ + cpq2/ 3 points.
Also this projection contains a planar blocking set Bs. Assume—for the same
reason as above—that By does not contain a line. Then |By N (PB; N B)| >
2(q+\/§+1)—q—cpq2/3 > q—q2/3+2\/§+2. Hence |By N B| > q — ¢*/3 >
¢*/* > |B| — q. By Lemma A.1.1, the plane 7 containing B, intersects B in
a blocking set. O

A.2 Double blocking sets in PG(2,4)

In this section, the smallest double blocking sets in PG(2, 4) are classified.

Theorem A.2.1 Suppose B is a 2-fold blocking set of size 12 in PG(2,4).
Then either
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Figure A.2: The double blocking 12-sets in PG(2,4)

1. B contains two lines intersecting in a point P, and one further point
on each of the three remaining lines through P, or

2. there exist three collinear lines ly, ly and l3 through a point P and a
fourth line | not through P such that B consists of the points of I; \ [,
i =1,2,3, and the two points of | not on any of the lines l;, i € {1, 2, 3}.

These blocking sets are depicted in Figure A.2.
Proof Suppose B is a double blocking set of size 12 in PG(2,4).

Case 1. B contains a line 1. As shown below, in this case, B contains a
second line 1.

Consider a point P in B\ [. The 11 points of B\ {P} lie on the five lines
through P. So, there exists a line m through P containing at least four
points of B. If m is contained in B, then take I’ = m. So, suppose m
contains a point P’ ¢ B.

Let ) be the point on the intersection of [ and m, and let [;, l5 and [3 be
the lines through @ different from [ and m. Let mq, mo, m3 and my4 be the
lines different from m through P’. Then on each line m;, there is exactly
one more point of B. On one of the lines [;, there are two more points of
B, and the other two lines [; contain one further point of B. Let [; be the
line containing two more points of B and let the lines m; containing these
points be m3 and my4. Name the lines mq, ms, [ and [3 in such a way that
the remaining points of B are m; Nl and my Nl3. Call the points Ps, Py,
Q3, Q4, Ry, Ry, S; and Sy as indicated in Figure A.3. Consider the line
PyQs. It intersects I, in a point. This point is either Ry or Ry. If it is Ry,
then P;(Q)3 must also contain Sy and a point of m \ {P’'}. In this case, set
I' = P,Q3. So, suppose P;()3 does not contain Rj.
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Figure A.3: Double blocking 12-set containing a line: notations

In that case, it contains Ry and S;. But then consider the line P3Q4. If
it would contain R,, then it also would contain Sy, and P3()4 would equal
P,(Q)s3, a contradiction. Therefore P3(), contains R; and S;. Hence, it is
contained in B.

In any case, B contains a second line I’, such that B is of type 1 in the
statement of the lemma.

Case 2. B contains no line. Consider a point R € B. Since B contains
11 points different from R, there exists a line n through R containing at
least four points of B. Since B contains no lines, n contains exactly four
points of B. Let S be the point on n that does not lie in B. All lines
through S different from n contain exactly two points of B. Let R’ be a
point of B not on n. As above, there exists a line n’ through R’ containing
exactly four points of B. This line intersects n in a point different from S.

From the reasoning above, it follows that there exists a point O € B that
lies on two lines [ and m that contain exactly four points of B. Denote
the point on [ (respectively m) not in B by P (respectively @)). The lines
through P (respectively @) different from PQ) and [ (respectively P(Q and
m) are denoted by [, I3, and I3 (respectively my, msy, and m3). Clearly, PQ
must contain two further points of B, and the lines [; and m;, ¢,j = 1,2, 3,
each one more point of B. Let A, B and C be the three extra points of B
on the lines /; and m;. Name these points and lines in such a way that A
(respectively B, C') lies on l; and m; (respectively lo and mo, 3 and ms),
see Figure A.4.

Case 2.1. A, B and C are not collinear. In this case, none of the lines
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Figure A.4: Double blocking 12-set containing no line: notations

AB, BC' and AC' can contain O. Indeed, suppose for example that AB
would contain O. Then AB would intersect mg in a point. This point
could not lie on [ nor on PQ, but also neither on /; nor on /5. Hence it
would lie on Il3. But then this point would be C', a contradiction. So, all
three lines AB, BC' and AC contain a point of [ \ {O, P} and a point of
m\ {O,Q}. But they also contain a point of PQ \ {P,Q} and no two of
them contain the same point of PQ\ {P, Q}. Since PQ\ {P, Q} contains
only three points and two of them belong to B, two of the three lines AB,
BC and AC are contained in B, a contradiction.

Case 2.2. A, B and C are collinear. Consider the line AB (which equals
the line AC). If it would not contain O, then it would contain a point
of I\ {O, P} and a point of m \ {O, Q}, so that it would be contained in
B, a contradiction. Thus the line AB contains O and intersects PQ) in a
point that is not contained in B. The remaining two points of P(Q lie in
B. Hence, B is of the second type in the statement of the lemma.

This concludes the proof. a

Corollary A.2.2 Up to isomorphism, there are exactly three double blocking
sets of size 12 in PG(2,4). If B is such a blocking set, then either

1. B consists of the set of points of three nonconcurrent lines, or

2. there exist two lines [ and m intersecting in a point P such that B
consists of the set of points on | and m and three noncollinear further
points, one on each of the three remaining lines through P, or

3. there exist three concurrent lines ly, lo and l3 through a point P and
a fourth line | not through P such that B consists of the points of I; \ [,
i =1,2,3, and the two points of | not on any of the lines l;, i € {1,2,3}.
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Remark A.2.3 The complement of a unital, see page 4, in PG(2,4) is a
double blocking set of size 12 with only 2- and 4-secants. Hence, it is the third
type of blocking set from Corollary A.2.2. Since there is, up to isomorphism,
only one blocking set with these intersection properties, also the unital is
unique: it is the Hermitian curve. Note that this is not the shortest way to
prove the uniqueness of the unital in PG(2,4); it can be constructed from
scratch using only the definition of a unital.






Appendix B

Mutually orthogonal Latin
squares

Results on partial spreads in PG(3,¢) and ovoids of the hyperbolic quadric
are used to construct maximal sets of mutually orthogonal Latin squares.

This chapter diverts somewhat from the topic of the thesis, since the link
between blocking sets and the sets of orthogonal squares is not clear. Still,
the objects used to construct these sets are related to blocking sets, as seen
in the previous chapters.

The results from this chapter are collected in P. Govaerts, D. Jungnickel,
L. Storme and J. A. Thas, Some new mazximal sets of mutually orthogonal
Latin squares [53] which is to appear in Designs, Codes and Cryptography.

B.1 Introduction

The problem considered here is the determination of the pairs (s, ) for which
a maximal set of ¢ mutually orthogonal Latin squares of order s exist. This
problem is, for instance, discussed in Beth et al. [10, Chapter X] and in [33,
Section IV.27].

Two s x s-matrices, simply called squares of order s, A = (a;;) and
B = (b;;), with entries in a set S of size s are called orthogonal if the mapping
e: (i,7) — (ay, by;) from {1,...,s}? to S? is bijective.

A square A = (a;;) of order s with entries in the set S is called a Latin
square if the mappings r; : j — a;; from {1,..., s} to S are bijective for each
i€{l,...,s} and the mappings ¢; : i — a;; from {1,..., s} to S are bijective
for each j € {1,...,s}, i.e., if each row and each column of A contains all
elements of S.

A set of ¢t mutually orthogonal Latin squares of order s, briefly denoted
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affine S,(1, s; s?)
7
(s,7;1)-net
7
TD[r, s]

7
OA(s, )

I
(r —2) MOLS(s)

Table B.1: MOLS and related combinatorial objects
Existence of one of these objects implies the existence of all the other ones.
Some of these implications are described in Section B.1; for the others see,

e.g., [9].

by t MOLS(s), is called mazimal and denoted by t MAXMOLS(s) if no Latin
square of order s exists that is orthogonal to all of them.

In the remainder of this introductory section, it is described how par-
tial congruence partitions yield, via an intermediate step of translation nets,
MOLS, and how transversal-free translation nets yield MAXMOLS. This
approach will be applied in Section B.2 to construct MAXMOLS(16). In
Section B.3, ovoids of the hyperbolic quadric will be used to construct infi-
nite sets of MAXMOLS.

Sets of MOLS are closely connected to many other combinatorial objects,
such as affine designs, nets, transversal designs, orthogonal arrays, see Ta-
ble B.1. More information on these objects can be found in Beth et al. [9],
where also several of the structures discussed below are treated in a more
general way.

Let S be a set of cardinality s. An orthogonal array of order s, degree
r and index 1 (on S), briefly an OA(s,r), is an r X s*>-matrix with entries
from S such that each 2 x s2-submatrix contains every possible 2 x 1-column
vector exactly once.

Let A be an OA(s,r), with > 3, on the set S = {ay,...,as}. Consider
the first two rows of A. In these rows each 2 x l-matrix with entries in S
occurs exactly once, such that the s? columns of A can be arranged as follows:

a1 1 ... 1 | Qe Qo ... Q9 Qg g ... Og
a;p g ... Og| 0O Qo ... Og ap Qg ... Og

A:



B.1. Introduction 123

Now define the matrices A,, i = 1,...,r, whose entries consist of the entries
of a row of A = (a;;) as follows:

(p,1 Qp,2 cee Opgs

A aﬂVerl a“vs+2 te a)u'723
u . . .

au782_8+1 au’s2_8+2 e au782

Then, for all © # v, the matrices A, and A, are orthogonal. And, for 1 > 3,
the matrices A, are Latin squares. Hence, an OA(s,r) with r > 3 yields a
set of r —2 MOLS(s). Applying this construction the other way round, a set
of r —2 MOLS(s) gives an OA(s,r).

The following notation will only be used to state the subsequent definition.
If D= (P,B,I) is an incidence structure and L = {lj,ls,... [} is a set of
elements of B, then (Iy, (s, ..., l;) denotes the set of all elements of P that are
incident with all elements of L.

An (s,r;1)-net, r > 3, is an incidence structure D = (P, B, I) satisfying

1. the relation ~ on B, with [ ~ m if [ = m or if there exists no point P
such that [ I P I m, is an equivalence relation which has r equivalence
classes; these classes are called parallel classes;

2. for all I, m € B, if [ o4 m, then there exists a unique point P such that
[ITPIm;

3. every point lies in an element of each parallel class.

If these properties hold, then there exists an integer s for which the following
properties hold:

e the number of lines in a parallel class equals s;

e the number of lines through a point equals r;

each line contains s points;

there are s? points;

e there are rs lines.

Let D be an (s,7;1)-net and S = {a, ..., as} aset of cardinality s. Label
in each parallel class the lines in it arbitrarily with the elements of S. Define
a matrix A whose rows are indexed by the parallel classes and whose columns
are indexed by the points of D as follows. The (P, P)-entry of A is «; if and
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only if the unique line of the parallel class P passing through the point P has
label ;. It is easy to check that A is an OA(s,r). Hence, every (s,r;1)-net
yields an OA(s, 7).

Conversely, let A = (a;;) be an OA(s,r) onaset S = {aq,...,as}. Define
an incidence structure D with parallel classes as follows. The parallel classes
are the rows of A and are denoted by P, ..., P,. The points are the columns
of A and are denoted by P, ..., Pe. The lines are the pairs (P;, a;), where
P; is a parallel class and «; € S. A line (P;, o;) is incident with a point Py
if and only if a;, = «;. It is easy to check that D is an (s, r;1)-net.

Let D be an (s,r;1)-net. A partial transversal of D is a subset T of the
point set of D satisfying | TNI| < 1 for each line [ of D. It is called a transversal
if it has size s. The net D is called maximal if it cannot be embedded into
an (s, + 1;1)-net, or, equivalently, if D has no set of s pairwise disjoint
transversals.

