
THE SMITH NORMAL FORMS OF

DESIGNS WITH CLASSICAL PARAMETERS

by

David Blanchard Chandler

A dissertation submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Mathematics

Summer 2004

c© 2004 David Blanchard Chandler
All Rights Reserved



THE SMITH NORMAL FORMS OF

DESIGNS WITH CLASSICAL PARAMETERS

by

David Blanchard Chandler

Approved:
Philip Broadbridge, Ph.D.
Chairman of the Department of Mathematical Sciences

Approved:
Mark W. Huddleston, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Conrado M. Gempesaw II, Ph.D.
Vice Provost for Academic and International Programs



I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Qing Xiang, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Gary L. Ebert, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Felix G. Lazebnik, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Robert P. Gilbert, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
B. David Saunders, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

This work was done in close collaboration with the author’s advisor, Qing

Xiang. From the author’s first semester as a graduate student, Dr. Xiang promoted

the study of Gauss sums and Jacobi sums. Indeed, Jacobi sums proved to be the key

to this work. The biggest part of our results have been incorporated into a paper

currently in the referee process [11], also coauthored with Peter Sin of University of

Florida. Peter Sin previously conjectured the main result, and proved it in the prime

field case [37] and the point-hyperplane case [36] using representation theory. His

help was invaluable in making a concise presentation of some representation theory

arguments in our submitted article. In the present work we have tried to expand

some of these arguments to make them plainer from a combinatorial point of view.

The last chapter of this work reflects a paper with Dr. Xiang which has

appeared [12]. Dr. Xiang previously converted the Smith normal form problem into

a counting problem involving Gauss sums and gave it to the present author to do the

counting. We also had to prove our criterion for using characters to determine the

invariants of difference sets. We are indebted to W. K. (Billy) Chan for his elegant

method of proof involving local rings, which replaces the present author’s somewhat

brute force efforts. We are also grateful to Dave Saunders of the Computer Science

Department for direct computation of the Smith normal forms of two roughly 10000

by 10000 matrices.

Beyond Dr. Xiang, the other discrete mathematics graduate students and

faculty were crucial to making this course of study enjoyable and productive, includ-

ing Frank Fielder, Vasyl Dmytrenko, Sven Reichard, Jason Williford, Carl DeVore,

iv



Gary Ebert, and Felix Lazebnik. Finally, thanks are due to the author’s family for

their support and encouragement, including his parents, Gus and Margaret Chan-

dler, and his step-children, Jackie Shatley and Louis Broyles. The author dedicates

this work to the memory of his wife Judah, who put up with him until her untimely

death December 15, 2003.

v



TABLE OF CONTENTS

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Smith normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Cyclic difference sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 p-adic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Character sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Characters of a finite field . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Gauss sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Jacobi sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 The Stickelberger congruence . . . . . . . . . . . . . . . . . . 22
2.5.5 Wan’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Representations of finite groups . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 THE STATEMENT OF THEOREM A . . . . . . . . . . . . . . . . . 32

3.1 The incidence map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 The p’-part of the Smith normal form of PG(n, q) . . . . . . . . . . . 33
3.3 Monomial bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 The module structure of Fq

L1 . . . . . . . . . . . . . . . . . . . . . . 40
3.5 The Smith normal form of PG(n, q) . . . . . . . . . . . . . . . . . . . 42

vi



4 THE HYPERPLANE CASE . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 An explicit formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 THE PROOF OF THEOREM A . . . . . . . . . . . . . . . . . . . . . 54

5.1 Lower bounds on the invariants . . . . . . . . . . . . . . . . . . . . . 54
5.2 p-filtrations and Smith normal form bases . . . . . . . . . . . . . . . 57
5.3 Jacobi sums and the action of the general linear group on RL1 . . . . 61
5.4 The proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Proof of the Bardoe/Sin module structure result . . . . . . . . . . . . 75

6 AFFINE GEOMETRIES . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 The Invariant Factors of the Incidence between points and r-flats in
AG(n, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 THE INCIDENCE AMONG OTHER SETS OF SUBSPACES . . 86

7.1 The cross-characteristic invariants . . . . . . . . . . . . . . . . . . . . 86
7.2 The open question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 TWO OTHER FAMILIES OF DIFFERENCE SETS . . . . . . . . 94

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 The Smith Normal Forms of Difference Sets . . . . . . . . . . . . . . 96
8.3 The Invariant Factors of the HKM and Lin Difference Sets . . . . . . 100

vii



ABSTRACT

The incidence matrix of a design is a (0,1)-matrix with rows representing

blocks, columns representing points, and a one indicating incidence. The Smith

normal form generalizes the idea of p-rank. We determine the Smith normal form of

the incidence matrices of classical designs, those arising from the incidence of points

and some other dimensional subspace of a finite geometry. The techniques involve

the use of p-adic character sums and some representation theory.

