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Of course it is happening inside your head, Harry,
but why on earth should that mean that it is not real?

Albus Dumbledore in Harry Potter and the Deathly Hallows, King’s Cross.

Wees moedig, vooral bij nederlaag.
Wees wilskrachtig, overwin uzelf.

Levenswet.





Ten geleide

L.S.,

De voorbije jaren heb ik onderzoek mogen verrichten naar combinatorische objec-
ten in eindige meetkundes en naar lineaire codes die afkomstig zijn van eindige
meetkundes. Het resultaat daarvan kan u in dit proefschrift lezen. Vaak is de
definitie van deze combinatorische objecten gerelateerd aan doorsnedes. Het zijn
(of ze zijn afkomstig van) verzamelingen van deelruimtes die elkaar wel of juist niet
snijden. Bij het bestuderen van de lineaire codes bekijken we vaak doorsnedes van
deelruimtes met een algebräısche variëteit, of van algebräısche variëteiten onder-
ling, telkens in de gerelateerde meetkunde. Vandaar de titel van dit proefschrift:
‘Doorsnedeproblemen in eindige meetkundes’.

Deze eindige meetkundes zijn meestal projectieve of polaire ruimtes, maar ook
designs komen aan bod. Sommige combinatorische problemen en objecten die aan
bod komen, zijn afkomstig uit de combinatoriek voor verzamelingen (bv. Erdős-Ko-
Rado verzamelingen); andere zijn afkomstig uit de klassieke Euclidische meetkunde
(bv. Kakeya verzamelingen). En nog andere zijn typisch voor eindige meetkundes
(bv. spreads).

In mijn onderzoek was het vaak de bedoeling om classificatieresultaten te behalen.
Van de hierboven vermelde objecten - in het geval van de codes gaat het dan om
de codewoorden - zijn er vaak vele voorbeelden gekend of kunnen er op zijn minst
vele geconstrueerd worden. Een klassieke vraag is dan om de grote of de kleine
voorbeelden (naar gelang de context) te vinden en te classificeren. Begrippen
als ‘groot’ en ‘klein’ zijn natuurlijk relatief, en sterk afhankelijk van de context.
Meestal gaat het om alle voorbeelden die groter/kleiner zijn dan een vastgelegde
grootte.

Opdat de resultaten die ik hier voorstel, beschikbaar zouden zijn voor onderzoekers
wereldwijd, is dit proefschrift opgesteld in het Engels, de lingua franca van de
wetenschappelijke wereld. Ten behoeve van de Nederlandstalige lezer is achteraan,
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in Appendix B, een uitgebreide Nederlandstalige samenvatting toegevoegd.

Een meer uitgebreide inleiding kan u hierna in de Preface vinden. Daarna volgen de
tien inhoudelijke hoofdstukken van dit proefschrift, twee inleidende hoofdstukken
en acht waarin de resultaten van mijn onderzoek beschreven worden. Op het einde
volgt een appendix met de uitgestelde berekeningen.

Beste lezer, dit proefschrift is de vrucht van drie jaar onderzoek, en de bekroning
van mijn wiskundige opleiding. Om welke reden u dit proefschrift ook ter hand
neemt, ik hoop dat u het kan appreciëren.

Maarten De Boeck
Mere/Gent, februari 2014



Preface

After completing my master’s degree with a thesis on codes arising from the in-
cidence matrices of finite projective spaces and their substructures, I started in
October 2010 as a PhD student at the Department of Mathematics of UGent,
supported by an FWO grant, under the supervision of prof. dr. Leo Storme. I
intended to study codes related to finite projective spaces and to look at other (re-
lated) combinatorial problems in finite geometries. However, as many researchers
in mathematics know, research is like a forest, in which it is easy to forget where
you came in1. So, it is nice to notice that in the end this thesis contains indeed
some chapters on geometry-based codes, and some chapters on purely geometri-
cal problems, however not all topics that can be found in this thesis were on my
research schedule from the beginning.

The chapters on geometrical problems (combinatorial problems in finite geome-
tries) are put together in the first part of the thesis (Chapters 2 to 7); the chapters
on geometry-based codes can be found in the second part of this thesis (Chapters
8 to 10), mainly for clearness of exposition, but far away from the chronological
order in which the results were obtained.

In most chapters of this thesis we discuss combinatorial objects in finite geometries,
which often can be defined very easily (based on the concept of intersection, hence
the title of this thesis). Usually, a plethora of examples exist, but the main questions
are always how large and/or how small such an object can be, and how it looks
like when it has this extremal (maximal or minimal) size. Researchers active in this
area of ‘extremal combinatorics’ obtained many nice results in the past decades.
Their answers created new questions, regarding stability.

Starting from an extremal example it is often possible to construct other examples
of such a combinatorial object by making only small modifications. The size of
these objects is then close to the extremal size. A stability result is a theorem

1A saying influenced by Hattori Hanzo, the fictional one.
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stating that the converse is true: if the size of an example of the combinatorial
object is close to the extremal size, then it arises from the extremal example by
making only small modifications. Obviously, researchers aim to stretch this notion
of ‘close’ as far as possible, and so try to find and classify the first example which
is truely different. And then they go further.

Gradually, the more general question is unveiled. We try to classify all large/small
examples that are maximal/minimal, in the sense that they do not arise from
a larger/smaller example, i.e. that they cannot be extended to a larger exam-
ple/reduced to a smaller example. A classic example in finite geometries is the
classification of the large maximal arcs in PG(2, q). Here we will see classification
results for large Erdős-Ko-Rado sets, small Kakeya sets and small weight code
words.

Among the first objects that I studied during my fellowship were Kakeya sets. Pro-
fessors Mazzocca and Storme started working on this topic and I could join them.
A few weeks later professor Blokhuis provided us with a very useful argument.
Together we constructed the first small example not arising from a hyperoval and
classified it as the third smallest Kakeya set, the smallest one not arising from a
hyperoval. The results on Kakeya sets can be found in Chapter 6. It was only
two years later I realised that these Kakeya sets are actually Erdős-Ko-Rado sets,
and thus more closely related to other chapters in this thesis than I thought in the
beginning.

Around the same time professor Storme also introduced me to functional codes.
These are codes arising from substructures of projective spaces, but different from
the ones I already knew. I started working on the codes C2(H), but soon I found
out Daniele Bartoli was working on the codes CHerm(Q). We combined our forces
and together we were able to find improvements to the previous results on these
codes, although it took us eventually quite some time to get to the end of it.
These results are written down in Chapter 8.

In the spring of 2011 Frédéric Vanhove defended his PhD thesis on incidence
geometry from an algebraic graph theory point of view. His chapter on Erdős-
Ko-Rado problems immediately attracted my attention, and I started working on
this topic. It became the main topic of my thesis. An Erdős-Ko-Rado set is a
set of pairwise non-trivially intersecting subspaces of a fixed dimension in a finite
geometry. First, I investigated Erdős-Ko-Rado sets of planes. These investigations
are the subject of chapter 3, which is undoubtedly the longest in this thesis. It
took me more than a year to sort out everything correctly, but I obtained a strong
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classification theorem, including more than a dozen types. Afterwards I started
investigating Erdős-Ko-Rado sets on unitals and Erdős-Ko-Rado sets of generators
on hyperbolic quadrics. A first version of the research on unitals was finished soon,
but the investigations on hyperbolic quadrics got stuck at some point. I returned
to the Erdős-Ko-Rado problem for unitals and I realised that the arguments were
applicable for general 2-designs. My results on Erdős-Ko-Rado sets in 2-designs
can be found in chapter 5. A few months later I finally untangled the knot for the
Erdős-Ko-Rado sets of generators on hyperbolic quadrics. I classified the second
largest example. The results on these Erdős-Ko-Rado sets are written down in
chapter 4.

In chapter 2 an introduction to Erdős-Ko-Rado problems is given, summarising the
useful background for the chapters on Erdős-Ko-Rado sets.

In the summer of 2013, after I completed the work on Erdős-Ko-Rado sets of
generators on hyperbolic quadrics, prof. Storme let me know that he thought that
the arguments I used in this research, could possibly also be useful for investigating
small maximal partial spreads. This turned out to be true and I could prove a
lower bound on the size of maximal partial spreads. My results on this topic are
the subject of chapter 7.

Apart from the problems on functional codes, no coding theoretical problems were
mentioned above. In the beginning of my PhD fellowship, I studied a few problems
related to the code generated by the lines of PG(2, q), one of them together with
Peter Vandendriessche, but I did never publish the results. These results are now
gathered in chapter 10.

In early 2011, Peter Vandendriessche and I started our investigations on the dual
code of points and generators in Hermitian varieties. We intended to generalise
previous results on H(3, q2) and H(5, q2) to H(2n + 1, q2) for general n. This
turned out to be more difficult than we had expected. So, we put aside this
research a few times for several months, both looking to other problems, and then
returned to it with new ideas. It was only after two years that we finally concluded
the research on these dual Hermitian codes. The results can be found in chapter
9.

In several of the arguments for the research topics previously mentioned, some
lengthy calculations were involved. These are omitted in the chapters, but are
presented in Appendix A.
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1
Preliminaries

You must understand, young Hobbit,
it takes a long time to say anything in Old Entish.

And we never say anything
unless it is worth taking a long time to say.

Treebeard in The Lord of the Rings: The Two Towers.

In this chapter we introduce the concepts which we will consider in this thesis.
It is however no layman’s introduction. The aim of this chapter is to recall
these concepts to those familiar with them, avoiding the ambiguity that would
arise by not stating some definitions or theorems, and to create a place where
the introductory material can be found.

The content of this chapter is based on standard references by Buekenhout
([28]), Hirschfeld ([79, 80]) and Hirschfeld and Thas ([81]), which contain more
extensive introductions to most of these topics. For some specific topics or
results, we will refer to other books and articles, mostly in Sections 1.2 and
1.7.

We will assume the reader has basic knowledge of combinatorics, finite field
theory, linear algebra, graph theory and group theory.

| 1



2 | Chapter 1. Preliminaries

1.1 Incidence geometries

As several geometries are discussed in this thesis, and therefore introduced in
this chapter, we present the definition of a general incidence geometry.

Definition 1.1.1. An incidence geometry is a quadruple (V ,∆n, t, I), with V
a non-empty set, ∆n = {0, 1, . . . , n− 1}, t a surjective map from V to ∆n, and
I a symmetric relation on V such that for all v, v′ ∈ V the statement (v, v′) ∈ I
implies that t(v) 6= t(v′).

The elements of V are called the varieties, t is called the type map and I is
called the incidence relation. If a pair of elements is contained in I, then the
two elements are called incident. The positive integer n is the rank of the
geometry.

The above type map correponds to the dimension map in most incidence ge-
ometries. Varieties of type 0, 1 and 2 are called points, lines and planes,
respectively. If (v, v′) ∈ I, then the varieties v and v′ are called incident. Fur-
thermore, if t(v) < t(v′), then v′ is said to contain v or to pass through v, and
v is said to be (lying) in v′ or to be contained in v′. We denote this by v ⊂ v′

(or v ∈ v′ if v is a point) and v′ ⊃ v (or v′ 3 v if v is a point). If V is a finite
set, then the incidence geometry is said to be a finite (incidence) geometry.

All varieties of incidence geometries of rank 2, are points or lines. Therefore,
incidence geometries of rank 2 are called point-line geometries. For these, the
above definition can be simplified. They can be denoted as a triple (P ,L, I)
with I ⊂ (P × L) ∪ (L× P) the incidence relation. Hereby the elements of P
are called points and the elements of L are called lines or blocks.

A set of points incident with a common line, is said to be collinear, and a set
of lines incident with a common point, is said to be concurrent.

For an incidence geometry G = (V ,∆n, t, I) of rank n, we can define its dual.
Let t′ : V → ∆n be the map defined by t′(v) = n − t(v) − 1. The dual
geometry of G is the incidence geometry G ′ = (V ,∆n, t

′, I). Note that the dual
of a point-line geometry is consequently obtained by interchanging the roles of
points and lines: the dual of the point-line geometry G = (P ,L, I) is thus the
point-line geometry G ′ = (L,P , I).

An isomorphism between two incidence geometries G1 = (V1,∆n, t1, I1) and
G2 = (V2,∆n, t2, I2), necessarily of the same rank, is a bijection α : V1 → V2
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such that (v, v′) ∈ I1 ⇔ (α(v), α(v′)) ∈ I2 for all v, v′ ∈ V1 and t1(v) = t2(α(v))
for all v ∈ V1. If G1 = G2, then α is called an automorphism. If G2 is the dual
of G1, then α is called a duality1. Note that it is always possible to construct
the dual of a geometry, but dualities do not necessarily exist. If an incidence
geometry admits a duality, then it is called self-dual.

Let G1 = (V1,∆n1 , t1, I1) and G2 = (V2,∆n2 , t2, I2) be two incidence geometries.
If V1 ⊆ V2, t1(v) = t2(v) and (v, v′) ∈ I1 ⇔ (v, v′) ∈ I2 for all v, v′ ∈ V1, then
G1 is called a subgeometry of G2, and necessarily n1 ≤ n2.

1.2 Designs

The first incidence geometries we introduce are the block designs. These have
been widely studied for many years. We give a short introduction. For more
background on this topic we refer to the monographs [2, 29, 33, 43, 83]. The
results presented in this section can be found in these references, among others.
Note that the terminology ‘blocks’ is far more common than ‘lines’ for these
geometries.

Definition 1.2.1. A t− (v, k, λ) (block) design, v > k > 1, k ≥ t ≥ 1, λ > 0,
is a point-line geometry D = (P ,B, I) with incidence relation I, such that
|P| = v, such that any element of B is incident with k elements of P and such
that any set of t distinct points is contained in λ different lines (blocks). We
impose that no two blocks are incident with the same k points, so a block can
be identified with the k-subset of P which it determines.

The following counting results are widely known.

Theorem 1.2.2. Let D = (P ,B, I) be a t− (v, k, λ) block design. Then,

• the number of blocks through an arbitrary set of i points equals λi =
λ
(
v−i
t−i

)
/
(
k−i
t−i

)
, i = 1, t . . . , t;

• in particular, the number of blocks through a fixed point equals r = λ1 =
λ
(
v−1
t−1

)
/
(
k−1
t−1

)
;

1Here, a duality corresponds to reversing the order of the types of an incidence geometry. In
general, a duality can be defined for any permutation of ∆n. We will however not consider this in
this thesis.
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• b = |B| = vr
k

.

The value r, representing the number of blocks through a given point, is called
the replication number. Note that it is necessary that all λi, i = 1, t . . . , t, are
integers for a t− (v, k, λ) block design to exist. This condition is however not
sufficient.

Block designs with λ = 1, so t − (v, k, 1) designs, are probably the most
studied class of block designs. They are called Steiner systems or t-Steiner
systems. Especially Steiner systems with t = 2 are well-studied. Among them
we mention

• the axiomatic projective planes of order n, n ≥ 2: the 2− (n2 +n+ 1, n+
1, 1) designs,

• the axiomatic affine planes of order n, n ≥ 2: the 2− (n2, n, 1) designs,

• the Steiner triple systems : the 2− (v, 3, 1) designs and

• the unitals of order n, n ≥ 2: the 2− (n3 + 1, n+ 1, 1) designs.

The axiomatic projective and affine planes will be discussed in more detail in
Section 1.5.

By the above results, a 2− (v, k, 1) design contains b = v(v−1)
k(k−1) blocks, r = v−1

k−1
of them through a fixed point. Consequently, a 2 − (v, k, 1) design can only
exist if v ≡ 1 (mod k − 1) and k(k − 1) | v(v − 1).

We end this section with a remark on the smallest 2-Steiner systems

Remark 1.2.3. Let D be a 2− (v, k, 1) design. For every point P in D, there
is a block not containing this point since v > k. Each of the points on this
block determines a different block through P . Hence, r ≥ k. If r = k, then D
is a projective plane of order k − 1; if r = k + 1, then D is an affine plane of
order k. So, the projective and affine planes are the two ‘smallest’ 2− (v, k, 1)
designs. They correspond to the smallest possible values for the replication
number, hence also to the smallest possible values for the number of points v.
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1.3 Projective geometries over fields

In most chapters of this thesis we will be dealing with projective geometries
over fields.

Definition 1.3.1. The n-dimensional projective geometry over the field F,
denoted by PG(n,F), is the incidence geometry (V ,∆n, t, I) arising from the
vector space Fn+1 = V (n+ 1,F), the (n+ 1)-dimensional vector space over F,
in the following way. The set V is the set of all subspaces of V , different from
{0} and V itself; t maps a subspace W to its projective dimension dim(W ) =
dimV (W )−1; the incidence relation I fulfills (W,W ′) ∈ I ⇔ (W ⊂ W ′)∨(W ′ ⊂
W ). The varieties of PG(n,F) are called subspaces.

Note that it follows from this definition that the projective dimension of a sub-
space equals its vectorial dimension minus one. In this thesis we will always
use the projective dimension for subspaces of a projective geometry. A sub-
space with projective dimension k is called a k-dimensional subspace, or briefly
a k-space. The names points, lines and planes will be used for respectively 0-
spaces, 1-spaces and 2-spaces, as indicated before. The (n − 1)-dimensional
subspaces of PG(n,F) will be called hyperplanes.

Note that a subspace of a vector space is a vector space, so any subspace of a
projective geometry can also be seen as a projective geometry. A projective ge-
ometry is consequently sometimes called a projective space. The n-dimensional
projective space is often also considered as a subspace of dimension n of itself.

A projective geometry can only be finite if the underlying field is finite. A
finite field of order q (with q elements) exists if and only if q is a prime power.
We denote the finite field of order q by Fq. The projective geometry PG(n,Fq)
will generally be denoted by PG(n, q). Due to the relation with vector spaces
we can easily count the number of subspaces of a certain dimension in PG(n, q)

using the Gaussian coefficient

[
a

b

]
q

, which is defined as follows:

[
a

b

]
q

=
b∏
i=1

qa−b+i − 1

qi − 1
=

(qa − 1) · · · (qa−b+1 − 1)

(qb − 1) · · · (q − 1)
.

The number of k-dimensional subspaces in PG(n, q) equals

[
n+ 1

k + 1

]
q

, the num-

ber of subspaces with vector dimension k + 1 in the vector space V (n + 1, q).
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The number of points in PG(n, q) thus equals

[
n+ 1

1

]
q

= qn+1−1
q−1 . We denote

this value by θn(q).

Notation 1.3.2. For two subspaces U and V of a projective space PG(n,F),
the intersection U∩V is the largest subspace which is contained in both U and
V . We can immediately generalise this definition to U1∩· · ·∩Us for subspaces
U1, . . . , Us of PG(n,F).

For two subspaces U and V of a projective space PG(n,F), the span 〈U, V 〉
is the smallest subspace that contains both U and V . This is also called the
subspace generated by U and V . This definition can as well easily be generalised
to 〈U1, . . . , Us〉 for subspaces U1, . . . , Us of PG(n,F).

The dimension theorem for vector subspaces implies the Grassmann identity
for subspaces of a projective space:

dim(U) + dim(V ) = dim(〈U, V 〉) + dim(U ∩ V )

for all subspaces U and V of PG(n,F).

Remark 1.3.3. A point in PG(n,F) corresponds with a vector line in V (n+
1,F). If (x0, x1, . . . , xn) is a non-zero vector, then the set of vectors on the
vector line determined by this vector, is given by {λ(x0, x1, . . . , xn) | λ ∈ F}.
Therefore, the coordinates of the corresponding projective point are defined
up to a scalar multiple. We call them homogeneous coordinates. We denote
the coordinates of the point by (x0, x1, . . . , xn).

A hyperplane in PG(n,F) corresponds to a vector hyperplane in V (n + 1,F).
This is given by a linear equation a0X0 + a1X1 + · · ·+ anXn = 0. Note that it
has to contain the zero vector. The coefficient vector (a0, a1, . . . , an) is defined
up to a scalar multiple. Considering the correspondence between the vector
lines and the projective points, the corresponding hyperplane is also given by
the linear equation λ (a0X0 + a1X1 + · · ·+ anXn) = 0, for λ ∈ F \ {0}. We
denote its coefficient vector by λ [a0, a1, . . . , an] or briefly by [a0, a1, . . . , an].

An automorphism of a projective geometry PG(n,F) is called a collineation.
Let V be the underlying vector space of a projective geometry PG(n,F). The
mapping V → V : x 7→ Axσ, with A a non-singular (n + 1) × (n + 1)-matrix
and σ a field automorphism of F, induces a mapping of the points of PG(n,F).
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From this mapping a collineation arises. We can denote this collineation by
the tuple (A, σ). The group of all such collineations of PG(n,F), is denoted
by PΓL(n+ 1,F). The fundamental theorem of projective geometry states that
every collineation of PG(n,F), n ≥ 2, can arise from a non-singular matrix and
a field automorphism in this way. So, if n ≥ 2, then PΓL(n+1,F) is the group
all collineations of PG(n,F). Note that every tuple (A, σ), A a non-singular
(n + 1)× (n + 1)-matrix and σ a field automorphism of F, corresponds to an
element of PΓL(n+1,F), but an element of PΓL(n+1,F) corresponds to several
tuples (A, σ). The collineations (A,1) are called projectivities. The group of
all projectivities of PG(n,F) is denoted by PGL(n + 1,F). In PG(1,F) every
bijection of the points gives rise to a collineation. Hence, the group PΓL(2,F)
is in general not the full collineation group.

Two subsets S and S ′ of PG(n,F) are called PGL-equivalent if and only if
α(S) = S ′ for a projectivity α ∈ PGL(n+ 1,F).

Every subspace U in a vector space V has an orthogonal complement U⊥

regarding the standard dot product. We know that dim(U) + dim(U⊥) =
dim(V ). Hence, the dual of a projective geometry can be obtained using a type
map that maps every subspace to the projective dimension of its orthogonal
complement. These orthogonal complements form a vector space V ′, called the
dual vector space of V . So the dual geometry of the projective geometry derived
from V is also a projective geometry, the one derived from V ′. Since V and V ′

are isomorphic, the projective geometry and its dual can be identified with each
other. So the dual of a projective geometry PG(n,F) can be seen as PG(n,F)
itself. A duality maps a k-dimensional subspace onto an (n−k−1)-dimensional
subspace. The standard duality arises from the mapping of a subspace onto
its orthogonal complement. Note that it maps the point (a0, a1, . . . , an) onto
the hyperplane [a0, a1, . . . , an] and vice versa.

In a projective geometry we can find subgeometries that are themselves pro-
jective geometries, and that are consequently called projective subgeometries.
If a projective geometry PG(m,F) is a subgeometry of PG(n,F′), then m ≤ n
and F is a subfield of F′. If m = n and there is a prime power q such that
F = Fq and F′ = Fq2 , then this subgeometry is called a Baer subgeometry.

1.4 Affine geometries

Starting from projective geometries, we can easily define affine geometries.
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Definition 1.4.1. Let PG(n,F) be the n-dimensional projective geometry
over the field F, and let H∞ be a hyperplane of PG(n,F). Let V be the
set of subspaces of PG(n,F) different from H∞, which are not incident with
H∞. The map t : V → ∆n maps each subspace to its projective dimension
and the relation I fulfills (W,W ′) ∈ I if and only if W is incident with W ′

in PG(n,F). The n-dimensional affine geometry over the field F, denoted by
AG(n,F), is the incidence geometry (V ,∆n, t, I). The varieties of AG(n,F) are
called subspaces. A subspace of AG(n,F) can be considered as its correspond-
ing subspace U in PG(n,F) with its subspaces in U ∩H∞ removed.

So, an affine geometry is a projective geometry with a hyperplane H∞ re-
moved. A k-space U of the affine geometry AG(n,F) corresponds to a k-space
of PG(n,F). The intersection of this k-space and H∞ is a (k − 1)-space in
H∞ ⊂ PG(n,F). It is called the subspace ‘at infinity’ of U and H∞ is called
the hyperplane at infinity. For example, an affine line has a point at infinity.
Therefore, a projective geometry is an affine geometry with its ‘structure at
infinity’ added.

Alternatively, the affine space AG(n,F) can be constructed directly from a
vector space V (n,F), but we will not discuss this in detail.

Remark 1.4.2. By choosing X0 = 0 as the hyperplane H∞ in PG(n,F), all
projective points not on H∞ can be written as (1, x1, . . . , xn). Dropping the
redundant first coordinate, we can describe all affine points with the non-
homogeneous coordinates (x1, . . . , xn).

All affine hyperplanes can be described by an equation a1X1 + · · ·+anXn = d,
with (a1, . . . , an) 6= (0, . . . , 0).

1.5 Axiomatic projective and affine geometries

We have introduced projective and affine geometries using vector spaces. Al-
ternatively, we can do this axiomatically.

Definition 1.5.1. A point-line geometry is an axiomatic projective plane if it
satisfies the following conditions:

(PP1) any two distinct points are incident with a unique common line;

(PP2) any two distinct lines are incident with a unique common point;
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(PP3) there exist four points such that no three of them are collinear.

If on one line of an axiomatic projective plane P there are n+1 points, n ∈ N,
then P is a 2− (n2 +n+ 1, n+ 1, 1) design. It is called an axiomatic projective
plane of order n. We know that PG(2, q), q a prime power, is an axiomatic
projective plane of order q. In these projective planes Desargues’ theorem is
valid.

Theorem 1.5.2 (Desargues). Let P1P2P3 and Q1Q2Q3 be two triangles in
PG(2, q) such that the lines P1Q1, P2Q2 and P3Q3 are concurrent. Then
the points 〈P1, P2〉 ∩ 〈Q1, Q2〉, 〈P1, P3〉 ∩ 〈Q1, Q3〉 and 〈P2, P3〉 ∩ 〈Q2, Q3〉 are
collinear.

Therefore these planes are called Desarguesian. Many non-Desarguesian ax-
iomatic projective planes are known, but we will not deal with them in this
thesis. The order of all known finite axiomatic projective planes is a prime
power. Several nonisomorphic axiomatic projective planes of the same order
exist. The smallest order for which non-isomorphic axiomatic projective planes
exist is 9. It remains an open question whether finite axiomatic projective
planes exist whose order is not a prime power.

Probably the best known projective plane is the unique projective plane of
order 2. It is called the Fano plane.

Also projective spaces of higher dimension, can be introduced axiomatically.

Definition 1.5.3. A point-line geometry is an axiomatic projective geometry
if it satisfies the following conditions:

(PG1) any two distinct points P and Q are incident with a unique common
line `P,Q;

(PG2) if P1, P2, P3 and P4 are four different points such that the lines `P1,P2

and `P3,P4 are incident with a common point, then the lines `P1,P3

and `P2,P4 are also incident with a common point;

(PG3) any line is incident with at least three points.

It can easily be seen that the point-line geometry derived from the projective
geometry PG(n,F) satisfies these conditions.
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For such an axiomatic projective geometry we can define subspaces in the
following way: a subspace is a set of points S such that any point on a line
containing at least two points of S, is also contained in S. For any subspace
S, we can define its dimension k as the largest number for which we can find
a strictly increasing chain of subspaces ∅ ⊂ S0 ⊂ S1 ⊂ · · · ⊂ Sk = S. The
axiomatic projective geometry itself is also a subspace, so its dimension can
be determined.

An important result was obtained by Veblen and Young in [126, 127, 128].
They proved that an axiomatic projective geometry of dimension n ≥ 3, is
necessarily a point-line geometry derived from a projective geometry over a
division ring. Due to Wedderburn’s Little Theorem, which states that every
finite division ring is a field, we know that every finite axiomatic projective
geometry of dimension n ≥ 3 is derived from a projective geometry PG(n, q).
By the above remarks on axiomatic projective planes, we know this is not true
for n = 2.

Also affine geometries can be introduced axiomatically. We will not consider
the general case here. We will restrict ourselves to axiomatic affine planes.

Definition 1.5.4. A point-line geometry is an axiomatic affine plane if it
satisfies the following conditions:

(AP1) any two distinct points are incident with a unique common line;

(AP2) for every line ` and every point P which is not incident with `, a
unique line `′ exists such that P ∈ `′ and such that ` and `′ have no
point in common;

(AP3) there exist three non-collinear points.

If on one line of an axiomatic affine plane P there are n points, n ∈ N, then P
is a 2− (n2, n, 1) design. It is called an axiomatic affine plane of order n. We
know that AG(2, q), q a prime power, is an axiomatic affine plane of order q.
From a finite axiomatic affine plane always a finite axiomatic projective plane
of the same order can be constructed, and vice versa, by respectively adding
or removing a ‘line at infinity’. The above remarks on the existence of finite
axiomatic projective planes of a given order, are consequently also valid for
finite axiomatic affine planes.

Remark 1.5.5. Two lines of an axiomatic affine plane A are called parallel
if they are equal or disjoint. Axiom (AP2) states there is, given a line and
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a point, always a line through the point parallel to the given line. Parallel
lines pass through the same point on the line at infinity. Parallelism defines
an equivalence relation on the set of lines of A. The equivalence classes are
called parallel classes. By axiom (AP2) the set of lines of one parallel class
determines a partition of the point set.

An axiomatic affine plane of order n contains n2 points and n2+n lines. There
are n + 1 parallel classes (corresponding to the n + 1 points at infinity), each
containing n lines. Through every affine point passes one line of each parallel
class.

1.6 Polar spaces

Polar spaces are an important type of incidence geometries, with many sim-
ilarities to projective spaces. They will be studied in several chapters of this
thesis. Their axiomatic introduction is due to Veldkamp ([129, 130]) and Tits
([121]).

Definition 1.6.1. A polar space of rank n, n ≥ 3, is an incidence geometry
(V ,∆n, t, I) satisfying the following axioms.

(PS1) The incidence structure arising from an element of v ∈ V by con-
sidering all elements of V that are contained in v, is a projective
geometry of dimension t(v).

(PS2) The intersection of two elements of V (the set of all elements of V
that are contained in both, containment allows equality here) is an
element of V (together with the elements of V that are contained in
it) or empty.

(PS3) For a point P ∈ V and an element v ∈ V with t(v) = n−1 and such
that P and v are not incident, there is a unique element v′ ∈ V with
t(v′) = n−1 such that t(v∩v′) = n−2, with v∩v′ the intersection of
v and v′. This intersection contains all points in v that are collinear
with P .

(PS4) There exist two elements v, v′ ∈ V such that t(v) = t(v′) = n − 1
and the intersection of v and v′ is empty.



12 | Chapter 1. Preliminaries

The elements of V are called subspaces. They are isomorphic to projective
spaces. Note that the dimension of a subspace corresponds to its projective
dimension. The subspaces of dimension n − 1, the maximal dimension, are
called generators. Polar spaces were introduced by Tits in [120].

Polar spaces of rank 2 are called generalised quadrangles.

Definition 1.6.2. A generalised quadrangle is a point-line geometry satisfying
the following axioms.

(GQ1) Two distinct points are incident with at most one line.

(GQ2) Every line contains s+ 1 points, s ≥ 1 and every point is contained
in t+ 1 lines, t ≥ 1.

(GQ3) For every point P and every line ` such that P /∈ `, there is a unique
tuple (P ′, `′), P ′ ∈ ` a point and `′ 3 P a line, such that P ′ ∈ `′.

It follows from this definition that every line is incident with the same number
of points, namely s+1, and that every point is incident with the same number of
lines, namely t+1. If these numbers are finite, then the generalised quadrangle
is said to have order (s, t). If s = t, then the generalised quadrangle is said to
have order s.

We now introduce the classical polar spaces. They arise from some special
forms on vector spaces. A bilinear form on a vector space V over a field F is
a map V × V → F that is linear in both its arguments. A sesquilinear form
on a vector space V over a field F is a map V × V → F that is linear in the
first argument, and semilinear2 in the second argument. A quadratic form on
a vector space V over a field F is a map Q : V → F that is homogeneous of the
second degree, and such that f : V ×V → F : (v, w) 7→ Q(v+w)−Q(v)−Q(w)
is a bilinear form.

A bilinear form f is called symplectic if f(v, v) = 0 for all v. A sesquilinear
form on V is called Hermitian if the corresponding field automorphism θ is an
involution and f(v, w) = f(w, v)θ for all v, w ∈ V .

A vector v ∈ V is called singular with respect to a bilinear or sesquilinear
form f if f(v, w) = 0 for all w ∈ V ; it is called singular with respect to a

2A map f : V → W , with V,W vector spaces over a field F, is semilinear if there is a field
automorphism θ such that f(av + bw) = aθf(v) + bθf(w) for all v, w ∈ V and a, b ∈ F.
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quadratic form Q if Q(v + w) = Q(w) for all w ∈ V . The quadratic, bilinear
or sesquilinear form itself is called non-degenerate if the zero vector is the only
singular vector.

A subspace W of a vector space V is called totally isotropic with respect to a
quadratic form if its restriction to W is trivial; a subspace W of a vector space
V is called totally isotropic with respect to a bilinear or sesquilinear form if its
restriction to W ×W is trivial.

Now we can describe the classical polar spaces. They consist of the totally
isotropic subspaces of a vector space V (m+ 1,F) over the field F, with respect
to a non-degenerate quadratic, symplectic or Hermitian form, and are equipped
with the natural incidence relation. These classical polar spaces can be seen as
substructures of the projective geometry PG(m,F). In this thesis, we will often
consider the classical polar spaces through their embedding in the projective
space. Note that these classical polar spaces are polar spaces if their rank is
at least three, and that they are generalised quadrangles if their rank equals
two.

We have a closer look at these classical polar spaces for F = Fq. The po-
lar spaces arising from a quadratic form are called quadric polar spaces (or
quadrics). Let Q be a non-degenerate quadratic form on the vector space
V (m + 1, q). If m is even, by choosing an appropriate basis for V (m + 1, q),
Q can be written as Q(X0, . . . , Xm) = X2

0 + X1X2 + · · · + Xm−1Xm. This
quadratic form is called parabolic. If m is odd, by choosing an appropriate ba-
sis for V (m+1, q), Q can be written as Q(X0, . . . , Xm) = X0X1+· · ·+Xm−1Xm

or as Q(X0, . . . , Xm) = X0X1 + · · · + Xm−3Xm−2 + g(Xm−1, Xm), with g an
irreducible homogeneous polynomial of degree 2 over Fq. In the former case,
the quadratic form is called hyperbolic; in the latter case it is called elliptic.

The polar spaces arising from a symplectic form are called symplectic polar
spaces. A non-degenerate symplectic form f on V (m+ 1, q) only exists if m is
odd. In this case, we can choose an appropriate basis {e1, . . . , en, e′1, . . . , e′n}
for V (2n, q), m+1 = 2n, such that f(ei, ej) = f(e′i, e

′
j) = 0 and f(ei, e

′
j) = δi,j,

with 1 ≤ i, j ≤ n.

The polar spaces arising from a Hermitian form are called Hermitian polar
spaces. The construction of a Hermitian form requires an involutory field
automorphism of Fq. This only exists if q is a square. The only involutory
field automorphism of Fq2 is given by x 7→ xq. Let f be a non-degenerate
Hermitian form on the vector space V (m+1, q). We can choose an appropriate
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basis {e0, . . . , em} for V (m+ 1, q) such that f(ei, ej) = δi,j, with 0 ≤ i, j ≤ m.
If m is even, then we can find a totally isotropic m

2
-dimensional subspace of

V (m+ 1, q). If m is odd, then we can find a totally isotropic m+1
2

-dimensional
subspace of V (m+ 1, q).

We now list these classical polar spaces of rank d.

• The hyperbolic quadric Q+(2d−1, q) embedded in PG(2d−1, q). It arises
from a hyperbolic quadratic form on V (2d, q).

• The parabolic quadric Q(2d, q) embedded in PG(2d, q). It arises from a
parabolic quadratic form on V (2d+ 1, q).

• The elliptic quadric Q−(2d + 1, q) embedded in PG(2d + 1, q). It arises
from an elliptic quadratic form on V (2d+ 2, q).

• The Hermitian polar space H(2d − 1, q2) embedded in PG(2d − 1, q2).
It arises from a Hermitian form on V (2d, q2), constructed using the field
automorphism x 7→ xq.

• The Hermitian polar space H(2d, q2) embedded in PG(2d, q2). It arises
from a Hermitian form on V (2d + 1, q2), constructed using the field au-
tomorphism x 7→ xq.

• The symplectic polar space W(2d − 1, q) embedded in PG(2d − 1, q). It
arises from a symplectic form on V (2d, q), which is bilinear and for which
all vectors are isotropic.

In [121], Tits has proved that all finite polar spaces of rank at least 3, are
classical and thus given by the above list. This result is not true for infinite
polar spaces.

We now introduce the polarities associated to a polar space. Based on a
quadratic form f on a vector space V = V (m + 1,F) we can define a bilinear
form f ′ : V × V → F by f ′(v, w) 7→ f(v + w) − f(v) − f(w). For a bilinear
or sesquilinear form we set f ′ = f . For a subspace W of V we can define its
orthogonal complement regarding f ′:

W⊥ = {v ∈ V | ∀w ∈ W : f ′(v, w) = 0} .

Considering the subspaces of V as subspaces of PG(m,F), the mapping β that
maps the subspace W onto the subspace W⊥, is an involutory duality. It is
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called a polarity. The subspaces of a polar space in PG(m,F) are precisely those
subspaces that are contained in their image under the polarity. Geometrically,
the image of a subspace on the polar space under the corresponding polarity,
is its tangent space.

To each of the above finite classical polar spaces we can attach a parameter e.
For a polar space of rank d embedded in PG(m, q), with m = 2d−1, 2d, 2d+ 1
as above, qe + 1 is the number of generators ((d−1)-spaces) through a (d−2)-
space. The parameters of the polar spaces are given in the following table:

polar space e
Q+(2d− 1, q) 0
H(2d− 1, q) 1/2
Q(2d, q) 1
W(2d− 1, q) 1
H(2d, q) 3/2

Q−(2d+ 1, q) 2

Now, using the rank d and the parameter e of a polar space, the number of
subspaces on this polar space can be calculated.

Lemma 1.6.3 ([23, Lemma 9.4.1]). On a classical finite polar space of rank
d with parameter e, embedded in a projective space over Fq, the number of
k-spaces is given by [

d

k + 1

]
q

k+1∏
i=1

(qd+e−i + 1).

Corollary 1.6.4. On a classical finite polar space of rank d with parameter
e, embedded in a projective space over Fq, the number of k-spaces through a
fixed m-space is given by[

d−m− 1

k −m

]
q

k−m∏
i=1

(qd+e−m−i−1 + 1).

Above, we used non-degenerate forms for the construction of polar spaces. If
f is a degenerate quadratic, symplectic or Hermitian form on the vector space
V (m + 1,F), then we can choose a basis of V (m + 1,F) such that f can be
written with at most m variables. We can repeat the above construction, but f



16 | Chapter 1. Preliminaries

does not yield a polar space. We find a cone in PG(m,F) with vertex a subspace
(corresponding to the singular vectors) and base a quadratic, symplectic or
Hermitian polar space. This is a quadratic, symplectic or Hermitian cone.

A quadratic variety is described by a quadratic form, so either a quadric
(quadric polar space) or a quadratic cone. In the same way we can define
Hermitian and symplectic varieties. If a variety is a polar space, then it is
called non-singular ; if it is a cone, then it is called singular. Intersecting a
variety in PG(m,F) with a subspace of PG(m,F), yields clearly a variety of
the same type (quadratic, Hermitian or symplectic). Whether the intersection
is a polar space or a cone, and in the latter case, the dimension of the ver-
tex of the cone, depends on the actual position of the subspace related to the
variety. For example, a tangent hyperplane at a point P to a classical polar
space of rank d intersects the polar space in a cone with vertex P and base a
classical polar space of rank d−1 of the same type. A non-tangent hyperplane
intersects it in a classical polar space of the same type.

We end this section with a few remarks on some polar spaces.

Example 1.6.5. A quadratic variety in PG(2, q) is called a conic. It is given
by an equation

∑
0≤i≤j≤2 ai,jXiXj=0. It can be a parabolic quadric Q(2, q);

in this case the conic is non-singular.

Example 1.6.6. Consider the Hermitian polar space H(2, q2) in the projec-
tive plane PG(2, q2); this is a non-singular Hermitian variety. Up to projective
transformations it is defined by Xq+1

0 + Xq+1
1 + Xq+1

2 = 0. The set of points
on H(2, q2) and the lines of PG(2, q2) meeting H(2, q2) in q + 1 points, deter-
mine a unital. This unital is known as the classical unital or Hermitian unital.
Sometimes, the point set itself is called a unital.

Remark 1.6.7. The generators of the hyperbolic quadrics have a remarkable
property. The set of generators Ω on Q+(2n + 1, q) can be partitioned into
two equivalence classes Ω1 and Ω2, using the equivalence relation ∼ which is
defined as follows: π1 ∼ π2 ⇔ dim(π1 ∩ π2) ≡ n (mod 2), for two generators
π1 and π2 of Q+(2n+ 1, q).

The first equivalence class Ω1 is called the class of Latin generators and the sec-
ond equivalence class Ω2 is called the class of Greek generators. The definition
of ∼, now implies in particular that

• on Q+(4n+ 1, q), the generators of Ω1 pairwise intersect, and the gener-
ators of Ω2 pairwise intersect;
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• on Q+(4n+ 3, q), any generator of Ω1 intersects any generator of Ω2.

This observation will play an important role in the results in Table 2.1 and
Chapter 4.

Remark 1.6.8. If q is even, then there is a strong connection betweenW(2d−
1, q) and Q(2d, q). Let N be the nucleus of the parabolic quadric Q(2d, q).
This is the point, not on the quadric, only lying on tangent lines to the quadric.
Projecting Q(2d, q) from N onto a hyperplane α disjoint to N yields the sym-
plectic polar space W(2d − 1, q), q even. More information about this link
between W(2d − 1, q) and Q(2d, q), q even, can be found in [81, Chapter 22]
and [118, Chapter 11].

In particular, by choosing α a hyperplane intersecting Q(2d, q), q even, in a
hyperbolic quadric Q+(2d − 1, q) or an elliptic quadric Q−(2d − 1, q), we can
see that the polar spaces Q+(2d− 1, q) and Q−(2d− 1, q) are embedded in the
polar space W(2d− 1, q), q even.

1.7 Arcs, blocking sets, reguli and spreads

In this section we will describe several substructures of PG(n, q) which we will
study or use in this thesis.

Definition 1.7.1. A (k, t)-arc A in PG(2, q) is a set of k points such that at
most t of them are collinear, k ≥ t. A (k, t)-arc in PG(2, q) of type (t1, . . . , tm),
0 ≤ t1 < · · · < tm ≤ t, is a (k, t)-arc such that for every line ` in PG(2, q) the
intersection size |`∩A| equals ti for some i and such that each value ti occurs
as intersection size for some line.

A (k, 2)-arc in PG(2, q) will briefly be denoted as a k-arc. A k-arc is called
complete if it is not contained in a (k + 1)-arc.

A line meeting an arc (or any other point set) in precisely i-points is called
an i-secant to the arc. A 1-secant (meeting the arc in a point P ) is called a
tangent line (to the arc at the point P ).

An oval in PG(2, q) is a (q+ 1)-arc. It is necessarily of type (0, 1, 2). Through
every point of an oval passes precisely one tangent line. A hyperoval in PG(2, q)
is a (q+ 2)-arc. It is necessarily of type (0, 2). There are thus no tangent lines
to a hyperoval.
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A hyperoval in PG(2, q) can only exist if q is even. Every hyperoval is a
complete arc. In PG(2, q), q odd, every oval is a complete arc. For ovals in
PG(2, q), q even, it is known that all tangent lines pass through a common
point, which is called the nucleus (see also Remark 1.6.8). The next theorem
follows immediately.

Theorem 1.7.2 ([20]). Every (q+ 1)-arc in PG(2, q), q even, is contained in
a hyperoval and hence not complete.

This result was generalised to non-Desarguesian planes in [106].

A non-singular conic in PG(2, q) determines a set of q + 1 points, no three
of them collinear. Hence, every non-singular conic is an oval. The following
result of Segre considers the inverse implication.

Theorem 1.7.3 ([109, 110]). Every oval in PG(2, q), q odd, is a non-singular
conic.

This result is not true for PG(2, q), q even. For example, from a hyperoval
which is a conic together with its nucleus, we can delete a point different from
the nucleus. In general, this construction does not yield a conic.

Different from the k-arcs, also other types of arcs have received attention.

Definition 1.7.4. A (k, t)-arc in PG(2, q) of type (t1, . . . , tm) is a set of even
type if all t1, . . . , tm are even.

If the projective plane PG(2, q) contains a set of even type, then necessarily q
is even.

Among the sets of even type, next to the hyperovals, the (q+ t, t)-arcs of type
(0, 2, t) in PG(2, q), q even, are an intensively studied class. They were intro-
duced by Korchmáros and Mazzocca in [91]; for t = q

2
, they were considered

earlier in [98]. In [91] it was noted that a (q+ t, t)-arc of type (0, 2, t) only can
exist if t | q, and that through every point of a (q + t, t)-arc of type (0, 2, t),
there pass q different 2-secants and one t-secant. In [61], it is proved that a
(q+t, t)-arc of type (0, 2, t) has a t-nucleus, a common point of all its t-secants.

We mentioned before that the existence of a (q + t, t)-arc of type (0, 2, t),
implies that t divides q. However, it remains an open problem for which pairs
(q, t) they exist. Constructions of infinite classes can be found in [61, 91, 123].
Some sporadic examples were found in [88, 95].
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For example, for t = 4, we only know examples for q ≤ 32 (for q = 8, 16: see
[91]; q = 32: see [88]).

Now, we turn our attention to another structure: blocking sets.

Definition 1.7.5. A blocking set B of PG(n, q) with respect to the k-spaces,
0 < k < n, is a point set in PG(n, q) which has a non-empty intersection with
every k-space. A point P ∈ B is called essential in B if B \ {P} is not a
blocking set. If all points of B are essential, then B is called minimal.

The smallest blocking sets were classified by Bose and Burton.

Theorem 1.7.6 ([21, Theorem 2]). If B is a blocking set of PG(n, q) with
respect to the k-spaces, then |B| ≥ θn−k(q). Moreover, if |B| = θn−k(q), then
B is an (n− k)-dimensional subspace of PG(n, q).

The (n − k)-spaces are the smallest blocking sets of PG(n, q) with respect to
the k-spaces. All blocking sets of PG(n, q) with respect to the k-spaces which
contain an (n− k)-space, are called trivial ; the ones which do not contain an
(n−k)-space are called non-trivial. A blocking set in PG(n, q) with respect to
the k-spaces is called small if it contains less than 3

2
(qn−k + 1) points. This is

roughly 3
2

times the size of the smallest blocking set in PG(n, q) with respect
to the k-spaces.

The most studied blocking sets are blocking sets of PG(2, q) with respect to
the lines. Much effort has been made to find the smallest non-trivial minimal
blocking sets. For a prime power q, we define r(q) = |B| − q − 1, with B
the smallest non-trivial minimal blocking set of PG(2, q) with respect to the
lines. For q = 2 no such blocking set exists, so r(2) is not defined. We give an
overview of the results on r(q).

Theorem 1.7.7. Consider q = ph, p prime, h ∈ N \ {0}.

• ([9]) If h = 1 and p 6= 2 (q an odd prime), then r(q) = q+1
2

.

• ([25, 26]) If h is even, then r(q) =
√
q. Moreover, if B is a non-trivial

blocking set of size q +
√
q + 1, then B is a Baer subplane.

• ([18]) If h ≥ 3 is odd and p > 3, then r(q) = 3
√
q2.



20 | Chapter 1. Preliminaries

• ([10, 18]) If h ≥ 3 is odd and p ∈ {2, 3}, then r(q) ≥ max

{
√
pq, 3

√
q2

2

}
.

If h = 3, then r(q) = 3
√
q2 =

√
pq.

The first result states that there are no small non-trivial blocking sets in
PG(2, p), p prime. Now, we state a result about the smallest non-trivial block-
ing sets in a more general setting.

Theorem 1.7.8 ([7, 76]). The smallest non-trivial blocking sets with respect
to the k-spaces in PG(n, q), which are necessarily minimal, are the cones with
an (n − k − 2)-space π as vertex and a non-trivial minimal blocking set with
respect to the lines in a plane V of size q + r(q) + 1, with r(q) as above, as
base, V ∩ π = ∅. Their size equals θn−k(q) + r(q)qn−k−1, with r(q) as above.

The third substructure that we introduce, is the regulus.

Definition 1.7.9. A regulus in PG(3, q) is a set L of q + 1 pairwise disjoint
lines such that any line having a non-empty intersection with three lines of L,
meets all lines of L.

We have a look at the following result, which we will use throughout Chapter
3.

Lemma 1.7.10. Let P be a three-dimensional projective space PG(3, q) or a
polar space of rank 2 embedded in PG(3, q). Let `1, `2 and `3 be three pairwise
disjoint lines in P . Let L be the set of lines in P meeting `1, `2 and `3 all three
in a point. If L is non-empty, then let L′ be the set of lines in P meeting all
lines of L in a point. If P is a projective space PG(3, q), a hyperbolic quadric
Q+(3, q) or a symplectic polar space W(3, q), q even, then L is a regulus and
L′ is also a regulus, called the opposite regulus. If P is a Hermitian variety
H(3, q), q a square, then L is a set of

√
q + 1 lines corresponding to a regulus

in a hyperbolic quadric Q+(3,
√
q) embedded in H(3, q) and L′ is the set of

lines corresponding to the opposite regulus in Q+(3,
√
q) ⊂ H(3, q). If P is a

symplectic polar space W(3, q), q odd, then L is either empty or a set of two
lines, and L′ is the set of q+ 1 lines of P meeting both lines of L in the second
case.

Proof. All these statements are generally known. For the projective case, a
clear proof is given [79, Theorem 15.3.12], based on [111, Section 190]. For the
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quadric case, see the remarks following the referred theorem for the projective
case. For the symplectic case, q even, one can use the relationship between
these polar spaces and the quadrics. For this relationship, see Remark 1.6.8.
The Hermitian case was treated in [113, Section 86]; a short proof can be
found in [79, Lemma 19.3.1]. For the symplectic case, q odd, see [4, Lemma
2.1]. This result in [4] is itself a corollary from several results in [102, Sections
1.3.6 and 3.3.1].

So, for PG(3, q), a regulus is the set of lines in PG(3, q) meeting three given,
pairwise disjoint lines. Such a regulus contains q + 1 lines. The set of lines
meeting all lines of a given regulus, is a regulus itself and is called the opposite
regulus. These two reguli determine a hyperbolic quadric Q+(3, q). They
correspond to the two classes of generators.

The final concept we introduce in this section is the spread.

Definition 1.7.11. A set of t-spaces in PG(n, q), having pairwise no point in
common, is called a partial t-spread. If a partial t-spread cannot be extended
to a larger one, then it is called maximal. If a partial t-spread covers all points
of PG(n, q), then it is called a t-spread.

A t-spread exists in PG(n, q) if and only if (t + 1)|(n + 1), a classical result
([112]). Maximal partial t-spreads have been the subject of much research.
Especially, the maximal partial line spreads in PG(3, q) have received a lot of
attention. We refer the reader to [5, 73, 75] for the study of large maximal
partial line spreads in PG(3, q), to [64, 97] for the study of large maximal
partial t-spreads in PG(n, q) and to [59, 71, 72, 74] for spectrum results.

1.8 Linear codes

The only codes that will be discussed in this thesis are linear codes over a field
([77, 122]).

Definition 1.8.1. A linear code C of length n over Fq is a subspace of the
vector space V (n, q). If dim(C) = k, then C is called an [n, k]-code. The
elements of C are code words. A generator matrix for C is a (k × n)-matrix
whose rows form a basis of C.
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The support of a code word is the set of its non-zero positions. We denote the
support of c ∈ C by supp(c). The weight wt(c) of a code word c ∈ C, equals
|supp(c)|, its number of non-zero positions. The minimum weight of a linear
code C, is the minimum of the weights of the non-zero code words.

The distance d(c, c′) between two code words c, c′ ∈ C, is wt(c − c′), the
number of positions in which the corresponding coordinates of c and c′ differ.
The minimum distance d(C) of C then equals min{d(c, c′) | c, c′ ∈ C, c 6= c′}.
An [n, k]-code with minimum distance d, is called an [n, k, d]-code.

A linear code over Fq, is sometimes called q-ary, e.g. binary (F2), ternary (F3),
... For a linear code, its minimum weight and its minimum distance coincide.

Regarding the standard dot product for vectors in V (n, q), the linear code C
has an orthogonal complement. This is also a code; it is called the dual code
and denoted by C⊥. If C is an [n, k]-code, then C⊥ is an [n, n− k]-code. For
any vector c ∈ C and any vector c′ ∈ C⊥, we know that c · c′ = 0. Moreover,
if G is a generator matrix of C, then Gc′ = 0 for any c′ ∈ C⊥. Therefore G is
called a parity check matrix of C⊥. Vice versa, a generator matrix for C⊥ is a
parity check matrix for C.

We mention one more concept.

Definition 1.8.2. Let C be a linear code and let δ > 1 be an integer such
that the weight of every code word of C is divisible by δ. Then δ is called a
divisor of the code C.

There are various links between finite geometry and coding theory. A first
important link is based on the following matrix.

Definition 1.8.3. Consider the projective geometry PG(n, q), q = ph, p a
prime, h ∈ N \ {0}, and consider s, t ∈ N, with 0 ≤ s < t ≤ n − 1. Let
Ms,t(n, q) be the Fp-matrix whose rows are labelled by the t-spaces and whose
columns are labelled by the s-spaces of PG(n, q), and such that

(Ms,t(n, q))i,j =

{
1 if t-space i contains s-space j,

0 otherwise.

This matrix is called the incidence matrix of s-spaces and t-spaces of PG(n, q).
The p-ary code generated by the rows of this matrix will be denoted by
Cs,t(n, q). It is called the code generated by the s-spaces and t-spaces of PG(n, q).
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The code C0,t(n, q) will briefly be denoted by Ct(n, q). For n = 2, the code
C1(2, q) is denoted by C(2, q).

Note that the incidence matrix Ms,t(n, q) is not a generator matrix of Cs,t(n, q).
Its rows span the code (by definition), but they are not linearly independent.
Much research has been performed regarding these codes and their duals. A
good survey on these codes and their duals can be found in [94]. We mention
one important result.

Theorem 1.8.4 ([2, Corollary 6.4.4]). Let C be the code C(2, q). The
minimum weight of C ∩ C⊥ is 2q and the code words of minimum weight are
obtained by taking a scalar multiple of the difference of the incidence vectors
of two lines.

Incidence matrices can be defined for all incidence geometries. Here, next
to the projective spaces, we only introduce the incidence matrices and corre-
sponding codes of polar spaces, since these are discussed in this thesis.

Definition 1.8.5. Consider the finite polar space P of rank d embedded in
PG(n, q), q = ph, p a prime, h ∈ N \ {0}, and consider s, t ∈ N, with 0 ≤
s < t ≤ d − 1. Let Ms,t(P) be the Fp-matrix whose rows are labelled by the
t-spaces of P and whose columns are labelled by the s-spaces of P , and such
that

(Ms,t(P))i,j =

{
1 if t-space i contains s-space j,

0 otherwise.

This matrix is called the incidence matrix of s-spaces and t-spaces in P . The
p-ary code generated by the rows of this matrix will be denoted by Cs,t(P). It
is called the code generated by the s-spaces and t-spaces of P .

The code C0,t(P) will briefly be denoted by Ct(P).

Another link between finite projective geometries and codes is based on so-
called functional codes. The definition of a functional code was first stated in
[92].

Definition 1.8.6. Let X be an algebraic variety in PG(n, q) with point set
{P1, . . . , PN}. We normalize the coordinates of these points with respect to
the leftmost non-zero coordinate, i.e. we set the leftmost non-zero coordinate
equal to one by multiplying the coordinates with a scalar. Let F be a set
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of homogeneous polynomials in n + 1 variables, closed under taking linear
combinations. The functional code CF(X ) is equal to

CF(X ) = {(f(P1), . . . , f(PN)) | f ∈ F}.

Recall that the points of PG(n, q) are defined up to a scalar multiple, so
the previous definition only makes sense because of the normalization of the
coordinates. A different normalization would yield a different, but equivalent,
code. Furthermore, note that these functional codes are linear codes since F
is closed under linear combination. It follows that all polynomials in F \ {0}
are of the same degree.

We look at two important examples of functional codes.

Example 1.8.7. Let Fh be the set of all polynomials of degree h (in n + 1
variables), including the zero polynomial. Let X be an algebraic variety in
PG(n, q). We denote the code CFh(X ) by Ch(X ).

Example 1.8.8. Let FHerm be the set of all Hermitian polynomials over Fq2
(in n+1 variables), including the zero polynomial. The Hermitian polynomials
(in n+1 variables) are the polynomials of the form (X0, . . . , Xn)A(Xq

0 , . . . , X
q
n)

with A a Hermitian matrix, i.e. a matrix that fulfills Aq = At, whereby Aq

denotes (aqi,j)
j=0...n
i=0...n . Let X be an algebraic variety in PG(n, q2). We denote

the code CFHerm(X ) by CHerm(X ).

Remark 1.8.9. An interesting problem regarding functional codes is finding
their minimum distance and their small weight code words. We will show in
this remark that these questions can be solved in a geometrical way. Consider
the functional code CF(X ), with X an algebraic variety in PG(n, q) and F a set
of homogeneous polynomials in n+ 1 variables. Let f 6= 0 be a polynomial in
F and let cf be its corresponding code word. The equation f(X0, . . . , Xn) = 0
defines an algebraic variety Y in PG(n, q). Let P be a point on X whose
coordinates are written using the chosen normalization. If f(P ) = 0, then on
the one hand P ∈ Y , but on the other hand (cf )P = 0. So the points of X ∩Y
correspond to the zero positions of cf . Consequently, wt(cf ) + |X ∩ Y| = |X |.
In order to find (a lower bound on) the minimum distance of CF(X ) it is thus
sufficient to find (an upper bound on) the largest size of X ∩Y for any Y that
is defined by a polynomial f ∈ F \ {0}.



2
Erdős-Ko-Rado problems

nanos gigantium1 humeris insidentes

Attributed to Bernard de Chartres
by John of Salisbury in his Metalogicon.

In 1961 the Hungarian Pál Erdős, the Chinese Chao Ko and the German
Richard Rado published an influential paper in which they solved a problem
in extremal combinatorics. They found the maximal size of a family of pairwise
intersecting subsets of a finite set. Their result instigated a lot of research on
this topic. Similar problems were and are studied in a variety of structures
including sets, multisets, groups, ... and several geometries. In honour of the
three authors of the original paper, these problems are called Erdős-Ko-Rado
problems and the generalisations of their theorem are called Erdős-Ko-Rado
theorems.

In this chapter we present an introduction to Erdős-Ko-Rado problems. It
gives the background for the next chapters on Erdős-Ko-Rado problems in
geometries, and therefore does not contain new results. It is based on [40], a
survey paper on this topic, which is joint work with Leo Storme.

1The proper genitive plural of gigans is gigantum.

| 25
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2.1 The original Erdős-Ko-Rado problem

Finding the largest sets of pairwise non-trivially intersecting elements is one
of the classical problems in extremal combinatorics. In 1961, the solution to
this original Erdős-Ko-Rado problem was published by Erdős, Ko and Rado.

Theorem 2.1.1 ([53, Theorem 1]). If S is a family of subsets of size k in
a set Ω with |Ω| = n and n ≥ 2k, such that the elements of S are pairwise not
disjoint, then |S| ≤

(
n−1
k−1

)
.

Figure 2.1: A point-pencil.

Note that the upper bound in the previous
theorem is met if S is the set of all subsets of
size k containing a fixed element of Ω. It is a
consequence of the next theorem that this is
the only example meeting the upper bound if
n ≥ 2k + 1. The set of all subsets of a fixed
size k containing a fixed element is called a
point-pencil. Generalizations of this structure
will also be called a point-pencil.

Note that in case n = 2k, there are many
examples attaining this upper bound: for ev-
ery k-subset, there is precisely one disjoint
k-subset in the set, so any set of k-subsets
constructed by picking one k-subset from each such pair will do. Furthermore,
in case n < 2k, this problem is trivial, since two subsets of size k cannot be
disjoint in this case.

A first generalisation of this problem asks for the maximal size of a family of
subsets of size k in a finite set, such that its elements pairwise meet in at least
t elements of Ω. In [53, Theorem 2], a first result was obtained. It required

the bound n ≥ t+ (k − t)
(
k
t

)3
(using the notation from Theorem 2.1.2). This

result was improved by Wilson in 1984.

Theorem 2.1.2 ([131]). Let 1 ≤ t ≤ k be positive integers. If S is a family
of subsets of size k in a set Ω with |Ω| = n and n ≥ (t+1)(k− t+1), such that
the elements of S pairwise intersect in at least t elements, then |S| ≤

(
n−t
k−t

)
.

Moreover, if n ≥ (t+ 1)(k − t+ 1) + 1, then equality holds if and only if S is
the set of all subsets of size k through a fixed t-subset of Ω.
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In [131] Wilson also showed that the bound in Theorem 2.1.2 is sharp. Let F
be the set of all subsets of size k meeting a fixed subset of Ω of size t+ 2 in at
least t+ 1 elements, k ≥ t+ 1. The elements of F pairwise intersect in at least
t elements. If n = (t+ 1)(k− t+ 1), then |F| = (t+ 2)

(
n−t−2
k−t−1

)
+
(
n−t−2
k−t−2

)
equals

the size of the set described in Theorem 2.1.2. If n ≤ (t + 1)(k − t + 1) − 1,
then |F| is larger than the size of the set described in this theorem.

Inspired by the first result, a collection of k-subsets of an arbitrary set, which
are pairwise not disjoint, is called an Erdős-Ko-Rado set. The Erdős-Ko-Rado
problem asks for the classification of the (largest) Erdős-Ko-Rado sets. An
important result was obtained by Hilton and Milner. This result describes the
largest Erdős-Ko-Rado sets which are not embedded in a point-pencil.

Theorem 2.1.3 ([78]). Let Ω be a set of size n and let S be an Erdős-Ko-
Rado set of k-subsets in Ω, k ≥ 3 and n ≥ 2k + 1. If there is no element in Ω
which is contained in all subsets in S, then

|S| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Moreover, equality holds if and only if

• either S is the union of {F}, for some fixed k-subset F , and the set of all
k-subsets G of Ω containing a fixed element x /∈ F , such that G∩F 6= ∅,

• or else k = 3 and S is the set of all subsets of size 3 having an intersection
of size at least 2 with a fixed subset F of size 3.

Consider a set of size n and let V be the set of its k-subsets. The Johnson
graph is the graph with vertex set V and such that two vertices are adjacent
if the corresponding k-subsets have k − 1 elements in common. This graph is
distance-regular; more details on this graph can be found in [23, Chapter 9].
The Kneser graph is the graph with vertex set V and such that two vertices
are adjacent if the corresponding k-subsets are disjoint. In fact, these graphs
correspond to two of the k+ 1 relations in the Johnson scheme. It can be seen
that an Erdős-Ko-Rado set corresponds to a coclique of the Kneser graph.

Some of the results on Erdős-Ko-Rado sets are stated as results on cocliques
of Kneser graphs. Some results are also obtained using a graph-theoretic ap-
proach. Therefore, the Johnson graphs and Kneser graphs are mentioned here.
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2.2 Erdős-Ko-Rado sets in vector spaces and projective
spaces

We mentioned before that the Erdős-Ko-Rado problem has been generalised
to a variety of other structures. For example, the q-analogues2 of Erdős-Ko-
Rado sets were introduced. Let V (n, q) be the n-dimensional vector space
over the finite field Fq of order q. Erdős-Ko-Rado sets in V (n, q) are sets of k-
dimensional subspaces, pairwise intersecting non-trivially. The Erdős-Ko-Rado
problem then asks for the size and classification of the (largest) Erdős-Ko-Rado
sets.

We can analogously introduce Erdős-Ko-Rado sets of k-dimensional subspaces
of a projective space PG(n, q). In Section 1.3 a projective geometry is defined
as the geometry of the subspaces of a vector space. Therefore, results on
Erdős-Ko-Rado sets in vector spaces can be interpreted as results on Erdős-
Ko-Rado sets in projective spaces, and vice versa. Here, we will present them in
projective spaces since the theorems and proofs in the next chapters on Erdős-
Ko-Rado sets are also stated in a projective geometry setting. An Erdős-Ko-
Rado set of k-dimensional subspaces in PG(n, q) is briefly called an EKR(k)
set in PG(n, q).

In 1975, Hsieh proved in [82] a first q-analogue for Theorem 2.1.1. Among
the later improvements of this theorem, we mention the results of Greene and
Kleitman ([66]), Frankl and Wilson ([58]), Newman ([100]), Tanaka ([116])
and Godsil and Newman ([63]). The following theorem, which is a q-analogue
for Theorem 2.1.2, combines the results of Frankl-Wilson with the results of
Tanaka.

Theorem 2.2.1 ([58, Theorem 1] and [116, Theorem 3]). Let t and k
be integers, with 0 ≤ t ≤ k. Let S be a set of k-dimensional subspaces
in PG(n, q), pairwise intersecting in at least a t-dimensional subspace. If

n ≥ 2k + 1, then |S| ≤
[
n− t
k − t

]
q

. Equality holds if and only if S is the

set of all k-dimensional subspaces, containing a fixed t-dimensional subspace
of PG(n, q), or n = 2k+ 1 and S is the set of all k-dimensional subspaces in a

2In general a q-analogue is a mathematical identity, problem, theorem, ... that depends on a
variable q and that generalises a known identity, problem, theorem, ... to which it reduces in the
(right) limit q → 1. In a combinatorial setting it often arises by replacing a set and its subsets
by a vector space and its subspaces. In the proof of Lemma 4.3.1 we will describe the q-binomial
theorem, a q-analogue of the classical binomial theorem.
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fixed (2k − t)-dimensional subspace.

If 2k− t ≤ n ≤ 2k, then |S| ≤
[
2k − t+ 1

k − t

]
q

. Equality holds if and only if S is

the set of all k-dimensional subspaces in a fixed (2k− t)-dimensional subspace.

Corollary 2.2.2. Let S be an EKR(k) set in PG(n, q). If n ≥ 2k + 1, then

|S| ≤
[
n

k

]
q

. Equality holds if and only if S is the set of all k-dimensional

subspaces, containing a fixed point of PG(n, q), or n = 2k+ 1 and S is the set
of all k-dimensional subspaces in a fixed hyperplane.

Also for projective spaces, the Erdős-Ko-Rado set consisting of all subspaces
through a fixed projective point is called a point-pencil.

Remark 2.2.3. It should be noted that the condition n ≥ 2k + 1 in the pre-
vious theorem on Erdős-Ko-Rado sets is not really a restriction. In PG(n, q),
n ≤ 2k, no two disjoint k-dimensional subspaces can be found. So, every set
of k-spaces is an Erdős-Ko-Rado set.

Analogously, the condition n ≥ 2k − t is not a restriction in Theorem 2.2.1,
for in PG(n, q), n ≤ 2k − t, any pair of k-dimensional subspaces meets in at
least a t-dimensional subspace.

Until now, we have only stated results about the largest Erdős-Ko-Rado sets in
finite projective spaces. Now, we will also look at other Erdős-Ko-Rado sets.
Obviously, new Erdős-Ko-Rado sets of any size below the size of the largest
example, can be made by deleting elements from an Erdős-Ko-Rado set of
largest size. Therefore we will focus on maximal Erdős-Ko-Rado sets, i.e.
Erdős-Ko-Rado sets not extendable to a larger Erdős-Ko-Rado set. Typically,
one tries to find all maximal Erdős-Ko-Rado sets of k-dimensional subspaces
in a projective space PG(n, q), with size at least s. E.g., the above remark
indicates that there is only one maximal EKR(k) set in PG(n, q), n ≤ 2k: the
set of all k-dimensional subspaces in PG(n, q).

We mention the results of Blokhuis et al. on the second-largest maximal Erdős-
Ko-Rado set of subspaces in a finite projective space. This is the q-analogue
of the Hilton-Milner result (Theorem 2.1.3).

Theorem 2.2.4 ([11, Theorem 1.3 and Proposition 3.4]). Assume S is
a maximal EKR(k) set in PG(n, q), with n ≥ 2k + 2, k ≥ 2 and q ≥ 3 (or
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n ≥ 2k + 4, k ≥ 2 and q = 2). If S is not a point-pencil, then

|S| ≤
[
n

k

]
q

− qk(k+1)

[
n− k − 1

k

]
q

+ qk+1.

Moreover, if equality holds, then

• either S consists of all k-dimensional subspaces through a fixed point
P , meeting a fixed (k + 1)-dimensional subspace τ , with P ∈ τ , in a
j-dimensional subspace, j ≥ 1, and all k-dimensional subspaces in τ ,

• or else k = 2 and S is the set of all planes meeting a fixed plane π in at
least a line.

If k = 1, then an Erdős-Ko-Rado set of k-dimensional subspaces in a projective
space PG(n, q), n ≥ 3, is a set of pairwise intersecting lines. It was noted in [23,
Section 9.3] that there are only two types of maximal Erdős-Ko-Rado sets of
lines: the set of all lines through a fixed point and the set of all lines contained
in a fixed plane. In fact, it was observed that there are only two types of sets
of k-dimensional subspaces in a projective space PG(n, q), n ≥ k+ 2, pairwise
intersecting in a (k − 1)-space, k ≥ 1: the set of all k-dimensional subspaces
through a fixed (k − 1)-dimensional subspace and the set of all k-dimensional
subspaces contained in a fixed (k + 1)-dimensional subspace.

Not only large Erdős-Ko-Rado sets have been studied. At the other end of
the spectrum, Mussche considered small EKR(k) sets and found the following
result. It should be noted that the size of the EKR(k) set is independent of q.

Theorem 2.2.5 ([99, Theorem 2.45]). If k is a prime power, a maximal
EKR(k) set of size k2 + k + 1 exists in PG(n, q), n ≥ k2 + k.

It should be noted that the restriction on n originally was not mentioned, but
it is necessary, given the proof.

We end this section with a remark on graphs. Let V (n, q) be a vector space
and let Vk be the set of its k-spaces. The Grassmann graph is the graph with
vertex set Vk and such that two vertices are adjacent if the corresponding k-
spaces meet in a (k − 1)-space. The distance relations in this graph give rise
to an association scheme, the Grassmann scheme or q-Johnson scheme. The
disjointness relation gives rise to the generalised Kneser graph or q-Kneser
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graph. Some of the above results, e.g. Theorem 2.2.1, were obtained studying
the Grassmann scheme. Other bounds were found using matrix techniques.
The study of the chromatic number of the generalised Kneser graphs is an
important application of the results on Erdős-Ko-Rado sets. Results can be
found in recent works such as [12, 31] and in the survey paper [13].

2.3 Erdős-Ko-Rado sets in polar spaces

The original Erdős-Ko-Rado sets and their q-analogues in V (n, q) lead to the
following definition of Erdős-Ko-Rado sets on finite classical polar spaces.