A transversal of a Latin square A = (a;;) of order s with entries from the
set S is a set T of s cells of A, i.e., T C {1,...,s}?, such that the cells in T

contain each element of S exactly once. Now suppose Ay, ..., A, 5 are r — 2
MOLS(s) with entries from the set S. If T1,..., T, are s mutually disjoint
sets of s cells, each of which is transversal to all squares A;, [ =1,...,r—2,

then there exists a Latin square B = (b;;) of order s which is orthogonal
to all squares A;. Indeed, let f be any bijection from {1,...,s} to S, and
let b;; = oy if and only if (¢,j) € 7; and f(I) = o,. Then B = (b;;) is
such a Latin square. Conversely, if B = (b;;) is a Latin square of order s
which is orthogonal to all squares A;, then the sets T}, k = 1,...,s, defined
by (i,7) € Ty if and only if f~1(b;;) = k, is a set of s mutually disjoint
transversals to the squares A;. It follows that a set of MOLS(s) is a set of
MAXMOLS(s) if and only if there exists no set of s mutually disjoint sets of
entries that are transversals to each element of the set of MOLS.

From the constructions above, it is clear that if A is a Latin square of
order s and D the corresponding (s,3;1)-net, then the transversals to A
correspond bijectively to those of D. Even more, if D is an (s,7;1)-net and
{Ay,..., A, 5} the corresponding set of MOLS, then the transversals of D
correspond to those sets T of cells that are transversals for each square A;,
i=1,...,7—2. Hence, if an (s,7; 1)-net is maximal, then the corresponding
set of MOLS is a set of MAXMOLS.

An automorphism of an incidence structure (P,B,I) of points and lines
is a bijection 6 from P U B to P U B mapping points to points and lines to
lines such that

forall Pe P, forallleB:PIl< P’ 11’

A net D is called a translation net if it admits an automorphism group
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(s,r;1)-PCP
[} transversal-free (s, r;1)-translation net
(s,7; 1)-translation net [}
I (r —2) MAXMOLS(s)

(r —2) MOLS(s)

Table B.2: How to construct MOLS and MAXMOLS

G acting regularly on the point set of D and fixing every parallel class. The
group G is called a translation group of D. In general, D may be a translation
net for more than one translation group, and a group may be a translation
group for more than one net.

Remark B.1.1 If a translation net D has a transversal T, then the net is
not maximal. Indeed, taking translates of T, a set of s disjoint transversals
is obtained.

Let G be a group of order s? and let Uy, . .., U, be subgroups of order s of
G. Then U = {Uy,...,U,} is called an (s,r;1)-partial congruence partition,
or shorter an (s,r;1)-PCP, in Gif |U;NU;|=1fori#j, i,5=1,...,r.

Let (G, +) be any finite group and U a set of subgroups of G. Then the
incidence structure D(U) is defined as D(U) = (G,{U+g¢: U € U,g € G}, €).
An incidence structure is said to be group constructible if D = D(U) for some
such U. The elements of U are called the components of U.

Lemma B.1.2 The group constructible nets are precisely the translation
nets. Moreover D(U) is an (s,r;1)-translation net with translation group
G if and only if U is an (s,r;1)-PCP in G.

Proof See e.g. [9, p. 512]. O

These observations are summarised in Table B.2.
B.2 MAXMOLS(16)

In this section, maximal partial spreads of size r in PG(3,4) \ PG(3,2)
are used to construct transversal-free translation nets of degree r + 3; this
approach will give new examples of MAXMOLS(16).

According to the tables in [33] and some subsequent results of Drake

et al. [42] and Bedford and Whitaker [7], MAXMOLS(16) are known for
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t € {1,2,3,4,11,15}. By Bruck’s completion theorem, they cannot exist
for t = 13 and t = 14, cf. Beth et al. [10, Section X.7]. Using maximal
partial spreads in PG(3,4), Jungnickel and Storme [73] were recently able
to construct sets of ¢t MAXMOLS(16) for two previously undecided cases,
namely for ¢t = 9 and t = 10. Here, a similar approach—already suggested
in [73]—is used to construct sets of ¢t MAXMOLS(16) for the two further
values t = 7 and t = 8, thus reducing the number of open cases to three.
The remaining open cases are t =5, t = 6, and t = 12.

Any r mutually skew lines in PG(3, ¢) may be viewed as a collection of
r pairwise disjoint subgroups of order ¢? in the additive group of the vector
space V' = V(4,q) (meaning, of course, that any two of these subgroups
intersect trivially). This is a particular example of a partial congruence
partition (PCP) and therefore leads to a translation net of order s = ¢ and
degree r by taking the vectors in V' as points and all the translates of the
specified r subgroups as lines, see Section B.1. If the given partial spread is
actually maximal, one may hope that the associated net is likewise maximal,
resulting in ¢ = r — 2 MAXMOLS(s), s = ¢®. This approach has been used
successfully by Jungnickel [71, 72]. However, in general, the associated net
may well be extendable; as mentioned in Section B.1, this happens if and
only if the net admits a transversal.

B.2.1 Partial spreads in PG(3,4) \ PG(3,2)

In what follows, let ¥ denote the “natural” Baer subgeometry PG(3,2) of
¥, = PG(3, 4) which is coordinatised by the binary vectors in the vector space
V =V (4,4). Denote the corresponding subgroup of order 16 of V' by U, and
write GF(4) = {0,1,w,w?}. Then U, wU and w?U are three pairwise disjoint
subgroups partitioning the quaternary vectors associated with the 15 points
of ¥ p; hence they may be added to the r subgroups of V' associated with any
partial spread S’ of r lines in 3\ ¥ 5 to give a PCP P with r+ 3 components,
and one may hope that the associated translation net is transversal-free (and
hence the corresponding set of MOLS maximal) provided that &’ is maximal.

As reported in Jungnickel and Storme [73], a computer search for maximal
partial spreads in PG(3,4)\ PG(3,2) based on the computer program of [35]
for determining the spreads in PG(3,4) \ PG(3,2) gave the following result.

Proposition B.2.1 A mazimal partial spread of r pairwise skew lines in
PG(3,4) \ PG(3,2) exists if and only if 6 < r < 10 or r = 14.

It turns out that every maximal partial spread of 6 or 7 pairwise skew lines
in PG(3,4) \ PG(3,2) gives rise to a transversal-free translation net of order
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16 and degree 9 or 10, respectively, as explained above. This follows from an
exhaustive computer search. To facilitate this search, this subsection provides
some auxiliary theoretical results which allow to reduce the complexity of the
search considerably. These results are appropriate modifications of similar
results in [73].

In what follows, consider any fixed transversal T of the net D of degree
r—+ 3 associated with the PCP P coming from a given maximal partial spread
S of size r € {6,7} in X\ Xp. Without loss of generality, also assume that
T contains the origin 0.

The following simple but useful result is analogous to Lemma 3.3 of [73].
It concerns the holes of the maximal partial spread &', i.e., the points of
¥\ ¥p which are not covered by a line of &’. For the remainder of this
section, if u is a vector in V'(4,4), then () denotes the set {0, @, wu, w?u}.

Lemma B.2.2 The point P(u) of ¥ is a hole for every element u € T\ {0}.
Moreover, if 0,u,v are three elements of T for which P(u) and P(v) are
distinct points of 3, then the “sum” P(u+ v) of these two holes is likewise
a hole.

Proof If P(u) would lie on a line of &’ or in Xp, the corresponding sub-
group U would intersect the transversal T in the distinct elements 0 and 4,
a contradiction. Thus P(u) is indeed a hole. Now let P(u) and P(v) be
distinct points of 3, and assume 0, %, v € T. Apply the first assertion to the
transversal T + @ of D, noting that @, 0 and @ + © are elements of T + @, to
conclude that P(u + v) is indeed a hole. O

Let w € T\ {0}. Call a hole P(u) of ¥, respectively a point @ of T, thin
if () N'T = {0,u}; semifat if |[(u) N T| = 3; and fat if (u) C T. The major
two theoretical steps consist of showing that T more or less “contains” thin
points only. This corresponds to Proposition 3.4 in [73]. Indeed, the proof
for the following first result proceeds exactly as in [73].

Proposition B.2.3 There are no fat holes at all. Moreover, there exists at
most one semifat hole.

Proof See [73]. O
Proposition B.2.4 Every point u € T\ {0} is actually thin provided that

r = 7. If there exists a semifat hole P(u), u € T\ {0}, for the case r = 6,
then P(u) lies on 13 lines each of which contains precisely three further holes.

Proof Assume the existence of a semifat point in T, say 0, @, \ti € T, where
u#0and A € {0,1}. As T has 16 elements, there are 13 vectors v € T \ (u).
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By Lemma B.2.2, for each choice of ©, the points P(u), P(v), P(a+ v) and
P(Au + v) are holes. By Proposition B.2.3, no point P(v) can be semifat,
and hence, in this way, 3 - 13 points distinct from P(u) are obtained, all of
which are holes.

If r = 7, then there are only 35 holes altogether, so that there must be
holes occurring in two different ways, say 0, @, \ii, v, € T, where v’ gives a
hole on the line [ through P(u) and P(v). As P(v) is not semifat and as [
cannot consist of holes only, it follows that

P(t') # P(a),P(v), P(\u + 0).

Without loss of generality, assume P(v') = P(u + v) (otherwise replace u
by @' = Au). Now there are three possibilities to consider. If v/ = @ + v,
the transversal T + A& contains the elements 0 and (@ + v) + A\u = A\?u + 9,
contradicting the observation that P(A\?u + ¥) cannot be a hole. The case
0" = AMu+70) leads to the same contradiction by considering T+ v and noting
that P(\(u+v)+v) = P(A\*u+0). Finally, the case v = \?(u+0) is excluded
as before by considering T + 4.

For r = 6, no contradiction is obtained by assuming the existence of a
semifat point, as there will be altogether 40 holes in this case. But then
the same reasoning as before immediately gives the structural restriction
stated in the assertion—the 13 lines are the lines joining P(u) to P(v), with
ve T\ (). O

B.2.2 The computer searches

To perform the computer searches, the share package PG [36] for the com-
puter algebra system GAP [52] was used. The implementation of these
searches can be found on the website http://cage.rug.ac.be/ " pg/thesis/.
As already announced, they established the following result.

Theorem B.2.5 Fvery mazimal partial spread of 6 or 7 pairwise skew lines
in PG(3,4)\ PG(3,2) gives rise to a transversal-free translation net of order
16 and degree 9 or 10, respectively.

In order to establish Theorem B.2.5, the setup of the preceding section
was used. In particular, the restrictions in Proposition B.2.4 considerably
simplify the exhaustive search for a possible transversal T of the translation
net D constructed from a maximal partial spread " in PG(3,4) \ PG(3,2).

By Proposition B.2.4, T gives rise to fifteen thin points of ¥ provided
that » = 7. The computer searches of [35] and [73] show that there is,
up to equivalence under PI'L(4,4), only one maximal partial spread of size
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r=6in PG(3,4) \ PG(3,2). It is a simple matter to check that the 40 holes
determined by this maximal partial spread do not form a configuration as
described in Proposition B.2.4; thus T gives rise to fifteen thin points of X
also for r = 6.

There is, up to equivalence under PI'LL(4, 4), exactly one maximal partial
spread of size r = 7 in PG(3,4) \ PG(3,2). This maximal partial spread
was checked, as was the one for » = 6. In both cases, the corresponding net
turned out not to admit a transversal (containing 0 and fifteen thin points).

This establishes Theorem B.2.5. As an immediate consequence, the desired
new examples of MAXMOLS(16) are obtained.

Corollary B.2.6 There exist t MAXMOLS(16) fort =7 andt = 8.

B.2.3 Two remarks

As explained in the preamble of Section B.2, any maximal partial spread of
PG(3,4) \ PG(3,2) of size r yields a PCP P with r + 3 components in the
additive group of the vector space V = V(4,4). Of course, this group can
be seen as the additive group of V(8,2), and hence P can be considered as
a partial 3-spread 77 of size r + 3 in PG(7,2). In view of Theorem B.2.5,
the associated translation net is transversal-free for r € {6,7}; thus 77 is
maximal in these cases.