We also obtain partial results in determining the Smith normal form for the

incidence between sets of subspaces, neither one of which is the set of points. The

p-part remains largely unknown in this case.

In the case of the designs associated with two families of difference sets with

classical parameters, the p-ranks are the same when the parameters are the same.

We show these difference sets are inequivalent by showing a difference in the Smith

normal forms of the designs.
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Chapter 1

INTRODUCTION

The most important result of this dissertation is to determine the Smith

normal forms of certain classical designs arising from finite Desarguesian geometries.

While we got results for both affine and projective goemetries, the more fundamental

case would appear to be the projective case.

In Chapter 8 we also determine explicit formulas for part of the Smith normal

forms of two families of symmetric designs which arise from difference sets. As

the formulas differ, we conclude that the difference sets are inequivalent, and the

corresponding designs are nonisomorphic, even though they have the same p-ranks

when the parameters are the same. We begin by describing the projective geometry

problem.

Let Fq be the finite field of order q, where q = pt, p is a prime, and t is a

positive integer, and let V be an (n+1)-dimensional vector space over Fq. We denote

by PG(V ) (or PG(n, q) if we do not want to emphasize the underlying vector space)

the n-dimensional projective geometry of V . The elements of PG(V ) are subspaces

of V , and two subspaces are considered to be incident if one is contained in the other.

We call one-dimensional subspaces of V points of PG(V ), and we call n-dimensional

subspaces of V hyperplanes of PG(V ). More generally, we regard r-dimensional

subspaces of V as projective (r− 1)-dimensional subspaces of PG(V ). We will refer

to r-dimensional subspaces of V as r-subspaces and denote the set of these spaces

in V as Lr. The set of projective points is then L1. We will consider the incidence
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relation between Lr and L1. Specifically, let A be a (0,1)-matrix with rows indexed

by elements Y of Lr and columns indexed by elements Z of L1, and with the (Y, Z)

entry equal to 1 if and only if Z ⊂ Y . We are interested in finding the Smith normal

form of A. (See Section 2.2 for the definition of Smith normal form.)

The incidence matrix A has been studied at least since the 1960s. Several

authors have considered the more general incidence matrices Ar,s of r-subspaces vs.

s-subspaces. Of course, As,r is the transpose of Ar,s, so the problems of finding

the Smith normal forms of the two matrices are equivalent. Also the matrix Ar,s is

the same as the matrix An+1−r,n+1−s. One defines the dual of a vector subspace to

be the subspace of those elements of V which are orthogonal to every point of the

original subspace, using the ordinary dot product on a specified coordinatization

of V . Incidence then is merely reversed when each subspace is replaced by its

dual. Thus, when we consider the more general case Ar,s, we may assume that

1 < s < r < n and s+ r ≤ n+ 1.

The known results for the general case Ar,s are the ranks of Ar,s over fields

K of characteristics not equal to p. When K = Q, Kantor in [24] showed that the

matrix Ar,s has full rank under certain natural conditions on r and s, and when

char(K) = `, where ` does not divide q, the rank of Ar,s over K was given by

Frumkin and Yakir [17]. The most interesting case is when char(K) = p. In this

case, with 1 < s < r < n, the problem of finding the rank of Ar,s is open, except

in the very few cases in which n and q each are small enough to facilitate direct

computation (cf. [18]). However, Hamada [19] gave a complete solution to the

problem of finding the p-rank of A (known as Hamada’s formula). In this work we

completely determine the Smith normal form of A = Ar,1 as an integral matrix.

There are at least two reasons for us to study this problem. First, the Smith

normal form may be useful to distinguish between nonisomorphic designs and be-

tween inequivalent difference sets (see Chapter 8). If we take the elements of L1
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as points and take the elements of Lr as blocks, then we obtain what is called a

2-design [4] with “classical parameters”. It is known that there exist many 2-designs

with classical parameters [8]. A standard way to distinguish nonisomorphic designs

with the same parameters is by comparing the p-ranks of their incidence matrices.

Unfortunately, nonisomorphic designs sometimes have the same p-rank. In such a

situation, one can try to prove nonisomorphism of designs (and the inequivalence

of the associated difference sets) by comparing the Smith normal forms of the in-

cidence matrices [12]. Therefore it is of interest to find Smith normal forms of

incidence matrices of designs.