Definition 2.3.1. An Erdős-Ko-Rado set of k-dimensional subspaces in a fi-
nite classical polar space P of rank d, k ≤ d − 1, briefly an EKR(k) set, is
a set of k-dimensional subspaces of P , pairwise intersecting non-trivially. As
before, it is called maximal if it is not contained in a larger Erdős-Ko-Rado
set.

The Erdős-Ko-Rado problem asks for the classification of the (largest) maximal
Erdős-Ko-Rado sets.

In [104], the EKR(d − 1) sets for finite classical polar spaces of rank d, i.e.
the Erdős-Ko-Rado sets of generators, were investigated by Pepe, Storme and
Vanhove. For most finite classical polar spaces the largest EKR(d−1) sets were
classified. In Sections 2.1 and 2.2, we found that the largest Erdős-Ko-Rado
sets in finite sets and finite projective spaces are point-pencils. Surprisingly,
this is true for EKR(d− 1) sets on some polar spaces but not on all of them.
For some polar spaces, the point-pencils are one of the types of EKR(d − 1)
sets of maximal size; for others, there are EKR(d − 1) sets of larger size. An
overview of the results in [104] can be found in Table 2.1.

Remark 2.3.2. In this table, it is mentioned that there are two types of
Erdős-Ko-Rado sets of generators in one class of a hyperbolic quadric Q+(7, q).
However, it follows directly from the proof that these are the only two maximal
Erdős-Ko-Rado sets of generators in one class. So, in this case, there is a
complete classification.

There is one type of finite classical polar spaces lacking in Table 2.1: the
Hermitian polar spaces H(4n + 1, q2), n ≥ 2, are the only ones for which the



32 | Chapter 2. Erdős-Ko-Rado problems

Polar space Maximum size Classification

Q−(2n+ 1, q) (q2 + 1) · · · (qn + 1) point-pencil

Q(4n, q) (q + 1) · · · (q2n−1 + 1) point-pencil

Q(4n+ 2, q), n ≥ 2 (q + 1) · · · (q2n + 1)
point-pencil,
one class of Q+(4n+ 1, q)

Q(6, q) (q + 1)(q2 + 1)
point-pencil, base plane,
one class of Q+(5, q)

Q+(4n+ 1, q) (q + 1) · · · (q2n + 1) one class

one class of
(q + 1) · · · (q2n + 1) point-pencilQ+(4n+ 3, q), n ≥ 3

one class of Q+(7, q) (q + 1)(q2 + 1)
point-pencil,
meeting fixed element of
other class in a plane

W(4n+ 1, q),
(q + 1) · · · (q2n + 1) point-pencil

n ≥ 2, q odd

W(5, q), q odd (q + 1)(q2 + 1) point-pencil, base plane

W(4n+ 1, q),
(q + 1) · · · (q2n + 1)

point-pencil,
n ≥ 2, q even one class of Q+(4n+ 1, q)

W(5, q), q even (q + 1)(q2 + 1)
point-pencil, base plane,
one class of Q+(5, q)

W(4n+ 3, q) (q + 1) · · · (q2n+1 + 1) point-pencil

H(2n, q2)
(q3 + 1)(q5 + 1) · · ·

point-pencil· · · (q2n−1 + 1)

H(4n+ 3, q2)
(q + 1)(q3 + 1) · · ·

point-pencil· · · (q4n+1 + 1)

H(5, q2) q(q4 + q2 + 1) + 1 base plane

Table 2.1: [104, Section 9]: results on Erdős-Ko-Rado sets of generators in the finite
classical polar spaces. For some polar spaces of rank 3 (the generators are planes)
the base plane appears in this classification. This is the set of all planes meeting a
fixed plane in at least a line.

classification of the largest Erdős-Ko-Rado sets of generators is not known.
The study of these Erdős-Ko-Rado sets of generators was made in detail by
Ihringer and Metsch. They proved the following result.

Theorem 2.3.3 ([84, Theorem 1]). The size of an Erdős-Ko-Rado set of

generators on H(4n+ 1, q2), n ≥ 2, is at most q4n
2+1 +O(q4n

2
.
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We end this section with two remarks.

Remark 2.3.4. Above we have only stated results about Erdős-Ko-Rado sets
of generators. About Erdős-Ko-Rado sets of other subspaces of finite classical
polar spaces, very little is known. However, the observation about EKR(1)
sets that we made in the previous section (for projective spaces), is also valid
for projective spaces albeit with a small difference. A maximal Erdős-Ko-Rado
set of lines is either the set of all lines through a fixed point (a point-pencil) or
the set of all lines in a plane on the polar space. Note that this second example
only occurs if the rank of the classical polar space is at least 3 (so if it is not a
generalised quadrangle). In Chapter 3 we will focus on maximal EKR(2) sets.
Up to our knowledge, nothing is known about EKR(k) sets on polar spaces of
rank d, with 2 < k < d− 1.

Remark 2.3.5. Just as in the set case or the projective space case, we can
attach a graph to these geometries. Let P be a finite classical polar space of
rank d. The dual polar graph is the graph with the generators of P as vertices
and such that two vertices are adjacent if the corresponding generators meet
in an space of dimension d − 2. The results in [104] were obtained studying
this graph and its corresponding association scheme.

2.4 Erdős-Ko-Rado sets in incidence geometries

Inspired by the definitions in the previous sections, we can define an Erdős-Ko-
Rado set of type k, briefly an EKR(k) set, for an arbitrary incidence geometry.

Definition 2.4.1. Let G = (V ,∆n, t, I) be an incidence geometry. The set
S ⊆ V is an Erdős-Ko-Rado set of type k, briefly an EKR(k) set, with 0 ≤
k ≤ n− 1, if

• ∀v ∈ S : t(v) = k;

• ∀v, v′ ∈ S, ∃p ∈ V : t(p) = 0, p I v and p I v′.

An Erdős-Ko-Rado set is called maximal if it is not extendable regarding these
conditions.

Note that this definition is also applicable to geometries with an infinite num-
ber of varieties such as projective spaces or classical polar spaces over infinite
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fields. However, in this case, often Erdős-Ko-Rado sets with an infinite number
of elements can be constructed, e.g. a point-pencil in PG(n,F), F an infinite
field. Therefore, it is often impossible to classify the largest Erdős-Ko-Rado
sets. So, Erdős-Ko-Rado sets in these geometries are generally not studied.

In Theorems 2.1.2 and 2.2.1, it is indicated that there is a more general concept
extending the definition of an Erdős-Ko-Rado set. The condition ‘pairwise not
disjoint’ is replaced by ‘pairwise meeting in a subset of size at least t’ or
‘pairwise meeting in a subspace of dimension at least t’. These are so-called t-
intersecting sets. For polar spaces, these have not been studied in general, but
some cases have been looked at. In [24] the authors considered {0, 1, 2}-cliques
of polar spaces, especially symplectic and quadric polar spaces. A {0, 1, 2}-
clique of a polar space of rank d is a set of generators such that any two of
them intersect in at least a (d−3)-space. For the quadric and symplectic polar
spaces a complete classification of the {0, 1, 2}-cliques is given. We will use
some of these results in Section 3.3. For Hermitian polar spaces these were
studied by Ihringer and Metsch in [85].

Definition 2.4.1 can easily be generalised to a definition of t-intersecting sets of
type k in an incidence geometry, 0 ≤ t ≤ k, by replacing the condition t(p) = 0
by t(p) = t. In this thesis however, we will only focus on Erdős-Ko-Rado sets
and not on general t-intersecting sets.

Another generalisation that has been made by several authors, is replacing the
condition ‘pairwise’ by ‘r-wise’ for an integer r ≥ 2. This was studied by Frankl
([57]) in the set case and by Chowdhury and Patkós ([32]) in the projective
space case. Also this generalisation is beyond the scope of this thesis.

A last generalisation which we mention, was studied by Güven in [67]. She
investigated pairwise intersecting flags of projective and polar spaces, instead
of pairwise intersecting subspaces.



3
Erdős-Ko-Rado sets of planes in projective and

polar spaces

Point n’est besoin d’espérer pour entreprendre,
ni de réussir pour persévérer.

Attributed to Willem de Zwijger, prins van Oranje.

We learned in Chapter 2 that in general the two largest maximal Erdős-Ko-
Rado sets of subspaces in a finite projective space are classified. For the finite
polar spaces, the largest Erdős-Ko-Rado sets of generators are known, in most
cases. Only for EKR(1) sets and the Erdős-Ko-Rado sets of generators of
the hyperbolic quadric Q+(7, q), we know a complete classification. When we
consider the situation for maximal Erdős-Ko-Rado sets of arbitrary subspaces
in polar spaces, and we look at the third largest example of maximal Erdős-
Ko-Rado sets of subspaces in projective spaces and we want to find to find a
seconde example of a complete classification, it is natural to look at Erdős-Ko-
Rado sets of planes. They are from these several viewpoints the first or the
next ‘step’ in the process. For PG(5, q), maximal EKR(2) sets were studied
by Blokhuis, Brouwer and Szőnyi. They found the following result.

Theorem 3.0.1 ([12, Section 6]). Let S be a maximal EKR(2) set in the

| 35
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projective space PG(5, q), with |S| ≥ 3q4 + 3q3 + 2q2 + q + 1. Then one of the
following cases occurs.

• |S| =
[
5

2

]
q

and S is the set of planes through a fixed point P or the set

of planes in a 4-space τ ⊂ PG(5, q).

• |S| = 1 + q(q2 + q + 1)2 and S is one of the following: the set of planes
intersecting a fixed plane π in at least a line, the set of planes that either
are contained in a 3-space σ or else intersect σ in a line through a fixed
point P ∈ σ, or the set of planes that either pass through a fixed line `
or else are in a 4-space τ ⊃ ` and intersect ` in a point.

• |S| = 3q4 + 3q3 + 2q2 + q + 1 and S is the set of all planes that intersect
π in a line through P , all planes in τ that intersect π in a line, and all
planes through P in τ , with P a point, π a plane and τ a 4-space such
that P ∈ π ⊂ τ .

In [8], a related problem has been studied. The authors considered Klein sets,
sets of planes in PG(n, q) mutually intersecting in precisely one point. They
classified the large Klein sets and in most cases they gave a description of the
Klein sets.

In this chapter we study EKR(2) sets, both for projective and polar spaces.
Due to the natural embedding of polar spaces in projective spaces, it is possi-
ble to study this simultaneously. We will find several classification theorems,
classifying in general the ten, eleven or twelve largest maximal EKR(2) sets.
This chapter is based on the article [36]. In Section 3.1 we give some examples
of EKR(2) sets and in Section 3.2 we prove that this list contains all EKR(2)
sets generating a subspace of dimension at least 6. In Section 3.3 we use this
result to classify, in general, the ten largest EKR(2) sets. Hereby, we also look
at the small cases (polar spaces of small rank), for which we often can give a
better or even complete classification.
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3.1 List of EKR(2) sets

In this section we give a list of types of maximal EKR(2) sets. In Section
3.1.1 we give a list of the maximal EKR(2) sets whose elements span at least
a 6-space in the (ambient) projective space. This list contains in general the
largest EKR(2) sets. Afterwards, in Section 3.1.2, we give a list of maximal
EKR(2) sets contained in a 5-space of the (ambient) projective space. This list
is not complete, but it contains examples of EKR(2) sets that occur in polar
spaces of small rank. These examples will allow us to give a more complete
classification in Section 3.3.

While presenting the examples, we should prove that the planes in such a set
pairwise meet and that the set is maximal. In most cases, this proof is easy,
and therefore not mentioned. Implicitly, these conditions are shown to be valid
in the proofs of Section 3.2.

Throughout this section P denotes a projective space of dimension at least 5 or
a classical polar space of rank at least 3. We introduce the following notation.

Notation 3.1.1. Let S be an EKR(2) set of type a in the finite projective or
polar space P . We denote the number of planes in S by n(a,P).

3.1.1 Large examples

I: Consider a point P in P . Let S be the set of all planes through P . This is

a maximal EKR(2) set. It contains n(I,P) =

[
n

2

]
q

planes if P = PG(n, q)

and

[
d− 1

2

]
q

(qd+e−2 + 1)(qd+e−3 + 1) planes if P is a classical polar space

of rank d with parameter e. This is the point-pencil.

II: Consider a 3-space σ in P and a point P ∈ σ. Let S be the set of all
planes that either are contained in σ or else intersect σ in a line through
P . This is a maximal EKR(2) set. The number of planes in S equals

n(II,P) =

[
4

3

]
q

+

[
3

1

]
q

([
n− 1

1

]
q

−
[
2

1

]
q

)
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= (q2 + q + 1)

[
n− 1

1

]
q

− (q2 + q)

if P = PG(n, q) and

n(II,P) =

[
4

3

]
q

+

[
3

1

]
q

([
d− 2

1

]
q

(qd+e−3 + 1)−
[
2

1

]
q

)

= (q2 + q + 1)

[
d− 2

1

]
q

(qd+e−3 + 1)− (q2 + q)

if P is a classical polar space of rank d ≥ 4 with parameter e.

This is a maximal EKR(2) set of Hilton-Milner type. We presented these
already in Theorem 2.2.4 for the projective case. See also [11].

Figure 3.1: The EKR(2) sets of type I (left) and type II (right).

III: Consider a plane π in P . Let S be the set containing π and all planes in
P intersecting π in a line. This maximal EKR(2) set contains

n(III,P) =

[
3

2

]
q

([
n− 1

1

]
q

− 1

)
+ 1 = (q2 + q + 1)

[
n− 1

1

]
q

− (q2 + q)
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planes if P = PG(n, q) and

n(III,P) =

[
3

2

]
q

([
d− 2

1

]
q

(qd+e−3 + 1)− 1

)
+ 1

= (q2 + q + 1)

[
d− 2

1

]
q

(qd+e−3 + 1)− (q2 + q)

planes if P is a classical polar space of rank d with parameter e.

This EKR(2) set was already described in Theorem 2.2.4 for the projec-
tive case, and in Table 2.1 for polar spaces of rank 3. There it was called
the base plane.

IV: Consider a 4-space τ in P , a plane π ⊂ τ and a point P ∈ π. Let S be
the set containing the planes in τ intersecting π in a line, the planes in P
intersecting π in a line through P and the planes in τ through P . This
is a maximal EKR(2) set. It contains

n(IV,P) =

[
2

1

]
q

([
n− 1

1

]
q

− 1

)
+

([
3

2

]
q

−
[
2

1

]
q

)([
3

1

]
q

− 1

)

+

([
4

2

]
q

−
[
2

1

]
q

([
3

1

]
q

− 1

))

= (q + 1)

[
n− 1

1

]
q

+ (2q4 + q3 − q)

planes if P = PG(n, q) and

n(IV,P) =

[
2

1

]
q

([
d− 2

1

]
q

(qd+e−3 + 1)− 1

)

+

([
3

2

]
q

−
[
2

1

]
q

)([
3

1

]
q

− 1

)

+

([
4

2

]
q

−
[
2

1

]
q

([
3

1

]
q

− 1

))

= (q + 1)

[
d− 2

1

]
q

(qd+e−3 + 1) + (2q4 + q3 − q)
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planes if P is a classical polar space of rank d ≥ 5 with parameter e.

The example of the third weight in Theorem 3.0.1 is an EKR(2) set of
this type for the specific case P = PG(5, q).

Figure 3.2: The EKR(2) sets of type III (left) and type IV (right).

V: Consider a 4-space τ in P and a line ` ⊂ τ . Let S be the set containing
all planes through ` and all planes in τ containing a point of `. This is a
maximal EKR(2) set which contains

n(V,P) =

[
n− 1

1

]
q

+

[
2

1

]
q

([
4

2

]
q

−
[
3

1

]
q

)

=

[
n− 1

1

]
q

+ q2(q + 1)(q2 + q + 1)

planes if P = PG(n, q) and

n(V,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) +

[
2

1

]
q

([
4

2

]
q

−
[
3

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + q2(q + 1)(q2 + q + 1)

planes if P is a classical polar space of rank d ≥ 5 with parameter e.

The third example of the second weight in Theorem 3.0.1 is an EKR(2)
set of this type for the specific case P = PG(5, q).
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VI: Let τ1 and τ2 be two 4-spaces in P such that σ = τ1∩ τ2 is a 3-space. Let
π and π′ be two planes in σ with intersection line ` and let P and P ′ be
two different points on `. We define S to be the set containing the planes
through `, the planes in σ, the planes in τ1 containing a line through P
in π or a line through P ′ in π′, and the planes in τ2 containing a line
through P in π′ or a line through P ′ in π. This is a maximal EKR(2) set
containing

n(VI,P) =

[
n− 1

1

]
q

+

([
4

3

]
q

−
[
2

1

]
q

)
+ 4

([
2

1

]
q

− 1

)([
3

1

]
q

−
[
2

1

]
q

)

=

[
n− 1

1

]
q

+ 5q3 + q2

planes if P = PG(n, q) and

n(VI,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) +

([
4

3

]
q

−
[
2

1

]
q

)

+ 4

([
2

1

]
q

− 1

)([
3

1

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + 5q3 + q2

planes if P is a classical polar space of rank d ≥ 5 with parameter e.

VII: Let ρ be a 5-space contained in P . Consider a line ` and a 3-space σ,
disjoint to `, in ρ. Choose three points P1, P2, P3 on ` and choose four non-
coplanar points Q1, Q2, Q3, Q4 in σ. Denote `1 = 〈Q1, Q2〉, `1 = 〈Q3, Q4〉,
`2 = 〈Q1, Q3〉, `2 = 〈Q2, Q4〉, `3 = 〈Q1, Q4〉 and `3 = 〈Q2, Q3〉. Let S be
the set containing all planes through ` and all planes through Pi in 〈`, `i〉
or in 〈`, `i〉, i = 1, 2, 3. The number of planes in this maximal EKR(2)
set equals

n(VII,P) =

[
n− 1

1

]
q

+ 6

([
3

2

]
q

−
[
2

1

]
q

)
=

[
n− 1

1

]
q

+ 6q2
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if P = PG(n, q) and

n(VII,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) + 6

([
3

2

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + 6q2

if P is a classical polar space of rank d ≥ 6 with parameter e.

VIII: Consider two 3-spaces σ and σ′, intersecting in a line `. Take the points
P1 and P2 on `. Let S be the set containing all planes through `, all
planes through P1 that contain a line in σ and a line in σ′, and all planes
through P2 in σ or in σ′. Note the asymmetric behaviour of P1 and P2.
This maximal EKR(2) set contains

n(VIII,P) =

[
n− 1

1

]
q

+

([
3

1

]
q

− 1

)2

+ 2

([
3

1

]
q

−
[
2

1

]
q

)

=

[
n− 1

1

]
q

+ q4 + 2q3 + 3q2

planes if P = PG(n, q). If P is a polar space, we need to distinguish
between two possibilities. Denote ρ = 〈σ, σ′〉. If d ≥ 6 and ρ ⊂ P (case
VIIIa), then S is an EKR(2) set with

n(VIIIa,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) +

([
3

1

]
q

− 1

)2

+ 2

([
3

1

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + q4 + 2q3 + 3q2

for a classical polar space with parameter e. If P is either a symplectic
polar space with ambient space PG(n, q), q odd, or a Hermitian variety,
d ≥ 4, and P∩ρ is a cone with vertex ` (case VIIIb), then S is a maximal
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EKR(2) set with

n(VIIIb,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) + (q + 1)

([
3

2

]
q

−
[
2

1

]
q

)

+ 2

([
3

2

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + q3 + 3q2

for a classical polar space with parameter e. Note that this construction
(assuming d ≥ 4 and P ∩ρ is a cone with vertex ` and base a polar space
of rank 2) gives rise to a non-maximal EKR(2) set if P is a quadric or
a symplectic polar space with ambient space PG(n, q), q even. It can be
extended to a maximal EKR(2) set of type IXa by adding planes through
P2.

For all other possibilities for P ∩ ρ, S is not a maximal EKR(2) set.

IX: Let ` be a line in P and σ a 3-space skew to `, in the ambient projective
space of P . Denote 〈`, σ〉 by ρ. Choose two points P and P ′ on `. Let
R and R′ be two sets of pairwise disjoint lines in σ, such that any line
of R and any line of R′ have precisely one point in common, such that
|R|, |R′| ≥ 3 and such thatR andR′ are maximal under these conditions.
Let S be the set containing all planes through `, all planes through P in
a 3-space generated by ` and an element of R and all planes through P ′

in a 3-space generated by ` and an element of R′. If P = PG(n, q), then
R is a regulus and R′ is its opposite regulus. The number of planes of
this maximal EKR(2) set equals

n(IX,P) =

[
n− 1

1

]
q

+ 2(q + 1)

([
3

2

]
q

−
[
2

1

]
q

)
=

[
n− 1

1

]
q

+ 2q3 + 2q2

if P = PG(n, q). If P is a polar space, we need to distinguish between
several possibilities. First assume that ρ ⊂ P or that ρ∩P is a cone with
vertex ` and base a hyperbolic quadric Q+(3, q) or a symplectic polar
space W(3, q), q even (case IXa). In this case R is a regulus and R′ is
its opposite regulus. The number of planes of this maximal EKR(2) set
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equals

n(IXa,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) + 2(q + 1)

([
3

2

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + 2q3 + 2q2

if P is a classical polar space of rank d with parameter e. If P is a
hyperbolic, parabolic or elliptic quadric, a 5-space in PG(n, q) whose
intersection with P contains a cone with vertex a line can always be
found if d ≥ 4. Also, if P is a symplectic polar space and q is even, a
5-space whose intersection with P contains such a cone can always be
found if d ≥ 4. If P is a Hermitian variety, a 5-space in PG(n, q) whose
intersection is such a cone does not exist. Thus, the EKR(2) set of this
type only exists if the rank d of the Hermitian polar space is at least six.
Also if P is a symplectic polar space and q is odd, an EKR(2) set of this
type only exists if the rank d of the polar space is at least six.

Now we assume that ρ ∩P is a cone with vertex ` and base a Hermitian
variety H(3, q) (case IXb). In this case R corresponds to a regulus of a
hyperbolic quadric Q+(3,

√
q) embedded in H(3, q), and R′ to the lines

of its opposite regulus. The number of planes of this maximal EKR(2)
set equals

n(IXb,P) =

[
d− 2

1

]
q

(qd+e−3 + 1) + 2(
√
q + 1)

([
3

2

]
q

−
[
2

1

]
q

)

=

[
d− 2

1

]
q

(qd+e−3 + 1) + 2q2
√
q + 2q2

if P is a classical polar space of rank d with parameter e. This EKR(2)
set only exists if P is a Hermitian polar space whose rank d is at least 4.

Other possibilities for the intersection ρ∩P do not yield maximal EKR(2)
sets.

X: Consider a 3-space σ and three 4-spaces τ12, τ13, τ14 through σ, all in P .
Choose four non-coplanar points P1, P2, P3, P4 in σ. Let S be the set
containing all planes in τ12 through 〈P1, P2〉 or 〈P3, P4〉, all planes in τ13
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Figure 3.3: The EKR(2) sets of type V (left) and type IX (right).

through 〈P1, P3〉 or 〈P2, P4〉, all planes in τ14 through 〈P1, P4〉 or 〈P2, P3〉,
and all planes in σ. The number of planes in this maximal EKR(2) set is

n(X,P) =

[
4

3

]
q

+ 6

([
3

1

]
q

−
[
2

1

]
q

)
= q3 + 7q2 + q + 1.

Note that this EKR(2) set only can exist if P = PG(n, q), if P is a
classical polar space of rank 5 with parameter e > 0 or if P is a classical
polar space of rank at least 6. Note also that 〈τ12, τ13, τ14〉 can be as well
a 5-space as a 6-space.

XI: Consider a Fano plane F with points P0, . . . , P6. Let Q0, . . . , Q6 be seven
linearly independent points in P . The set S contains precisely those
planes 〈Qi, Qj, Qk〉 for those {i, j, k} such that {Pi, Pj, Pk} is a line in F .
This maximal EKR(2) set contains n(XI,P) = 7 planes. Note that S
only can exist if P = PG(n, q), n ≥ 6, or if P is a classical polar space of
rank at least 7.

This example was described before in [8]. In the proof of Theorem 2.2.5,
Mussche also described this example, among others, using a general pro-
jective plane ([99, Theorem 2.45]). He proved therein the maximality of
these examples.
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Figure 3.4: The EKR(2) sets of type X (left) and type XI (right).

3.1.2 Small examples

XII: Consider a 4-space τ in P . The set S contains all planes in τ . This is a

maximal EKR(2) set which contains n(XII,P) =

[
5

3

]
q

planes. If P is a

polar space, its rank d must be at least 5. It should be remarked that the
set of all planes on a polar space P in a 4-space τ ′ 6⊂ P is not an EKR(2)
set, since it is not maximal.

XIII: Let Q+(5, q) be a hyperbolic quadric contained in P and let ρ be the 5-
space in the (ambient) projective space, generated by Q+(5, q). We show
that the set S of all planes of one class of planes on Q+(5, q) is a maximal
EKR(2) set. Note that S contains n(XIII,P) = q3 + q2 + q + 1 planes.
A plane not in ρ has a non-empty intersection with at most q2 + q + 1
planes of S. A plane π in ρ, not in S, has a non-empty intersection
with 2q2 + q + 1 planes (if π ∩ Q+(5, q) is the union of two lines), with
q2 + 2q + 1 planes (if π ∩ Q+(5, q) is a conic Q(2, q)), with q2 + q + 1
planes (if π ∩Q+(5, q) is a line or π is a plane of the other class) or with
q + 1 planes (if π ∩Q+(5, q) is a point).

If P is a quadric with d ≥ 3, a 5-space that contains a hyperbolic quadric
Q+(5, q) always can be found. If P is a Hermitian variety, it contains
such a 5-space if d ≥ 6. If P is a symplectic polar space and q is even, it
contains such a 5-space if d ≥ 3. If P is a symplectic polar space and q
is odd, it contains such a 5-space if d ≥ 6.

XIV: Let τ1 and τ2 be two 4-spaces on P with σ = τ1 ∩ τ2 a 3-space and let `
and m be two disjoint lines in σ. Let S be the set of all planes in σ, the
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planes in τ1 through `, the planes in τ1 through m, and the planes in τ2
intersecting both ` and m. This is a maximal EKR(2) set; it contains

n(XIV,P) =

[
4

3

]
q

+

([
2

1

]2
q

+ 2

)([
3

1

]
q

−
[
2

1

]
q

)
= q4 + 3q3 + 4q2 + q+ 1

planes. These EKR(2) sets exist if P is a projective space of dimension
at least 5 or a polar space of rank d ≥ 5. Note the asymmetric behaviour
of τ1 and τ2.

XV: Let τ1 and τ2 be two 4-spaces on P with σ = τ1 ∩ τ2 a 3-space and let R
be a regulus in σ and let R′ be its opposite regulus. Let S be the set of
all planes in σ, the planes in τ1 through a line of R, and the planes in τ2
through a line of R′. This maximal EKR(2) set contains

n(XV,P) =

[
4

3

]
q

+ 2(q + 1)

([
3

1

]
q

−
[
2

1

]
q

)
= 3q3 + 3q2 + q + 1

planes. These EKR(2) sets exist if P is a projective space of dimension
at least 5 or a polar space of rank d ≥ 5.

XVI: Let π1 and π2 be two disjoint planes in P and denote ρ = 〈π1, π2〉. Let
S be the set containing π2 and all planes intersecting π1 in a line and π2
in a point. This is a maximal EKR(2) set if ρ ⊂ P (case XVIa) and also
if ρ ∩P is a symplectic polar space of rank 3 over a finite field Fq, q odd
(case XVIb). In the former case n(XVIa,P) = (q2 + q + 1)2 + 1; in the
latter case, which was described in [24], n(XVIb,P) = q2 + q + 2.

XVII: Let P be a symplectic polar space with PG(n, q), q odd, its ambient
projective space. Let ρ be a 5-space in PG(n, q) such that ρ ∩ P is a
symplectic polar space of rank 3. Let π, π1, π2 and π3 be planes in ρ
on P such that `1 = π ∩ π1, `2 = π ∩ π2 and `3 = π ∩ π3 are three
non-concurrent lines. Denote P3 = `1 ∩ `2, P2 = `1 ∩ `3 and P1 = `2 ∩ `3.
Let S be the set of all planes on P through Pi, intersecting πj and πk
in a line, with {i, j, k} = {1, 2, 3}. This maximal EKR(2) set contains
n(XVII,P) = 3q + 1 elements. This EKR(2) set was first described in
[24] as a {0, 1, 2}-clique.
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Figure 3.5: The EKR(2) sets of type XV (left) and type XVII (right).

XVIII: Let P be a symplectic polar space with PG(n, q), q odd, its ambient pro-
jective space. Let ρ be a 5-space in PG(n, q) such that ρ∩P is a symplectic
polar space of rank 3. Let F be a Fano plane with points P0, . . . , P6 and
lines `0, . . . , `6. Consider 14 planes π0, . . . , π6 and π′0, . . . , π

′
6 such that a

plane πi and a plane π′j intersect in a line iff Pi /∈ `j and such that neither
πi ∩ πj nor π′i ∩ π′j is a line. Let S be the set {π0, . . . , π6}. This is an
EKR(2) set with n(XVIII,P) = 7.

This EKR(2) set was first introduced in [24]. However, neither its max-
imality nor its existence were explicitly proved. We give an example
of such an EKR(2) set to prove it exists. Assume the symplectic po-
lar space of rank 3 is given by A = (ai,j)

j=0...5
i=0...5 with a0,1 = a2,3 =

a4,5 = 1, a1,0 = a3,2 = a5,4 = −1 and all other entries 0. Assume
`i = {Pi, Pi+1, Pi+3}, i = 0, . . . , 6, whereby the addition in the indices is
considered modulo 7, and denote Qj = (δ0,j, . . . , δ5,j), with δi,j the Kro-
necker delta. We choose π0 = 〈Q0, Q2, Q4〉, π1 = 〈Q0, Q3, Q5〉, π2 =
〈Q0 − Q4, Q0 − Q3, Q1 − Q2 + Q5〉, π3 = 〈Q2 − Q4, Q2 − Q1, Q5 −
Q0 + Q3〉, π4 = 〈Q0 − Q2, Q0 − Q5, Q3 − Q4 + Q1〉, π5 = 〈Q1, Q3, Q4〉,
π6 = 〈Q1, Q2, Q5〉, π′0 = 〈Q1, Q3 − Q4, Q2 − Q5〉, π′1 = 〈Q1, Q2, Q4〉,
π′2 = 〈Q0, Q2, Q5〉, π′3 = 〈Q0, Q3, Q4〉, π′4 = 〈Q5, Q1 −Q2, Q0 −Q3〉, π′5 =
〈Q0−Q2, Q0−Q4, Q1−Q2+Q3−Q4+Q5〉 and π′6 = 〈Q3, Q5−Q0, Q4−Q1〉.
Then S = {π0, . . . , π6} is a maximal EKR(2) set. Moreover, any set
of planes fulfilling the requirements of the above paragraph is PGL-
equivalent to this one.
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3.2 The main theorem

We now state the main theorem of this chapter. Its proof relies on a separate
treatment of different cases, subcases, subsubcases, etc. Therefore we first give
only an outline of the proof. Each of the different cases can be found below.

Note that this theorem is stated for a finite projective space or a finite clas-
sical polar space. However, it can straightforwardly be generalised to infinite
projective spaces and infinite classical polar spaces, respecting the difference
between fields of characteristic two and the others for symplectic polar spaces.
As we already remarked in Section 2.4 we will not do this; in Section 3.3, we
will use this result only for finite projective and polar spaces.

Theorem 3.2.1. Let P be a projective space of dimension at least 5 or a
classical polar space of rank at least 3 and let PG(n, q) be the ambient space
of P . Let S be a maximal EKR(2) set in P . Then S is of type I,..., X or XI
or S is contained in a 5-space of PG(n, q).

Outline of the proof. Since the classical polar spaces can be embedded in a
projective space, we can proceed in an ambient projective space PG(n, q),
n ≥ 5. The planes of S obviously need to be on P , but the j-spaces we will
consider, are not all necessarily on P . We will indicate their intersection with
P when needed. The structure of the proof can be found here.

1. Assume S contains two planes intersecting each other in a line `. In
Remark 3.2.2 we distinguish three types of planes, denoted by A, B and
C.

1.1. Assume S does not contain planes of type C.

1.1.1. All planes of type B in S contain the same point of `. In Lemma
3.2.3 we prove that S must be an EKR(2) set of type I.

1.1.2. There are two planes of type B in S intersecting in a line and
containing different points of `. In Remark 3.2.4 we study this
situation. We introduce the sets S ′ and T , and the 3-space σ′1.

1.1.2.1. Assume that |T | = 1. In Lemma 3.2.5 we prove that S must
be an EKR(2) set of type II.

1.1.2.2. Assume that |T | ≥ 2 and that there are two planes in S ′
through a different point of ` which intersect in a line. In
Lemma 3.2.6 we prove that S must be an EKR(2) set of
type III, IV or V.
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1.1.2.3. Assume that |T | ≥ 2 and that any two planes in S ′ through
a different point of ` intersect in a point and that two such
planes can be found whose intersection point is not in σ′1. In
Lemma 3.2.7 we prove that S must be an EKR(2) set of type
VI.

1.1.2.4. Assume that |T | ≥ 2 and that any two planes in S ′ through
a different point of ` intersect in a point of σ′1. In Lemma
3.2.8 we prove that this case cannot occur.

1.1.3. Not all planes of type B in S pass through the same point of `.
Any two planes of type B through different points of ` intersect
in a point. In Remark 3.2.9 we introduce τ1 and the statement
(∗). We also study the case in which τ1 does not fulfill (∗). In
this case S is of type III and P is a polar space of rank 3. In
Remark 3.2.10 we look at the case in which τ1 fulfills (∗) and
we sort the planes of type B in ten subtypes: BbA, BbB, BbC,
BbD, BcA, BcB, BcC, BcD, BeA and BeB.

1.1.3.1. Assume τ1 fulfills (∗) and S contains no planes of subtypes
BbD, BcD and BeB. In Lemma 3.2.11 we prove this situation
cannot occur.

1.1.3.2. Assume τ1 fulfills (∗) and S contains planes of subtype BeB.
In Lemma 3.2.12 we prove that S must be an EKR(2) set of
type VII.

1.1.3.3. Assume τ1 fulfills (∗) and S contains planes of subtype BbD,
but none of subtypes BcD and BeB. In Lemma 3.2.13 we
prove that S must be an EKR(2) set of type VIII, VIIIa or
VIIIb.

1.1.3.4. Assume τ1 fulfills (∗) and S contains planes of subtype BcD,
but none of subtypes BbD and BeB. In Remark 3.2.14 we
show this case is analogous to the previous one. Hence S
must be an EKR(2) set of type VIII, of type VIIIa or of type
VIIIb.

1.1.3.5. Assume τ1 fulfills (∗) and S contains planes of subtypes BbD
and BcD, but none of subtype BeB. In Lemma 3.2.15 we
prove the EKR(2) set must be of type IX, IXa or IXb.

1.2. Assume S contains a plane of type C. In Remark 3.2.16 we introduce
the 4-space τ1 and the line `1.

1.2.1. Assume that there is a plane of type C, not contained in τ1 and
that all planes of type C in S that are not contained in τ1, pass
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through `1. In Lemma 3.2.17 we show either all planes of S are
contained in a 5-space or else we can find a line which contains
a point of every plane in S. This second possibility has been
treated in Case 1.1.

1.2.2. Assume S contains planes of type C not in τ1 and not through
`1. In Remark 3.2.18 we introduce the line `2 and the point R,
and we argue that S always contains a plane of type B.

1.2.2.1. Assume that S contains a plane of type B intersecting neither
`1 nor `2, and not containing R. In Lemma 3.2.19 we prove
either all planes of S are contained in a 5-space or else we
can find a line which contains a point of every plane in S.
As noted before, this second possibility has been treated in
Case 1.1.

1.2.2.2. Assume that S contains a plane of type B intersecting neither
`1 nor `2, but also that all such planes contain R. In Lemma
3.2.20 we prove that either all planes of S are contained in
a 5-space or else we can find a line which contains a point
of every plane in S. As noted before, this second possibility
has been treated in Case 1.1.

1.2.2.3. Assume that all planes of type B in S intersect `1 or `2.
In Lemma 3.2.21 we prove that there are three possibilities:
all planes of S are contained in a 5-space, we can find a line
which contains a point of every plane in S, or S is an EKR(2)
set of type X.

1.2.3. Assume that all planes of type C in S are contained in τ1. In
Lemma 3.2.22 we prove that there are three possibilities: all
planes of S are contained in a 5-space, we can find a line which
contains a point of every plane in S, or S is an EKR(2) set of
type X.

2. Assume any two planes of S intersect each other in a point. In Remark
3.2.23 we introduce the 5-space ρ. We show that any plane in S intersects
ρ in at least a line.

2.1. Assume that all planes of S that are not contained in ρ, pass through
a common line in ρ. In Lemma 3.2.24 we prove that this case cannot
occur.

2.2. Assume that S contains two planes not in ρ, through different lines
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of ρ. In Lemma 3.2.25 we prove that S must be an EKR(2) set of
type XI.

2.3. Assume that all planes in S are contained in ρ. In this case the
EKR(2) set is obviously contained in a 5-space.

Remark 3.2.2. In this case we assume that S contains two planes that in-
tersect in a line `. Let π1 and π2 be two planes in S through `. The planes
through ` are called planes of type A; the planes that intersect ` in precisely a
point, are called planes of type B. The planes that do not contain a point of `,
are called planes of type C. All planes of S belong to one of these types. Any
plane of type C in S contains a point of π1 \ ` and a point of π2 \ `, hence a
line in σ1 = 〈π1, π2〉 skew to `. Since all planes in S, skew to `, contain a line
in the 3-space σ1, we know that all planes through ` in σ1 (planes of type A
in σ1) are contained in S. Note that S only can contain planes of type C if
σ1 ⊂ P .

Lemma 3.2.3. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.2. Using the notations introduced in that remark, we
assume that S does not contain planes of type C. If all planes of type B in S
pass through the same point P ∈ `, then S is of type I.

Proof. All planes in S of type A contain the point P ∈ ` and by assumption
all planes in S of type B also contain the point P . Since S contains no planes
of type C, all planes in S contain the point P . By the maximality condition
on an EKR(2) set, we know S must contain all planes through P . This set is
indeed maximal since n ≥ 5. Hence, S is an EKR(2) set of type I.

Remark 3.2.4. We use the notations introduced in Remark 3.2.2. We assume
S contains no planes of type C. Hence, all planes in S contain at least a point of
` and, by the maximality of an EKR(2) set, all planes through ` are contained
in S. Furthermore, we assume both π′1 and π′2 are planes of type B, with
π′1 ∩ ` = {P1} and π′2 ∩ ` = {P2}, P1 6= P2, such that π′1 ∩ π′2 is a line `′. We
denote σ′1 = 〈π′1, π′2〉 = 〈`, `′〉, a 3-space. Note that σ′1 ⊂ P . The planes in S
of type B then either are contained in σ′1 or else intersect σ′1 in a line which
contains a point of `. By the maximality of S, all planes in the 3-space σ′1,
which are all of type A or type B, then belong to S.

Let S ′ be the set S \ ({plane π | ` ⊂ π} ∪ {plane π | π ⊂ σ′1}). All planes in
S ′ are of type B and hence each such plane contains precisely one point of `.
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Let T be the set of points on ` contained in at least one element of S ′. It is
easy to see that T cannot be the empty set since S \ S ′ cannot be maximal.

Lemma 3.2.5. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.4. Using the notations from that remark, we assume
|T | = 1. Then S is an EKR(2) set of type II.

Proof. In this case, all planes of S ′ pass through a common point P ′ ∈ `. By
the arguments in Remark 3.2.4, all these planes intersect σ′1 in a line. However,
all planes that intersect σ′1 in a line through P ′ intersect (obviously) each other.
Thus all these planes need to be contained in S ′, and consequently in S. Note
that this set is indeed maximal since n ≥ 5. We find an EKR(2) set of type
II.

Lemma 3.2.6. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.4. Using the notations from that remark, we assume
|T | ≥ 2. If S ′ contains two planes through a different point of `, intersecting
each other in a line, then S is an EKR(2) set of type III, of type IV or of type
V.

Proof. Let π1 and π2 be two planes in S ′, with π1∩` = {Q1} and π2∩` = {Q2},
Q1 6= Q2, such that π1∩π2 is a line `. We denote the 3-space 〈π1, π2〉 by σ1 ⊂ P .
Now, regarding `, the sets {π′1, π′2, `′, σ′1} and {π1, π2, `, σ1} play the same role.
Using the arguments from Remark 3.2.4, we know that all planes in σ1 are in
S and all other planes of S intersect σ1 in a line. Note that σ′1 ∩ σ1 is a plane.
We denote this plane by V and we denote τ1 = 〈σ′1, σ1〉.

Hence, the planes in S ′ which do not lie in σ1, should contain a line in σ′1 and
a line in σ1. These planes, all of type B, therefore all belong to one of the
three following types. Note that all of these planes contain at least a point of
V since ` ⊂ V .

Ba1: the planes that intersect V in a point but not in a line. These planes
are generated by a line in σ′1 not in V and a line in σ1 not in V , and
thus contained in τ1. These planes only exist if τ1 ⊂ P .

Ba2: the planes that intersect V in a line and are contained in τ1. The
projective or polar space P surely contains planes of this type since
σ′1, σ1 ⊂ P . In fact, the planes in σ′1∪σ1, different from V itself, are
of this type.
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Ba3: the planes that intersect V in a line and are not contained in τ1. So
these planes intersect τ1 in a line of V .

On the one hand, note that any plane of type Ba2 intersects all planes of type
Ba1, Ba2 and Ba3. By the maximality condition on an EKR(2) set, all these
planes must be contained in S, if they are in P . On the other hand, note that
a plane of type Ba1 and a plane of type Ba3 can intersect each other only in
a point of `. We distinguish three cases.

If S contains two planes of type Ba3 not through the same point of ` ⊂ V ,
we know no planes of type Ba1 are contained in S. However, all planes that
intersect V in a line, intersect each other and should thus be in S. We find an
EKR(2) set of type III. This is indeed maximal since n ≥ 5.

If all planes of type Ba3 in S pass through the same point P ′ of `, then all
planes of type Ba1 in S also pass through P ′ by the above remark. Using again
the maximality condition on S, we know that all planes of type Ba1 through
P ′ are in S. The set S that we have found, is maximal if τ1 ⊂ P since n ≥ 5.
We see that S is an EKR(2) set of type IV. This set is however not maximal
if τ1 6⊂ P since in this case, there are no planes of type Ba1 and all planes of
Ba3 then intersect the planes in S.

If S contains no planes of type Ba3, then all planes of type Ba1 must be
contained in S. The set which we find in this case, is maximal if τ1 ⊂ P . It
is an EKR(2) set of type V. If τ1 6⊂ P , then S is not maximal since all planes
in S then necessarily intersect V in a line and each plane of type Ba3 thus
intersects all planes in S.

Lemma 3.2.7. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.4. Using the notations from that remark, we assume that
|T | ≥ 2 and that any two planes in S ′ through a different point of ` intersect
each other in a point. If S ′ contains two planes through a different point of `,
intersecting each other in a point not in σ′1, then S is an EKR(2) set of type
VI.

Proof. Let π′3 and π′4 be two planes in S ′, with π′3 ∩ σ′1 = `3, π
′
4 ∩ σ′1 = `4,

π′3 ∩ ` = {P3}, π′4 ∩ ` = {P4}, P3 6= P4, such that their intersection point Q3 is
not in σ′1. Note that σ′1 = 〈`3, `4〉. We denote 〈σ′1, Q3〉 = 〈π′3, π′4〉 by τ3. Note
that τ3 ⊂ P . Also note that the planes 〈P3, `4〉 and 〈P4, `3〉 intersect each other
in the line `. Consequently, all lines that intersect `, `3 and `4 must be lines
through P3 in 〈P3, `4〉 or lines through P4 in 〈P4, `3〉. Recall that all planes in
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S ′ intersect σ′1 in a line. Hence, all planes of type B in S ′ belong to one of the
following types.

Baa: the planes, not in τ3, containing a line through P3 in 〈P3, `4〉, differ-
ent from `.

Bab: the planes, not in τ3, containing a line through P4 in 〈P4, `3〉, differ-
ent from `.

Bac: the planes in τ3, containing precisely one point of `.

We now distinguish four cases.

If S ′ contains no planes of type Baa nor of type Bab, then all planes of type
Bac should be contained in S ′ since they all intersect each other. However, we
can find two such planes through a different point of `, which intersect in a
line, a contradiction.

If S ′ contains no planes of type Bab, but does contain a plane of type Baa,
necessarily only sharing a line of 〈P3, `4〉 with τ3, then the only planes of type
Bac that can be in S ′ are the ones that intersect 〈P3, `4〉 precisely in the point
P3 (type Bac1) or contain a line in 〈P3, `4〉 (type Bac2). Any plane of type Bac2
intersects all planes of type Baa and all planes of type Bac, hence all planes
of type Bac2 are in S ′ because of the maximality condition on S. However,
we can find two such planes through a different point of `, which intersect in
a line, a contradiction.

If S ′ contains no planes of type Baa, but does contain a plane of type Bab,
then we can use the same arguments.

Now, we assume S ′ contains a plane π′5 of type Baa and a plane π′6 of type Bab.
We denote π′5 ∩ σ′1 = `5 = 〈P3, P5〉, with P5 ∈ `4, and π′6 ∩ σ′1 = `6 = 〈P4, P6〉,
with P6 ∈ `3. Furthermore, we denote π′5 ∩ π′6 = {Q5} and τ5 = 〈π′5, π′6〉. Note
that τ3 ∩ τ5 = σ′1 and that τ5 ⊂ P . We observe that, considering `, σ′1, P3 and
P4, the sets {π′3, π′4, Q3, τ3, `3, `4} and {π′5, π′6, Q5, τ5, `5, `6} play the same role.
Hence, the planes of S ′ can also be split up in three types according to this
second set. They belong to one of the following types.

Baa’: the planes, not in τ5, containing a line through P3 in 〈P3, `6〉 =
〈P4, `3〉, different from `.
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Bab’: the planes, not in τ5, containing a line through P4 in 〈P4, `5〉 =
〈P3, `4〉, different from `.

Bac’: the planes in τ5, containing precisely one point of `.

A plane in S ′ belongs to one of the three types according to both systems.
So, there are nine possibilities for the planes in S ′. There are no planes that
are simultaneously of type Baa and of type Baa’, since planes generated by
two different lines through P3 in σ′1, are contained in σ′1 ⊂ τ3, τ5. Analogously,
there are no planes that are of type Bab and of type Bab’. Planes cannot be
of type Baa and of type Bab’ since they cannot contain two different points of
` without containing ` itself. Analogously, planes cannot be of type Bab and
Baa’. The planes that are of type Bac and Bac’ are contained in τ3 ∩ τ5 = σ′1.
We already know that the planes in σ′1 are contained in S.

The planes which are of type Baa and of type Bac’ are in τ5 and intersect σ′1
in a line in 〈P3, `4〉 through P3. The planes which are of type Bab and of type
Bac’ are in τ5 and intersect σ′1 in a line in 〈P4, `3〉 through P4. Analogously,
the planes which are of type Baa’ and Bac are in τ3 and intersect σ′1 in a line
in 〈P4, `3〉 through P3. The planes which are of type Bab’ and Bac are in
τ3 and intersect σ′1 in a line in 〈P3, `4〉 through P4. From these descriptions
it can easily be seen that all these planes intersect each other, hence by the
maximality condition on S, all should be contained in S. We find an EKR(2)
set of type VI.

Lemma 3.2.8. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.4. Using the notations from that remark, we assume that
|T | ≥ 2 and that any two planes in S ′ through a different point of ` intersect
each other in exactly a point. If any two planes in S ′ through a different point
of ` intersect each other in a point of σ′1, then S cannot be a maximal EKR(2)
set.

Proof. Let π′3 and π′4 be two planes in S ′, with π′3 ∩ σ′1 = `3, π
′
4 ∩ σ′1 = `4,

π′3 ∩ ` = {P3}, π′4 ∩ ` = {P4}, P3 6= P4. By the assumptions, their intersection
point Q4 belongs to σ′1 and thus Q4 = `3∩`4. Any plane in S ′ contains a line in
〈`,Q4〉 since it intersects both π′3 and π′4 in a point of σ′1 and it also intersects
`. By this observation and the maximality condition on S, all planes that
contain a line in 〈`,Q4〉 should be in S. However, we can find two such planes
through different points of `, intersecting each other in a line. This contradicts
the assumptions. Hence, under these imposed assumptions, S cannot be a
maximal EKR(2) set.
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Remark 3.2.9. We use the notations introduced in Remark 3.2.2. We already
assumed S contains no planes of type C. Hence, all planes in S contain at least
a point of ` and, by the maximality of S, all planes through ` are contained in
S. However, these cannot be the only planes in S; there also must be planes
of type B, not all through the same point of `. In this case, we assume that
any two planes of type B through different points of `, intersect each other
in a point. Let π′1 and π′2 be two planes of type B, with π′1 ∩ ` = {P1} and
π′2∩ ` = {P2}, P1 6= P2, such that π′1∩π′2 is a point Q1. We denote the 4-space
〈π′1, π′2〉 by τ1, the 3-space 〈P1, π

′
2〉 by σ′2 and the 3-space 〈P2, π

′
1〉 by σ′1, and

furthermore `1 = 〈P1, Q1〉, `2 = 〈P2, Q1〉 and π = 〈`,Q1〉 = 〈`1, P2〉 = 〈`2, P1〉.
Note that π = σ′1 ∩ σ′2 ⊂ P .

The planes of type B in S then necessarily belong to one of the following types.

Bb1: the planes through P1 containing a line in π, different from `.

Bb2: the planes through P1 intersecting σ′2 in a line, not in π. Note that
these planes exist only if σ′2 ⊂ P .

Bc1: the planes through P2 containing a line in π, different from `.

Bc2: the planes through P2 intersecting σ′1 in a line, not in π. Note that
these planes exist only if σ′1 ⊂ P .

Be1: the planes through P ′ ∈ ` \ {P1, P2} in τ1, containing a line in π.

Be2: the planes through P ′ ∈ ` \ {P1, P2} not in τ1, containing a line in
π.

Be3: the planes through P ′ ∈ ` \ {P1, P2} in τ1, not containing a line in
π. These planes intersect π in the point P ′.

We now look at τ1 ∩P . We assume τ1 6⊂ P , thus P is a polar space. We know
that the planes π′1, π

′
2 and π are in P . Hence, the intersection cannot be a

non-singular 4-dimensional polar space and thus is a cone. The vertex cannot
be a line since the planes π′1 and π′2 intersect in a point; the vertex cannot be
a 3-space since π′1 and π′2 generate the 4-space τ1. We consider the remaining
cases.

We assume first that the vertex is a point. Then, the base is a non-singular
polar space X(3, q) of rank 2 embedded in a 3-space σ̃ (a hyperbolic quadric,
a Hermitian polar space or a symplectic polar space). The vertex is contained
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in each plane on τ1 ∩P , and hence must equal Q1. Without loss of generality,
we can assume ` ⊂ σ̃. It follows that σ′1 ∩ P is a cone with vertex the line
〈Q1, P1〉 = `1, and that σ′2 ∩ P is a cone with vertex the line 〈Q1, P2〉 = `2.
Consequently, planes of type Bb2 and type Bc2 cannot exist. Also planes of
type Be3 cannot exist since each plane of P in τ1 passes through Q1. Hence,
all planes in S intersect π in at least a line. By the maximality condition on
an EKR(2) set, all planes intersecting π in a line must be contained in S. If
the rank of the polar space is at least 4, then we can find two planes among
these planes through different points of ` and intersecting in a line. If the rank
of the polar space equals 3, then this set is maximal: S is an EKR(2) set of
type III.

Now we assume that the vertex is a plane π2, different from π. Then, τ1 ∩ P
is the union of 3-spaces through π2. It is not possible that both σ′1 and σ′2 are
in P because π 6= π2. Without loss of generality, we can assume σ′2 6⊂ P . It
follows that σ′2 ∩ P is a cone with vertex the line 〈Q1, P2〉 = π ∩ π′2. Hence,
there are no planes of type Bb2. Furthermore, the line 〈Q1, P2〉 is contained
in the vertex π2. So, 〈Q1, P2, π

′
1〉 = σ′1 is contained in P . Note that planes of

type Be3 cannot exist in this case, since they are disjoint from 〈Q1, P2〉. Let V
be a plane through P2, but not through `, in σ′1. This is a plane of type Bc1.
It intersects all planes of type Bb1, Bc1, Bc2, Be1 or Be2, and is therefore
necessarily in S. Obviously, π′1 ∩V is a line since π′1, V ⊂ σ′1. This contradicts
the assumption that any two planes of type B in S through different points of
`, do not intersect in a line.

Only one cone case remains, namely the following: the vertex is the plane π
and τ1 ∩ P is a union of 3-spaces through π, among which σ′1 and σ′2. We say
τ1 fulfills (∗) if τ1 is in this case or if τ1 ⊂ P . In this remark we studied the
case in which τ1 does not fulfill (∗).

Remark 3.2.10. We use the notations and the assumptions we introduced in
Remark 3.2.9, but now we assume that τ1 fulfills (∗). Note that this implies
that σ′1, σ

′
2 ⊂ P . Then at least planes of types Bb1, Bb2, Bc1, Bc2, Be1 and

Be2 exist. Note that all planes of types Bb1, Bc1, Bc2, Be1, Be2 or Be3, and
all planes of type Bb2 in τ1, intersect σ′1 in at least a line. Consequently, if
S contains no planes of type Bb2 not in τ1, then all planes in σ′1 should be
contained in S by the maximality condition. This however contradicts the
assumption that no two planes of type B in S through a different point of
` intersect in a line. Hence, S contains a plane of type Bb2 not in τ1 and
analogously also a plane of type Bc2 not in τ1.
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Let π′3 be a plane of type Bb2 in S and let π′4 be a plane of type Bc2 in S,
both not contained in τ1, with π′2 ∩ π′3 = {P3} and π′4 ∩ π′1 = {P4}. By the
assumptions, π′3 ∩ π′4 must be a point, which we denote by Q3. We denote
〈P1, Q3〉 = `3, 〈P2, Q3〉 = `4, 〈P1, P4〉 = `1 ⊂ π′1, 〈P2, P3〉 = `2 ⊂ π′2, 〈P1, P3〉 =
`3 ⊂ π′3, 〈P2, P4〉 = `4 ⊂ π′4 and τ3 = 〈π′3, π′4〉. It can be observed that `3 ⊂ σ′2
and `4 ⊂ σ′1 and since neither `3 nor `4 is contained in π, these lines cannot
intersect, hence Q3 /∈ `3, `4. Furthermore, this point cannot be contained in
τ1. We can write π′3 = 〈P1, P3, Q3〉 and π′4 = 〈P2, P4, Q3〉. Note that τ1 ∩ τ3
is a 3-space σ, which contains the lines `, `1, `2, `3 and `4. Finally we also
introduce the notations π′ = 〈`,Q3〉, σ′3 = 〈P2, π

′
3〉 and σ′4 = 〈P1, π

′
4〉. Note

that π′, σ′3, σ
′
4 ⊂ P .

We observe that, regarding `, P1 and P2, the sets {π′1, π′2, Q1, τ1, π, σ
′
1, σ

′
2} and

{π′3, π′4, Q3, τ3, π
′, σ′3, σ

′
4} play the same role. So, the planes of type B in S also

belong to one of the following types.

Bb1’: the planes through P1 containing a line in π′, different from `.

Bb2’: the planes through P1 intersecting σ′4 in a line, not in π′.

Bc1’: the planes through P2 containing a line in π′, different from `.

Bc2’: the planes through P2 intersecting σ′3 in a line, not in π′.

Be1’: the planes through P ′ ∈ ` \ {P1, P2} in τ3, containing a line in π′.

Be2’: the planes through P ′ ∈ ` \ {P1, P2} not in τ3, containing a line in
π′.

Be3’: the planes through P ′ ∈ ` \ {P1, P2} in τ3, not containing a line in
π′. These planes intersect π′ only in the point P ′.

We denote the 3-space 〈π, π′〉 = 〈`,Q1, Q3〉 by σ′. Then, σ′ ⊂ P or σ′ ∩ P
is a union of planes through `, since π, π′ ⊂ σ′. Note that σ′ ∩ σ = `, that
σ′ ∩ τ1 = π and that σ′ ∩ τ3 = π′.

Obviously the planes of type B in S belong to one of the seven types according
to both classifications. Most of the combinations are impossible. The ten
possible combinations are listed here.

BbA: (Bb1-Bb1’) the planes in σ′ through P1, not through `. Note that
these planes can only exist if σ′ ⊂ P .
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BbB: (Bb1-Bb2’) the planes through P1 in 〈σ′4, Q1〉, not in σ′, that contain
a line in π.

BbC: (Bb2-Bb1’) the planes through P1 in 〈σ′2, Q3〉, not in σ′, that contain
a line in π′.

BbD: (Bb2-Bb2’) the planes that are generated by P1, a point of π′2 \ `2
and a point of π′4 \ `4.

BcA: (Bc1-Bc1’) the planes in σ′ through P2, not through `. Note that
these planes can only exist if σ′ ⊂ P .

BcB: (Bc1-Bc2’) the planes through P2 in 〈σ′3, Q1〉, not in σ′, that contain
a line in π.

BcC: (Bc2-Bc1’) the planes through P2 in 〈σ′1, Q3〉, not in σ′, that contain
a line in π.

BcD: (Bc2-Bc2’) the planes that are generated by P2, a point of π′1 \ `1
and a point of π′3 \ `3.

BeA: (Be2-Be2’) the planes in σ′ through a point P ′ ∈ ` \ {P1, P2}, not
through `. Note that these planes only can exist if σ′ ⊂ P .

BeB: (Be3-Be3’) the planes in σ through a point P ′ ∈ ` \ {P1, P2}, not
through `. Note that these planes only can exist if σ ⊂ P .

Let ρ be the 5-space 〈τ1, τ3〉. Of course, ρ ⊆ P is possible. We investigate
the different possibilities for ρ ∩ P in case ρ 6⊆ P . We know that P contains
the 3-spaces σ′1, σ

′
2, σ

′
3 and σ′4, which do not pass through a common plane.

Therefore ρ ∩ P cannot be non-singular and cannot be a cone with vertex a
point or a plane. Also, it cannot be a 4-space since σ′1 and σ′3 span ρ. Only two
possibilities for ρ ∩ P remain: a cone with vertex a line and a base different
from the elliptic quadric or a cone with vertex a 3-space and a base different
from the elliptic quadric. In the former case ρ ∩ P is the union of 3-spaces
through a common line, necessarily ` since ` = ∩4i=1σ

′
i. In the latter case ρ∩P

is the union of 4-spaces through a vertex σ3. The 3-spaces σ′1 and σ′4 can only
be contained in the same 4-space through σ3 if σ′ ⊂ P , since σ′ ⊂ 〈σ′1, σ′4〉.
In the same way, τ1 (the 4-space through σ′1 and σ′2) can only be a 4-space
in P through σ3 if σ ⊂ P , since σ ⊂ τ1. The 3-spaces σ′1 and σ′3 cannot be
contained in the same 4-space through σ3. Hence, if σ′ 6⊂ P and σ 6⊂ P , then
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this possibility cannot occur; if σ′ ⊂ P and σ 6⊂ P , then σ3 = σ′; if σ′ 6⊂ P
and σ ⊂ P , then σ3 = σ. Finally, if σ′ ⊂ P and σ ⊂ P , then ρ ⊆ P , so ρ ∩ P
is not a cone.

This ends Remark 3.2.10.

Figure 3.6: The configuration of the subspaces introduced in Remark 3.2.10. Note
that only the points, planes and 4-spaces are indicated.

Lemma 3.2.11. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.10. It is impossible that S contains no planes of type
BbD, BcD or BeB, using the notations from that remark.



62 | Chapter 3. Erdős-Ko-Rado sets of planes in projective and polar spaces

Proof. We assume that S contains no planes of type BbD, BcD or BeB. We
already noted in Remark 3.2.10 that either σ′ ⊂ P or else σ′ ∩P is a union of
planes through `. We distinguish between these two cases.

First we consider the former case. All planes of type BbA, BbB, BbC, BcA,
BcB, BcC or BeA, then intersect the 3-space σ′ in at least a line. By the
maximality condition on S, all planes in σ′ must be contained in S. These
are planes of type BbA, BcA and BeA. However, by the assumptions made in
Remark 3.2.10, we know any two planes of type B which pass through different
points of `, intersect in a point. So, not all planes in σ′ can be contained in
S, a contradiction. Clearly, S cannot be a maximal EKR(2) set under these
assumptions.

Secondly, we consider the latter case: σ′ ∩ P is a union of planes through `.
Note that P is a polar space and not a projective space in this case. There
cannot be planes of type BbA, BcA or BeA in this case. We look at the 4-space
〈σ′4, Q1〉 = 〈σ′1, Q3〉. Since it contains π, π′, π′1 and π′4, which are all in P , we
know that 〈σ′4, Q1〉 ∩ P is the union of 3-spaces through 〈P4, `〉, among which
σ′1 and σ′4. Analogously, 〈σ′3, Q1〉 = 〈σ′2, Q3〉 and 〈σ′3, Q1〉 ∩ P is the union of
3-spaces through 〈P3, `〉, among which σ′2 and σ′3. Consequently, all planes of
type BbB must be contained in σ′1, all planes of type BbC must be contained
in σ′3, all planes of type BcB must be contained in σ′2 and all planes of type
BcC must be contained in σ′4. It follows that all planes of type BbB, BbC,
BcB or BcC intersect each other. Moreover, all these planes must be in S by
the maximality condition, because there are no planes of type BbA, BcA or
BeA, and S contains no planes of type BbD, BcD or BeB by assumption.

However, all these planes intersect σ in at least a line. So, if σ ⊂ P , all planes
in σ (which are of type BbD, BcD or BeB, if they do not pass through `),
must be contained in S and S cannot be a maximal EKR(2) set under these
assumptions. Consequently, σ 6⊂ P and σ ∩ P is a union of planes through `.

We consider the 5-space ρ = 〈τ1, τ3〉. Clearly ρ * P , so ρ∩P is a cone. By the
observations at the end of Remark 3.2.10, we know that it has to be a cone
with vertex the line `. Now, let m be a line through P1 in σ′2, different from `,
and let ξm be the tangent space to P in PG(n, q) corresponding to m. Then,
ξm intersects ρ in a 4-space and ξm ∩ ρ ∩ P is a cone with vertex the plane
〈`,m〉. Clearly, ξm ∩ σ′4 is a plane through `. Let m′ be a line through P1 in
this plane. Then, the plane 〈m,m′〉 is a plane in P . This is a plane of type
BbD and intersects all planes in S. Hence, S is not maximal. So, also in this
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case S cannot be a maximal EKR(2) set under these assumptions.

Lemma 3.2.12. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.10. We use the notations from that remark. If S contains
a plane of type BeB, then S is an EKR(2) set of type VII.

Proof. Let π′6 be a plane of type BeB which is contained in S, with π′6 ∩
` = {P6}. This plane is contained in σ. Note that necessarily σ ⊂ P and
consequently τ1, τ3 ⊂ P . Note that none of the planes of type BbA or type
BcA intersects π′6 and that all planes of type BeB intersect π′6. Furthermore,
note that the planes of type BbB intersect π′6 if and only if they are contained
in σ′1, that the planes of type BbC intersect π′6 if and only if they are contained
in σ′3, that the planes of type BcB intersect π′6 if and only if they are contained
in σ′2, that the planes of type BcC intersect π′6 if and only if they are contained
in σ′4, that the planes of type BeA intersect π′6 if and only if they pass through
P6, that the planes of type BbD intersect π′6 if and only if their point on π′2 \ `2
lies on `2 or their point on π′4 \ `4 lies on `4, and that the planes of type BcD
intersect π′6 if and only if their point on π′1 \ `1 lies on `1 or their point on
π′3 \ `3 lies on `3.

It should be observed that each of these planes, except the planes of type BeA
that pass through P6, intersect σ in at least a line. Arguing as in the first part
of the proof of Lemma 3.2.11, we find that S must contain a plane of type
BeA which contains the point P6. Let π′7 be such a plane in S. Note that thus
σ′ ⊂ P and consequently ρ ⊆ P . On the one hand, it should be noted that
π′7 intersects anyhow the planes of type BbB contained in σ′1, the planes of
type BcB contained in σ′3, the planes of type BcB contained in σ′2, the planes
of type BcC contained in σ′4 and the planes of type BeA through P6. On the
other hand, π′7 does not intersect any of the planes of type BbD that contain
a point on `2 or on `4, nor any of the planes of type BcD that contain a point
on `1 or on `3. Since all planes through P1 in σ′1 or σ′3, all planes through P2

in σ′2 or σ′4, and all planes through P6 in σ′ or σ intersect each other, all these
planes must belong to S by the maximality condition. We find an EKR(2) set
of type VII.

Lemma 3.2.13. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.10. Using the notations from that remark, we assume
that S contains no planes of type BeB. If S contains a plane of type BbD, but
none of type BcD, then S is an EKR(2) set of type VIII, of type VIIIa or of
type VIIIb.
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Proof. Let π′6 = 〈P1, Q2, Q4〉 be a plane of type BbD that is contained in S,
with Q2 ∈ π′2 \ `2 and Q4 ∈ π′4 \ `4. All planes of type BbA, BbB, BbC or BbD
intersect π′6 since they contain P1; any plane of type BcA or type BeA does
not intersect π′6. Note that π′6 intersects the planes of type BcB if and only if
they are contained in σ′2 and that π′6 intersects the planes of type BcC if and
only if they are contained in σ′4. Note also that all the planes of type BbA,
BbB, BbC or BbD, the planes of type BcB in σ′2 and the planes of type BcC
in σ′4 intersect each other. By the maximality condition on S, all these planes
should be contained in S. Observe that the planes of type BbA, BbB, BbC
and BbD are together all planes through P1 that contain a line in σ′2, different
from `, and a line in σ′4, different from `.

We examine the different possibilities for the intersection ρ ∩ P . If ρ ⊂ P ,
then it is clear that S is an EKR(2) set of type VIII (if P is a projective
space) or of type VIIIa (if P is a polar space). If ρ 6⊂ P , then ρ ∩ P must be
a cone with vertex the line ` and base a non-singular polar space or a cone
with vertex a 3-space by Remark 3.2.10. In the former case, we can choose
σ̂ = 〈Q1, Q3, P3, P4〉 to be the 3-space containing the base. We define the map
φ from the planes of type B of S to the lines in the base as follows: the plane V
is mapped onto the line σ̂ ∩ 〈V, `〉. Any two lines of type B in S, not through
the same point of `, are mapped onto two lines meeting in a point. Note
that the planes of type BcB in σ′2 are mapped onto the line 〈Q1, P3〉 and that
the planes of type BcC in σ′4 are mapped onto the line 〈Q3, P4〉. The planes
through P1 meeting both σ′2 and σ′4 in a line different from `, are mapped onto
the q + 1 lines meeting both 〈Q1, P3〉 and 〈Q3, P4〉, among which 〈Q1, P4〉 and
〈Q3, P3〉. If we find a line m, different from 〈Q1, P3〉 and 〈Q3, P4〉, meeting all
these q + 1 lines, then any plane through P2 and in 〈`,m〉 extends S; this is
a plane of type BcD. Therefore, σ̂ ∩ P cannot be a hyperbolic quadric or a
symplectic polar space, q even. If it is a Hermitian variety or if q is odd and
the intersection is a symplectic polar space, then such a line cannot be found
and S is of type VIIIb. Hereby, we used Lemma 1.7.10.

Now, we look at the latter case. If ρ∩P is a cone with vertex a 3-space, then
this vertex equals σ′ or σ by Remark 3.2.10. Here, the vertex cannot be σ′

since σ′ ∩ π′6 is a point, thus the vertex has to be σ. Moreover, Q2 ∈ `2 \ {P2}
or Q4 ∈ `4 \ {P2} for otherwise π′6 is not in a 4-space through σ. We also find
that planes of type BbA and BcA do not exist, that all planes of type BbB
are contained in σ′1, that all planes of type BbC are contained in σ′3, and that
all planes of type BbD pass through a point of `2 \ {P2} or through a point
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of `4 \ {P2}. Consequently, all planes in S contain a line in σ. Arguing again
as in the first part of the proof of Lemma 3.2.11, we find that S cannot be a
maximal EKR(2) set under these assumptions.

Remark 3.2.14. We consider a maximal EKR(2) set S as introduced in Re-
mark 3.2.10. We observe that P1, π

′
1 and π′3, and P2, π

′
2 and π′4 can be inter-

changed. Then the types BbX and BcX take each others place and the types
BeA and BeB are kept. Hence, the case that S contains a plane of type BcD,
but no planes of type BeB nor BbD, is analogous to the case that S contains
a plane of type BbD, but no planes of type BeB nor BcD. Also in this case,
we find an EKR(2) set of type VIII, VIIIa or VIIIb.

Lemma 3.2.15. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.10. Using the notations from that remark, we assume S
contains no planes of type BeB. If S contains a plane of type BbD and a plane
of type BcD, then S is an EKR(2) set of type IX, of type IXa or of type IXb.

Proof. Let π′5 = 〈P1, R2, R4〉 be a plane of type BbD and π′6 = 〈P2, R1, R3〉 be
a plane of type BcD, both contained in S, with Ri ∈ π′i \ `i, i = 1, . . . , 4. Any
plane of type BbA, BcA or BeA cannot intersect both π′5 and π′6; a plane of
type BbB intersects both π′5 and π′6 if and only if it is contained in σ′1; a plane
of type BbC intersects both π′5 and π′6 if and only if it is contained in σ′3; a
plane of type BcB intersects both π′5 and π′6 if and only if it is contained in σ′2;
a plane of type BcC intersects both π′5 and π′6 if and only if it is contained in
σ′4.

We prove that we may assume that R2 /∈ `2 and R4 /∈ `4. We distinguish
between two cases: σ ⊂ P and σ 6⊂ P . We look first at the former case. Note
that the planes of type BbB in σ′1, the planes of type BbC in σ′3, the planes of
type BcB in σ′2 and the planes of type BcC in σ′4 all contain a line in σ. If all
planes of type BbD and BcD in S also intersect σ in a line, then all planes in
σ should be contained in S by the maximality condition. Among the planes
in σ however, there are planes of type BeB. This contradicts the assumption.
Hence, we may assume without loss of generality that π′5 does not contain a
line in σ, so R2 /∈ `2 and R4 /∈ `4.