The existence of maximal partial 3-spreads of size 9 in PG(7,2) is known.
Indeed, the hyperbolic quadric Q*(7,2) in PG(7,2) has a spread consisting
of nine 3-dimensional subspaces [44, 111, 112]. This spread of Q*(7,2) is
maximal considered as partial 3-spread of PG(7,2), since an arbitrary 3-
dimensional space in PG(7,2) intersects a hyperbolic quadric non-trivially.

On the other hand, the existence of a maximal partial 3-spread in PG(7, 2)
of size 10 was not known. These observations are summarised in the following
proposition.

Proposition B.2.7 There exist mazximal partial 3-spreads of sizes 9 and 10
in PG(7,2).

The second remark concerns a failed attempt to find 12 MAXMOLS(16)
by a similar approach. It is possible to find three pairwise disjoint Baer sub-
geometries in PG(3,4), actually even to partition PG(3,4) into three Baer
subgeometries and eight lines. By a computer result of Penttila (Private
communication, 2001), there are precisely two such partitions up to equiva-
lence, see also Mellinger [82]. Motivated by this fact, we decided to look for
maximal partial spreads in X\ (X5 U X5 U X%), where Xp, ¥’ and X7, are
three pairwise disjoint Baer 3-spaces in 3 = PG(3,4). Clearly the first Baer
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subspace Y5 may always be assumed to be the standard PG(3,2). Also ¥,
can be chosen as a fixed Baer subspace skew to g, see [82]. So, the differ-
ence in the tuples (Xp, ¥/3, X%) that need to be investigated, occurs only in
the third position; for the third Baer subspace ¥’ there are precisely three
choices.

Now there exist maximal partial spreads of five mutually skew lines in
Y\ (EpUXRUEY). Such a maximal partial spread S’ gives rise to a translation
net D of order 16 and degree 14, by extending the PCP associated with S’
with nine new components, three for each of the Baer subspaces g, 3y
and 7 (similar to the approach explained at the beginning of this section).
One could hope that this would yield a transversal-free translation net D and
hence a corresponding set of 12 MAXMOLS(16). Unfortunately, in all cases
D turns out to have a transversal PG(3,2) (and thus to extend to an affine
translation plane of order 16).

B.3 Infinite classes of MAXMOLS arising from
spreads of Q*(4n — 1,q)

(Non)existence results on spreads and ovoids of the hyperbolic quadrics,
see Chapters 4 and 5, are used to construct infinite classes of ¢** ! — 1
MAXMOLS(¢*"), for n > 2 and ¢ a power of two, and for n = 2 and ¢
a power of three. The first example arises for ¢ = 2 and n = 2, giving 7
MAXMOLS(16) via a computer free method.

It is known, see Table 4.2, that for m even, the quadric QT (2m + 1,q)
has no spread.

Theorem B.3.1 Suppose that QT (4n—1,q) has a spread and that QT (4n +
1,q) does not have an ovoid. Then there exist ¢*"~* — 1 MAXMOLS(¢*").

Proof Start with a spread S of Q*(4n — 1,¢) in PG(4n — 1,¢q). Embed
PG(4n — 1,q) in PG(4n,q) and consider the net whose points are the affine
points of PG(4n, ¢) and whose lines are the sets of affine points of (2n)-spaces
in PG(4n, q) that intersect PG(4n — 1, ¢) in an element of S.

To this net, there corresponds a set of ¢**~! —1 MOLS(¢*"). It suffices
to show that the net is transversal-free to prove that these MOLS are in fact
MAXMOLS. Suppose, by way of contradiction, that it admits a transversal
T. Then T consists of ¢** points of PG(4n, q) \ PG(4n — 1,q).

If P, and P, are points of T', then P, P, intersects PG(4n—1, ¢) in a point
outside Q*(4n—1, ¢). Indeed, otherwise this line would intersect PG(4n—1, q)
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in a point of an element of S, say S, and the transversal 7" would contain at
least two points of the line (P, S) \ PG(4n — 1, q) of the net.

Now in the dual space of PG(4n,q), PG(4n — 1,q) becomes a point P,
the elements of S become (2n)-spaces through P, and Q™ (4n—1, ¢) becomes
a cone with vertex P and base a quadric Q*(4n — 1,¢). The point P,
respectively P,, becomes a (4n — 1)-space 71, respectively 7y, not through
P, and the line P, P, becomes a (4n — 2)-space that intersects the cone in a
nonsingular quadric Q(4n — 2, q).

Embed the cone in a nonsingular Q*(4n + 1,¢) in PG(4n + 1,q9) and
apply the polarity of Q*(4n+ 1, ¢). This polarity maps 7; onto a bisecant to
Q" (4n+1,q) through P, i = 1,2. Call the second point of Q*(4n+1,¢) on
this line P/. Then (P], Py, P) intersects Q*(4n+1, ¢) in a nonsingular conic,
since m; and 7y intersect in a space that has a nonsingular intersection with

Q" (4n +1,q).
Therefore the ¢*" + 1 points P, P, Py, ... form an ovoid of Q*(4n + 1, q),
a contradiction. O

Corollary B.3.2 There exist ¢**~* — 1 MAXMOLS(¢*") for n > 2 and q
even, and for n =2 and q a power of three.

Proof For these values for n and ¢, it is known that Q*(4n — 1,¢) has a
spread, see Dye [44] and Thas [111, 112], and that Q" (4n + 1,¢) does not
have an ovoid, see Kantor [74] and Shult [102]. O

Remark B.3.3 For ¢ = 2 and n = 2, this corollary gives 7 MAXMOLS(16).
Hence, in addition to Corollary B.2.6, also a computer free construction of 7
MAXMOLS(16) is presented.
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Nederlandstalige samenvatting

C.1 Introductie

In het eerste hoofdstuk wordt het onderzoek gesitueerd en worden enkele
basisbegrippen uit de eindige projectieve meetkunde uitgelegd. Voor een
uitvoerige bespreking van deze objecten wordt verwezen naar de boeken
Hirscheld [68], Hirschfeld en Thas [70], en Payne en Thas [91].

De inhoud van dit proefschrift behoort tot het gebied van de eindige
meetkunde. Meer specifiek worden enkele objecten in de n-dimensionale pro-
jectieve ruimte PG(n, ¢) over het eindige veld GF(q) van de orde ¢ bestudeerd.
De structuren die aan bod komen zijn alle verwant met zogenaamde blokke-
rende verzamelingen.

Een blokkerende verzameling B in PG(2, q) is een verzameling punten van
PG(2,q) die een niet-ledige doorsnede heeft met elke rechte van PG(2,q).
Elke rechte van PG(2,¢) wordt als het ware “geblokkeerd” door die verza-
meling. Deze definitie kan veralgemeend worden, zowel naar de dimensie van
de ruimte waarin gewerkt wordt, als naar de dimensie van de te blokkeren
deelruimten, als naar het aantal punten dat hun moet blokkeren. Zo is een
k-voudige t-blokkerende verzameling in PG(n,q) een verzameling punten in
PG(n, q) die met elke (n —t)-dimensionale deelruimte van PG(n, ¢) minstens
k punten gemeen heeft. Bijgevolg is een “blokkerende verzameling” een 1-
voudige 1-blokkerende verzameling in PG(2, q).

Verscheidene van de bestudeerde objecten leven in eindige klassieke po-
laire ruimten. Deze zijn:

e Q (2n+1,q), n > 2, de polaire ruimte afkomstig van een niet-singuliere
elliptische kwadriek in PG(2n + 1, q);

e Q(2n,q), n > 2, de polaire ruimte afkomstig van een niet-singuliere

kwadriek in PG(2n, q);
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e Q" (2n+1,q), n > 1, de polaire ruimte afkomstig van een niet-singuliere
hyperbolische kwadriek in PG(2n + 1, q);

e H(n,¢*), n > 3, de polaire ruimte afkomstig van een niet-singuliere
Hermitische variéteit in PG(n, ¢%);

e Wy,11(q), n > 1, de polaire ruimte afkomstig van een niet-singuliere
symplectische polariteit in PG(2n + 1, q).

Op deze polaire ruimten liggen projectieve deelruimten. De projectieve deel-
ruimten met maximale dimensie op een eindige klassieke polaire ruimte wor-
den generatoren genoemd; zij hebben dimensie k — 1, waarbij k de rang van
de polaire ruimte genoemd wordt. In Tabel 1.1 worden de rang, het aantal
punten en het aantal generatoren van de eindige klassieke polaire ruimten
gegeven.

C.2 Minihypers

Minihypers, geintroduceerd door Hamada en Tamari in [64], werden inge-
voerd wegens hun belang voor de codeertheorie. Doorgaans worden wel-
bepaalde klassen van minihypers bestudeerd wegens hun relatie met lineaire
codes die de Griesmer grens bereiken. Dergelijke codes zijn belangrijk, aan-
gezien zij optimaal zijn in dat opzicht dat, voor gegeven dimensie en minimum
afstand er geen lineaire codes met kleinere lengte bestaan.

In Hoofdstukken 2 en 3 worden dergelijke minihypers bestudeerd. De clas-
sificatieresultaten van minihypers die in deze hoofdstukken bekomen worden,
kunnen onmiddellijk vertaald worden naar classificatieresultaten van lineaire
codes die de Griesmer grens bereiken. Dit is echter niet de hoofdreden voor de
studie die in deze hoofdstukken geleverd wordt. Zoals uit de daaropvolgende
Hoofdstukken 4 en 5 blijkt, hebben de classificaties van minihypers tal van
toepassingen in de theorie van de eindige meetkunde. Zo worden zij gebruikt
om nieuwe resultaten op het gebied van partiéle spreads en bedekkingen van
eindige projectieve ruimten te bekomen, alsook om nieuwe stellingen betref-
fende partiéle spreads, bedekkingen en partiéle ovoiden van eindige klassieke
polaire ruimten te bewijzen.

De resultaten uit Hoofdstuk 2 werden gepubliceerd in Designs, Codes
and Cryptography in P. Govaerts en L. Storme, On a particular class of
minihypers and its applications. I. The result for general q [56], terwijl die
uit Hoofdstuk 3 verschenen in Journal of Combinatorial Theory. Series A
in P. Govaerts en L. Storme, On a particular class of minihypers and its
applications. II. Improvements for q square [55].
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Notatie C.2.1 Zij PG® (n, ) de verzameling van alle k-dimensionale deel-
ruimten van PG(n, q).

Definitie C.2.2 Een {f, m;n,q}-minihyper is een paar (F,w), met F' een
deelverzameling van de puntenverzameling van PG(n, q), en w een gewichts-
functie w : PG(n,q) = N: P — w(P), die voldoet aan

1. w(P)>0< PeF,
2. Y pepw(P)= [, en
3. min{} pyw(P): He PG V(n, q)} =m.

Vaak worden minihypers zonder gewichten bestudeerd. Dit zijn minihy-
pers waarbij de gewichtsfunctie w de verzameling {0, 1} als beeldverzameling
heeft. In dit geval kan de minihyper (F, w) geidentificeerd worden met de ver-
zameling F' en wordt zij eenvoudigweg aangeduid met F' en een gewichtloze
minihyper genoemd.

Het is niet moeilijk in te zien dat minihypers zeer nauw verwant zijn
met blokkerende verzamelingen. Inderdaad, gewichtloze minihypers zijn ni-
ets anders dan meervoudige blokkerende verzamelingen. Immers, uit de
definitie volgt dat een { f, m;n, ¢}-minihyper F' een m-voudige 1-blokkerende
verzameling is. Omgekeerd is elke m-voudige 1-blokkerende verzameling
B in PG(n,q) die geen (m + 1)-voudige blokkerende verzameling is, een
{|B|, m; n, ¢}-minihyper.