The second reason is a connection with a problem solved by Wilson [42]. Let

Ω be an n-set. We say that an r-subset of Ω is incident with an s-subset of Ω if one

is contained in the other. Wilson found a diagonal form of the incidence matrix of

r-subsets versus s-subsets of Ω. The case of r-subsets versus s-subsets in an (n+1)-

set can be viewed as the q = 1 analog of the r-subspace versus s-subspace problem

in PG(n, q).

Now we summarize previous work related to the problem of finding the Smith

form of the incidence between L1 and Lr. Hamada [19] determined the p-rank of

the incidence between projective points and r-subspaces of PG(n, q) for any values

of p, t, r, and n. Hamada’s formula in [19] is based on results in Smith’s dissertation

[38]. (Smith normal form is named for a much older Smith.) Lander [28] found the

Smith form for the incidence between points and lines in PG(2, q). Black and List

[9] determined the invariant factors of the incidence between points and hyperplanes

in the case where q = p (that is, t = 1). More recently, Hamada’s formula follows

directly from the dimension of a certain submodule determined by Bardoe and Sin

in [7]. Sin used the submodule structure to determine the Smith normal form of the

incidence between points and arbitrary r-spaces when q = p [37], and to determine

the Smith normal form of the incidence between points and hyperplanes for general
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q [36]. Liebler used a different approach to determine the Smith normal form of

the incidence between points and hyperplanes [30]. Finally, Liebler and Sin had

conjectured the formulas for the invariant factors of the incidence between points

and arbitrary r-subspaces for general q, and could prove their formulas in the cases

where q = p, p2, or p3 [30]. We use a combination of techniques from number theory

and representation theory to confirm this conjecture.

Much of the time we will argue in terms of the incidence map. If E is any

ring, we let ELi denote the free E-module of rank |Li|. We will use the same symbols

to denote elements of Li and basis vectors of ELi . We define the incidence map

η1,r : ZL1 → ZLr

by letting η1,r(Z) =
∑

Y ∈Lr,Z⊂Y Y for every Z ∈ L1. Then we extend η1,r linearly

to ZL1 . The matrix of η1,r with respect to the basis L1 of ZL1 and the basis Lr of

ZLr is exactly the matrix A defined above. We will use the same η1,r to denote the

linear map from RL1 to RLr defined in the same way as above. R is a certain p-adic

local ring with maximal ideal p and residue field Fq.

This work is organized as follows. Chapter 2 is all preliminary material. In

Chapter 3 we explain the problem we are solving. Not until the last section of that

chapter do we state the main theorem. We include (in Section 3.2) an elementary

proof of a well-known fact: all but one of the invariant factors of A are powers of p.

Then in Section 3.3 we introduce the monomial basis M of FL1
q and its Teichmüller

lifting to a basis MR of RL1 . These bases are the key to finding the Smith normal

form of A. It is with respect to the MR of RL1 and a certain basis of RLr that the

matrix of η1,r is in Smith normal form.

In Section 3.4 we summarize the results of Bardoe and Sin [7]. They com-

pletely determined the submodules of FL1
q which are invariant under the action of

the general linear group acting as permutation group on the subspaces L1 of V .

These submodules have certain subsets of M as bases. Then at last, we actually

4



state our Theorem A, the determination of the Smith normal form of the incidence

matrix A.

In Chapter 4 we treat the point-to-hyperplane incidence map η1,n. For each

monomial basis element f ∈MR we use Jacobi sums and Stickelberger’s relation to

compute η1,n(f) explicitly–in terms of polynomials in the dual coordinates for the

elements of Ln. The invariants of η1,n can be read from these images.

Chapter 5 is dedicated to proving Theorem A. We are able to get lower

bounds on the invariants by direct calculation. We express the image η1,r(f) for

each f ∈MR as character sums. That is, each coordinate of the image vector with

respect to the basis Lr is such a character sum. Theorem 2.5.6 (Wan’s Theorem)

gives p-adic estimates for these sums. We know that these estimates must divide

the invariants of η1,r. It remains to prove that these estimates are sharp in our case.

The monomial basis MR of RL1 reduces (mod p) to the basis M of FL1
q . We

will call a basis of MR an SNF basis if the matrix of η1,r is in Smith normal form

with respect to that basis and some basis of RLr . We want to show that MR is an

SNF basis. In Section 5.2 we use the submodule structure of FL1
q to prove that an

SNF basis can be chosen so that at least its reduction (mod p) is M. We can also

group these basis elements into certain types, according to which submodules their

images inM generate, and we show that basis elements of the same type correspond

to the same p-adic invariant.