Now, we look at the latter case, σ 6⊂ P . Then σ ∩ P is a union of planes
through the line `. If all planes of type BbD and BcD in S intersect σ in a
line, so does π′5. The intersection line π′5 ∩ σ cannot be in a plane through `
different from 〈P3, `〉 or 〈P4, `〉. It follows that either R2 ∈ `2 or else R4 ∈ `4.
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Without loss of generality, we assume R2 ∈ `2. Note that it follows from σ 6⊂ P
that τ3 ∩ P is a union of 3-spaces through π′. Since π′5 is contained in τ3, it
must be contained in a 3-space through π′, namely 〈P3, π

′〉 = σ′3. However,
then R4 ∈ σ′3 ∩ π′4 = `4, a contradiction. Hence, we may assume there is a
plane in S of type BbD or a plane in S of type BcD that does not intersect
σ in a line. So, without loss of generality, we may assume that π′5 does not
contain a line in σ, so R2 /∈ `2 and R4 /∈ `4.

We denote the 3-space 〈Q1, Q3, P3, P4〉 by σ̂. This 3-space is disjoint from `. We
denote σ′1∩σ̂ = 〈Q1, P4〉 = m1, σ

′
2∩σ̂ = 〈Q1, P3〉 = m2, σ

′
3∩σ̂ = 〈Q3, P3〉 = m3

and σ′4 ∩ σ̂ = 〈Q3, P4〉 = m4. Let V be a plane of type B in S, then we define
the map φ by φ(V ) = 〈`, V 〉 ∩ σ̂. The image of these planes is a line in σ̂ since
all planes of type B in S are contained in ρ and since all planes of type B meet
`. If two planes of type B in S pass through a different point of `, then their
images must be two intersecting lines. Vice versa, if the images of two planes
of type B through different points of ` are two intersecting lines, then they
intersect and hence, both can be contained in S.

Observe that the planes of type BbB in σ′1, among which π′1, are all mapped
to the line m1, that the planes of type BbC in σ′3, among which π′3, are all
mapped to the line m3, that the planes of type BcB in σ′2, among which π′2, are
all mapped to the line m2, that the planes of type BcC in σ′4, among which π′4,
are all mapped to the line m4, that the planes of type BbD, among which π′5,
are all mapped to a line intersecting m2 and m4, and that the planes of type
BcD, among which π′6, are all mapped to a line intersecting m1 and m3. Now,
we consider the line m5 = φ(π′5). This line intersects m2, but contains neither
Q1 nor P3 since R2 ∈ π′2 \ (`2 ∪ `2). Also, this line intersects m4, but contains
neither Q3 nor P4 since R4 ∈ π′4 \ (`4 ∪ `4). Consequently the lines m5 and
m1 are disjoint, and the lines m5 and m3 are disjoint. We already knew that
the lines m1 and m3 are disjoint. Hence, m1, m3 and m5 are three pairwise
disjoint lines in σ̂.

Before going on, we look at ρ∩P . By Remark 3.2.10 we know that ρ can be a
subspace of P (ρ ⊂ P). If ρ 6⊂ P , then ρ∩P is a cone, either a set of 3-spaces
with vertex ` or else a set of 4-spaces with vertex σ or σ′. From the existence
of the plane π′5 it follows that ρ ∩ P cannot be a cone with vertex a 3-space.
So, either ρ ⊂ P or else ρ ∩ P is a cone with vertex ` and base a non-singular
classical polar space X(3, q) of rank 2 (a generalised quadrangle). This base
can be chosen to be contained in the 3-space σ̂, disjoint to `. Then σ̂ ∩ P is
this non-singular polar space X(3, q). In this second case φ(π′6) = m6 is a line
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meeting m1, m3 and m5. Moreover, m6 is skew to m2 and m4 since it cannot
contain Q1 or Q3 and X(3, q) does not contain planes.

Figure 3.7: The configuration considered in Lemma 3.2.15. Only one of the 3-spaces
σ′i is drawn, but the others can be constructed in an analogous way.

We found before that all planes of type B in S pass through P1 or P2: we
assumed that there are no planes of type BeB in S and we excluded the
presence of planes of type BeA in S in the beginning of the proof. By the
previous arguments, for all planes V ∈ S through P1, φ(V ) should be a line
meeting m2, m4 and m6, and for all planes V ∈ S through P2, φ(V ) should be
a line meeting m1, m3 and m5. Recall that a plane through P1 and a plane
through P2 intersect each other if their images under φ intersect each other.
Let L be the set of lines meeting m1, m3 and m5. Then m2,m4,m6 ∈ L. Let
L′ be the set of lines meeting all lines of L. By the maximality condition,
all planes through P1 in a 3-space through ` and a line of L, and all planes
through P2 in a 3-space through ` and a line of L′ must be contained in S.
Now we distinguish between the different possibilities using Lemma 1.7.10.

If P is a projective space, then L is a regulus and L′ is its opposite regulus.
We find an EKR(2) set of type IX. If P is a polar space and ρ ⊂ P , then L is
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also a regulus and L′ its opposite regulus. We conclude that S is an EKR(2)
set of type IXa. If P is a quadric polar space and σ̂∩P is a hyperbolic quadric,
then L and L′ are the two reguli of this hyperbolic quadric. We conclude that
S is an EKR(2) set of type IXa. If P is a symplectic polar space with ambient
space PG(n, q), q even, and σ̂ ∩P is a symplectic polar space W(3, q), then L
is a regulus and L′ its opposite regulus. Also in this case S is an EKR(2) set
of type IXa. Analogously, we find that S is an EKR(2) set of type IXb if P is
a Hermitian polar space and σ̂ ∩P is a Hermitian variety H(3, q). Finally, the
situation wherein P is a symplectic polar space with ambient space PG(n, q),
q odd, and σ̂ ∩ P is a symplectic polar space W(3, q), cannot occur.

Remark 3.2.16. In Remark 3.2.2, we already introduced `, σ1 and the planes
of type A, B and C. Now we assume S contains a plane πC1 of type C. This
plane and ` are disjoint, so τ1 = 〈`, πC1 〉 is a 4-space. Also, πC1 ∩ σ1 is a line
`1. All planes of type A must be contained in τ1 since they pass through ` and
contain a point of πC1 . In the same way, all planes of type B must intersect
τ1 in at least a line. The planes of type C either are contained in τ1 or else
intersect τ1 in a line of σ1, intersecting `1 or equal to `1. Note that it follows
from πC1 ⊂ P that σ1 ⊂ P .

Lemma 3.2.17. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.16. Using the notations from that remark, we assume S
contains a plane of type C not in τ1. If all planes of type C in S that are not
contained in τ1 pass through `1, then all planes of S are contained in a 5-space
or all planes of S intersect a fixed line in at least a point.

Proof. Let πC2 be a plane of type C in S that is not contained in τ1. By the
assumption, `1 ⊂ πC2 . We denote τ2 = 〈`, πC2 〉. Arguing as in Remark 3.2.16,
we find that all planes of type A in S must be contained in τ2. Since they
also need to be contained in τ1, the planes of type A in S must be contained
in σ1. In Remark 3.2.2, we already found that all planes of type A in σ1 are
contained in S. Now, we also know there are no other planes of type A in S.

Arguing again as in Remark 3.2.16, we know that the planes of type B in S
must contain a line in τ2, as well as in τ1, and that the planes of type C in
S either are contained in τ2 or else intersect τ2 in a line of σ1, intersecting `1.
Consequently, all planes of type C in S contain at least a point on `1 since
they cannot be contained in τ1 ∩ τ2 = σ1.

We observe that all planes of type A or C in S contain a point of `1 ⊂ σ1. If
all planes of type B in S also contain a point of `1, then the lemma is valid.
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So, we assume that S contains a plane of type B, not through a point of `1.
Let πB1 be such a plane. This plane must intersect πC1 and πC2 , hence contains
a point Q1 ∈ πC1 \ `1 and a point Q2 ∈ πC2 \ `1. We denote the intersection
point πB1 ∩ ` by R1. Note that πB1 = 〈R1, Q1, Q2〉, that πB1 ∩ τ1 = 〈R1, Q1〉,
that πB1 ∩ τ2 = 〈R1, Q2〉, and that πB1 ∩ σ1 = {R1}. Denote ρ = 〈τ1, τ2〉.

By Remark 3.2.2, any plane of type C in S contains a line in σ1. However,
these lines cannot contain the point R1 ∈ `. Hence, all planes of type C in S
are generated by a line in σ1, disjoint to `, and a point of πB1 \ {R1}, and thus
contained in ρ.

Let π be a plane of type B in S, intersecting ` in the point R. We already
know that π contains a line m1 through R and a point of πC1 , and a line m2

through R and a point of πC2 . If m1 and m2 are different, then they span the
plane π and π is contained in ρ. If m1 = m2, this is a line in σ1 intersecting `1.
The plane π also contains a point or a line on πB1 . If π does not pass through
R1, then the intersection point π ∩ πB1 and the line m1 generate π, and π is
necessarily contained in ρ. If π contains R1, then π and πB1 obviously intersect.

From the two preceding paragraphs, it follows that the only planes which can
be in S and which are not necessarily contained in ρ are the planes through
R1 and a point of `1.

First, we assume πB2 is a plane of type B in S that is not contained in ρ. Let
m2 be the line πB2 ∩ σ1; necessarily R1 ∈ m2. Any plane in S that is contained
in ρ cannot be disjoint to the line m2 since any plane in S needs to intersect
πB2 . We have proved before that any plane in S that is not contained in ρ,
passes through the point R1. Consequently, any plane in S contains at least a
point on m2, so the lemma is valid in this case.

Now, we assume that all planes of type B in S are contained in ρ. We already
know that all planes of type A or type C in S are contained in ρ. In this case,
S is an EKR(2) set contained in the 5-space ρ.

Remark 3.2.18. In Remark 3.2.2 and Remark 3.2.16, we already introduced
`, σ1, π

C
1 , τ1, `1 and the planes of type A, type B and type C. Now we assume

that S contains a plane of type C, not in τ1 and not through `1. Let πC2 be
such a plane and denote the line σ1 ∩ πC2 by `2, by assumption different from
`1. By the arguments in Remark 3.2.16, we know that `1 and `2 intersect. Let
P be their intersection point. We also denote τ2 = 〈`, πC2 〉 and 〈τ1, τ2〉 = ρ.

We already know that all planes of type A in σ1 are contained in S and, as in
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the beginning of the proof of Lemma 3.2.17, we can show that these are the
only planes of type A in S. The planes of type C in S intersect σ1 in a line and
this line intersects `1 if the plane is not contained in τ1, respectively `2 if the
plane is not contained in τ2. The plane π1,2 = 〈`1, `2〉 ⊂ σ1 does not contain `,
hence intersects ` in a point R.

Note that S contains in this case surely planes of type B, since each plane of
type B in σ1 intersects all planes of type A and all planes of type C; thus S
cannot be maximal if it contains no planes of type B.

Lemma 3.2.19. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.18. We use the notations from that remark. If S contains
a plane of type B, not through R, intersecting neither `1 nor `2, then all planes
of S are contained in a 5-space or all planes of S intersect a fixed line in at
least a point.

Proof. Let πB3 be a plane of type B in S that intersects neither `1 nor `2, and
that does not pass through R. Then πB3 contains a point R1 on `\{R}, a point
Q1 ∈ πC1 \ `1 and a point Q2 ∈ πC2 \ `2. Moreover, πB3 equals 〈R1, Q1, Q2〉 and
πB3 ⊂ ρ. Note that σ1 ∩ πB3 = {R1}.

Any plane of type C in S contains a line in σ1. This line cannot contain a
point of πB3 since σ1∩πB3 = {R1}. Hence, any plane of type C in S is contained
in ρ.

Let π be a plane of type B in S, intersecting ` in the point R′. We already
know that π contains a line m1 through R′ and a point of πC1 , and a line m2

through R′ and a point of πC2 . If m1 and m2 are different, then they span the
plane π and π is contained in ρ. If m1 = m2, this is a line in σ1 intersecting `1
and `2 and thus the line 〈R′, P 〉 if R′ 6= R, or a line through R in π1,2 if R′ = R.
The plane π also contains a point or a line on πB3 , but πB3 does not contain a
point of 〈R′, P 〉, unless R′ = R1. The plane πB3 does not contain a point of
π1,2. So, if R′ 6= R1, the plane π is necessarily contained in ρ. The planes of
type B in S that are not contained in ρ, must contain the line 〈R1, P 〉.

If S contains no planes of type B not in ρ, the lemma is valid. So, we assume
that S contains a plane of type B through the line 〈R1, P 〉. All planes of S in ρ
must intersect this plane in a point of 〈R1, P 〉, hence all these planes contain a
point of 〈R1, P 〉. All planes of S not in ρ contain the line 〈R1, P 〉. We conclude
that all planes in S contain at least a point of 〈R1, P 〉 and thus that also in
this case, the lemma is valid.
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Figure 3.8: The configuration of the subspaces introduced in Lemma 3.2.19.

Lemma 3.2.20. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.18. Using the notations from that remark, we assume
that all planes of type B in S that intersect neither `1 nor `2, pass through R.
If S contains a plane of type B intersecting neither `1 nor `2, then all planes
of S are contained in a 5-space or all planes of S intersect a fixed line in at
least a point.

Proof. Let πB3 be a plane of type B in S that intersects neither `1 nor `2. Then
πB3 contains the point R on `, a point Q1 ∈ πC1 \ `1 and a point Q2 ∈ πC2 \ `2.
Moreover, πB3 equals 〈R,Q1, Q2〉 and πB3 ⊂ ρ. Note that σ1 ∩ πB3 = {R}.
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Any plane of type C in S contains a line in σ1. This line cannot contain a
point of πB3 since σ1∩πB3 = {R}. Hence, any plane of type C in S is contained
in ρ.

Let π be a plane of type B in S, intersecting ` in the point R′. We already know
that π contains a line m1 through R′ and a point of πC1 , and a line m2 through
R′ and a point of πC2 . If m1 and m2 are different, then they span the plane π
and π is contained in ρ. If m1 = m2, this is a line in σ1 intersecting `1 and `2
and thus the line 〈R′, P 〉 if R′ 6= R or a line through R in π1,2 if R′ = R. The
plane π also contains a point or a line on πB3 , but πB3 does not contain a point
of 〈R′, P 〉, unless R′ = R. So, if R′ 6= R, the plane π is necessarily contained
in ρ. The only planes of type B in S that are not necessarily contained in ρ
are the ones containing a line through R in π1,2.

If S contains no planes of type B not in ρ, the lemma is valid. So, we assume
that S contains a plane of type B through a line m in π1,2 containing R. All
planes of S in ρ must intersect this plane in a point of m, hence all these planes
contain a point of m. All planes of S not in ρ, pass through the point R ∈ m.
We conclude that all planes in S contain at least a point of m and thus that
also in this case, the lemma is valid.

Lemma 3.2.21. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.18. We use the notations from that remark. If every
plane of type B in S intersects `1 or `2, then all planes of S are contained in
a 5-space, all planes of S intersect a fixed line in at least a point, or S is an
EKR(2) set of type X.

Proof. We already know that all planes of type C intersect σ1 in a line. In
Remark 3.2.18 we noted that the planes of type A are in S if and only if they
are contained in σ1. By the assumption of this lemma, all planes of type B in
S also intersect σ1 in at least a line. Hence, all planes in σ1 must be contained
in S, by the maximality condition. We already knew this for the planes in σ1
through `; all other planes in σ1 are necessarily of type B.

In Remark 3.2.18 we already noted that all planes of type C in S that are
not contained in τ1, intersect `1, and that all planes of type C in S that are
not contained in τ2, intersect `2. We also note that a plane of type B which
intersects `1, but not `2, must contain a point of πC2 \ `2, and thus is contained
in τ2. Analogously, a plane of type B which intersects `2, but not `1, must
contain a point of πC1 \ `1, and thus is contained in τ1. Consequently, all planes
that are not contained in τ1 ∪ τ2, intersect both `1 and `2.
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If all planes in S intersect `1 or all planes in S intersect `2, the lemma is
obviously valid. So, we can assume S contains a plane π3 not intersecting `1
and a plane π4 not intersecting `2. By the previous observations, we know that
π3 is contained in τ1 and that π4 is contained in τ2. We denote π3 ∩ σ1 = `3
and π4∩σ1 = `4. The intersection points are `2∩`3 = {P3} and `1∩`4 = {P4}.
The lines `3 and `4 also intersect; we denote `3 ∩ `4 = {Q}. From π3 ⊂ P and
π4 ⊂ P , it follows that τ1, τ2 ⊂ P .

Any plane in S that is not contained in τ1 ∪ τ2 must intersect `1, `2, `3 and `4.
Since `1 and `3 are disjoint and `2 and `4 are disjoint, these planes either pass
through 〈P3, P4〉 or else through 〈P ,Q〉.

If S contains no planes outside of τ1 ∪ τ2, then all planes of S are contained in
the 5-space ρ and the lemma is valid. If all planes in S that are not contained
in τ1 ∪ τ2, pass through 〈P3, P4〉, and S contains such planes, then all planes
in S contain at least a point of 〈P3, P4〉. Also in this case the lemma is valid.
Analogously, the lemma is also valid if all planes in S that are not contained
in τ1 ∪ τ2, pass through 〈P ,Q〉, and S contains such planes.

So, we can assume that S contains a plane π5 through 〈P ,Q〉 that is not
contained in τ1 ∪ τ2, and a plane π6 through 〈P3, P4〉 that is not contained in
τ1 ∪ τ2. These two planes cannot intersect each other in a point of σ1 since
〈P3, P4〉 and 〈P ,Q〉 are disjoint. We denote the 4-space 〈π5, π6〉 by τ3; this 4-
space contains σ1 and is contained in P . Any plane in S that is not contained
in τ1 ∪ τ2 and passes through 〈P3, P4〉 must be contained in τ3, in order to
intersect π6; any plane in S that is not contained in τ1∪ τ2 and passes through
〈P ,Q〉 must be contained in τ3, in order to intersect π5. Any plane in S that is
contained in τ1, must intersect `2, `4, 〈P3, P4〉 and 〈P ,Q〉, hence passes through
`1 or `3. Analogously, any plane in S that is contained in τ2, must pass through
`2 or `4.

All the planes that are necessarily contained in S (the planes in σ1) or that can
be contained in S (the planes in τ1 through `1 or `3, the planes in τ2 through `2
or `4, the planes in τ3 through 〈P3, P4〉 or 〈P ,Q〉), intersect each other, hence
are contained in S by the maximality condition. We find an EKR(2) set of
type X with base points P3, P4, P and Q.

Lemma 3.2.22. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.16. We use the notations from that remark. If all planes
of type C in S are contained in τ1, then all planes of S are contained in a
5-space, all planes of S intersect a fixed line in at least a point, or S is an
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EKR(2) set of type X.

Proof. All planes of type A in τ1 intersect all planes in S since all planes of
type A or B in S contain at least a point of ` and all planes of type C in S are
contained in τ1. A plane of type A not in τ1 cannot intersect πC1 or any other
plane of type C in S. Hence, a plane of type A belongs to S if and only if it
is contained in τ1 ∩ P . Recall that τ1 is not necessarily contained in P .

The planes of type B in S either are contained in τ1 or else intersect τ1 in
a line through a point of ` and a point of πC1 . If all planes of type B in S
are contained in τ1, all planes of S are contained in a 4-space, hence also in a
5-space. So, we can assume S contains planes of type B that intersect τ1 in a
line.

First, we assume that all planes of type B in S that are not contained in τ1,
pass through the same point of ` and that S contains such a plane of type
B not in τ1. Let π be such a plane and denote ` = π ∩ τ1 and ` ∩ ` = {R}.
Every plane of S in τ1 then intersects ` and every plane of S not in τ1 passes
through R. Hence, all planes of S contain at least a point on `. Recall that
we assumed that all planes of type C in S are contained in τ1.

Secondly, we assume that all planes of type B in S that are not contained in
τ1, pass through the same point of πC1 and that S contains such a plane of type
B not in τ1. In the same way, we find a line that is intersected by any plane
in S.

Finally, we assume that S contains two planes πB1 and πB2 that intersect both
` and πC1 in different points. We denote πBi ∩ τ1 = 〈Ri, Qi〉, i = 1, 2, with
R1, R2 ∈ `, Q1, Q2 ∈ πC1 and R1 6= R2 and Q1 6= Q2. It can easily be argued
that the lines 〈R1, Q1〉 and 〈R2, Q2〉 are disjoint since ` and πC1 are disjoint.
Hence, the intersection point Q of πB1 and πB2 is not contained in τ1. Let τ2 be
the 4-space 〈πB1 , πB2 〉 and let σ be the 3-space generated by the disjoint lines
〈R1, Q1〉 and 〈R2, Q2〉. Note that σ = τ1 ∩ τ2, that ` is contained in σ, and
that πC1 intersects σ in a line. Denote πC1 ∩ σ = `′ and note that `′ = 〈Q1, Q2〉.

Any plane in S that is contained in τ1, must intersect 〈R1, Q1〉 = τ1 ∩ πB1 and
〈R2, Q2〉 = τ1 ∩ πB2 ; any plane in S that is contained in τ2, must intersect `′ in
order to contain a point of πC1 and must intersect ` in order to be a plane of
type B. Any plane in S that is not contained in 〈τ1, τ2〉, must contain a line in
τ1 and a line in τ2, hence a line in σ. This line intersects 〈R1, Q1〉, 〈R2, Q2〉, `
and `′. Hence, all planes in S contain at least a line in σ. Consequently, all
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planes in σ ∩ P are necessarily contained in S.

If all planes of S are contained in 〈τ1, τ2〉, then S is an EKR(2) set contained in
this 5-space 〈τ1, τ2〉. Thus, we assume S contains a plane not in 〈τ1, τ2〉. Such
a plane intersects 〈R1, Q1〉, 〈R2, Q2〉, ` and `′. So, this plane passes either
through 〈R1, Q2〉 or else through 〈R2, Q1〉. As before, for example as in the
proof of Lemma 3.2.21, we can argue that S must contain a plane through
〈R1, Q2〉 as well as a plane through 〈R2, Q1〉, for else we can find a line that is
intersected by every plane in S, in which case the lemma is valid. Let πB3 be a
plane in S that passes through 〈R1, Q2〉 and is not contained in 〈τ1, τ2〉; let πB4
be a plane in S that passes through 〈R2, Q1〉 and is not contained in 〈τ1, τ2〉.
The intersection point Q

′
of the planes πB3 and πB4 cannot be contained in

〈τ1, τ2〉 since the lines 〈R1, Q2〉 and 〈R2, Q1〉 are disjoint. Let τ3 be the 4-space
〈πB3 , πB4 〉. Note that this 4-space contains σ. Since πB3 and πB4 are contained
in S, they are planes in P . From this observation, it follows that σ ⊂ P and
consequently also τ2, τ3 ⊂ P .

Any plane in S through 〈R1, Q2〉 that is not contained in τ1 ∪ τ2, must be
contained in τ3 in order to intersect πB4 . Analogously, every plane in S through
〈R2, Q1〉 that is not contained in τ1 ∪ τ2, must be contained in τ3. Any plane
in S that is contained in τ1, now must intersect the lines 〈R1, Q1〉, 〈R2, Q2〉,
〈R1, Q2〉 and 〈R2, Q1〉, hence must pass through the line 〈R1, R2〉 = ` or the
line 〈Q1, Q2〉 = `′. Analogously, any plane in S that is contained in τ2 must
pass through the line 〈R1, Q1〉 or the line 〈R2, Q2〉. Recall that the planes in
τ2 need to intersect ` in order to be a plane of type B.

Note that the planes in τ1 through ` or `′, the planes in τ2 through 〈R1, Q1〉
or 〈R2, Q2〉, and the planes in τ3 through 〈R1, Q2〉 or 〈R2, Q1〉, all intersect
each other. Hence, by the maximality condition on S, all these planes are
contained in S. If τ1 ⊂ P , then S contains planes through ` in τ1 which are
not contained in σ. Consequently, S is maximal. We find an EKR(2) set of
type X with base points R1, R2, Q1 and Q2. If τ1 6⊂ P , then τ1∩P is a union of
3-spaces through a common plane containing `′. Moreover, σ = σ1 and `′ = `1.
Any plane through ` in τ1 is thus contained in σ. It follows that any plane
through `′ in τ2 intersects all planes in S, but is not contained in S. Hence, S
is not maximal.

Remark 3.2.23. In the final case, we assume that all planes in S intersect
each other in a point. Let π1 and π2 be two planes in S, with π1 ∩ π2 = {P3}.
If all planes of S pass through P3, then all planes through P3 are contained in
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S by the maximality condition. However, among all planes through P3 there
are two planes intersecting in a line. So, not all planes in S pass through P3.
Let π3 be a plane in S not containing P3. We denote π1 ∩ π3 = {P2} and
π2 ∩ π3 = {P1}.

The plane 〈P1, P2, P3〉, which is surely contained in P , intersects π1 in a line,
hence cannot be contained in S by the assumption. By the maximality con-
dition, S must contain a plane disjoint from 〈P1, P2, P3〉. Let π4 be a plane
in S such that π4 and 〈P1, P2, P3〉 are disjoint. The subspace generated by
π1, π2 and π3 can be as well a 4-space as a 5-space. However, 〈π1, π2, π4〉 is
necessarily a 5-space. So, we can assume 〈π1, π2, π3〉 is a 5-space, since we can
always find a plane in S not through P3 that generates a 5-space together with
π1 and π2. We denote the 5-space 〈π1, π2, π3〉 by ρ. Furthermore, we denote
π1 ∩ π4 by Q1, π2 ∩ π4 by Q2 and π3 ∩ π4 by Q3.

Let π be a plane in S. The intersection π ∩ ρ cannot be a point because there
is no point of ρ lying on π1, π2, π3 and π4. Hence, either π is contained in ρ
or else it intersects ρ in a line. We consider the latter case and we denote the
line ρ ∩ π by `. Since π contains a point on π1 and a point on π2, ` passes
through P3 or ` lies in the 4-space 〈π1, π2〉. Note that 〈π1, π2〉 ∩ π3 = 〈P1, P2〉
and 〈π1, π2〉 ∩ π4 = 〈Q1, Q2〉. If ` passes through P3, then ` is contained in
the 3-space 〈P3, π3〉, but 〈P3, π3〉 ∩ π4 = {Q3}. Hence, ` must be the line
〈P3, Q3〉. If ` does not pass through P3, then ` must be contained in the
3-space σ generated by 〈P1, P2〉 and 〈Q1, Q2〉. Moreover, ` must intersect
σ ∩ π3 = 〈P1, P2〉, σ ∩ π4 = 〈Q1, Q2〉, σ ∩ π1 = 〈Q1, P2〉 and σ ∩ π4 = 〈P1, Q2〉.
One sees easily that ` equals 〈P1, Q1〉 or 〈P2, Q2〉.

We conclude that all planes in S that are not contained in ρ, pass through
〈P1, Q1〉, 〈P2, Q2〉 or 〈P3, Q3〉.

Lemma 3.2.24. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.23. We use the notations from that remark. It is impos-
sible that all planes of S that are not contained in ρ pass through the same
line in ρ.

Proof. Without loss of generality we can assume that S contains a plane π′1 not
contained in ρ, through the line 〈P1, Q1〉. All planes in S that are contained
in ρ must intersect the line 〈P1, Q1〉 in order to intersect π′1. All planes in S
that are not contained in ρ pass through the line 〈P1, Q1〉 by assumption. By
the maximality condition on S, all planes through 〈P1, Q1〉 must be contained
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in S. This contradicts the assumption that no two planes in S intersect each
other in a line, which we made in Remark 3.2.23.

Lemma 3.2.25. Let S be a maximal EKR(2) set fulfilling the assumptions
made in Remark 3.2.23. We use the notations from that remark. If S contains
two planes that are not contained in ρ, through different lines of ρ, then S is
an EKR(2) set of type XI.

Proof. Without loss of generality, we can assume that S contains a plane π′2
through 〈P2, Q2〉 and a plane π′3 through 〈P3, Q3〉, both not contained in ρ.
The planes π′2 and π′3 intersect each other in a point R outside of ρ since
〈P2, Q2〉 and 〈P3, Q3〉 are disjoint. Note that the 3-space σ1 = 〈P2, P3, Q2, Q3〉
is contained in P . The EKR(2) set S cannot contain a second plane through
〈P2, Q2〉 or 〈P3, Q3〉 by the assumption we made in Remark 3.2.23. Now, we
look at the planes in S.

If a plane in S is not contained in ρ, then it passes through 〈P1, Q1〉 by the
observations in Remark 3.2.23. There can be at most one such plane. Since
〈P1, Q1〉 and 〈P2, Q2〉 are disjoint, this plane must be contained in 〈P1, Q1, π

′
2〉.

Analogously, it also must be contained in 〈P1, Q1, π
′
3〉. Consequently, this plane

equals 〈P1, Q1, R〉 = π′1, since 〈P1, Q1, π
′
2〉∩〈P1, Q1, π

′
3〉 is the plane 〈P1, Q1, R〉.

If a plane π′ in S is contained in ρ, then it must intersect 〈P2, Q2〉 and 〈P3, Q3〉.
We distinguish between two cases. If π′ is contained in σ1, then it obviously
intersects both lines and moreover, it also intersects the lines 〈P2, P3〉 ⊂ π1,
〈P3, Q2〉 ⊂ π2, 〈P2, Q3〉 ⊂ π3 and 〈Q2, Q3〉 ⊂ π4. If π′ is not contained in σ1,
it must intersect σ1 in a line `′, since it intersects both 〈P2, Q2〉 and 〈P3, Q3〉.
By the assumption that any two planes in S cannot intersect each other in
a line, `′ 6= 〈P2, Q2〉 and `′ 6= 〈P3, Q3〉. So, `′ cannot intersect each of the
lines 〈P2, P3〉 ⊂ π1, 〈P3, Q2〉 ⊂ π2, 〈P2, Q3〉 ⊂ π3 and 〈Q2, Q3〉 ⊂ π4. Without
loss of generality, we can assume `′ and 〈P2, P3〉 are disjoint. Then, π′ must
be contained in 〈`′, π1〉 = 〈Q2, Q3, π1〉 = τ . Note that τ ∩ π2 = 〈P3, Q2〉 and
τ ∩ π3 = 〈P2, Q3〉. Hence, the line `′ must intersect 〈P3, Q2〉 and 〈P2, Q3〉, but
this line must also intersect 〈P2, Q2〉 and 〈P3, Q3〉. However, then `′ equals
either 〈P2, P3〉 ⊂ π1 or 〈Q2, Q3〉 ⊂ π4, contradicting the assumption that no
two planes in S intersect each other in a line.

From the previous paragraphs it follows that the only planes that can be
contained in S \ {π1, π2, π3, π4, π′2, π′3}, are the planes in σ1 and the plane
π′1. Note that π′1 and σ1 are disjoint. If S contains one of the planes in σ1,
then π′1 is not contained in S. Moreover, by the maximality condition on
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S, all planes in σ1 should be contained in S, but any two of these planes
intersect in a line, contradicting the assumption. So, none of the planes in
σ1 is contained in S. Hence, the plane π′1 is contained in S and consequently
S = {π1, π2, π3, π4, π′1, π′2, π′3}, which is indeed maximal. This is an EKR(2)
set of type XI. Note that the 6-space 〈R, ρ〉 is contained in P .

3.3 The classification of the largest EKR(2) sets

Using the results from the previous section we give a classification of the largest
EKR(2) sets, i.e. of all maximal EKR(2) sets whose size exceeds a certain
value, in finite projective spaces and finite classical polar spaces. We recall
the notation n(a,P), denoting the number of planes in an EKR(2) set in P of
type a. All these values can be found in Section 3.1.

Remark 3.3.1. Before starting the classification, we have a look at Theorem
3.0.1, which is about the EKR(2) sets in PG(5, q). In that theorem, six different
types of EKR(2) sets in PG(5, q) are mentioned. One of them is the EKR(2)
set of type XII. All other EKR(2) sets mentioned in Theorem 3.0.1 contain at
least one line which intersects all planes of the EKR(2) set. Hence, if we look
at a 5-space ρ in PG(n, q), n ≥ 6, and we consider these sets of planes in ρ,
we can add all other planes of PG(n, q) \ ρ through such a line. Consequently,
these sets are not maximal EKR(2) sets. Analogously, if we look at a 5-space
ρ in a polar space P of rank d ≥ 6, and we consider these sets of planes in ρ,
we can add all other planes of P through such a line. Note that the planes of
P through one line span a cone with vertex the line and base a polar space of
rank d− 2, hence a subspace of dimension at least 2d− 3 ≥ 9 of the ambient
projective space of P .

Note that Theorem 3.0.1 classifies maximal EKR(2) sets in PG(5, q) with size
at least 3q4 + 3q3 + 2q2 + q + 1. So, all maximal EKR(2) sets in a projective
space of dimension at least 6 or on a polar space of rank at least 6, that are
contained in a 5-space, and have size at least 3q4 + 3q3 + 2q2 + q + 1, must be
of type XII.

The lower bound 3q4+3q3+2q2+q+1 will appear in the classification theorems
for both projective spaces and polar spaces of rank at least six. Improving on
Theorem 3.0.1 by finding a classification result with a smaller lower bound,
would improve both classification results.
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3.3.1 The projective spaces

We present the classification of the largest EKR(2) sets for the projective
spaces. The 5-dimensional case was treated in Theorem 3.0.1. Note that the

EKR(2) sets in PG(5, q) of size

[
5

2

]
q

are of type I or XII, that the EKR(2)

sets in PG(5, q) of size 1 + q(q2 + q + 1)2 are of type II, III or V, and that the
EKR(2) sets in PG(5, q) of size 3q4 + 3q3 + 2q2 + q + 1 are of type IV.

Lemma 3.3.2. Let P be a projective space PG(n, q), with n ≥ 6. Then the
following inequalities hold:

n(I,P) > n(II,P) = n(III,P) > n(IV,P)

> n(V,P) > n(VIII,P) ≥ n(VI,P) > n(IX,P) ≥ n(VII,P).

Hereby, the equalities n(VIII,P) = n(VI,P) and n(IX,P) = n(VII,P) hold iff
q = 2.

Proof. Direct computation.

Lemma 3.3.3. Denote

[
5

2

]
q

by B(q). Assume n ≥ 6.

• For a ∈ {I, II, III}, the inequality n(a,PG(n, q)) > B(q) is valid.

• n(IV,PG(n, q)) > B(q) if and only if n ≥ 7.

• For a ∈ {V, VIII}, the inequality n(a,PG(n, q)) > B(q) is valid if and
only if n ≥ 8.

• n(VI,PG(n, q)) < B(q) if n ≤ 7 and n(VI,PG(n, q)) > B(q) if n ≥ 9.
Furthermore n(VI,PG(8, q)) > B(q) if q = 2, 3, n(VI,PG(8, 4)) = B(4)
and n(VI,PG(8, q)) < B(q) if q ≥ 5.

• For a ∈ {VII, IX}, the inequality n(a,PG(n, q)) > B(q) is valid if and
only if n ≥ 9.

Proof. Direct computation. This can be done very efficiently using the results
from Lemma 3.3.2.

Lemma 3.3.4. Denote 3q4 + 3q3 + 2q2 + q + 1 by C(q). Assume n ≥ 6.
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• For a ∈ {I, II, III, IV, V}, the inequality n(a,PG(n, q)) > C(q) is valid.

• For a ∈ {VI, VII, VIII, IX}, the inequality n(a,PG(n, q)) > C(q) is valid
if and only if n ≥ 7.

• For a ∈ {X, XI}, the inequality n(a,PG(n, q)) < C(q) is valid.

Proof. Direct computation. This can be done very efficiently using the results
from Lemma 3.3.2.

Now we can present the classification theorem. Thereby, EKR(2) sets of types
that are separated by commas have a different size; EKR(2) sets of types that
are joined by ‘and’ have the same size.

Theorem 3.3.5. Let S be a maximal EKR(2) set in PG(n, q), n ≥ 5, with
|S| ≥ 3q4 + 3q3 + 2q2 + q + 1.

• If n = 5, then S is of one of the following types, in decreasing order of
size: I and XII, II and III and V, IV.

• If n = 6, then S is of one of the following types, in decreasing order of
size: I, II and III, XII, IV, V.

• If n = 7, then S is of one of the following types, in decreasing order of
size:

– I, II and III, IV, XII, V, VI and VIII, VII and IX if q = 2,

– I, II and III, IV, XII, V, VIII, VI, IX, VII if q > 2.

• If n = 8, then S is of one of the following types, in decreasing order of
size:

– I, II and III, IV, V, VIII and VI, XII, IX and VII if q = 2,

– I, II and III, IV, V, VIII, VI, XII, IX, VII if q = 3,

– I, II and III, IV, V, VIII, VI and XII, IX, VII if q = 4,

– I, II and III, IV, V, VIII, XII, VI, IX, VII if q ≥ 5.

• If n ≥ 9, then S is of one of the following types, in decreasing order of
size:

– I, II and III, IV, V, VI and VIII, VII and IX, XII if q = 2,
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– I, II and III, IV, V, VIII, VI, IX, VII, XII if q > 2.

Proof. For the first case, we just restated Theorem 3.0.1. The other cases
follow from Theorem 3.2.1, Remark 3.3.1 and Lemmas 3.3.2, 3.3.3 and 3.3.4.

3.3.2 The polar spaces

In this section, P will always be a polar space and PG(n, q) will always be its
ambient projective space. We look at the classification of the EKR(2) sets on
the polar spaces of rank d.

First, we consider the general case d ≥ 6. These polar spaces contain 5-spaces,
so we rely on Theorem 3.0.1 and Remark 3.3.1. For these polar spaces we give
a classification of the EKR(2) sets with size at least 3q4+3q3+2q2+q+1. Just
as in the projective case, EKR(2) sets of types that are separated by commas
have a different size, while EKR(2) sets of types that are joined by ‘and’ have
the same size.

Theorem 3.3.6. Let P be a polar space of rank d at least 6. Let S be a
maximal EKR(2) set on P with |S| ≥ 3q4 + 3q3 + 2q2 + q + 1.

• If P = Q+(11, q), then S is of one of the following types, in decreasing
order of size:

– I, II and III, IV, V, VI and VIIIa, VII and IXa, XII if q = 2,

– I, II and III, IV, V, VIIIa, VI, XII, IXa, VII if q = 3, 4,

– I, II and III, IV, V, VIIIa, VI and XII, IXa, VII if q = 5,

– I, II and III, IV, V, VIIIa, XII, VI, IXa, VII if q ≥ 7.

• If P is a quadric polar space different from Q+(11, q), with ambient pro-
jective space PG(n, q), or P is a symplectic polar space W(n, q), q even,
then S is of one of the following types, in decreasing order of size:

– I, II and III, IV, V, VI and VIIIa, VII and IXa, XII if q = 2,

– I, II and III, IV, V, VIIIa, VI, IXa, VII, XII if q ≥ 3.

• If P is a symplectic polar space W(n, q), q odd, then S is of one of the
following types, in decreasing order of size:

– I, II and III, IV, V, VI and VIIIa, VII and IXa, VIIIb, XII if q = 2,
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– I, II and III, IV, V, VIIIa, VI, IXa, VII and VIIIb, XII if q = 3,

– I, II and III, IV, V, VIIIa, VI, IXa, VIIIb, VII, XII if q ≥ 4.

• If P is a Hermitian polar space H(n, q), q square, then S is of one of the
following types, in decreasing order of size:

– I, II and III, IV, V, VIIIa, VI, IXa, VIIIb, VII and IXb, XII if q = 4,

– I, II and III, IV, V, VIIIa, VI, IXa, VIIIb, IXb, VII, XII if q ≥ 9.

Proof. It follows from Theorem 3.2.1 and Remark 3.3.1 that these are the only
EKR(2) sets that can occur. Their sizes can be found in Section 3.1.

Now, we consider the small cases. In the classification theorems below, we
will use Theorem 3.2.1. Since this theorem includes the possibility that the
EKR(2) set S is contained in a 5-space, we will study the EKR(2) sets that
are contained in the intersection of P with a 5-space.

The following theorems are special cases (d = 3) of theorems in [24] and [104].

Theorem 3.3.7 ([24, Theorem 3.5]). Let S be a maximal EKR(2) set on
Q+(5, q) or a maximal EKR(2) set on W(5, q), q even. Then S is of type I, of
type III or of type XIII.

Theorem 3.3.8 ([24, Theorem 3.7]). Let S be a maximal EKR(2) set on
W(5, q), q odd. Then S is of type I, of type III, of type XVIb, of type XVII
or of type XVIII.

Theorem 3.3.9 ([104, Theorem 45]). Let S be a maximal EKR(2) set on
H(5, q), q a square. Then |S| ≤ q2

√
q + q

√
q +
√
q + 1. Moreover, if |S| =

q2
√
q + q

√
q +
√
q + 1, then S is of type III.

Corollary 3.3.10. Let P be a polar space, with PG(n, q), n ≥ 6, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P ∩ ρ is a polar
space. Let S be a maximal EKR(2) set on P , which is contained in ρ. Then,

• S is of type XIII if P is a quadric polar space or if P is a symplectic polar
space and q is even.

• S is of type XVIb, of type XVII or of type XVIII if P is a symplectic
polar space and q is odd.
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• |S| < q2
√
q + q

√
q +
√
q + 1 if P is a Hermitian polar space.

Proof. First, note that P ′ = P ∩ ρ cannot be a polar space of rank 2, since
P ′ must contain planes. It has to be a polar space of rank 3. Since S is also
a maximal EKR(2) set of the polar space P ′, we can apply Theorem 3.3.7,
Theorem 3.3.8 and Theorem 3.3.9. However, if S is of type I or type III as
EKR(2) set in P ′, then it can be extended by planes on P that are not in ρ.

Lemma 3.3.11. Let P be a polar space, with PG(n, q), n ≥ 6, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P ∩ ρ is a cone
with vertex a point R and base a polar space P ′. Let S be a maximal EKR(2)
set on P , which is contained in ρ. Then, n = 6 and S is an EKR(2) set of type
I.

Proof. Note that the ambient space of P ′ is a 4-space. So, the rank of P ′ equals
2. Hence, all planes of S pass through R, since all planes on such a cone pass
through its vertex R. If P contains a plane through R not in ρ, then S cannot
be maximal, and thus cannot be an EKR(2) set, since such a plane extends S.

If n ≥ 7, there are planes through R on P , that are not contained in ρ. If
n = 6, then P is a polar space of rank 3 and all planes through R are contained
in ρ. By the maximality condition, S must contain all planes through R and
consequently S is an EKR(2) set of type I.

Lemma 3.3.12. Let P be a polar space, with PG(n, q), n ≥ 7, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P ∩ ρ is a cone
with vertex a line ` and base a polar space P ′. Let S be a maximal EKR(2)
set on P , which is contained in ρ. Then P ′ has rank 2 and one of the following
cases occurs:

• P = Q+(7, q) and S is an EKR(2) set of type IXa.

• P =W(7, q), q even, and S is an EKR(2) set of type IXa.

• P =W(7, q), q odd, and S is an EKR(2) set of type VIIIb.

• P = H(7, q) and S is an EKR(2) set of type VIIIb or of type IXb.

Proof. If P ′ has rank 1, then all planes in P ∩ ρ pass through the vertex `.
Any plane on P that intersects ` in precisely a point, is not contained in ρ but
extends S. Hence, S cannot be a maximal EKR(2) set. So, we can assume
that P ′ has rank 2.
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Then, all planes of S are contained in one of the 3-spaces generated by ` and
a line of the base P ′. All these planes intersect ` in at least a point, hence
all planes through ` on P must be contained in S. If n ≥ 8, there are planes
through ` on P that are not in ρ; so, n = 7. In this case, all planes through `
are contained in ρ. Since P ∩ ρ contains 3-spaces, P has rank 4. Hence P is a
hyperbolic quadric Q+(7, q), a Hermitian polar space H(7, q) or a symplectic
polar space W(7, q).

Looking at the outline of the proof of Theorem 3.2.1, we see that S would be
treated in the case 1.1. and thus S will be an EKR(2) set of type I, ..., type
IX. Since P is a polar space of rank 4, S cannot be an EKR(2) set of type IV,
type V, type VI or type VII. If S is of type I or of type II, the planes of S span
a 6-space, and if S is of type III, the planes of S span PG(7, q). So, in these
cases, S is not contained in ρ. Hence S is of type VIIIa, type VIIIb, type IXa
or type IXb. From the remarks in Section 3.1, it follows which of these types
can occur in each of the different cases.

Lemma 3.3.13. Let P be a polar space, with PG(n, q), n ≥ 8, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P∩ρ is a cone with
vertex a plane π and base a polar space P ′. There are no maximal EKR(2)
sets on S that are contained in ρ.

Proof. Note that the ambient space of P ′ is PG(2, q) and hence that the rank
of P ′ is 1. Assume that S is an EKR(2) set on P that is contained in ρ. Note
that all planes of S are contained in a 3-space generated by π and a point of
P ′. So, all planes of S intersect π in at least a line. If P contains a plane
not in ρ, which intersects π in a line, then S cannot be maximal, since such a
plane extends S. Such a plane always can be found since n ≥ 8.

Lemma 3.3.14. Let P be a polar space, with PG(n, q), n ≥ 9, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P ∩ ρ is a cone
with vertex a 3-space σ and base a polar space P ′. If S is a maximal EKR(2)
set on P , which is contained in ρ, then the rank of P ′ equals 1 and S is of type
X, of type XII, of type XIV or of type XV. The first type cannot occur if P is
a quadric.

Proof. Note that the ambient space of P ′ is a projective line. Hence, the rank
of P ′ equals 0 or 1. If it equals 0, then P ′ is empty and all planes of S are
contained in the 3-space σ. In this case S can be extended by any plane not in
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ρ that intersects σ in precisely a line. Hence, S is not maximal. So, the rank
of P ′ equals 1. Denote its parameter by e′.

Note that P ∩ ρ is the union of several 4-spaces τi, i = 0, . . . , qe
′
, whose

pairwise intersection equals σ. All planes in S thus intersect σ in at least a
line, hence all planes in σ must be in S by the maximality condition. Denote
S \ {π | π plane in σ} by S ′. Furthermore, if all planes of S ′ are in the same
4-space of ρ, then S is of type XII. So, from now on, we can assume that at
least two 4-spaces contain planes of S ′, say τ0 and τ1.

All planes in S ′ intersect σ in a line. Two planes of S ′ in the same 4-space
intersect anyhow; two planes of S ′ that are in different 4-spaces intersect if
and only if their corresponding lines in σ intersect. Consequently, if a plane
π ⊂ τi is in S ′, then all other planes through π ∩ σ in τi must be in S ′ by the
maximality condition on S, i = 0, . . . , qe

′
. Denote Li = {σ∩π | π ∈ S ′, π ⊂ τi}

for every i = 0, . . . , qe
′
. By the previous arguments, every line of Li and every

line of Lj must meet for all 0 ≤ i 6= j ≤ qe
′
, and the sets Li must be maximal

under this condition.

We know that both L0 and L1 are non-empty. Let `0 be a line in L0 and let
`1 be a line in L1. If all lines in L0 meet `0, S cannot be maximal since it can
be extended by a plane through `0 that is not in ρ. Such planes exist since
n ≥ 9. So, L0 contains a line `′0 disjoint to `0. Analogously, L1 contains a line
`′1 disjoint to `1. We distinguish between two cases.

First, we assume that all sets Li, i ≥ 2, are empty. If L0 = {`0, `′0}, then L1

must contain all lines intersecting `0 and `′0. We find an EKR(2) set of type
XIV. So, from now we can assume |L0|, |L1| > 2. We look at two different
subcases.

In the first subcase, we assume L1 contains a line `′′1 disjoint to `1 and `′1. The
set of lines intersecting `1, `

′
1 and `′′1 is a regulus R0 which necessarily contains

`0 and `′0. Its opposite regulus R1 contains `1, `
′
1 and `′′1. By the previous

arguments, we know that all lines of L0 must be in R0. Also L0 contains a line
`′′0 ∈ R0 different from `0 and `′0 since |L0| > 2. It follows that `0, `

′
0 and `′′0 are

pairwise disjoint and hence all lines of L1 must be in R1. By the maximality
condition, L1 = R1 and L0 = R0. Hence, S is an EKR(2) set of type XV.

In this second subcase, we assume that all lines in L0 intersect `0 or `′0 and
all lines in L1 intersect `1 or `′1. We denote `0 ∩ `1 = {P0,1}, `′0 ∩ `1 = {P0′,1},
`0 ∩ `′1 = {P0,1′} and `′0 ∩ `′1 = {P0′,1′}. The lines in L0 must be lines through
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P0,1 in 〈P0,1, P0,1′ , P0′,1′〉, lines through P0,1′ in 〈P0,1, P0,1′ , P0′,1〉, lines through
P0′,1 in 〈P0′,1, P0,1′ , P0′,1′〉 or lines through P0′,1′ in 〈P0,1, P0′,1, P0′,1′〉. Without
loss of generality we can assume L0 contains a line m0 6= `0 through P0,1 in the
plane 〈P0,1, P0,1′ , P0′,1′〉. Any line in L1 then intersects `0, `

′
0 and m0, hence

is either a line through P0,1 in 〈P0,1, P0′,1, P0′,1′〉 or else a line through P0′,1′

in 〈P0,1, P0,1′ , P0′,1′〉. We know that L1 contains such a line since |L1| > 2. It
follows that the lines in L0 must be either lines through P0,1 in 〈P0,1, P0,1′ , P0′,1′〉
or else lines through P0′,1′ in 〈P0,1, P0′,1, P0′,1′〉.

Now it should be noted that all lines that can be in L0 or L1, intersect the
line 〈P0,1, P0′,1′〉. Hence, a plane through this line, not in ρ, extends S. Such
a plane exists since n ≥ 9. From this contradiction, it follows that S is not
maximal.

Secondly, we assume that not all sets Li, i ≥ 2, are empty. Note that this
is not possible if P is a quadric polar space since there are only two 4-spaces
through σ in that case. Say L2 is non-empty. Any line `i in Li, i ≥ 2, must
intersect `0, `

′
0, `1 and `′1, hence must be equal to either m = 〈P0,1, P0′,1′〉 or

m′ = 〈P0′,1, P0,1′〉, using the notations from above. Note that m and m′ are
disjoint. As before we can argue that |L2| ≥ 2. So, m,m′ ∈ L2. Moreover,
since m and m′ are the only lines that intersect `0, `

′
0, `1 and `′1, L2 = {m,m′}.

Analogously, L0 = {`0, `′0} and L1 = {`1, `′1}. Furthermore, any line in Li,
i ≥ 3, must intersect `0, `

′
0, `1, `

′
1, m and m′, but there are no such lines.

Hence, all sets Li are empty for i ≥ 3. So, we know all lines of Li for all i. We
find that S is an EKR(2) set of type X with base points P0,1, P0,1′ , P0′,1 and
P0′,1′ .

Lemma 3.3.15. Let P be a polar space, with PG(n, q), n ≥ 9, its ambient
projective space and let ρ be a 5-space in PG(n, q) such that P ∩ρ is a 4-space
τ (a cone with vertex this 4-space and base a polar space of rank 0). If S is a
maximal EKR(2) set on Q, which is contained in ρ, then it is of type XII.

Proof. Note that all planes in P ∩ ρ intersect each other since they are all
contained in τ . So all these planes are in S and S is an EKR(2) set of type
XII.

Now we can give the classification theorems of the maximal EKR(2) sets for the
smallest polar spaces. We will discuss the quadric, Hermitian and symplectic
polar spaces separately.
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The quadrics

We look at the classification of the maximal EKR(2) sets on the quadrics
Q+(2d − 1, q), Q(2d, q) and Q−(2d + 1, q), d = 3, 4, 5. For these quadrics the
classification of the maximal EKR(2) sets is complete. Recall that we classified
only the largest maximal EKR(2) sets for d ≥ 6.

First we look at the three quadric polar spaces of rank 3, secondly at the three
quadric polar spaces of rank 4 and finally at the three quadric polar spaces
of rank 5. Usually, we will give the list of possible types in decreasing order
of size. Again, EKR(2) sets of types that are separated by commas have a
different size; EKR(2) sets of types that are joined by ‘and’ have the same
size.

The hyperbolic quadric Q+(5, q) was studied in Theorem 3.3.7. We recall
that all maximal EKR(2) sets are of type I, III or XIII and we mention that
n(XIII,Q+(5, q)) > n(III,Q+(5, q)) > n(I,Q+(5, q)) = 2q + 2.

Note that the only EKR(2) sets from the list in Section 3.1.1 that exist on
quadric polar spaces of rank 3, are the ones of type I and III.

Theorem 3.3.16. Let S be a maximal EKR(2) set on Q(6, q), then S is of
type I, of type III or of type XIII. Moreover, n(I,Q(6, q)) = n(III,Q(6, q)) =
n(XIII,Q(6, q)).

Proof. We use Theorem 3.2.1. We find that S is of type I or III or that it
is contained in a 5-space ρ. The intersection Q(6, q) ∩ ρ is a non-singular
hyperbolic or elliptic quadric, or a cone with vertex a point. The first part of
the theorem thus follows from Corollary 3.3.10 and Lemma 3.3.11.

The second part follows from the computations in Section 3.1:

n(I,Q(6, q)) = n(III,Q(6, q)) = n(XIII,Q(6, q)) = q3 + q2 + q + 1 .

Theorem 3.3.17. Let S be a maximal EKR(2) set on Q−(7, q), then S is of
one of the following types, in decreasing order of size: I, III, XIII.

Proof. We use Theorem 3.2.1. We find that S is of type I or III, or S is
contained in a 5-space. From now on, we assume that S is contained in a 5-
space ρ. There are four possibilities for Q−(7, q)∩ρ: a non-singular hyperbolic
quadric, a non-singular elliptic quadric, a cone with vertex a point, a cone
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with vertex a line and base an elliptic quadric Q−(3, q). The classification
thus follows from Corollary 3.3.10, Lemma 3.3.11 and Lemma 3.3.12.

The sizes of these EKR(2) sets can be found in Section 3.1.

Note that the only EKR(2) sets from the list in Section 3.1.1 that exist on
quadric polar spaces of rank 4, are the ones of type I, II, III and IXa.

Theorem 3.3.18. Let S be a maximal EKR(2) set on Q+(7, q), then S is of
one of the following types, in decreasing order of size: I, II and III, IXa, XIII.

Proof. We use Theorem 3.2.1. We find that S is of type I, II, III, or IXa, or
S is contained in a 5-space. From now on, we assume that S is contained in a
5-space ρ. We distinguish between the four possibilities for Q+(7, q)∩ρ: a non-
singular hyperbolic quadric, a non-singular elliptic quadric, a cone with vertex
a point, a cone with vertex a line and base a hyperbolic quadric Q+(3, q). The
classification thus follows from Corollary 3.3.10, Lemma 3.3.11 and Lemma
3.3.12.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

Theorem 3.3.19. Let S be a maximal EKR(2) set on Q(8, q), then S is of
one of the following types, in decreasing order of size: I, II and III, IXa, XIII.

Proof. We use Theorem 3.2.1. We find that S is of type I, II, III, or IXa, or
S is contained in a 5-space. From now on, we assume that S is contained in a
5-space ρ. We distinguish between the six possibilities for Q(8, q) ∩ ρ: a non-
singular hyperbolic quadric, a non-singular elliptic quadric, a cone with vertex
a point, a cone with vertex a line and base a hyperbolic quadricQ+(3, q), a cone
with vertex a line and base an elliptic quadric Q−(3, q), a cone with vertex a
plane. The classification thus follows from Corollary 3.3.10 and Lemmas 3.3.11,
3.3.12 and 3.3.13.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

Theorem 3.3.20. Let S be a maximal EKR(2) set on Q−(9, q), then S is of
one of the following types, in decreasing order of size: I, II and III, IXa, XIII.

Proof. We use Theorem 3.2.1. We find that S is of type I, II, III, or IXa, or
S is contained in a 5-space. From now on, we assume that S is contained in
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a 5-space ρ. We distinguish between the seven possibilities for Q−(9, q) ∩ ρ:
a non-singular hyperbolic quadric, a non-singular elliptic quadric, a cone with
vertex a point, a cone with vertex a line and base a hyperbolic quadricQ+(3, q),
a cone with vertex a line and base an elliptic quadric Q−(3, q), a cone with
vertex a plane, a 3-space. The classification thus follows from Corollary 3.3.10
and Lemmas 3.3.11, 3.3.12, 3.3.13 and 3.3.14.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

Note that all types of EKR(2) sets listed in Section 3.1.1 exist on quadric polar
spaces of rank 5, except the ones of type VII, VIIIa, VIIIb, IXb and XI.

Theorem 3.3.21. Let S be a maximal EKR(2) set on Q+(9, q), then S is of
one of the following types, in decreasing order of size: I, II and III, XII, IV,
V, VI, IXa and XIV, XV, XIII.

Proof. We use Theorem 3.2.1. We find that S is of type I, ..., IXa - types
VII, VIIIa, VIIIb and IXb are however not possible - or S is contained in a
5-space. Note that S cannot be of type X since e = 0. From now on, we
assume that S is contained in a 5-space ρ. We distinguish between the seven
possibilities for Q+(9, q)∩ρ: a non-singular hyperbolic quadric, a non-singular
elliptic quadric, a cone with vertex a point, a cone with vertex a line and base
a hyperbolic quadric Q+(3, q), a cone with vertex a line and base an elliptic
quadric Q−(3, q), a cone with vertex a plane, a cone with vertex a 3-space
and base a hyperbolic quadric Q+(1, q). The classification thus follows from
Corollary 3.3.10 and Lemmas 3.3.11, 3.3.12, 3.3.13 and 3.3.14.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

Theorem 3.3.22. Let S be a maximal EKR(2) set on Q = Q(10, q), then S
is of one of the following types, in decreasing order of size:

• I, II and III, IV, XII, V, VI, IXa, XIV, X and XV, XIII if q = 2,

• I, II and III, IV, XII, V, VI, IXa, XIV, XV, X, XIII if q ≥ 3.

Proof. We use Theorem 3.2.1. We find that S is of type I, ..., X - types VII,
VIIIa, VIIIb and IXb are however not possible - or S is contained in a 5-space.
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From now on, we assume that S is contained in a 5-space ρ. We distinguish be-
tween the nine possibilities for Q(10, q)∩ρ: a non-singular hyperbolic quadric,
a non-singular elliptic quadric, a cone with vertex a point, a cone with vertex a
line and base a hyperbolic quadric Q+(3, q), a cone with vertex a line and base
an elliptic quadric Q−(3, q), a cone with vertex a plane, a cone with vertex
a 3-space and base a hyperbolic quadric Q+(1, q), a 3-space, a 4-space. The
classification thus follows from Corollary 3.3.10 and Lemmas 3.3.11, 3.3.12,
3.3.13, 3.3.14 and 3.3.15.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

Theorem 3.3.23. Let S be a maximal EKR(2) set on Q = Q−(11, q), then
S is of one of the following types, in decreasing order of size:

• I, II and III, IV, V, VI, XII, IXa, XIV, X and XV, XIII if q = 2,

• I, II and III, IV, V, VI and XII, IXa, XIV, XV, X, XIII if q = 3,

• I, II and III, IV, V, XII, VI, IXa, XIV, XV, X, XIII if q ≥ 4.

Proof. We use Theorem 3.2.1. We find that S is of type I, ..., X - types VII,
VIIIa, VIIIb and IXb are however not possible - or S is contained in a 5-space.
From now on, we assume that S is contained in a 5-space ρ. We distinguish
between the nine possibilities for Q−(11, q) ∩ ρ: a non-singular hyperbolic
quadric, a non-singular elliptic quadric, a cone with vertex a point, a cone
with vertex a line and base a hyperbolic quadric Q+(3, q), a cone with vertex
a line and base an elliptic quadric Q−(3, q), a cone with vertex a plane, a
cone with vertex a 3-space and base a hyperbolic quadric Q+(1, q), a 3-space,
a 4-space. The classification thus follows from Corollary 3.3.10 and Lemmas
3.3.11, 3.3.12, 3.3.13, 3.3.14 and 3.3.15.

The sizes of these EKR(2) sets can be found in Section 3.1 and can easily be
compared.

The Hermitian polar spaces

Now we give the classification theorems of the maximal EKR(2) sets for the
smallest Hermitian polar spaces. Note that the polar spaceH(5, q) was already
covered in Theorem 3.3.9. First we look at H(6, q), the other Hermitian polar
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space of rank 3, secondly at the two Hermitian polar spaces of rank 4 and finally
at the two Hermitian polar spaces of rank 5. Unlike the theorems about the
quadric polar spaces, we do not find a complete classification of the maximal
EKR(2) sets, but the upper bound on the size of the non-classified ones is
much smaller than the bound in Theorem 3.3.6.

In the statement of these theorems, we will use the same convention as in the
study of the quadric polar spaces.

Note that the only EKR(2) sets from the list in Section 3.1.1 that exist on
Hermitian polar spaces of rank 3, are the ones of type I and type III.

Theorem 3.3.24. Let S be a maximal EKR(2) set on H(6, q), q a square,
with |S| ≥ q2

√
q + q

√
q +
√
q + 1, then S is of one of the following types, in

decreasing order of size: I, III.

Proof. Analogous to the proof of Theorem 3.3.16, using Corollary 3.3.10 and
Lemma 3.3.11. We note that n(I,H(6, q)) = q4 + q2

√
q + q

√
q + 1 and that

n(III,H(6, q)) = q3
√
q + q2

√
q + q

√
q + 1.

Note that the only EKR(2) sets from the list in Section 3.1.1 that exist on
Hermitian polar spaces of rank 4, are the ones of type I, II, III, VIIIb and IXb.

Theorem 3.3.25. Let S be a maximal EKR(2) set on H(7, q), q a square,
with |S| ≥ q2

√
q + q

√
q +
√
q + 1, then S is of one of the following types, in

decreasing order of size: I, II and III, VIIIb, IXb.

Proof. Analogous to the proof of Theorem 3.3.18, using Corollary 3.3.10, and
Lemmas 3.3.11 and 3.3.12.

Theorem 3.3.26. Let S be a maximal EKR(2) set on H(8, q), q a square,
with |S| ≥ q2

√
q + q

√
q +
√
q + 1, then S is of one of the following types, in

decreasing order of size: I, II and III, VIIIb, IXb.

Proof. Analogous to the proof of Theorem 3.3.19, using Corollary 3.3.10 and
Lemmas 3.3.11, 3.3.12 and 3.3.13.

Note that all types of EKR(2) sets listed in Section 3.1.1 exist on Hermitian
polar spaces of rank 5, except the ones of type VII, VIIIa, IXa and XI.

Theorem 3.3.27. Let S be a maximal EKR(2) set on H(9, q), q a square,
with |S| ≥ q2

√
q + q

√
q +
√
q + 1, then S is of one of the following types, in

decreasing order of size: I, II and III, XII, IV, V, VI, VIIIb, IXb, XIV, XV, X.
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Proof. Analogous to the proof of Theorem 3.3.21, using Corollary 3.3.10 and
Lemmas 3.3.11, 3.3.12, 3.3.13 and 3.3.14.

Theorem 3.3.28. Let S be a maximal EKR(2) set on H(10, q), q a square,
with |S| ≥ q2

√
q + q

√
q +
√
q + 1, then S is of one of the following types, in

decreasing order of size: I, II and III, IV, XII, V, VI, VIIIb, IXb, XIV, XV, X.

Proof. Analogous to the proof of Theorem 3.3.22, using Corollary 3.3.10 and
Lemmas 3.3.11, 3.3.12, 3.3.13, 3.3.14 and 3.3.15.

Remark 3.3.29. In this section about polar spaces we use extensively The-
orem 3.2.1 and its consequence that it is sufficient to classify all maximal
EKR(2) sets that are contained in a 5-space ρ, in order to find a complete
classification of the maximal EKR(2) sets. This classification depends on the
intersection of the projective or polar space P with the 5-space ρ. Above, this
has been performed for most cases. Next to the case ρ ⊆ P (see Theorem 3.0.1
and Remark 3.3.1), the only case which has not been fully handled is ρ ∩ P
a non-singular Hermitian variety. Classifying all maximal EKR(2) sets on a
Hermitian polar space H(5, q), q a square, would yield complete classifications
in the above theorems. Note that it follows from the proof of Theorem 3.2.1
that the planes of a maximal EKR(2) set of H(5, q), q a square, which has not
been described above, pairwise intersect in a point.

The symplectic polar spaces

In this section, we look at the classification of the maximal EKR(2) sets on
the symplectic polar spaces W(2d − 1, q) for the small cases, 3 ≤ d ≤ 5. We
are able to give a complete classification. Note that the polar space W(5, q)
was already covered in Theorem 3.3.7 and Theorem 3.3.8. First we look at the
symplectic polar space of rank 4 and secondly at the symplectic polar space
of rank 5. In both cases we will need to distinguish between the cases q even
and q odd. This is due to the observation made in Remark 1.6.8, which is
only valid if q is even. Namely, the finite classical polar spaces W(2d − 1, q)
and Q(2d, q), q even, are isomorphic. It follows from this observation that
a hyperbolic quadric Q+(5, q) is embedded in W(5, q), if q is even. So, an
EKR(2) set of type XIII can be found on W(5, q), q even.

In the statement of the theorems, we will use the same convention as in the
study of the quadric and Hermitian polar spaces.
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Note that the only EKR(2) sets from the list in Section 3.1.1 that exist on all
symplectic polar spaces of rank 4, are the ones of type I, II and III. If q is even,
also the ones of type IXa can occur; if q is odd, also the ones of type VIIIb
can occur.

Theorem 3.3.30. Let S be a maximal EKR(2) set on W(7, q), then S is of
one of the following types, in decreasing order of size:

• I, II and III, IXa, XIII if q is even,

• I, II and III, VIIIb, XVIb, XVII, XVIII if q is odd.

Proof. Analogous to the proof of Theorem 3.3.18, using Corollary 3.3.10 and
Lemma 3.3.12. Note that the EKR(2) sets of type XIII only occur if q is even
and that the EKR(2) sets of type XVIb, XVII or XVIII only occur if q is odd.

Note that all types of EKR(2) sets listed in Section 3.1.1 exist on symplectic
polar spaces of rank 5, except the ones of type VII, VIIIa, IXb and XI. If q
is even, also the ones of type VIIIb cannot occur; if q is odd, also the ones of
type IXa cannot occur.

Theorem 3.3.31. Let S be a maximal EKR(2) set on W(9, q), then S is of
one of the following types, in decreasing order of size:

• I, II and III, IV, XII, V, VI, IXa, XIV, X and XV, XIII if q = 2,

• I, II and III, IV, XII, V, VI, IXa, XIV, XV, X, XIII if q ≥ 4 is even,

• I, II and III, IV, XII, V, VI, VIIIb, XIV, XV, X, XVIb, XVII, XVIII if q
is odd.

Proof. Analogous to the proof of Theorem 3.3.21, using Corollary 3.3.10, and
Lemmas 3.3.12 and 3.3.14.

In Table 3.1, we present an overview of the results on EKR(2) sets on polar
spaces of small rank.
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Polar space No. of max. EKR(2) sets

Q+(5, q) 3

Q(6, q) 3

Q−(7, q) 3

Q+(7, q) 5

Q(8, q) 5

Q−(9, q) 5

Q+(9, q) 11

Q(10, q) 12

Q−(11, q) 12

Polar space No. of max. EKR(2) sets

W(5, q), q even 3

W(5, q), q odd 5

W(7, q), q even 5

W(7, q), q odd 7

W(9, q), q even 12

W(9, q), q odd 14

Polar space No. of max. EKR(2) sets

H(5, q) 1

H(6, q) 2

H(7, q) 5

H(8, q) 5

H(9, q) 12

H(10, q) 12

Table 3.1: Overview of the results of Section 3.3.2. In the first and second table,
we present for the quadric and symplectic polar spaces of small rank, the number of
types of maximal EKR(2) sets. In the third table we present for the Hermitian polar
spaces of small rank, the number of types of maximal EKR(2) sets with cardinality
greater than or equal to q2

√
q + q

√
q +
√
q + 1.



4
Erdős-Ko-Rado sets of generators on

Q+(4n + 1, q)

m  eÚnai basilik n �tropìn âpÐ gewmetrÐan.

Attributed to EÎklÐdhc by Prìkloc å Di�doqoc
in his EÊc pr¸ton EÎkleÐdou StoiqeÐwn.

In Section 2.3 we discussed the Erdős-Ko-Rado sets on polar spaces. The
largest Erdős-Ko-Rado sets of generators are classified, except forH(4n+1, q2),
n ≥ 2, and we know a complete classification of the Erdős-Ko-Rado sets of
lines. In Chapter 3 we investigated the largest Erdős-Ko-Rado sets of planes,
also for polar spaces. It is clear that much more is known for projective spaces.
For example nothing is known about EKR(k) sets in a polar space of rank d,
2 < k < d − 1. Also, a Hilton-Milner type result (see Theorem 2.1.3 and
Theorem 2.2.4), classifying the second largest example of Erdős-Ko-Rado sets
of generators, is not known.

In this chapter, we will present a Hilton-Milner type result for the Erdős-Ko-
Rado sets of generators on one type of polar spaces, namely the hyperbolic
quadrics Q+(4n+ 1, q). We recall the theorems we already presented on these
Erdős-Ko-Rado sets of generators. The following result was already mentioned

| 95
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in Table 2.1.

Theorem 4.0.1 ([104, Theorem 9 and Theorem 16]). If S is an Erdős-
Ko-Rado set of generators of the hyperbolic quadric Q+(4n+ 1, q), then |S| ≤∏2n

i=1(q
i + 1). Furthermore, if |S| =

∏2n
i=1(q

i + 1), then S is the set of all
generators contained in one class.

Note that for the hyperbolic quadric Q+(5, q), we have given a complete clas-
sification of its Erdős-Ko-Rado sets of generators in Theorem 3.3.7.

The main theorem of this chapter is Theorem 4.2.7. Section 4.2 is devoted to
its proof. In Section 4.1 the preliminary counting results are proved. Finally,
in Section 4.3 some other examples of Erdős-Ko-Rado sets of generators of
Q+(4n+ 1, q) are given. Their existence indicates that a further classification
will not be trivial.

The content of this chapter is based on [39].
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4.1 Counting skew generators

We recall two counting results, one about subspaces and one about generators.

Theorem 4.1.1 ([111, Section 170]). The number of j-spaces, skew to a

fixed k-space, in PG(n, q) equals q(k+1)(j+1)

[
n− k
j + 1

]
q

.

Theorem 4.1.2 ([90, Corollary 5]). Let π1 and π2 be two generators of the
hyperbolic quadric Q+(2m+1, q) meeting in a j-dimensional space. The num-
ber of generators skew to both π1 and π2 equals

bmj =

{
q2(

(m+j)/2+1
2 )−(j+1

2 )∏(m−j)/2
i=1 (q2i−1 − 1) m ≡ j (mod 2)

0 m ≡ j + 1 (mod 2)
.

Now, we present a new counting result.

Lemma 4.1.3. Let Q+(4n+1, q) be a hyperbolic quadric and let π1 and π2 be
two generators of the same class on Q+(4n+ 1, q) meeting in a j-dimensional
space, 0 ≤ j ≤ 2n and j even. The number of generators meeting π1, but not
π2, equals

vnj =
n−1∑
i= j

2

q(2n−2i)(j+1)

[
2n− j
2n− 2i

]
q

b2ij .