Er werd reeds vermeld dat minihypers verwant zijn met lineaire codes die
de Griesmer grens bereiken. Dit verband wordt nauwkeuriger omschreven in
de volgende stelling. Voor een introductie in de codeertheorie, zie Hill [66].

Notatie C.2.3 Als [ een natuurlijk getal is, dan wordt v; gebruikt om het
getal (¢ —1)/(q — 1) aan te duiden. Bijgevolg is |PG(l —1,q)| = .

Stelling C.2.4 (Hamada [60]) Zij ¢ een priemmacht en zij k, 0 en (;,
1 =0,1,...,k — 2, natuurligke getallen waarvoor geldt dat k > 3, 6 > 1,
0<G<qg—1en((o,Cr- -y Ceo) #0. Zigd=0g"" =3 1"2¢q". Eris een
bijectief verband tussen de verzameling van alle niet-equivalente [n, k, d; q-
codes die de Griesmer grens bereiken en de verzameling van alle

k—2 k—2
{Z Civitt, Z Guik — 1, q} -minihypers (F,w)
i=0 i=1

waarvoor w(P) < 6 voor elk punt P van PG(k — 1,q).
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Deze stelling leert dat, om alle [n, k,d; g]-codes die de Griesmer grens
bereiken te classificeren voor gegeven k, d en ¢, het volstaat volgend probleem
op te lossen.

Probleem C.2.5 Voor gegeven n, g en (;, i« = 0,1,...,n — 1, classificeer

alle
n—1 n—1
{Z CiVig1, Z Gy m, q} -minihypers (F, w)
i=0

i=1

waarvoor w(P) < 6 voor elk punt P van PG(n, q).

Dit toont het belang van minihypers voor de codeertheorie aan en ver-
klaart waarom talrijke artikels verschenen waarin dergelijke minihypers wor-
den bestudeerd.

Volgende stelling geeft twee classificatieresultaten voor minihypers voor
algemene waarden van n, g en (;, op voorwaarde dat »_ (; niet te groot is.
Merk hierbij op dat de beschouwde minihypers gewichtloos zijn.

Stelling C.2.6 Zij F een {>_;_, (ivit1, 2o GVis 1, q }-minihyper.

1. (Hamada en Helleseth [62], Hamada en Maekawa [63]) Indien
Yoi0G < V4, danis F de unie van C; s-ruimten, (s—1 (s—1)-ruimten,
.., Co punten van PG(n,q) die paarsgewijs disjunct zijn.

2. (Ferret en Storme [51]) Indien ) . ¢ < 2,/q, ¢ > qo, dan bestaat
F uit de unie van ofwel
(a) (s s-ruimten, (s_1 (s — 1)-ruimten, ..., en (o punten, ofwel
(b) één deelmeetkunde PG(2l + 1,./q), voor een welbepaald natuurlijk
getall met1 <1 <'s, (; s-ruimten, ..., Gy (I41)-ruimten, G—/q—1

l-ruimten, ¢,y (I — 1)-ruimten, ..., en (y punten, ofwel

(c) één deelmeetkunde PG(21, \/q), voor een welbepaald natuurlijk getal
I metl <Il<s, (s s-ruimten, ..., Q1 (I41)-ruimten, (—1 l-ruimten,
G-1—+/q (I = 1)-ruimten, ..., en ¢y punten.

In alle drie de gevallen zign de objecten paarsgewijs disjunct.

In Hoofdstukken 2 en 3 wordt een deelprobleem van Probleem C.2.5 be-
handeld.

Probleem C.2.7 Voor gegeven n, ¢, p en ¢, classificeer alle
{641, 0v,; n, ¢} -minihypers (F, w)

waarvoor w(P) < 6 voor elk punt P van PG(n, q).
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Een som van t-ruimten is een gewichtsfunctie w : PG® (n,q) - N :
m — w(m). Dergelijke som induceert een gewichtsfunctie op deelruimten
van kleinere dimensie. Zij 7, een deelruimte met dimensie r < ¢, dan is per
definitie w(7,) = 32 cpa® (n.g)nom W(T). In het bijzonder is het gewicht van
een punt de som van de gewichten van de t-ruimten die dat punt bevatten. In
het geval w een afbeelding op {0, 1} is, kan de som w geidentificeerd worden
met de verzameling van deelruimten met gewicht 1.

Voorbeeld C.2.8 Beschouw § p-ruimten Wy, Wy, ..., Ws in PG(n, q), met
1<§d<qg—1en1l<pu<n-—1. Definieer voor elk punt P van PG(n, q) het
gewicht w(P) als het aantal p-ruimten W uit {Wy, Ws, ... Wi} waarvoor
P e W. Zij F de verzameling van punten P van PG(n, q) waarvoor w(P) >
1. Dan is (F,w) een {6v,1,0v,;n, ¢}-minihyper.

Het hoofdresultaat van Hoofdstuk 2 toont aan dat onder zekere voorwaar-
den voor d en u ook het omgekeerde geldt. Om het resultaat te formuleren
wordt volgende notatie ingevoerd.

Notatie C.2.9 Voor ¢ = 2, zij ¢, = 2. Voor q > 2, zij q + ¢, de grootte van
de kleinste niet-triviale blokkerende verzameling in PG(2, ¢).

Stelling C.2.10 Indien (F,w) een {0v,41, 6v,;n, q}-minthyper is, met 0 <
0 <e enp<n-—1, dan is w de gewichtsfunctie geinduceerd op de punten
van PG(n, q) door een som van 6 p-ruimten. Bovendien is deze som uniek.

Hierbij dient opgemerkt te worden dat deze stelling reeds bewezen was on-
der de bijkomende veronderstellingen dat de beschouwde minihyper gewicht-
loos is en § < /g + 1, zie Stelling C.2.6.

Stelling C.2.10 is het zwakst in het geval dat ¢ een kwadraat is. Immers, in
dat geval zijn de kleinste niet-triviale blokkerende verzamelingen erg klein:
zij hebben grootte ¢ + /¢ + 1. Deze blokkerende verzamelingen hebben
echter een bijzonder mooie structuur, en er bestaan verschillende resultaten
aangaande de grootte van de op één na kleinste niet-triviale minimale blok-
kerende verzamelingen in PG(2, q), ¢ een kwadraat. Deze twee zaken laten
toe Stelling C.2.10 te verbeteren in het geval dat ¢ een kwadraat is en onder
de bijkomende voorwaarde dat de beschouwde minihyper gewichtloos is. Zo
een verbetering wordt in Hoofdstuk 3 bekomen.

In dat hoofdstuk is het dus de bedoeling

{6v,41,0v,; n, ¢}-minihypers F

in PG(n, q), g een kwadraat, te classificeren voor alle § < «a voor een bepaald
natuurlijk getal a. Het spreekt voor zich dat het de bedoeling is een clas-
sificatie te bekomen voor zo groot mogelijke . Indien ¢ < /g, dan stellen
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Stellingen C.2.6 en C.2.10 dat zo een minihyper bestaat uit een disjuncte
unie van p-ruimten. Voor grotere § bestaan er andere voorbeelden.

Voorbeeld C.2.11 Zij g een kwadraat, 1 <6 <¢g—1,1<pu<(n—1)/2en
k <0/(y/q+1). Beschouw k onderling disjuncte deelmeetkunden PG (24 +
1,1/q) in PG(n,q), noteer deze met Dy, Ds,..., Dy, en | = 6 — k(\/q + 1)
onderling disjuncte p-ruimten Wy, Wy, ..., W, in PG(n, q) die scheef zijn aan
UF.,D;. Danis F = (UF,D;) U (UL, W;) een {6v,1,0v,;n, ¢}-minihyper,
aangezien [PG(2u+1,./q)| = (/g+1)v,41 en een hypervlak steeds D; snijdt
in een deelmeetkunde PG(s, /q) voor een welbepaalde s € {211 —1,2u, 2/ +

1.

Het hoofdresultaat van Hoofdstuk 3 toont aan dat, indien d niet te groot
is, ook het omgekeerde geldt.

Stelling C.2.12 FEen {dv,41, 0v,;n, q¢}-minihyper F', ¢ > 16 een kwadraat,
§ < @PB/N24 1, p > 1, is op unicke wijze te schrijven als een unie van
paarsgewijs disjuncte p-ruimten en deelmeetkunden PG(2u 4+ 1,./q).

C.3 Partiéle spreads en bedekkingen

In Hoofdstuk 4 worden (niet-)existentieresultaten voor partiéle t-spreads en
t-bedekkingen in eindige projectieve en polaire ruimten bekomen. Sommige
daarvan zijn toepassingen van de classificatieresultaten van minihypers, zie
Stellingen C.2.10 en C.2.12. Deze werden gepubliceerd in Furopean Journal
of Combinatorics in P. Govaerts, L. Storme en H. Van Maldeghem, On a
particular class of minihypers and its applications. III. Applications [57].

Een partiéle t-spread van PG(n, q) is een verzameling van onderling scheve
t-ruimten in PG(n, ¢). Een t-bedekking C van PG(n, q) is een verzameling van
t-ruimten van PG(n, ¢) zo dat elk punt van PG(n, ¢) in ten minste één element
van C ligt. Een t-spread van PG(n,q) is een verzameling van ¢-ruimten in
PG(n, q) die de puntenverzameling van PG(n, ¢) partitioneert. Bovenstaande
definities kunnen eenvoudigweg overgenomen worden voor eindige klassieke
polaire ruimten door “PG(n,q)” te vervangen door “een eindige klassieke
polaire ruimte P”.

Indien n oneven is en t = (n + 1)/2, dan wordt een (partiéle) ¢-spread,
respectievelijk ¢t-bedekking, van PG(n, q) eenvoudigweg een (partiéle) spread,
respectievelijk bedekking, van PG(n, q) genoemd.

Indien t+1 de rang is van de eindige klassieke polaire ruimte P, dan wordt
een (partiéle) t-spread, respectievelijk ¢-bedekking, van S eenvoudigweg een
(partiéle) spread, respectievelijk bedekking, van P genoemd.
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Bij het bestuderen van deze structuren duiken volgende vragen op na-
tuurlijke wijze op.

Vraag C.3.1 Wanneer bestaan t-spreads in PG(n, q) of P?

Vraag C.3.2 Indien ¢-spreads niet bestaan, wat is de grootte van de verza-
melingen die “het meest op hen lijken”? Dat is, wat is de grootte van de
grootste partiéle t-spreads en de grootte van de kleinste t-bedekkingen van

PG(n,q) of P?

Reeds een stapje verder kan men zich het volgende afvragen.

Vraag C.3.3 Wat zijn de mogelijke groottes van maximale partiéle t-spreads
en minimale ¢-bedekkingen in PG(n, q) of P?

Wat betreft Vraag C.3.1 kan volgende opmerking gemaakt worden. Indien
PG(n,q) of P een t-spread heeft, dan is |PG(¢, ¢)| een deler van |PG(n,q)|
of |P].

In het geval van de projectieve ruimten, is het welbekend dat deze de-
lingsvoorwaarde equivalent is met de voorwaarde dat ¢ + 1 een deler is van
n+ 1. Meer zelfs, deze nodige voorwaarde is voldoende: PG(n, q) heeft een
t-spread als en slechts als £ + 1 een deler is van n + 1.

In het geval van polaire ruimten worden equivalente delingsvoorwaar-
den die gemakkelijker hanteerbaar zijn opgesteld in Stelling C.3.15. In het
bijzondere geval van spreads van de polaire ruimten gaan deze delingsvoor-
waarden steeds op en wordt de grootte van een hypothetische spread gegeven
in Tabel 4.1. In dit geval echter, is de nodige voorwaarde (die voldaan is)
niet voldoende om het bestaan van een spread te garanderen. In Tabel 4.2
wordt een overzicht gegeven van de gekende (niet-)existentieresultaten voor
spreads van eindige klassieke polaire ruimten.