In Section 5.3 we examine the action of the general linear group G on RL1 .

We use the notions of Jacobi sums and the character group. For most elements of

MR (unless q = 2) we can construct an element g ∈ RG, the group ring of R and

G, with the following property. Given an arbitrary function f ∈ RL1 , the image gf

is the desired monomial with the same coefficient it has in f . In particular, we can

replace most of our basis elements with the corresponding elements of MR.

5



We complete the proof of Theorem A in Section 5.4. Again we use Stickel-

berger’s theorem applied to Jacobi sums. We construct an element of RG which acts

on a given element of MR of one type to give an element of MR of a certain other

type times a factor of p. Doing so we put an upper bound on the p-adic invariant

corresponding to the first element ofMR. For the convenience of the reader, we then

provide in Section 5.5 a modified proof of the main result of [7], the FqG-submodule

structure of FL1
q . We avoid most of the language of representation theory.

In Chapter 6 we obtain the Smith normal form for the incidence map in the

affine geometry case (Theorem B). We separate the projective geometry into its

affine part and the hyperplane at infinity. Those monomials which are zero on the

hyperplane at infinity are the ones which contribute to the invariants of this matrix.

Frumkin and Yakir ([17]) computed the rank of ηr,s over any field not of

characteristic p. In Chapter 7 we extend the work of Frumkin and Yakir to obtain

the `-adic Smith normal form for any prime ` 6= p. Thus we know everything about

the Smith normal form of Ar,s except the powers of p, even when strict inequality,

1 < s < r < n, holds. In this chapter we also obtain an eigenvalue result with some

relevance to the p-powers.

In Chapter 8 we compute the multiplicities of the second (3-adic) invariant

for two other families of difference sets with classical parameters (HKM and Lin),

showing that the difference sets are inequivalent. The multiplicity of the first invari-

ant gives the 3-rank. In this case the 3-ranks are the same when the two difference

sets from different families have the same parameters, but the multiplicities of the

second invariant are different. This work was actually done before, and motivated

our interest in, the calculation of the Smith normal forms of designs form projective

geometry. We determined that the multiplicities of the second invariant are two

different fourth degree polynomials (or possibly near polynomials) in m, where the

size of the group is (3m − 1)/2. What we actually proved is that the multiplicity of

6



the second invariant (except for very small values of m) is either equal to a certain

polynomial, or for some values of m the multiplicity might be less by exactly m.

The proof that the Lin sets are difference sets is due to Arasu and Dillon [2]. In-

terestingly, from what we have seen of their technique, they may be able to resolve

the ambiguity, and possibly compute the rest of the invariants.
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Chapter 2

PRELIMINARIES

The main theme of this work was determining the Smith normal form of the

incidence matrices of some designs. We begin by explaining the basic concepts.

2.1 Designs

Designs were introduced in the 1930s as designs for statistically balanced

experiments. They were soon found to be interesting objects in their own right,

with applications to finite geometry, coding theory, and other fields.

Definition 2.1.1. Let P be a set of v elements, called points, and let B be a

collection (possibly a multiset) of b subsets of P, each of size k, called blocks. We

call D = (P ,B) a 2-design, or 2-(v, k, λ) design, if there is an integer λ = λ2 such

that every pair of points in P is contained in exactly λ blocks of B.

In general, for t < k, D is a t-design, or t-(v, k, λ) design, if there is an

integer λ = λt such that every t-subset of P is contained in exactly λ blocks of B.

Theorem 2.1.2. If D is a t-design for some positive integer t, then D is also a

(t − 1)-design. In particular, if D is a 2-design, then each point occurs in exactly

r = λ1 blocks. We call r the replication number of D. Every system of k-subsets is

trivially a 0-design with λ0 = b.

Proof: See for instance [10, p. 259].
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In this work we will be concerned specifically with 2-designs. The parameters

of the 2-design, (v, k, λ, b, r), are not all independent. Counting the number of pairs

(p,B) of one point and one block, with p ∈ B, yields

bk = vr.

Second, we can count the number of triples (p1, p2, B), p1 6= p2, {p1, p2} ⊂ B, of a

block and two of its points, in either of two ways. The number of ordered distinct

pairs in each block is k(k−1), so we get bk(k−1). Also, the total number of ordered

pairs of distinct points is v(v − 1) and each is in λ blocks, so we get

bk(k − 1) = v(v − 1)λ

which reduces to

r(k − 1) = (v − 1)λ.