Proof. All generators belonging to the same class as π1 and π2, meet both,
hence cannot meet precisely one of them. Let π be a generator of the other
class that meets π1 and misses π2. The intersection τ = π1∩π is a (2n−2i−1)-
space, for some i fulfilling j

2
≤ i ≤ n − 1. Let τ be the tangent space in τ to

Q+(4n+ 1, q); it is (2n+ 2i+ 1)-dimensional. The tangent space τ contains π1
and meets π2 in a (2i)-space through π1∩π2. The intersection τ∩Q+(4n+1, q)
is a cone with vertex τ and base a hyperbolic quadric Q+(4i + 1, q). We can
choose the ambient space σ of this base Q+(4i+ 1, q) to contain τ ∩ π2.

Any generator through τ now corresponds to a generator of this base quadric
Q+(4i+1, q). Moreover, a generator through τ meeting π1 in τ and disjoint to
π2 corresponds to a generator of Q+(4i+1, q) skew to both τ ∩π2 = σ∩π2 and
σ∩π1, which both are generators of the base quadric. Since (σ∩π1)∩(σ∩π2) =
π1 ∩ π2, the number of such generators equals b2ij .
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So, the total number of generators meeting π1, but not π2, equals

n−1∑
i= j

2

q(2n−2i)(j+1)

[
2n− j
2n− 2i

]
q

b2ij .

Hereby we used the result from Theorem 4.1.1 to count the number of (2n −
2i− 1)-spaces in π1 that are skew to π1 ∩ π2.

Corollary 4.1.4. Let Q+(4n + 1, q) be a hyperbolic quadric and let π1 and
π2 be two generators of the same class on Q+(4n+ 1, q) meeting in a 2(n− t)-
dimensional space, 0 ≤ t ≤ n. The number of generators not meeting both π1
and π2 equals

W n
t (q) = q2n

2+n−t2
(

t∏
k=1

(q2k−1 − 1) + 2
t∑
i=1

[
2t

2i

]
q

qi
2+i−2it

t−i∏
k=1

(q2k−1 − 1)

)
.

Proof. Using the notations from Theorem 4.1.2 and Lemma 4.1.3, we find that
the number of generators not meeting both π1 and π2 equals b2n2(n−t) + 2vn2(n−t).
Using the results from Theorem 4.1.2 and Lemma 4.1.3, we find that

W n
t (q) = b2n2(n−t) + 2vn2(n−t)

= q2n
2+n−t2

t∏
k=1

(q2k−1 − 1) + 2
n−1∑
i=n−t

q(2n−2i)(2n−2t+1)

[
2t

2n− 2i

]
q

b2i2(n−t)

= q2n
2+n−t2

t∏
k=1

(q2k−1 − 1) + 2
t∑
i=1

q2i(2n−2t+1)

[
2t

2i

]
q

b
2(n−i)
2(n−t)

= q2n
2+n−t2

t∏
k=1

(q2k−1 − 1)

+ 2
t∑
i=1

q2i(2n−2t+1)

[
2t

2i

]
q

q2(n−i)
2+(n−i)−(t−i)2

t−i∏
k=1

(q2k−1 − 1)

= q2n
2+n−t2

(
t∏

k=1

(q2k−1 − 1) + 2
t∑
i=1

[
2t

2i

]
q

qi
2+i−2it

t−i∏
k=1

(q2k−1 − 1)

)
.
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4.2 Classification of the second example

In Table 2.1 and Theorem 4.0.1 we already introduced the largest Erdős-Ko-
Rado set of generators on a hyperbolic quadric Q+(4n+ 1, q), namely the set
of all generators of one class. Now we present another Erdős-Ko-Rado set.

Example 4.2.1. Let π be a generator of the hyperbolic quadric Q+(4n+1, q)
and let S be the set containing π and all generators of the other class (G)
meeting π. All elements of S \ {π} meet π and since all generators of the
same class have a non-trivial intersection on this hyperbolic quadric, they also
meet each other. Hence, S is an Erdős-Ko-Rado set. Obviously, none of the
generators in G \ S extends S to a larger Erdős-Ko-Rado set. Also, for every
generator π′ in the same class of π we can find a generator in S not meeting
π′. This can be seen in different ways, e.g. as a consequence of Theorem 4.1.2.
Consequently, this Erdős-Ko-Rado set is maximal.

The number of generators in S equals (|G|−b2n2n)+1 =
∏2n

i=1(q
i+1)−q2n2+n+1.

Lemma 4.2.2. Let S be a maximal Erdős-Ko-Rado set of generators of a
hyperbolic quadric Q+(4n + 1, q). If S is not the set of all generators of one
class or an Erdős-Ko-Rado set as described in Example 4.2.1, then it contains
at most 2

∏2n
k=1(q

k + 1)− 2 min{W n
t (q) | 1 ≤ t ≤ n} generators.

Proof. Since S differs from the Erdős-Ko-Rado set of all generators of one
class and from the Erdős-Ko-Rado set described in Example 4.2.1, it contains
at least two generators of both classes. Let π1, π2 ∈ S be two generators of the
same class, whose intersection is 2(n− t)-dimensional, t ≥ 1. Then S contains
at most

2n∏
k=1

(qk + 1)−W n
t (q)

generators of the other class. The statement immediately follows.

Notation 4.2.3. The function ft(q), t ≥ 1, is defined in the following way:

ft(q) = qt
2−t

t∏
k=1

(q2k−1 − 1) + 2
t−1∑
i=0

[
2t

2i

]
q

qi
2−i

i∏
k=1

(q2k−1 − 1) .

Using Corollary 4.1.4, we see that W n
t (q) = q(n+t)(2n−2t+1)ft(q).
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It should be noted that ft(q) is independent of n, however closely related to
W n
t (q). We calculate ft(q) for some small values of t.

f1(q) = q + 1

f2(q) = q6 + q5 + q3 − q2

f3(q) = q15 + q14 + q12 − q11 + q10 − q9 − q7 + q6

We prove an inequality between these functions.

Lemma 4.2.4. For every t ≥ 1 and q ≥ 2, the inequality ft+1(q) > q4t+1ft(q)
is valid.

Proof. We perform the following calculations.

ft+1(q) = q(t+1)2−(t+1)

t+1∏
k=1

(q2k−1 − 1) + 2
t∑
i=0

[
2t+ 2

2i

]
q

qi
2−i

i∏
k=1

(q2k−1 − 1)

= q2t(q2t+1 − 1)

(
qt

2−t
t∏

k=1

(q2k−1 − 1)

)
+ 2

+ 2
t∑
i=1

(q2t+2 − 1)(q2t+1 − 1)

q2i − 1

[
2t

2i− 2

]
q

qi
2−i

i−1∏
k=1

(q2k−1 − 1)

= q2t(q2t+1 − 1)

(
qt

2−t
t∏

k=1

(q2k−1 − 1)

)
+ 2

+ 2
t−1∑
i=0

(q2t+2 − 1)(q2t+1 − 1)q2i

q2i+2 − 1

[
2t

2i

]
q

qi
2−i

i∏
k=1

(q2k−1 − 1) .

Note that

(q2t+2 − 1)(q2t+1 − 1)q2i

q2i+2 − 1
= q4t+1 +

q4t+1 − q2t+2i+2 − q2t+2i+1 + q2i

q2i+2 − 1
> q4t+1

since i ≤ t−1. Substituting both the equality (for i = t−1) and the inequality
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in the previous calculation, we find

ft+1(q) > q2t(q2t+1 − 1)

(
qt

2−t
t∏

k=1

(q2k−1 − 1)

)

+ 2q4t+1

t−1∑
i=0

[
2t

2i

]
q

qi
2−i

i∏
k=1

(q2k−1 − 1)

+ 2
q4t+1 − q4t − q4t−1 + q2t−2

q2t − 1

[
2t

2t− 2

]
q

q(t−1)(t−2)
t−1∏
k=1

(q2k−1 − 1)

= q4t+1ft(q)− qt
2+t

t∏
k=1

(q2k−1 − 1)

+ 2
q4t+1 − q4t − q4t−1 + q2t−2

(q2 − 1)(q − 1)
q(t−1)(t−2)

t∏
k=1

(q2k−1 − 1)

> q4t+1ft(q)

+
(
2(q4t−2 − q4t−4 − q4t−5)− q4t−2

)
q(t−1)(t−2)

t∏
k=1

(q2k−1 − 1)

≥ q4t+1ft(q) .

Hereby we used that q4t−2 − 2q4t−4 − 2q4t−5 ≥ 0 for all q ≥ 2.

We present a strong inequality that we will also use in Section 7.2.

Lemma 4.2.5. Let s, t, q ∈ N be such that s ≤ t and q ≥ 3. If (s, q) 6= (0, 3),
then

t∏
i=s

(qi + 1) ≤ (qs + 2)q(
t+1
2 )−(s+1

2 ) − q(
t
2)−(s2) .

Proof. We prove this result by using induction on t for a fixed values of s and
q. If t = s, then qs + 1 ≤ (qs + 2) − q0; so the induction base is proved. To
prove the validity of the induction step, we assume the theorem to be true for
t and we prove it to be true for t + 1. In the first step we use the induction
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hypothesis.

t+1∏
i=s

(qi + 1) ≤ (qt+1 + 1)
(

(qs + 2)q(
t+1
2 )−(s+1

2 ) − q(
t
2)−(s2)

)
= (qs + 2)q(

t+2
2 )−(s+1

2 ) − q(
t
2)−(s2)(qt+1 − qt − 2qt−s + 1)

≤ (qs + 2)q(
t+2
2 )−(s+1

2 ) − q(
t+1
2 )−(s2)

In the final step we used that qt+1 − qt − 2qt−s + 1 ≥ qt since q ≥ 3 and
(s, q) 6= (0, 3).

Note that the inequality is indeed not valid if (s, q) = (0, 3) and t ≥ 2.

Corollary 4.2.6. If q ≥ 3 and n ≥ 1, then q2n
2+n+2q2n

2+n−1+1 >
∏2n

k=1(q
k+

1).

Proof. We apply Lemma 4.2.5 for (s, t) = (1, 2n) and we find

2n∏
i=1

(qi + 1) ≤ (q + 2)q(
2n+1

2 )−1 − q(
2n
2 ) < (q + 2)q2n

2+n−1 + 1 .

Theorem 4.2.7. The two largest types of maximal Erdős-Ko-Rado sets of
generators of a hyperbolic quadric Q+(4n + 1, q), n ≥ 1 and q ≥ 3, are the
Erdős-Ko-Rado set of all generators of one class and the Erdős-Ko-Rado set
described in Example 4.2.1.

Proof. Let S be a maximal Erdős-Ko-Rado set of generators different from
the set of generators of one class and different from the Erdős-Ko-Rado set
described in Example 4.2.1. By Lemma 4.2.2 we know that |S| ≤ 2

∏2n
k=1(q

k +
1)− 2 min{W n

t (q) | 1 ≤ t ≤ n}. Using Lemma 4.2.4, we find that

W n
t+1(q) = q(n+t+1)(2n−2t−1)ft+1(q) > q(n+t)(2n−2t+1)ft(q) = W n

t (q) ,

for all 1 ≤ t ≤ n. Hence,

min{W n
t (q) | 1 ≤ t ≤ n} = W n

1 (q) = (q + 1)q2n
2+n−1 .

We mentioned already that the Erdős-Ko-Rado set containing all generators
of one class, is larger than the one described in Example 4.2.1, so we compare
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the upper bound on |S| with the size of the Erdős-Ko-Rado set described in
Example 4.2.1. The corresponding inequality

2n∏
i=1

(qi + 1)− q2n2+n + 1 > 2
2n∏
k=1

(qk + 1)− 2(q + 1)q2n
2+n−1

is equivalent to

q2n
2+n + 2q2n

2+n−1 + 1 >
2n∏
k=1

(qk + 1) .

By Lemma 4.2.6 we know that this inequality is valid if q ≥ 3.

Note that Theorem 3.3.7 implies this result for n = 1.

4.3 Other examples of large Erdős-Ko-Rado sets

Next to the two examples of maximal Erdős-Ko-Rado sets of generators, which
we mentioned above and which are proved in Theorem 4.2.7 to be the largest
ones, we also know the point-pencil. This is the set of all generators through
a fixed point. For many geometries, the point-pencil is the largest Erdős-Ko-
Rado set. By Theorem 4.0.1 we know that this is not true for hyperbolic
quadrics Q+(4n+ 1, q). In this case the point-pencil contains

2n−1∏
i=0

(qi + 1) = 2
2n−1∏
i=1

(qi + 1) ∈ Θ(q2n
2−n)

generators. Recall that the Erdős-Ko-Rado set of all generators of one class
contains

∏2n
i=1(q

i + 1) ∈ Θ(q2n
2+n) generators and that the Erdős-Ko-Rado set

described in Example 4.2.1 contains
∏2n

i=1(q
i + 1) − q2n2+n + 1 ∈ Θ(q2n

2+n−1)
generators. So, the point-pencil is much smaller in this case.

In this section we will present some more Erdős-Ko-Rado sets of generators of
Q+(4n+ 1, q) whose size is larger than the size of a point-pencil. First we give
a counting result.

Lemma 4.3.1. Let m ≥ 0 and k ≥ −1 be two integers such that k < m. Let
Ω be one of the two classes of generators of a hyperbolic quadric Q+(2m+1, q).
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The number of generators in Ω skew to a fixed k-space on the quadric equals

1

2

(
m−k−1∏
i=0

(qi + 1)

)
q

1
2
(k+1)(2m−k) =: wm,k .

The empty space is considered to have dimension −1.

Proof. Let π be a k-dimensional subspace of Q+(2m + 1, q). We prove this
lemma by using induction on k. If k = −1, then π is the empty space. The
number of generators of Ω skew to the empty space is the total number of
generators of Ω, which equals wm,−1.

Now, we assume that the lemma is proved for all subspaces of dimension at
most k − 1; we will prove it for the k-dimensional space π. The subspace π

contains

[
k + 1

i+ 1

]
q

subspaces of dimension i, 0 ≤ i ≤ k. Let σ be such an

i-space and let Tσ(Q+(2m+ 1, q)) be its tangent space to Q+(2m+ 1, q). We
know that Q+(2m + 1, q) ∩ Tσ(Q+(2m + 1, q)) is a cone with vertex σ and
base a hyperbolic quadric Q+(2m − 2i − 1, q). The k-space π corresponds to
a (k − i − 1)-space in this base. Arguing as in the proof of Lemma 4.1.3,
the number of generators of Ω meeting π in precisely σ equals wm−i−1,k−i−1.
Hereby, we note that the generators of Ω through σ correspond to one of the
two classes of generators of the base Q+(2m− 2i− 1, q).

So, the total number of generators of Ω skew to π, is independent of the choice
for π, and equals

wm,k =
1

2

m∏
j=0

(qj + 1)−
k∑
i=0

[
k + 1

i+ 1

]
q

wm−i−1,k−i−1

=
1

2

m∏
j=0

(qj + 1)− 1

2

k∑
i=0

[
k + 1

i+ 1

]
q

(
m−k−1∏
j=0

(qj + 1)

)
q

1
2
(k−i)(2m−k−i−1)

=
1

2

(
m−k−1∏
j=0

(qj + 1)

)
·(

m∏
j=m−k

(qj + 1)−
k∑
i=0

[
k + 1

i+ 1

]
q

q
1
2
(k−i)(2m−k−i−1)

)
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=
1

2

(
m−k−1∏
j=0

(qj + 1)

)
·(

m∏
j=m−k

(qj + 1)−
k+1∑
i=1

[
k + 1

i

]
q

q
1
2
(k−i+1)(2m−k−i)

)

=
1

2

(
m−k−1∏
j=0

(qj + 1)

)
·(

m∏
j=m−k

(qj + 1)− q
1
2
(2m−k)(k+1)

k+1∑
i=1

[
k + 1

i

]
q

q(
i
2)q−mi

)

=
1

2

(
m−k−1∏
j=0

(qj + 1)

)
·(

m∏
j=m−k

(qj + 1)− q
1
2
(2m−k)(k+1)

(
k∏
j=0

(qj−m + 1)− 1

))

=
1

2

(
m−k−1∏
j=0

(qj + 1)

)
q

1
2
(k+1)(2m−k) .

In the penultimate transition we used the q-binomial theorem

n−1∏
l=0

(1 + qlt) =
n∑
l=0

q(
l
2)
[
n

l

]
q

tl .

This calculation finishes the induction step.

Remark 4.3.2. In the previous lemma, the case m = k was not covered; in
that case we count the number of generators of a fixed class skew to a given
generator π. We already know that this number will be dependent on the
class of π and the parity of m. Using the observation made in Section 1.6
and Theorem 4.1.2, we can state the following result. If m is even, then no

generators of the class of π are skew to π and bmm = q(
m+1

2 ) generators of the

other class are skew to π. If m is odd, then bmm = q(
m+1

2 ) generators of the class
of π are skew to π and no generators of the other class are skew to π.
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It is an immediate consequence of the previous lemma that the total number
of generators skew to a fixed k-space on a hyperbolic quadric Q+(2m + 1, q),
k < m, equals (

m−k−1∏
i=0

(qi + 1)

)
q

1
2
(k+1)(2m−k) = 2wm,k .

We now introduce some new examples of large maximal Erdős-Ko-Rado sets
of the hyperbolic quadric Q+(4n+ 1, q).

Example 4.3.3. Consider the hyperbolic quadric Q+(4n+ 1, q) and let τ be
a fixed k-space on it, 0 ≤ k ≤ 2n. Denote the two classes of generators by Ω1

and Ω2, such that τ ∈ Ω1 if k = 2n. Let S be the union of the set of generators
of Ω1 meeting τ in a subspace of dimension at least j, 0 ≤ j ≤ k, and the set
of generators of Ω2 meeting τ in a subspace of dimension at least k − j. It
is immediate that the elements of S pairwise intersect. Consequently, S is an
Erdős-Ko-Rado set. We denote this type of Erdős-Ko-Rado sets by Ik,j. Note
that not all these types are different. If k < 2n, then Ik,j and Ik,k−j describe
PGL-equivalent sets of generators. Also I2n−1,2j−1, I2n,2j−1 and I2n,2j describe
PGL-equivalent sets of generators, 1 ≤ j ≤ n.

We show that an Erdős-Ko-Rado set S of type Ik,j is maximal. Assume that
we can find a generator π in Ω1 \ S which meets all generators of S. Since
π /∈ S, we know that dim(π ∩ τ) < j. So, we can find a (k − j)-space τ ′ in
τ disjoint to π ∩ τ . We know that all generators of Ω2 containing τ ′ belong
to S. Let Tτ ′ be the tangent space in τ ′ to Q+(4n + 1, q). It is (4n − k + j)-
dimensional and meets π in a (2n − k + j − 1)-space disjoint to τ ′. The
intersection Q+(4n+ 1, q)∩ Tτ ′ is a cone with vertex τ ′ and base a hyperbolic
quadric Q1

∼= Q+(2(2n − k + j − 1) + 1, q). We can choose this basis such
that it contains π′ = Tτ ′ ∩ π. Moreover Tτ ′ ∩ π is a generator of Q1. The set
of generators of Ω2 through τ ′, all in S, correspond to the set of generators
of one class of Q1. We denote this class by Ω′2. If k − j is even, then π′ also
belongs to Ω′2. However, 2n− k + j − 1 is odd and by an observation made in
Remark 4.3.2, we know that we can find a generator σ ∈ Ω′2 skew to π′. Then
〈π′, τ ′〉 is a generator in S skew to π. If k − j is odd, then π′ belongs to Ω′1,
the other class of generators of Q1. In this case, 2n− k+ j − 1 is even and by
an observation made in Remark 4.3.2, we know that we can find a generator
σ ∈ Ω′2 skew to π′. Then 〈π′, τ ′〉 is a generator in S skew to π. The arguments
for π ∈ Ω2 are analogous.
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Now, we count the number of generators in an Erdős-Ko-Rado set S of type
Ik,j, k < 2n. We use the result from Lemma 4.3.1.

|S| =
k∑
i=j

[
k + 1

i+ 1

]
q

w2n−i−1,k−i−1 +
k∑

i=k−j

[
k + 1

i+ 1

]
q

w2n−i−1,k−i−1

=
k∑
i=j

[
k + 1

i+ 1

]
q

1

2

(
2n−k−1∏
p=0

(qp + 1)

)
q

1
2
(k−i)(4n−k−i−1)

+
k∑

i=k−j

[
k + 1

i+ 1

]
q

1

2

(
2n−k−1∏
p=0

(qp + 1)

)
q

1
2
(k−i)(4n−k−i−1)

=
1

2

(
2n−k−1∏
p=0

(qp + 1)

)
·[

k∑
i=j

[
k + 1

i+ 1

]
q

q
1
2
(k−i)(4n−k−i−1) +

k∑
i=k−j

[
k + 1

i+ 1

]
q

q
1
2
(k−i)(4n−k−i−1)

]
.

Using this result, we can see that an Erdős-Ko-Rado set of type Ik,j+1 is larger
than an Erdős-Ko-Rado set of type Ik,j if and only if 2j + 1− k > 0, k < 2n.
Using this and the above mentioned equivalence between Ik,j and Ik,k−j, we
find that the largest among these Erdős-Ko-Rado sets are the ones of type Ik,k,
which are also the ones of type Ik,0. Those contain

2n∏
i=1

(qi + 1)− 1

2
(q

1
2
(k+1)(4n−k) − 1)

2n−k−1∏
i=0

(qi + 1) ∈ Θ(q2n
2−n+k)

generators. In this computation we used the q-binomial theorem. Since the
Erdős-Ko-Rado sets of type I2n,2j−1 and I2n,2j are equal to the Erdős-Ko-Rado
sets I2n−1,2j−1, 1 ≤ j ≤ n, we can use the above formulas to compute their
number of elements as well.

So, the only type Ik,j of Erdős-Ko-Rado sets whose size has not been computed
above is I2n,0. However, an Erdős-Ko-Rado set of type I2n,0 is the set of all
generators of one class, Ω1 in the above notation. Furthermore, the Erdős-Ko-
Rado sets of type I2n,2n are the ones that are described in Example 4.1.3 and
the Erdős-Ko-Rado sets of type I0,0 are the point-pencils.
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In the previous example we have introduced several types of Erdős-Ko-Rado
sets, Ik,k, whose size is larger than the size of a point-pencil. These are however
not the only ones. We shall give two more examples.

Example 4.3.4. Again we denote the two classes of generators on the hyper-
bolic quadric Q+(4n + 1, q) by Ω1 and Ω2. Let π be a generator of class Ω1

and let τ be a fixed k-space in π, 0 ≤ k ≤ 2n − 2. Let S be the union of the
set of generators of Ω1 that are not skew to τ or that meet π in a subspace
of dimension i ≥ 2, and the set of generators of Ω2 through τ meeting π in
a subspace of dimension 2n − 1. It is immediate that the generators in S
pairwise intersect, and hence S is an Erdős-Ko-Rado set. We denote this type
of Erdős-Ko-Rado sets by IIk. Its maximality can be proved by arguments
similar to the arguments in the proof of the maximality in Example 4.3.3.

In the above definition we imposed k ≤ 2n− 2. For k = 2n− 1 this definition
gives rise to the Erdős-Ko-Rado set described in Example 4.1.3; for k = 2n
this definition gives rise to the Erdős-Ko-Rado set consisting of all generators
of one class.

We now count the number of generators in an Erdős-Ko-Rado set S of type
IIk:

|S| =
n∑
i=1

[
2n+ 1

2i+ 1

]
q

b2n−2i−12n−2i−1 +

[
k + 1

1

]
q

b2n−12n−1 +

[
2n− k

1

]
q

=
n∑
i=1

[
2n+ 1

2i+ 1

]
q

q(
2(n−i)

2 ) +

[
k + 1

1

]
q

q2n
2−n +

[
2n− k

1

]
q

.

It can be calculated that an Erdős-Ko-Rado set of type IIk contains more
elements than an Erdős-Ko-Rado set S of type IIk′ if and only if k > k′.
Therefore, we calculate the size of an Erdős-Ko-Rado set S of type II2n−2:

|S| =
n∑
i=1

[
2n+ 1

2i+ 1

]
q

q(
2(n−i)

2 ) +

[
2n− 1

1

]
q

q2n
2−n +

[
2

1

]
q

=
n−1∑
i=1

q(
2(n−i)

2 )

(
q2(n−i)

[
2n

2n− 2i

]
q

+

[
2n

2n− 2i− 1

]
q

)
+ 1

+
q2n−1 − 1

q − 1
q2n

2−n + q + 1
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=
2n−2∑
j=0

[
2n

j

]
q

q(
j
2)qj +

q2n−1 − 1

q − 1
q2n

2−n + q + 1

=
2n∑
j=0

[
2n

j

]
q

q(
j
2)qj − q2n2+n − q2n − 1

q − 1
q2n

2−n +
q2n−1 − 1

q − 1
q2n

2−n + q + 1

=
2n∏
i=1

(qi + 1)− q2n2+n − q2n2+n−1 + q + 1 ∈ Θ(q2n
2+n−2) .

Analogously, the size of an Erdős-Ko-Rado set S of type II0 can be calculated.
We find

|S| =
2n∏
i=1

(qi + 1)− (q2n − 1)(q2n
2−n+1 − 1)

q − 1
∈ Θ(q2n

2+n−3) .

Example 4.3.5. Before introducing the example, we recall the triality map
for Q+(7, q), which has its origins in [120]; we follow the approach from [96].
Denote the two classes of generators of Q+(7, q) by Ω′1 and Ω′2. Let P be the
set of points on Q+(7, q) and let L be the set of lines on Q+(7, q). Note that
|P| = |Ω′1| = |Ω′2|. A D4-geometry1 G can be constructed as follows. The
elements of P are the 0-points, the elements of Ωi are the i-points, i = 1, 2,
and the elements of L are the lines. Incidence is defined by symmetrized
containment, except for 1-points and 2-points; we define a 1-point and a 2-
point to be incident if they meet in a plane of Q+(7, q). Every permutation of
{P ,Ω′1,Ω′2} defines a geometry isomorphic to G. A triality of G is a map t

t : L → L, P → Ω′1, Ω′1 → Ω′2, Ω′2 → P

preserving the incidence in G and such that t3 is the identity relation. Such
maps are known to exist and are used to construct generalised hexagons.

We use the triality to prove a result about the generators of Q+(7, q). Let π1
and π2 be two disjoint generators of Ω′2 and let S ′ be the set of all generators of
Ω′2 meeting both in a line. Let S ′′ be the set of all generators of Ω′2 having a non-
empty intersection with all elements of S ′. We will show that S ′′ = {π1, π2}. It
is clear that πt1 and πt2 are two points not on a line of L. The set S ′t contains all
points of Q+(7, q) that are collinear with both πt1 and πt2. Therefore, S ′t is the

1We did not introduce buildings in this thesis. Here, we point this out for readers familiar with
building theory. For an extensive introduction to this theory, we refer to [28, Chapters 11 and 12].
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set of points on a hyperbolic quadric Q+(5, q) inside Q+(7, q). The only points
collinear with all points of S ′t are the points πt1 and πt2 themselves. Hence,
S ′′t = {πt1, πt2}. The statement follows. Note that we can replace Ω′2 by Ω′1 in
the statement: replacing t by t2, this proof continues.

Now, we consider the hyperbolic quadric Q+(4n + 1, q), n ≥ 2. Denote the
two classes of generators by Ω1 and Ω2. Let π and π′ be two generators of
Ω1 meeting in a (2n − 4)-space τ . Let S be the set containing π, π′ and all
generators of Ω2 meeting π and π′. It is clear that S is an Erdős-Ko-Rado set.
We denote this type of Erdős-Ko-Rado sets by III.

We prove that an Erdős-Ko-Rado set S of type III is maximal. Here we
will need that τ is a (2n − 4)-space. It is obvious that no generators of Ω2

that are not in S, extend S. Let π′′ be a generator of Ω1 extending S. Since
S contains all generators of Ω2 having a non-empty intersection with τ , it
can be argued that π′′ has to contain τ , similar to the argument about the
maximality in Example 4.3.3. Now we consider the tangent space Tτ in τ to
Q+(4n + 1, q). The intersection Tτ ∩ Q+(4n + 1, q) is a cone with vertex τ
and base a hyperbolic quadric Q+(7, q). The generators π, π′ and π′′ intersect
this base in π, π′ and π′′, respectively. These are generators of the hyperbolic
quadric Q+(7, q) of the same class, say Ω′2. Let σ be a generator of Q+(7, q)
of class Ω′2, meeting both π and π′ in a line. We know that there are b2n−42n−4
generators of Q+(4n+ 1, q) through σ disjoint to τ , necessarily all of class Ω2.
Hence π′′ has to meet all generators of Q+(7, q) of class Ω′2, meeting both π and
π′ in a line. By the above observation on Q+(7, q), we know that π′′ ∈ {π, π′}.
Hence, S is maximal.

We count the number of generators in an Erdős-Ko-Rado set S of type III.

|S| = 2 +

(
2n∏
i=1

(qi + 1)− w2n,2n−4

)
+

[
4

2

]
q

q4(2n−3)b2n−42n−4

= 2 +
2n∏
i=1

(qi + 1)−

(
3∏
i=1

(qi + 1)

)
q(n+2)(2n−3)

+ (q2 + 1)(q2 + q + 1)q(n+2)(2n−3)

=
2n∏
i=1

(qi + 1)− q2n2+n−6(q6 + q5 + q3 − q2) + 2 ∈ Θ(q2n
2+n−2)

Remark 4.3.6. We already noted that the size of the largest maximal Erdős-
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Ko-Rado set is of order Θ(q2n
2+n) and the size of the second largest maximal

Erdős-Ko-Rado set is of order Θ(q2n
2+n−1). In the previous Examples we

have described three types of maximal Erdős-Ko-Rado sets of the next order
Θ(q2n

2+n−2), namely I2n−2,2n−2, II2n−2 and III. However, it should be noted
that the Erdős-Ko-Rado sets of type I2n−2,2n−2 and Erdős-Ko-Rado sets of type
II2n−2 are the same ones. This is an exceptional case; this pattern does not
continue for other Erdős-Ko-Rado sets of type Ik,k and IIk′ . It can be easily
calculated that the Erdős-Ko-Rado sets of type I2n−2,2n−2 (II2n−2) are larger
than the Erdős-Ko-Rado sets of type III.

Calculations in Example 4.3.3 and Example 4.3.4 show that there are many
different Erdős-Ko-Rado sets whose size is larger than the size of the point-
pencil. So, a complete classification of all Erdős-Ko-Rado sets whose size is at
least the size of a point-pencil is out of sight for the moment.
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5
Erdős-Ko-Rado sets in Steiner 2-designs

The longer he lived, the more Tyrion realized
that nothing was simple and little was true.

Tyrion Lannister in
A Song of Ice and Fire, A Clash of Kings, Tyrion IV

by George R.R. Martin

In Section 1.2 we already introduced designs, but until now no Erdős-Ko-
Rado sets in designs have been mentioned. Following the general approach
from Section 2.4, we can define Erdős-Ko-Rado sets for designs as sets of
blocks pairwise having at least a point in common. As usually, they are called
maximal if they cannot be extended regarding this condition. As before, a
point-pencil is the set of all blocks through a fixed point. A point-pencil is a
maximal Erdős-Ko-Rado set in a t− (v, k, λ) design if r > k.

An important result was obtained by Rands. He did not only study Erdős-
Ko-Rado sets, but studied sets of blocks pairwise having at least s points in
common. Recall the notations λi, which were defined in Section 1.2.

Theorem 5.0.1 ([107]). Let D = (P ,B, I) be a t−(v, k, λ) block design and
let S be a subset of B such that the blocks of S have pairwise at least s points

| 113
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in common, 0 < s < t ≤ k.

• If s < t− 1 and v ≥ s+
(
k
s

)
(k − s+ 1)(k − s), or

• if s = t− 1 and v ≥ s+
(
k
s

)2
(k − s),

then |S| ≤ λs and equality is obtained if and only if S is the set of blocks
through s fixed points.

In this chapter, based on [38], we will improve this result for Erdős-Ko-Rado
sets in Steiner 2-designs. For these the above result implies the following
corollary. Recall the notation r for the number of blocks through a fixed point
of the design. This number is also called the replication number. We know
that r = v−1

k−1 for a Steiner 2-design.

Corollary 5.0.2. Let D be a 2− (v, k, 1) block design and let S be an Erdős-
Ko-Rado set of D, k ≥ 2. If v ≥ 1 + k2(k− 1), then |S| ≤ r and |S| = r if and
only if S is a point-pencil.

In the same article ([107]), it is claimed that the bound v ≥ 1+k2(k−1) can be
improved to v > k3−2k2+2k, but there is no proof of this statement. However,
it is shown that the bound v > k3 − 2k2 + 2k is sharp. If v = k3 − 2k2 + 2k
and k− 1 is a prime power, the 2− (v, k, 1) design consisting of the points and
lines of PG(3, k−1) contains two different types of Erdős-Ko-Rado sets of size
r = k2− k+ 1: the set of all blocks through a fixed point and the set of blocks
arising from the set of lines in a fixed plane.

In Sections 5.3 and 5.4, we will prove the result about the bound v > k3 −
2k2 + 2k (see Theorem 5.4.1) and we will also investigate 2− (v, k, 1) designs
with v < k3−2k2 +2k (see Theorem 5.4.5). It turns out that v = k3−2k2 +2k
is an isolated case. The results are summarized in Theorem 5.3.5 and Corol-
lary 5.4.6. Section 5.2 provides some lemmata needed in these investigations.
Section 5.1 deals with some specific Steiner systems. In Section 5.5 we use the
arguments from Section 5.2 to obtain a stability result1 for Erdős-Ko-Rado
sets in unitals.

1Stability results were introduced in the Preface.
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5.1 Some special 2-Steiner systems

We recall that projective and affine planes are the smallest 2-designs (see Re-
mark 1.2.3). Therefore, we look at them in detail.

Remark 5.1.1. In a projective plane, every two blocks have a point in com-
mon. Hence, in a projective plane there is only one maximal Erdős-Ko-Rado
set, namely the set of all blocks. Recall that we mentioned in the introduction
that a point-pencil in a 2− (v, k, 1) design is only maximal if r > k.

For the projective plane PG(2, q), we already knew this by Remark 2.2.3.

Remark 5.1.2. In an affine plane of order n, the set of blocks can be parti-
tioned in n+1 parallel classes of n blocks, such that the blocks in the same class
pairwise have no point in common (see Section 1.5). Two blocks of different
parallel classes always meet in a point. An Erdős-Ko-Rado set contains nec-
essarily at most one block of each parallel class. A maximal Erdős-Ko-Rado
set contains precisely one block of each parallel class. Consequently, every
maximal Erdős-Ko-Rado set contains n+ 1 blocks.

It should be noted that not all these maximal Erdős-Ko-Rado sets are isomor-
phic. Also note that the point-pencil can be described in this way.

Now we turn our attention to 2− (v, k, 1) designs with a special property.

Definition 5.1.3. The O’Nan configuration in a design D is a set of four
blocks, pairwise non-disjoint, such that no three contain a common point.

We will show that we can find a complete classification of the maximal Erdős-
Ko-Rado sets in designs not containing an O’Nan configuration. Note that all
affine planes of order at least 3 and all projective planes do contain O’Nan
configurations.

We already know the point-pencil, a maximal Erdős-Ko-Rado set of size r. We
now give an example of a maximal Erdős-Ko-Rado set on a design without an
O’Nan configuration.

Example 5.1.4. Let D be a 2− (v, k, 1) design without an O’Nan configura-
tion. Let P be a point and let B be a block of D such that P /∈ B. Let S be
the union of {B} and the set of all blocks through P meeting B. It is obvious
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that all blocks of S meet each other, hence that S is an Erdős-Ko-Rado set.
We call it the triangle. It contains k + 1 blocks. We prove that it is maximal.

Let L be a block of D not in S, meeting all blocks of S. The block L cannot
pass through P , hence meets all blocks of S through P in a different point.
Since L 6= B, we know k ≥ 3. Let P ′ and P ′′ be two points on B \ {L ∩ B}
and let B′ and B′′ be the blocks of S through P , meeting B in the points P ′

and P ′′, respectively. Then the blocks B, L, B′ and B′′ determine an O’Nan
configuration, a contradiction.

Theorem 5.1.5. Let D be a 2− (v, k, 1) design without an O’Nan configura-
tion and let S be a maximal Erdős-Ko-Rado set onD. Then, S is a point-pencil
or a triangle.

Proof. Assume that S is not a point-pencil; then we can find three blocks in
S, say B1, B2 and B3, not through a common point. Denote the point B2∩B3

by P1, the point B3∩B1 by P2 and the point B1∩B2 by P3. Any block B ∈ S
should have a non-empty intersection with as well B1, B2 as B3. Since D does
not contain an O’Nan configuration, B must pass through P1, P2 or P3.

If the block B′i ∈ S passes through Pi, B
′
i /∈ {B1, B2, B3}, and the block

B′j ∈ S passes through Pj, B
′
j /∈ {B1, B2, B3}, 1 ≤ i 6= j ≤ 3, then the blocks

Bi, Bj, B
′
i and B′j determine an O’Nan configuration, a contradiction. Hence,

all blocks of S \{B1, B2, B3} pass through the same point Pi, 1 ≤ i ≤ 3. Since
S is maximal, it has to be a triangle based on the point Pi and the block Bi.

Note that r > k+1 for all 2−(v, k, 1) designs without an O’Nan configuration,
but the affine plane of order 2. Hence, the point-pencil is the largest Erdős-
Ko-Rado set in these designs. Of course, the above result only makes sense if
2−(v, k, 1) designs without an O’Nan configuration exist. We give an example.
A classical unital was defined in Remark 1.6.6.

Theorem 5.1.6 ([101]). A classical unital U does not contain an O’Nan con-
figuration.

It is conjectured that the classical unitals are the only unitals not containing
an O’Nan configuration, see [22, 105]. In [22] this conjecture is proved to be
true for unitals of order 3. The unique unital of order 2 is also classical.

Corollary 5.1.7. In a classical unital there are only two types of maximal
Erdős-Ko-Rado sets, the point-pencil and the triangle.
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5.2 The counting arguments

In this section we will study maximal Erdős-Ko-Rado sets in 2−(v, k, 1) designs
that are not point-pencils.

Notation 5.2.1. Let D be a 2 − (v, k, 1) design and let S be an Erdős-Ko-
Rado set on D. Denote the set of points of D covered by the blocks of S by
P ′. We denote the number of points of P ′ that are contained in precisely i
blocks of S by ki. Furthermore we denote kS = max{i | ki > 0}. We use this
notation throughout this section.

Lemma 5.2.2. Let D be a 2− (v, k, 1) design and let S be an Erdős-Ko-Rado
set on D. Then |S| ≤ kSk − k + 1. If S is maximal and different from the
point-pencil, then kS ≤ k.

Proof. Fix a block C ∈ S. All blocks of S have a non-trivial intersection with
C, so

|S| ≤ 1 + k(kS − 1) = kSk − k + 1 .

Now, we prove the second part of the lemma. For every point P ∈ P ′, we
can find a block B ∈ S not passing through P , since S is maximal but not a
point-pencil. Any block of S through P should meet B and there is at most
one block in S through P and a given point of B. Hence, there are at most k
blocks in S passing through P . Consequently, kS ≤ k.

Lemma 5.2.3. Choose l ∈ N \ {0, 1}, and a, b ∈ Z with

a ≥ max

{
−l(r − l − 1) + 1− br

l + 1
,−b(b− 1)

(l + 1)l
− 2(b− 1)

}
,

a ≤ rl − l2 + l − 1

l − 1
− b(2l2 + 2l − r + b− 1)

l2 − 1
.

Let n1, . . . , nl ∈ N be such that

l∑
i=1

ini = (a− 1)(l + 1) + br + l(l + 1)(r − l − 1) and

l∑
i=2

i(i− 1)ni = b(b− 1) + l(l + 1)(a+ 2b− 2) .
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Then,
l∑

i=2

(i− 1)ni ≤
(
b

2

)
+ (a+ 2b− 2)

(
l + 1

2

)
.

Proof. Note that the inequalities −l(r− l−1)+1− br
l+1
≤ a and − b(b−1)

(l+1)l
−2(b−

1) ≤ a are present to ensure that both a(l+ 1) + br+ l(l+ 1)(r− l− 1)− l− 1
and b(b− 1) + l(l + 1)(a+ 2b− 2) are nonnegative.

Using the first equality, we can express n1 as a function of l, a, b and n2, . . . , nl.
Note that

n1 = (a− 1)(l + 1) + br + l(l + 1)(r − l − 1)−
l∑

i=2

ini

≥ (a− 1)(l + 1) + br + l(l + 1)(r − l − 1)−
l∑

i=2

i(i− 1)ni

= (a− 1)(l + 1) + br + l(l + 1)(r − l − 1)

− b(b− 1)− l(l + 1)(a+ 2b− 2)

= −a(l2 − 1)− b(b− 1)− b(2l2 + 2l − r) + (l + 1)(rl − l2 + l − 1)

≥ 0 ,

by the assumption. Hence, for every choice of n2, . . . , nl, we can find a value
n1 ∈ N such that the first equality holds. Now, we focus on the second equality.

Assume that nj > 0 for a value j ≥ 3. Then define n′j = nj−1, n′2 = n2+ j(j−1)
2

and n′k = nk for k /∈ {2, j}. It follows that

l∑
i=2

i(i− 1)n′i =
l∑

i=2

i(i− 1)ni = b(b− 1) + l(l + 1)(a+ 2b− 2) .

However,

l∑
i=2

(i− 1)n′i =

(
l∑

i=2

(i− 1)ni

)
− (j − 1) +

j(j − 1)

2
>

l∑
i=2

(i− 1)ni ,

since j ≥ 3. So, repeatedly applying the above construction, we find that∑l
i=2(i−1)ni is maximal if ni = 0 for all i ≥ 3 and n2 =

(
b
2

)
+(a+2b−2)

(
l+1
2

)
.

The lemma follows.
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Lemma 5.2.4. Let D be a 2 − (v, k, 1) design with replication number r,
k ≥ 3, and let S be an Erdős-Ko-Rado set on D with |P ′| = k(k − 1) + b.
Then,

|S| ≤ max

{
k2 − k + 1− 2

(r − k)(k2 − k + 1− r)
k(k − 2)

+
b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k2 − k − r)

(k − 1)(k − 2)
,

k2 − r − r − 1

k − 2
+
b(b− 1− r + 2k(k − 1))

k(k − 2)

}
.

Proof. Recall that B is the set of blocks of D. We denote the subset of B
containing precisely i points of P ′ by Bi and we also denote mi = |Bi|. Note
that S ⊆ Bk. We define a = k2−k+ 1−|Bk|. Counting the tuples (P,B) with
P ∈ P ′, B ∈ B and P on B, we find

k∑
i=1

imi = (k(k − 1) + b)r .

Now applying mk = k2 − k + 1− a, we find

m1 = (k(k − 1) + b)r −
k−1∑
i=2

imi − k(k2 − k + 1− a)

= k(k − 1)(r − k) + (a− 1)k + br −
k−1∑
i=2

imi .

Counting the tuples (P, P ′, B) with P, P ′ ∈ P ′, B ∈ B, P 6= P ′ and both P
and P ′ on B, we find

k∑
i=1

i(i− 1)mi = (k(k − 1) + b)(k(k − 1) + b− 1) .

Hence,

k−1∑
i=2

i(i− 1)mi = (k(k − 1) + b)(k(k − 1) + b− 1)

− k(k − 1)(k2 − k + 1− a)

= b(b− 1) + (a+ 2b− 2)k(k − 1) .
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Now we consider the set T of triples (P, P ′, B) with P, P ′ ∈ P \ P ′, B ∈ B1,
P, P ′ ∈ B and P 6= P ′. On the one hand we know

|T | = m1(k − 1)(k − 2)

= k(k − 1)2(k − 2)(r − k) + (a− 1)k(k − 1)(k − 2)

+ br(k − 1)(k − 2)− (k − 1)(k − 2)
k−1∑
i=2

imi .

On the other hand, using |P \P ′| = v− k(k− 1)− b = (r− k)(k− 1)− (b− 1),
we can also find that

|T | ≤ ((r − k)(k − 1)− (b− 1)) ((r − k)(k − 1)− b)

−
k−1∑
i=2

(k − i)(k − i− 1)mi .

Comparing this equality and inequality for |T |, we find

k−1∑
i=2

(k(k − 1)(i− 1)− i(i− 1))mi ≥

k(k − 1)2(k − 2)(r − k) + (a− 1)k(k − 1)(k − 2) + br(k − 1)(k − 2)

− b(b− 1)− (r − k)2(k − 1)2 + (2b− 1)(r − k)(k − 1) .

Using the formula for
∑k−1

i=2 i(i − 1)mi, and dividing both sides by k − 1, it
follows that

k
k−1∑
i=2

(i− 1)mi ≥ ak(k − 1) + bkr − k2 + (r − k)(k3 − 2k2 − (r − 1)(k − 1)) .

We distinguish between two cases. If a > r − k + 1 + r−1
k−2 −

b(b−1−r+2k(k−1))
k(k−2) ,

then |S| ≤ |Bk| ≤ k2 − r − r−1
k−2 + b(b−1−r+2k(k−1))

k(k−2) . If a ≤ r − k + 1 + r−1
k−2 −

b(b−1−r+2k(k−1))
k(k−2) , we can apply Lemma 5.2.3 with l = k − 1. Note that the

conditions −l(r − l − 1) + 1− br
l+1
≤ a and − b(b−1)

(l+1)l
− 2(b− 1) ≤ a are fulfilled

since
∑k−1

i=2 i(i− 1)mi and
∑k−1

i=1 imi are nonnegative. We find

k

(
b

2

)
+ k(a+ 2b− 2)

(
k

2

)
≥ ak(k − 1) + bkr − k2

+ (r − k)(k3 − 2k2 − (r − 1)(k − 1)) ,
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hence

a ≥ 2(r − k)(k2 − k + 1− r)
k(k − 2)

− 2(b− 1)(k2 − k − r)
(k − 1)(k − 2)

− b(b− 1)

(k − 1)(k − 2)
.

We find thus that

|S| ≤ |Bk| ≤ k2 − k + 1− 2(r − k)(k2 − k + 1− r)
k(k − 2)

+
2(b− 1)(k2 − k − r)

(k − 1)(k − 2)
+

b(b− 1)

(k − 1)(k − 2)
,

which finishes the proof.

Using the substitution R = (k − 1)2 − r, we can rewrite this lemma.

Corollary 5.2.5. Let D be a 2−(v, k, 1) design, k ≥ 3, and denote (k − 1)2−r
by R. Let S be an Erdős-Ko-Rado set on D with |P ′| = k(k − 1) + b. Then

|S| ≤ max

{
k2 − k + 1− 2

(k2 − 3k + 1−R)(k +R)

k(k − 2)
+

b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k − 1 +R)

(k − 1)(k − 2)
,

k − 1 +R +
R

k − 2
+
b(b+ k2 +R− 2)

k(k − 2)

}
.

Lemma 5.2.6. Let D be a 2− (v, k, 1) design and let S be an Erdős-Ko-Rado
set on D with kS = k. Then |P ′| = k2 − k + 1.

Proof. Since kS = k, we can find a point P ∈ P ′ lying on k blocks of S. Denote
these blocks by B1, . . . , Bk and denote the set of points covered by these blocks
by P ′′. Any block of S not through P contains a point on each of the blocks
Bi, i = 1, . . . , k. Since a block contains precisely k points, all points on such a
block are contained in P ′′. Hence, P ′′ = P ′ and

|P ′′| = |
k⋃
i=1

Bi| = 1 + k(k − 1) = k2 − k + 1 .
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Lemma 5.2.7. Let D be a 2− (v, k, 1) design and let S be an Erdős-Ko-Rado
set on D with kS = k − 1. Write a′ = (k − 1)2 − |S|. If a′ < k − 1, then

k(k − 1) ≤ |P ′| ≤ k(k − 1) + a′2−a′
k−1−a′ .

Proof. First we will prove that there is a block in S containing at least two
points that are on k−1 blocks of S. Assume there is no such block and choose
a block C. At most one point on C belongs to k− 1 blocks of S. However, all
blocks of S have a non-trivial intersection with C, so

|S| ≤ 1 + (k − 2) + (k − 1)(k − 3) = (k − 1)(k − 2) ,

hence a′ ≥ k − 1, which contradicts the assumption a′ < k − 1.

Let B1 be a block of S through the points Q1 and Q2, both on k − 1 blocks
of S, and let B1, B2, . . . , Bk−1 and B1 = C1, C2, . . . , Ck−1 be the blocks of S,
respectively through Q1 and Q2. There are (k−2)2 points which lie on a block
Bj and also on a block Cj′ , 2 ≤ j, j′ ≤ k − 1; there are k − 2 points which lie
on a block Bi, but not on a block Ci′ , and there are also k − 2 points which
lie on a block Ci, but not on a block Bi′ ; the block B1 = C1 contains k points.
Hence, |P ′| ≥ (k − 2)2 + 2(k − 2) + k = k(k − 1).

Now, recall the notation ki. By standard counting arguments we know that

k−1∑
i=1

iki = ((k−1)2−a′)k and
k−1∑
i=1

i(i−1)ki = ((k−1)2−a′)(k(k−2)−a′) .

Let j ∈ N \ {0} be the smallest value such that kj 6= 0 and let R be a point of
P ′ on j blocks of S. Let B ∈ S be a block through R. All blocks of S meet
B, hence

|S| = (k − 1)2 − a′ ≤ 1 + (k − 1)(k − 2) + (j − 1) .

It follows that j ≥ k − 1− a′. Therefore, the following inequality holds:

k−1∑
i=1

(i− (k − a′ − 1))(k − 1− i)ki ≥ 0 .
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So,

0 ≤ −
k−1∑
i=1

i(i− 1)ki + (2k − a′ − 3)
k−1∑
i=1

iki − (k − a′ − 1)(k − 1)
k−1∑
i=1

ki

= −((k − 1)2 − a′)(k(k − 2)− a′) + (2k − a′ − 3)((k − 1)2 − a′)k

− (k − a′ − 1)(k − 1)
k−1∑
i=1

ki

= ((k − 1)2 − a′)(k − 1)(k − a′)− (k − a′ − 1)(k − 1)
k−1∑
i=1

ki .

Consequently,

|P ′| =
k−1∑
i=1

ki ≤
((k − 1)2 − a′)(k − a′)

k − a′ − 1
= k(k − 1) +

a′2 − a′

k − a′ − 1

and the lemma follows.

5.3 Classification results for k = 3

For k = 2, a 2 − (v, k, 1) design is a complete graph Kv on v vertices, the
edges being the blocks. It can immediately be seen that there are precisely two
different types of maximal Erdős-Ko-Rado sets on Kv, namely the point-pencil,
which contains v−1 blocks, and the triangle, a set {{p1, p2}, {p1, p3}, {p2, p3}}
for three points p1, p2, p3 ∈ P , which contains 3 blocks.

So, the first non-trivial case is k = 3. Recall that a 2− (v, 3, 1) design is called
a Steiner triple system of size v. Steiner triple systems exist if and only if
v ≡ 1, 3 (mod 6) and v ≥ 7. Up to isomorphism, there is only one Steiner
triple system for v = 7, namely the Fano plane, the projective plane of order
2, there is only one Steiner triple system for v = 9, namely the affine plane of
order 3, and there are two Steiner triple systems for v = 13. For more details,
we refer the interested reader to [33, Section II.1, Section II.2]. Note that the
classical unital of order 2 is also a Steiner triple system. It is isomorphic to
the affine plane of order 3.

Theorem 5.3.1. Let D be a 2 − (v, 3, 1) design and let S be a maximal
Erdős-Ko-Rado set of D. Then S belongs to one of five types. The maximal
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Erdős-Ko-Rado sets contain v−1
2

, 4, 5, 6 or 7 blocks. Each type corresponds to
a size and vice versa.

Proof. If all blocks of S pass through a common point, then S is a point-pencil
and it contains v−1

2
blocks. So, from now on we assume that there is no point

on all blocks of S. Let B1, B2, B3 ∈ S be three blocks such that B1∩B2 = {P3},
B1 ∩ B3 = {P2} and B2 ∩ B3 = {P1}, with P1, P2, P3 three different points.
Let Qi be the third point on the block Bi, i = 1, 2, 3. There is precisely one
block through the points Pi and Qi. We denote it by B′i and we denote the
third point on this block by Ri, i = 1, 2, 3.

If the three points Q1, Q2 and Q3 are contained in a common block B′, then
this block has to be contained in S by the maximality condition. The only
other blocks that could be contained in S are B′1, B

′
2 and B′3. If all three points

R1, R2 and R3 are different, then only one of these blocks belongs to S. We
find an Erdős-Ko-Rado set of size 4 or 5, depending on whether the block B′

exists. If two of the points R1, R2 and R3 coincide, then we find an Erdős-Ko-
Rado set of size 5 or 6. If R1 = R2 = R3, then we find an Erdős-Ko-Rado set
of size 6 or 7.

Note that the two constructions of Erdős-Ko-Rado sets of size 5 give rise to
isomorphic sets, so there is only one type of Erdős-Ko-Rado sets of size 5.
Analogously, there is also only one type of Erdős-Ko-Rado sets of size 6.

Remark 5.3.2. The five types of maximal Erdős-Ko-Rado sets in 2− (v, 3, 1)
designs are explicitly described in the above theorem. Apart from the point-
pencil, these block sets can be embedded in a Fano plane. However, they
cannot be extended to a Fano plane by blocks of the design, due to the max-
imality condition. Note that the Erdős-Ko-Rado set of size 7 is a Fano plane
that is embedded in the design.

Notation 5.3.3. Since the four types of maximal Erdős-Ko-Rado sets differ-
ent from the point-pencil are determined by their size, we can denote them by
EKRi, i = 4, . . . , 7, the index referring to their size. Note that each of the
maximal Erdős-Ko-Rado sets different from the point-pencil, cover precisely 7
points of the design.

Remark 5.3.4. In a given 2− (v, 3, 1) design D, not necessarily all five types
occur. For example, if D is the Fano plane (v = 7), then there is only one
maximal Erdős-Ko-Rado set, namely EKR7, which is the set of all blocks in
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this case. If D is not a projective plane, at least two types occur, one of which
is the point-pencil.

We list the results for Erdős-Ko-Rado sets on Steiner triple systems of size v.
For small values of v, the results are more detailed.

Theorem 5.3.5. Let D be a 2− (v, 3, 1) design.

• If v = 7, there is only one maximal Erdős-Ko-Rado set in D.

• If v = 9, there are two types of maximal Erdős-Ko-Rado sets in D, the
point-pencil and EKR4. Both contain 4 blocks.

• If v = 13, there are three types of maximal Erdős-Ko-Rado sets in D, the
point-pencil, EKR4 and EKR5. The largest Erdős-Ko-Rado sets are the
point-pencils.

• If v = 15, the largest Erdős-Ko-Rado sets contain 7 blocks. There are 23
nonisomorphic 2 − (15, 3, 1) designs containing an EKR7, and 57 non-
isomorphic 2 − (15, 3, 1) designs not containing an EKR7. The former
have two types of maximal Erdős-Ko-Rado sets of size 7; for the latter
all Erdős-Ko-Rado sets of size 7 are point-pencils.

• If v ≥ 19, the largest Erdős-Ko-Rado sets are point-pencils.

Proof. The case v = 7 has been treated in Remark 5.3.4. If v = 9, then D is
an affine plane of order 3. One can see immediately that only two of the above
types of maximal Erdős-Ko-Rado sets occur, the point-pencil and the smallest
one of the others, the EKR4. Both contain four blocks. Compare this result
with Remark 5.1.2

If v = 13, there are two nonisomorphic 2 − (v, 3, 1) designs. Their point sets
can be denoted by {0, 1, . . . , 9, a, b, c}. Using [33, Table II.1.27], we can write
the block sets as in Table 5.1.

We know that the point-pencil contains 6 blocks. By Theorem 5.2.4, applied for
k = 3, b = 1 and r = 6, we know that any other maximal Erdős-Ko-Rado set
contains at most 5 blocks. So, on both 2−(13, 3, 1) designs, at most three types
of maximal Erdős-Ko-Rado sets occur. Using the above notation, the two sets
{{0, 1, 2}, {0, 3, 4}, {1, 3, 5}, {2, 3, 9}, {2, 4, 5}} and {{0, 1, 2}, {0, 3, 4}, {0, 9, a},
{2, 3, 9}} are maximal Erdős-Ko-Rado sets for both 2 − (13, 3, 1) designs.
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0 1 2 0 3 4

0 5 6 0 7 8

0 9 a 0 b c

1 3 5 1 4 7

1 6 8 1 9 b

1 a c 2 3 9

2 4 5 2 6 a

2 7 c 2 8 b

3 6 b 3 7 a

3 8 c 4 6 c

4 8 9 4 a b

5 7 b 5 8 a

5 9 c 6 7 9

0 1 2 0 3 4

0 5 6 0 7 8

0 9 a 0 b c

1 3 5 1 4 7

1 6 8 1 9 b

1 a c 2 3 9

2 4 5 2 6 a

2 7 b 2 8 c

3 6 b 3 7 c

3 8 a 4 6 c

4 8 9 4 a b

5 7 a 5 8 b

5 9 c 6 7 9

Table 5.1: Block sets of the two nonisomorphic 2− (13, 3, 1) designs.

Hence, there are precisely three types of maximal Erdős-Ko-Rado sets on
2− (13, 3, 1) designs.

There are 80 nonisomorphic 2− (15, 3, 1) designs, see [33, Table II.1.28] for an
overview. The point-pencil contains 7 blocks in these designs. In [33, Table
II.1.29] it is mentioned which of these 80 designs contain a Fano plane as
subdesign; 23 of them do, and 57 do not. The statement follows.

If v ≥ 19, then r ≥ 9, hence the point-pencil contains more blocks than the
Erdős-Ko-Rado sets of type EKRi, i = 4, . . . , 7.

Note that one of the 23 different 2− (15, 3, 1) designs having a Fano plane as
subdesign, is the design consisting of the points and lines of PG(3, 2). Also
note that the last part of Theorem 5.3.5 is a special case of Corollary 5.0.2.

5.4 Classification results for k ≥ 4

In this section we present the main classification theorems for Erdős-Ko-Rado
sets in 2− (v, k, 1) designs, as we mentioned in the introduction. We will use
the parameter kS , introduced in Notation 5.2.1.

Theorem 5.4.1. Let D be a 2 − (v, k, 1) design and let S be an Erdős-Ko-
Rado set on D. If r ≥ k2 − k + 1, then |S| ≤ r. If r > k2 − k + 1 and |S| = r,
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then S is a point-pencil.

Proof. Without loss of generality, we can assume that S is a maximal Erdős-
Ko-Rado set. If S is a point-pencil, then |S| = r. So, from now on, we can
assume that S is not a point-pencil. By Lemma 5.2.2 we know that kS ≤ k.
However, by the same lemma we also know that |S| ≤ k2 − k + 1, if kS ≤ k.

Both statements in the theorem immediately follow.

As mentioned in the beginning of this chapter, there are 2 − (v, k, 1) designs
with r = k2 − k + 1, having a second type of Erdős-Ko-Rado sets of size r.

Now, we look at Erdős-Ko-Rado sets in 2 − (v, k, 1) designs with r ≤ k2 − k.
A classification result will be proved in Theorem 5.4.5. First we prove some
preparatory lemmata. In these lemmata we distinguish between the case 4 ≤
k ≤ 13 and the case k ≥ 14.

First, we have a look at the small cases, 4 ≤ k ≤ 13. In the next lemmata, we
will use the values Rk presented in Table 5.2.

k 4 5 6 7 8 9 10 11 12 13

Rk 1 2 3 4 4 5 6 7 8 9

Table 5.2: The values Rk.

Lemma 5.4.2. Let D be a 2 − (v, k, 1) design, 4 ≤ k ≤ 13, and denote
(k − 1)2 − r by R. Let S be an Erdős-Ko-Rado set on D with kS = k − 1. If
0 ≤ R ≤ Rk, then |S| < (k − 1)2 −R = r.

Proof. We denote the set of points covered by the blocks of S by P ′. We
denote (k − 1)2 − |S| by a′, as in Lemma 5.2.7. By Lemma 5.2.2 we know
that a′ ≥ 0. If R < a′, then |S| < (k − 1)2 − R. So, now we assume that
a′ ≤ R. Since Rk < k − 1, we know by Lemma 5.2.7 that k(k − 1) ≤ |P ′| ≤
k(k−1) + a′(a′−1)

k−1−a′ ≤ k(k−1) + R(R−1)
k−1−R . Denoting |P ′|−k(k−1) by b, it follows

that 0 ≤ b ≤ R(R−1)
k−1−R . By Lemma 5.2.5 we know that

|S| ≤ max

{
k2 − k + 1− 2

(k2 − 3k + 1−R)(k +R)

k(k − 2)
+

b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k − 1 +R)

(k − 1)(k − 2)
,
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k − 1 +R +
R

k − 2
+
b(b+ k2 +R− 2)

k(k − 2)

}
.

By hand or by using a computer algebra package, it can be checked that the
above maximum is smaller than (k − 1)2 − R = r for all choices of k,R, b

fulfilling 4 ≤ k ≤ 13, 0 ≤ R ≤ Rk and 0 ≤ b ≤ R(R−1)
k−1−R .

Extending the calculations in the above proof, we can see that the values Rk

are optimal; enlarging one of these values leads to a contradiction.

Now, we look at the more general case k ≥ 14.

Lemma 5.4.3. Choose b, c, k ∈ N, with k ≥ 14, 1 ≤ c ≤ 4
3
k
√
k − 2k − 2

√
k

and 0 ≤ b ≤ c. Then

k3 − 7k2 + 10k − 2bk − 2−
√
D(b, k)

4(k − 1)
<

1− c+
√

(c− 1)2 + 4c(k − 1)

2
,

with D(b, k) = (k3−3k2−2bk+6k−2)2−8k(k−1)(b−1)(b−2). Furthermore,
for k ∈ N with k ≥ 14,

k3 − 7k2 + 10k − 2−
√
D(0, k)

4(k − 1)
< 0 .

Proof. First, note that D(b, k) ≥ 0 for all 0 ≤ b ≤ 4
3
k
√
k − 2k − 2

√
k = Ck,

hence the above functions exist.

The second part of the lemma is immediate, so we focus on the first part. Note
that

k3 − 7k2 + 10k − 2(b+ 1)k − 2−
√
D(b+ 1, k)

4(k − 1)

−
k3 − 7k2 + 10k − 2bk − 2−

√
D(b, k)

4(k − 1)

=

√
D(b, k)−

√
D(b+ 1, k)− 2k

4(k − 1)
.
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Now, √
D(b, k)−

√
D(b+ 1, k)− 2k

4(k − 1)
≥ 0

⇔
√
D(b, k)−

√
D(b+ 1, k) ≥ 2k

⇔ D(b, k)−D(b+ 1, k) ≥ 2k
(√

D(b, k) +
√
D(b+ 1, k)

)
⇔ 2k3 − 6k2 + 4bk + 2k − 8b+ 4 ≥

√
D(b, k) +

√
D(b+ 1, k) .

This final inequality is valid since
√
D(b, k) +

√
D(b+ 1, k) ≤ 2k3 − 6k2 −

4bk + 10k − 4. These calculations show that

k3 − 7k2 + 10k − 2(b+ 1)k − 2−
√
D(b+ 1, k)

4(k − 1)

≥
k3 − 7k2 + 10k − 2bk − 2−

√
D(b, k)

4(k − 1)
.

Hence, it is sufficient to prove that

k3 − 7k2 + 10k − 2ck − 2−
√
D(c, k)

4(k − 1)
<

1− c+
√

(c− 1)2 + 4c(k − 1)

2
.

Since c ≤ 4
3
k
√
k − 2k − 2

√
k < k3−7k2+8k

2
for k ≥ 14, this is equivalent to(

2(k − 1)
√

(c− 1)2 + 4c(k − 1) +
√
D(c, k)

)2
> (k3 − 7k2 + 8k − 2c)2

⇔
√

(c− 1)2 + 4c(k − 1)
√
D(c, k) >

c(k3 − 7k2 + 14k − 6)− (2k4 − 9k3 + 9k2 + 2k − 2) . (5.1)

Considering the left-hand side of the inequality (5.1) as a function of c, for
a fixed value of k, we can compute its second derivative. We find that this
second derivative is negative on [0, Ck], hence the function on the left-hand
side is concave on [0, Ck] (see Computation A.1.1 for more details). Therefore,
it dominates the function

c 7→
√
D(0, k) + c

√
(Ck − 1)2 + 4Ck(k − 1)

√
D(Ck, k)−

√
D(0, k)

Ck
.

The slope of this line is smaller than k3 − 7k2 + 14k − 6 for k ≥ 14. So, we
only need to check the inequality for the largest considered value for c, namely
Ck. It turns out that this inequality is valid if k ≥ 14. For more details, see
Computation A.1.2.
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In the final step of the argument we needed that k ≥ 14. This is why the cases
4 ≤ k ≤ 13 had to be treated separately.

Lemma 5.4.4. Let D be a 2− (v, k, 1) design, k ≥ 14, and denote (k−1)2−r
by R. Let S be an Erdős-Ko-Rado set on D with kS = k − 1. If 0 ≤ R <
√
k − 1 or

1−c+
√

(c−1)2+4c(k−1)
2

≤ R <
−c+
√
c2+4(c+1)(k−1)

2
for a value c ∈ N, with

1 ≤ c ≤ 4
3
k
√
k − 2k − 2

√
k, then |S| < (k − 1)2 −R.

Proof. We denote (k − 1)2 − |S| by a′, as in Lemma 5.2.7. By Lemma 5.2.2
we know that a′ ≥ 0. If R < a′, then |S| < (k − 1)2 − R. So, now we assume

that a′ ≤ R. Denote the interval

[
1−c+
√

(c−1)2+4c(k−1)
2

,
−c+
√
c2+4(c+1)(k−1)

2

[
by

Ic, c ∈ N and 1 ≤ c ≤ 4
3
k
√
k− 2k− 2

√
k = Ck, and the interval

[
0,
√
k − 1

[
by

I0. Recall the notation P ′ for the set of all points covered by a block of S. We
assume that R ∈ Ic. From Lemma 5.2.7, it follows that |P ′| ≤ k(k − 1) + c.
We denote k(k − 1)− |P ′| by b, so 0 ≤ b ≤ c. Hence, by Corollary 5.2.5,

|S| ≤ max

{
k2 − k + 1− 2

(k2 − 3k + 1−R)(k +R)

k(k − 2)
+

b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k − 1 +R)

(k − 1)(k − 2)
,

k − 1 +R +
R

k − 2
+
b(b+ k2 +R− 2)

k(k − 2)

}
.

Since c ≤ Ck and R < k − 2, the inequality

k − 1 +R +
R

k − 2
+
b(b+ k2 +R− 2)

k(k − 2)
< (k − 1)2 −R

clearly holds in all cases. Now, we consider the inequality

(k − 1)2 −R > k2 − k + 1− 2
(k2 − 3k + 1−R)(k +R)

k(k − 2)
+

b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k − 1 +R)

(k − 1)(k − 2)

⇔ 0 > k +R− 2
(k2 − 3k + 1−R)(k +R)

k(k − 2)
+

b(b− 1)

(k − 1)(k − 2)

+ 2
(b− 1)(k − 1 +R)

(k − 1)(k − 2)
.
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This inequality is valid if and only if

k3 − 7k2 + 10k − 2bk − 2−
√
D(b, k)

4(k − 1)
< R

<
k3 − 7k2 + 10k − 2bk − 2 +

√
D(b, k)

4(k − 1)
, (5.2)

with D(b, k) = (k3−3k2−2bk+ 6k−2)2−8k(k−1)(b−1)(b−2). The double
inequality in (5.2) should hold for all b, with 0 ≤ b ≤ c. Now,

R <
−c+

√
c2 + 4(c+ 1)(k − 1)

2
and

k3 − 7k2 + 10k − 2ck − 2

4(k − 1)
≤
k3 − 7k2 + 10k − 2bk − 2 +

√
D(b, k)

4(k − 1)
,

but the inequality
−c+
√
c2+4(c+1)(k−1)

2
< k3−7k2+10k−2ck−2

4(k−1) is valid for all 0 ≤ c ≤
Ck since k ≥ 14. Hence, the right inequality in (5.2) always holds. Using

R ≥
1− c+

√
(c− 1)2 + 4c(k − 1)

2

and Lemma 5.4.3, also the left inequality in (5.2) follows. This finishes the
proof.

Theorem 5.4.5. Let D be a 2 − (v, k, 1) design, k ≥ 4, and let S be an

Erdős-Ko-Rado set on D. If k2 − k ≥ r ≥ k2 − 3k + 3
4

√
k + 2, then |S| ≤ r. If

(r, k) 6= (8, 4), equality is obtained if and only if S is a point-pencil.

Proof. Without loss of generality, we can assume that S is a maximal Erdős-
Ko-Rado set. Recall the notation kS . If S is a point-pencil, then |S| = r. So,
from now on, we can assume that S is not a point-pencil. Then, by Lemma
5.2.2 we know that kS ≤ k. We distinguish between three cases.

If kS ≤ k − 2, then |S| ≤ k2 − 3k + 1 by Lemma 5.2.2. Clearly, k2 − 3k + 1 <

k2 − 3k + 3
4

√
k + 2 ≤ r.

If kS = k − 1, then |S| ≤ k2 − 2k + 1 by Lemma 5.2.2. In this case, if
k2−2k+1 < r ≤ k2−k, the theorem clearly holds, so we assume r ≤ k2−2k+1.
As before, we denote R = (k−1)2−r. First, assume that k ≥ 14. In this case,
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0 ≤ R ≤ k− 3
4

√
k− 1. So, 0 ≤ R <

√
k − 1 or there is a value c ∈ N, with 1 ≤

c ≤ 4
3
k
√
k−2k−2

√
k, such that

1−c+
√

(c−1)2+4c(k−1)
2

≤ R <
−c+
√
c2+4(c+1)(k−1)

2
.

Applying Lemma 5.4.4 we find that |S| < (k − 1)2 −R = r.

Now assume that 4 ≤ k ≤ 13. In this case, 0 ≤ R ≤ Rk =
⌊
k − 3

4

√
k − 1

⌋
.

Applying Lemma 5.4.2, we find that |S| < (k − 1)2 −R = r.

If kS = k, then |P ′| = k2 − k + 1 by Lemma 5.2.6. So, we can apply Lemma
5.2.4 with b = 1. We find that |S| is at most

max

{
k2 − k + 1− 2(r − k)(k2 − k + 1− r)

k(k − 2)
,

k2 − r − r − 1

k − 2
+

2k(k − 1)− r
k(k − 2)

}
.