In Hoofdstuk 4 wordt voornamelijk naar Vraag C.3.3 gekeken in het geval
dat de delingsvoorwaarde voor het bestaan van een t-spread van de projec-
tieve ruimte of eindige klassieke polaire ruimte vervuld is.

C.3.1 Partiéle t-spreads in projectieve ruimten
Volgende stelling geeft het verband tussen partiéle ¢-spreads en minihypers.

Notatie C.3.4 Indien a en b twee gehele getallen zijn, dan wordt “a deelt
b” kortweg voorgesteld door “alb”.
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Stelling C.3.5 Zij S' een partiéle t-spread van PG(n,q), (t + 1)|(n + 1),
met deficiéntie 0 < q en zij F' de verzameling gaten van S. Dan is F een
{0v11, Ovy; n, q}-minihyper.

Bijgevolg kunnen de resultaten over minihypers uit Hoofdstukken 2 en 3
gebruikt worden om enkele observaties aangaande de structuur van partiéle
t-spreads te maken.

Stelling C.3.6 Onderstel dat (t+1)|(n+1) en zij S’ een mazimale partiéle
t-spread met deficiéntie 0 in PG(n,q).

1. Als § > 0, dan is 6 > ¢,.

2. Als ¢ > 16 ecen kwadraat is en als 6 < ¢**/\/2 + 1, dan is § =
0 (mod /g + 1) en is de verzameling gaten een disjuncte unie van
deelmeetkunden PG(2t 4 1,,/q). Als bovendien 6 > 0 en n < /g + 1,
dan is 6 > 2(\/q +1).

Deze resultaten zijn veralgemeningen van de Metsch-Storme resultaten [87]
over maximale partiéle 1-spreads in PG(3, ¢) en maximale partiéle ¢t-spreads
in PG(2t + 1, q). Zij zijn veralgemeningen in die zin dat ze geldig zijn voor
partiéle t-spreads in PG(n, ¢) voor elke ¢ en n waarvoor (t+1)|(n+1). Voor
n = 2t+1 echter, zijn de grenzen op J uit de stellingen van Metsch en Storme
beter.

C.3.2 t-Bedekkingen in projectieve ruimten

Eerst worden de resultaten op minihypers uit Hoofdstuk 2 toegepast op t-
bedekkingen van PG(n,q) om een karakterisering van de verzameling meer-
voudige punten te bekomen.

Vervolgens worden kleine rechtenbedekkingen van PG(4, ¢) bestudeerd.

Toepassingen van de minihyperresultaten

Volgende stelling toont aan dat de meervoudige punten van een ¢-bedekking
op een bijzondere wijze verdeeld zijn over de projectieve ruimte.

Stelling C.3.7 ZijC een t-bedekking van PG(n, q), (t+1)|(n+1), met exces
e < q. Zij F de verzameling van meervoudige punten van C en zij w(P) =
surplus(P) voor P € PG(n,q). Danis (F,w) een {cvi41, cvi; n, q}-minihyper.

Bijgevolg kunnen de resultaten over minihypers uit Hoofdstuk 2 gebruikt
worden om enkele observaties aangaande de structuur van t-bedekkingen te
maken.
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Stelling C.3.8 Onderstel dat (t + 1)|(n + 1) en dat ¢ < ¢,. Als C een t-
bedekking is van PG(n,q) met exces €, dan vormen de meervoudige punten
een som van € t-ruimten.

Opmerking C.3.9 Deze stelling was reeds bewezen in het bijzondere geval
van rechtenbedekkingen van PG(3, ¢) door Blokhuis et al. in [21].

Tevens worden voorbeelden van minimale rechtenbedekkingen (uit [21])
in PG(3,¢q) met exces ¢ voor elke ¢ € {0,1,...,¢ — 1} U{0,2,4,...,2q}
gebruikt om minimale (2n — 1)-bedekkingen van PG(4n — 1,¢q) te bekomen.

Kleine rechtenbedekkingen van PG(4,q)

Het is geweten dat een rechtenbedekking van PG (4, ¢) uit ten minste ¢>+q+1
rechten bestaat, in welk geval er een punt P bestaat dat exact ¢ + 1 maal
bedekt wordt, terwijl alle andere punten juist één maal bedekt worden.
Wat gebeurt er als een bedekking één rechte meer bevat? Volgende
stelling toont hoe de meervoudige punten gedistribueerd zijn over PG(4, q).

Stelling C.3.10 Onderstel dat C een rechtenbedekking van PG(4,q) is van
grootte ¢ + q +2. Dan zijn de meervoudige punten van PG(4,q) op één van
de volgende manieren verspreid over PG(4,q).

1. Er bestaat een punt P met surplus q en er bestaat een rechte scheef
aan P waarop elk punt surplus 1 heeft.

2. Er bestaat een punt P met surplus ¢+ 1 en een rechte door P waarop
elk punt verschillend van P surplus 1 heeft.

3. De orde van het veld waarover gewerkt wordt is 2, dat is ¢ =2 en er
zign vigf punten met surplus 1 die een elliptische kwadriek Q™ (3,q) in
een hypervlak vormen.

Opmerking C.3.11 1. Er bestaan rechtenbedekkingen van PG(4,q)
waarvan de meervoudige punten verdeeld zijn over PG(4, ¢) als in gevallen
1 en 2 van voorgaande stelling. Het volstaat een rechtenbedekking van
PG(4, ¢) met minimale kardinaliteit ¢*+¢+1 te nemen en er een rechte
scheef aan, respectievelijk door, het unieke meervoudige punt aan toe
te voegen. Zo een bedekking is echter niet minimaal. Verderop worden
minimale voorbeelden geconstrueerd.

2. Aangezien in geval 3 van voorgaande stelling de verzameling van
meervoudige punten geen rechte bevat, zal een rechtenbedekking van
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grootte 12 in PG(4,2) met een dergelijke verzameling van meervoudige
punten steeds minimaal zijn. Een computerzoektocht, gebruik makende
van het pakket PG [36] voor het computeralgebrasysteem GAP [52],
toont aan dat dergelijke bedekkingen wel degelijk bestaan. De imple-
mentatie van deze zoektocht kan gevonden worden op de webpagina
http://cage.rug.ac.be/ pg/thesis/.

Startende van een reguliere vlakkenspread van PG(5, ¢) kunnen minimale
bedekkingen van PG(4, q) geconstrueerd worden. Onderstel dat PG(4, ¢) in-
gebed is in PG(5, ¢) en beschouw een reguliere vlakkenspread van PG(5, q).
Door de doorsnijding van de reguli van de vlakkenspread met PG(4, q) te be-
kijken en dan één of meerdere rechtenreguli in deze doorsnede te “switchen”,
dat wil zeggen de rechtenregulus te vervangen door zijn tegengestelde rechten-
regulus, kunnen minimale rechtenbedekkingen van PG(4, ¢) van verschillende
groottes bekomen worden.

Stelling C.3.12 Er bestaan minimale rechtenbedekkingen met grootte q® +
q+ 1+« in PG(4,q) voor alle a uit {0,1,...,¢*}.

C.3.3 t-Spreads in eindige klassieke polaire ruimten

Indien een eindige klassieke polaire ruimte P een t-spread heeft, dan is
|PG(t, q)| een deler van |P|. Daar deze delingsvoorwaarde niet erg overzichtelijk
is, wordt een equivalente maar veel eenvoudigere voorwaarde opgesteld. Om
deze vereenvoudiging door te voeren, wordt eerst een hulpstelling bewezen.

Notatie C.3.13 De grootste gemene deler van twee natuurlijke getallen a
en b, niet beide nul, wordt met (a,b) genoteerd.

Lemma C.3.14 Onderstel dat a en b natuurlijke getallen zijn met a+b > 1.
Dan is

¢ +1 als a/(a,b) oneven is en b/(a,b) even is,
d=1 als q even 1is,
d =2 als g oneven 1s.

a b_ 1) —
(¢"+1,¢"—-1) d in de overige gevallen, met {

Hiervan gebruik makend, wordt volgende stelling bewezen.

Stelling C.3.15 Onderstel dat P een eindige klassieke polaire ruimte is die
een t-spread heeft. Indien P

1. een symplectische ruimte Wa,+1(q) is, dan (t +1)|(2n + 2);

2. een parabolische kwadriek Q(2n,q) is, dan (t 4+ 1)|(2n);
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3. een hyperbolische kwadriek Qt(2n + 1,q) is, dan (t + 1)|(n + 1),
4. een elliptische kwadriek Q~(2n + 1, q) is, dan (t + 1)|n;

5. een Hermitische variéteit H(2n, ¢*) is, dan (t + 1)|n;

6. een Hermitische variéteit H(2n + 1,4°) is, dan (t +1)|(n+ 1).

Deze stelling heeft een aantal interessante gevolgen.

Gevolg C.3.16 1. Als P = Wa,y1(q) en t even is, dan heeft P een
t-spread als en slechts als (t + 1)|(2n + 2).

2. Als t even is en P = Q(2n,q) en ofwel n > 2 en q even is, ofwel
n =3 en q een oneven priem is, ofweln = 3, q oneven is en ¢ =0 of 2
(mod 3), dan heeft P een t-spread als en slechts als (t + 1)|(2n).

3. Als P =Q"(2n+1,q) en ofweln =1, ofweln =2n"+1,n" > 1 en
q even is, ofwel n = 3 en q oneven en priem is, ofwel n = 3, q oneven
is en ¢ = 0 of 2 (mod 3), dan heeft P een t-spread als en slechts als
(t+1Dl(n+1).

4. AlsP=Q (2n+1,q) en ofwel n = 2, ofwel n > 2 en q even is, dan
heeft P een t-spread als en slechts als (t + 1)|n.

C.3.4 Partiéle t-spreads in polaire ruimten

Net zoals in het projectieve geval zijn de gaten van een partiéle t-spread in
een eindige klassieke polaire ruimte op een bijzondere wijze verdeeld.

Stelling C.3.17 Zij P een klassieke polaire ruimte in PG(n, q) wiens grootte
een t-spread toelaat, i.e., die voldoet aan Stelling C.3.15. Als S8’ een partiéle
t-spread van P is met deficiéntie 6 < q, dan vormt de verzameling F van
gaten een {0viy 1, dvg; n, q}-minihyper.

Weerom kunnen de resultaten van Hoofdstukken 2 en 3 toegepast worden.

Gevolg C.3.18 Zij P een eindige klassieke polaire ruimte in PG(n, q) wiens
grootte een t-spread toelaat. Onderstel dat q even is als P = W,(q).

1. Elke partiéle t-spread 8" met deficiéntie § < €, van P kan uitgebreid
worden tot een t-spread van P.
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2. Onderstel dat g > 16 een kwadraat is en § < ¢**/v/2+1. Als S een
maximale partiéle t-spread van P met deficiéntie 0 is, dan vormt de
verzameling gaten een unie van paarsgewijs disjuncte deelmeetkunden

PG(2t +1,./7).

Gebruik makend van het gewichtsargument van Blokhuis en Metsch [19]
kan volgend gevolg bewezen worden.

Gevolg C.3.19 Als ¢ > 16 een kwadraat is, n < \/q, (t +1)|(2n + 2), en
S’ een mazximale partiéle t-spread is van Wa,11(q), q even, met deficiéntie
§ < ¢*®/V2+1, dan is § = k(\/q+ 1) voor een welbepaalde k > 2 en vormt
de verzameling gaten een unie van k paarsgewijs disjuncte deelmeetkunden

PG(2t +1,./7).

Gevolg C.3.18 behandelt het geval P = W,,(¢q), ¢ oneven, niet. Dit geval
wordt apart behandeld en een resultaat dat sterk gelijkt op het resultaat
voor partiéle ovoiden van de veralgemeende zeshoek H(q), zie Stelling C.4.9,
wordt bekomen.