The classical examples of 2-designs arise from projective and affine geometries

over finite fields. Let PG(m, q) be the m-dimensional projective geometry over the

finite field Fq, where q is a prime power. That is, PG(m, q) is the set of subspaces of

an (m + 1)-dimensional vector space over Fq, with inclusion the incidence relation.

Similarly let AG(m, q) be the m-dimensional affine geometry over Fq. This geometry

includes all cosets of subspaces of an m-dimensional vector space over Fq. Let
[

m
i

]
q

denote the number of i-dimensional subspaces of an m-dimensional vector space over

Fq. We have [m
i

]
q

=
i∏

j=1

(qm−i+j − 1)

(qj − 1)
.

(We call these numbers generalized binomial or Gaussian coefficients and note that

if we treat q as a continuous variable and let q → 1, the limits are the ordinary

binomial coefficients.)

The following are the classical examples of 2-designs.

9



Example 2.1.3. The points of PG(m, q) and the (d− 1)-dimensional subspaces of

PG(m, q) (d-dimensional vector subspaces) form a 2-design with parameters

v =

[
m+ 1

1

]
q

=
qm+1 − 1

q − 1

k =

[
d

1

]
q

=
qd − 1

q − 1

λ =

[
m− 1

d− 2

]
q

, r =

[
m

d− 1

]
q

, and b =

[
m+ 1

d

]
q

.

We can obtain these parameters from the following general principle: given

an i-dimensional vector subspace U of an m-dimensional vector space W over Fq,

the number of j-dimensional vector subspaces of W containing U is
[

m−i
j−i

]
q
.

Example 2.1.4. The points of AG(m, q) and the d-flats of AG(m, q) form a 2-

design with parameters

v = qm, k = qd, λ =

[
m− 1

d− 1

]
q

, r =
[m
d

]
q
, and b = qm−d

[m
d

]
q
.

By d-flats of AG(m, q) we mean all cosets of d-dimensional vector subspaces of the

m-dimensional vector space over Fq.

We obtain the parameter r by noting that the d-flats through the origin are

precisely the d-dimensional vector subspaces. Similarly, λ in this case is the num-

ber of d-dimensional vector subspaces containing the 1-dimensional vector subspace

determined by the origin and one other point.

A design is nontrivial if not every (but at least one) k-subset of P occurs as

a block. Nontrivial designs are sometimes called B.I.B.D.’s, or balanced incomplete

block designs.

Fisher’s theorem states that the number of blocks b in a 2-design is greater

than or equal to the number of points v. If v = b then we call D a symmetric design.

Symmetric designs have the special property that their duals are also designs, and
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the dual designs have the same parameters. That is, we can view B as the point set,

P as the block set, and reverse the relation of containment. A symmetric design in

which each pair of points is contained in λ blocks also has the property that each

pair of blocks intersects in λ points. Thus a nontrivial symmetric design cannot

have repeated blocks.

Definition 2.1.5. Two designs, D1 = (P1,B1) and D1 = (P2,B2), are said to be

isomorphic if there exist a bijection σ : P1 → P2 and a bijection ρ : B1 → B2 such

that for all p ∈ P1 and B ∈ B1, p ∈ B if and only if σ(p) ∈ ρ(B).

Clearly isomorphic designs have identical parameters.

We will often treat a design interchangeably with its incidence matrix.

Definition 2.1.6. Given a design D with set of points {p1, p2, . . . , pv} and set of

blocks {B1, B2, . . . , Bb}, we call the b× v matrix A = (aij) an incidence matrix for

D if the entry aij = 1 if pj ∈ Bi and aij = 0 otherwise.

If we permute the order in which we label the points, and the order in which

we label the blocks, the new incidence matrix will be that of an isomorphic design.

Algebraically, two designs D1 and D2 are isomorphic if there are a b×b permutation

matrix S and a v × v permutation matrix T such that the corresponding incidence

matrices satisfy

SA1T = A2.

It may happen that SA1T = A1. In that case we call the transformation (S, T )

an automorphism of the design. The set of all automorphisms of a design forms

a group, the full automorphism group of the design. An automorphism group of a

design is a subgroup of the full automorphism group.

Let Ik denote the k × k identity matrix, let Ji×j denote the i × j matrix

whose entries all equal 1, and let E denote the diagonal matrix with diagonal entries

11



r1, r2, . . . , rv, where ri is the replication number of point pi. Then the definition of

a 2-design with incidence matrix A can be stated in matrix form as

A>A = E − λIv×v + λJv×v (2.1)

AJv×v = kJb×v. (2.2)

Some authors state in the definition of a 2-design that the replication number is

constant. We now prove this fact, which is Theorem 2.1.2 in the case t = 2.