The inequality k2 − k + 1 − 2(r−k)(k2−k+1−r)
k(k−2) < r holds if and only if k2

2
< r <

k2 − k + 1. If k ≥ 5, this condition is fulfilled since k2 − k + 1 > k2 − k
and k2

2
< k2 − 3k + 3

4

√
k + 2. If k = 4 and R = 0, hence r = 9, then

k2 − k + 1 − 2(r−k)(k2−k+1−r)
k(k−2) = 8 < r; if k = 4 and R = 1, hence r = 8, then

k2 − k + 1− 2(r−k)(k2−k+1−r)
k(k−2) = 8 = r.

Since k2 − 3k + 3
4

√
k + 2 > k2

2
− k

4
+ 3

8
for all k ≥ 4, the inequality k2 − r −

r−1
k−2 + 2k(k−1)−r

k(k−2) < r is fulfilled in all cases.

Hence, for k ≥ 5, in all three cases |S| < r; for k = 4, in all three cases |S| ≤ r
and moreover |S| < r if r 6= 8. The theorem follows.

We now summarize the results of this section.

Corollary 5.4.6. Let D be a 2 − (v, k, 1) design, k ≥ 4, with r ≥ k2 −
3k + 3

4

√
k + 2, and let S be an Erdős-Ko-Rado set on D. Then |S| ≤ r. If

r 6= k2−k+1 and (r, k) 6= (8, 4), then |S| = r if and only if S is a point-pencil.

Proof. This follows immediately from Theorem 5.4.1 and Theorem 5.4.5.
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5.5 Maximal Erdős-Ko-Rado sets in unitals

The results from Lemma 5.2.2, Lemma 5.2.4, Lemma 5.2.6 and Lemma 5.2.7
can also be used in a different way. For a fixed class of designs, with v (or
equivalently r) a function of k, an upper bound on the size of the largest
maximal Erdős-Ko-Rado set different from a point-pencil can be computed.
We show this for the unitals. Recall that a 2−(q3+1, q+1, 1) design is a unital
of order q. Note that the unique unital of order 2 has already been covered in
Section 5.3. First we state Lemma 5.2.4 for a unital of order q.

Lemma 5.5.1. Let U be a unital of order q and let S be an Erdős-Ko-Rado
set on U such that |P ′| = q(q + 1) + b, whereby P ′ is the set of points covered
by the elements of S. Then

|S| ≤ max

{
q2 − q + 1 +

b(b− 1)

q(q − 1)
+

2b

q − 1
, q +

bq(q + 2)

q2 − 1
+
b(b− 1)

q2 − 1

}
.

Lemma 5.5.2. Let U be a unital of order q and let S be an Erdős-Ko-Rado
set on U with kS = q + 1. If q ≥ 4, then |S| ≤ q2 − q + 1. If q = 3, then
|S| ≤ 8.

Proof. By Lemma 5.2.6 we know that |P ′| = q2 + q + 1. We apply Lemma

5.5.1 and we find that |S| ≤ max
{
q2 − q + 1 + 2

q−1 , q + q(q+2)
q2−1

}
. The lemma

immediately follows.

Lemma 5.5.3. Let U be a unital of order q and let S be an Erdős-Ko-Rado
set on U with kS = q. If q ≥ 5, then |S| ≤ q2 − q + 3

√
q2 − 2

3
3
√
q + 1. If q = 3,

then |S| ≤ 7; if q = 4, then |S| ≤ 13.

Proof. Denote q2−|S| by a′. We can assume a′ < q since otherwise the lemma
clearly holds. By Lemma 5.2.2, we know that a′ ≥ 0, and by Lemma 5.2.7 we
know that |P ′| = q2 + q + b, with 0 ≤ b ≤ a′2−a′

q−a′ . We apply Lemma 5.5.1 and

we find that

|S| ≤ q2 − q + 1 + 2
a′(a′ − 1)

(q − a′)(q − 1)
+
a′(a′ − 1)(a′2 − q)
q(q − 1)(q − a′)2

or |S| ≤ q +
qa′(q + 2)(a′ − 1)

(q2 − 1)(q − a′)
+
a′(a′ − 1)(a′2 − q)
(q − a′)2(q2 − 1)

.
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Using |S| = q2 − a′, the first inequality can be rewritten as

q(q − a′ − 1)(q − a′)2(q − 1) ≤ a′(a′ − 1)(2q2 − 2qa′ + a′2 − q) .

For q = 3, this implies a′ ≥ 2 and for q = 4, this implies a′ ≥ 3. For general
q ≥ 5, it implies a′ ≥ q − 3

√
q2 + 2

3
3
√
q − 1. More details can be found in

Computation A.1.3.

Now we look at the second inequality. Using |S| = q2− a′, it can be rewritten
as

(q2 − q − a′)(q − a′)2(q2 − 1) ≤ a′(a′ − 1)(q3 − (a′ − 2)q2 − (2a′ + 1)q + a′2) .

Using that 0 ≤ a′ < q, it follows that a′ = q − 1.

Only one of the inequalities needs to hold, but q − 3
√
q2 + 2

3
3
√
q − 1 ≤ q − 1.

The lemma follows.

Theorem 5.5.4. Let U be a unital of order q and let S be a maximal Erdős-
Ko-Rado set on U . If q ≥ 5, then either |S| = q2 and S is a point-pencil, or

else |S| ≤ q2− q+ 3
√
q2− 2

3
3
√
q+ 1. If q = 4, then either |S| = 16 = q2 and S is

a point-pencil, or else |S| ≤ 13 = q2− q+ 1. If q = 3, then either |S| = 9 = q2

and S is a point-pencil, or else |S| ≤ 8.

Proof. If S is a point-pencil, then it contains q2 elements. From now on, we
assume that S is not a point-pencil. Recall the definition of kS . By Lemma
5.2.2, kS ≤ q + 1. Moreover, if kS ≤ q − 1, then |S| ≤ q2 − q − 1.

First, we assume q ≥ 5. If kS = q, then |S| ≤ q2 − q + 3
√
q2 − 2

3
3
√
q + 1 by

Lemma 5.5.3. If kS = q + 1, then |S| ≤ q2 − q + 1 by Lemma 5.5.2.

The results for q = 3, 4 are obtained in the same way, using the results from
Lemma 5.5.2 and Lemma 5.5.3.

Remark 5.5.5. Note that these results correspond with the result for classical
unitals in Corollary 5.1.7 since the triangle contains only q + 2 blocks.

Note that the unitals are not covered by Corollary 5.0.2. However, they are
covered by Theorem 5.4.6. So we already knew that the point-pencils are the
largest Erdős-Ko-Rado sets. The above theorem thus gives a bound on the
size of the second-largest maximal Erdős-Ko-Rado set.



6
Kakeya sets in AG(2, q), q even

Though this be madness, yet there is method in ’t.

Polonius in Hamlet, Act II, Scene II
by William Shakespeare.

In Remark 5.1.2 we already mentioned that a maximal Erdős-Ko-Rado set of
lines in an affine plane, is necessarily a set containing a line of each parallel
class. The affine point sets covered by such a line set are known as Kakeya
sets. In this chapter we will study Kakeya sets in the affine plane AG(2, q).
For the n-dimensional affine space AG(n, q), with H∞ = PG(n − 1, q) (the
hyperplane ‘at infinity’) such that AG(n, q) ∪ H∞ = PG(n, q), we define a
Kakeya set as follows: for every point P on H∞, let `P be a line in PG(n, q)
through P not contained in H∞. The point set

K =

( ⋃
P∈H∞

`P

)
\H∞

is called a Kakeya set, or a minimal Besicovitch set. The finite field Kakeya
problem asks for the smallest size k(n, q) of a Kakeya set in AG(n, q). It is the
finite field version of the classical Euclidean Kakeya problem (see [117, Section

| 135
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1.3] for a short survey) and was first posed by Wolff in the influential paper
[132]. In that paper, it was conjectured that k(n, q) ≥ cnq

n, with cn > 0 a
constant only depending on n. The following theorem by Dvir showed that
conjecture to be true.

Theorem 6.0.1 ([44]). If K is a Kakeya set in AG(n, q), then

|K| ≥
(
q + n− 1

n

)
≥ 1

n!
qn .

The lower bound in this theorem is not sharp in general and was recently
improved in [45] and [108]. The problem of finding the exact value of k(n, q)
seems to be very hard and gets more difficult as the dimension n increases. At
this moment, only the value k(2, q) is known. We will give a short survey of
this in Section 6.1. In Section 6.2 we will present some results on arcs, which
will be used in Section 6.3 to classify the third largest Kakeya set in AG(2, q),
q even. Thereby we describe the first construction, up to our knowledge, of a
small Kakeya set in AG(2, q), q even, not arising from a hyperoval. The results
in this chapter were published in [16], which is joint work with Aart Blokhuis,
Francesco Mazzocca and Leo Storme.
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6.1 The known results for AG(2, q)

Due to the existence of hyperovals in the affine plane AG(2, q), q even, and
their nonexistence in the affine plane AG(2, q), q odd, the results on Kakeya
sets in AG(2, q) differ between the case q even and the case q odd. Recall that
hyperovals were introduced in Section 1.7. We first look at the case q odd.

Example 6.1.1. Consider a dual oval O (i.e. q+1 lines, no three concurrent)
in PG(2, q), q odd, and let H∞ = `∞ be a line in O. Under these assumptions,
every point P ∈ `∞, but one, lies on a second line `P ∈ O. Let A be this
remaining point on `∞ and let `A be a line through it, different from `∞. Then
the affine point set

K(O, `A) =

( ⋃
P∈`∞

`P

)
\ `∞

is a Kakeya set of size q(q+1)
2

+ q−1
2

in the affine plane AG(2, q) = PG(2, q)\ `∞.
We can see this in the following way. On a line ` of O, there are q affine points:
one of them is only on `, all others are on one other line of O. The line `A
contains one affine point which is on only one line of O, and hence q−1

2
points

on the other lines of O.

Recall that every (dual) oval is a (dual) conic by Theorem 1.7.3.

In [17] the Kakeya sets described in the previous example were characterized
as the smallest ones in AG(2, q), q odd, thereby solving a conjecture made in
[54].

Theorem 6.1.2 ([17, Proposition 7]). If K is a Kakeya set in AG(2, q), q
odd, then

|K| ≥ q(q + 1)

2
+
q − 1

2
.

Equality holds if and only if K is a Kakeya set arising from a dual oval in
PG(2, q) ⊃ AG(2, q) as in Example 6.1.1.

Now we describe two ways to obtain a small Kakeya set in AG(2, q), q even.

Example 6.1.3. Consider a dual hyperoval H (i.e. a set of q + 2 lines, no
three concurrent) in PG(2, q), q even, and let `∞ be a line in H. For every
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point P ∈ `∞, let `P be the line of H through P , different from `∞. Then the
point set

K(H) =

( ⋃
P∈`∞

`P

)
\ `∞

is a Kakeya set in the affine plane AG(2, q) = PG(2, q) \ `∞. Its size equals
q(q+1)

2
since every point of K(H) belongs to precisely two lines of H.

Example 6.1.4. Let AG(2, q) = PG(2, q) \ `∞, q even, and let H be as in
Example 6.1.3. Let `P be the line of H through P , different from `∞. Consider
a point A ∈ `∞ and a line `′A through A different from `A and `∞. So, `′A is
not a line of H. Then the point set

K(H, `′A) =

 ⋃
P∈`∞\{A}

(`P \ `∞)

 ∪ (`′A \ `∞)

is a Kakeya set in AG(2, q), whose size equals q(q+1)
2

+ q
2
, since deleting the line

`A from the Kakeya set K(H) does not decrease the number of covered points,
and the line `′A contains q

2
affine points which lie on two lines of H \ {`A} and

q
2

affine points which lie on no lines of H \ {`A}.

It follows immediately from Theorem 6.0.1 that k(2, q) ≥ q(q+1)
2

. Moreover, it

can easily be proved that k(2, q) = q(q+1)
2

if q is even and that equality only
occurs for the Kakeya sets described in Example 6.1.3 (see e.g. the beginning
of the proof of Lemma 6.3.2). Furthermore, in [15] the following result was
proved (stated in its dual form). It classifies the second largest Kakeya set in
AG(2, q), q even.

Theorem 6.1.5 ([15]). There are no Kakeya sets K in AG(2, q), q even, with
q(q+1)

2
< |K| < q(q+1)

2
+ q

2
. Furthermore, all Kakeya sets of size q(q+1)

2
+ q

2
are

given by Example 6.1.4.

6.2 A few remarks on arcs

Arcs were introduced in Section 1.7. In this section we present a few lemmata
about arcs, which were obtained using algebraic geometry. This discussion is
base on [80, Section 10.1].
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An algebraic curve (or plane curve) in PG(2, q) is a set of points in PG(2, q)
defined by a homogeneous polynomial in three variables. Recall that lines in
PG(2, q) can also be described by coefficient vectors. So, analogously, we can
define an algebraic envelope in PG(2, q) as a set of lines in PG(2, q) determined
by a homogeneous polynomial in three variables. It is clear that algebraic
cureves and algebraic envelopes are dual concepts.

The degree of an algebraic curve is the degree of the corresponding polynomial.
For an algebraic envelope the degree of the corresponding polynomial is called
the class. The number of points on a line of an algebraic curve is bounded
above by the degree of the curve. Analogously, the number of lines through a
point of an algebraic envelope is at most its class. A component of an algebraic
curve (envelope) determined by a polynomial f is an algebraic curve (envelope)
defined by a polynomial of f .

Now we connect arcs to algebraic envelopes. A tangent envelope of a k-arc in
PG(2, q) is an algebraic envelope containing all the tangent lines to this arc,
and which is of class q + 2 − k if q is even and of class 2(q + 2 − k) if q is
odd1. If k is large enough, there is a unique tangent envelope, which is known
as the tangent envelope. Dualizing the concept of a tangent envelope, we find
a tangent curve to a dual k-arc in PG(2, q), containing all points which are
covered precisely once by the lines of the dual arc. This is an algebraic curve
of degree q + 2 − k if q is even. The following theorem is proved in [80] in
the setting of arcs and tangent envelopes, but we state it immediately in the
setting of dual arcs and tangent curves.

Theorem 6.2.1 ([80, Corollary 10.3(ii)]). Let A be a dual k-arc in the
projective plane PG(2, q), q even and k > q

2
+ 1, and let Γt be the tangent

curve to this dual arc. The line ` extends A if and only if ` is a component of
Γt.

The following lemma applies this theorem about the tangent curve to a dual
arc.

Lemma 6.2.2. Let A be a dual k-arc in PG(2, q), q even, with k > q
2

+ 1. A
line, not extending A, contains at least q

2
points not lying on lines of A.

Proof. Let Γt be the tangent curve of A. Then Γt is an algebraic curve of
degree t = q + 2 − k. By Theorem 6.2.1, a line extending A is a component

1In the statement of these theorems in [80], the values q + k− 2 and 2(q + k− 2) are given, but
is clear from the context and the proof, that these are misprints.
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of Γt and vice versa. Consider a line ` not extending A. It intersects Γt in x
points, with x ≤ t. These points are the ones lying on precisely one line of A.
Consequently, k−x

2
points of ` are lying on two lines of A. Hence, the number

of points of ` not on A equals (q+1)−x− k−x
2

= q− k+x
2

+1. Using the bound

on x, we find that q − k+x
2

+ 1 ≥ q − k+t
2

+ 1 = q
2
. The lemma follows.

6.3 Classifying the third largest example

The aim of this section is to determine the Kakeya sets K with q(q+1)
2

+ q
2
<

|K| ≤ q(q+1)
2

+ 3q
4

. We will prove that in AG(2, q), q even, there are no Kakeya
sets whose size belongs to the corresponding open interval and we will charac-

terize those of size q(q+1)
2

+ 3q
4

.

We describe a Kakeya set, which we will prove to be the (theoretical) third
smallest example (provided that it exists). Recall the definition of a (q+ t)-arc
of type (0, 2, t) which was given in Section 1.7.

Example 6.3.1. Let A be a dual (q + 4)-arc of type (0, 2, 4) in PG(2, q),
and let `0, `1, `2, `∞ be four concurrent lines of A. Consider the affine plane
AG(2, q) = PG(2, q) \ `∞. Let A′ be the line set A\ {`1, `2, `∞}. Consider the
set

K(A′) =
⋃
`∈A′

(` \ `∞) .

This is a Kakeya set since there is precisely one line of A′ through every point
of `∞. Note that every line of A′ \ {`0} has 1 affine point on four lines of A′,
q − 3 affine points on two lines of A′ and 2 affine points on one line of A′; all
affine points on the line `0 lie on a second line of A′. So, the Kakeya set K(A′)
has size q(q+1)

2
+ 3q

4
.

Lemma 6.3.2. Let K = (∪qi=0`i)\`∞ be a Kakeya set in AG(2, q) = PG(2, q)\
`∞, such that its corresponding line set L = {`0, . . . , `q} contains a dual x-arc,

but no dual (x+ 1)-arc. Then K contains at least (q+4)(q+1)
2

− 2x−
⌊
x
2

⌋
points.

Proof. Let A = {`0, . . . , `x−1} be a dual x-arc contained in L. If we construct
the Kakeya set line by line in the order `0, . . . , `q, adding the (i + 1)th line `i
increases the number of points in K by q− i+mi, mi ≥ 0. Since {`0, . . . , `x−1}
is a dual x-arc, mi = 0 for i = 0, . . . , x − 1. For the line `i ∈ {`x, . . . , `q}, we
know mi ≥ 1 since none of these lines extends A.
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Let `k be a line of K, with mk = 1. Then `k contains precisely one intersection
point `i∩ `j, i, j < k, of previously added lines. Assume one of these two lines,
say `i, is not contained in A, or equivalently i ≥ x. Then the line `k extends A
because it does not pass through an intersection point of two lines of A. This
is a contradiction since A does not contain a dual (x+1)-arc. Hence, each line
`k ∈ K, with mk = 1, contains precisely one intersection point of two lines of
A. Let B be the set {`j | mj = 1}. We call the points lying on two lines of A
and a line of B complete points.

Let `a, `b, `c be three lines of A and let `k, `l be two lines of B such that `k
passes through `a ∩ `b and `l passes through `a ∩ `c, in other terms, such
that `a ∈ A contains two different complete points. Consider the line set
(A \ {`a}) ∪ {`k, `l}. This line set is a dual arc since A is a dual arc, and the
lines `k and `l each contain precisely one intersection point of the lines of A,
both lying on `a. However, this line set contains x + 1 lines and is a subset
of L. We find a contradiction since we know that L contains no dual (x+ 1)-
arc. Hence, a line of A contains at most one complete point. Consequently,
|B| ≤

⌊
x
2

⌋
.

From the previous arguments, it follows that |{`j | mj ≥ 2}| = (q+1)−x−|B|.
So, we conclude

|K| =
q∑
i=0

(q − i) +

q∑
i=0

mi ≥
q(q + 1)

2
+ |B|+ 2 · ((q + 1)− x− |B|)

=
(q + 4)(q + 1)

2
− |B| − 2x

≥ (q + 4)(q + 1)

2
−
⌊x

2

⌋
− 2x.

Lemma 6.3.3. Let K = (∪qi=0`i)\`∞ be a Kakeya set in AG(2, q) = PG(2, q)\
`∞, q > 8 even, with |K| ≤ q(q+1)

2
+ 3q

4
, and assume that the line set T =

{`0, . . . , `q, `∞} is not a dual hyperoval of PG(2, q). Then T \ {`∞} contains a
dual q-arc or a dual

(
q+1
2

)
-arc, not extendable to a larger arc by the remaining

lines of T \ {`∞}.

Proof. In the following, for every j ∈ {0, 1, . . . , q}, we denote

L = T \ {`∞} = {`0, . . . , `q} , Sj =

(
j⋃
i=0

`i

)
\ `∞ , |K| = q(q + 1)

2
+ ε .
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Note that K = Sq. By the assumptions, we know that

0 < ε ≤ 3q

4
.

Then, |Sj \Sj−1| = q− j+mj, with mj ≥ 0, for j = 1, 2, . . . , q. In other terms,
passing from Sj−1 to Sj by the addition of the (j + 1)th line `j, the number of
covered points increases by q− j +mj. Moreover, a direct computation shows
that

q(q + 1)

2
+ ε =

q∑
i=0

(q − i+mi) =
q(q + 1)

2
+

q∑
i=0

mi. (6.1)

Denote by k, k < q + 1, the maximal integer for which `∞ and k lines in L
form a dual (k+1)-arc in PG(2, q) and, without loss of generality, assume that
A = A ∪ {`∞}, with A = {`0, . . . , `k−1}, is such a dual (k + 1)-arc. Imposing
this assumption, we have mi = 0 for i = 0, 1, . . . , k − 1, because each of the
lines in A intersects the union of the remaining ones in exactly k − 1 affine
points. Moreover, because of the maximality of A as a dual arc contained in
T , for j ≥ k, no line `j extends A and consequently mj 6= 0 for j ≥ k.

Now, we distinguish two cases: k ≤ q
2

and k ≥ q
2

+ 1. For k ≤ q
2
, we apply

Lemma 6.3.2. We find that |K| ≥ (q+4)(q+1)
2

− q
4
− q = q(q+2)

2
+ q

4
+ 2. Hence,

this possibility cannot occur. Now, we look at the case k ≥ q
2

+ 1. Since

k + 1 > k ≥ q
2

+ 1, we can apply Lemma 6.2.2 on the dual (k + 1)-arc A.

Each of the lines `k, `k+1, . . . , `q contains at least q
2

points not on a line of A.

Moreover, setting K′ =
(
∪k−1i=0 `i

)
\ `∞ and counting the number of points in K,

we find

q(q + 1)

2
+ ε = |K| = |K′|+ |(∪qj=k`j) \ (K′ ∪ `∞)|

≥ [q + (q − 1) + · · ·+ (q − k + 1)]

+
[q

2
+ (

q

2
− 1) + · · ·+ (

q

2
− (q − k))

]
(6.2)

=
k(3q − 2k + 2)

2
= f(k).

Note that k = q + 1 would imply that A is a dual hyperoval and that ε = 0.

For k ∈
[
q
2

+ 2, q − 1
]
, we find f(k) ≥ q(q+3)

2
− 2 > q(q+1)

2
+ 3q

4
≥ q(q+1)

2
+ ε as

q > 8. Consequently, k ∈ { q
2

+ 1, q}.
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Note that f( q
2

+ 1) = f(q) = q(q+2)
2

, with f as in the previous proof. This

proves that |K| /∈
]
q(q+1)

2
, q(q+1)

2
+ q

2

[
, which is part of the result in Theorem

6.1.5.

Lemma 6.3.4. Let K = (∪qi=0`i)\`∞ be a Kakeya set in AG(2, q) = PG(2, q)\
`∞, q > 8 even. Then |K| /∈

[
q(q+1)

2
+ q

2
+ 1, q(q+1)

2
+ 3q

4
− 1
]
.

Proof. We use the notation introduced in Lemma 6.3.3. Assume K covers

precisely q(q+2)
2

+ ε′ points, 0 ≤ ε′ ≤ q
4
. By Lemma 6.3.3, there are two cases:

k = q or k = q
2

+ 1. In the first case, A is a dual (q + 1)-arc in PG(2, q),
containing `∞. By Theorem 1.7.2, this dual arc is contained in a unique dual
hyperoval H = A ∪ {m}. Then m ∩ `∞ = `q ∩ `∞ since both H and K are
Kakeya sets containing A. Obviously, m 6= `q. Hence, the Kakeya set K is of

the type given in Example 6.1.4 and |K| = (q+2)q
2

. Note that in this case, the
inequality in (6.2) is an equality, ε = q

2
and ε′ = 0.

Now, we look at the case k = q
2

+ 1. We apply Lemma 6.3.2 and we find

|K| ≥ (q + 4)(q + 1)

2
−
⌊
q + 2

4

⌋
− 2

(q
2

+ 1
)

=
q(q + 1)

2
+

3q

4
.

The lemma follows from these observations.

Lemma 6.3.5. Let K = (∪qi=0`i)\`∞ be a Kakeya set in AG(2, q) = PG(2, q)\
`∞, q > 8 even, with |K| = q(q+1)

2
+ 3q

4
. Then K is a Kakeya set of the type

given in Example 6.3.1.

Proof. We use the notation we introduced in Lemma 6.3.3 and Lemma 6.3.4.
We recall that L is the line set {`0, . . . , `q}. By the results of these lemmata and
the arguments used in their proofs, we know that L contains a dual

(
q
2

+ 1
)
-

arc A = {`0, . . . , ` q
2
}. Furthermore, there is a value k′, q

2
+ 1 ≤ k′ ≤ q, such

that mj = 1 for q
2

+ 1 ≤ j ≤ k′ and mj ≥ 2 for k′ + 1 ≤ j ≤ q. Just as
in the preceding lemmata, every line `j,

q
2

+ 1 ≤ j ≤ k′, contains precisely
one intersection point of the lines of A. Those intersection points were called
complete points. Again arguing as in Lemma 6.3.2, we know every line of A
contains at most one complete point, hence the set {`j | mj = 1} has size at
most q

4
, which gives k′ ≤ 3q

4
. Using (6.1), we then obtain k′ = 3q

4
and mj = 2

for 3q
4

+ 1 ≤ j ≤ q. Thus, there are precisely q
4

complete points and all but
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one of the lines in A contain a complete point. Let `0 be the line without a
complete point and let A′ be the line set A ∪ {` q

2
+1, . . . , ` 3q

4
}.

Let B be the line set {`j | 3q4 + 1 ≤ j ≤ q}. Note that the intersection point of
two lines of B cannot be on a line of A′. This can be argued in the same way
as the observation that a complete point cannot be on two lines of A′ \A. For
a line in B, there are two possibilities. Either, such a line contains a complete
point and no other intersection point of two lines of A′, or else it does not
contain a complete point, but it contains two intersection points of two pairs
of lines of A′. Let B∗ = {`j | 3q4 +1 ≤ j ≤ 3q

4
+y} be the set of the former lines

and B− = {`j | 3q4 + y + 1 ≤ j ≤ q} be the set of the latter lines. Remark that
we first add the lines of B∗. The complete points lying on a line of B∗ will be
called hypercomplete points, and the intersection points of two lines of A′, that
are not complete points, but are lying on a line of B−, are called new complete
points. It follows that there are y hypercomplete points, q

4
−y complete points

that are not hypercomplete, and 2( q
4
− y) = q

2
− 2y new complete points.

Since a line of A′\{`0} contains precisely one complete point before adding the
lines of B, it contains precisely one complete point, which is possibly hypercom-
plete. We will prove some properties of the hypercomplete and new complete
points. Note that a point cannot be (hyper)complete and new complete at the
same time.

• Firstly, we prove that a line of A′ cannot contain a hypercomplete point
and a new complete point. Let `i ∈ A \ {`0} be a line containing a
hypercomplete point `i∩ `j ∩ `n∩ `p and a new complete point `i∩ `s∩ `r,
with `j ∈ A, `n ∈ A′ \ A, `p ∈ B∗, `s ∈ A′ and `r ∈ B−. Consider now
the ordering

σ = `0, . . . , `i−1, `i+1, . . . , ` q
2
, `n, ` q

2
+1, . . . , ` 3q

4
, `p, `r, ` 3q

4
+1, . . . , `q, `i .

Remark that it is not indicated where `n, `p and `r are removed, but
this can easily be seen. Using this alternative ordering, we can define
mσ
a for the line `a, the same way we defined mi in the proof of Lemma

6.3.3. We find that mσ
0 = · · · = mσ

i−1 = mσ
i+1 = · · · = mσ

q
2

= mσ
n = 0,

that mσ
q
2
+1 = · · · = mσ

n−1 = mσ
n+1 = · · · = mσ

3q
4

= mσ
p = mσ

r = 1 and

mσ
i = 3. This is a contradiction since also for this ordering the line set
{`j | mσ

j = 1} has size at most q
4
. Now, let `i ∈ A′\A be a line containing

a hypercomplete point `i∩`j∩`n∩`p and a new complete point `i∩`s∩`r,
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with `j, `n ∈ A, `p ∈ B∗, `s ∈ A′ and `r ∈ B−. Consider the ordering

τ = `0, . . . , `i−1, `i+1, . . . , ` 3q
4
, `p, `r, ` 3q

4
+1, . . . , `q, `i .

Analogously, we can define mτ
a for a line `a. In the same way, we will find

a contradiction.

• Similarly, we can also prove that a line of L cannot contain a complete
point, which is possibly hypercomplete, and two new complete points. It
is obvious that a line of B∪{`0} cannot contain a (hyper)complete point
and two new complete points. Let `i ∈ A \ {`0} be a line containing a
complete point `i ∩ `j ∩ `j′ and two new complete points `i ∩ `n ∩ `n′ and
`i ∩ `p ∩ `p′ , with `j ∈ A, `j′ ∈ A′ \ A, `p, `n ∈ A′ and `n′ , `p′ ∈ B−.
Consider the ordering

σ′ = `0, . . . , `i−1, `i+1, . . . , ` q
2
, `j′ , ` q

2
+1, . . . , ` 3q

4
, `n′ , `p′ , ` 3q

4
+1, . . . , `q, `i .

As before it is not indicated where `j′ , `n′ and `p′ are removed. We define
mσ′
a for `a using this ordering σ′. There are q

2
+ 1 lines `a with mσ′

a = 0
(the lines of (A \ {`i}) ∪ {`j′}). However, we find a contradiction as
before since there are q

4
+ 1 lines `a with mσ′

a = 1 (the lines of (A′ \ (A∪
{`j′})) ∪ {`n′ , `p′}). If the complete point on `i is hypercomplete, then
this statement follows immediately from the previous observation. Now
let `i ∈ A′ \ A be a line containing a complete point `i ∩ `j ∩ `j′ and
two new complete points `i ∩ `n ∩ `n′ and `i ∩ `p ∩ `p′ , with `j, `j′ ∈ A,
`p, `n ∈ A′ and `n′ , `p′ ∈ B−. In this case, we consider the ordering

τ ′ = `0, . . . , `i−1, `i+1, . . . , ` 3q
4
, `p′ , `n′ , ` 3q

4
+1, . . . , `q, `i.

Defining as before mτ ′
a for the line `a, we find a contradiction as before.

Also in this case, the complete point is allowed to be hypercomplete.

• Finally, we prove that the line `0 cannot contain new complete points.
Note first that the lines of A′ \{`0} can be partitioned in q

4
sets of 3 lines

going through a common complete point. Two of these lines belong to
A and one belongs to A′ \ A. Let Ca be the set of three lines containing
the complete point on `a ∈ A′ \ {`0}. By swapping their positions in the
ordering of the lines in A′, each of the lines can be chosen to be the one
in A′ \ A.

Now, assume that `0 contains a new complete point `0 ∩ `i ∩ `r, with
`i ∈ A′ \ {`0} and `r ∈ B−. Let `j ∩ `k ∩ `r be the second new complete
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point on `r, with `j, `k ∈ A′ \ {`0}. Since `j ∩ `k is not a complete point,
the sets Cj and Ck are different. So, at most one of them equals Ci.
Without loss of generality, we can assume that Cj and Ci are different
(and hence disjoint). Thus, by the above, we can choose simultaneously
both `i and `j to be in A′ \ A. However, then the set A ∪ {`r} is a dual
( q
2

+ 2)-arc contained in L, a contradiction to Lemma 6.3.3.

Define the set S ′ = {(P, `) | P a hypercomplete point, ` ∈ L \ {`0}, P ∈ `}.
We count the number of elements in this set in two ways. On the one hand, we
find |S ′| = 4y since every hypercomplete point lies on precisely four lines of L,
none of which is `0. On the other hand, we find |S ′| ≤ y +

(
3q
4
− 2 · ( q

2
− 2y)

)
since every line of B∗ contains one hypercomplete point, none of the lines of B−
contains a hypercomplete point and none of the 3q

4
lines in A′ \ {`0} contains

a hypercomplete and a new complete point. Moreover, every line in A′ \ {`0}
contains a complete point (possibly hypercomplete), hence contains at most
one new complete point. Consequently, all the 2 · ( q

2
− 2y) lines of A′ through

a new complete point are different and none of them is equal to `0 by the last
of the above properties.

Thus, we find 4y ≤ 5y− q
4
. Hence, y ≥ q

4
; consequently B− is empty, |B∗| = q

4
,

there are no new complete points and all q
4

complete points are hypercomplete.
Since a line of A′ contains at most one complete point regarding the lines of
A′, a line of L contains at most one hypercomplete point. Hence, the lines
of L \ {`0} can be partitioned in q

4
groups of four lines, each going through

a common (hypercomplete) point. Furthermore, there are precisely q
4

points
lying on 4 lines of L (the hypercomplete ones), there are 2q points lying on
precisely one line of L (2 on each line through a hypercomplete point and none

on `0) and there are q(q−2)
2

points on precisely two lines of L.

Consider the binary code C = C(2, q) generated by the lines of PG(2, q) (the
points correspond to the positions), introduced in Section 1.8. Let c be the
code word which is the sum of the (incidence vectors of) lines of L ∪ {`∞}.
This corresponds to the set of points which are covered precisely once by the
lines of L ∪ {`∞}. By the previous arguments, this is a code word of weight
2q. Moreover, c is also a code word of C⊥ since it can be written as the sum
of q

2
+ 1 differences of incidence vectors of two lines. Using Theorem 1.8.4, we

find that c is the difference of the incidence vectors of two lines. Thus, the
points covered only once by the lines of L are lying on two lines. Denote these
two lines by m and m′. Then, m and m′ intersect each of the lines `1, . . . , `q in
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an affine point since `1, . . . , `q each contain two points lying on precisely one
line of L. Consequently, m ∩ `∞ = m′ ∩ `∞ = `0 ∩ `∞.

Now, we consider the line set {`0, . . . , `q, `∞,m,m′}. This is a set of q + 4
lines in PG(2, q) such that every point is contained in 0, 2 or 4 lines of the
set. Hence, this is a dual (q + 4, 4)-arc of type (0, 2, 4). We conclude that the
Kakeya set is of the type described in Example 6.3.1.

We summarize the known results about the smallest Kakeya sets in the next
theorem.

Theorem 6.3.6. Let K be a Kakeya set in AG(2, q) = PG(2, q) \ `∞, q > 8
even. Then, only the following possibilities can occur.

• |K| = q(q+1)
2

and K arises from a dual hyperoval.

• |K| = q(q+1)
2

+ q
2

and K is a Kakeya set of the type given in Example 6.1.4.

• |K| = q(q+1)
2

+ 3q
4

and K is a Kakeya set of the type given in Example
6.3.1.

• |K| ≥ q(q+1)
2

+ 3q
4

+ 1.

Remark 6.3.7. We have a look at the smallest cases for q, which are not
covered by this theorem.

For q = 2, Theorem 6.1.5 classifies all Kakeya sets since q(q+2)
2

= 4 = |AG(2, q)|
in this case.

For q = 4, Theorem 6.1.5 classifies the Kakeya sets of size 10 and 12, and
excludes size 11. Moreover, Lemma 6.3.4 is trivially valid because all other

Kakeya sets have size at least 13 = q(q+2)
2

+ q
4
. The Kakeya sets of size 13

have not been classified by the theorems thereafter. However, by checking the
possbible cases by hand, one can see that a Kakeya set of size 13 arises from
a line set consisting of four concurrent lines and one line not concurrent with
these four. This corresponds to a Kakeya set from Example 6.3.1. The only
Kakeya set with size larger than 13 is the set of all points, with size 16, which
necessarily corresponds to a line set consisting of five concurrent lines.

For q = 8, Theorem 6.1.5 classifies the Kakeya sets of size 36 and 40, and

excludes the sizes 37, 38 and 39. In this case, q(q+3)
2
− 2 = 42 = q(q+2)

2
+ q

4
, so
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the proof of Lemma 6.3.3 does not continue. However, it does follow that a
Kakeya set of size 41 contains a dual 8-arc or a dual 5-arc that is not extendable
to a dual 6-arc with an affine line of K. This is enough for the proof of Lemma
6.3.4 and hence we can exclude the size 41. Kakeya sets of the type given in
Example 6.3.1 have size 42, but it is not proved that this is the only possibility
for a Kakeya set of that type.



7
Small maximal partial t-spreads in

PG(2t + 1, q)

Wer Großes will, muß sich zusammenraffen;
In der Beschränkung zeigt sich erst der Meister,

Und das Gesetz nur kann uns Freiheit geben.

Das Sonett, Goethe.

In this chapter we study small maximal partial spreads. Maximal partial
spreads were defined in Section 1.7. In [64], lower bounds on the size of a
maximal partial t-spread in PG(n, q), n ≥ 3t + 1, were derived. In Section
7.2 we will prove a lower bound on the size of maximal partial t-spreads in
PG(2t+1, q). It will improve on the lower bound q+

√
q−1, which was proved

in [7, Theorem 4]. Very recently, the lower bound 5 was proved in [1, Lemma
4.15], which is useful for small values of q. It was during the preparation of
this paper that John Bamberg, one of the authors, raised this question about
lower bounds on the size of maximal partial t-spreads in PG(2t+ 1, q).

For t = 1, this problem was already studied by Glynn.

Theorem 7.0.1 ([62]). A maximal partial line spread in PG(3, q) contains

| 149
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at least 2q elements.

In [70], it is shown that this bound is not sharp for q = 5. In [90], small maximal
partial spreads of generators in finite classical polar spaces are studied. Lower
bounds on the size of these maximal partial spreads were found. An overview
of these results can be found in [90, Table 1].

In Section 7.1, we prove preparatory lemmata for the results in Section 7.2.
In Section 7.3, we derive additional results for small maximal partial t-spreads
in PG(2t + 1, q) by investigating the relationship with blocking sets. This
chapter is based on the results in [37]. As we mentioned above, John Bamberg
instigated this research.
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7.1 Counting skew subspaces

In this section we count the number of t-spaces skew to one, two or three fixed
pairwise disjoint t-spaces in PG(2t+ 1, q). The first result is a special case of
Theorem 4.1.1.

Theorem 7.1.1. The number of t-spaces, skew to a fixed t-space, in the pro-
jective space PG(2t+ 1, q) equals at(q) = q(t+1)2 .

The next result will allow us to find the other two values.

Lemma 7.1.2. Let π1 and π2 be two disjoint t-spaces in PG(2t + 1, q), and
let σ be a k-space disjoint to both, −1 ≤ k ≤ t − 1. The number of t-spaces
through σ skew to both π1 and π2 equals

dkt (q) = q
(k+t+1)(t−k)

2

t−k∏
i=1

(qi − 1) .

Proof. A t-space π through σ is generated by t−k linearly independent points
not in σ. The first i−1 chosen points determine a (k+i−1)-space σi−1 through
σ, intersecting neither π1 nor π2, i = 1, . . . , t− k− 1. Then the ith point must
be a point not in 〈π1, σi−1〉 ∪ 〈π2, σi−1〉. Note that 〈π1, σi−1〉 ∩ 〈π2, σi−1〉 is a
(2k + 2i− 1)-space. Hence, there are

q2t+2 − 1

q − 1
− 2

qt+k+i+1 − 1

q − 1
+
q2k+2i − 1

q − 1
= q2k+2i (q

t−k−i+1 − 1)2

q − 1

different points that can be chosen as ith point. So, there are

t−k∏
i=1

q2k+2i (q
t−k−i+1 − 1)2

q − 1

different tuples of t−k points, together with σ, generating a t-space π through
σ. The t-space π is defined by

(θt − θk)(θt − θk+1) · · · (θt − θt−1) =
t−k∏
i=1

qk+i
qt−k−i+1 − 1

q − 1
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different tuples of t− k points. Consequently there are∏t−k
i=1 q

2k+2i(qt−k−i+1 − 1)2∏t−k
i=1 q

k+i(qt−k−i+1 − 1)
= q

(k+t+1)(t−k)
2

t−k∏
i=1

(qi − 1)

such t-spaces.

If σ is a t-space in the above lemma, then the number of t-spaces through σ
skew to both π1 and π2 equals one. This corresponds to the formula given in
the lemma, using the convention that an empty product equals 1.

Corollary 7.1.3. The number of t-spaces, skew to two fixed disjoint t-spaces,
in PG(2t+ 1, q) equals

bt(q) = q(
t+1
2 )

t+1∏
i=1

(qi − 1) .

Proof. This is a direct application of Lemma 7.1.2, since bt(q) = d−1t (q).

The following result is proved in [90, Lemma 2] for generators of a finite classi-
cal polar space. The proof for t-spaces in PG(2t+1, q) is similar to the original
proof. It is added for the sake of completeness.

Lemma 7.1.4. Let P be a certain property of t-spaces of PG(2t+1, q) and let
π be a fixed t-space. Denote the number of t-spaces fulfilling P and intersecting
π in a subspace of dimension k by zk, k ≤ t. Denote the number of pairs (U, σ),
with U a k-space contained in π, σ a t-space fulfilling P , and such that U ⊆ σ,
by xk. Then,

zk =
t∑
l=k

(−1)l−k
[
l + 1

k + 1

]
q

q(
l−k
2 )xl .

Proof. By counting the pairs (U, σ) with U a k-space, σ a t-space fulfilling P ,
and such that U ⊆ π ∩ σ, we find that

xk =
t∑
l=k

zl

[
l + 1

k + 1

]
q

= zk +
t∑

l=k+1

zl

[
l + 1

k + 1

]
q

.

Now, we prove the desired equality using (backward) induction on k. For
k = t, it is immediately clear that zk = xk. Now, we assume that the equality
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is proved for all values from k + 1 to t, and we prove it for k. Using the first
equality, we find:

zk = xk −
t∑

l=k+1

zl

[
l + 1

k + 1

]
q

= xk −
t∑

l=k+1

[
l + 1

k + 1

]
q

(
t∑
j=l

(−1)j−l
[
j + 1

l + 1

]
q

q(
j−l
2 )xj

)

= xk −
t∑

l=k+1

t∑
j=l

(−1)j−l
[
l + 1

k + 1

]
q

[
j + 1

l + 1

]
q

q(
j−l
2 )xj

= xk −
t∑

j=k+1

xj(−1)j−k
[
j + 1

k + 1

]
q

j∑
l=k+1

(−1)k−l
[
j − k
l − k

]
q

q(
j−l
2 ) .

We know

j∑
l=k+1

(−1)k−l
[
j − k
l − k

]
q

q(
j−l
2 ) =

j−k∑
l=1

(−1)−l
[
j − k
l

]
q

q(
j−k−l

2 )

=

j−k−1∑
l=0

(−1)k−j+l
[
j − k
l

]
q

q(
l
2)

= (−1)k−j
j−k∑
l=0

(−1)l
[
j − k
l

]
q

q(
l
2) − q(

j−k
2 )

= (−1)k−j
j−k−1∏
l=0

(1− ql)− q(
j−k
2 )

= −q(
j−k
2 ) .

In the penultimate step we used the q-binomial theorem, which we already
stated in Lemma 4.3.1. Substituting this second result into the first one, we
find the equality we wanted to prove.

Lemma 7.1.5. The number of t-spaces, skew to three fixed pairwise disjoint
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t-spaces, in PG(2t+ 1, q) equals

ct(q) = q(
t+1
2 )

(
(−1)t+1 +

t−1∑
l=−1

(−1)l+1

t+1∏
i=l+2

(qi − 1)

)
.

Proof. Let π1, π2 and π3 be three pairwise disjoint t-spaces in PG(2t + 1, q).
We define the property P12 as follows: a t-space has property P12 if it is skew to
both π1 and π2. The number of t-spaces having this property and containing a
fixed l-dimensional subspace of π3 equals dlt(q) by Lemma 7.1.2. Recall that π3

contains

[
t+ 1

l + 1

]
q

different l-dimensional subspaces. Using Lemma 7.1.2 and

Lemma 7.1.4, we find that the number of t-spaces skew to both π1 and π2, and
meeting π3 in a subspace of dimension k equals

zkt (q) =
t−1∑
l=k

(
(−1)l−k

[
l + 1

k + 1

]
q

q(
l−k
2 )

([
t+ 1

l + 1

]
q

dlt(q)

))

+ (−1)t−k
[
t+ 1

k + 1

]
q

q(
t−k
2 )

=
t−1∑
l=k

(
(−1)l−k

[
l + 1

k + 1

]
q

q(
l−k
2 )

([
t+ 1

l + 1

]
q

q
(l+t+1)(t−l)

2

t−l∏
i=1

(qi − 1)

))

+ (−1)t−k
[
t+ 1

k + 1

]
q

q(
t−k
2 )

=
t−1∑
l=k

(
(−1)l−k

[
l + 1

k + 1

]
q

q(
l−k
2 )+ (l+t+1)(t−l)

2

t+1∏
i=l+2

(qi − 1)

)

+ (−1)t−k
[
t+ 1

k + 1

]
q

q(
t−k
2 ) .

The number of t-spaces skew to π1, π2 and π3, is z−1t (q), the number of t-spaces
having property P12 and meeting π3 in an empty space. Consequently,

ct(q) = z−1t (q) = q(
t+1
2 )

(
(−1)t+1 +

t−1∑
l=−1

(−1)l+1

t+1∏
i=l+2

(qi − 1)

)
.

Hereby we used that
(
l+1
2

)
+ (l+t+1)(t−l)

2
= t(t+1)

2
.
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Remark 7.1.6. An alternative proof for the result in Lemma 7.1.5 was sug-
gested by Aart Blokhuis. We present a sketch of this proof. Let I and O be
the (t + 1)× (t + 1) identity matrix and the (t + 1)× (t + 1) all-zero matrix,
respectively. The three fixed pairwise disjoint t-spaces can be represented by
the matrices [O I], [I O] and [I I]. Then, there is a one-to-one correspon-
dence between the t-spaces disjoint to these three t-spaces and the matrices
[I A], with A a non-singular (t+ 1)× (t+ 1) matrix such that also A− I is
non-singular. Counting the number of such matrices A yields the number of
t-spaces disjoint to the three fixed t-spaces.

7.2 A lower bound

In this section we will prove the main theorem of this chapter, a lower bound on
the number of elements in a maximal partial spread of t-spaces in PG(2t+1, q).
We follow the approach introduced by Glynn in [62]. First we present four
equalities which will play a crucial role in the proof of Theorem 7.2.5. Recall
that at(q), bt(q) and ct(q) are the number of t-spaces in PG(2t+ 1, q), skew to
one, two and three fixed pairwise disjoint t-spaces, respectively.

Lemma 7.2.1. Let S be a partial spread of t-spaces in PG(2t+ 1, q). Denote
the number of t-spaces not in S, meeting i different elements of S, by ni. Then,
the following equalities are valid:

∑
i≥0

ni =

[
2t+ 2

t+ 1

]
q

− |S| ,

∑
i≥0

ini = |S|

([
2t+ 2

t+ 1

]
q

− at(q)− 1

)
,

∑
i≥0

i(i− 1)ni = |S|(|S| − 1)

([
2t+ 2

t+ 1

]
q

− 2at(q) + bt(q)

)
,∑

i≥0

i(i− 1)(i− 2)ni = |S|(|S| − 1)(|S| − 2)·([
2t+ 2

t+ 1

]
q

− 3at(q) + 3bt(q)− ct(q)

)
.
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Proof. The first equality is obtained by counting the total number of t-spaces
in PG(2t + 1, q) not in S. The second equality is obtained by counting the
tuples (π, σ), with π ∈ S, σ /∈ S a t-space, and such that π and σ have a
non-empty intersection. The third equality is obtained by counting the tuples
(π1, π2, σ), with π1, π2 ∈ S, π1 6= π2, σ /∈ S a t-space, and such that the
intersection πi ∩ σ is non-empty, i = 1, 2. The fourth equality is obtained by
counting the tuples (π1, π2, π3, σ), with π1, π2, π3 ∈ S, π1 6= π2 6= π3 6= π1,
σ /∈ S a t-space, and such that the intersection πi ∩ σ is non-empty, i = 1, 2, 3.
In the two final equalities we have used the inclusion-exclusion principle.

We present some inequalities that will be used in the proof of the main theorem.

Corollary 7.2.2. Let s, t, q ∈ N be such that s ≤ t and q ≥ 3. If (s, q) 6=
(0, 3), then

t∏
i=s

(qi + 1) ≤ (qs + 2)q(
t+1
2 )−(s+1

2 ) .

Proof. This is a weaker version of Lemma 4.2.5.

Note that this weaker inequality is indeed not valid if (s, q) = (0, 3) and t ≥ 3.

Notation 7.2.3. We denote ct(q)− bt(q) by c′t(q). Note that

c′t(q) = q(
t+1
2 )

(
(−1)t+1 +

t−1∑
l=0

(−1)l+1

t+1∏
i=l+2

(qi − 1)

)
.

Lemma 7.2.4. Let t and q ≥ 3 be two natural numbers. The following in-
equalities are valid.

For t ≥ 3 : bt(q) ≤ (q − 1)(q2 − 1)(q3 − 1)(q4 − 1)q(t+1)2−10 .

For t ≥ 2 : −c′t(q) ≤ (q5 − 2q3 − q2 + 3)q(t+1)2−6 .

For t ≥ 5 :

[
2t+ 2

t+ 1

]
q

≤ (q5 + 2)(q6 + 2)

[
10

5

]
q

q(t+1)2−36 .

Proof. The first inequality is immediate. The second inequality can be proved
using induction on t. Direct computation shows that −c′2(q) = (q5 − 2q3 −
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q2 + 3)q3. In the proof of the induction step we use that c′t(q) = qt(qt+1 −
1)c′t−1(q) + (−1)t+1q(

t+1
2 ):

−c′t(q) = −qt(qt+1 − 1)c′t−1(q) + (−1)tq(
t+1
2 )

≤ qt(qt+1 − 1)(q5 − 2q3 − q2 + 3)qt
2−6 + q(

t+1
2 )

≤ (q5 − 2q3 − q2 + 3)q(t+1)2−6 − (q5 − 2q3 − q2 + 3)qt
2+t−6 + q(

t+1
2 )

≤ (q5 − 2q3 − q2 + 3)q(t+1)2−6 .

We now consider the final inequality. We note that[
2t+ 2

t+ 1

]
q

= (qt+1 + 1)

(
qt +

qt − 1

qt+1 − 1

)[
2t

t

]
q

< (qt+1 + 1)(qt + 1)

[
2t

t

]
q

.

Using induction, we can prove immediately[
2t+ 2

t+ 1

]
q

≤
t∏
i=5

(qi + 1)
t+1∏
i=6

(qi + 1)

[
10

5

]
q

.

By applying Lemma 7.2.2 twice, we find the third inequality.

Now, we can prove the main theorem.

Theorem 7.2.5. A maximal partial spread of t-spaces in PG(2t+1, q), t ≥ 2,
contains at least 2q − 1 elements.

Proof. Since ct(2) > 0 for all t, we know that a maximal partial spread of
t-spaces in PG(2t + 1, 2) contains at least four t-spaces. So, we can assume
q ≥ 3. Let S be a maximal partial spread of t-spaces in PG(2t+ 1, q). Denote
the number of t-spaces not in S, meeting i elements of S, by ni. We know
n0 = 0 since S is maximal. Hence,

0 ≤
∑
i≥0

(i− 1)(i− 3)(i− 4)ni

=
∑
i≥0

i(i− 1)(i− 2)ni − 5
∑
i≥0

i(i− 1)ni + 12
∑
i≥0

ini − 12
∑
i≥0

ni .
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Using Lemma 7.2.1, and denoting |S| by s, we find

0 ≤ s(s− 1)(s− 2)

([
2t+ 2

t+ 1

]
q

− 3at(q) + 3bt(q)− ct(q)

)

− 5s(s− 1)

([
2t+ 2

t+ 1

]
q

− 2at(q) + bt(q)

)

+ 12s

([
2t+ 2

t+ 1

]
q

− at(q)− 1

)
− 12

([
2t+ 2

t+ 1

]
q

− s

)

= (s− 1)(s− 3)(s− 4)

[
2t+ 2

t+ 1

]
q

− s(3s2 − 19s+ 28)at(q)

+ s(s− 1)(2s− 9)bt(q)− c′t(q)s(s− 1)(s− 2) .

For t = 2, 3, 4, we use the values we computed in Lemma 7.1.1, Lemma 7.1.3,
Lemma 7.1.5 and Notation 7.2.3. In all three cases we find a contradiction if
s ≤ 2q − 2. More details can be found in Computation A.2.1.

Now we assume t ≥ 5. We use Lemma 7.1.1 and the inequalities we derived in
Lemma 7.2.4. We find:

0 ≤ (s− 1)(s− 3)(s− 4)(q5 + 2)(q6 + 2)

[
10

5

]
q

q(t+1)2−36

− s(3s2 − 19s+ 28)q(t+1)2

+ (q5 − 2q3 − q2 + 3)q(t+1)2−6s(s− 1)(s− 2)

+ s(s− 1)(2s− 9)(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)q(t+1)2−10

= q(t+1)2−36

[
(s− 1)(s− 3)(s− 4)(q5 + 2)(q6 + 2)

[
10

5

]
q

− s(3s2 − 19s+ 28)q36 + (q5 − 2q3 − q2 + 3)q30s(s− 1)(s− 2)

+ s(s− 1)(2s− 9)(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)q26

]
.

The function

fq(s) = (s− 1)(s− 3)(s− 4)(q5 + 2)(q6 + 2)

[
10

5

]
q
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+ (q5 − 2q3 − q2 + 3)q30s(s− 1)(s− 2)− s(3s2 − 19s+ 28)q36

+ s(s− 1)(2s− 9)(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)q26

is a function of degree three in the variable s. For q ≥ 3, this function is
monotonically increasing. It can be checked that fq(2q− 2) < 0 if q ≥ 3. This

contradicts q(t+1)2−36fq(s) ≥ 0. Consequently, s ≥ 2q − 1. More details on the
calculations can be found in Computation A.2.2.

Remark 7.2.6. The bound presented above, in Theorem 7.2.5, improves the
bound q +

√
q − 1 from [7] for all q. It improves the bound 5 from [1] for all

q ≥ 3. For q = 2, the value 5 is still the best lower bound.

7.3 Other bounds for small maximal partial spreads

The first lemma links maximal partial spreads to blocking sets.

Lemma 7.3.1. Let S = {π1, . . . , πλ} be a maximal partial t-spread in PG(2t+

1, q). Then
⋃λ
i=1 πi is a blocking set of PG(2t+1, q) with respect to the t-spaces

of PG(2t+ 1, q).

Proof. If
⋃λ
i=1 πi is not a blocking set with respect to the t-spaces in PG(2t+

1, q), then we can find a t-space π′ in PG(2t+ 1, q) such that π′ ∩ πi is empty
for all i. However, then {π1, . . . , πλ, π′} is a partial t-spread, contradicting the
maximality of S.

Since a maximal partial t-spread of PG(2t + 1, q) defines a blocking set with
respect to the t-spaces, it contains a minimal blocking set. We discuss maximal
partial t-spreads containing small blocking sets. We first recall a theorem of
Beutelspacher.

Theorem 7.3.2 ([7]). If U is a set of subspaces partitioning the point set of
PG(n, q), n ≥ 1, then either U = {PG(n, q)} or else |U| ≥ qβ+1 + 1, with
β =

⌈
n−1
2

⌉
.

The smallest minimal blocking set of PG(2t+1, q) with respect to the t-spaces,
is a (t+ 1)-space (see Theorem 1.7.6). We look at a maximal partial t-spread
containing this blocking set.



160 | Chapter 7. Small maximal partial t-spreads in PG(2t+ 1, q)

Corollary 7.3.3. If S = {π1, . . . , πλ} is a maximal partial t-spread in PG(2t+

1, q) covering a (t+ 1)-space σ, then λ ≥ qd
t
2e+1 + 1.

Proof. The set {π1 ∩σ, . . . , πλ ∩σ} is a partition of σ. Since σ * πi, the result
follows immediately from Theorem 7.3.2.

We recall a fundamental result on small blocking sets.

Theorem 7.3.4 ([115, Theorem 2.7]). Let B be a small minimal blocking
set with respect to the t-spaces in PG(n, q), q = ph and p > 2 prime, and let
τ be a subspace of PG(n, q). If B ∩ τ 6= ∅, then |B ∩ τ | ≡ 1 (mod p).

In the next theorem we use the value r(q), which was defined in Section 1.7.
It is the number of points in the smallest non-trivial blocking set of PG(2, q)
minus q + 1.

Theorem 7.3.5. A maximal partial t-spread in PG(2t + 1, q), q = ph and
p > 2 prime, covering a non-trivial small minimal blocking set with respect to
the t-spaces, contains at least

√
1 + (p− 1)(θt+1(q) + r(q)qt) + 1 elements.

Proof. Let S = {π1, . . . , πλ} be a maximal partial t-spread in PG(2t + 1, q).

Note that B =
⋃λ
i=1 πi is a blocking set with respect to the t-spaces by Lemma

7.3.1. Let B′ be a small minimal blocking set with respect to the t-spaces,
which is a subset of B. Denote the number of points in B′∩πi by xi. Without
loss of generality we can assume x1 ≥ x2 ≥ · · · ≥ xλ.

A line joining a point of B′ ∩ π1 to a point of B′ ∩ π2 contains at least p − 1
additional points of B′ by Theorem 7.3.4. Furthermore, a point in PG(2t+1, q)
lies on precisely one line joining a point of π1 to a point of π2, since π1∩π2 = ∅
but 〈π1, π2〉 = PG(2t+ 1, q). Hence, B′ \ (π1∪π2) contains at least (p−1)x1x2
points. Obviously, the set B′ \ (π1 ∪ π2) is partitioned by the sets B′ ∩ πi,
3 ≤ i ≤ λ. Each of the sets B′ ∩ πi, 3 ≤ i ≤ λ, contains at most x3 elements.
Therefore,

λ− 2 ≥ (p− 1)x1x2
x3

≥ (p− 1)x1 ≥ (p− 1)
|B′|
λ

.

So, λ ≥ 1+
√

1 + (p− 1)|B′|. By Theorem 1.7.8, we know that |B′| ≥ θt+1(q)+

r(q)qt. Consequently, λ ≥ 1 +
√

1 + (p− 1)(θt+1(q) + r(q)qt). The theorem
follows.
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Remark 7.3.6. For general t, the bounds on the size of a maximal partial
t-spread in PG(2t+1, q) which we found in Corollary 7.3.3 and Theorem 7.3.5,
are much larger than 2q−1, the bound we derived in Theorem 7.2.5. Hence, if
a maximal partial t-spread of size 2q− 1 in PG(2t+ 1, q) exists, then it covers
a blocking set with respect to the t-spaces of size at least 3

2
(qt+1 + 1). So,

roughly three-quarters of the points in the blocking set formed by the union
of the elements of the partial t-spread would be essential.
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8
The functional codes C2(H) and CHerm(Q)

Goh, ik heb formidabel afgezien.
Ik moet het zeggen gelijk het is hè.

Frans Verbeeck na de Ronde van Vlaanderen, 1975.

In Section 1.8 we introduced the functional codes and in particular the codes
Ch(X ) and CHerm(X ) for an algebraic variety X . This variety X is in most
of the studied cases chosen to be a non-singular quadric or a non-singular
Hermitian variety. In general, it is easy to find the length and dimension of
a functional code, but hard to find its minimum distance and to classify its
small weight code words.

The first results on functional codes were obtained for the code C2(Q), with
Q a non-singular quadric (hyperbolic, parabolic or elliptic) in PG(n, q). The
length of this code equals |Q|; the actual value depends on the type of Q.
The dimension of this code equals

(
n+2
2

)
− 1 since there is only one linear

combination of the monomials of degree 2 in n + 1 variables that vanishes on
Q.

Results on the minimum distance and on the small weight code words of C2(Q)
were obtained in [27, 46] for the small-dimensional cases n = 3, 4. The large-

| 163
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dimensional cases n ≥ 5 were investigated in [51, 68]. Some corrections to
these results were presented in [35]. Also the divisors of these codes were
investigated in [51]

This research was the inspiration to investigate similar functional codes de-
fined by Hermitian varieties, namely the functional codes CHerm(H), H a non-
singular Hermitian variety in PG(n, q2). The length of this code equals |H|,
the number of points on H. Note that the code CHerm(H) is a linear code
over the field Fq and not over the field Fq2 . Its dimension equals n2 + 2n. The
minimum distance, the small weight code words and the divisors of these codes
were investigated in [50].

In this chapter we will look at the codes C2(H), with H a non-singular Her-
mitian variety in PG(n, q2), and CHerm(Q), with Q a non-singular quadric in
PG(n, q2). The length of these codes is given by the number of points in their
respective varieties. The former is a linear code of dimension

(
n+2
2

)
over Fq2 .

Its minimum distance, small weight code words and divisors have been studied
before in [47, 49, 52] for n = 3, in [48] for n = 4 and in [69] for 5 ≤ n ≤ O(q2).
In Sections 8.1 and 8.2 we will investigate the minimum distance and small
weight code words of this code for n ≥ 4, thereby improving some of the
previous results.

The latter code CHerm(Q) is a linear code of dimension (n+ 1)2 over the field
Fq. Its minimum distance and small weight code words will be investigated in
Sections 8.3, 8.4 and 8.5.

It should be noted that the techniques used when studying the codes C2(Q)
and CHerm(H) cannot be applied for the two classes of functional codes that
are treated in this chapter. Recall that in Remark 1.8.9 it is proved that all
results on the minimum distance of the functional codes C2(Q) and CHerm(H)
can be stated as results about the maximum size of the intersection of an
arbitrary quadric with H, respectively the maximum size of the intersection of
an arbitrary Hermitian variety with Q. In this chapter, we will also state the
results in this form.

In Section 8.6 we look at the divisors of the code CHerm(Q). This chapter is
based on [6], which is joint work with Daniele Bartoli, Stefania Fanali and Leo
Storme, and on [35], a survey article on this topic.
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8.1 The functional code C2(H) for n = 4

In this section and the next one, we will discuss the code C2(H(4, q2)). Recall
that H(4, q2) is a non-singular Hermitian variety in PG(4, q2). The best known
results about this code were presented in [69, Section 3]. We will give some
improvements to these results. In this section and in the next ones, quadrics
and Hermitian varieties are considered as point sets.

The first lemma is an improvement of [69, Lemma 3.3].

Lemma 8.1.1. Let H be a non-singular Hermitian variety in PG(4, q2) and
let Q be a non-singular (necessarily parabolic) quadric in PG(4, q2). If a line
` on Q contains at most q points of H, then |Q ∩H| ≤ q5 + q4 + 4q3 − 3q + 1.

Proof. It follows immediately that ` contains one point of H. Let P be a
point on ` with P /∈ H. Take a line m of Q intersecting ` in P . Consider
the plane π = 〈`,m〉. Then π lies in the tangent hyperplane TP (Q) and in
q2 hyperplanes containing a hyperbolic quadric Q+(3, q2) on Q; ` is a line on
each of these hyperbolic quadrics. We denote them by Qi, i = 1, . . . , q2. For
a given hyperbolic quadric Qi, we denote the regulus containing ` by Ri and
the opposite one by R′i.

Assume that ` ∩ H = {R}. In R′i, i = 1, . . . , q2, there is at most one line
contained in H, namely the line through R. All the lines through R which
are contained in the intersection Q ∩ H are contained in both TR(Q) ∩ Q, a
cone with vertex R and base Q′, a conic Q(2, q2), and in TR(H) ∩ H, a cone
with vertex R and base H′, a Hermitian curve H(2, q2). We choose the bases
Q′ and H′ such that they lie in the same 3-space disjoint from R. There are
k = |Q′ ∩ H′| such lines, and we know |Q′ ∩ H′| ≤ 2(q + 1). Hence, there are
at most k hyperbolic quadrics containing one line of Q∩H through R.

Let Qi be a hyperbolic quadric containing a line of H through R. Counting
the points of Qi ∩H according to the lines of R′i, we find

|Qi ∩H| ≤ (q2 + 1) + q2(q + 1) = q3 + 2q2 + 1 .

Now, let Qj be a hyperbolic quadric not containing a line of H through R.
Counting the points of Qj ∩H according to the lines of R′j, we find |Qj ∩H| ≤
(q2 + 1)(q + 1).

We denote a = |π ∩Q∩H| = 1 + |m∩H|. We may assume a ∈ {2, q+ 2} and
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we conclude

|Q ∩ H| ≤ k(q3 + 2q2 + 1− a) + (q2 − k)(q3 + q2 + q + 1− a)

+ |TP (Q) ∩Q ∩H|
≤ q2(q3 + q2 + q + 1) + k(q2 − q) + (q + 1)(q2 − 1)− a(q2 − 1)

≤ q5 + q4 + 2q3 + 2q2 − q − 1 + 2(q + 1)(q2 − q)− 2(q2 − 1)

= q5 + q4 + 4q3 − 3q + 1 .

Hereby we used the upper bound (q + 1)(q2 − 1) + a for |TP (Q) ∩Q ∩H|.

The second lemma is an improvement of [69, Lemma 3.6]. We first mention a
preceding result.

Lemma 8.1.2 ([69, Lemma 3.5]). Let H be a non-singular Hermitian va-
riety in PG(4, q2), let Q be a non-singular (necessarily parabolic) quadric in
PG(4, q2) and let P be a point of the intersection Q ∩ H. If every line on Q
contains at least q + 1 points of H, then the tangent hyperplanes TP (Q) and
TP (H) do not coincide.

Lemma 8.1.3. Let H be a non-singular Hermitian variety in PG(4, q2) and
let Q be a non-singular (necessarily parabolic) quadric in PG(4, q2). If all lines
on Q share q+ 1 or q2 + 1 points with H, then |Q∩H| ≤ q5 + q4 + 2q3− q+ 1.

Proof. Let P be a point of Q, not lying on H. Let ` and m be lines on Q
through P . All lines on Q through P , including ` and m, contain precisely
q+1 points of H. Hence, the tangent hyperplane TP (Q) contains (q+1)(q2+1)
points of Q∩H since TP (Q)∩Q is a cone with P as vertex and a conic Q′ as
base.

Let R be a point of ` ∩ H. There are q2 + 1 lines of Q through R. We show
that at most 2 of those lines can be contained in H. Assume there are 3 lines
through R contained in Q ∩ H. These lines generate a hyperplane, since a
plane cannot contain 3 lines of Q. This hyperplane must be TR(Q) since all
lines of Q through R are contained in TR(Q). In the same way this hyperplane
also equals TR(H). However, this is a contradiction by Lemma 8.1.2. We have
proved that at most 2 lines through each of the q + 1 points of ` ∩ H are
contained in Q∩H.

We consider the plane π = 〈`,m〉 and the q2 + 1 hyperplanes through it.
One of those hyperplanes is TP (Q). All the other ones intersect Q in a hy-
perbolic quadric Q+(3, q2). Each line of such a hyperbolic quadric contains
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by assumption q + 1 or q2 + 1 points of H. Hence, in both reguli of such
a hyperbolic quadric there is the same number of lines which contain q + 1
respectively q2 + 1 points of H. Using Lemma 1.7.10, we find that in each of
those hyperbolic quadrics, both reguli contain q + 1, 2, 1 or 0 lines of H (if
the intersection of H with the 3-space is a singular Hermitian variety, then
this number is at most 1). Let ai be the number of hyperbolic quadrics in
which both reguli contain i lines of H. We know aq+1 + a2 + a1 + a0 = q2 and
(q + 1)aq+1 + 2a2 + a1 = k ≤ 2(q + 1), with k the total number of lines on
Q ∩ H meeting ` (at most 2 through each of the points of ` ∩ H). Counting
the points of H according to the lines of one regulus, it can be found that the
hyperbolic quadrics in which both reguli contain i lines of H, contain precisely
i(q2 + 1) + (q2 + 1− i)(q + 1) = (q2 + 1)(q + 1) + i(q2 − q) points of H.

Now, we compute the total number of intersection points. Hereby, I =
{0, 1, 2, q + 1}. We find

|Q ∩ H| = (q + 1)(q2 + 1) +
∑
i∈I

ai
(
(q2 + 1)(q + 1) + i(q2 − q)− 2(q + 1)

)
= (q + 1)(q2 + 1) + (q2 − 1)(q + 1)

∑
i∈I

ai + (q2 − q)
∑
i∈I

aii

= (q + 1)(q2 + 1) + q2(q2 − 1)(q + 1) + (q2 − q)k
≤ (q + 1)

(
q2(q2 − 1) + q2 + 1

)
+ (q2 − q)2(q + 1)

= q5 + q4 + 2q3 − q + 1,

which completes the proof.

We recall another result from [69] and we make an observation about a case
that was not treated in [69].

Lemma 8.1.4 ([69, Sections 3.2, 3.3, 3.4 and 3.5]). Let Q be a singu-
lar quadric in PG(4, q2) and let H be a non-singular Hermitian variety in
PG(4, q2). If Q is a cone with vertex a point or a line, or if Q is a plane, then
|Q ∩H| ≤ max{q5 + q4 + 2q3 − q + 1, q5 + q4 + q3 + 2q2 + 1}.

Lemma 8.1.5. Let H be a non-singular Hermitian variety in PG(4, q2) and
let Q be a singular quadric in PG(4, q2). If Q is a hyperplane, then |Q∩H| ≤
q5 + q3 + q2 + 1.

Proof. The intersection Q ∩ H is either a Hermitian variety H(3, q2) or else a
cone with vertex a point and base a Hermitian curve H(2, q2). In the former
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case, Q∩H contains (q3 + 1)(q2 + 1) points. In the latter case, Q∩H contains
1 + q2(q3 + 1) points. The statement is clearly valid.

Using these lemmata, we can now state an improved version of [69, Theorem
3.8].

Theorem 8.1.6. Let H be a non-singular Hermitian variety in PG(4, q2) and
let Q be a quadric in PG(4, q2). If |Q∩H| > q5 + q4 + 4q3 − 3q + 1, then Q is
the union of two hyperplanes.

Proof. Combine the results of Lemma 8.1.1, Lemma 8.1.3, Lemma 8.1.4 and
Lemma 8.1.5. Each possible type of the quadric Q is considered in one of these
lemmata, except the case that Q is the union of two hyperplanes.

We mentioned before that the code C2(H) for n = 4 had also been studied
in [48]. The bound from the previous theorem improves that result as well,
except for the case q = 2.

Theorem 8.1.7 ([48, Section 3]). Let H be a non-singular Hermitian vari-
ety in PG(4, 4) and let Q be a quadric in PG(4, 4). If |Q∩H| > 69, then Q is
the union of two hyperplanes.

8.2 The functional code C2(H) for n ≥ 4

We introduce the functions Wn(q) using a recursive definition.

Definition 8.2.1. The function Wn(q) is defined as follows. For n = 4:

W4(q) =

{
q5 + q4 + 4q3 − 3q + 1 q ≥ 3

69 q = 2
;

for n > 4:

Wn(q) =

{
q2Wn−1(q) + qn−2 + 2qn−3 n odd

q2Wn−1(q)− qn−2 n even
.

Lemma 8.2.2. For n ≥ 4: Wn(q) = q2n−8W4(q) +
∑2n−7

i=n−2 q
i + 2δqn−3, with

δ = 1 if n is odd and δ = 0 if n is even.
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Proof. This can easily be proved, using induction on n.