Gevolg C.3.20 Zij 8’ een maximale partiéle n-spread van Wa,11(q), q on-
even, met deficiéntie . Onderstel ofwel dat 6 < €, ofwel dat ¢ > 16 een
kwadraat is en 6 < ¢®/®/+/2+ 1. Dan is § even.

C.3.5 t-Bedekkingen in polaire ruimten

Eerst worden de resultaten over minihypers uit Hoofdstuk 2 toegepast op
t-bedekkingen van eindige klassieke polaire ruimten. Vervolgens wordt de
uniciteit van de kleinste rechtenbedekking van Q(4,3) bewezen.

Toepassing van de resultaten over minihypers

Nogmaals vinden we een bijzondere structuur terug bij de verdeling van de
meervoudige punten van een t-bedekking.

Stelling C.3.21 Zij P een eindige klassieke polaire ruimte in PG(n, q) wiens
grootte een t-spread toelaat. Als C een t-bedekking is van P met exces € < q,
dan definieert de gewichtsfunctie w(P) = surplus(P) voor P € P en w(P) =
0 voor P & P een {cviy1,ev4; 1, q}-minihyper (F,w), met F' de verzameling
van de meervoudige punten van C.

De resultaten uit Hoofdstuk 2 kunnen toegepast worden.
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Gevolg C.3.22 Zij P een eindige klassieke polaire ruimte in PG(n, q) wiens
grootte een t-spread toelaat. Als C een t-bedekking is van P met exces € < €,
dan is de functie surplus de gewichtsfunctie geinduceerd op de puntenverza-
meling van P door een som van § t-ruimten.

Opmerking C.3.23 Dit gevolg was reeds bewezen door Eisfeld et al. [49]
in het bijzondere geval dat P een eindige klassieke veralgemeende vierhoek
is en C een rechtenbedekking is van P.

De kleinste bedekking van (4, 3)

Er wordt bewezen dat het gekende voorbeeld van een kleinste bedekking van
Q(4, 3) uniek is.

Stelling C.3.24 FEen bedekking C van Q(4,3) heeft ten minste grootte 11.
Indien C een bedekking is van Q(4,3) bestaande uit 11 rechten, dan bestaan
er twee disjuncte rechten l en m op Q(4,3) zodat C bestaat wit

e de rechten verschillend van [ die | snijden maar niet m, en

e de rechten verschillend van [ uit de requlus op Q(4,3) die zowel I als m
bevat.

C.4 Partiéle ovoiden en blokkerende verza-
melingen

In Hoofdstuk 5 worden verschillende resultaten over partiéle ovoiden en blok-
kerende verzamelingen bewezen. Sommige daarvan zijn toepassingen van
de classificatiestellingen over minihypers uit Hoofdstukken 2 en 3. Deze
werden gepubliceerd in Furopean Journal of Combinatorics in P. Govaerts,
L. Storme en H. Van Maldeghem, On a particular class of minithypers and
its applications. III. Applications [57].

Zij P,, een eindige klassieke polaire ruimte van rang k in PG(m, ¢*), met
¢* = ¢? indien P, een Hermitische variéteit is en ¢* = ¢ in de andere gevallen.
Een partiéle ovoide O van P,, is een verzameling punten van P, zodat geen
enkele generator van P, meer dan één punt van O" bevat. Een blokkerende
verzameling B van P,, is een verzameling punten van P, die een niet-ledige
doorsnede heeft met elke generator van P,,. Een verzameling O van punten
van P,, die zowel een partiéle ovoide als een blokkerende verzameling is,
wordt een ovoide van P, genoemd. De grootte van een hypothetische ovoide
van P, wordt hier aangeduid met o(P,,) en wordt gegeven in Tabel 5.1. In
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Tabel 5.2 wordt een overzicht gegeven van die gevallen waar het gekend is of
P,, al dan niet een ovoide bezit.

De deficiéntie van een partiéle ovoide is het aantal elementen dat ze min-
der heeft dan een ovoide, terwijl het exces van een blokkerende verzameling
het aantal elementen is dat ze meer heeft dan een ovoide.

C.4.1 Ovoiden op Q(6,q)

In de theorie van minimale ¢t-voudige blokkerende verzamelingen spelen zo-
genaamde t mod p resultaten een belangrijke rol. Dergelijke resultaten be-
schrijven “hoe” een deelruimte een minimale ¢-voudige blokkerende verza-
meling snijdt: in ¢ (mod p) punten. Zij zorgen ervoor dat de blokkerende
verzamelingen meer handelbaar worden en maakten reeds verscheidene clas-
sificatieresultaten mogelijk.

Het is te verwachten dat vergelijkbare resultaten voor andere objecten
even nuttig zullen blijken. Ball [5] bewees een 1 mod p resultaat voor ovoiden

van de kwadriek Q(4,q).

Stelling C.4.1 (Ball [5]) Zij O een ovoide van Q(4,q), ¢ = p*, p priem.
FElke elliptische kwadriek Q~(3,q) op Q(4,q) snijdt O in 1 (mod p) punten.

Om volgende stelling te bewijzen werd gebruik gemaakt van de voor-
gaande.

Stelling C.4.2 Een ovoide O van Q(6,q), ¢ = p", p priem, snijdt elke el-
liptische kwadriek Q~(5,q) op Q(6,¢q) in 1 (mod p) punten.

Opmerking C.4.3 Het is niet nodig een gelijkaardig resultaat voor para-
bolische kwadrieken in hoger-dimensionale ruimten te bewijzen, aangezien
dergelijke kwadrieken geen ovoiden hebben, zie Tabel 5.2.

C.4.2 Inductieve stellingen

Inductieve stellingen worden bewezen die toelaten ondergrenzen op de grootte
van blokkerende verzamelingen, respectievelijk bovengrenzen op de grootte
van partiéle ovoiden, van eindige klassieke polaire ruimten in een gegeven di-
mensie om te zetten naar ondergrenzen op de grootte van blokkerende verza-
melingen, respectievelijk bovengrenzen op de grootte van partiéle ovoiden,
van eindige klassieke polaire ruimten in hogere dimensies. Hiertoe wordt een
dubbeltelling uitgevoerd die werkt voor alle eindige klassieke polaire ruimten
en zowel voor blokkerende verzamelingen als voor partiéle ovoiden.
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Stelling C.4.4 Onderstel dat P,, een eindige klassieke polaire ruimte is en
dat, indien P, = H(2n,q¢*), dan n > 2; indien P,, = H(2n + 1,¢?), dan
n > 1; indien P, = Q= (2n + 1,q), dan n > 2; indien P,, = Q(2n,q), dan
n > 2; indien P,, = QT (2n + 1,q), dan n > 3; indien P, = Wa,i1(q),
dan n > 1. Als elke blokkerende verzameling van P,, ten minste grootte
o(Pm) + € heeft, dan heeft voor elke i > 0 elke blokkerende verzameling van
Posoi ten minste grootte o(Po,y2:) + (¢* — 1)'e, waarbij ¢ = ¢* indien P,
een Hermitische variéteit is en ¢* = q in de andere gevallen.

Stelling C.4.5 Onderstel dat P,, een eindige klassieke polaire ruimte is en
dat, indien P,, = H(2n,q¢*), dan n > 2; indien P,, = H(2n + 1,¢?), dan
n > 1; indien P, = Q= (2n + 1,q), dan n > 2; indien P,, = Q(2n,q), dan
n > 2; indien P, = QT (2n+ 1,q), dan n > 3; indien P,, = Wa,11(q), dan
n > 1. Als elke partiéle ovoide van Py, ten hoogste grootte o(P,,) — & heeft,
dan heeft voor elke © > 0 elke partiéle ovoide van P,,.2; ten hoogste grootte
0(Priai) — (¢* — 1), waarbij ¢* = ¢* indien P,, een Hermitische variéteit
1s en ¢* = q in de andere gevallen.

Ook Klein bewees een stelling die toelaat grenzen voor partiéle ovoiden om
te zettten naar grenzen voor partiéle ovoiden in hoger-dimensionale ruimten.

Stelling C.4.6 (Klein [77]) Zij O(P) de grootte van de grootste partiéle
ovoiden van de eindige klassieke polaire ruimte P.

(i) Voorn>3,0(Q " (2n+1,9)) < -LE-(0(Q~(2n—1,9)) — 2) + 2.

qn—1+1

(i) Voorn >2, O(Wan1(q)) < A (0(Wani(q)) — 2) +2.

C.4.3 Partiéle ovoiden
Partiéle ovoiden van H(4, ¢°)

Resultaten over veralgemeende vierhoeken, zie Payne en Thas [91], worden
aangewend om bovengrenzen op de grootte van partiéle ovoiden van H(4, ¢%)
te bekomen.

Als eerste stap wordt bewezen dat H(4, ¢*) geen maximale partiéle ovoide
van grootte ¢° — ¢ heeft.

Stelling C.4.7 H(4, ¢*) heeft geen mazimale partiéle ovoide van grootte q° —
q.

Deze stelling werd onafhankelijk bewezen door K. Thas in [119].
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Gebruik makend van een uitbreidbaarheidsresultaat voor partiéle ovoiden
van H(3, ¢%) dat een eenvoudig gevolg is van de stellingen uit het voorgaande
hoofdstuk, wordt dan een substantiéle verbetering aangebracht op de gekende
bovengrens voor de grootte van partiéle ovoiden van H(4, ¢?).

Stelling C.4.8 Indien O een partiéle ovoide van H(4,¢*) is, dan is |O'] <
¢° — (4g — 1)/3.

Partiéle ovoiden van de split Cayley hexagon

Voor informatie over veralgemeende zeshoeken, zie Van Maldeghem [123].
Gebruik makend van Gevolg C.3.18 wordt aangetoond dat een partiéle
ovoide van de split Cayley hexagon H(q) met kleine deficiéntie een even
deficiéntie heeft. Om dit aan te tonen wordt gebruik gemaakt van het feit
dat H(q) bestaat uit punten en rechten van de kwadriek Q(6,¢) en van het
feit dat de rechten van H(q) door een punt van H(q) een vlak vormen op de

kwadriek Q(6, q).

Stelling C.4.9 Indien de deficiéntie 0 van een mazimale partiéle ovoide
van H(q) kleiner is dan €,, of indien q een kwadraat is en § kleiner is dan
¢®* /2 + 1, dan is § even.

Gevolg C.4.10 Een parti¢le ovoide van H(q), q even, bevat ten hoogste ¢*>—1
punten.

Er wordt aangetoond dat voor ¢ = 2 deze grens scherp is door, gebruik
makend van de voorstelling van Van Maldeghem [124] voor H(2), een partiéle
ovoide van H(2) met grootte 7 te construeren.

Meer grenzen

In Subsectie 5.4.3 worden gekende resultaten aangaande de grootte van de
grootste partiéle ovoiden van eindige klassieke polaire ruimten verzameld.
Tevens worden Stellingen C.4.5 en C.4.6 gebruikt om gekende grenzen op te
tillen naar hogere dimensies. Bovendien worden de nieuw-bekomen resultaten
vergeleken met de Blokhuis-Moorhouse grenzen.

C.4.4 Blokkerende verzamelingen
Een kleine blokkerende verzameling op Wy, 1(q)

Dualiseren van Stelling C.3.24 levert volgend resultaat op.



C.5. Cameron-Liebler rechtenverzamelingen 149

Stelling C.4.11 FEen blokkerende verzameling B van W3(3) heeft ten minste
grootte 11. Indien |B| = 11, dan bestaan er twee punten P en Q@ op W3(3),
P+ Q, zodat B bestaat uit:

e de punten van P\ (Q+ U{P}), en
o de punten van {P,Q}*\ {P}.

Deze constructie wordt veralgemeend tot een constructie voor willekeurige
n en q.

Stelling C.4.12 De symplectische ruimte Wa,1(q) heeft een blokkerende
verzameling met grootte ¢"t' + ¢" — ¢" 1.