Proof: For simplicity let J = Jv×v and let I = Iv×v. Right multiply each side of

(2.1) by J and use (2.2) to get

A>AJ = (E − λI + λJ)J

A>kJb×v = EJ − λJ + vλJ

kEJ = EJ − λJ + vλJ

(k − 1)EJ = (v − 1)λJ

which shows that (k − 1)ri = (v − 1)λ for each i, that is, r = (v − 1)λ/(k − 1) and

E = rI.

2.2 Smith normal form

We will be interested in the Smith normal form of incidence matrices.

Definition 2.2.1. Let R be a principal ideal domain (P.I.D.) and let A = (aij) be

an n × m matrix with entries from R and let the rank of A be r. We will call a

matrix S = (sij) the Smith normal form of A if it satisfies these properties:

(1) si,j = 0 if i 6= j. The nondiagonal entries of S are 0.

(2) si,i | si+1,i+1 if 1 ≤ i < r. Each diagonal entry divides its successor, up

to the rank of A.

(3) si,i = 0 if i > r.

(4) S = PAQ, where P and Q are invertible matrices over R.
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By performing elementary row and column operations, it is always possible

to transform A into the Smith normal form. The diagonal entries of S are unique

up to multiplication by units of the ring R, and are called the invariants of A or

the elementary divisors of A. (For proofs, see [31].)

The following lemma is not difficult to prove, (See [25] for references.)

Lemma 2.2.2. Let C = AB be the product of matrices over a principal ideal ring.

For a matrix M , let di(M) denote the ith invariant of M . Also define Di(M) =

d1(M) · · · di(M) for 1 ≤ i ≤ rank(M). Then

di(A) | di(C) and di(B) | di(C), 1 ≤ i ≤ rank(C).

Furthermore (
Di(A)Di(B)

)
| Di(C).

Klemm proved some basic results about the invariants of incidence matrices of

2-designs. In fact, he considers a slightly more general class of incidence structure,

which he calls a partial block design (Semiblockplan). He still assumes that the

number of blocks through any one point is

r = n+ λ n > 0, r > 0

and that the number of blocks through any pair of points is λ. He omits the assump-

tion that every block has the same number of points. Then we have ([25, Theorem

A]):

Theorem 2.2.3. Let A be the incidence matrix for a partial block design with v

points and b blocks and let n, λ, and the invariants d1, . . . , dv be as above. Let δ
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be the greatest common divisor of n and λ. Let p be any prime number dividing n.

Then

(a) d1 = 1,

(d1 · · · di)
2 | δni−1 for 2 ≤ i ≤ v − 1,

(d1 · · · dv)
2 | (n+ λv)nv−1.

(b) di | n for 2 ≤ i ≤ v − 1,

dv | rn/δ.

(c) p | di for (b+ 1)/2 < i ≤ v.

Note that frequently b + 1 ≥ 2v. For the symmetric case we have this result ([25,

Theorem B]):

Theorem 2.2.4. Let A be the incidence matrix for a symmetric 2-design, so that

v = b and k = r. Let p be any prime dividing n and not dividing λ, and let xp denote

the p-part of x. Then

(a) d1 · · · dv = kn(v−1)/2.

(b) dv = kn/δ.

(c) (didv+2−i)p = np for 3 ≤ i ≤ v − 1.

2.3 Cyclic difference sets

We first define difference set.

Definition 2.3.1. A subset D of a group (G,+) is a difference set if every non-

identity element of G can be represented in exactly λ distinct ways as a difference

d1 − d2 of members of the set D.

If a difference set D has size k in a group of size v, we call D a (v, k, λ)-

difference set. The relation to designs is immediate. We can take the elements of G
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to be the point set, and take the block set to be {g+D | g ∈ G}, where g+D denotes

{g + d | d ∈ D}. The result is a (v, k, λ)-design D, which we call the development

of D.

We can also take a (v, k, λ)-symmetric design and ask whether there is a

corresponding difference set. The answer is yes, if the design admits a regular group

action—that is—if there is a group of order v acting transitively on the points, such

that the image of any block is another block.

The reader should be aware that group operation is often written as multipli-

cation, in which case ‘differences’ would be written as d1d2
−1. In this work we shall

be interested in certain cyclic difference sets, that is, difference sets in the additive

group Zv.