Since it helps to understand some of the inequalities in the following proofs,
we give some of these functions for q ≥ 3.

• W5(q) = q7 + q6 + 4q5 − 2q3 + 3q2,

• W6(q) = q9 + q8 + 4q7 − 2q5 + 2q4,

• W7(q) = q11 + q10 + 4q9 − 2q7 + 2q6 + q5 + 2q4,

• Wn(q) = q2n−3 + q2n−4 + 4q2n−5 − 2q2n−7 + 2q2n−8 + q2n−9 + . . .+ qn−2 if
n ≥ 8 is even.

• Wn(q) = q2n−3+q2n−4+4q2n−5−2q2n−7+2q2n−8+q2n−9+. . .+qn−2+2qn−3

if n ≥ 8 is odd.

The next theorem is an improvement of [69, Theorem 4.1].

Theorem 8.2.3. Let H be a non-singular Hermitian variety in PG(n, q2) and
let Q be a quadric in PG(n, q2), n ≥ 4. If |Q ∩ H| > Wn(q), then Q is the
union of two hyperplanes.

Proof. We prove this theorem by induction on n. The theorem is true for
n = 4 by Theorem 8.1.6 and Theorem 8.1.7. Now, we suppose the theorem to
be valid for n− 1. We prove it for dimension n.

By the assumption, |Q ∩ H| > Wn(q). Assume now that every non-tangent
hyperplane to H contains at most Wn−1(q) points of Q ∩ H. We count the
number N of tuples (P, π), with P ∈ Q∩H, π a hyperplane not tangent to H,
and P ∈ π. On the one hand,

N > Wn(q)

(
q2n − 1

q2 − 1
− q2|H(n− 2, q2)| − 1

)
= Wn(q)

q2n − q2 − q2(qn−1 + (−1)n−2)(qn−2 + (−1)n−1)

q2 − 1
.

On the other hand, counting this number of incidences in a different way,

N ≤ Wn−1(q)

(
q2n+2 − 1

q2 − 1
− |H|

)
= Wn−1(q)

(
q2n+2 − 1− (qn+1 + (−1)n)(qn + (−1)n+1)

q2 − 1

)
.
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Thus,

Wn(q) < Wn−1(q)

[
q2n+2 − 1− (qn+1 + (−1)n)(qn + (−1)n+1)

q2n − q2 − q2(qn−1 + (−1)n−2)(qn−2 + (−1)n−1)

]
.

We look first at the case n even. We find

Wn(q) < Wn−1(q)

[
q2n+2 − 1− (qn+1 + 1)(qn − 1)

q2n − q2 − q2(qn−1 + 1)(qn−2 − 1)

]
= Wn−1(q)q

2 −Wn−1(q)
qn+3 − qn+2 − qn+1 + qn

q2n − q2n−1 + qn+1 − qn

< Wn−1(q)q
2 − (q2n−5 + q2n−6)

qn+3 − qn+2 − qn+1 + qn

q2n − q2n−1 + qn+1 − qn

= Wn−1(q)q
2 − q3n−2 − 2q3n−4 + q3n−6

q2n − q2n−1 + qn+1 − qn

= Wn−1(q)q
2 − qn−2 − q3n−3 − 2q3n−4 + q3n−6 − q2n−1 + q2n−2

q2n − q2n−1 + qn+1 − qn
< Wn−1(q)q

2 − qn−2 .

Now we look at the case n odd. If q ≥ 4, we find

Wn(q) < Wn−1(q)

[
q2n+2 − 1− (qn+1 − 1)(qn + 1)

q2n − q2 − q2(qn−1 − 1)(qn−2 + 1)

]
= q2Wn−1(q) +Wn−1(q)

qn+3 − qn+2 − qn+1 + qn

q2n − q2n−1 − qn+1 + qn

< q2Wn−1(q) + (q2n−5 + 2q2n−6)
qn+3 − qn+2 − qn+1 + qn

q2n − q2n−1 − qn+1 + qn

= q2Wn−1(q) +
q3n−2 + q3n−3 − 3q3n−4 − q3n−5 + 2q3n−6

q2n − q2n−1 − qn+1 + qn

= q2Wn−1(q) + qn−2 + 2qn−3

− q3n−4 + q3n−5 − 2q3n−6 − q2n−1 − q2n−2 + 2q2n−3

q2n − q2n−1 − qn+1 + qn

< q2Wn−1(q) + qn−2 + 2qn−3 .

If q = 2, 3, the inequality Wn−1(q) < q2n−5 + 2q2n−6, used in this derivation is
not valid. However, the inequality

Wn−1(q)

[
q2n+2 − 1− (qn+1 − 1)(qn + 1)

q2n − q2 − q2(qn−1 − 1)(qn−2 + 1)

]
< q2Wn−1(q) + qn−2 + 2qn−3
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is still valid in these cases. In order to prove this, it is sufficient to show that

Wn−1(q)
qn+3 − qn+2 − qn+1 + qn

q2n − q2n−1 − qn+1 + qn
< qn−2 + 2qn−3.

We first consider q = 2:

Wn−1(2)
2n+3 − 2n+2 − 2n+1 + 2n

22n − 22n−1 − 2n+1 + 2n
< 2n−2 + 2 · 2n−3

⇔ 3 · 2nWn−1(2) < 2n−1(22n−1 − 2n)

⇔ 6Wn−1(2) < 22n−1 − 2n

⇔ 22n−1 − 22n−4 − 22n−7 − 22n−9 − 2n−1 − 2n−2 < 22n−1 − 2n ,

which clearly holds if n ≥ 5. Hereby we used that Wn−1(2) = 69. · 22n−10 +
22n−8 − 2n−3 if n is odd. Now, we consider q = 3:

Wn−1(3)
3n+3 − 3n+2 − 3n+1 + 3n

32n − 32n−1 − 3n+1 + 3n
< 3n−2 + 2.3n−3

⇔ Wn−1(3)(2 · 3n+2 − 2 · 3n) < (2 · 32n−1 − 2 · 3n)(3n−2 + 2 · 3n−3)
⇔ Wn−1(3)(32 − 1) < (3n−1 − 1)(3n−2 + 2 · 3n−3)
⇔ 32n−3 + 2 · 32n−4 − 2 · 32n−6

−2 · 32n−7 − 32n−10 − 3n−2 − 3n−3 < 32n−3 + 2 · 32n−4 − 3n−2 − 2 · 3n−3 ,

which clearly holds if n ≥ 5. We used that Wn−1(3) = 32n−5 + 2 · 32n−6 +

32n−7 − 32n−9 − 32n−10+3n−3

2
if n is odd and q = 3, which follows from Lemma

8.2.2.

We conclude that in all cases, we find a contradiction. Hence, there is a non-
tangent hyperplane π containing more than Wn−1(q) points of Q∩H. We can
continue as in part 2 of the proof of [69, Theorem 4.1]. We add this for sake
of completeness.

The intersection H′ = π ∩ H is a non-singular (n− 1)-dimensional Hermitian
variety. We conclude from the previous paragraph that |H′ ∩ Q| > Wn−1(q).
By the induction hypothesis, Q∩π is the union of two (n−2)-spaces. The only
quadrics in PG(n, q2) containing (n − 2)-spaces, are the cones πn−4Q+(3, q2),
πn−3Q(2, q2), πn−2Q−(1, q2), which is just an (n−2)-space, and πn−2Q+(1, q2),
which is the union of two hyperplanes. We want to eliminate the first three
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possibilities. Each of those three quadrics can be described as the union of 1
or q2 + 1 distinct (n − 2)-dimensional spaces. The largest intersection of an
(n− 2)-space and H is achieved if n is odd and the intersection is a cone with
a line as vertex and a non-singular Hermitian variety H(n−4, q2) as base. The
cardinality of such an intersection is

(qn−3 − 1)(qn−4 + 1)

q2 − 1
q4 + q2 + 1 = qn

qn−3 − 1

q2 − 1
+
qn+1 − 1

q2 − 1
.

Hence, the cardinality of the intersection of each of those quadrics with H is
at most

(q2 + 1)(q2n−5 + q2n−7 + · · ·+ qn+2 + qn + qn−1 + qn−3 + · · ·+ q2 + 1)

= q2n−3 + 2q2n−5 + 2q2n−7 + · · ·+ 2qn+2 + qn+1

+ qn + 2qn−1 + 2qn−3 + · · ·+ 2q2 + 1

< Wn(q) .

Since the cardinality of the intersection is smaller than Wn(q), those three
possibilities can be eliminated. The only possibility remaining for Q is the
union of two hyperplanes.

The structure of the small weight code words of C2(H), with H a non-singular
Hermitian variety in PG(n, q2), can be derived from this theorem. We refer to
[69, Section 5] for a detailed analysis, which was performed for 4 ≤ n < O(q2),
but which is valid in general dimension n ≥ 4 by the previous theorem. The
next results are therefore generalisations of [68, Theorem 5.4.2.1] and [68,
Theorem 5.4.2.2].

Theorem 8.2.4. LetH be a non-singular Hermitian variety in PG(n, q2), n ≥
4 even. The minimum weight of C2(H) equals we1 = q2n−1−q2n−3−qn−1−qn−2.
The second and third weight are given by we2 = we1 + qn−2 and we3 = we1 + qn−1;
if (n, q) 6= (4, 2), the fourth and fifth weight are given by we4 = we1 +qn−1 +qn−2

and we5 = we1 + 2qn−1. The code words of weight we1 arise from a quadric
consisting of two non-tangent hyperplanes (w.r.t. H) through an (n−2)-space
intersecting H in a non-singular Hermitian variety.

Theorem 8.2.5. LetH be a non-singular Hermitian variety in PG(n, q2), n ≥
5 odd. The minimum weight of C2(H) equals wo1 = q2n−1−q2n−3−qn−1 +qn−2.
The second, third and fourth weight are given by wo2 = wo1 + qn−1 − qn−2,
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wo3 = wo1 + qn−1 and wo4 = wo1 + 2qn−1 − qn−2; if (n, q) 6= (5, 2), the fifth weight
is given by wo5 = wo1 +2qn−1. The code words of weight wo1 arise from a quadric
consisting of two tangent hyperplanes (w.r.t. H) through an (n − 2)-space
intersecting H in a non-singular Hermitian variety.

Using [69, Table 1], [69, Table 3(a)] and [69, Table 3(b)], the classification of
code words corresponding to the five smallest weights of the code C2(H) can be
found. All of these correspond to intersections of H with quadrics consisting
of two hyperplanes. Also the number of these code words has been computed.

8.3 The functional code CHerm(Q) for small n

In the preceding section we investigated the code C2(H), withH a non-singular
Hermitian variety in PG(n, q2), by intersecting the fixed Hermitian variety H
with all possible types of quadrics. In this section and the next section we will
interchange the roles of the Hermitian variety and the quadrics. Namely, we
will investigate the code CHerm(Q), withQ a non-singular quadric in PG(n, q2).
In this section we look at the cases n = 3, 4. Note that these codes do not
only depend on the dimension n and the order q2 of the field, but in the odd-
dimensional case also on the type of Q. In order to study the minimum weight
of these codes, we look at the possible sizes of the intersections Q∩H with H
an arbitrary Hermitian variety.

First, we look at the three-dimensional case.

In [47], an upper bound for the intersection size of a non-singular Hermitian
variety and an arbitrary quadric, is given. In particular, the following theorem
is valid.

Theorem 8.3.1 ([47, Section 5]). Let H be a non-singular Hermitian vari-
ety in PG(3, q2) and let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2). Then |Q ∩ H| ≤ 2q3 + q2 + 1.

The next two lemmata consider the singular Hermitian varieties that are cones
whose vertex is a point. Such a Hermitian variety is the union of q3 + 1 lines
through the vertex and the points of a non-singular Hermitian variety H(2, q2)
in a plane disjoint to the vertex.
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Lemma 8.3.2. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is a
cone with vertex a point P ∈ Q, then |H ∩Q| ≤ q3 + 2q2 − q + 1.

Proof. We know the base of the cone H is a non-singular Hermitian variety
H(2, q2), which we will denote by H′. Consider the tangent plane TP (Q).
We know that TP (Q) ∩ Q is a cone with vertex P and base Q′, with Q′
a non-singular quadric in a line in TP (Q) disjoint from P , which is of the
same type as the quadric Q. All the lines of H not in this tangent plane
contain one extra point of the quadric Q. The number of lines contained in
the intersection TP (Q)∩H is at most two, leading to at most 2q2+1 intersection
points, since this tangent plane contains two lines of the quadric Q if it is a
hyperbolic quadric and zero lines of the quadric Q if it is an elliptic quadric.
The number of lines of H, not contained in TP (Q), is q3 + 1− (q+ 1) = q3− q
or q3 + 1− 1 = q3 depending on whether this plane contains q+ 1 lines or one
line of H. Consequently,

|H ∩Q| ≤ 2q2 + 1 + (q3 − q) = q3 + 2q2 − q + 1 ,

in case the tangent plane TP (Q) contains two lines of Q ∩ H. All the other
cases lead to smaller upper bounds on the intersection size.

Lemma 8.3.3. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is a
cone with vertex a point P /∈ Q, then |H ∩Q| ≤ 2q3 + 2.

Proof. Any line through P in the cone H contains at most two points of the
quadric Q. Hence, |H ∩Q| ≤ 2(q3 + 1) = 2q3 + 2.

In the next lemmata we consider the singular Hermitian varieties that are
cones whose vertex is a line `. Such a Hermitian variety is the union of q + 1
planes through the line `.

Lemma 8.3.4. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is a
cone with vertex a line ` such that ` ∩Q = ∅, then |H ∩Q| ≤ q3 + q2 + q + 1.

Proof. No plane of the cone H contains a line or two lines of Q, for in this
case there would be at least one intersection point on `. Hence, such a plane
contains at most q2 + 1 points of Q. Consequently, |H ∩Q| ≤ (q2 + 1)(q+ 1) =
q3 + q2 + q + 1.
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Lemma 8.3.5. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is
a cone with vertex a line ` such that ` ∩ Q = {R}, with R a point, then
|H ∩Q| ≤ q3 + 2q2 + 1.

Proof. Since ` only shares the point R with Q, it is a tangent line to Q. So it
could be that one of the planes of the cone H is the tangent plane TR(Q) to Q
in R. If TR(Q) is a plane of H, then, as in the previous lemma, it contains at
most 2q2 extra points (next to R) of the intersection H ∩Q. Any other plane
of H contains at most q2 extra points of the intersection. This implies that
|H ∩Q| ≤ 1 + 2q2 + q · q2 = q3 + 2q2 + 1.

Lemma 8.3.6. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is a
cone with vertex a line ` such that ` ∩ Q = {P,R}, with P and R distinct
points, then |H ∩Q| ≤ q3 + 3q2 − q + 1.

Proof. The two tangent planes TP (Q) and TR(Q) meet in a line disjoint to `
which contains at most 2 points of Q. Hence, at most two planes of the cone
H could be tangent planes. This maximum is attained if Q is a hyperbolic
quadric.

If a plane of H is a tangent plane to Q, then it contains at most 2q2−1 points
of the intersection H ∩Q, next to P and R. Any other plane of H contains at
most q2 − 1 extra points of this intersection. Thus, if H contains two tangent
hyperplanes toQ, then |H∩Q| ≤ 2+2(2q2−1)+(q−1)(q2−1) = q3+3q2−q+1.
It is clear that we find a smaller upper bound if H contains zero tangent planes
to Q or one tangent plane to Q.

Lemma 8.3.7. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be a singular Hermitian variety in PG(3, q2). If H is a
cone with vertex a line ` ⊂ Q, then |H ∩Q| ≤ q3 + 2q2 + 1.

Proof. In every plane of H, there are at most q2 additional intersection points
next to the intersection points on `. Consequently, |H ∩Q| ≤ (q2 + 1) + q2(q+
1) = q3 + 2q2 + 1.

We can summarize the previous lemmata in the following theorem. This result
gives a lower bound on the minimum weight of the code CHerm(Q), with Q a
non-singular quadric in PG(3, q2). We introduce thereby the function W 3(q).
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Theorem 8.3.8. Let Q be a non-singular (elliptic or hyperbolic) quadric in
PG(3, q2) and let H be an arbitrary Hermitian variety in PG(3, q2). Then
|H ∩Q| ≤ 2q3 + q2 + 1 = W 3(q).

Now we look at the four-dimensional case. We define a function W 4(q).

Definition 8.3.9. The function W 4(q) is defined as follows:

W 4(q) =

{
q5 + 2q4 − 1

3
q3 + 2q2 + q + 1 q 6= 3

424 q = 3
.

Note that W 4(q) ≥ W4(q) for all prime power values of q. Moreover, equality
only occurs for q = 3. The next lemma is a special case of Theorem 8.1.6 and
Theorem 8.1.7, and follows immediately from the previous observation.

Lemma 8.3.10. Let H be a non-singular Hermitian variety in PG(4, q2) and
let Q be a non-singular (necessarily parabolic) quadric in PG(4, q2). Then
|Q ∩ H| ≤ W 4(q).

We proceed now in the same way as in the three-dimensional case, by investi-
gating the different possibilities for a singular Hermitian variety in PG(4, q2).
Note that W 4(q) ≥ q5 + 2q4 − 1

3
q3 + 2q2 + q + 1 for all prime powers q.

The first lemmata consider the singular Hermitian varieties which are cones
with a point as vertex. In this case, the Hermitian variety is the union of
(q3 + 1)(q2 + 1) lines through the vertex. Note that there are (q + 1)(q3 + 1)
planes on such a cone, all through P , corresponding to the lines of the base.
Each point different from the vertex is on q + 1 of those planes.

Lemma 8.3.11. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a point P ∈ Q, then |H ∩Q| ≤ q5 + 2q3 + 3q2 + 1 ≤ W 4(q).

Proof. In this case, the tangent hyperplane TP (Q) intersects the quadric Q
in a cone with vertex P and base a non-singular quadric Q(2, q2), which we
will denote by Q′. This conic Q′ lies in a plane π ⊂ TP (Q). Consider the
intersection H ′ = π ∩H. By Bézout’s theorem, |Q′ ∩H ′| ≤ 2(q+ 1) regardless
the stucture of H ′, a non-singular Hermitian curve or a singular Hermitian
curve consisting of q + 1 concurrent lines. Therefore, |H ∩ Q ∩ TP (Q)| ≤
2(q + 1)q2 + 1.
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Every line in the cone H, that is not contained in TP (Q), contains one addi-
tional point (next to P ) of the quadric Q(4, q2). The number of such lines is
at most (1 + q2)(q3 + 1)− (q3 + 1) = q5 + q2, with equality in case π ∩H′ is a
Hermitian curve.

Consequently, |H ∩ Q| ≤ 2(q + 1)q2 + 1 + q5 + q2 = q5 + 2q3 + 3q2 + 1. Note
that q5 + 2q3 + 3q2 + 1 < W4(q) ≤ W 4(q).

Note that the bound q5 + 2q3 + 3q2 + 1 in the previous lemma is sharp, since
there exist conics and Hermitian curves in PG(2, q2) sharing 2(q + 1) points.

Lemma 8.3.12. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex a
point P /∈ Q and |H∩Q| > W 4(q), then H contains more than 2q3+ 2

3
q2− 1

3
q+2

planes that meet Q in two lines.

Proof. The Hermitian variety H is a cone with vertex a point. Its base H′ is
a non-singular Hermitian variety H(3, q2). Every line m in H′ determines a
plane 〈P,m〉 on H. Such a plane intersects Q in one point, q2 + 1 points (line
or conic) or 2q2 + 1 points (two lines). Let αm be the number of points in this
intersection Q∩ 〈P,m〉.

Now we consider the q3+q lines of H′ intersecting m. They define q3+q planes
through P . Note that all points of 〈P,m〉 \ {P} lie on q of these planes, and
each point of H \ 〈P,m〉 belongs to precisely one of these planes. Let x be the
number of these planes sharing 2q2 + 1 points with Q and let y be the number
of these planes sharing one point with Q. We find that

W 4(q) < x(2q2 + 1) + (q3 + q − x− y)(q2 + 1) + y − αm(q − 1)

≤ q2x+ (q3 + q)(q2 + 1)− αm(q − 1) .

Hence, at least

W 4(q)− (q3 + q)(q2 + 1) + (q − 1)αm
q2

of the q3 + q considered planes share two lines with Q.

We can repeat this argument for all q4 + q3 + q+ 1 lines of H′. Note that every
plane is considered q3 + q times. So, taking the sum over all lines m of H′, we
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find at least

1

q2(q3 + q)

∑
m∈H′

(
W 4(q)− (q3 + q)(q2 + 1) + (q − 1)αm

)
=

1

q2(q3 + q)

[
(q4 + q3 + q + 1)(W 4(q)− (q3 + q)(q2 + 1))

+(q − 1)
∑
m∈H′

αm

]

>
1

q2(q3 + q)

[
(q4 + q3 + q + 1)(W 4(q)− (q3 + q)(q2 + 1))

+(q − 1)(q + 1)W 4(q)
]

=
q4 + q3 + q2 + q

q2(q3 + q)
W 4(q)−

(q + 1)(q2 + 1)(q3 + 1)

q2

≥ q + 1

q2
(q5 + 2q4 − 1

3
q3 + 2q2 + q + 1)− (q + 1)(q2 + 1)(q3 + 1)

q2

> 2q3 +
2

3
q2 − 1

3
q + 2

planes of H containing two lines of Q. This proves the lemma.

Lemma 8.3.13. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). Assume that H is a cone
with vertex a point P /∈ Q. If ` 3 P is a line on H that is contained in at least
three planes intersecting Q in two lines, then ` is tangent to Q. So, all lines
on Q in the planes of H through ` pass through a common point.

Proof. As in the previous lemma, we denote the base of the cone H by H′. We
denote the point `∩H′ by R. Note that all planes on H through ` are contained
in the 3-space 〈P, TR(H′)〉 = σ, with TR(H′) the tangent plane in R toH′ in the
ambient 3-space of H′. The quadric Q intersects a 3-space in a non-singular
hyperbolic quadric Q+(3, q2), a non-singular elliptic quadric Q−(3, q2), or a
cone with vertex a point and base a conic. The intersection σ ∩ Q cannot be
an elliptic quadric since it contains lines. Also, since ` contains at most two
points of Q, but there are at least three planes through ` in σ sharing two
lines with Q, there is a point of ` ∩ Q which lies on at least three lines of Q.
Consequently, the intersection σ∩Q cannot be a hyperbolic quadric. So, σ∩Q
is a cone Q′ with vertex a point R′ and base a conic Q′.
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All lines of the cone Q′ pass through the vertex R′. So all lines of Q on a plane
in σ contain R′. Hence, R′ has to be on `, and ` ∩ Q = {R′}. We conclude
that ` is a tangent line.

Lemma 8.3.14. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). Assume that H is a cone
with vertex a point P /∈ Q, and let π be a plane on H intersecting Q in two
lines. Then, π contains at most one line through P in H that is contained in
at least three planes sharing two lines with Q.

Proof. Since π ∩ Q is the union of two lines, and P /∈ Q, there is only one
tangent line through P to Q in π. It follows immediately from the previous
lemma, that π contains at most one line through P that is contained in at
least three planes sharing two lines with Q. This tangent line to Q through P
in π is the only possibility.

Lemma 8.3.15. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex a
point P /∈ Q and |H ∩Q| > W 4(q), then H contains at most 2q3 + 2

3
q2− 1

3
q+2

planes that meet Q in two lines.

Proof. Let V be the set of planes of H intersecting Q in two lines and let L
be the set of lines on H through P lying on at least three planes of V . Denote
|L| by α and the number of lines of H through P lying on at most two planes
of V by β. On the one hand, by counting the tuples (`, π) with ` ∈ L, π ∈ V
and ` ⊂ π, we find

(q + 1)α + 2β ≥ (q2 + 1)|V| .

Since α + β = |H(3, q2)| = (q3 + 1)(q2 + 1), we can rewrite this as

α(q − 1) + 2(q5 + q3 + q2 + 1) ≥ (q2 + 1)|V| ,

⇔ |V|(q2 + 1)− 2(q5 + q3 + q2 + 1)

q − 1
≤ α .

On the other hand, we know that every line of L is contained in at least three
planes of V , but every plane of V contains at most one line of L by the previous
lemma. Hence, 3α ≤ |V|.
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Combining both inequalities, we find

|V| ≥ 3
|V|(q2 + 1)− 2(q5 + q3 + q2 + 1)

q − 1

⇒ |V| ≤ 2q3 +
2

3
q2 − 1

3
q + 2 .

Lemma 8.3.16. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a point P /∈ Q, then |H ∩Q| ≤ W 4(q).

Proof. If |H ∩ Q| > W 4(q), then we know by Lemma 8.3.12 that H contains
more than 2q3 + 2

3
q2 − 1

3
q + 2 planes that meet Q in two lines, but by Lemma

8.3.15 that H contains at most 2q3 + 2
3
q2 − 1

3
q + 2 planes that meet Q in two

lines, a contradiction. Consequently, |H ∩Q| ≤ W 4(q).

The next lemmata deal with Hermitian varieties which are cones with vertex
a line. In this case, the Hermitian variety is the union of q3 + 1 planes through
the vertex, corresponding to the points of the base, which is a non-singular
Hermitian variety H(2, q2) in a plane skew to the vertex.

Lemma 8.3.17. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a line ` such that ` ∩Q = ∅, then |H ∩Q| ≤ q5 + q3 + q2 + 1 < W 4(q).

Proof. A plane of H, necessarily through `, cannot intersect Q in a line. So,
in every plane of H there are at most q2 + 1 points of Q. Consequently,
|H ∩Q| ≤ (q3 + 1)(q2 + 1) = q5 + q3 + q2 + 1 < W 4(q).

Lemma 8.3.18. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a line ` such that `∩Q = {R}, with R a point, then |H ∩Q| ≤ q5 + 2q2 + 1 <
W 4(q).

Proof. We denote the base of the cone H by H′. We know that H′ is a Hermi-
tian curve H(2, q2) in a plane π disjoint to `. The tangent hyperplane TR(Q)
contains the line ` and intersects π in a line r. We also know that TR(Q) ∩Q
is a cone with vertex R and base a conic Q(2, q2), that we denote by Q′. We
distinguish between two cases.
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If r is a tangent line to H′, then |r ∩ Q′ ∩ H′| ≤ 1. Hence, there is at most
one plane of the Hermitian variety H containing lines of the tangent cone
TR(Q)∩Q, and such plane contains at most 2 lines of this cone. All q3·q2 lines of
H through R that are not contained in TR(Q), contain precisely one additional
point of the quadric Q, next to R. Consequently, |H ∩ Q| ≤ 1 + 2q2 + q3q2 =
q5 + 2q2 + 1.

If r is a secant line to H′, then |r ∩ Q′ ∩ H′| ≤ 2. Now, there are at most
two planes of the Hermitian variety H containing lines of this tangent cone.
All (q3 − q)q2 lines of H through R, that are not contained in TR(Q), contain
precisely one additional point of the quadric Q. Consequently, |H ∩ Q| ≤
1 + 2 · 2q2 + (q3 − q)q2 = q5 − q3 + 4q2 + 1.

The observation q5− q3 + 4q2 + 1 ≤ q5 + 2q2 + 1 < W 4(q) finishes the proof.

Lemma 8.3.19. Let Q be a non-singular (parabolic) quadric in PG(4, q2)
and let H be a singular Hermitian variety in PG(4, q2). If H is a cone with
vertex a line ` such that ` ∩ Q = {P,R}, with P and R distinct points, then
|H ∩Q| ≤ q5 + q3 + 3q2 + 1 < W 4(q).

Proof. Lines contained in the intersection H ∩ Q necessarily pass through P
or R, so lie in TP (Q) or in TR(Q). Since TP (Q) and TR(Q) meet in a plane
π disjoint to `, we can choose the non-singular conic Q′ = Q ∩ π as base for
both cones TP (Q)∩Q and TR(Q)∩Q. Since π is disjoint to `, we can consider
the non-singular Hermitian variety H′ = H ∩ π as base for H. Every point
in H′ ∩ Q′ then corresponds to a plane of H sharing two lines with Q. Every
point in H′ \Q′ then corresponds to a plane of H sharing a conic with Q. We
know by Bézout’s theorem, that |H′ ∩Q′| ≤ 2(q + 1). Hence,

|H ∩Q| = 2 + |H′ ∩Q′|(2q2 − 1) +
(
q3 + 1− |H′ ∩Q′|

)
(q2 − 1)

= q2|H′ ∩Q′|+ (q3 + 1)(q2 − 1) + 2

≤ q5 + q3 + 3q2 + 1 < W 4(q) .

Lemma 8.3.20. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a line ` ⊂ Q, then |H ∩Q| ≤ q5 + 2q2 + 1 < W 4(q).

Proof. Every plane through ` contains at most one extra line of the quadric
Q. So, |H ∩Q| ≤ q2 + 1 + (q3 + 1)q2 = q5 + 2q2 + 1 < W 4(q).
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The final lemmata consider the Hermitian varieties whose vertex is a plane or
a 3-space.

Lemma 8.3.21. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a plane π, then |H ∩Q| ≤ q5 + q4 + q3 + 2q2 + 1 < W 4(q).

Proof. The Hermitian variety H is the union of q + 1 different hyperplanes
through π, corresponding to a Hermitian variety H(1, q2) on a line disjoint to
π. A hyperplane intersects Q in a non-singular hyperbolic quadric Q+(3, q2), a
non-singular elliptic quadric Q−(3, q2), or a cone with vertex a point and base
a conic. The plane π contains one point, q2 + 1 points or 2q2 + 1 points of Q.
We distinguish between these three cases.

If |π ∩Q| = 1, then every hyperplane of H contains at most q4 + q2 additional
points of the intersection H∩Q since these hyperplanes cannot intersect Q in a
non-singular hyperbolic quadric Q+(3, q2). So, |H∩Q| ≤ 1+(q+1)(q4 +q2) =
q5 + q4 + q3 + q2 + 1.

If |π ∩ Q| = q2 + 1, then every hyperplane of H contains at most q4 + q2

additional points of the intersection. So, |H ∩Q| ≤ q2 + 1 + (q+ 1)(q4 + q2) =
q5 + q4 + q3 + 2q2 + 1.

If |π∩Q| = 2q2 +1, then every hyperplane of H contains at most q4 additional
points of the intersection. So, |H ∩Q| ≤ 2q2 + 1 + (q+ 1)q4 = q5 + q4 + 2q2 + 1.

Hence, in general, the intersection size can be at most q5 + q4 + q3 + 2q2 + 1 <
W 4(q).

Intersections of a non-singular quadric and a Hermitian variety which is the
union of q + 1 hyperplanes are studied in more detail in Section 8.5.

Lemma 8.3.22. Let Q be a non-singular (parabolic) quadric in PG(4, q2) and
let H be a singular Hermitian variety in PG(4, q2). If H is a cone with vertex
a 3-space, then |H ∩Q| ≤ q4 + 2q2 + 1 < W 4(q).

Proof. The Hermitian variety H is a hyperplane because the base is empty. We
know that the maximal intersection size of a hyperplane with the quadric Q is
q4 + 2q2 + 1, which is attained if the intersection is a non-singular hyperbolic
quadric Q+(3, q2).

Resuming the previous results, we can state the following theorem.
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Theorem 8.3.23. Let Q be a non-singular quadric in PG(4, q2), which is
necessarily parabolic, and let H be a Hermitian variety in PG(4, q2). Then
|Q ∩ H| ≤ W 4(q). Hence, the minimum distance of the code CHerm(Q) is at
least |Q| −W 4(q).

Proof. This follows immediately from Lemmas 8.3.10, 8.3.11, 8.3.16, 8.3.17,
8.3.18, 8.3.19, 8.3.20, 8.3.21 and 8.3.22.

8.4 The functional code CHerm(Q) for n ≥ 5

We now determine upper bounds on the intersection size of a non-singular
quadric Q in PG(n, q2) with an arbitrary Hermitian variety H in PG(n, q2). If
the intersection size is larger thanWn(q), then the Hermitian varietyH must be
singular by Theorem 8.2.3. As in the three-dimensional and four-dimensional
case, we present a discussion of several cases based on the dimension of the
space of singular points of H.

Definition 8.4.1. We define the value W n(q), n ≥ 5, in the following way:

W n(q) =


q7 + 2q6 + 2q5 − 1

2
q4 − 21

4
q3 + 15

8
q2 + 195

16
q + 8 n = 5, q ≥ 3 ,

25
84

22n + 2425
1764

2n − 2655125
100107

n even, q = 2 ,
25
84

22n + 725
1764

2n − 27050
3087

n odd, q = 2 ,

Wn(q) else .

Lemma 8.4.2. Let H be a non-singular Hermitian variety in PG(n, q2) and
let Q be a non-singular quadric in PG(n, q2), n ≥ 5. Then |Q ∩ H| ≤ W n(q).

Proof. We know that |Q∩H| ≤ Wn(q) by Theorem 8.2.3. Note that W n(q) ≥
Wn(q) for all n ≥ 5. The lemma follows immediately.

The next lemmata consider the Hermitian varieties whose vertex is a point.
These Hermitian varieties are the union of lines through P and a point of the
base, which is a non singular Hermitian variety H(n− 1, q2).

Lemma 8.4.3. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a
point P ∈ Q, then |H ∩Q| ≤ W n(q).
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Proof. We consider the tangent hyperplane TP (Q) in P to the quadric Q. We
know that TP (Q)∩Q is a cone with vertex P and base a non-singular quadric
Q′ of the same type as Q, in an (n−2)-space π disjoint to P . The intersection
H ∩Q contains all points of the lines through P and a point of (H ∩ π) ∩Q′.
Note that H ∩ π is either a non-singular Hermitian variety or else a cone with
vertex a point. On the other lines on H through P in the tangent hyperplane
TP (Q) there are no extra points of the intersection H ∩ Q. The lines on H
through P not in the tangent hyperplane TP (Q) contain one additional point
of Q, next to P . The number of these lines equals either

|H(n− 1, q2)| − |H(n− 2, q2)|

=
(qn − (−1)n)(qn−1 − (−1)n−1)

q2 − 1
− (qn−1 − (−1)n−1)(qn−2 − (−1)n−2)

q2 − 1

≤ q2n−3 + qn−2 ,

or else

|H(n− 1, q2)| −
(
1 + q2|H(n− 3, q2)|

)
=

(qn − (−1)n)(qn−1 − (−1)n−1)

q2 − 1
− 1

− q2 (qn−2 − (−1)n−2)(qn−3 − (−1)n−3)

q2 − 1

= q2n−3 ,

depending on the intersection H ∩ π.

We now proceed using induction on the dimension n. Hereby, we use the results
from Theorem 8.3.8 and Theorem 8.3.23 as induction base. Then, by the
induction hypothesis and Lemma 8.4.2, we know that |(H∩π)∩Q′| ≤ W n−2(q).
In general, we know by the arguments above that |H ∩ Q| ≤ W n−2(q)q

2 +
(q2n−3 + qn−2) + 1. For n = 5, we find

|H ∩Q| ≤ W 3(q)q
2 + (q7 + q3) + 1

= (2q3 + q2 + 1)q2 + (q7 + q3) + 1

= q7 + 2q5 + q4 + q3 + q2 + 1 < W 5(q) .

For n ≥ 6, we need to distinguish between two cases. For q ≥ 3, we know that
W n−2(q) < q2n−7+2q2n−8+4q2n−9 and q2n−3+q2n−5+2q2n−6+5q2n−7 < W n(q),
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and thus we find

|H ∩Q| ≤ W n−2(q)q
2 + (q2n−3 + qn−2) + 1

< q2(q2n−7 + 2q2n−8 + 4q2n−9) + q2n−3 + qn−2 + 1

< q2n−3 + q2n−5 + 2q2n−6 + 5q2n−7 < W n(q) .

For q = 2, we can check the inequality W n−2(q)q
2+(q2n−3+qn−2)+1 < W n(q)

straightforward.

Notation 8.4.4. In the following lemmata we turn to the case in which the
vertex (a point) of the Hermitian variety does not belong to the non-singular
quadric. We recall that every line of the base corresponds to a plane of the
Hermitian variety through the vertex. Such a plane intersects the quadric in
1, q2 + 1 or 2q2 + 1 points. This last case occurs when the intersection equals
two lines. We say that a line in the base of the cone is of type (2) if the
corresponding plane through P contains 2q2 + 1 points of the quadric.

Lemma 8.4.5. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a

point P /∈ Q and |H∩Q| > W n(q), then there are more than an(q)
bn(q)

W n(q)−cn(q)

lines of type (2) in the base of H, with

an(q) =
(
|H(n− 1, q2)|+ (q2 + 1)(|H(n− 3, q2)| − 2)

)
· |H(n− 3, q2)| ,

bn(q) = q2(q2 + 1)2(|H(n− 3, q2)| − 1) ,

cn(q) =
|H(n− 1, q2)| · |H(n− 3, q2)|

q2
.

Proof. The base of the cone H is a non-singular Hermitian variety H(n−1, q2),
which we will denote by H′. Let m be a line of this base H′. The number of
lines in H′ which intersect m in a point, equals (q2 + 1)(|H(n − 3, q2)| − 1).
Let αm be the number of points in the intersection of the plane 〈P,m〉 ⊂ H
and Q. An easy counting argument, analogous to the argument in the proof
of Lemma 8.3.12, shows that for at least

W n − (q2 + 1)2(|H(n− 3, q2)| − 1) + (|H(n− 3, q2)| − 2)αm
q2

lines of H′ intersecting m, the corresponding plane through P contains two
lines of the quadric Q. These are lines of type (2).
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We can repeat the same argument for all lines of H′, of which there are

|H(n− 1, q2)| · |H(n− 3, q2)|
q2 + 1

.

In order to count the total number of lines of type (2), we sum over all lines in
H′. In this way, every such line is counted (q2 + 1)(|H(n − 3, q2)| − 1) times.
Hence, the total number of lines of type (2) is at least∑

m⊂H′

W n(q)− (q2 + 1)2(|H(n− 3, q2)| − 1) + (|H(n− 3, q2)| − 2)αm
q2(q2 + 1)(|H(n− 3, q2)| − 1)

=
|H(n− 1, q2)| · |H(n− 3, q2)| · (W n(q)− (q2 + 1)2(|H(n− 3, q2)| − 1))

q2(q2 + 1)2(|H(n− 3, q2)| − 1)

+
|H(n− 3, q2)| − 2

q2(q2 + 1)(|H(n− 3, q2)| − 1)

∑
m⊂H′

αm

>
|H(n− 1, q2)| · |H(n− 3, q2)|
q2(q2 + 1)2(|H(n− 3, q2)| − 1)

W n(q)− |H(n− 1, q2)| · |H(n− 3, q2)|
q2

+
(|H(n− 3, q2)| − 2) · |H(n− 3, q2)|
q2(q2 + 1)(|H(n− 3, q2)| − 1)

W n(q)

=
(|H(n− 1, q2)|+ (q2 + 1)(|H(n− 3, q2)| − 2)) · |H(n− 3, q2)|

q2(q2 + 1)2(|H(n− 3, q2)| − 1)
W n(q)

− |H(n− 1, q2)| · |H(n− 3, q2)|
q2

.

In the penultimate step, we made use of the fact that every intersection point
lies on precisely |H(n−3, q2)| planes through P of H, hence is counted |H(n−
3, q2)| times.

Definition 8.4.6. We define for n ≥ 5:

δn(q) =

{
1 + q2|Q+(n− 4, q2)| n odd,

|Q+(n− 3, q2)| n even.

Lemma 8.4.7. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. Assume that H is a cone with
vertex a point P /∈ Q and base H′. If R is a point of H′, which is contained in
at least δn(q) + 1 lines of type (2) in H′, then 〈P, TR(H′)〉 ∩ Q is a cone with
vertex a point which belongs to the line 〈P,R〉.
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Proof. Note that δn(q) ≥ |Qn−3| and δn(q) ≥ 1+q2|Qn−4| for any non-singular
quadric Qn−3 in PG(n− 3, q2) and any non-singular quadric Qn−4 in PG(n−
4, q2), as well in case n is even, as in case n is odd.

Let Q be the (n − 1)-dimensional quadric 〈P, TR(H′)〉 ∩ Q. This quadric Q
either is a non-singular quadric, or else a singular quadric with vertex a point.
We first show that only the last possibility can occur.

Assume that the quadric Q is non-singular. Then every point of this quadric
lies on |Q(n − 3, q2)| lines of Q, whereby Q(n − 3, q2) has the same type as
Q. We know that |Q(n − 3, q2)| ≤ δn(q). We also know that the line 〈P,R〉
intersects Q in either one or two points since this line is contained in at least
one plane intersecting Q in two lines, but P /∈ Q. These intersection points
therefore belong to at least δn(q)+1 lines of Q, a contradiction. So the quadric
Q is singular with a point S as vertex and a base Q′, a non-singular (n − 2)-
dimensional quadric Q(n− 2, q2).

Now, we show that this point S belongs to the line 〈P,R〉 and that this point
S is the only intersection point of this line with the quadric Q. Again, the
line 〈P,R〉 shares one or two points with the quadric Q. Assume that these,
one or two, intersection points are non-singular (not equal to the vertex), then
they belong to at most 1 + q2|Q(n − 4, q2)| lines of the quadric Q, whereby
Q(n− 4, q2) has the same type as Q′. But, in any case, this number of lines is
smaller than δn(q) + 1. So the line 〈P,R〉 contains the vertex S of the quadric
Q contained in Q.

Lemma 8.4.8. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. Assume that H is a cone with
vertex a point P /∈ Q and base H′, and let m be a line of type (2) in H′. Then
m contains at most one point which is contained in at least δn(q) + 1 lines of
type (2) in H′.

Proof. The line m defines a plane 〈P,m〉 intersecting Q in two lines m′ and
m′′. Denote the intersection point m′ ∩m′′ by T . By Lemma 8.4.7, the point
R = 〈P, T 〉 ∩m is the only point that can be lying on at least δn(q) + 1 lines
of type (2) in H′.

Lemma 8.4.9. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. Assume that H is a cone with
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vertex a point P /∈ Q and base H′. The number of lines of type (2) is at most

dn(q) =
δn(q)(δn(q) + 1) |H(n− 1, q2)|

(q2 + 2)δn(q) + q2 + 1− |H(n− 3, q2)|
.

Proof. Let A be the number of lines of type (2) in H′. Define P as the set of
points on H′ lying on at least δn(q) + 1 lines of type (2), and denote α = |P|.
Let β be the number of points of H′ lying on at most δn(q) lines of type (2).
Then, using a double counting argument, we find

α|H(n− 3, q2)|+ βδn(q) ≥ A(q2 + 1) .

Since α + β = |H(n− 1, q2)|, we can rewrite this as

α ≥ A(q2 + 1)− δn(q)|H(n− 1, q2)|
|H(n− 3, q2)| − δn(q)

.

Now, using Lemma 8.4.8 and a double counting argument, we also find

A ≥ (δn(q) + 1)α .

Combining both inequalities, we find

A ≥ (δn(q) + 1) · A(q2 + 1)− δn(q)|H(n− 1, q2)|
|H(n− 3, q2)| − δn(q)

.

It follows immediately that

A ≤ δn(q)(δn(q) + 1) |H(n− 1, q2)|
(q2 + 2)δn(q) + q2 + 1− |H(n− 3, q2)|

.

It should be noted that this deduction does not hold in the case n = 5 and
q = 2 since |H(2, 22)| = 9 = δ5(2). From the first inequality and the result
α+ β = |H′| however, it follows immediately that A ≤ 297, which is precisely
the inequality we wanted to prove.

Lemma 8.4.10. Let Q be a non-singular quadric in PG(n, q2) and let H be
a singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a
point P /∈ Q, then |H ∩Q| ≤ W n(q).
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Proof. We denote the base of the cone H by H′, a non-singular Hermitian

varietyH(n−1, q2). If |H∩Q| > W n(q), then there are more than an(q)
bn(q)

W n(q)−
cn(q) lines of type (2) in H′ by Lemma 8.4.5, with

an(q) = (|H(n− 1, q2)|+ (q2 + 1)(|H(n− 3, q2)| − 2)) · |H(n− 3, q2)| ,
bn(q) = q2(q2 + 1)2(|H(n− 3, q2)| − 1) ,

cn(q) =
|H(n− 1, q2)| · |H(n− 3, q2)|

q2
.

However, by Lemma 8.4.9, we know that there are at most dn(q) lines of type
(2) in H′, with

dn(q) =
δn(q)(δn(q) + 1) |H(n− 1, q2)|

(q2 + 2)δn(q) + q2 + 1− |H(n− 3, q2)|
.

Hence, if dn(q) < an(q)
bn(q)

W n(q)− cn(q), we find a contradiction. This condition

is equivalent to W n(q) > bn(q)(cn(q)+dn(q))
an(q)

.

Using a computer algebra package, it can be checked that this inequality is
valid. More details can be found in Computation A.3.1. Hence, the desired
contradiction is found.

In the next lemmata we consider the singular Hermitian varieties whose vertex
is a line. These Hermitian varieties are the union of |H(n − 2, q2)| planes
through the vertex.

Lemma 8.4.11. Let Q be a non-singular quadric in PG(n, q2) and let H be
a singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a
line ` such that ` ∩Q = ∅, then |H ∩Q| ≤ q2n−3 + 3q2n−5 + 2q2n−7 < W n(q).

Proof. A plane of H through ` cannot share a line with Q. So, in each of these
planes there are at most q2 + 1 points of Q. Consequently,

|H ∩Q| ≤ |H(n− 2, q2)|(q2 + 1)

≤ (q2n−5 + 2q2n−7)(q2 + 1)

= q2n−3 + 3q2n−5 + 2q2n−7 < W n(q) .

The final inequality is immediate if W n(q) = Wn(q). The other cases can easily
be checked.
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Lemma 8.4.12. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a line
` such that `∩Q = {R}, with R a point, then |H ∩Q| ≤ q2n−3 + 2q2n−5 + 1 <
W n(q).

Proof. We denote the base of the cone H by H′, a non-singular Hermitian
variety H(n − 2, q2). The tangent hyperplane TR(Q) contains the line `, so
intersects the (n−2)-space containing H′ in an (n−3)-space. The intersection
H ′ = TR(Q) ∩ H′ is either a non-singular Hermitian variety or a singular
Hermitian variety with a point as vertex. Clearly, 1 + q2|H ′| is an upper
bound on |(H ∩Q) ∩ TR(Q)|.

The number of points in H′\H ′ equals |H(n−2, q2)|−|H ′|. Each of the points
of H′\H ′ corresponds to a plane of H through `. Such a plane contains q2 lines
through R, all of them not contained in TR(Q). They all contain one additional
point of Q, next to R. So, (H ∩Q) \ TR(Q) contains q2(|H(n− 2, q2)| − |H ′|)
points.

We find that

|H ∩Q| ≤ 1 + q2|H ′|+ q2(|H(n− 2, q2)| − |H ′|)
≤ (q2n−5 + 2q2n−7)q2 + 1

= q2n−3 + 2q2n−5 + 1 < W n(q) .

The final inequality can be derived from the inequality q2n−3+3q2n−5+2q2n−7 <
W n(q), see Lemma 8.4.11.

Lemma 8.4.13. Let Q be a non-singular quadric in PG(n, q2) and let H be a
singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a line
` such that `∩Q = {P,R}, with P andR distinct points, then |H∩Q| < W n(q).

Proof. Since TP (Q) and TR(Q) meet in an (n−2)-space π disjoint to `, we can
choose the non-singular quadric Q′ = Q∩ π as base for both cones TP (Q)∩Q
and TR(Q) ∩ Q. Since π is disjoint to `, we can consider the non-singular
Hermitian varietyH′ = H∩π as base for H. Every point inH′∩Q′ corresponds
to a plane of H sharing two lines with Q and every point in H′\Q′ corresponds
to a plane of H sharing a conic with Q. We already know by Theorem 8.2.3
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that |H′ ∩Q′| ≤ Wn−2(q). Hence,

|H ∩Q| = 2 + |H′ ∩Q′|(2q2 − 1) + (|H′| − |H′ ∩Q′|) (q2 − 1)

= 2 + q2|H′ ∩Q′|+ (q2 − 1)|H(n− 2, q2)|
≤ 2 + q2Wn−2(q) + (q2 − 1)|H(n− 2, q2)|
< Wn(q) ≤ W n(q) .

For n = 5, we hereby use the value 2q3 + q2 + 1 for W3(q), which we found in
Theorem 8.3.1, as upper bound for |H′ ∩Q′|.

Lemma 8.4.14. Let Q be a non-singular quadric in PG(n, q2) and let H be
a singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex a
line ` ⊂ Q, then |H ∩Q| < W n(q).

Proof. We denote the base of the cone H by H′, a non-singular Hermitian
variety H(n − 2, q2). It is contained in an (n − 2)-space π disjoint to `. We
consider the (n − 2)-space T`(Q), the tangent space to Q at the line `. We
know that T`(Q) ∩ Q is a cone with vertex ` and base a non-singular quadric
Q′ of the same type as Q. We can choose the base Q′ in the (n − 4)-space
π′ = π ∩ T`(Q). We denote the Hermitian variety H ∩ π′ by H ′.

A plane through ` and a point of π′ is contained in the intersection H ∩ Q if
and only if the point in π′ is contained in H ′∩Q′. Hence, |(H ∩Q)∩T`(Q)| =
q2 + 1 + q4|H ′ ∩Q′|. A plane of H through ` which is not contained in T`(Q),
shares at most one other line with Q. Hence, |(H ∩Q)\T`(Q)| ≤ q2|H′ \Q′| =
q2 (|H′| − |H ′ ∩Q′|). Consequently,

|H ∩Q| ≤ q2 + 1 + (q4 − q2)|H ′ ∩Q′|+ q2|H′|
≤ q2 + 1 + (q4 − q2)|Q′|+ q2|H′|

≤ q2 + 1 + (q4 − q2)
(
q2n−8 − 1

q2 − 1
+ qn−5

)
+ q2(q2n−5 + 2q2n−7)

= q2n−3 + 2q2n−5 + q2n−6 + qn−1 − qn−3 + 1

≤ Wn(q) ≤ W n(q)

The last lemma of this section deals with singular Hermitian varieties in
PG(n, q2) whose vertex is an s-space, with 2 ≤ s ≤ n− 1.

Lemma 8.4.15. Let Q be a non-singular quadric in PG(n, q2) and let H be
a singular Hermitian variety in PG(n, q2), n ≥ 5. If H is a cone with vertex
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an s-space πs, 2 ≤ s ≤ n − 1, then |H ∩ Q| < W n(q) or s = n − 2 and H is
the union of q + 1 hyperplanes.

Proof. If s = n − 1, then H is a hyperplane. In this case, the intersection
H ∩Q is a quadric in an (n− 1)-space. Its size is clearly at most W n(q).

From now on, we assume that s ≤ n− 2. Since the vertex πs of H contains a
plane, and a plane in PG(2, q2) cannot be disjoint to a non-singular quadric,
we can find a point P in πs ∩ Q. Consider the tangent hyperplane TP (Q)
to Q in P . The intersection TP (Q) ∩ Q is a cone with vertex P and base
a non-singular quadric Q′ of the same type as Q. Furthermore, the tangent
hyperplane TP (Q) intersects H in a singular Hermitian variety with vertex an
(s− i)-space, i = −1, 0, 1.

The number of points in H \ TP (Q) equals q2n−1 if i = −1, equals q2n−1 +
(−1)n−sqn+s if i = 0 and equals q2n−1 + (−1)n−sqn+s−1(q − 1) if i = 1. The
points in H \ TP (Q) lie on lines of H through P . Since these lines do not lie
in TP (Q), they all contain, besides the point P , one additional point of Q. So,
|(H ∩Q) \ TP (Q)| ≤ q2n−3 + qn+s−2. Consequently,

|H ∩Q| = |(H ∩Q) \ TP (Q)|+ |(H ∩Q) ∩ TP (Q)|
≤ q2n−3 + qn+s−2 + |Q ∩ TP (Q)|

≤ q2n−3 + qn+s−2 +
q2n−2 − 1

q2 − 1
+ qn−1

If s ≤ n− 3, then it follows that |H ∩Q| < W n(q). This finishes the proof.

In the next section we will see that the two upper bounds we used in the
previous lemma are not met simultaneously. In fact, also in case the Hermitian
variety H is the union of q + 1 hyperplanes, the inequality |H ∩ Q| < W n(q)
is valid.

Resuming the results of this section, we can state the following theorem.

Theorem 8.4.16. Let Q be a non-singular quadric in PG(n, q2) and let H be
an arbitrary Hermitian variety in PG(n, q2). Then |H ∩ Q| ≤ W n(q) or H is
a singular Hermitian variety which is the union of q + 1 hyperplanes.

Proof. This is an immediate consequence of Lemmas 8.4.2, 8.4.3, 8.4.10, 8.4.11,
8.4.12, 8.4.13, 8.4.14 and 8.4.15.
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8.5 Some small weight code words

In this section we will give some examples of small weight code words of the
code CHerm(Q), Q a non-singular quadric. It follows from Theorem 8.4.16
that the code words arising from the Hermitian varieties in PG(n, q2) with an
(n− 2)-space as vertex and a non-singular Hermitian variety H(1, q2) as base,
are of particular interest. These Hermitian varieties can be seen as the union
of q + 1 hyperplanes through this vertex.

It will turn out that these give rise to code words with weights a little above
|Q| − W n(q). The difference between the bound W n(q) on the intersection
size of Q with a Hermitian variety H and the intersection size of the examples
that we will present is O(q2n−5). So, in fact, the obtained upper bound W n(q)
on the maximum size of the intersection of the non-singular quadric Q with
an arbitrary Hermitian variety, arises from the case of non-singular Hermitian
varieties. Note that the upper bound in Theorem 8.4.16 is obtained by taking
the maximum of the upper bounds from the different cases, and this case gave
the largest upper bound.

It should be observed that not any union of q+ 1 hyperplanes through a fixed
(n − 2)-space, is a Hermitian variety. Such a set of hyperplanes defines a
Hermitian variety if and only if its intersection with a line disjoint to the fixed
(n− 2)-space is a Baer subline of this line.

Remark 8.5.1. Each non-singular quadric has an index w, related to its type.
Its index equals 2 if the quadric is hyperbolic, 1 if the quadric is parabolic,
and 0 if it is elliptic. Using this index the number of points on a non-singular

quadric in PG(n, q2) is given by q2n−1
q2−1 + (w − 1)qn−1.

Example 8.5.2. Let πn−2 be an (n − 2)-space intersecting the non-singular
quadric Q in PG(n, q2), in a cone with vertex a line ` and base a non-singular
quadric Q′ in an (n− 4)-space. Each of the q2 + 1 hyperplanes through πn−2
intersects Q in a cone with vertex a point. Hence, any Hermitian variety with
πn−2 as vertex consists of q+1 hyperplanes intersecting Q in a singular quadric
whose vertex is a point.

We now calculate the weight of the code word c that such a Hermitian variety
H gives rise to. The weight of c equals the number of points of Q, not on H.
Each of these points lies on a hyperplane through πn−2 that does not belong
to the q + 1 hyperplanes of H. There are q2 − q hyperplanes through πn−2



194 | Chapter 8. The functional codes C2(H) and CHerm(Q)

that are not in H and each of those hyperplanes contains q2n−6 planes, not in
πn−2, through `. Such a plane contains precisely two lines of Q, one of them
`. Consequently, the weight of c is (q2 − q)q2q2n−6 = q2n−2 − q2n−3.

Note that the size of the intersection H∩Q equals q2n−2−1
q2−1 +q2n−3+(w−1)qn−1,

with w the index of Q.

Example 8.5.3. Let πn−2 be an (n − 2)-space intersecting the non-singular
quadricQ in PG(n, q2), in a cone with vertex a point P and base a non-singular
quadric Q′′ in an (n− 3)-space. All but one of the hyperplanes through πn−2
intersect Q in a non-singular quadric. One of those q2 +1 hyperplanes through
πn−2, the tangent hyperplane to Q in P , intersects Q in a singular quadric with
vertex a point, namely P , and base a non-singular quadric Q′ in an (n − 2)-
space. Hence, the Hermitian varieties with πn−2 as vertex can be split up in
two groups: the ones that contain the tangent hyperplane TP (Q) and the ones
that do not.

We now calculate the weight of the code words that both of these Hermitian
varieties H give rise to. If a hyperplane π is not TP (Q), then the number of
points of Q in this hyperplane π, not in πn−2, equals q2n−4 since every line
through P in π, but not in πn−2, is a bisecant to Q. The number of points of
Q in TP (Q), not in πn−2, equals

|TP (Q) ∩Q| − |πn−2 ∩Q| = (1 + q2|Q′|)− (1 + q2|Q′′|)
= q2 (|Q′| − |Q′′|)
= q2n−4 + (w′ − 1)qn−1 − (w′′ − 1)qn−2 .

Hereby w′ is the index of Q′, which equals the index of Q, and w′′ is the index
of Q′′.

In case the Hermitian variety contains the hyperplane TP (Q), then the weight
of the corresponding code word is q2n−2− q2n−3. In case the Hermitian variety
does not contain the hyperplane TP (Q), then the weight of the corresponding
code word equals q2n−2 − q2n−3 − qn−1 or q2n−2 − q2n−3 + qn−1 if n is odd, and
it equals q2n−2 − q2n−3 − qn−2 or q2n−2 − q2n−3 + qn−2 if n is even.

Note that the size of the intersection H∩Q equals q2n−2−1
q2−1 +q2n−3+(w′−1)qn−1

in the former case and q2n−2−1
q2−1 + q2n−3 + (w′′ − 1)qn−2 in the latter case, with

w′ and w′′ as before.
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In case the (n − 2)-space intersects Q in a non-singular quadric we need to
distinguish several cases.

Example 8.5.4. We assume n to be odd. Let πn−2 be an (n − 2)-space in-
tersecting the non-singular quadric Q in PG(n, q2), in a non-singular quadric
Q′. If Q and Q′ are of the same type, then two hyperplanes through πn−2 are
tangent hyperplanes to Q. The q2 − 1 remaining hyperplanes through πn−2
intersect Q in a non-singular parabolic quadric. If Q and Q′ are of a different
type, then all q2 + 1 hyperplanes through πn−2 intersect Q in a non-singular
parabolic quadric.

Let w be the index of Q and let w′ be the index of Q′. Let π be a hyperplane
through πn−2. If π intersects Q in a non-singular parabolic quadric, then
π \πn−2 contains q2n−4− (w′−1)qn−3 points of Q. If π is a tangent hyperplane
to Q, then π \ πn−2 contains q2n−4 + (w′ − 1)(qn−1 − qn−3) points of Q. Note
that in this case necessarily w = w′.

Hence, if w 6= w′, this code word has weight q2n−2−q2n−3−(w′−1)(qn−1−qn−2).
If w = w′, the weight of this code word equals q2n−2− q2n−3− (w′− 1)(qn−1−
qn−2), q2n−2 − q2n−3 + (w′ − 1)qn−2 or q2n−2 − q2n−3 + (w′ − 1)(qn−1 + qn−2)
depending on the number of tangent hyperplanes contained in the Hermitian
variety, two, one or zero. Among these, the smallest code word has weight
q2n−2 − q2n−3 − qn−1 − qn−2. This corresponds to a code word arising from
an elliptic quadric Q and a Hermitian variety which is the union of q + 1
hyperplanes, none of them tangent hyperplanes, through an (n − 2)-space
intersecting the quadric Q in a non-singular elliptic quadric.

Note that in this case the intersection size equals q2n−2−1
q2−1 + q2n−3 + qn−2.

Example 8.5.5. We assume n to be even and q to be odd. Let πn−2 be
an (n − 2)-space intersecting the non-singular parabolic quadric Q in a non-
singular parabolic quadric Q′. Let ` be the polar line of πn−2, necessarily
disjoint from πn−2. There are two possibilities. If ` is a secant line to Q,
with ` ∩ Q = {Q,R}, Q and R distinct points, then two of the hyperplanes
through πn−2 are tangent hyperplanes, namely TQ(Q) and TR(Q), precisely
q2−1
2

of the remaining hyperplanes intersect Q in an (n− 1)-dimensional non-

singular hyperbolic quadric (hyperbolic hyperplanes) and precisely q2−1
2

of them
intersect Q in an (n − 1)-dimensional non-singular elliptic quadric (elliptic

hyperplanes). If ` is a line disjoint from Q, then q2+1
2

of the hyperplanes

through πn−2 intersect Q in a non-singular hyperbolic quadric and q2+1
2

of
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them intersect Q in a non-singular elliptic quadric.

Let π be a hyperplane through πn−2. If π is a tangent hyperplane, then π\πn−2
contains q2n−4 points of Q. If π is a hyperbolic hyperplane, then π \ πn−2
contains q2n−4 + qn−2 points of Q. If π is an elliptic hyperplane, then π \ πn−2
contains q2n−4 − qn−2 points of Q.

We look at an example in the case ` is a secant line. We consider the standard
equation X2

0 + X1X2 + · · · + Xn−1Xn = 0 of Q and let πn−2 be the (n − 2)-
space given by the equations Xn−1 = Xn = 0. The two tangent hyperplanes
through πn−2 are given by Xn−1 = 0, which is TQ(Q) for Q = (0, . . . , 0, 0, 1),
and by Xn = 0, which is TR(Q) for R = (0, . . . , 0, 1, 0). The other hyperplanes
through πn−2 are given by Xn−1 + αXn = 0, α ∈ F∗q2 , which we denote by

shortened coordinates [1, α]. The tangent hyperplanes correspond to [1, 0] and

[0, 1]. The hyperplane [1, α] intersects Q in a hyperbolic quadric if and only if

α is a non-zero square; the hyperplane [1, α] intersects Q in an elliptic quadric
if and only if α is a non-square. We now investigate how a dual Baer subline
can intersect these sets.

First assume that the Hermitian variety contains both tangent hyperplanes
(the dual Baer subline contains [1, 0] and [0, 1]). The dual Baer subline is then

defined by choosing a third hyperplane [1, y]: all q−1 hyperplanes of this dual

Baer subline, different from [1, 0] and [0, 1], then can be written as [1, βy], with
β ∈ F∗q ⊂ Fq2 . Since β ∈ F∗q ⊂ F∗q2 , βy is a non-zero square in F∗q2 if and only
if y is a non-zero square in F∗q2 . Hence, either all hyperplanes in the dual Baer

subline, different from [1, 0] and [0, 1], intersect Q in a hyperbolic quadric or all

hyperplanes in the dual Baer subline, different from [1, 0] and [0, 1], intersect

Q in an elliptic quadric. The q+ 1 dual Baer sublines through [1, 0] and [0, 1],
which we denote by l0, . . . , lq, partition the q2− 1 remaining points of the dual
line. Next to the two tangent hyperplanes, q+1

2
of these dual Baer sublines, say

l0, . . . , l q−1
2

, only contain hyperbolic hyperplanes and q+1
2

of these dual Baer

sublines, say l q+1
2
, . . . , lq, only contain elliptic hyperplanes. We find code words

of weight

q2 − 1

2
(q2n−4 − qn−2) +

(
q2 − 1

2
− (q − 1)

)
(q2n−4 + qn−2)

= q2n−2 − q2n−3 − qn−1 + qn−2 ,
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corresponding to the dual Baer sublines li, i ≤ q−1
2

, and of weight

q2 − 1

2
(q2n−4 + qn−2) +

(
q2 − 1

2
− (q − 1)

)
(q2n−4 − qn−2)

= q2n−2 − q2n−3 + qn−1 − qn−2 ,

corresponding to the dual Baer sublines li, i ≥ q+1
2

.

Secondly, we assume that the dual Baer subline only contains one of the two
tangent hyperplanes, say [1, 0]. Since two distinct dual Baer sublines have at
most two hyperplanes in common, such a dual Baer subline contains at most
one hyperbolic or elliptic hyperplane of each li, 0 ≤ i ≤ q. A dual Baer subline
contains precisely q+ 1 hyperplanes, so all but one of the dual Baer sublines li
contribute one hyperplane. Let lj be the one dual Baer subline that does not
contribute an additional hyperplane. If j ≤ q−1

2
, then the corresponding code

word has weight

q2n−4 +

(
q2 − 1

2
− q + 1

2

)
(q2n−4 − qn−2)

+

(
q2 − 1

2
− q − 1

2

)
(q2n−4 + qn−2)

= q2n−2 − q2n−3 + qn−2 ;

if j ≥ q+1
2

, then the corresponding code word has weight

q2n−4 +

(
q2 − 1

2
− q − 1

2

)
(q2n−4 − qn−2)

+

(
q2 − 1

2
− q + 1

2

)
(q2n−4 + qn−2)

= q2n−2 − q2n−3 − qn−2 .

By looking at some examples of Baer sublines one can see that both possibilities
occur.

Finally, we assume that the dual Baer subline contains no tangent hyperplanes.
Then, it contains k hyperbolic hyperplanes and q+ 1− k elliptic hyperplanes,
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0 ≤ k ≤ q + 1. The corresponding code word has weight

2q2n−4 +

(
q2 − 1

2
− k
)

(q2n−4 + qn−2)

+

(
q2 − 1

2
− (q + 1− k)

)
(q2n−4 − qn−2)

= q2n−2 − q2n−3 + (q + 1− 2k)qn−2 .

The weight of all these code words is thus between q2n−2− q2n−3− qn−1− qn−2
and q2n−2 − q2n−3 + qn−1 + qn−2.

Example 8.5.6. We assume n to be even and q to be even. Let πn−2 be
an (n − 2)-space intersecting the non-singular parabolic quadric Q in a non-
singular parabolic quadric Q′. Recall that Q has a nucleus N in this case (see
Remark 1.6.8). We distinguish between two cases.

If N ∈ πn−2, then all hyperplanes through πn−2 are tangent hyperplanes to Q.
We know that (π\πn−2)∩Q contains q2n−4 points, for such a tangent hyperplane
π. Hence, all code words of this type have weight (q2−q)q2n−4 = q2n−2−q2n−3.
The intersection size of such a Hermitian variety and Q equals q2n−3 + q2n−2−1

q2−1 .

If N /∈ πn−2, then one of the hyperplanes through πn−2 is a tangent hyperplane.

Precisely q2

2
of the remaining hyperplanes through πn−2, intersect Q in a non-

singular hyperbolic quadric, and precisely q2

2
of the remaining hyperplanes

through πn−2, intersect Q in a non-singular elliptic quadric. As in the previous
example, these are called hyperbolic and elliptic hyperplanes respectively. If π
is a hyperbolic hyperplane, then (π \ πn−2) ∩ Q contains q2n−4 + qn−2 points.
If π is an elliptic hyperplane, then (π \ πn−2)∩Q contains q2n−4− qn−2 points.

If the Hermitian variety H contains the unique tangent hyperplane through
πn−2, then it contains k hyperbolic hyperplanes and q−k elliptic hyperplanes.
The corresponding code word has weight(

q2

2
− k
)

(q2n−4 + qn−2) +

(
q2

2
− (q − k)

)
(q2n−4 − qn−2)

= q2n−2 − q2n−3 + (q − 2k)qn−2 ,

and |H ∩Q| equals q2n−3 + q2n−2−1
q2−1 − (q − 2k)qn−2.

If the Hermitian variety H does not contain the unique tangent hyperplane
through πn−2, then it contains k hyperbolic hyperplanes and q + 1− k elliptic
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hyperplanes. The corresponding code word has weight

q2n−4 +

(
q2

2
− k
)

(q2n−4 + qn−2)

+

(
q2

2
− (q + 1− k)

)
(q2n−4 − qn−2)

= q2n−2 − q2n−3 + (q + 1− 2k)qn−2 ,

and |H ∩Q| equals q2n−3 + q2n−2−1
q2−1 − (q + 1− 2k)qn−2.

8.6 A divisibility condition on the weights

All functional codes studied so far, have been shown to have a divisor of the
form qe, see [50, 51, 52] for the functional codes C2(Q), CHerm(H) and C2(H),
Q a non-singular quadric and H a non-singular Hermitian variety. The proofs
of these results all rely on the following theorem by Ax and Katz.

Theorem 8.6.1 ([86]). Let S be a finite set of variables and let T = {fi|i ∈
I} be a collection of polynomials in Fq[S], with di = deg(fi). Denote the
number of common zeros of the polynomials of T by N . Then N ≡ 0 (mod qµ),
with

µ =

⌈
|S| −

∑
i∈I di

supi∈I di

⌉
.

In this section we prove that also the code CHerm(Q) has a divisor of the form
qe.

Lemma 8.6.2. Let H be a Hermitian variety in PG(n, q2) and let Q be a
quadric in PG(n, q2), which both can be singular. Then, on the one hand,

|Q ∩H| ≡ qn−2−1
q2−1 (mod qn−2) if n is even, and, on the other hand, |Q ∩H| ≡

qn−1−1
q2−1 (mod qn−2) if n is odd.

Proof. We can choose a coordinate system such that the equation of H can
be written as Xq+1

0 + · · · + Xq+1
i = g(X0, . . . , Xn) = 0, with 0 ≤ i ≤ n. The

quadric Q is given by an equation f(X0, . . . , Xn) = 0, with f a quadratic
polynomial. Every point of Q ∩H corresponds vectorially to q2 − 1 solutions
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of the system of equations{
f(X0, . . . , Xn) = 0

g(X0, . . . , Xn) = 0
, (8.1)

and every non-zero solution of this system corresponds to a point of Q ∩ H.
Let α be an element of Fq2 \ Fq. Then every element x ∈ Fq2 can be written
as x = y + αz, with y, z ∈ Fq. Now we write Xi = Yi + αZi, with Yi and Zi
variables over Fq. In these new variables, the equation of H is given by

0 =
i∑

j=0

(Yj + αZj)
q+1

=
i∑

j=0

(Y q+1
j + αY q

j Zj + αqYjZ
q
j + αq+1Zq+1

j )

=
i∑

j=0

(Y 2
j + (α + αq)YjZj + αq+1Z2

j ) ,

a quadratic equation over Fq, since α + αq, αq+1 ∈ Fq. Hereby we used the

identity xq = x which is valid for any x ∈ Fq. We denote
∑i

j=0(Y
2
j + (α +

αq)YjZj +αq+1Z2
j ) by g(Y0, Z0, . . . , Yn, Zn). The equation of Q in the variables

Yj and Zj is of the form

f0(Y0, . . . , Yn) + αf1(Y0, Z0, . . . , Yn, Zn) + α2f2(Z0, . . . , Zn) = 0 .

Writing α2 = a2 + b2α, with a2, b2 ∈ Fq, we can rewrite this equation as

0 = [f0(Y0, . . . , Yn) + a2f2(Z0, . . . , Zn)]

+ α [f1(Y0, Z0, . . . , Yn, Zn) + b2f2(Z0, . . . , Zn)]

= f 0(Y0, Z0, . . . , Yn, Zn) + αf 1(Y0, Z0, . . . , Yn, Zn) .