Opmerking C.4.13 1. Op dit moment wordt nagegaan of, in het geval
q = 3, deze blokkerende verzameling de kleinste blokkerende verzame-
ling van Wy, 11(q) is.

2. Het is geweten, zie Metsch [86], dat voor ¢ even er kleinere blokke-
rende verzamelingen van Wy, 1(q) bestaan.

Meer grenzen

In Subsectie 5.5.2 worden gekende resultaten aangaande de grootte van de
kleinste blokkerende verzamelingen van eindige klassieke polaire ruimten
verzameld.

C.5 Cameron-Liebler rechtenverzamelingen

Cameron-Liebler rechtenverzamelingen werden door Cameron en Liebler [32]
ingevoerd in een poging de collineatiegroepen van PG(n,q) te bepalen die
evenveel banen op de puntenverzameling als op de rechtenverzameling hebben.
In hun artikel voorspelden ze welke groepen dit zouden zijn en het is nu
geweten (T. Penttila, mondelinge communicatie, 2002) dat hun vermoeden
juist is. Er bestaat echter nog geen classificatie van de Cameron-Liebler
rechtenverzamelingen. In Hoofdstuk 6 worden enkele nieuwe niet-existentie
resultaten bewezen. Op Stelling C.5.12 na, werden deze verzameld in het
manuscript P. Govaerts en L. Storme, On Cameron-Liebler line classes, dat
opgestuurd is ter publicatie in Advances in Geometry.

Definitie C.5.1 Een Cameron-Liebler rechtenverzameling is een verzame-
ling rechten in PG(3, ¢) die elke spread van PG(3, ¢) in een vast aantal = van
rechten snijdt.
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Penttila [92] definieert een cligue in PG(3, ¢) als zijnde een verzameling
van rechten, ofwel van de vorm star(P), dit is, alle rechten door een punt
P van PG(3, q), ofwel van de vorm line(7), dit is, alle rechten in een vlak 7
van PG(3,¢). De waaier van rechten in een vlak 7 door een punt P wordt
genoteerd met pen(P, ).

Cameron-Liebler rechtenverzamelingen hebben verschillende interessante
intersectie-eigenschappen. Verschillende van deze definiéren hen. Hieronder
worden er twee vermeld.

Eigenschap C.5.2 (Cameron en Liebler [32], Penttila [92]) Zij £ een
verzameling rechten in PG(3, ¢) en zij x, haar karakteristieke functie. Dan
is L een Cameron-Liebler rechtenverzameling als en slechts als één van de
volgende equivalente voorwaarden vervuld is.

1. Er bestaat een geheel getal x zodat voor elk incident punt-rechte paar
(P, ) volgende gelijkheid geldt:

Istar(P) N L| + [line(m) N L| =z + (¢ + 1)|pen(P,m) N L|.  (C.1)

2. Er bestaat een geheel getal = zodat voor elke rechte [ van PG(3, q)
[{m € L :msnijdt [,m £ 1} = (¢+ Dz + (¢* — )xe(l). (C2)

Het geheel getal = uit elk van deze eigenschappen is hetzelfde en is
gelijk aan het getal x uit Definitie C.5.1. Het wordt de parameter van
de Cameron-Liebler rechtenverzameling genoemd. Uit Definitie C.5.1 volgt
dat z € {0,1,2,...,¢°> + 1}. Cameron en Liebler [32] bewezen dat een
Cameron-Liebler rechtenverzameling met parameter z bestaat uit z(¢*+q+1)
rechten en dat de enige Cameron-Liebler rechtenverzamelingen voor x = 1
de cliques zijn en voor x = 2 de unies van twee disjuncte cliques. Zij merk-
ten ook op dat het complement van een Cameron-Liebler rechtenverzameling
met parameter x een Cameron-Liebler rechtenverzameling is met parame-
ter ¢> + 1 — x. Het volstaat dus Cameron-Liebler rechtenverzamelingen met
parameter x < |(¢*> +1)/2] te bestuderen. Bijgevolg was het geval ¢ = 2 on-
middellijk opgelost. In hun artikel formuleerden Cameron en Liebler hun ver-
moeden dat er geen andere Cameron-Liebler rechtenverzamelingen bestaan.

Penttila [92] toont aan dat voor ¢ # 2 er geen Cameron-Liebler rechten-
verzamelingen met x = 3 of x = 4 bestaan, met eventuele uitzonderingen
voor (z,q) € {(4,3), (4,4)}. Bruen en Drudge [28] bewijzen het niet-bestaan
van Cameron-Liebler rechtenverzamelingen met parameter 2 < x < /g
Drudge [43] voegt hier het niet-bestaan van Cameron-Liebler rechtenverza-
melingen met parameter z = 4 in PG(3, 3) aan toe en bewijst dat voor ¢ # 2
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er geen Cameron-Liebler rechtenverzamelingen met parameter 2 < z < ¢,
bestaan, met ¢+ ¢, de grootte van de kleinste niet-triviale blokkerende verza-
melingen in PG(2,¢q). Hij geeft ook een tegenvoorbeeld voor het vermoeden
van Cameron en Liebler: een Cameron-Liebler rechtenverzameling met pa-
rameter x = 5 in PG(3,3), hiermede het geval ¢ = 3 afsluitend. Bruen en
Drudge [29] construeren een Cameron-Liebler rechtenverzameling met para-
meter x = (¢*> + 1)/2 voor elke oneven priemmacht g.

In Hoofdstuk 6 worden nieuwe grenzen op x voor het niet-bestaan van
Cameron-Liebler rechtenverzamelingen bewezen. In Tabel 6.1 wordt een
overzicht gegeven van de (niet-)existentieresultaten (inclusief de nieuwe) voor
Cameron-Liebler rechtenverzamelingen.

De nieuwe grenzen worden bekomen door te bestuderen hoe de rechten
van de Cameron-Liebler rechtenverzameling verdeeld zijn over de cliques van
PG(3, q). Hierbij wordt de benadering van Drudge [43] gevolgd. Een clique
C en zijn rechten corresponderen op volgende wijze met een projectief vlak
en haar rechten. Indien C = star(P), dan volstaat het de quotiéntruimte van
P te nemen. Indien C = line(w), dan kan het duale vlak genomen worden.
Op deze manier corresponderen de rechten van een rechtenverzameling in een
clique met een verzameling punten in een vlak.

Volgende twee lemma’s tonen hoe (meervoudige) blokkerende verzamelin-
gen opduiken in de studie van Cameron-Liebler rechtenverzamelingen.

Lemma C.5.3 (Drudge [43]) Zij L een Cameron-Liebler rechtenverzame-
ling met parameter x. Indien C een clique is waarvoor x < |CNL| < g+z, dan
vormt C N L een blokkerende verzameling B in C. Indien er geen Cameron-
Liebler rechtenverzamelingen met parameter x — 1 bestaan, dan is B niet
triviaal.

Dit lemma wordt veralgemeend naar meervoudige blokkerende verza-
melingen.

Lemma C.5.4 Zij L een Cameron-Liebler rechtenverzameling met parame-
ter x. Indien C een clique is waarvoor x + a(q + 1) < |C N L|, dan vormt
CNL een (o + 1)-voudige blokkerende verzameling B in C.

Gebruik makend van gekende resultaten over (meervoudige) blokkerende
verzamelingen worden vervolgens tegenstrijdigheden opgezocht om het niet-
bestaan van Cameron-Liebler rechtenverzamelingen met bepaalde parameters
r aan te tonen.

Voor het algemene geval (geen restricties op ¢) wordt volgende stelling
bekomen.
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Stelling C.5.5 In PG(3,q), q > 2, bestaan er geen Cameron-Liebler rech-
tenverzamelingen met parameter 2 < x < 2¢, — 2.

Gevolg C.5.6 In PG(3,q), q een priem, q > 2, bestaan er geen Cameron-
Liebler rechtenverzamelingen met parameter 2 < x < q.

Onder extra voorwaarden voor ¢ worden verbeteringen op deze algemene
stelling bekomen.

Stelling C.5.7 InPG(3,q), q een kwadraat, bestaan er geen Cameron-Liebler
rechtenverzamelingen met parameter 2 < x < min(e’q —1,¢%*), waarbij q+e;
de grootte van de kleinste niet-triviale blokkerende verzamelingen in PG(2, q)
aanduidt die geen Baer deelvlak bevatten.

Stelling C.5.8 Zij ¢ = ¢ = p*", p > 7 priem, hg > 1 oneven, en zij ¢+ €
de grootte van de kleinste niet-triviale blokkerende verzamelingen in PG(2, q)
die noch een minimale blokkerende verzameling van grootte ¢ + g2 + 1, noch
één van grootte q+q2+qo+1, bevatten. In PG(3,q) bestaan er geen Cameron-
Liebler rechtenverzamelingen met parameter 2 < x < min(e;’ —1,¢%%).

Stelling C.5.9 Zij ¢ = q3 = p', p > 7 priem, ho > 1 even, en zij q + €
de grootte van de kleinste niet-triviale blokkerende verzamelingen in PG(2, q)
die noch een Baer deelvlak, noch een minimale blokkerende verzameling van
grootte g+ g2 + 1, noch één van grootte ¢+ 3 + qo + 1, bevatten. In PG(3,q)
bestaan er geen Cameron-Liebler rechtenverzamelingen met parameter 2 <
r < min(e; — 1, @M.

Tevens wordt het kleinste open geval, het al dan niet bestaan van Cameron
Liebler rechtenverzamelingen met parameter 4 in PG(3,4) opgelost. Hiertoe
wordt een lemma bewezen dat strenge restricties geeft op het mogelijk aantal
rechten in een clique.

Lemma C.5.10 Zij L een Cameron-Liebler rechtenverzameling met para-
meter x. Er bestaat een natuurliygk getal 0 < o < x zodat er een punt bestaat
waardoor er precies o rechten van C gaan en zodat

1. woor elk punt P: |star(P) N L] =« (mod g+ 1), en
2. woor elk vlak 7: |line(m) N L] =2 — a (mod ¢+ 1).

Opmerking C.5.11 Dit lemma toont aan dat ook voor Cameron-Liebler
rechtenverzamelingen, er een soort “mod (g + 1) eigenschap” geldt, gelijkend
op de 1 mod p en t mod p resultaten voor minimale 1-voudige en t-voudige
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blokkerende verzamelingen in PG(2, ¢), ¢ = p", p priem, en de 1 mod p resul-
taten voor ovoiden van Q(4, q) en Q(6, q), ¢ = p", p priem, zie Stellingen C.4.1
en C.4.2. In het geval van de Cameron-Liebler rechtenverzamelingen echter,
ontbreekt de exacte waarde voor « in Lemma C.5.10.

Tevens wordt een classificatieresultaat, Stelling C.6.2, voor tweevoudig
blokkerende verzamelingen, dat bewezen wordt in Bijlage A, aangewend om
volgende stelling te bekomen.

Stelling C.5.12 FEr bestaan geen Cameron-Liebler rechtenverzamelingen met
parameter v = 4 in PG(3,4).

C.6 Twee resultaten over blokkerende verza-
melingen

In Bijlage A worden twee stellingen over blokkerende verzamelingen bewezen
die op andere plaatsen in de thesis gebruikt werden.

C.6.1 Kleine blokkerende verzamelingen in PG(n,q)

Om Stelling C.2.12 te bewijzen, was een resultaat nodig dat aantoont dat
“kleine” blokkerende verzamelingen in PG(n,q), ¢ = p" een kwadraat, een
blokkerende verzameling in een vlak bevatten. Een dergelijke stelling bestaat,
zie Storme en Weiner [105], maar jammer genoeg wordt het in [105] niet
bewezen voor de gevallen p = 2 of p = 3. Gebruik makend van de technieken
uit [105], wordt in de appendix het resultaat uit [105] bewezen voor elk
kwadraat ¢ > 16, evenwel onder een strengere voorwaarde op de grootte van
de blokkerende verzamelingen. De stelling die bekomen wordt luidt als volgt.