We now give the Singer construction of the family of difference sets whose

development is the same design as Example 2.1.3 with d = m (points are projective

points and blocks are projective hyperplanes). Let q = pt be a prime power, and

let m > 2 be an integer. Then we will view Fqm , the field with qm elements, as the

vector space V over the field Fq. The trace from Fqm to Fq,

Trqm/q : Fqm → Fq

x 7→ x+ xq + · · ·+ xqm−1

,

is a linear functional on V . Therefore, if a 6= 0 ∈ Fqm and c ∈ Fq, the elements

x ∈ Fqm which satisfy

Trqm/q(ax) = c

form an affine hyperplane in V , and if c = 0, they form a subspace of codimension

1.

Now let γ be a generator of F∗qm , the cyclic multiplicative group of Fqm .

Then the map β : x 7→ γx is a vector space automorphism on V , and also an

automorphism on the projective geometry PG(m−1, q) ∼= F∗qm/F∗q. The cyclic group
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generated by β in Aut
(
PG(m−1, q)

)
permutes all the points of PG(m−1, q) in one

cycle, the Singer cycle. It must also permute all the hyperplanes of PG(m − 1, q)

in a Singer cycle. The reason is that two linear functionals on V have the same

set of zeros if and only if one is a multiple of the other (over Fq). Since for e ∈

Fq, Trqm/q(cx)−eTrqm/q(dx) = Trqm/q

(
(c−de)x

)
is not an identically zero function

of x unless c = de, the equations

Trqm/q(γ
ix) = 0, 0 ≤ i ≤ qm − 1

q − 1
− 1,

give qm−1
q−1

distinct hyperplanes.

Since we have a symmetric design with a regular automorphism group, any

block determines a difference set. In particular, let ρ be the natural epimorphism

ρ : F∗qm → F∗qm/F∗q. The set{
ρ(x) | x ∈ F∗qm , Trqm/q(x) = 0

}
is the Singer difference set in the cyclic group F∗qm/F∗q.

2.4 p-adic numbers

Every field of characteristic 0 contains the rational numbers. We find that the

rational numbers are not complete with respect to a norm, that is, not all Cauchy

sequences of rational numbers converge to a rational number. Usually we take the

Archimedean norm, which is the absolute value of a rational. Then if we complete

the rational numbers by including the limits of all sequences which are Cauchy with

respect to this norm, we get the real numbers. If we adjoin i =
√
−1, and complete

Q(i) with respect to the Archimedean norm, we get all the complex numbers.

The Archimedean norm is not the only choice of a norm. We define a norm

in this sense to be any map ‖ ∗ ‖ from the field to the nonnegative real numbers

satisfying

1. ‖x‖ = 0 if and only if x = 0.
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2. ‖x · y‖ = ‖x‖ · ‖y‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

It turns out that the only other norm possible is based on p-adic valuation. That

is, given a prime p, and integers a and b 6= 0, the p-adic valuation νp(a/b) of the

fraction a/b is the number of times p divides a minus the number of times p divides

b. The valuation of 0 is infinite, and we define the norm to be

‖x‖ = p−νp(x).

With this norm we get ‖x + y‖ ≤ max{‖x‖, ‖y‖}. We can write any rational

number, as well the the limit of any sequence that is Cauchy under this norm, as

the convergent series

x = pνp(x)(a0 + a1p+ a2p
2 + · · · ), a0 6= 0, 0 ≤ ai < p, i = 0, 1, 2, . . . .

We call this field the p-adic numbers Qp and say it is a local field, localized at

p. Further, we call those numbers with nonnegative valuation Zp, the ring of p-adic

integers, a local ring. In general, we can define a local ring as any integral domain

with a unique maximal ideal, and we can define a local field as the field of fractions

of a local ring. The unique maximal ideal of Zp is the set of integers with positive

valuation, p = pZp, and we have Zp/pZp
∼= Fp.

Now let q = pt, and extend Qp by adjoining the roots of xq = x. We designate

by ξq−1 a primitive (q − 1)th root of unity and we designate the set of all roots of

xq = x by Tq. It is a consequence of Hensel’s lemma that K = Qp(ξq−1) is an

extension of degree t over Qp, and it is the unique unramified extension of degree t

(see [26], pp. 67-68). The ring of integers is R = Zp[ξq−1], P = pR is the unique

maximal ideal and R/pR ∼= Fq. In fact, we can write any element of the field K in

the form

x = pνp(x)(a0 + a1p+ a2p
2 + · · · ), a0 6= 0, ai ∈ Tq, i = 0, 1, 2, . . .
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and we see that each element of Fq is the reduction of an element of Tq.