The quadric Q is thus defined by a system of two equations over the variables
Yj, Zj: {

f 0(Y0, Z0, . . . , Yn, Zn) = 0

f 1(Y0, Z0, . . . , Yn, Zn) = 0
.
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Now we look at the system of equations
g(Y0, Z0, . . . , Yn, Zn) = 0

f 0(Y0, Z0, . . . , Yn, Zn) = 0

f 1(Y0, Z0, . . . , Yn, Zn) = 0

. (8.2)

Every solution (x0, . . . , xn), xi ∈ Fq2 , with xi = yi + αzi, yi, zi ∈ Fq, of (8.1)
corresponds to a unique solution (y0, z0, . . . , yn, zn) of (8.2) and vice versa. Let
M be the number of solutions of (8.2) in V (2n+ 2, q). By Theorem 8.6.1, we
know that

M ≡ 0 (mod qµ), with µ =

⌈
2(n+ 1)− 3 · 2

2

⌉
= n− 2.

Thus we can write M = mqn−2 for an integer m. Note that the all-zero vector
is a solution of (8.2). Since Q and H are defined by homogeneous polynomials
over Fq2 , we know that |Q ∩H| = M−1

q2−1 . Hence, M ≡ 1 (mod (q2 − 1)).

On the one hand, if n is even, we find that

1 ≡M ≡ mqn−2 ≡ m(q2)(n−2)/2 ≡ m (mod (q2 − 1)) .

So, m = m′(q2 − 1) + 1 for an integer m′. Consequently,

|Q ∩H| = mqn−2 − 1

q2 − 1
= m′qn−2 +

qn−2 − 1

q2 − 1
.

On the other hand, if n is odd, we find that

1 ≡M ≡ mqn−2 ≡ m(q2)(n−3)/2q ≡ mq (mod (q2 − 1)) .

So, m = m′(q2 − 1) + q for an integer m′. Consequently,

|Q ∩H| = mqn−2 − 1

q2 − 1
= m′qn−2 +

qn−1 − 1

q2 − 1
.

In both cases the statement follows.

Theorem 8.6.3. The value qn−2 is a divisor of the code CHerm(Q), Q a non-
singular quadric in PG(n, q2), n ≥ 3.
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Proof. Let c be a code word of the code CHerm(Q). This code word is generated
by a polynomial f which gives rise to a Hermitian variety H. We need to
distinguish two cases.

First we assume n even. By Lemma 8.6.2, we know that |Q ∩ H| ≡ qn−2−1
q2−1

(mod qn−2). Furthermore,

|Q| = q2n − 1

q2 − 1
= qn−2

(
qn+2 − 1

q2 − 1

)
+
qn−2 − 1

q2 − 1
≡ qn−2 − 1

q2 − 1
(mod qn−2) .

We conclude:
wt(c) = |Q| − |Q ∩H| ≡ 0 (mod qn−2) .

Now we assume n odd. Denote the index of Q by w. By Lemma 8.6.2, we

know that |Q ∩H| ≡ qn−1−1
q2−1 (mod qn−2). Furthermore,

|Q| = q2n − 1

q2 − 1
+ (w − 1)qn−1

= qn−1
(
qn+1 − 1

q2 − 1
+ w − 1

)
+
qn−1 − 1

q2 − 1

≡ qn−1 − 1

q2 − 1
(mod qn−2) .

We conclude:
wt(c) = |Q| − |Q ∩H| ≡ 0 (mod qn−2) .

Since c is an arbitrary code word, the theorem is proved.

Comparing the proof of Lemma 8.6.2 to the proof of [52, Theorem 3.4], we note
that in their proof the Hermitian variety needs to be non-singular, whereas it
is allowed to be singular in our proof. In their proof however, the Hermitian
variety is intersected by a hypersurface of degree h, whereas we only considered
h = 2. The techniques of the above proof could be used to prove a generali-
sation of this lemma, involving hypersurfaces of degree h < n. We did not do
this here since we do not need it for the proof of Theorem 8.6.3. Note also
that there is a small mistake in the proof of [52, Theorem 3.4]: in fact they
count the number of intersection points in PG(2n+ 1, q), not in PG(n, q2).



9
The dual code Cn(H(2n + 1, q2))⊥

Orde brengen is de taak van sterk onderlegde idealisten. [...]
Wetenschap en kunst, leidende factoren des levens zullen voortaan als

dusdanig dienen opgevat te worden. Er zal van ons nog veel gevergd worden.
Dat men ons immer bereid vinde tot den goeden kamp.

Prosper De Troyer in een brief aan Felix De Boeck.

For a finite polar space P of rank d, we introduced in Section 1.8 the linear code
Ck(P), k < d. This is the linear code generated by the incidence vectors of the
k-spaces on P , with the points of P as positions. The linear code Cd−1(P) is
the code generated by the incidence vectors of the generators. In this chapter
we will discuss the dual code of this code for the Hermitian polar space in
PG(2n+ 1, q2), i.e. the code Cn(H(2n+ 1, q2))⊥. It is called the dual code of
points and generators (n-spaces) of the Hermitian polar space H(2n+ 1, q2).

The codes Ck(P) for polar spaces or generalised quadrangles, their duals and
related codes have been studied before in [89, 103, 124, 125] among others. In
[103], the code Cn(H(2n + 1, q2))⊥ was investigated. The following theorems
about Cn(H(2n + 1, q2))⊥ are known. Note that we can identify the set of
positions supp(c) of a code word c with a set of points of H(2n + 1, q2) using

| 203
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the correspondence between the positions and the points of H(2n+ 1, q2). We
will use this identification throughout this chapter.

Theorem 9.0.1 ([89, Proposition 3.7]). Let c be a code word of the code
C1(H(3, q2))⊥. If 0 < wt(c) < 3q, then wt(c) = 2(q + 1). Moreover, the
supports of all code words with weight equal to 2(q + 1), are PGL-equivalent.

If wt(c) ≤
√
q(q+1)

2
, then c is a linear combination of these code words.

Theorem 9.0.2 ([103, Theorem 43]). Let c be a code word of the code
C2(H(5, q2))⊥, q > 893. If 0 < wt(c) ≤ 2(q3 + q2), then wt(c) = 2(q3 + 1)
or wt(c) = 2(q3 + q2). Moreover, the supports of all code words with weight
equal to 2(q3 + 1) are PGL-equivalent and the supports of all code words with
weight equal to 2(q3 + q2) are PGL-equivalent.

The investigations on the code Cn(H(2n+ 1, q2))⊥ in this chapter, improve on
the work in [103, Section 5]. We determine the minimum weight of Cn(H(2n+
1, q2))⊥ for general n, and we show that if q is sufficiently large, a similar
statement to the second part of Theorem 9.0.1 holds for general n. The main
result of this chapter is as follows.

Theorem 9.0.3. Let n be any positive integer and let δ > 0 be a constant.
If c is a code word of Cn(H(2n + 1, q2))⊥ with 0 < wt(c) ≤ 4q2n−2(q − 1) and
q is sufficiently large, then there are only n possible PGL-equivalence classes
for supp(c); call S this set of PGL-equivalence classes. If c is a code word
with wt(c) < δq2n−1, then c is a linear combination of code words which are an
incidence vector of a set in S. The minimum distance of Cn(H(2n + 1, q2))⊥

is 2q2n−4(q3 + 1) for n ≥ 2.

The code words mentioned in this theorem are described in Section 9.1. The
theorem itself is proved in Section 9.3 using the results from Section 9.2. We
refer to Section 1.6 for basic knowledge about Hermitian polar spaces. For sake
of simplicity, we denote the number of points on the Hermitian polar space

H(m, q2) by µm(q2) = (qm+1−(−1)m+1)(qm−(−1)m)
q2−1 .

This chapter is based on [41], which is joint work with Peter Vandendriessche.
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9.1 The code words

In this section we introduce a set of code words of the code Cn(H(2n+1, q2))⊥.
Recall that the point set of a Hermitian polar space H(2n + 1, q2) can be
considered as a non-singular Hermitian variety in PG(2n + 1, q2). We start
with a remark on the description of these code words.

Remark 9.1.1. A code word c of Cn(H(2n + 1, q2))⊥, q = ph, p prime, is
an element of the null space of the corresponding incidence matrix over Fp,
which is equivalent to a mapping from the point set of H(2n + 1, q2) to Fp,
mapping a point P to cP , the value of c on the position corresponding to
P , with the additional property that

∑
P∈π cP = 0, for all generators π of

H(2n + 1, q2). Hence, code words can be studied as multisets of points such
that each generator on H(2n + 1, q2) contains 0 (mod p) of the points in the
multiset.

Note that these arguments are valid for any code Ck(P)⊥.

Lemma 9.1.2. Consider a non-singular Hermitian variety H(2n + 1, q2) in
PG(2n+1, q2) and let σ be the corresponding polarity. Let π be a k-dimensional
subspace in PG(2n + 1, q2) such that π ∩ H(2n + 1, q2) is a cone with vertex
πi and base Hk−i−1 with Hk−i−1 ∼= H(k − i − 1, q2) and πi an i-space, −1 ≤
i ≤ min{k, n}. Then π ∩ πσ = πi. Conversely, if π ∩ πσ is an i-space πi, then
π ∩ H(2n + 1, q2) is a cone with vertex πi and base H ′k−i−1 with H ′k−i−1

∼=
H(k − i− 1, q2).

Proof. The first statement is [81, Lemma 23.2.8]; the second statement is a
corollary of the first.

We will use this theorem mostly in the case k = n. In the construction of the
code words we need the following lemma.

Lemma 9.1.3. Consider H(2n+1, q2) in PG(2n+1, q2). Let π be an n-space
in PG(2n + 1, q2) and let µ be a generator of H(2n + 1, q2). Then π ∩ µ and
πσ ∩ µ are subspaces of the same dimension.

Proof. We denote µ ∩ π = πj, a j-space, possibly empty (j = −1). It follows
that 2n − j = dim((µ ∩ π)σ) = dim(〈µσ, πσ〉). Using the Grassmann identity
and µ = µσ (µ is a generator), we find dim(µ ∩ πσ) = dim(µ) + dim(πσ) −
dim(〈µσ, πσ〉) = j.



206 | Chapter 9. The dual code Cn(H(2n+ 1, q2))⊥

Now, we can give the construction of small weight code words of the code
Cn(H(2n+ 1, q2))⊥. This construction is based on [103, Theorem 58].

Theorem 9.1.4. Consider H(2n + 1, q2) and its corresponding polarity σ in
PG(2n + 1, q2). Let π be an n-space in PG(2n + 1, q2). Denote the incidence
vector of π∩H(2n+ 1, q2) by vπ and the incidence vector of πσ ∩H(2n+ 1, q2)
by vπσ . Then α(vπ − vπσ), α ∈ Fp, is a code word of Cn(H(2n+ 1, q2))⊥.

Proof. Let µ be a generator of H(2n + 1, q2) and denote its incidence vector
by vµ. Using Lemma 9.1.3, we find µ intersects both π and πσ, or neither.
In the first case |π ∩ µ| ≡ |πσ ∩ µ| ≡ 1 (mod q) and in the second case
|π ∩ µ| = |πσ ∩ µ| = 0. In both cases vπ · vµ = vπσ · vµ. The theorem follows.

Example 9.1.5. We list the different possibilities for π ∩ πσ. Hereby, we use
Lemma 9.1.2 for k = n and Theorem 9.1.4. We write H = H(2n+ 1, q2).

• π ∩ πσ = ∅. We write π ∩ H = H and πσ ∩ H = H ′. We know,
H,H ′ ∼= H(n, q2). The corresponding code words have weight 2µn(q2).

• π ∩ πσ = πi, an i-space, 0 ≤ i ≤ n − 2. We write π ∩ H = πiH and
πσ ∩ H = πiH

′, which are both cones with vertex πi and bases H and
H ′, with H,H ′ ∼= H(n − i − 1, q2). The corresponding code words have
weight 2q2i+2µn−i−1(q

2).

• π ∩ πσ = πn−1, an (n − 1)-space. Then π ∩ H = πσ ∩ H = πn−1 since
H(0, q2) is empty. The construction gives rise to the zero code word.

• π ∩ πσ = πn, an n-space. Then π = πσ = πn ⊂ H. Also in this case, the
construction gives rise to the zero code word.

It can easily be checked that among these four cases, the code words with
smallest weight are the ones corresponding to i = n− 3.

Note that the code words of weight 2(q + 1) mentioned in Theorem 9.0.1 and
the code words of weight 2(q3 + 1) or 2(q3 + q2) mentioned in Theorem 9.0.2
are code words of the type described above.

Remark 9.1.6. We consider the construction from Theorem 9.1.4, using the
notation from Example 9.1.5. We look at π ∩ H = πiHn−i−1 and πσ ∩ H =
πiH

′
n−i−1; both are cones with vertex πi. Let P be a point of πiHn−i−1 and let

P ′ be a point of πiH
′
n−i−1. We know that P ′ ∈ πσ ⊆ P σ and P ′ ∈ H. Hence,

the line 〈P, P ′〉 is a line of H.
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9.2 Some counting results

Lemma 9.2.1. Consider the non-singular Hermitian variety H(2n+ 1, q2) in
PG(2n + 1, q2) and let σ be the corresponding polarity. Let τ be a j-space
such that τ ∩ H(2n + 1, q2) = Hj

∼= H(j, q2), −1 ≤ j ≤ n. The number of
generators on H(2n+ 1, q2) skew to τ equals

cn,j = q(
j+1
2 )

n−j−1∏
k=0

(q2k+1 + 1)

2n−j+1∏
l=2(n−j)+1

(ql − (−1)l).

Proof. By [81, Theorem 23.4.2 (i)] we know that the number of generators
skew to τ only depends on the parameters n and j and not on the choice of τ
itself.

We will prove this theorem using induction on j. If j = −1, τ is the empty
space and hence cn,−1 equals the total number of generators. Using Lemma
1.6.3 we find cn,−1 =

∏n
k=0(q

2k+1 + 1). Now, we prove a recursive relation
between cn,j and cn−1,j−1.

By Lemma 9.1.2 we know τ ∩ τσ = ∅. Hence, every point P ∈ PG(2n+ 1, q2)\
(τ ∪ τσ) belongs to only one line 〈Pτ , Pτσ〉, with Pτ ∈ τ and Pτσ ∈ τσ. For
every point P ∈ PG(2n + 1, q2) \ (τ ∪ τσ), we define φτ (P ) = Pτ . This is the
projection of P from τσ on τ . We define a correlation σ : τ → τ that maps
the subspace U ⊂ τ to Uσ ∩ τ . It is straightforward to check that σ defines
a polarity on τ . Moreover, it can be seen easily that the points of Hj are the
absolute points of σ. Hence, σ is the polarity of τ corresponding to Hj.

Now, we consider the set S = {(P, µ) | P ∈ µ \ τσ, φτ (P ) /∈ Hj, µ ∩ τ =
∅, µ a generator}. We count the number of elements of S in two ways. On the
one hand, there are cn,j generators skew to τ . Let µ be such a generator. The
intersection µ∩τσ is an (n− j−1)-space since dim(µ∩τσ)+dim(〈µ, τ〉) = 2n.
We also know that φτ (P ) = R for every point P ∈ 〈R, µ∩τσ〉\(µ∩τσ), R ∈ τ .
Hence, for each generator there are θn(q2) − θn−j−1(q

2) − µj(q
2)(θn−j(q

2) −
θn−j−1(q

2)) = q2(n−j)(θj(q
2) − µj(q

2)) points fulfilling the requirements. On
the other hand, we count the points P ∈ H(2n+ 1, q2) \ (τ ∪ τσ) fulfilling the
requirements. There are µ2n+1(q

2)− µj(q2)− µ2n−j(q
2) points in this set. We

must assure that φτ (P ) /∈ Hj. Let R be a point of Hj. Since τσ ⊆ Rσ, a
line 〈R,Q〉, Q ∈ τσ, is a tangent line in R to H(2n + 1, q2) or a line which is
completely contained in H(2n+ 1, q2). Hence, φτ (P ) is a point of Hj iff P lies
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on a line through φτ (P ) and a point of τσ ∩H(2n+ 1, q2). Consequently there
are

µ2n+1(q
2)− µj(q2)− µ2n−j(q

2)− µj(q2)µ2n−j(q
2)(q2 − 1)

= q2n−j(θj(q
2)− µj(q2))(q2n−j+1 − (−1)2n−j+1)

points P ∈ H(2n+1, q2)\ (τ ∪τσ) fulfilling the requirement φτ (P ) /∈ Hj. Now,
we fix such a point P and we count the number of generators skew to τ , through
it. All these generators are contained in P σ. We know P σ ∩ H(2n + 1, q2) is
a cone with vertex P and base H2n−1, with H2n−1 ∼= H(2n − 1, q2). There is
a 1-1 correspondence between the generators of H(2n + 1, q2) through P and
the generators of H2n−1. We also find

τ ∩ P σ = τ ∩ (φτ (P ))σ = (φτ (P ))σ ,

since P σ is a hyperplane through the intersection (φτ (P ))σ ∩ (φτσ(P ))σ and
through τ ⊂ (φτσ(P ))σ. Hence, the (j−1)-space τ∩P σ intersects H(2n+1, q2)
in Hj−1 ∼= H(j−1, q2), since φτ (P ) /∈ Hj. We can choose the base H2n−1 of the
cone P σ ∩H(2n+ 1, q2) such that it contains τ ∩ P σ. The generators through
P and skew to τ correspond to the generators of H2n−1, skew to τ ∩P σ. There
are cn−1,j−1 such generators. We conclude

cn,jq
2(n−j) [θj(q2)− µj(q2)]

= cn−1,j−1q
2n−j [θj(q2)− µj(q2)] (q2n−j+1 − (−1)2n−j+1)

⇒ cn,j = cn−1,j−1q
j(q2n−j+1 − (−1)2n−j+1).

An induction calculation now finishes the proof.

Notation 9.2.2. From now on in this section, we use the following notation:
H ∼= H(2n + 1, q2) is a non-singular Hermitian variety in PG(2n + 1, q2) and
σ is the polarity corresponding to it; π is an n-space in PG(2n + 1, q2), such
that π ∩H is a cone πiHn−i−1 with vertex πi and base Hn−i−1 with Hn−i−1 ∼=
H(n − i − 1, q2) and πi an i-space, −1 ≤ i ≤ n. By Lemma 9.1.2, for k = n,
we know π ∩ πσ = πi and consequently πσ ∩H is a cone πiH

′
n−i−1 with vertex

πi and base H ′n−i−1 with H ′n−i−1
∼= H(n− i− 1, q2).

Definition 9.2.3. We use the conventions from Notation 9.2.2. The number
of generators on H intersecting π in a fixed point P ∈ πiHn−i−1 \ πi and no
other point of πiHn−i−1, and intersecting πσ in a fixed point P ′ ∈ πiH ′n−i−1 \πi
and no other point of πiH

′
n−i−1 is denoted by N(π, P, P ′, H). The number of

generators on H skew to π is denoted by N ′(π,H).



9.2. Some counting results | 209

By Lemma 9.1.3 we know that the generators skew to π are also skew to πσ

and that the generators intersecting π in precisely one point also intersect πσ

in precisely one point.

Lemma 9.2.4. The number N ′(π,H) only depends on the intersection pa-
rameters (n, i) of π. Consequently, we can denote N ′(π,H) by N ′n,i(q).

Proof. This follows immediately from [81, Theorem 23.4.2 (i)].

Lemma 9.2.5. We use the conventions from Notation 9.2.2. For n ≥ 2, −1 ≤
i ≤ n − 2, N(π, P, P ′, H) = N ′n−2,i(q). Consequently, N(π, P, P ′, H) only
depends on the intersection parameters (n, i) of π.

Proof. Consider the points P ∈ (πiHn−i−1 \πi) ⊆ π and P ′ ∈ (πiH
′
n−i−1 \πi) ⊆

πσ. Denote ` = 〈P, P ′〉. Then `σ is a (2n − 1)-space intersecting H in a cone
with ` as vertex and a non-singular (2n − 3)-dimensional Hermitian variety
H2n−3 as base. Since dim(` ∩ π) = dim(` ∩ πσ) = 0, `σ ∩ π = V is an (n− 1)-
space and `σ ∩ πσ = V ′ is an (n − 1)-space. Also, ` ⊂ 〈π, πσ〉 = πσi , hence
πi ⊂ lσ. Let W and W ′ be (n− 2)-spaces in V and V ′ respectively, containing
πi and such that P /∈ W and P ′ /∈ W ′. Denote the (2n− i− 4)-space 〈W,W ′〉
by τ ′. It can be seen that on the one hand τ ′ ⊂ `σ and on the other hand
`∩τ ′ = ∅, so the (2n−3)-space τ containing the base H2n−3 can be chosen such
that τ ′ ⊆ τ . Let σ′ be the polarity of τ corresponding to H2n−3. Analogously to
the proof of Lemma 9.2.1 we can define this polarity as follows: Uσ′ = τ ∩Uσ.
It now immediately follows that W σ′ = W ′ because both are (n − 2)-spaces
contained in W σ and in τ .

Arguing again as in the proof of Lemma 9.2.1, we see there is a 1-1 correspon-
dence between the generators of H2n−3 and the generators of H through ` (the
generators containing P and P ′). If a generator of H through ` contains no
points of π ∪ πσ but P and P ′, then its corresponding generator of H2n−3 is
skew to W and W ′. Vice versa, every generator µ of H2n−3 skew to W and
W ′, is contained in precisely one generator of H intersecting π ∪ πσ in only
the points P and P ′, namely 〈µ, P, P ′〉. Since W σ′ = W ′, the generators of
H2n−3 skew to W and W ′ are the ones skew to W , by Lemma 9.1.3. Hence,
N(π, P, P ′, H) = N ′n−2,i(q).

The second statement in the lemma follows immediately from the first one.

Notation 9.2.6. Since N(π, P, P ′, H) only depends on the intersection pa-
rameters (n, i) of π, we can denote it by Nn,i(q).
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The previous theorem now states Nn,i(q) = N ′n−2,i(q) for n ≥ 2, −1 ≤ i ≤ n−2.

Lemma 9.2.7. For n ≥ 1 and −1 ≤ i ≤ n− 2, the following equality is valid:

Nn,i(q) = q(n−1)
2−(n−i−1

2 )
n−i−2∏
j=1

(qj − (−1)j).

Proof. We use the conventions introduced in Notation 9.2.2. We prove this
theorem using induction. Using Lemma 9.2.5, we know that Nn,−1(q) equals
N ′n−2,−1(q), the number of generators of a Hermitian variety H ′ ∼= H(2n−3, q2)

skew to an (n − 2)-space intersecting H ′ in a Hermitian variety H(n − 2, q2),
if n ≥ 2. This number equals cn−2,n−2. Hence, by Lemma 9.2.1,

Nn,−1(q) = q(
n−1
2 )

n−1∏
l=1

(ql − (−1)l) = q(n−1)
2−(n−(−1)−1

2 )
n−(−1)−2∏

j=1

(qj − (−1)j),

which proves the induction base for n ≥ 2. If n = 1, it is easy to prove that
N1,−1(q) = 1. Hence, the formula holds also in this case.

Now, we will prove that Nn,i(q) = q2n−3Nn−1,i−1(q). By Lemma 9.2.5, this is
equivalent to proving that N ′n,i(q) = q2n+1N ′n−1,i−1(q). Consider the set S =
{(R, µ) | R ∈ µ, µ a generator skew to π,R /∈ 〈π, πσ〉 = πσi }. The subspace
πσi intersects H in a cone πiH2(n−i)−1, with vertex πi and base H2(n−i)−1 ∼=
H(2(n− i)− 1, q2). We will count |S| in two ways.

On the one hand, there are N ′n,i(q) generators skew to π. Fix such a generator
µ. Then dim(µ ∩ πσi ) = n − i − 1 since dim(µ ∩ πσi ) + dim(〈µ, πi〉) = 2n.
So, µ contains precisely θn(q2) − θn−i−1(q

2) = q2(n−i)θi(q
2) points not in πσi .

Consequently, |S| = q2(n−i)θi(q
2)N ′n,i(q).

On the other hand, there are

µ2n+1(q
2)− θi(q2)− µ2(n−i)−1(q

2)− (q2 − 1)θi(q
2)µ2(n−i)−1(q

2) = q4n−2i+1θi(q
2)

points in H \ πσi . Fix such a point P . The hyperplane P σ intersects π in an
(n − 1)-space V and intersects πi in an (i − 1)-space πi−1 ⊂ V . Hence, the
intersection V ∩H has intersection parameters (n− 1, i− 1). The intersection
P σ ∩H is a cone with vertex P and base H2n−1 ∼= H(2n− 1, q2). Let τ be the
(2n − 1)-space containing H2n−1. We can choose τ such that it contains V .
Then, there is a 1-1 correspondence between the generators of H(2n + 1, q2)
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through P , skew to π and the generators of H2n−1 skew to V . Consequently,
there are N ′n−1,i−1(q) such generators. Thus, |S| = q4n−2i+1θi(q

2)N ′n−1,i−1(q).

Comparing both expressions for |S|, we find the desired relation between
N ′n,i(q) and N ′n−1,i−1(q). An easy calculation now finishes the proof.

Lemma 9.2.8. Using the conventions introduced in Notation 9.2.2, we assume
n ≥ 2 and −1 ≤ i ≤ n − 2. Let P be a point of H \ (π ∪ πσ). Let nP (n, i)
be the number of generators through P intersecting both π \ πi and πσ \ πi in
precisely one point. Then,

• nP (n, i) = Nn−1,i−1(q)q
4i (µn−i−1(q

2))
2

if P /∈ πσi = 〈π, πσ〉;

• nP (n, i) = Nn−1,i(q)q
4i+4 (µn−i−2(q

2))
2

if P ∈ πσi = 〈π, πσ〉 but P does
not belong to a line of H through a point of π \ πi and a point of πσ \ πi;

• nP (n, i) = Nn−1,i+1(q)q
4i+4µn−i−3(q

2) [q4µn−i−3(q
2) + q2 − 1] if P ∈ πσi =

〈π, πσ〉 and P belongs to a line of H through a point of π \πi and a point
of πσ \ πi, and i ≤ n− 4.

• nP (n, i) = Nn,i(q)q
2i+2 if P ∈ πσi = 〈π, πσ〉 and P belongs to a line of H

through a point of π \ πi and a point of πσ \ πi, and i ∈ {n− 3, n− 2}.

The first case can only occur if i ≥ 0. The second case can only occur if
i ≤ n− 3.

Proof. Since P /∈ π ∪ πσ, P σ ∩ π = V is an (n − 1)-space and P σ ∩ πσ = V ′

is an (n − 1)-space. Furthermore P σ ∩ H is a cone with vertex P and base
H2n−1 ∼= H(2n− 1, q2). Let τ be the (2n− 1)-space containing H2n−1.

First we consider the case P /∈ 〈π, πσ〉 = πσi . In this case P σ intersects πi in an
(i−1)-space πi−1 = V ∩V ′. Also, τ can be chosen so that it contains V and V ′.
Hence, the number of generators through P fulfilling the requirements equals
the number of generators of H2n−1 intersecting V and V ′ in a point. Let σ′ be
the polarity of τ corresponding to H2n−1. Analogously to the argument in the
proof of Lemma 9.2.5, it can be seen that V ′ = V σ′ . Consequently there are
Nn−1,i−1(q) generators of this type through a fixed point of V \πi−1 and a fixed
point of V ′ \ πi−1. There are q2iµn−i−1(q

2) possible choices for each of these
points. The first part of the lemma follows. Note that 〈π, πσ〉 = PG(2n+1, q2)
if i = −1. Hence, this case cannot occur when i = −1.
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We fix some notation for the remaining cases. Let W ⊆ π and W ′ ⊆ πσ be the
(n−i−1)-spaces containing Hn−i−1 and H ′n−i−1, respectively. Furthermore, let
σ and σ′ be the polarities of W and W ′ corresponding to Hn−i−1 and H ′n−i−1,
respectively. In all three remaining cases, πi ⊂ P σ, hence P σ ∩W = W1 and
P σ∩W ′ = W ′

1 are (n−i−2)-spaces. Now, the point P is contained in a unique
plane 〈Pπi , PW , PW ′〉, with PW ∈ W , PW ′ ∈ W ′ and Pπi ∈ πi. The points PW ,
PW ′ and Pπi are the projections of P from πσ on W , from π on W ′ and from
〈W,W ′〉 on πi, respectively. Arguing as in the proof of Lemma 9.2.1 we can
see that W1 = P σ ∩W = P σ

W and that W ′
1 = P σ ∩W ′ = P σ′

W ′ . Moreover, since
P and Pπi are contained in P σ, neither or both of PW and PW ′ are contained
in P σ. Hence, we need to distinguish two cases.

• PW ∈ W1 and PW ′ ∈ W ′
1 are both contained in P σ; consequently, PW ∈

P σ
W , thus PW ∈ Hn−i−1 ⊂ H and P σ

W ∩ Hn−i−1 is a cone PWHn−i−3,
with vertex PW and base Hn−i−3 ∼= H(n − i − 3, q2). Let W2 ⊂ W1

be the (n − i − 3)-space containing Hn−i−3. Then, the intersection of
V = 〈πi,W1〉 and H is the cone with vertex 〈πi, PW 〉 and base Hn−i−3.
Analogously we introduce H ′n−i−3 ⊂ W ′

2 ⊂ W ′
1. Then V ′ ∩H is the cone

with vertex 〈πi, PW ′〉 and base H ′n−i−3. Furthermore, since PW ∈ V ,
PW ′ ∈ V ′, and Pπi ∈ V ∩ V ′, P is contained in 〈V, V ′〉. Also, the line
〈P, PW 〉 is contained in P σ and is not a 1-secant since P, PW ∈ H, hence
it is a line of H. This line intersects πσ in a point of 〈PW ′ , πi〉 \ πi.

• PW /∈ W1 and PW ′ /∈ W ′
1 are both not contained in P σ; consequently,

PW /∈ P σ
W , thus PW /∈ Hn−i−1, PW /∈ H and P σ

W ∩Hn−i−1 is a non-singular
Hermitian variety Hn−i−2 ∼= H(n−i−2, q2) in W1. Then, the intersection
of V = 〈πi,W1〉 and H is the cone πiHn−2−i with vertex πi and base
Hn−2−i. Analogously we introduce H ′n−i−2 ⊂ W ′

1. The intersection V ′∩H
is the cone πiH

′
n−i−2 with vertex πi and base H ′n−2−i. Furthermore, P /∈

〈V, V ′〉 since PW /∈ W1 and PW ′ /∈ W ′
1. Also, all lines in πσi through P

intersecting π \ πi and πσ \ πi, are contained in 〈PW , PW ′ , πi〉, but not
in 〈P, πi〉. Since PW , PW ′ /∈ P σ, none of the lines through P can be
contained in H.

These two cases clearly correspond to the three remaining cases of the lemma.
We will treat them separately.

First of all, we look at the latter, which is the second case in the statement of
the lemma. Since P /∈ 〈V, V ′〉, we can choose τ such that it contains 〈V, V ′〉.



9.2. Some counting results | 213

Hence, every generator through P , intersecting both π \ πi and πσ \ πi in a
point, corresponds to a generator of H2n−1 intersecting both V \πi and V ′ \πi
in a point, and vice versa. For a fixed point in V \πi and a fixed point in V ′\πi,
there are Nn−1,i(q) such generators. We also know that |V \ πi| = |V ′ \ πi| =
q2i+2µn−i−2(q

2). The second part of the lemma follows. Note that V \ πi and
V ′ \ πi are empty if i = n− 2. Hence, this case only occurs if i ≤ n− 3.

Finally, we look at the former case, which corresponds to the third and the
fourth case in the statement of the lemma. Let ` be a line on H through
P , a point of π \ πi and a point of πσ \ πi. By changing, if necessary, the
choices for W and W ′, we can assume ` = 〈PW , PW ′〉. We distinguish between
two types of generators: the ones that contain ` and the ones that do not
contain `. First we look at the ones that contain `. We know `σ ∩ H is a
cone with vertex ` and base H2n−3 ∼= H(2n − 3, q2). Let τ ′ be the (2n − 3)-
space containing H2n−3. We can choose τ ′ so that it contains πi, W2 and
W ′

2. As before, one can see that 〈πi,W2〉σ̂
′

= 〈πi,W ′
2〉, with σ̂′ the polarity of

τ ′ corresponding to H2n−3. The number of generators of the requested type
through ` then equals the number of generators of H2n−3 skew to 〈πi,W2〉.
This number equals N ′n−2,i(q) = Nn,i(q). Furthermore, since ` is a line on H
through P intersecting π \ πi and πσ \ πi, every line through P and a point of
〈PW , πi〉 \ πi belongs to H and intersects 〈PW ′ , πi〉 \ πi ⊂ πσ \ πi. Thus, there
are θi+1(q

2)−θi(q2) = q2i+2 such lines. Hence, there are q2i+2Nn,i(q) generators
of the first type. Now, we assume no line through P , intersecting π and πσ, is
contained in the generator. Let QW and QW ′ be the points of the generator in
W and W ′, respectively. By the previous remarks on this case, we know there
are µn−i−3(q

2)q2i+4 possible choices for QW and for QW ′ . Now, we consider
the plane 〈P,QW , QW ′〉. Using arguments, similar to the ones in the previous
case, we find N ′n−3,i+1(q) = Nn−1,i+1(q) generators fulfilling the requirements
for every choice of QW and QW ′ . Hence, the total number of generators in this
third case equals

nP = q2i+2Nn,i(q) +
(
µn−i−3(q

2)q2i+4
)2
Nn−1,i+1(q)

=
[
q2i+2q2i+2(q2 − 1)µn−i−3(q

2) +
(
µn−i−3(q

2)q2i+4
)2]

Nn−1,i+1(q)

= q4i+4µn−i−3(q
2)
[
q2 − 1 + q4µn−i−3(q

2)
]
Nn−1,i+1(q) .

Hereby we used the relation between Nn,i(q) and Nn−1,i+1(q) which can imme-
diately be derived from Lemma 9.2.7.

Note that V \〈πi, PW 〉 and V ′ \〈πi, PW ′〉 are empty if n−3 ≤ i ≤ n−2. In this
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case, we cannot consider the points QW and QW ′ . So, there are no generators
of the second type. Consequently, all generators are of the first type and there
are precisely q2i+2Nn,i(q) such generators.

9.3 Classifying the small weight code words

Recall Theorem 9.0.1 and Theorem 9.0.2 which we stated in the introduction
of this chapter. In this section it is our aim to generalise these results. We
start our arguments with two lemmata about n-spaces: the second lemma
shows the existence of an n-space containing many points of the support of a
code word, while the first lemma shows that a generator cannot contain many
points of the support of a code word. In the proof of the second lemma we use
the following result.

Theorem 9.3.1. Let c ∈ Cn(H(2n + 1, q2))⊥ be a code word and denote
supp(c) = S. Let P be a point in S. Then |P σ ∩ S| ≥ 2 + q2n−1.

Proof. This is a special case of [103, Proposition 9(d)].

Throughout the three following lemmata the functions Σn,i(q) are used.

Definition 9.3.2. For n, i ∈ N and a prime power q, with −1 ≤ i ≤ n− 2, we
define

Σn,i(q) =

2q2i+2µn−i−1(q
2) + 4µn−i−2(q

2)(qn−i−1−1)
qn−3i−5(q2−1) n− i odd ,

2q2i+2
[
µn−i−1(q

2) + 2 q
4µn−i−3(q

2)+q2−1
q2−1

]
n− i even .

.

Note that in both cases Σn,i(q) = 2q2n−1 +σn,i(q), with σn,i(q) ∈ O(q2n−2) and
σn,i(q) > 0 if q > 0.

Lemma 9.3.3. Let c ∈ Cn(H(2n+ 1, q2))⊥ be a code word with wt(c) ≤ w =
δq2n−1, and denote supp(c) = S. Let µ be a generator of H(2n+ 1, q2). Then
|µ ∩ S| ≤ δθn−1(q

2).

Proof. The proof is a generalisation of the proof of [103, Lemma 41].

Denote x = |µ∩S| and let P be a point in µ∩S. Then P σ ∩H(2n+ 1, q2) is a
cone with vertex P . Let H ′ ∼= H(2n−1, q2) be a base of this cone and consider
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the projection from P onto H ′. Denote the projection of (S ∩ P σ) \ {P} by
S ′. The projection of µ is a generator µ′ of H ′. Note that S ′ is a blocking set
of the generators on H ′, i.e. every generator of H ′ contains at least one point
of S ′.

By [90, Lemma 10], we know there are qn
2

generators in H ′ that are skew to

µ′, of which q(n−1)
2

pass through a fixed point of H ′ \ µ′. Hence, the blocking
set S ′ contains at least q2n−1 points not in µ′. Counting the tuples (P,Q),
P ∈ µ ∩ S, Q ∈ S \ µ, with 〈P,Q〉 ⊂ H(2n+ 1, q2), in two ways we find

xq2n−1 ≤ δq2n−1θn−1(q
2) ,

where the upper bound follows from the fact that every point Q ∈ S \ µ is
collinear with the points of an (n−1)-space in µ and not with the other points
in µ. The theorem follows immediately.

Note that the size of a blocking set on a Hermitian variety H(2n+ 1, q2) is at
least q2n+1 + 1.1

Recall that the symmetric difference A∆B of two sets A and B is the set
(A ∪B) \ (A ∩B).

Lemma 9.3.4. Let p be a fixed prime and denote q = ph, h ∈ N. Let c ∈
Cn(H(2n+1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1, δ > 0 a constant,
and denote supp(c) = S. Denote H(2n+ 1, q2) by H and let σ be the polarity
related to H. Then a constant Cn > 0, a value Q > 0 and an n-space π can
be found such that |(π∆πσ)∩ S| > Cnq

2n−1 and such that p−1
p
|(π∆πσ)∩H| <

Σn,i(q) − Cnq2n−1, if q ≥ Q. Hereby, i is such that π ∩ H is a cone with an
i-dimensional vertex and i ≤ n− 2.

Proof. We introduce the notion of a semi-arc. A semi-arc A is a set of k ≥ n
points in PG(2n + 1, q2) such that no n + 1 points of A are contained in
an (n − 1)-space. We make two remarks about these semi-arcs. First, if
|S| >

(
k
n

)
θn−1(q

2), then S contains a semi-arc with k + 1 points, since it is
possible to construct the semi-arc point by point: we start with a set of n
linearly independent points in S and we extend the semi-arc point by point

1Blocking sets were in this thesis only introduced for projective spaces. However, they can also
be defined for polar spaces. We refer to [34] for a survey on blocking sets and related substructures
on polar spaces.



216 | Chapter 9. The dual code Cn(H(2n+ 1, q2))⊥

until we have k+ 1 points, which is possible by the condition on |S|. Secondly,
if we choose K points {P1, . . . , PK} in a semi-arc A ⊆ S, then

|(P σ
1 ∪ P σ

2 ∪ · · · ∪ P σ
K) ∩ S| ≤

∑
{i}∈SK,1

|P σ
i ∩ S|

−
∑

{i,j}∈SK,2

|P σ
i ∩ P σ

j ∩ S|+ . . .

+
∑

{i1,...,i2l+1}∈SK,2l+1

|P σ
i1
∩ P σ

i2
∩ · · · ∩ P σ

i2l+1
∩ S|

(9.1)

since every point of (P σ
1 ∪ P σ

2 ∪ · · · ∪ P σ
K) ∩ S is counted at least once on the

right-hand side. Also

|(P σ
1 ∪ P σ

2 ∪ · · · ∪ P σ
K) ∩ S| ≥

∑
{i}∈SK,1

|P σ
i ∩ S|

−
∑

{i,j}∈SK,2

|P σ
i ∩ P σ

j ∩ S|+ . . .

−
∑

{i1,...,i2l}∈SK,2l

|P σ
i1
∩ P σ

i2
∩ · · · ∩ P σ

i2l
∩ S| (9.2)

since every point of (P σ
1 ∪ P σ

2 ∪ · · · ∪ P σ
K) ∩ S is counted at most once on

the right-hand side. In both expressions we denoted the set of all subsets of
{1, . . . , K} of size j by SK,j.

Now, we prove using induction on t, for every 0 ≤ t ≤ n, that for any (t+ 1)-
tuple (c0, . . . , ct) and for any constant cj > 0 (independent of q), we can find
a constant Kt ∈ N such that

∀K ≥ Kt,∀{P1, . . . , PK} ⊆ A ⊆ S :∑
{i0,...,it}∈SK,t+1

|P σ
i0
∩ P σ

i1
∩ · · · ∩ P σ

it ∩ S| ≥ ctq
2n−1 .

We consider the case t = 0, the induction base. Let {P1, . . . , PK} be a set of
points in A ⊆ S (without restriction on K). By Theorem 9.3.1, we know

K∑
i=1

|P σ
i ∩ S| ≥ Kq2n−1 .
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Hence, it is sufficient to choose K0 = dc0e.

Next, we prove the induction step. We distinguish between two cases: t even
and t odd. We look at the former, so we assume the inequality to be proved
for t ≤ 2l− 1 and we prove it for t = 2l. Let Km be the constant arising from
the (m+ 1)-tuple (c0, . . . , cm), m < 2l, and let {P1, . . . , PK} be a set of points
in A ⊆ S with K ≥ K2l−1. By (9.1), we know that

|(P σ
1 ∪ P σ

2 ∪ · · · ∪ P σ
K) ∩ S| ≤

∑
{i}∈SK,1

|P σ
i ∩ S| −

∑
{i,j}∈SK,2

|P σ
i ∩ P σ

j ∩ S|

+ · · ·+
∑

{i0,...,i2l}∈SK,2l+1

|P σ
i0
∩ P σ

i1
∩ · · · ∩ P σ

i2l
∩ S| .

Using the induction hypothesis and Theorem 9.3.1, we find∑
{i0,...,i2l}∈SK,2l+1

|P σ
i0
∩ P σ

i1
∩ · · · ∩ P σ

i2l
∩ S|

≥

(
K

K2l−1

)(
K−2l

K2l−1−2l

)c2l−1q2n−1 +

(
K

K2l−3

)(
K−2l+2

K2l−3−2l+2

)c2l−3q2n−1 + · · ·+
(
K
K1

)(
K−2
K1−2

)c1q2n−1
−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1 + q2n−1

and thus ∑
{i0,...,i2l}∈SK,2l+1

|P σ
i0
∩ P σ

i1
∩ · · · ∩ P σ

i2l
∩ S|

≥
(
K
2l

)(
K2l−1

2l

)c2l−1q2n−1 +

(
K

2l−2

)(
K2l−3

2l−2

)c2l−3q2n−1 + · · ·+
(
K
2

)(
K1

2

)c1q2n−1
−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1 + q2n−1

= q2n−1f(K, δ, l,K1, K3, . . . , K2l−1, c1, c3, . . . , c2l−1) .

Note that
( K
K2i−1

)

( K−2i
K2i−1−2i)

=
(K2i)

(K2i−1
2i )

. We now study the function f , which is clearly

independent of q. Considering f as a function of K and comparing the ex-

ponents, we see that the term
(K2l)

(K2l−1
2l )

c2l−1 dominates the others. Hence, we
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can find a value K2l ≥ K2l−1 such that the right-hand side is at least c2lq
2n−1

for all K ≥ K2l, with c2l as chosen above. Then the statement follows. Note
that K2l depends on the parameters l, c1, . . . , c2l chosen before (the values Ki,
0 ≤ i < 2l, depend themselves on i, c1, . . . , ci).

For the latter case, t odd, the argument is similar, in this case starting from
(9.2).

We will now apply the previous result for t = n. In order to do this, we
need a semi-arc containing at least Kn points. We argued in the beginning
of the proof that δq2n−1 = |S| >

(
Kn−1
n

)
θn−1(q

2) is a sufficient condition for
a semi-arc of size Kn to exist. Since Kn is a constant, independent of q, and
θn−1(q

2) = q2n−2 + q2n−4 + · · · + q2 + 1, we can find Q′1 > 0 such that this
inequality is true for all q ≥ Q′1. Then we know∑

{i0,...,in}∈SKn,n+1

|P σ
i0
∩ P σ

i1
∩ · · · ∩ P σ

in ∩ S| ≥ cnq
2n−1

for the points {P1, P2, . . . , PKn} defining a semi-arc in S. Hence, we can find
n+ 1 points, without loss of generality the points {P1, . . . , Pn+1}, such that

|P σ
1 ∩ P σ

2 ∩ · · · ∩ P σ
n+1 ∩ S| ≥

cn(
Kn
n+1

)q2n−1.
We can find a constant K > 0 and a value Q′ ≥ Q′1 such that cn

(Knn+1)
q2n−1 ≥

Kq2n−1 + θn−2(q
2) for q ≥ Q′. We write Cn = K − ε, max{0, K − 2

p
} < ε < K,

and we denote the n-space P σ
1 ∩ P σ

2 ∩ · · · ∩ P σ
n+1 by π. Note that π is an

n-space since the points P1, P2, . . . , Pn+1 belong to a semi-arc. Then |π ∩S| >
Cnq

2n−1 + θn−2(q
2).

We know that the intersection π ∩H is a cone πiHn−i−1, with an i-space πi as
vertex and Hn−i−1 ∼= H(n − i − 1, q2) as base, −1 ≤ i ≤ n. Let Q′′ ≥ Q′ be
such that Cnq

2n−1 + θn−2(q
2) > δθn−1(q

2) for all q ≥ Q′′. Such a value exists
since the first term on the left-hand side dominates the right-hand side. If
i ≥ n − 1, then π ∩H is contained in a generator of H. Thus, using Lemma
9.3.3 and the assumption q ≥ Q′′ we find a contradiction. Hence, i ≤ n − 2.
We find:

|(π∆πσ) ∩ S| ≥ |(π \ πi) ∩ S| ≥ Cnq
2n−1 + θn−2(q

2)− θi(q2) ≥ Cnq
2n−1 .
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We still need to check the second claim in the statement of the lemma:

p− 1

p
|(π∆πσ) ∩H| < Σn,i(q)− Cnq2n−1 .

Looking at the terms of highest degree in Σn,i(q)−Cnq2n−1− p−1
p
|(π∆πσ)∩H|,

we find 2 − Cn − 2p−1
p

= ε − cn

(Knn+1)
+ 2

p
> 0. Hence, we can find Q ≥ Q′′ such

that the inequality p−1
p
|(π∆πσ)∩H| < Σn,i(q)−Cnq2n−1 holds for all q ≥ Q.

In this proof cn

(Knn+1)
depends also on the choice of c0, . . . , cn−1. So, investigating

the possible values for c0, . . . , cn, we can find many different values for Cn.
With each of these values, a value Q corresponds. We pick one of the possible
values for Cn. By investigating different possibilities for Cn, we can see there
is a trade-off between the choice of Cn and the corresponding value Q.

From now on, we consider Cn and the corresponding value Q to be fixed.

Lemma 9.3.5. Let c ∈ Cn(H(2n+ 1, q2))⊥ be a code word with wt(c) ≤ w =
δq2n−1, δ > 0 a constant, and denote supp(c) = S. Consider H ∼= H(2n+1, q2).
Let π be an n-space such that π∩H is a cone πiHn−i−1 with vertex an i-space
πi and base Hn−i−1 ∼= H(n − i − 1, q2). Assume that |S ∩ (π \ πi)| = x and
|S∩(πσ \πi)| = t. Then there exists a value Qn,i ≥ 0 such that x+t ≤ Cnq

2n−1

or x+ t ≥ Σn,i(q)− Cnq2n−1 if q ≥ Qn,i.

Proof. If i = n − 1 or i = n, the sets π \ πi and πσ \ πi are empty and hence
also their intersections with S. The first inequality is clearly valid in this case.
So from now on, we assume i ≤ n− 2.

Let P be a point of S ∩ (π \ πi) and let P ′ be a point of ((πσ ∩ H) \ πi)\S
and denote ` = 〈P, P ′〉. By Lemma 9.2.7 we know the number Nn,i(q) of
generators through ` intersecting π and πσ in precisely one point, namely P
and P ′. Each of these generators contains an additional point of S. Let R
be a point of H\(π ∪ πσ). By Lemma 9.2.8 we know the number nR(n, i) of
generators through R intersecting both π and πσ in a point. Hence, S\(π∪πσ)
contains at least

x(|(πσ ∩H) \ πi| − t)
Nn,i(q)

nmax(n, i)
= x(q2i+2µn−i−1(q

2)− t) Nn,i(q)

nmax(n, i)

points, whereby nmax(n, i) = maxR∈S\(π∪πσ) nR(n, i). Switching the roles of π
and πσ, and adding these two inequalities, we find after dividing by two a lower
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bound on |S \ (π ∪ πσ)|. Adding the points in S ∩ (π∆πσ), we find

w ≥ |S| ≥ x(q2i+2µn−i−1(q
2)− t) Nn,i(q)

2nmax(n, i)

+ t(q2i+2µn−i−1(q
2)− x)

Nn,i(q)

2nmax(n, i)
+ x+ t .

Rewriting this inequality yields

(x+ t)
(
q2i+2µn−i−1(q

2)Nn,i(q) + 2nmax(n, i)
)
− 2xtNn,i(q) ≤ 2w nmax(n, i) .

Using the inequality 2xt ≤ 1
2
(x+ t)2 and writing y = x+ t, we find

1

2
y2Nn,i(q)−

[
q2i+2µn−i−1(q

2)Nn,i(q) + 2nmax(n, i)
]
y + 2w nmax(n, i) ≥ 0 .

We now distinguish between two cases: n − i odd and n − i even. First we
look at the former. By detailed analysis (carried out in Computation A.4.1)
one can see that in this case

Nn−1,i(q)q
4i+4

(
µn−i−2(q

2)
)2

≥ Nn−1,i−1(q)q
4i
(
µn−i−1(q

2)
)2

≥ Nn−1,i+1(q)q
4i+4µn−i−3(q

2)
[
q4µn−i−3(q

2) + q2 − 1
]

if n− i > 3 and

Nn−1,n−3(q)q
4n−8 (q + 1)2 ≥ Nn−1,n−4(q)q

4n−12 (q3 + 1
)2

≥ Nn,n−3(q)q
2n−4 .

These inequalities correspond to i = n− 3. Hence,

nmax(n, i) = Nn−1,i(q)q
4i+4

(
µn−i−2(q

2)
)2

.

Using the formula for Nn,i(q) from Lemma 9.2.7, and simplifying, we can
rewrite this inequality as

1

2
qn−3i−5y2 −

[
qn−i−3µn−i−1(q

2) + 2µn−i−2(q
2)
qn−i−1 − 1

q2 − 1

]
y

+ 2δq2n−1µn−i−2(q
2)
qn−i−1 − 1

q2 − 1
≥ 0 .
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Let αn,i(q
2) and α′n,i(q

2) be the two solutions of the corresponding equation,

with αn,i(q
2) ≤ α′n,i(q

2). Then x+ t ≤ αn,i(q
2) or x+ t ≥ α′n,i(q

2). Moreover,

αn,i(q
2) + α′n,i(q

2) = 2q2i+2µn−i−1(q
2) + 4

µn−i−2(q
2)(qn−i−1 − 1)

qn−3i−5(q2 − 1)

= Σn,i(q) .

For the given δ we calculate

αn,i = lim
q→∞

αn,i(q
2) = lim

q→∞

B′ −
√
B′2 − 4δq3n−3i−6C ′

qn−3i−5
,

with

B′ = qn−i−3µn−i−1(q
2) + 2µn−i−2(q

2)
qn−i−1 − 1

q2 − 1
,

C ′ = µn−i−2(q
2)
qn−i−1 − 1

q2 − 1
.

Since αn,i ∈ O(q2n−2), we can find Qn,i > 0 such that αn,i(q
2) ≤ Cnq

2n−1 for
q ≥ Qn,i.

In the latter case, n− i even, similar arguments can be used. However, in this
case we need to distinguish between n− i > 2 and i = n− 2. First, we discuss
n− i > 2. We can deduce (see Computation A.4.1) that

Nn−1,i+1(q)q
4i+4µn−i−3(q

2)
[
q4µn−i−3(q

2) + q2 − 1
]

≥ Nn−1,i−1(q)q
4i
(
µn−i−1(q

2)
)2

≥ Nn−1,i(q)q
4i+4

(
µn−i−2(q

2)
)2

,

hence nmax(n, i) = Nn−1,i+1(q)q
4i+4µn−i−3(q

2) [q4µn−i−3(q
2) + q2 − 1]. We find

the inequality

q2 − 1

2
y2 − q2i+2

[
µn−i−1(q

2)(q2 − 1) + 2(q4µn−i−3(q
2) + q2 − 1)

]
y

+ 2δq2n−1q2i+2(q4µn−i−3(q
2) + q2 − 1) ≥ 0 .

Just as in the previous case Σn,i(q) equals the sum of the solutions of the
corresponding equation. Also for these values of n and i, we define αn,i:

αn,i = lim
q→∞

B′′ −
√
B′′2 − 4δq2n−1(q2 − 1)C ′′

q2 − 1
,
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with

B′′ = q2i+2
[
µn−i−1(q

2)(q2 − 1) + 2(q4µn−i−3(q
2) + q2 − 1)

]
,

C ′′ = q2i+2(q4µn−i−3(q
2) + q2 − 1) .

Since αn,i ∈ O(q2n−2) also holds in this case, we again can find a value Qn,i > 0
such that αn,i(q

2) ≤ Cnq
2n−1 for q ≥ Qn,i.

Finally, we consider the case i = n− 2. The second possibility in Lemma 9.2.8
can thus not occur. We note that

Nn−1,n−3(q)q
4(n−2)(q + 1)2 ≤ q2n−2Nn,n−2(q)

if q ≥ 3 and
Nn−1,n−3(q)q

4(n−2)(q + 1)2 ≥ q2n−2Nn,n−2(q)

if q = 2. The arguments in these cases are analogous.

Hence, in all cases we can find a value Qn,i > 0 such that x + t ≤ Cnq
2n−1 or

x+ t ≥ Σn,i(q)− Cnq2n−1 for q ≥ Qn,i.

Using the three previous lemmata, we can now prove a classification theorem
for the small weight code words in Cn(H(2n+ 1, q2))⊥.

Theorem 9.3.6. Let p be a fixed prime, δ > 0 be a fixed constant and n
be a fixed positive integer. Then there is a constant Q such that, for any
q = ph ≥ Q, h ∈ N, and any c ∈ Cn(H(2n+ 1, q2))⊥ with wt(c) ≤ w = δq2n−1,
c is a linear combination of code words described in Theorem 9.1.4.

Proof. For the given values p and δ we have found a set of possible Cn-values, of
which we have chosen one, in Lemma 9.3.4, with Q, a power of p, corresponding
to it. By the proof of this lemma, we know that Cnq

2n−1 > δθn−1(q
2) for all

q ≥ Q. Define Q = max({Q} ∪ {Qn,i | −1 ≤ i ≤ n − 2}), with Qn,i as in
Lemma 9.3.5, corresponding to the chosen value Cn. We assume q ≥ Q.

Denote supp(c) = S. By Lemma 9.3.4, we find an n-space π such that N =
|(π∆πσ) ∩ S| > Cnq

2n−1. The intersection π ∩ H can be written as a cone
πiHn−i−1, with an i-space πi as vertex and Hn−i−1 ∼= H(n− i− 1, q2) as base,
−1 ≤ i ≤ n− 2.

Since N > Cnq
2n−1 and q ≥ Qn,i, we know by Lemma 9.3.5 that N ≥ Σn,i(q)−

Cnq
2n−1. For each element α ∈ F∗p, we denote by Nα the sum of the number
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of points P ∈ π such that cP = α and the number of points Q ∈ πσ such that
cQ = −α. We can find β ∈ F∗p such that Nβ ≥ N

p−1 . We now consider the code

word c′ = c− β(vπ − vπσ), with vπ and vπσ as in Theorem 9.1.4. We know

wt(c′) = (N −Nβ) + (|(π∆πσ) ∩H| −N)

= |(π∆πσ) ∩H| −Nβ

≤ |(π∆πσ) ∩H| − N

p− 1
.

We also know that N ≥ Σn,i(q)−Cnq2n−1 > p−1
p
|(π∆πσ) ∩H| by Lemma 9.3.4

since q ≥ Q. It follows that

wt(c′) <
p

p− 1
N − N

p− 1
= N ≤ wt(c) .

Hence, the theorem follows using induction on w = wt(c).

We now focus on the code words that we described in Section 9.1.

Remark 9.3.7. Let c be a small weight code word and q sufficiently large.
Following the arguments in the proof of Theorem 9.3.6, we know that c =
c1+ · · ·+cm, with ci, 1 ≤ i ≤ m−1, a code word that we described in Theorem
9.1.4 and Example 9.1.5, such that wt(c1 + · · · + cm′) < wt(c1 + · · · + cm′+1)
for all 1 ≤ m′ ≤ m. From this observation, it immediately follows that the
code words that we described in Theorem 9.1.4 and Example 9.1.5 are the code
words of smallest weights.

Now we consider small weight code words different from the ones described
in Theorem 9.1.4. Let c be a code word c of weight at most 4q2n−2(q − 1), q
sufficiently large. Since c is not of the type we described in Theorem 9.1.4,
c can be written as a linear combination of at least two of these code words.
By the above arguments, we can find a code word c′ which is a linear com-
bination of precisely two of these code words, such that wt(c′) ≤ wt(c). In
particular, we can find α, α′ ∈ F∗p and n-spaces π, π′, π′ /∈ {π, πσ}, such that

c′ = α(vπ − vπσ) + α′(vπ′ − vπ′σ) and wt(c′) ≤ 4q2n−2(q − 1). Let S be the
support of c′. We know that S = ((π∆πσ) ∪ (π′∆π′σ)) ∩ H(2n + 1, q2) if
α+α′ 6= 0 and S = ((π∆πσ) ∆ (π′∆π′σ))∩H(2n+ 1, q2) if α+α′ = 0. In both
cases, S ⊇ ((π∆πσ) ∆ (π′∆π′σ)) ∩H(2n+ 1, q2). However, it can be seen that
|(π∆πσ) ∩ (π′∆π′σ)| ≤ 4q2n−2. Hence,

|S| ≥ wt (α (vπ − vπσ)) + wt (α′ (vπ′ − vπ′σ))− |(π∆πσ) ∩ (π′∆π′σ)|
> 4q2n−2(q − 1) ,
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which is a contradiction. It follows that the only code words of weight at most
4q2n−2(q − 1) are of the type described in Theorem 9.1.4.

Note that Theorem 9.3.6 only proves the second half of Theorem 9.0.3. From
Remark 9.3.7 now the first half also follows.



10
Some remarks on the code C(2, q)

Gij komt tot ons, gans onverwacht, in alle mooie dingen.

Adeleyd.

The linear code C(2, q), q a prime power, arising from the incidence matrix of
points and lines in the projective plane PG(2, q), has been introduced in Section
1.8. In this chapter two unpublished results concerning the codes C(2, q) are
gathered. In Section 10.1 we mention some results and a conjecture on the
small weight code words in the code C(2, q). In Section 10.2 we solve an open
problem related to Theorem 10.1.2. In Section 10.3 we present a small weight
code word which indicates that Conjecture 10.1.3 cannot be generalised to the
prime case. The result of this section is joint work with Peter Vandendriessche.

| 225
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10.1 The small weight code words

The results in this chapter deal with small weight code words of C(2, q). The
minimum weight and the classification of these small weight code words has
been found independently in [42] and [114]. In [3, Proposition 1] a short proof
can be found.

Theorem 10.1.1. The minimum weight of C(2, q), q a prime power, is q + 1
and the minimum weight code words are the scalar multiples of incidence
vectors of the lines in PG(2, q).

In [3, Theorem 1] the analogous result for Cs,t(n, q) has been proved. We look
at another result related to the code C(2, q). Recall that a unital which is
embedded in PG(2, q2), is a set of q3 + 1 points meeting every line in 1 or q+ 1
points.

Theorem 10.1.2 ([14]). If U is a unital embedded in PG(2, q), q a square,
then U is a Hermitian unital if and only if the incidence vector of U is a code
word of C(2, q).

It is a consequence of this theorem that the incidence vector of a non-singular
Hermitian variety in PG(2, q), q a square, is a code word of C(2, q); its weight
equals q

√
q + 1. It is conjectured that this example is a borderline case.

Conjecture 10.1.3. Let c be a code word in C(2, q), q = ph, p a prime and
h > 1, with wt(c) < q

√
q + 1. Then c is a linear combination of incidence

vectors of
⌈
wt(c)
q+1

⌉
lines.

The next theorem is an important result towards the proof of this conjecture.
It is only a special case of the original theorem, which is about the code Ct(n, q)

Theorem 10.1.4 ([93, Corollary 20]). The code C(2, q) has no code words
with weight in the interval ]q + 1, 2q[.

For the prime case (q = p), which is not covered by the Conjecture 10.1.3,
classifications of the small weight code words, improving the result of Theorem
10.1.1, are known.
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Theorem 10.1.5 ([30]). If c is a code word in C(2, p) with 0 < wt(c) ≤ 2p,
p prime, then c is

(i) a code word αv`, with v` the incidence vector of a line ` in PG(2, p), and
α ∈ F∗p, with weight p+ 1,

(ii) or a code word α(v` − v`′), with v` and v`′ the incidence vectors of the
lines ` and `′ in PG(2, p) respectively, ` 6= `′ and α ∈ F∗p, with weight 2p.

Theorem 10.1.6 ([55, Theorem 4]). If c is a code word in C(2, p) with
0 < wt(c) ≤ 2p+ p−1

2
, p ≥ 11 prime, then c is

(i) a code word αv`, with v` the incidence vector of a line ` in PG(2, p), and
α ∈ F∗p, with weight p+ 1,

(ii) a code word α(v` − v`′), with v` and v`′ the incidence vectors of the lines
` and `′ in PG(2, p) respectively, ` 6= `′ and α ∈ F∗p, with weight 2p.

(iii) or a code word αv` + α′v`′ , with v` and v`′ the incidence vectors of the
lines ` and `′ in PG(2, p) respectively, ` 6= `′, α, α′ ∈ F∗p and α + α′ 6= 0,
with weight 2p+ 1.

It is communicated that Conjecture 10.1.3 has been solved for h > 2 ([60]),
but no proof has been published yet.

10.2 The Hermitian unital as sum of lines

By Theorem 10.1.2 we know that the incidence vector of a Hermitian unital
in PG(2, q2) is a code word of C(2, q2). The proof of this theorem is however
non-constructive. In [94, Open Problem 3.19] it is asked to describe a linear
combination of incidence vectors of lines which equals the incidence vector of
a Hermitian unital. We solve this problem for q even.

First we mention a result on complete arcs. Recall from Section 1.7 that
hyperovals are the largest k-arcs in PG(2, q2), q even, and therefore complete.
The second-largest complete arcs were studied in [19, 56, 87, 119]. The first
part of this theorem was proved independently in several of these articles. The
second part was proved in [119].
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Theorem 10.2.1. In PG(2, q2), q even, the largest complete arcs different
from hyperovals, contain q2 − q + 1 points. The tangent lines to such an arc
form a dual Hermitian unital.

We use this theorem to find the desired linear combination.

Theorem 10.2.2. Let L = {`0, . . . , `q2−q} be a set of lines in PG(2, q2), q
even, such that its dual is a complete arc of size q2 − q + 1 and let v`i be

the incidence vector of the line `i. Then
∑q2−q

i=0 v`i is the incidence vector of a
Hermitian unital.

Proof. Let LD be the dual of L, a complete (q2− q+ 1)-arc in PG(2, q2)D, the
dual plane of PG(2, q2). Through every point of LD there are q + 1 tangent
lines. Each of these (q + 1)(q2 − q + 1) = q3 + 1 tangent lines contains one
point of LD. All other lines in PG(2, q2)D contain zero or two points of LD.

We denote the set of duals of the tangent lines by H. This is a set of q3 + 1
points in PG(2, q2). Note that H is a Hermitian unital since its dual is a dual
Hermitian unital by Theorem 10.2.1. We know that each point of H belongs
to one line of L. All other points of PG(2, q2) belong to zero or two lines of

L. So, the sum
∑q2−q

i=0 v`i of the incidence vectors v`i , is a vector with 1 on
every position corresponding with a point of H. On all other positions of this
vector, there is a 0, since q is even. So this sum is the incidence vector of H,
which is a Hermitian unital.

10.3 A small weight code word in C(2, p)

In this section we present the construction of a code word in C(2, p), p prime, of
weight 3(p− 1), which cannot be realised as a linear combination of incidence
vectors of at most 3 lines. This is in general larger than the upper bounds
from Theorems 10.1.5 and 10.1.6. However, in general it is much smaller than
p
√
p+1, clearly indicating that Conjecture 10.1.3 cannot be generalised to the

prime case (h = 1). Up to our knowledge, this is the first construction of a
code word contradicting the conjecture for the prime case.

We first mention two results which we will need in the proof of Lemma 10.3.3.
This lemma will allow us to prove that the vector we constructed, is a code
word.
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Theorem 10.3.1 ([65]). The p-rank of the incidence matrix M0,1(2, q), q =

ph and p prime, equals
(
p+1
2

)h
+1. Consequently, the code C(2, q) has dimension(

p+1
2

)h
+ 1.

Theorem 10.3.2 ([2, Theorem 6.3.1]). Let C be the code C(2, q), q = ph

and p prime, and let 1 be the all-one vector of length q2 + q + 1. Then,
(C ∩ C⊥)⊕ 1 = C.

To be precise, the previous theorem is not the theorem which is presented in
[2], but a result which is found during its proof.

Lemma 10.3.3. If p is a prime, then C(2, p)⊥ ⊂ C(2, p).

Proof. We denote the code C(2, p) by C. By Theorem 10.3.1 we know that the

dimension of C equals p(p+1)
2

+ 1. The dimension of C⊥ thus equals p(p+1)
2

=

(p2 + p+ 1)−
(
p(p+1)

2
+ 1
)

. So, dim(C⊥) + 1 = dim(C). However, by Theorem

10.3.2 we know that also dim(C∩C⊥)+1 = dim(C). Hence, C∩C⊥ = C⊥ since
C ∩ C⊥ ⊆ C⊥ and dim(C ∩ C⊥) = dim(C⊥). Consequently, C⊥ = C ∩ C⊥ ⊂
C.

Now, we introduce the small weight code word.

Example 10.3.4. Let c be a vector of the vector space Fp2+p+1
p , p 6= 2 a prime,

whose positions correspond to the points of PG(2, p), such that

cP =


a P = (0, 1, a)

b P = (1, 0, b)

−c P = (1, 1, c)

0 otherwise

,

whereby cP is the value of c at the position corresponding with the point
P . Note that the points corresponding to positions with non-zero coordinates
belong to the line m : X0 = 0, the line m′ : X1 = 0 or the line m′′ : X0 = X1.
These three lines are concurrent in the point (0, 0, 1).

Now we check that c ∈ C(2, p)⊥. For any line ` in PG(2, p), the dot product c·v`
should equal 0, with v` the incidence vector of `, or equivalently

∑
P∈` cP = 0.

We distinguish between three cases. If ` ∈ {m,m′,m′′}, then
∑

P∈` cP =
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∑
x∈Fp = p(p−1)

2
= 0 since p 6= 2. If (0, 0, 1) ∈ ` and ` /∈ {m,m′,m′′}, then

cP = 0 for all P ∈ `, so
∑

P∈` cP = 0. Finally, if (0, 0, 1) /∈ `, then ` can be
described by an equation uX0 + vX1 + X2 = 0. For a point P ∈ `, the value
cP differs from 0 if and only if P ∈ {` ∩ m, ` ∩ m′, ` ∩ m′′}. We know that
` ∩m = (0, 1,−v), ` ∩m′ = (1, 0,−u) and ` ∩m′′ = (1, 1,−(u + v)). Hence,∑

P∈` cP = (−v) + (−u) + (u+ v) = 0. So, in all three cases
∑

P∈` cP = 0 and
thus c ∈ C(2, p)⊥.

By Lemma 10.3.3 it follows immediately that c ∈ C(2, p). It is clear that
wt(c) = 3(p − 1). If p = 3, then the code word which we described here
is a code word of weight 2p. In this case it equals v`1 − v`2 with `1 the line
X0+X1−X2 = 0 and `2 the line X0+X1+X2 = 0. If p ≥ 5, then 3(p−1) > 2p,
the upper bound from Theorem 10.1.5. If p ≥ 11, then 3(p − 1) > 2p + p−1

2
,

the upper bound from Theorem 10.1.5.

We now argue that this code word cannot be realised as a linear combination

of at most
⌈
3(p−1)
p+1

⌉
= 3 lines if p > 3. This shows that Conjecture 10.1.3

cannot be generalised to the prime case. It is clear that c cannot be a linear
combination of incidence vectors of lines through (0, 0, 1). Let `′ be a line not
containing (0, 0, 1), whose incidence vector appears non-trivially in a linear
combination yielding c. The line `′ contains p− 2 points whose corresponding
position in c contains a zero. Consequently, there are at least p− 2 other lines
whose incidence vector appears non-trivially in the given linear combination.
So, any linear combination yielding c contains at least p− 1 > 3 terms.



A
The omitted calculations

I show you how deep the rabbit hole goes.

Morpheus in The Matrix.

In this appendix we deal with some calculations of the previous chapters. They
were not included in the text for sake of clearness and overview. Here we have
a closer look at them. In Section A.1, we consider calculations from Chapter
5. In Section A.2, we consider calculations from Chapter 7. In Section A.3,
we consider a calculation from Chapter 8 and in Section A.4, we consider a
calculation from Chapter 9.

We assume the reader to be familiar with some basic calculus. For some of
the calculations the assistance of a computer algebra package has been used1.
This is clearly indicated.

1We used the package Maple (by Maplesoft), however no code lines are presented. These calcu-
lations can be repeated using most computer algebra packages.

| 231
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A.1 Erdős-Ko-Rado sets in designs

At the end of Lemma 5.4.3 we want to prove the inequality (5.1). Firstly, we
want to show that the function on the left-hand side is concave.

Computation A.1.1. We introduced the notations Ck = 4
3
k
√
k − 2k − 2

√
k

and D(b, k) = (k3 − 3k2 − 2bk + 6k − 2)2 − 8k(k − 1)(b− 1)(b− 2), k ≥ 14 an
integer. We define the functions fk and gk for k ≥ 14 an integer, as follows:

fk(c) =
√

(c− 1)2 + 4c(k − 1)
√
D(c, k) ,

gk(c) =
(
(c− 1)2 + 4c(k − 1)

)
D(c, k) .

Note that fk(c) exists on the interval [0, Ck]. Obviously, fk(c) ≥ 0. It is clear
that f 2

k (c) = gk(c). We want to show that fk(c) is concave on the interval
[0, Ck]. Therefore we want to study its second derivative (with respect to c).
Note that

f
′′

k = (
√
gk)
′′ =

g
′′

k

2
√
gk
− (g

′

k)
2

4
√
g3k

=
g
′′

k

2fk
− (g

′

k)
2

4f 3
k

=
2g
′′

kgk − (g
′

k)
2

4f 3
k

.