Notatie C.6.1 Zij p een priem. Danis ¢, =27 /3 als p € {2,3} en ¢, =1
als p > 3.

Stelling C.6.2 Als B een blokkerende verzameling is in PG(n,q), n > 3,
q > 16 een kwadraat, ¢ = p", p priem, met |B| < q+cpq2/3, dan bevat B een
blokkerende verzameling in een viak.

C.6.2 De kleinste tweevoudig blokkerende verzamelin-
gen in PG(2,4)

In het bewijs van Stelling C.5.12 wordt de classificatie van de tweevoudige
blokkerende verzamelingen van grootte 12 in PG(2,4) gebruikt. Deze classi-
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ficatie wordt uitgevoerd in Sectie A.2 en levert volgend resultaat op.

Stelling C.6.3 Onderstel dat B een 2-voudige blokkerende verzameling van
grootte 12 in PG(2,4) is. Dan is één van de volgende twee mogelijkheden
vervuld.

1. De verzameling B bevat de unie van de puntenverzamelingen van twee
rechten die snijden in een punt P en drie punten buiten deze unie, één
op elk van de drie resterende rechten door P.

2. Er bestaan drie rechten ly, ls en ly door een punt P en een vierde
rechte | niet door P zodat B bestaat uit de punten van l; \ 1, i = 1,2,3,
en de twee punten van l op geen van de rechten l;, i € {1,2,3}.

Deze blokkerende verzamelingen worden weergegeven in Figuur A.2.

Gevolg C.6.4 Op isomorfisme na ziyn er exact drie 2-voudige blokkerende
verzamelingen van grootte 12 in PG(2,4). Indien B zo een blokkerende ver-
zameling 1s, dan behoort B tot één van de volgende drie types.

1. De verzameling B bestaat uit de unie van de puntenverzamelingen
van drie niet-concurrente rechten.

2. Er bestaan twee rechten | en m die snijden in een punt P zodat
B bestaat wit de unie van de puntenverzamelingen van [ en m en
drie verdere niet-collineaire punten, één op elk van de drie resterende
rechten door P.

3. Er bestaan drie concurrente rechten ly, lo en l3 door een punt P en
een vierde rechte | niet door P zodat B bestaat uit de punten van l; \ [,
1 = 1,2,3, en de twee punten van | die op geen van de rechten [;,
i € {1,2,3}, gelegen zign. In dit geval is B het complement van de
kleinste unitaal, de Hermitische kromme in PG(2,4).

C.7 Maximale verzamelingen van onderling
orthogonale Latijnse vierkanten
In Bijlage B worden resultaten over partiéle spreads in PG(3, ¢) en ovoiden

van de hyperbolische kwadrieken gebruikt om maximale verzamelingen van
onderling orthogonale Latijnse vierkanten te construeren.
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De problemen die in Bijlage B bestudeerd worden, liggen eerder aan
de rand van het onderzoeksonderwerp van deze thesis, aangezien het ver-
band tussen blokkerende verzamelingen en verzamelingen orthogonale Lati-
jnse vierkanten niet onmiddellijk duidelijk is. De objecten die gebruikt
worden om de verzamelingen Latijnse vierkanten te construeren zijn echter
wel verwant aan blokkerende verzamelingen, zoals uit voorgaande secties
duidelijk moge zijn.

De resultaten uit Bijlage B werden verzameld in het artikel P. Govaerts,
D. Jungnickel, L. Storme en J. A. Thas, Some new mazimal sets of mutu-
ally orthogonal Latin squares [53] dat zal verschijnen in Designs, Codes and
Cryptography.

Het probleem dat behandeld wordt, is het bepalen van de paren (s,t)
waarvoor er een maximale verzameling van ¢ onderling orthogonale Latijnse
vierkanten van de orde s bestaat. Meer informatie over dit probleem kan
gevonden worden in [10, Hoofdstuk X] en in [33, Sectie IV.27].

Twee s x s-matrices, vierkanten van de orde s genoemd, A = (a;;) en B =
(b;j), met elementen uit de verzameling S van grootte s worden orthogonaal
genoemd indien de afbeelding e : (i,7) — (a;j,b;;) van {1,...,s}* naar S?
bijectief is.

Een vierkant A = (a;;) van de orde s met elementen uit de verzameling
S van grootte s wordt een Latijns vierkant genoemd indien de afbeeldingen

r; +j +— a;; van {1,..., s} naar S bijectief zijn voor elke i € {1,...,s} en
de afbeeldingen ¢; : i + a;; van {1,...,s} naar S bijectief zijn voor elke
j €A{1,...,s}, i.e., indien elke rij en elke kolom van A alle elementen van S
bevat.

Een verzameling van ¢ onderling orthogonale Latijnse vierkanten van de
orde s, ook t MOLS(s) genoemd, wordt mazimaal genoemd en genoteerd met
t MAXMOLS(s) indien er geen Latijns vierkant van de orde s bestaat dat
orthogonaal is aan elk vierkant uit de verzameling.

Twee manieren om MAXMOLS te construeren worden toegepast om
nieuwe voorbeelden te vinden.

De eerste constructie maakt gebruik van maximale partiéle spreads van
grootte r in PG(3,4) \ PG(3,2) om translatienetten van graad r + 3 die geen
transversalen hebben te bekomen; deze benadering levert nieuwe voorbeelden
van MAXMOLS(16).

Elke r onderling scheve rechten in PG(3,¢) kunnen beschouwd worden
als een verzameling onderling scheve deelgroepen van de orde ¢? in de addi-
tieve groep van de vectorruimte V = V' (4, ¢) (hiermee wordt bedoeld dat elke
twee van deze deelgroepen een triviale doorsnede hebben). Dit is een bijzon-
der geval van een partiéle congruentie partitie (PCP) en levert bijgevolg een
translatienet van de orde s = ¢* en graad r door de vectoren in V' als punten
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te nemen en alle getranslateerden van de r deelgroepen als rechten te ne-
men. Indien de partiéle spread waarvan vertrokken wordt maximaal is, kan
men hopen dat het geassocieerde net ook maximaal is en bijgevolg t = r — 2
MAXMOLS(s), s = ¢*, oplevert. Deze benadering werd succesvol toegepast
door Jungnickel [71, 72]. In het algemene geval is het echter mogelijk dat het
geassocieerde net uitbreidbaar is; dit is het geval als en slechts als het net
een transversaal heeft.

Zoals vermeld in Jungnickel en Storme [73], leverde een computerzoek-
tocht naar maximale partiéle spreads van PG(3,4) \ PG(3,2) het volgende
resultaat.

Propositie C.7.1 (Jungnickel en Storme [73]) Een mazimale partiéle
spread van grootte r in PG(3,4)\PG(3, 2) bestaat als en slechts als 6 < r < 10
of r = 14.

Nieuwe zoektochten tonen aan dat elke maximale partiéle spread van
grootte 6 of 7 in PG(3,4)\ PG(3,2) een translatienet oplevert van de orde 16
en graad 9 of 10, respectievelijk. Om de exhaustieve zoektochten efficiént uit
te voeren worden verschillende hulpstellingen bewezen die nagaan hoe een
eventuele transversaal aan de bekomen netten er uit zou moeten zien. Deze
hulpstellingen zijn aangepaste versies van gelijkaardige resultaten uit [73].

De computerzoektochten werden uitgevoerd met behulp van het pakket
PG [36] voor het computeralgebrasysteem GAP [52]. Hun implementatie kan
gevonden worden op de webpagina http://cage.rug.ac.be/ "pg/thesis/.
Zij leveren het volgende resultaat op.

Stelling C.7.2 Elke mazimale partiéle spread van 6 of 7 rechten in PG(3,4)\
PG(3,2) levert een translatienet van de orde 16 en graad 9 of 10, respec-
tieveligk, dat geen transversalen heeft.

Een onmiddellijk gevolg is het bestaan van de gewenste MAXMOLS(16).

Gevolg C.7.3 Er bestaan t MAXMOLS(16) voort =7 ent = 8.

Hier kan nog vermeld worden dat de geconstrueerde maximale partiéle
spreads in PG(3,4) \ PG(3,2) maximale partiéle 3-spreads in PG(7, 2) ople-
veren.

Propositie C.7.4 Er bestaan mazximale partiéle 3-spreads van grootte 9 en
10 in PG(7,2).

Opmerking C.7.5 Met behulp van gelijkaardige technieken als die hier-
boven beschreven werd gepoogd 12 MAXMOLS(16) te construeren. Het was
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de bedoeling de maximale partiéle spreads van de grootte vijf te vinden in
PG(3,4) \ ¥p UX3 UYY, met Yp, ¥y en ¥ drie onderling scheve Baer
3-deelmeetkunden PG(3,2), en te controleren of deze translatienetten ople-
veren die geen transversalen hebben. Jammer genoeg bleek dat elk dergelijk
translatienet een transversale Baer 3-deelmeetkunde heeft.

Een tweede constructiemethode levert oneindige klassen van MAXMOLS.
Bij deze constructie worden (niet-)existentieresultaten voor spreads en ovoiden
van de hyperbolische kwadrieken gebruikt om ¢**~1 — 1 MAXMOLS(¢*") te
bekomen, dit voor n > 2 en ¢ een macht van twee, en voor n = 2 en ¢ een
macht van drie. Het eerste voorbeeld doet zich voor voor ¢ =2 enn = 2, en
levert 7 MAXMOLS(16) via een computervrije methode. De exacte formu-
lering luidt als volgt.

Stelling C.7.6 Onderstel dat QT (4n—1,q) een spread heeft en dat QT (4n—+
1,q) geen ovoide heeft. Dan bestaan er ¢**~* — 1 MAXMOLS(¢*").

Gevolg C.7.7 Er bestaan ¢! —1 MAXMOLS(¢*") voor n > 2 en q even,
en voor n = 2 en q een macht van drie.
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projective triad, 9

projective triangle, 9

pseudo-polarity, 4

quadric, see variety, quadric

rank, see polar space, rank
Rédei type blocking set, 12
rich plane, 33

secant, 3
self-conjugate, 3
small blocking set, 11
solid, 1, 6
split Cayley hexagon, 94
spread
in polar space, 68
existence, 69
size, 68
in projective space, 51
regular, see t-spread, in projec-
tive space, regular
partial, see partial spread
t-spread, see t-spread
square, 121
orthogonal, 121
(s,7;1)-net, see net
standard form of
Hermitian variety, 5
quadric, 5
subspace
of affine space, 6
of projective space, 1
number of, 2

sum of subspaces, 24

surplus, see t-cover, surplus

symplectic polarity, 4

symplectic space, see classical polar
space, symplectic space

t mod p results
for blocking sets, 12
for Cameron-Liebler line classes,
110
for multiple blocking sets, 15
for Q(4,¢q), 82
for Q(6,q), 82
t-cover
in polar space, 67-70, 77-79
excess, 68
minimal, 68
multiple point, 68
surplus, 68, 77, 78
in projective space, 51, 57-58, 61—
67
excess, b7
minimal, 52
multiple point, 57
surplus, 57
t-spread
geometric, see t-spread, in projec-
tive space, geometric
in polar space, 67, 70-73
divisibility condition, 71
existence, 73
in projective space, 51
existence, 52
geometric, 53
regular, 53
partial, see partial ¢-spread
tangent, 3
tangent space to a classical polar space,
8
trace function, 5
translation group
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of translation net, 125
translation net, 124
transversal
of Latin square, 124
of net, 124
triple blocking set, 14
trivial blocking set, 9
type
of a double blocking set, 111

unital, 5, 119
unitary polarity, 4

variety, 4
definition, 4
Hermitian variety, see also classi-
cal polar space, 4
standard form, 5
quadric, see also classical polar
space, 4
standard forms, 5

weightless minihyper, see minihyper,
without weight