Consequently, in order to prove that f
′′

k (c) < 0 it is sufficient to prove that
2g
′′

kgk− (g
′

k)
2 < 0. The function 2g

′′

k (c)gk(c)− (g
′

k(c))
2 is however a polynomial

in the variable c. We define hk(c) = 1
16

(
2g
′′

k (c)gk(c)− (g
′

k(c))
2
)
. Then, we can

compute that

hk(c) = c6
(
8k4 − 32k3 + 32k2

)
+ c5

(
12k6 − 12k5 − 192k4 + 528k3 − 384k2

)
+ c4

(
78k7 − 492k6 + 906k5 + 120k4 − 1848k3 + 1332k2 + 24k

)
+ c3

(
−k10 + 5k9 + 95k8 − 1025k7 + 3922k6 − 6956k5 + 5124k4

−68k3 − 1000k2 − 256k
)

+ c2
(
−6k11 + 39k10 − 51k9 − 477k8 + 3153k7 − 9402k6 + 15696k5

−14532k4 + 6852k3 − 1776k2 + 624k
)

+ c
(
−3k10 + 15k9 − 3k8 − 243k7 + 1194k6 − 2760k5 + 3276k4

−1884k3 + 552k2 − 192k
)

+
(
−k14 + 15k13 − 116k12 + 588k11 − 2116k10 + 5594k9 − 10945k8

+ 15709k7 − 16378k6 + 12494k5 − 7196k4 + 3172k3 − 1012k2

+232k − 32) .
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We now define the function

hk(c) = −
(
ϕ5(k)c5 + ϕ4(k)c4 + ϕ3(k)c3 + ϕ2(k)c2

)
(Ck − c) ,

with

ϕ5(k) = 8k4 − 32k3 + 32k2 ,

ϕ4(k) = 12k6 +
32

3
k5
√
k − 28k5 − 176

3
k4
√
k − 128k4 +

320

3
k3
√
k + 464k3

− 64k2
√
k − 384k2 ,

ϕ3(k) = 16k7
√
k +

614

9
k7 − 248

3
k6
√
k − 4820

9
k6 +

8

3
k5
√
k +

12794

9
k5

+
1984

3
k4
√
k − 3320

3
k4 − 1312k3

√
k − 952k3 + 768k2

√
k

+ 1332k2 + 24k ,

ϕ2(k) =
37

3
k9 .

It can easily be checked that ϕi(k) ≥ 0 for k ≥ 14, i ∈ {2, 3, 4, 5}. Hence,
hk(c) ≤ 0 on [0, Ck], k ≥ 14. Calculating the difference between the functions
hk(c) and hk(c), we find that hk(c)−hk(c) = χ3(k)c3+χ2(k)c2+χ1(k)c+χ0(k),
with

χ3(k) = k10 − 14k9 − 1592

27
k8
√
k +

551

3
k8 +

18500

27
k7
√
k − 215k7

− 79952

27
k6
√
k − 5866

3
k6 +

16924

3
k5
√
k +

23444

3
k5 − 3568k4

√
k

− 10676k4 − 2144k3
√
k + 4268k3 + 2632k2

√
k + 1048k2

+ 48k
√
k + 256k ,

χ2(k) = 6k11 − 148

9
k10
√
k − 43

3
k10 +

74

3
k9
√
k + 51k9 + 477k8 − 3153k7

+ 9402k6 − 15696k5 + 14532k4 − 6852k3 + 1776k2 − 624k ,

χ1(k) = 3k10 − 15k9 + 3k8 + 243k7 − 1194k6 + 2760k5 − 3276k4 + 1884k3

− 552k2 + 192k ,

χ0(k) = k14 − 15k13 + 116k12 − 588k11 + 2116k10 − 5594k9 + 10945k8

− 15709k7 + 16378k6 − 12494k5 + 7196k4 − 3172k3 + 1012k2

− 232k + 32 .
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It can also be checked that χi(k) > 0 for k ≥ 14, i ∈ {0, 1, 2, 3}. So, hk(c) −
hk(c) > 0 if c ≥ 0, k ≥ 14. Consequently, on the interval [0, Ck] the following
inequalities are valid

hk(c) < hk(c) ≤ 0 ,

which proves that fk(c) is concave on [0, Ck].

Secondly, we use the fact that the left-hand side of (5.1) is concave to find a
linear lower bound. We compare this linear function with the linear function
on the right-hand side.

Computation A.1.2. We use the notation Ck and the function D(c, k) which
we defined in Computation A.1.1. We want to prove the inequality√

(Ck − 1)2 + 4Ck(k − 1)
√
D(Ck, k)−

√
D(0, k)

Ck
< k3 − 7k2 + 14k − 6 .

Calculating some limits, we can see that√
(Ck − 1)2 + 4Ck(k − 1)

√
D(Ck, k)−

√
D(0, k)

Ck
= k3 − 7

6
k2
√
k +O(k2) .

Then, using a computer algebra package, it is easy to check that√
(Ck − 1)2 + 4Ck(k − 1)

√
D(Ck, k)−

√
D(0, k)

Ck
< k3 − 7

6
k2
√
k − 3k2

< k3 − 7k2 + 14k − 6 .

Consequently, it is sufficient to check the inequality (5.1) for c = Ck. Since
the left-hand side is clearly nonnegative, the inequality is equivalent to the
inequality of the squares of both sides. Note that(√

(Ck − 1)2 + 4Ck(k − 1)
√
D(Ck, k)

)2
=

16

9
k9 − 256

27
k8
√
k − 1492

81
k8 +

3304

27
k7
√
k +

11000

81
k7 − 17036

27
k6
√
k

− 21073

27
k6 +

41120

27
k5
√
k + 2386k5 − 3428

3
k4
√
k − 10457

3
k4

− 3848

3
k3
√
k +

16264

9
k3 +

5312

3
k2
√
k +

944

3
k2 − 96k

√
k + 56k

+ 48
√
k + 4
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and (
Ck(k

3 − 7k2 + 14k − 6)− (2k4 − 9k3 + 9k2 + 2k − 2)
)2

=
16

9
k9 − 32

3
k8
√
k − 128

9
k8 + 152k7

√
k +

284

9
k7 − 2644

3
k6
√
k − 103

9
k6

+ 2656k5
√
k +

1198

9
k5 − 13172

3
k4
√
k − 811k4 + 3824k3

√
k + 1432k3

− 4432

3
k2
√
k − 912k2 + 96k

√
k + 184k + 48

√
k + 4 .

Comparing these two functions, we see that the first one dominates the second
one if k is large enough. Using a computer algebra package it is easy to check
that the desired inequality is fulfilled if k ≥ 14.

In Lemma 5.5.3 we derive an upper bound for an Erdős-Ko-Rado set which is
not a point-pencil. In its proof an inequality is considered.

Computation A.1.3. We know that the inequality

q(q − a′ − 1)(q − a′)2(q − 1) ≤ a′(a′ − 1)(2q2 − 2qa′ + a′2 − q)

is fulfilled for integer parameters q and a′ which are related to a unital and
an Erdős-Ko-Rado set on this unital. We want to derive a lower bound on a′

(function of q) from this inequality. We define the functions

fq(a
′) = a′(a′ − 1)(2q2 − 2qa′ + a′2 − q)− q(q − a′ − 1)(q − a′)2(q − 1)

for all prime powers q. We can compute that

fq(q − 3
√
q2 +

2

3
3
√
q − 1− t) = ϕ4(q)t

4 + ϕ3(q)t
3 + ϕ2(q)t

2 + ϕ1(q)t+ ϕ0(q) ,

with

ϕ4(q) = 1 ,

ϕ3(q) = −q2 − q + 4 3
√
q2 − 8

3
3
√
q + 5 ,

ϕ2(q) = −3q2 3
√
q2 + 2q2 3

√
q − 3q 3

√
q2 + 8q 3

√
q − 14q +

53

3
3
√
q2 − 10 3

√
q + 9 ,

ϕ1(q) = −3q3 3
√
q + 2q3 − 4

3
q2 3
√
q2 − 3q2 3

√
q + 14q2 − 64

3
q 3
√
q2 +

85

3
q 3
√
q
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− 842

27
q +

74

3
3
√
q2 − 12 3

√
q + 7 ,

ϕ0(q) = −127

27
q3 + 9q2 3

√
q2 − 14q2 3

√
q +

593

27
q2 − 644

27
q 3
√
q2 +

1825

81
q 3
√
q

− 499

27
q + 11 3

√
q2 − 14

3
3
√
q + 2 .

Now, it can be checked that ϕ2(q), ϕ1(q), ϕ0(q) < 0 for all q ≥ 5. Moreover,

ϕ4(q)t
4 + ϕ3(q)t

3 = t3 (t+ ϕ3(q)) ≤ t3
(
q − 3

√
q2 +

2

3
3
√
q − 1 + ϕ3(q)

)
< 0 ,

for t ≤ q − 3
√
q2 + 2

3
3
√
q − 1. So, fq(q − 3

√
q2 + 2

3
3
√
q − 1 − t) < 0 if 0 ≤

t ≤ q − 3
√
q2 + 2

3
3
√
q − 1. We conclude that fq(a

′) can only be positive if

a′ > q − 3
√
q2 + 2

3
3
√
q − 1.

A.2 Small maximal partial spreads

In this Section we deal with several calculations related to Theorem 7.2.5.

Computation A.2.1. In the middle of the proof of Theorem 7.2.5, we claim
that ht,q(s) < 0 if s ≤ 2q − 2, t = 2, 3, 4 and q ≥ 3 a prime power, with

ht,q(s) = (s− 1)(s− 3)(s− 4)

[
2t+ 2

t+ 1

]
q

− s(3s2 − 19s+ 28)at(q)

+ s(s− 1)(2s− 9)bt(q)− c′t(q)s(s− 1)(s− 2) .

Hereby at(q), bt(q) and c′t(q) are defined as in Chapter 7. For t = 2 we find
h2,q(s) = ψ3(q)s

3 + ψ2(q)s
2 + ψ1(q)s+ ψ0(q), with

ψ3(q) = q6 + 4q5 + 5q4 + 4q3 + 2q2 + q + 1 ,

ψ2(q) = −5q7 − 18q6 − 32q5 − 35q4 − 22q3 − 16q2 − 8q − 8 ,

ψ1(q) = 12q8 + 29q7 + 53q6 + 64q5 + 66q4 + 54q3 + 38q2 + 19q + 19 ,

ψ0(q) = −12q9 − 12q8 − 24q7 − 36q6 − 36q5 − 36q4 − 36q3 − 24q2

− 12q − 12 .
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Then, h′2,q(s) = 3ψ3(q)s
2 + 2ψ2(q)s + ψ1(q). Now, h2 = 4ψ2

2 − 12ψ3ψ1 is

a polynomial of degree 14 such that h2(q) = −44q14 + O(q13). It can be
checked that h2(q) < 0 if q ≥ 3. Hence, h′2,q > 0 for q ≥ 3, and thus is h2,q
monotonically increasing, q ≥ 3.

Consequently, it is sufficient to prove that h2,q(2q − 2) < 0. We find that

h2,q(2q − 2) = −2q8 − 12q7 + 30q6 + 40q5 − 72q4 − 60q3 − 110q2 + 36q − 90 .

It now easily can be observed that h2,q(2q − 2) < 0 if q ≥ 3.

For t = 3, 4 the claim can be proved analogously.

Computation A.2.2. We consider the polynomials

fq(s) = (s− 1)(s− 3)(s− 4)(q5 + 2)(q6 + 2)

[
10

5

]
q

+ (q5 − 2q3 − q2 + 3)q30s(s− 1)(s− 2)− s(3s2 − 19s+ 28)q36

+ s(s− 1)(2s− 9)(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)q26 .

It is claimed in the final paragraph of Theorem 7.2.5 that fq(s) < 0 for all
s ≤ 2q − 2. We will first prove that the polynomials fq are monotonically
increasing if q ≥ 3. We find that

f ′q(s) = g2(q)s
2 − g1(q)s+ g0(q) ,

with

g2(q) = 3q33 + 12q32 + 39q31 + 48q30 + 51q29 + 66q28 + 90q27 + 132q26

+ 165q25 + 192q24 + 234q23 + 273q22 + 318q21 + 354q20 + 384q19

+ 405q18 + 429q17 + 435q16 + 435q15 + 417q14 + 396q13 + 363q12

+ 327q11 + 288q10 + 240q9 + 198q8 + 150q7 + 120q6 + 90q5

+ 60q4 + 36q3 + 24q2 + 12q + 12 ,

g1(q) = 10q34 + 36q33 + 74q32 + 188q31 + 226q30 + 272q29 + 362q28

+ 490q27 + 694q26 + 880q25 + 1024q24 + 1248q23 + 1456q22

+ 1696q21 + 1888q20 + 2048q19 + 2160q18 + 2288q17 + 2320q16

+ 2320q15 + 2224q14 + 2112q13 + 1936q12 + 1744q11 + 1536q10

+ 1280q9 + 1056q8 + 800q7 + 640q6 + 480q5 + 320q4 + 192q3
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+ 128q2 + 64q + 64 ,

g0(q) = 12q35 + 29q34 + 53q33 + 93q32 + 189q31 + 253q30 + 323q29 + 447q28

+ 599q27 + 807q26 + 1045q25 + 1216q24 + 1482q23 + 1729q22

+ 2014q21 + 2242q20 + 2432q19 + 2565q18 + 2717q17 + 2755q16

+ 2755q15 + 2641q14 + 2508q13 + 2299q12 + 2071q11 + 1824q10

+ 1520q9 + 1254q8 + 950q7 + 760q6 + 570q5 + 380q4 + 228q3

+ 152q2 + 76q + 76 .

The function g = g21 − 4g0g2 is a polynomial of degree 68. One can see that
g(q) = −44q68 + O(q67). Using a computer algebra package, it can easily be
checked that g(q) < 0 for q ≥ 3. Hence, if q ≥ 3, then f ′q > 0. Consequently,
the functions fq are monotonically increasing, q ≥ 3.

Now, we want to show that fq(2q − 2) < 0. Calculating this value yields

fq(2q − 2) = −2q35 + 32q34 − 204q33 + 316q32 + 52q31 − 112q30 − 8q29

− 208q28 + 76q27 + 112q26 − 526q25 − 180q24 − 546q23

− 418q22 − 760q21 − 908q20 − 1358q19 − 1092q18 − 1608q17

− 1508q16 − 1960q15 − 1782q14 − 1970q13 − 1892q12

− 1666q11 − 1856q10 − 1364q9 − 1640q8 − 980q7 − 844q6

− 788q5 − 704q4 − 264q3 − 440q2 + 144q − 360 .

We observe that the function fq(2q− 2) is negative if q is large enough. Using
a computer algebra package, it can be seen that fq(2q − 2) < 0 if q ≥ 3.

A.3 Functional codes

Computation A.3.1. At the end of Lemma 8.4.10 we claim that the inequal-
ity

W n(q) ≥ bn(q)(cn(q) + dn(q))

an(q)

is valid for q ≥ 2 and n ≥ 5, with an(q), bn(q), cn(q) and dn(q) as defined in that
proof. The functions W n(q) were defined in Definition 8.4.1. We distinguish
in this discussion between q = 2 and q ≥ 3 since the definition of Wn(q) differs
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between those cases. We also need to split it based on the parity of n. First
we look at the case q ≥ 3 and n = 2m, m ∈ N. Since W n(q) = Wn(q) in this
case it is sufficient to prove the inequality

Wn(q)an(q) ≥ bn(q)(cn(q) + dn(q)) . (A.1)

We find that (A.1) is equivalent to the inequality

0 ≤ ϕ16(q)q
16m−20 + ϕ14(q)q

14m−18 + ϕ12(q)q
12m−16 + ϕ10(q)q

10m−14

+ ϕ8(q)q
8m−12 + ϕ6(q)q

6m−10 + ϕ4(q)q
4m−8 + ϕ2(q)q

2m−6 + ϕ0(q) ,

with

ϕ16(q) = q13 − 2q12 + q11 + 4q10 − 8q9 + 4q8 − 4q7 + 4q6 − 6q5 − 4q4 + 5q3

− 4q2 − q − 2 ,

ϕ14(q) = −2q16 + 4q15 − 5q14 + 5q12 − 4q11 − 11q10 + 27q9 − 45q8 + 39q7

− 21q6 + 4q5 + 18q4 − 25q3 + 11q2 − q + 6 ,

ϕ12(q) = −q18 + q17 + 7q16 − 17q15 + 21q14 − 15q13 − 3q12 − 7q11 + 41q10

− 62q9 + 109q8 − 72q7 + 26q6 + 15q5 − 29q4 + 42q3 − 9q2

+ 7q − 6 ,

ϕ10(q) = −q20 + 2q19 + 5q18 − 9q16 + 16q15 − 37q14 + 44q13 − 17q12

+ 58q11 − 64q10 + 74q9 − 100q8 + 52q7 − 7q6 − 9q5 + 23q4

− 26q3 + q2 − 7q + 2 ,

ϕ8(q) = q22 + q21 + 2q20 − 4q19 − 9q18 + 11q16 − 4q15 + 37q14 − 32q13

+ 18q12 − 74q11 + 27q10 − 49q9 + 45q8 − 26q7 + q6 − 12q5

− 10q4 + 2q3 + q2 + 2q ,

ϕ6(q) = 2q23 − q22 − q21 − 3q20 − 7q19 + 7q18 + 11q17 − 6q16 − 8q15

− 12q14 − 33q13 + 6q12 + 26q11 − 3q10 + 25q9 − 21q8 + 11q7

− 5q6 + 8q5 + 2q4 + 2q3 ,

ϕ4(q) = −2q23 + 2q22 − 2q21 + 3q20 + 7q19 − 9q18 − 9q17 − 10q16 + 17q15

− 7q14 + 46q13 − 7q12 + 8q11 + 6q10 − 5q9 + 8q8 + 2q6 ,

ϕ2(q) = −2q22 + 2q21 − 3q20 + 2q19 + 6q18 − 3q17 + 15q16 − 8q15 + 10q14

− 11q13 + 2q12 − 8q11 − 2q9 ,

ϕ0(q) = 2q16 + q14 − 6q12 − 7q10 − 2q8 .
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For m ≥ 5 and q ≥ 3, we prove that
∑8

i=k ϕ2i(q)q
2(m−1)(i−k) ≥ 0, with 1 ≤ k ≤

8. We denote ϕk(q) =
∑8

i=k ϕ2i(q)q
8(i−k). These are functions independent

of m. It can be checked that ϕk(q) ≥ 0 for all k = 1, . . . , 8. Now we prove∑8
i=k ϕ2i(q)q

2(m−1)(i−k) ≥ ϕk(q) ≥ 0. We use backward induction on k. For
k = 8, we see that ϕ16(q) = ϕ8(q) ≥ 0. The induction step is proved by

8∑
i=k−1

ϕ2i(q)q
2(m−1)(i−k+1) = ϕ2k−2(q) + q2m−2

8∑
i=k

ϕ2i(q)q
2(m−1)(i−k)

≥ ϕ2k−2(q) + q2m−2ϕk(q)

≥ ϕ2k−2(q) + q8ϕk(q)

= ϕk−1(q) .

The induction hypothesis was used in the penultimate step. The desired in-
equality now follows since both

∑8
i=k ϕ2i(q)q

2(m−1)(i−k) ≥ 0 and ϕ0(q) ≥ 0.
Indeed,

0 ≤ q−4
8∑
i=k

ϕ2i(q)q
2(m−1)(i−k) + ϕ0(q)

= ϕ16(q)q
16m−20 + ϕ14(q)q

14m−18 + ϕ12(q)q
12m−16 + ϕ10(q)q

10m−14

+ ϕ8(q)q
8m−12 + ϕ6(q)q

6m−10 + ϕ4(q)q
4m−8 + ϕ2(q)q

2m−6 + ϕ0(q) .

Above, we assumed m ≥ 5. The cases n = 2m = 6 and n = 2m = 8 can be
checked individually.

The arguments for n ≥ 7 odd are completely equivalent. We shall not present
the detailed calculations here. The case n = 5 however needs to be treated
separately. Recall that the definition of W 5(q) differs from the definition of
the other functions W n(q).

Now, we turn to the case q = 2. Recall from Definition 8.4.1 that W n(2) is
defined in an other way than W n(q) for q ≥ 3. This is necessary since the
inequality (A.1) is not valid in this case. First we look at the case n odd. It
can be computed that

b2m+1(2)(c2m+1(2) + d2m+1(2))

a2m+1(2)
=

25

21
24m +

725

882
22m − 27050

3087
− 50

3087

ψ1(m)

ψ2(m)
,
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with

ψ1(m) = 104704 · 210m + 649583 · 28m + 952350 · 26m − 2203672 · 24m

− 7423808 · 22m − 13458432 ,

ψ2(m) = (7 · 24m − 6 · 22m − 96)(24m + 19 · 22m + 40)(24m − 2 · 22m − 8) .

Now, it can be observed that ψ1(m), ψ2(m) ≥ 0 if m ≥ 3. Hence,

b2m+1(2)(c2m+1(2) + d2m+1(2))

a2m+1(2)
≤ 25

21
24m +

725

882
22m − 27050

3087

=
25

84
22n +

725

1764
2n − 27050

3087
= W n(2) .

Now we look at the case n even. It can be computed that

b2m(2)(c2m(2) + d2m(2))

a2m(2)
=

25

84
24m +

2425

1764
22m − 172225

6174
+

50

3087

ψ3(m)

ψ4(m)
,

with

ψ3(m) = 49829 · 210m + 322888 · 28m − 8747088 · 26m − 112697216 · 24m

− 238621696 · 22m + 3183771648 ,

ψ4(m) = (24m + 16 · 22m + 160)(7 · 24m + 12 · 22m − 384)(24m + 4 · 22m − 32) .

Since ψ3(m), ψ4(m) ≥ 0 if m ≥ 3, we know that

b2m(2)(c2m(2) + d2m(2))

a2m(2)
>

25

84
24m +

2425

1764
22m − 172225

6174

for m ≥ 3. However, 50
3087

ψ3(m)
ψ4(m)

, the difference between the left-hand side and

the right-hand side of this equation approaches 0 as m approaches infinity.
Moreover, this difference is a decreasing function on [3 ,∞ [ . Consequently,

b2m(2)(c2m(2) + d2m(2))

a2m(2)
≤ 25

84
24m +

2425

1764
22m − 172225

6174
+

50

3087

ψ3(3)

ψ4(3)

=
25

84
24m +

2425

1764
22m − 2655125

100107

=
25

84
22n +

2425

1764
2n − 2655125

100107
= W n(2) .

So, we have checked that the inequality (A.3.1) is valid in all cases.
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A.4 Generators on H(2n+ 1, q2)

Computation A.4.1. In Lemma 9.3.5 we compare the values

An,i(q) = Nn−1,i−1(q)q
4i
(
µn−i−1(q

2)
)2

,

Bn,i(q) = Nn−1,i(q)q
4i+4

(
µn−i−2(q

2)
)2

,

Cn,i(q) = Nn−1,i+1(q)q
4i+4µn−i−3(q

2)
[
q4µn−i−3(q

2) + q2 − 1
]

and

Dn,i(q) = Nn,i(q)q
2i+2 ,

given that i ≤ n− 2. Recall that µj(q
2) is the number of points on Hj(q

2).

For i = n− 2, we only need to compare An,i(q) and Dn,i(q). We find that

An,n−2(q) = Nn−1,n−3(q)q
4(n−2)(q + 1)2

= Nn−1,n−3(q)q
4n−8(q + 1)2 ,

Dn,n−2(q) = Nn,n−2(q)q
2(n−2)+2

= q2n−3Nn−1,n−3(q)q
2n−2

= Nn−1,n−3(q)q
4n−8q3 .

Here we used the relation Nn,i(q) = q2n−3Nn−1,i−1(q) which was derived in the
proof of Lemma 9.2.7. We obtain that An,n−2(q) ≤ Dn,n−2(q) if and only if
q ≥ 3.

For i = n− 3, we need to compare An,i(q), Bn,i(q) and Dn,i(q). We find that

An,n−3(q) = Nn−1,n−4(q)q
4(n−3)(q3 + 1)2

= q(n−2)
2−1(q + 1)q4n−12

(
q3 + 1

)2
=
(
qn

2−9(q + 1)
)

(q3 + 1)2 ,

Bn,n−3(q) = Nn−1,n−3(q)q
4(n−2)(q + 1)2

= q(n−2)
2

q4n−8(q + 1)2

=
(
qn

2−9(q + 1)
)
q5(q + 1) ,

Dn,n−3(q) = Nn,n−3(q)q
2(n−3)+2

= q(n−1)
2−1(q + 1)q2n−4

=
(
qn

2−9(q + 1)
)
q5 .
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We obtain that Bn,n−3(q) ≥ An,n−3(q) ≥ Dn,n−3(q).

Now we deal with the case i ≤ n− 4. First note that

An,i(q) =

(
n−i−4∏
j=1

(qj − (−1)j)
q(n−2)

2−(n−i−1
2 )+4i

(q2 − 1)2

)
an−i(q) ,

Bn,i(q) =

(
n−i−4∏
j=1

(qj − (−1)j)
q(n−2)

2−(n−i−1
2 )+4i

(q2 − 1)2

)
bn−i(q) ,

Cn,i(q) =

(
n−i−4∏
j=1

(qj − (−1)j)
q(n−2)

2−(n−i−1
2 )+4i

(q2 − 1)2

)
cn−i(q) ,

with

am(q) = (qm − (−1)m)2
(
qm−1 − (−1)m−1

)2 ·(
qm−2 − (−1)m−2

) (
qm−3 − (−1)m−3

)
,

bm(q) = qm+2
(
qm−1 − (−1)m−1

)2 (
qm−2 − (−1)m−2

)2 (
qm−3 − (−1)m−3

)
,

cm(q) = q2m−1
(
qm−2 − (−1)m−2

) (
qm−3 − (−1)m−3

)
·(

q4
(
qm−2 − (−1)m−2

) (
qm−3 − (−1)m−3

)
+
(
q2 − 1

)2)
.

We look at the difference bm(q)−am(q). We can assume m ≥ 4 since n− i ≥ 4.
If m is even, we find that

bm(q)− am(q) = −q5m−8ϕ5(q) + q4m−7ϕ4(q)− q3m−6ϕ3(q) + q2m−5ϕ2(q)

− qm−4ϕ1(q) + 1 ,

with

ϕ5(q) = q3 − 2q ,

ϕ4(q) = −q5 + q4 − 2q2 + 4q − 1 ,

ϕ3(q) = −q6 + 2q5 − 3q3 + 5q2 − 3q + 2 ,

ϕ2(q) = 2q6 − q5 − 3q4 + 3q3 − 4q2 + 2q − 1 ,

ϕ1(q) = −q6 + 2q4 − 2q3 + q2 − q .
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Now, it can be checked that the five functions

χi(q) =
5∑
j=i

(−1)jϕj(q)q
3(j−i) , i = 2, . . . , 5 , and

χ1(q) =
5∑
j=i

(−1)jϕj(q)q
3(j−i) + 1

are negative for q ≥ 2. It follows that

q(i+1)(m−1)−3χi+1(q) +
i∑

j=1

(−1)jϕj(q)q
j(m−1)−3

= q(i+1)(m−1)−3χi+1(q) + (−1)iϕi(q)q
i(m−1)−3 +

i−1∑
j=1

(−1)jϕj(q)q
j(m−1)−3

= qi(m−1)−3(qm−1χi+1(q) + (−1)iϕi(q)) +
i−1∑
j=1

(−1)jϕj(q)q
j(m−1)−3

≤ qi(m−1)−3(q3χi+1(q) + (−1)iϕi(q)) +
i−1∑
j=1

(−1)jϕj(q)q
j(m−1)−3

= qi(m−1)−3χi(q) +
i−1∑
j=1

(−1)jϕj(q)q
j(m−1)−3 ,

for i = 2, . . . , 5, with χ6(q) = 0. We used that qm−1 ≥ q3 and χi(q) ≤ 0.
Hence, applying this rule four times, we find

bm(q)− am(q) =
5∑
j=1

(−1)jqj(m−1)−3ϕj(q) + 1

= q6(m−1)−3χ6(q) +
5∑
j=1

(−1)jqj(m−1)−3ϕj(q) + 1

≤ q5(m−1)−3χ5(q) +
4∑
j=1

(−1)jϕj(q)q
j(m−1)−3 + 1

≤ q4(m−1)−3χ4(q) +
3∑
j=1

(−1)jϕj(q)q
j(m−1)−3 + 1
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≤ q3(m−1)−3χ3(q) +
2∑
j=1

(−1)jϕj(q)q
j(m−1)−3 + 1

≤ q2(m−1)−3χ2(q)− ϕ1(q)q
(m−1)−3 + 1

≤ q(m−1)−3
(
q3χ2(q)− ϕ1(q)

)
+ 1

≤ χ1(q)

< 0 .

Consequently, bm(q) < am(q) if m ≥ 4 is even. If m ≥ 4 is odd, then

bm(q)− am(q) = q5m−8ϕ5(q) + q4m−7ϕ4(q) + q3m−6ϕ3(q) + q2m−5ϕ2(q)

+ qm−4ϕ1(q) + 1 ,

Arguing in the same way, we find that bm(q) > am(q). This time, it should be
observed that

5∑
j=i

ϕj(q)q
3(j−i) > 0 , i = 1, . . . , 5 ,

for all q ≥ 2.

Now, we look at the difference cm(q)−am(q). We can still assume that m ≥ 4.
If m is even, then

cm(q)− am(q) = q5m−8ψ5(q) + q4m−7ψ4(q) + q3m−6ψ3(q) + q2m−5ψ2(q)

+ qm−4ψ1(q) + 1 ,

with

ψ5(q) = q4 − q3 − 2q2 + 2q ,

ψ4(q) = q6 − 2q5 − q4 + 2q3 − 3q2 + 5q − 1 ,

ψ3(q) = −q7 + q6 − q4 + 6q3 − 6q2 + 3q − 2 ,

ψ2(q) = 2q6 + q5 − 5q4 + 3q3 − 4q2 + 2q − 1 ,

ψ1(q) = −2q3 + 2q2 − q + 1 .

If m is odd, then

cm(q)− am(q) = −q5m−8ψ5(q) + q4m−7ψ4(q)− q3m−6ψ3(q) + q2m−5ψ2(q)

− qm−4ψ1(q) + 1 .



246 | Appendix A. The omitted calculations

Proceeding in the same way as for the difference bm(q) − am(q), we can see
that cm(q)− am(q) > 0 for q ≥ 2, if m ≥ 4 is even, and that cm(q)− am(q) < 0
for q ≥ 2, if m ≥ 4 is odd.

We conclude that cm(q) > am(q) > bm(q) if m ≥ 4 is even, and bm(q) >
am(q) > cm(q) if m ≥ 4 is odd, both for q ≥ 2. This leads to the inequalities
on An,i, Bn,i and Cn,i that are mentioned in Lemma 9.3.5.



B
Nederlandstalige samenvatting

Waarom ik met Van Maerlant juich,
zijn leuze voor de mijne erken.

Lambrecht Lambrechts, Omdat ik Vlaming ben.

In deze appendix geven we een Nederlandstalige samenvatting van dit proef-
schrift. We vermelden enkel de belangrijkste begrippen en resultaten. Voor
de details verwijzen we naar de Engelstalige tekst, waarvan we de structuur
zullen volgen. De verschillende secties komen overeen met de hoofdstukken in
dit proefschrift. We gaan ervan uit dat de lezer vertrouwd is met een aantal
wiskundige basisbegrippen.
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B.1 Inleiding

In de inleiding worden verschillende incidentiemeetkundes en substructuren
van incidentiemeetkundes beschreven. Deze meetkundes hebben deelruimtes
van verschillende dimensies, zoals punten, rechten, vlakken, ... en hypervlakken.

Een t− (v, k, λ) design, v > k > 1, k ≥ t ≥ 1, λ > 0, is een meetkunde met v
punten, zodat iedere rechte (blok) k punten bevat, en zodat elke verzameling
van t verschillende punten in precies λ rechten is bevat. Het aantal rechten
door een vast punt wordt genoteerd als r. Designs met λ = 1 worden Steiner
designs genoemd. We vermelden enkele belangrijke Steiner 2-designs. De
2 − (n2 + n + 1, n + 1, 1) designs zijn de axiomatisch projectieve vlakken van
orde n; de 2 − (n2, n, 1) designs zijn de axiomatisch affiene vlakken van orde
n. De 2 − (n3 + 1, n + 1, 1) designs worden unitalen genoemd en de Steiner
2-designs met k = 3, worden Steiner 3-systemen genoemd.

Een projectieve ruimte PG(n,F) van dimensie n over een veld F is de meet-
kunde van de deelruimtes van een (n + 1)-dimensionale vectorruimte over F.
In dit proefschrift behandelen we voornamelijk eindige projectieve ruimtes,
i.e. projectieve ruimtes over een eindig veld Fq. De n-dimensionale projec-
tieve ruimte over Fq wordt genoteerd als PG(n, q). De deelruimtes van de
onderliggende vectorruimte induceren deelruimtes in de projectieve ruimte.
De projectieve dimensie van een deelruimte is één minder dan de vectoriële
dimensie van deze deelruimte. De k-dimensionale deelruimtes van een pro-
jectieve ruimte noemen we kortweg k-ruimtes. In projectieve ruimtes bestaat
het principe van dualiteit. Er bestaan afbeeldingen die k-ruimtes afbeelden
op (n − k − 1)-ruimtes zodat incidentie behouden blijft. Dit laat ons toe om
objecten en stellingen te dualiseren. Het aantal punten in PG(n, q) is gelijk

aan qn+1−1
q−1 = θn(q). Het aantal k-ruimtes in PG(n, q) wordt gegeven door de

Gaussische coëfficiënt

[
n+ 1

k + 1

]
q

.

De affiene ruimte AG(n,F) is de meetkunde die ontstaat door in de projectieve
ruimte PG(n,F) een hypervlak H∞ met alle deelruimtes die erin liggen te
verwijderen. Men noemt dit hypervlak ook wel ‘het hypervlak op oneindig’. De
k-ruimtes van PG(n,F) die niet in H∞ liggen, induceren k-ruimtes in AG(n,F).
Iedere affiene k-ruimte bepaalt een (k−1)-ruimte in dit hypervlak op oneindig.
Twee k-ruimtes door eenzelfde (k − 1)-ruimte op oneindig zijn parallel.
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Een klassieke polaire ruimte1 is de meetkunde van de totaal isotrope deelruim-
tes van een vectorruimte, ten opzichte van een niet-singuliere kwadratische,
Hermitische of symplectische vorm. Totaal isotrope deelruimtes zijn deelruim-
tes waarop de vorm reduceert tot de nulvorm. De deelruimtes van maximale
dimensie van een klassieke polaire ruimte noemen we generatoren en hun vec-
toriële dimensie de rang van de klassieke polaire ruimte. Als gevolg van de
rechtstreekse identificatie van vectorruimtes met projectieve ruimtes, kunnen
we de klassieke polaire ruimtes beschouwen als deelstructuren van projectieve
ruimtes.

De eindige klassieke polaire ruimtes zijn de klassieke polaire ruimtes opge-
bouwd vanuit een vectorruimte over een eindig veld Fq. We onderscheiden
zes types van eindige klassieke polaire ruimtes van rang r: de hyperbolische
kwadrieken Q+(2r−1, q) ingebed in PG(2r−1, q), de parabolische kwadrieken
Q(2r, q) ingebed in PG(2r, q), de elliptische kwadrieken Q−(2r + 1, q) inge-
bed in PG(2r + 1, q), de Hermitische polaire ruimtes H(2r − 1, q2) ingebed in
PG(2r−1, q2), de Hermitische polaire ruimtes H(2r, q2) ingebed in PG(2r, q2)
en de symplectische polaire ruimtes W(2r − 1, q) ingebed in PG(2r − 1, q).

Als we op dezelfde wijze als bij klassieke polaire ruimtes, een meetkunde op-
bouwen vanuit een kwadratische, Hermitische of symplectische vorm die niet
noodzakelijk niet-singulier is, vinden we een kwadratische, Hermitische of sym-
plectische variëteit. Als de vorm niet-singulier is, vinden we niet-singuliere
variëteiten, de klassieke polaire ruimtes. Als de vorm singulier is, vinden we
kegels met een deelruimte van de projectieve ruimte als top en een klassieke
polaire ruimte (een niet-singuliere variëteit) als basis. De kwadratische en Her-
mitische variëteiten kunnen we identificeren met hun puntenverzamelingen.

Een (k, t)-boog in PG(2, q) is een verzameling van k punten in PG(2, q) zodat
elke rechte hoogstens t punten van de boog bevat. Een (k, 2)-boog wordt
kortweg een k-boog genoemd. We weten dat k-bogen in PG(2, q) enkel bestaan
voor k ≤ q + 2 als q even is, en voor k ≤ q + 1 als q oneven is. Een (q + 2)-
boog in PG(2, q), q even, wordt een hyperovaal genoemd. Als iedere rechte een
(q + t, t)-boog in PG(2, q) in precies 0, 2 of t punten snijdt, dan noemen we
deze boog een (q + t, t)-boog van type (0, 2, t). Deze kunnen enkel bestaan als
q even is en t | q.

Een blokkerende verzameling ten opzichte van de k-ruimtes in PG(n, q) is een

1De klassieke polaire ruimtes vormen een speciale, maar zeer belangrijke klasse van de polaire
ruimtes. Deze zullen we hier niet algemeen introduceren.
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puntenverzameling in PG(n, q) zodat elke k-ruimte minstens één punt van de
verzameling bevat. Een blokkerende verzameling wordt minimaal genoemd als
ze geen enkele strikte deelverzameling bevat, die zelf een blokkerende verza-
meling is. De kleinste blokkerende verzameling ten opzichte van de k-ruimtes
in PG(n, q), is de verzameling van alle punten in één (n − k)-ruimte. Deze
blokkerende verzameling wordt de triviale blokkerende verzameling genoemd.
Een blokkerende verzameling in PG(n, q) ten opzichte van de k-ruimtes, die
hoogstens 3

2
(qn−k + 1) punten bevat, wordt klein genoemd.

Een partiële t-spread in PG(n, q) is een verzameling van t-ruimtes die paars-
gewijs disjunct zijn. Als deze verzameling geen strikte deelverzameling is van
een andere partiële spread, dan noemen we de partiële spread maximaal.

Naast al de voorgaande meetkundige begrippen voeren we ook enkele begrip-
pen uit de codeertheorie in. Een lineaire code van lengte n over Fq is een
deelvectorruimte van de vectorruimte V (n, q). Als de lineaire code een k-
dimensionale deelruimte is, noemen we hem een [n, k]-code. De vectoren in
deze deelruimte noemen we codewoorden. Het gewicht van een codewoord is
zijn aantal coördinaten verschillend van 0. Het minimum gewicht van een code
is dan het minimum van de gewichten van de codewoorden van de code, de
nulvector buiten beschouwing gelaten. Als er een getal bestaat dat het gewicht
van ieder codewoord in de code deelt, dan noemen we dit getal een deler van
de code.

Aangezien een lineaire code een deelvectorruimte is, kunnen we het orthogo-
naal complement van de lineaire code bekijken, gedefinieerd op basis van het
standaard inwendig product. Dit orthogonaal complement is ook een lineaire
code en deze wordt de duale code genoemd.

We beschrijven twee methodes die codes creëren op basis van meetkundige
structuren. Een incidentievector van een k-ruimte van een projectieve of po-
laire ruimte is een vector waarvan de posities worden gëındexeerd door de
puntenverzameling van de meetkunde, en waarvan een element gelijk is aan
1, respectievelijk aan 0, als het punt corresponderend met de positie waarop
het element staat, bevat is in de k-ruimte. Een incidentiematrix van punten
en k-ruimtes van een projectieve of polaire ruimte is een matrix waarvan de
kolommen worden gëındexeerd door de puntenverzameling van de meetkunde,
en waarvan de rijen de incidentievectoren van de k-ruimtes zijn. De lineaire
code Ct(n, q) is dan de deelvectorruimte voortgebracht door de rijen van een
incidentiematrix van de t-ruimtes in PG(n, q).
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De andere methode vertrekt van een algebräısche variëteit in PG(n, q), een
puntenverzameling beschreven door een algebräısche vergelijking, en een ver-
zameling homogene veeltermen over Fq in n + 1 variabelen, gesloten onder
lineaire combinatie. We geven de punten in de puntenverzameling een vaste
volgorde en normaliseren hun coördinaten ten opzichte van de meest linkse
coördinaat die verschilt van 0. Elke veelterm in de gekozen verzameling cor-
respondeert nu met één codewoord, door de veelterm te evalueren in elk van
de punten (gezien als coördinaten van een vector), de gekozen volgorde res-
pecterend. De codes die zo ontstaan worden functionele codes genoemd. Een
belangrijke observatie leert ons dat het aantal nulcoördinaten in een codewoord
gelijk is aan het aantal punten in de doorsnede van de gekozen algebräısche
variëteit en de algebräısche variëteit gedefinieerd door de veelterm die over-
eenkomt met het codewoord. Dit is een belangrijk hulpmiddel bij het bepalen
van het minimum gewicht van deze codes.

B.2 Erdős-Ko-Rado problemen

In een invloedrijk artikel bestudeerden Erdős, Ko en Rado families van deel-
verzamelingen van grootte k in een verzameling met n elementen, zodat twee
deelverzamelingen in deze familie altijd minstens één element gemeen hebben.
De centrale vraag was hoe groot zo een familie kan zijn, en hoe ze kan be-
schreven worden, gegeven dat de maximale grootte wordt bereikt. Naderhand
werden dergelijke families van deelverzamelingen Erdős-Ko-Rado verzamelin-
gen genoemd. Dit concept werd later uitgebreid tot andere structuren (ver-
schillend van eindige verzamelingen). Ook werd de vraag verbreed, tot het
algemene Erdős-Ko-Rado probleem: de classificatie van de (maximale) Erdős-
Ko-Rado verzamelingen. We overlopen hier de bekende resultaten voor eindige
verzamelingen, eindige projectieve ruimtes en eindige klassieke polaire ruimtes.

Een Erdős-Ko-Rado verzameling van deelverzamelingen van grootte k in een
eindige verzameling van grootte n werd hierboven al gedefinieerd. De volgende
stelling vat resultaten van Erdős, Ko en Rado, en van Wilson samen.

Stelling B.2.1. Beschouw een Erdős-Ko-Rado verzameling S van deelverza-
melingen van grootte k in een verzameling van grootte n. Als n ≥ 2k, dan is
|S| ≤

(
n−1
k−1

)
. Als n ≥ 2k + 1 en |S| =

(
n−1
k−1

)
, dan is S de verzameling van alle

deelverzamelingen van grootte k die een vast element bevatten.

Hilton en Milner bewezen een bovengrens op de grootte van een Erdős-Ko-
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Rado verzameling van deelverzamelingen van grootte k ≥ 3 in een verzameling
met n ≥ 2k + 1 elementen, waarvoor geen enkel van deze n elementen van de
verzameling tot alle deelverzamelingen van de Erdős-Ko-Rado verzameling be-
hoort, en classificeerden de Erdős-Ko-Rado verzamelingen die deze bovengrens
bereiken.

Een Erdős-Ko-Rado verzameling van k-ruimtes, kortweg een EKR(k) verza-
meling, in PG(n, q), is een verzameling k-ruimtes in PG(n, q) die paarsgewijs
minstens één punt gemeen hebben. Een EKR(k) verzameling wordt maximaal
genoemd als ze geen strikte deelverzameling is van een andere EKR(k) verza-
meling. Het Erdős-Ko-Rado probleem vraagt dan om de maximale Erdős-Ko-
Rado verzamelingen te classificeren. Typisch probeert men alle Erdős-Ko-Rado
verzamelingen die minstens s elementen bevatten te classificeren. De volgende
stelling combineert resultaten van Frankl en Wilson, en van Tanaka.

Stelling B.2.2. Een EKR(k) verzameling in PG(n, q), n ≥ 2k + 1, bevat

hoogstens

[
n

k

]
q

elementen. Als S een EKR(k) verzameling in PG(n, q) is,

n ≥ 2k + 1, die deze grens bereikt, dan is S de verzameling van alle k-ruimtes
door een vast punt of is n = 2k + 1 en is S de verzameling van alle k-ruimtes
in een hypervlak.

We merken hierbij op dat het Erdős-Ko-Rado probleem voor k-ruimtes in
PG(n, q) triviaal is als n ≤ 2k. Blokhuis et al. bewezen een projectief equi-
valent van het resultaat van Hilton en Milner. Ze classificeerden in de meeste
gevallen de tweede grootste maximale Erdős-Ko-Rado verzamelingen.

We merken ook op dat het Erdős-Ko-Rado probleem in PG(n, q), n ≥ 3,
triviaal is voor k = 1. In dit geval zijn er slechts twee maximale Erdős-Ko-
Rado verzamelingen, namelijk de verzameling van alle rechten door een punt
en de verzameling van alle rechten in een vlak.

Een Erdős-Ko-Rado verzameling van k-ruimtes, kortweg een EKR(k) verza-
meling, in een klassieke polaire ruimte, is een verzameling k-ruimtes in die
polaire ruimte die paarsgewijs minstens één punt gemeen hebben. Net zoals
hierboven wordt ze maximaal genoemd als ze geen strikte deelverzameling van
een andere EKR(k) verzameling is. De grootste Erdős-Ko-Rado verzamelingen
van generatoren werd geclassificeerd door Pepe, Storme en Vanhove, voor alle
eindige klassieke polaire ruimtes, behalve voor de Hermitische polaire ruimtes
H(4n + 1, q2), n ≥ 2. Voor deze klassieke polaire ruimtes werd de beste bo-
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vengrens op de grootte van de Erdős-Ko-Rado verzamelingen van generatoren
bewezen door Ihringer en Metsch.

We merken op dat de classificatie van de EKR(1) verzamelingen triviaal is,
net zoals bij projectieve ruimtes. Over EKR(k) verzamelingen in een klassieke
polaire ruimte van rang r, met 2 < k < r− 1, is niets geweten. In de volgende
sectie komt het geval k = 2 aan bod.

B.3 Erdős-Ko-Rado verzamelingen van vlakken

Gezien de gekende resultaten in verband met het Erdős-Ko-Rado probleem,
voorgesteld in de vorige sectie, is het niet onlogisch om de EKR(2) verzamelin-
gen te bestuderen. Blokhuis, Brouwer en Szőnyi classificeerden de zes grootste
voorbeelden van maximale EKR(2) verzamelingen in PG(5, q).

Eerst introduceren we elf types van maximale EKR(2) verzamelingen, zowel
voor PG(n, q), n ≥ 5, als voor eindige klassieke polaire ruimtes van rang
d ≥ 3, met volgnummers I tot XI. Deze types komen voor in een projectieve
en een polaire variant (soms 2 polaire varianten). We geven deze lijst hier niet,
maar verwijzen daarvoor naar Sectie 3.1.1. Sommige types komen niet voor op
bepaalde eindige klassieke polaire ruimtes van lage rang. De maximale EKR(2)
verzamelingen van deze elf types hebben gemeen dat ze niet noodzakelijk bevat
zijn in een 5-ruimte van de (omhullende) n-dimensionale projectieve ruimte.
Meestal spannen ze de volledige ruimte, een (n−1)-ruimte, een (n−2)-ruimte
of een 6-ruimte op. In Sectie 3.1.2 geven we dan een lijst van zeven andere
types van maximale EKR(2) verzamelingen, die wel steeds in een 5-ruimte
van de (omhullende) projectieve ruimte bevat zijn, ongeacht de projectieve of
klassieke polaire ruimte waarin ze zijn ingebed. Deze worden genummerd van
XII tot XVIII. De hoofdstelling van dit gedeelte is het volgende resultaat.

Stelling B.3.1. Als S een maximale EKR(2) verzameling is, die bevat is in
een projectieve ruimte PG(n, q), n ≥ 5, of in een eindige klassieke polaire
ruimte van rang d ≥ 3, dan is S van type I, II, ..., XI of is S bevat in een
5-ruimte van de (omhullende) projectieve ruimte.

Deze stelling laat ons toe om een classificatie te maken van de grootste maxi-
male EKR(2) verzamelingen voor eindige projectieve ruimtes en eindige klas-
sieke polaire ruimtes van rang minstens 6.

Stelling B.3.2.
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• Een maximale EKR(2) verzameling in PG(n, q), n ≥ 5, die minstens
3q4+3q3+2q2+q+1 elementen bevat, behoort tot één van de beschreven
types. Als n = 5, 6, dan zijn er zes mogelijke types; als n ≥ 7, dan zijn
er tien mogelijke types.

• Een maximale EKR(2) verzameling in een klassieke polaire ruimte P
van rang d ≥ 6, ingebed in een projectieve ruimte PG(n, q), die minstens
3q4+3q3+2q2+q+1 elementen bevat, behoort tot één van de beschreven
types. Als P een hyperbolische kwadriek is, of als P een symplectische
polaire ruimte met q even is, dan zijn er tien mogelijke types; als P een
symplectische polaire ruimte met q oneven is, dan zijn er elf mogelijke
types; als P een Hermitische polaire ruimte is, dan zijn er twaalf mogelijke
types.

In Sectie 3.3 staat precies beschreven welke de verschillende mogelijke types
zijn in elk van deze gevallen en welke de grootste, tweede grootste, enz. onder
hen is.

Voor eindige klassieke polaire ruimtes van lage rang laat de hoofdstelling ons
zelfs toe om een betere classificatie te bekomen, voor kwadrieken en symplec-
tische polaire ruimtes zelfs een complete classificatie.

Stelling B.3.3. Een maximale EKR(2) verzameling in een klassieke polaire
ruimte P van rang 3 ≤ d ≤ 5, ingebed in een projectieve ruimte PG(n, q),
behoort tot één van de beschreven types.

• Veronderstel dat P een kwadriek is. Als P van rang 3 is, dan zijn er drie
mogelijke types; als P van rang 4 is, dan zijn er vijf mogelijke types; als
P hyperbolisch en van rang 5 is, dan zijn er elf mogelijke types; als P
elliptisch of parabolisch, en van rang 5 is, dan zijn er twaalf mogelijke
types.

• Veronderstel dat P een symplectische polaire ruimte is, met q even. Als
P van rang 3 is, dan zijn er drie mogelijke types; als P van rang 4 is,
dan zijn er vijf mogelijke types; als P van rang 5 is, dan zijn er twaalf
mogelijke types.

• Veronderstel dat P een symplectische polaire ruimte is, met q oneven.
Als P van rang 3 is, dan zijn er vijf mogelijke types; als P van rang 4 is,
dan zijn er zeven mogelijke types; als P van rang 5 is, dan zijn er veertien
mogelijke types.
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• Veronderstel dat P een Hermitische polaire ruimte is, en dat de maximale
EKR(2) verzameling minstens q2

√
q+q
√
q+
√
q+1 elementen bevat. Als

P = H(5, q), dan is er één mogelijk type; als P = H(6, q), dan zijn er
twee mogelijke types; als P van rang 4 is, dan zijn er vijf mogelijke types;
als P van rang 5 is, dan zijn er twaalf mogelijke types.

B.4 Erdős-Ko-Rado verzamelingen van generatoren op
Q+(4n+ 1, q)

We vermeldden hierboven al dat voor Erdős-Ko-Rado verzamelingen in ein-
dige projectieve ruimtes in het algemeen het grootste en het tweede grootste
voorbeeld geclassificeerd werden. Voor Erdős-Ko-Rado verzamelingen in ein-
dige klassieke polaire ruimtes is hoogstens het grootste voorbeeld geclassifi-
ceerd. In dit gedeelte beschrijven we een classificatie van de tweede grootste
Erdős-Ko-Rado verzameling van generatoren op een hyperbolische kwadriek
Q+(4n+ 1, q).

De generatoren van een hyperbolische kwadriek Q+(2m+ 1, q) kunnen in twee
klassen worden opgedeeld, de zogenaamde Latijnse en Griekse generatoren.
Twee generatoren uit eenzelfde klasse snijden elkaar dan in een deelruimte van
dimensie m − 2i, i ≤ 0 ≤ m+1

2
; twee generatoren uit een verschillende klasse

snijden elkaar dan in een deelruimte van dimensie m− 2i− 1, i ≤ 0 ≤ m
2

.

Voor een hyperbolische kwadriek Q+(4n + 1, q) betekent dit dat de verzame-
ling van alle generatoren uit eenzelfde klasse een Erdős-Ko-Rado verzameling
is. Deze bevat precies de helft van de generatoren van Q+(4n + 1, q). Dit
is de grootste (en dus ook een maximale) Erdős-Ko-Rado verzameling van
generatoren op Q+(4n+ 1, q).

We beschrijven nu een andere Erdős-Ko-Rado verzameling van generatoren op
Q+(4n + 1, q). Kies een vaste generator π. De verzameling die bestaat uit
π en uit alle generatoren van de klasse waartoe π niet behoort, maar die π
wel snijden, is een maximale Erdős-Ko-Rado verzameling van generatoren. De
hoofdstelling van dit gedeelte stelt dat dit de tweede grootste Erdős-Ko-Rado
verzameling van generatoren op Q+(4n+ 1, q) is, als n ≥ 1 en q ≥ 3.

Merk op dat het grootste voorbeeld q2n
2+n+ q2n

2+n−1 + q2n
2+n−2 +O(q2n

2+n−3)

elementen bevat, en dat het tweede grootste voorbeeld q2n
2+n−1 + q2n

2+n−2 +
O(q2n

2+n−3) elementen bevat. Alle andere maximale Erdős-Ko-Rado verza-
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melingen bevatten O(q2n
2+n−2) elementen. In Sectie 4.3 construeren we ver-

schillende voorbeelden van Erdős-Ko-Rado verzamelingen van generatoren die
q2n

2+n−2 +O(q2n
2+n−3) elementen bevatten.

B.5 Erdős-Ko-Rado verzamelingen in Steiner 2-designs

Voor een design is een Erdős-Ko-Rado verzameling een verzameling blokken
die paarsgewijs minstens één punt gemeen hebben. In dit gedeelte bespreken
we Erdős-Ko-Rado verzamelingen in 2 − (v, k, 1) designs. Het aantal blokken
door een vast punt in een 2−(v, k, 1) design design is gelijk aan v−1

k−1 en noteren
we als r. Rands bewees dat een Erdős-Ko-Rado verzameling in een 2− (v, k, 1)
design, met r ≥ k2, hoogstens r blokken kan bevatten en dat de enige Erdős-
Ko-Rado verzameling die r blokken bevat, de verzameling van alle blokken
door een vast punt is.

De hoofdstelling van dit gedeelte verbetert deze grens.

Stelling B.5.1. Beschouw een 2−(v, k, 1) design D, k ≥ 4, met r ≥ k2−3k+
3
4

√
k + 2, en een Erdős-Ko-Rado verzameling S in D. Dan bevat S hoogstens

r elementen. Als r 6= k2 − k + 1 en (r, k) 6= (8, 4), dan is |S| = r als en slechts
als S de verzameling van alle blokken door een vast punt is.

In deze stelling is de uitzondering r 6= k2 − k + 1 noodzakelijk. Als k − 1 een
priemmacht is, bestaat er immers een 2−(k3−2k2+2k, k, 1) design waarin een
tweede type van Erdős-Ko-Rado verzamelingen van grootte r bestaat, namelijk
het design van punten en rechten van PG(3, k − 1).

Daarnaast bekijken we ook nog enkele speciale types van Steiner 2-designs.
In axiomatisch projectieve vlakken bestaat er slechts één maximale Erdős-Ko-
Rado verzameling, de verzameling van alle rechten. In een axiomatisch affien
vlak van de orde n bestaan alle maximale Erdős-Ko-Rado verzamelingen uit
n + 1 rechten, één uit elke parallelklasse (één door elk punt van de rechte op
oneindig). In designs zonder O’Nan configuratie (4 blokken die paarsgewijs
snijden in zes verschillende punten) zijn er twee types van maximale Erdős-
Ko-Rado verzamelingen. In Steiner 3-systemen kunnen vijf verschillende types
van maximale Erdős-Ko-Rado verzamelingen voorkomen. Als een Steiner 3-
systeem meer dan 19 punten bevat, dan is de verzameling van alle blokken
door een vast punt sowieso de grootste Erdős-Ko-Rado verzameling.
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Voor unitalen vinden we de volgende stelling.

Stelling B.5.2. Beschouw een unitaal U van de orde q, en een maximale
Erdős-Ko-Rado verzameling op U . Als q ≥ 5, dan is |S| = q2 en is S de

verzameling van alle blokken door een vast punt, of is |S| ≤ q2 − q + 3
√
q2 −

2
3

3
√
q + 1. Als q = 4, dan is |S| = q2 = 16 en is S de verzameling van alle

blokken door een vast punt, of is |S| ≤ 13. Als q = 3, dan is |S| = q2 = 9 en
is S de verzameling van alle blokken door een vast punt, of is |S| ≤ 8.

B.6 Kakeya verzamelingen in AG(2, q)

Een Kakeya verzameling in een affiene ruimte AG(n, q) is de puntenverzame-
ling bedekt door een verzameling rechten die één rechte door elk punt van het
hypervlak op oneindig heeft (één rechte in elke richting). Voor AG(2, q) bevat
zo een bijhorende rechtenverzameling precies q + 1 rechten. We bespreken in
deze sectie de kleine Kakeya verzamelingen in AG(2, q), q even. Zo een Kakeya

verzameling bevat minstens q(q+1)
2

punten.

We geven twee voorbeelden van kleine Kakeya verzamelingen. We herinneren
eraan dat AG(2, q) kan gëıdentificeerd worden met PG(2, q) waaruit een rechte
‘op oneindig’ `∞ is verwijderd. Kies een duale hyperovaal in het projectief vlak
PG(2, q) zodat één van de rechten samenvalt met `∞. De q+ 1 andere rechten
gaan elk door een ander punt van deze rechte op oneindig en bepalen dus een

Kakeya verzameling. Deze bevat q(q+1)
2

punten. Ook voor het tweede voorbeeld
kiezen we een duale hyperovaal in PG(2, q) zodat één van de rechten samenvalt
met `∞. Vervang één van de rechten op de duale hyperovaal, verschillend van
`∞, door een andere rechte door hetzelfde punt van `∞. Deze verzameling
bevat nog steeds q + 1 rechten, elk door een ander punt van de rechte op

oneindig. De bijhorende Kakeya verzameling bevat q(q+2)
2

punten. Blokhuis
en Mazzocca bewezen dat alle Kakeya verzamelingen in AG(2, q), q even, die

hoogstens q(q+2)
2

punten bevatten, tot één van deze twee types moeten behoren.

We construeren nu een nieuw type Kakeya verzamelingen. Kies een duale
(q + 4, 4)-boog A van type (0, 2, 4), zodat één van de rechten samenvalt met
`∞. Dan bevat `∞ precies één punt waardoor drie rechten gaan. Door twee van
deze rechten (en `∞) te verwijderen uit de rechtenverzameling van A, blijven
er q + 1 rechten over, één door elk punt van `∞. De Kakeya verzameling die

bepaald wordt door deze rechten bevat q(q+2)
2

+ q
4

punten.
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Het belangrijkste resultaat uit dit gedeelte geeft een classificatie van alle Ka-

keya verzamelingen AG(2, q), q > 8 even, die hoogstens q(q+2)
2

+ q
4

punten bevat-
ten. Deze behoren tot één van de twee hierboven beschreven types afkomstig
van een hyperovaal of tot het type afkomstig van een duale (q + 4, 4)-boog
van type (0, 2, 4). Merk op dat dit betekent dat er geen Kakeya verzamelin-

gen bestaan waarvan de grootte in ] q(q+1)
2

, q(q+2)
2

[ ∪ ] q(q+2)
2

, q(q+2)
2

+ q
4

[ bevat
is. Deze observatie geldt ook voor q = 4, 8. Voor q = 4 kunnen we de vol-
ledige classificatie van Kakeya verzamelingen met de hand opstellen. In het
geval q = 8 kennen we echter de classificatie van de Kakeya verzamelingen van

grootte q(q+2)
2

+ q
4

niet.

B.7 Kleine maximale partiële t-spreads in PG(2t+ 1, q)

Een maximale partiële t-spread in PG(2t+1, q) is een verzameling paarsgewijs
disjuncte t-ruimtes in PG(2t + 1, q) zodat geen enkele t-ruimte in PG(2t +
1, q) disjunct is aan elk van de t-ruimtes in deze verzameling. In dit gedeelte
zoeken we een ondergrens op de grootte van een maximale partiële t-spread in
PG(2t + 1, q). Glynn bewees eerder de ondergrens 2q in het geval t = 1. In
Sectie 7.2 vinden we het volgende resultaat.

Stelling B.7.1. Een maximale partiële t-spread in PG(2t + 1, q) bevat min-
stens 2q − 1 elementen.

Er is ook een belangrijk verband tussen maximale partiële t-spreads in PG(2t+
1, q), en blokkerende verzamelingen ten opzichte van de t-ruimtes in PG(2t +
1, q). Immers, de puntenverzameling bedekt door de unie van t-ruimtes in een
maximale partiële t-spread is een blokkerende verzameling ten opzichte van
de t-ruimtes. Aangezien we maximale partiële t-spreads met weinig elemen-
ten willen bestuderen, bekijken we maximale partiële t-spreads die een kleine
minimale blokkerende verzameling ten opzichte van de t-ruimtes bevatten. De
volgende resultaten vinden we in Sectie 7.3.

Stelling B.7.2.

• Een maximale partiële t-spread in PG(2t + 1, q) die een (t + 1)-ruimte

(een triviale blokkerende verzameling) bedekt, bevat minstens qd
t
2e+1 +1

elementen.
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• Een maximale partiële t-spread in PG(2t+ 1, q), q = ph en p > 2 priem,
die een niet-triviale kleine blokkerende verzameling ten opzichte van de
t-ruimtes bedekt, bevat minstens

√
1 + (p− 1)(θt+1(q) + r(q)qt) + 1 ele-

menten. Hierbij is r(q) gelijk aan |B|−q−1, metB de kleinste niet-triviale
blokkerende verzameling ten opzichte van de rechten in PG(2, q).

Merk op dat r(q) ≥ √q voor alle q.

B.8 De functionele codes C2(H) en CHerm(Q)

We beschreven hierboven al hoe functionele codes CF(X ) worden opgebouwd
met behulp van een algebräısche variëteit X en een verzameling veeltermen F .
Vaak wordt een niet-singuliere kwadriek Q of een niet-singuliere Hermitische
variëteit als algebräısche variëteit gekozen. Als veeltermenverzameling kiest
men vaak de verzameling van homogene veeltermen van graad 2, inclusief de
nulveelterm, of de verzameling Hermitische veeltermen, inclusief de nulveel-
term. De codes C2(Q) en CHerm(H) werden al uitgebreid bestudeerd. In dit
gedeelte gaat het over de codes C2(H) en CHerm(Q). De lengte en dimensie
van deze codes is eenvoudig te vinden. We zoeken naar (een ondergrens op)
het minimum gewicht en naar codewoorden met een klein gewicht. Dit doen
we door doorsnedes van variëteiten te onderzoeken.

Voor het bestuderen van de code C2(H), H een niet-singuliere Hermitische
variëteit in PG(n, q2), voeren we de volgende functies in:

W4(q) =

{
q5 + q4 + 4q3 − 3q + 1 q ≥ 3

69 q = 2
,

Wn(q) =

{
q2Wn−1(q) + qn−2 + 2qn−3 n > 4 oneven

q2Wn−1(q)− qn−2 n > 4 even
.

De volgende stelling is het belangrijkste resultaat van Secties 8.1 en 8.2.

Stelling B.8.1. Als de doorsnede H ∩ Q van een niet-singuliere Hermitische
variëteit H met een willekeurige kwadriek Q in PG(n, q2), n ≥ 4, meer dan
Wn(q) punten bevat, dan is Q de unie van twee hypervlakken.

Alle codewoorden in C2(H), H een niet-singuliere Hermitische variëteit in
PG(n, q2), waarvan het gewicht kleiner is dan |H| − Wn(q), zijn afkomstig
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van kwadrieken die de unie zijn van twee hypervlakken. Dit laat ons toe om
het minimum gewicht van deze code te vinden en de codewoorden van de vijf
kleinste gewichten te classificeren.

Voor het bestuderen van de code CHerm(Q), Q een niet-singuliere kwadriek in
PG(n, q2), voeren we de functies W n(q) op de volgende wijze in:

W 4(q) =

{
q5 + 2q4 − 1

3
q3 + 2q2 + q + 1 q 6= 3

424 q = 3
;

W n(q) =

{
q7 + 2q6 + 2q5 − 1

2
q4 − 21

4
q3 + 15

8
q2 + 195

16
q + 8 n = 5, q ≥ 3

Wn(q) n > 5, q ≥ 3
;

W n(2) =

{
25
84

22n + 2425
1764

2n − 2655125
100107

n > 5 even
25
84

22n + 725
1764

2n − 27050
3087

n > 5 oneven
.

De volgende stelling is het belangrijkste resultaat van Secties 8.3, 8.4 en 8.5.

Stelling B.8.2. De doorsnede Q∩H van een niet-singuliere kwadriek Q met
een willekeurige Hermitische variëteit H in PG(n, q2), n ≥ 4, bevat hoogstens
W n(q) punten.

Bijgevolg is |Q|−W n(q) een ondergrens voor het minimum gewicht van de code
CHerm(Q), Q een niet-singuliere kwadriek in PG(n, q2). In Sectie 8.5 staan een
aantal codewoorden beschreven met een gewicht net boven deze ondergrens.

In Sectie 8.6 tonen we aan dat qn−2 een deler is van de code CHerm(Q), Q een
niet-singuliere kwadriek in PG(n, q2). Voor de andere hierboven beschreven
functionele codes was al eerder een deler gekend.

B.9 De duale code Cn(H(2n+ 1, q2))⊥

De code Cn(H(2n + 1, q2))⊥ bestaat uit alle vectoren die orthogonaal staan
op alle incidentievectoren van generatoren van de Hermitische polaire ruimte
H(2n+ 1, q2). In deze sectie bekijken we het minimum gewicht van deze code
en de codewoorden van klein gewicht in deze code. Voor n = 1, 2 werden deze
codes al eerder bestudeerd.

In Sectie 9.1 beschrijven we n klassen codewoorden van de code Cn(H(2n +
1, q2))⊥. Elk van deze codewoorden heeft gewicht 2q2n−1+O(q2n−2). De hoofd-



B.10. Bemerkingen bij de code C(2, q) | 261

stelling van deze sectie, bewezen in Sectie 9.3, stelt dat dit de codewoorden
met het kleinste gewicht zijn en dat alle codewoorden van klein gewicht kunnen
geschreven worden als lineaire combinatie van deze codewoorden.

Stelling B.9.1. Beschouw een natuurlijk getal n en een constante δ > 0. Als
q voldoende groot is, dan behoort een codewoord c 6= 0 van Cn(H(2n+1, q2))⊥,
waarvan het gewicht hoogstens 4q2n−2(q − 1) is, tot één van de n beschreven
klassen. Als q voldoende groot is, dan is een codewoord van Cn(H(2n+1, q2))⊥,
waarvan het gewicht hoogstens δq2n−1 is, een lineaire combinatie van code-
woorden uit deze n klassen. Het minimum gewicht van Cn(H(2n + 1, q2))⊥ is
2q2n−4(q3 + 1), n ≥ 2.

B.10 Bemerkingen bij de code C(2, q)

De code C(2, q) = C1(2, q) is de code voortgebracht door de incidentievectoren
van de rechten in PG(2, q). In dit laatste gedeelte staan de oplossingen van
twee kleine problemen in verband met deze code.

Blokhuis, Brouwer en Wilbrink bewezen dat de incidentievector van een unitaal
van orde q ingebed in PG(2, q2), een codewoord van C(2, q2) is als en slechts
als de unitaal Hermitisch is. De Hermitische kromme is dus een codewoord,
maar werd tot nu toe nog niet beschreven als lineaire combinatie van inci-
dentievectoren van rechten. Een eerste resultaat in dit gedeelte beschrijft zo
een lineaire combinatie, in het geval q even is, vertrekkend van een maximale
(q2 − q + 1)-boog in PG(2, q2).

De classificatie van de codewoorden van klein gewicht in C(2, q) is volledig voor
codewoorden van gewicht hoogstens 2q − 1. Er wordt vermoed dat alle code-
woorden in C(2, q), q = ph en p een priemgetal, met een gewicht w < q

√
q+ 1,

kunnen geschreven worden als lineaire combinatie van
⌈

w
q+1

⌉
incidentievecto-

ren van rechten, op voorwaarde dat h > 1. Een tweede resultaat in dit gedeelte
beschrijft een codewoord in C(2, q), q een priemgetal, van gewicht 3(q − 1),
dat niet geschreven kan worden als lineaire combinatie van 3 incidentievecto-
ren van rechten. Dit is het eerste codewoord, voor zover we weten, waarvan
het bestaan aantoont dat bovenstaand vermoeden niet kan uitgebreid worden
tot het geval h = 1.
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hyperbolic quadric, 14
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isomorphism, 2
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linear code, 21
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projective space, 29

maximal partial spread, 21
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nucleus, 17, 18

O’Nan configuration, 115
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order

axiomatic affine plane, 10
axiomatic projective plane, 9
generalised quadrangle, 12

orthogonal complement, 7
oval, 17

parabolic quadric, 14
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parallel lines, 10
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partial spread, 21
plane curve, 139
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plane of type B, 52
plane of type C, 52
point-line geometries, 2
point-pencil, 26, 29

block design, 113
EKR(2) of type I, 37

polar space, 11
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projective space, 5
projective subgeometries, 7
projectivity, 7
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singular variety, 16
singular vector, 12
small blocking set, 19
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spread, 21
stability result, iii
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subspace at infinity, 8
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support, 22
symplectic bilinear form, 12
symplectic polar space, 13
symplectic variety, 16

tangent curve, 139
tangent envelope, 139
tangent line, 17
totally isotropic subspace, 13
triality, 109
triangle (EKR set), 116
trivial blocking set, 19
type map, 2
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unitals, 4

varieties, 2

weight, 22
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worden, willen ze nut hebben. Door dit proefschrift te lezen, draagt u daaraan bij.

1en alle anderen waarmee ik de afgelopen jaren heb mogen samenwerken.
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“It is a lesson,” Armen said, “the last lesson we must learn before we don
our maester’s chains. The glass candle is meant to represent truth and

learning, rare and beautiful and fragile things. It is made in the shape of a
candle to remind us that a maester must cast light wherever he serves, and it
is sharp to remind us that knowledge can be dangerous. Wise men may grow

arrogant in their wisdom, but a maester must always remain humble. The
glass candle reminds us of that as well. Even after he has said his vow and
donned his chain and gone forth to serve, a maester will think back on the
darkness of his vigil and remember how nothing that he did could make the

candle burn... for even with knowledge, some things are not possible.”

A Song of Ice and Fire, A Feast for Crows, Prologue by G.R.R. Martin.
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