2.5 Character sums

The results of this work depend on the use of character sums over finite fields.

In this section we will assume that G is an abelian group. We first define a character

of a finite abelian group.

Definition 2.5.1. Let G be a group with v elements. A character of the group G is

a mapping χ of the elements of G to the vth roots of unity of some field F satisfying

χ(g1g2) = χ(g1)χ(g2)

for any elements g1 and g2 of G.

If the group operation is written additively, we instead have

χ(g1 + g2) = χ(g1)χ(g2).

It is useful to define the product of two characters on G by

χ1χ2(g) = χ1(g)χ2(g).

With this definition the characters form a group G∗ which is isomorphic to G.

If R is a ring and G is a group, then the group ring RG consists of elements

of the form ∑
g∈G

agg, ag ∈ R, ∀g ∈ G.

The summation is formal and has nothing to do with the group operation, which

we will write multiplicatively. We define the ring product by specifying for a, b ∈ R

and g, h ∈ G that

(ag)(bh) = (ab)(gh)
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and extending the operation linearly to any group ring elements. Of course, we also

take ag+ bg = (a+ b)g. For any character χ mapping G into an extension of R, we

also define

χ
(∑

g∈G

agg
)

=
∑
g∈G

agχ(g).

We can use characters to determine whether a subset of an abelian group

is a difference set. Let D ⊂ G be a subset of the abelian group G with identity

element 1G. We also let D and G denote the elements of the group ring ZG which

are the formal sums of their elements, and we let D(−1) denote the formal sum of the

inverses of the elements of D. If D is a (v, k, λ)-difference set, from the definition of

a difference set we immediately get

D(−1)D = (k − λ)1G + λG. (2.3)

Now let χ be any nontrivial character. We apply χ to both sides of (2.3). Since

χ(G) = 0, we get

χ−1(D)χ(D) = k − λ (2.4)

for any nontrivial character. By the inversion formula (5.6), we can also conclude

that if (2.4) holds for every nontrivial character, and the size of D is k, then (2.3)

holds and D is a (v, k, λ)-difference set.

If our characters are the complex characters, we can go a little further, since

χ−1(g) is then the complex conjugate of χ(g) and χ−1(D) is the complex conjugate of

χ(D). The criterion (2.4) is then that a proper nonempty subset of G is a difference

set if and only if the magnitude of χ(D) is the same for every nontrivial complex

character χ.

2.5.1 Characters of a finite field

Let q = pt be a power of a prime and let Fq be the field with q elements.

We will be interested in characters of the additive group of the finite field (Fq,+),
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which map the elements of the field to the pth roots of unity of some other field. We

will also be interested in characters of the multiplicative group of nonzero elements

(F∗q, ·), which map the elements of the field to the (q − 1)-roots of unity of some

other field.

We also extend the definition of a multiplicative character χ by setting χ(0) =

0. The only exception will be the trivial multiplicative character, which sends every

element, including 0, to 1. We also have a character that sends 0 to 0 and every

nonzero element to 1. We will call this character the (multiplicative) principal

character. With this definition we have a total of q multiplicative characters. The

nontrivial characters form a group which is isomorphic to the multiplicative group

of the field (F∗q, ·). The principal character acts as the identity.

In the additive character group, we will use principal character and trivial

character interchangeably.

2.5.2 Gauss sums

We define the Gauss sum.

Definition 2.5.2 (Gauss sum). Let ψ be an additive character of Fq and let χ be

a multiplicative character of Fq. Then we define the Gauss sum G(ψ, χ) by

G(ψ, χ) =
∑
x∈Fq

ψ(x)χ(x).

We list some properties of Gauss sums.

1. If ψ and χ are both trivial, then G(ψ, χ) = q.

2. If ψ is trivial and χ is principal, then G(ψ, χ) = q − 1.

3. If ψ is trivial and χ is neither trivial nor principal, then G(ψ, χ) = 0.

4. If ψ is nontrivial and χ is trivial, then G(ψ, χ) = 0.
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5. If ψ is nontrivial and χ is principal, then G(ψ, χ) = −1.

6. If ψ is nontrivial and a ∈ Fq we define ψa via ψa(x) = ψ(ax). With this

definition ψa is an additive character, ψ0 is the principal character, ψaψb =

ψa+b, and all additive characters are obtained in this way. Since for a 6= 0,

G(ψa, χ) = χ(a−1)G(ψ, χ),

we can write all the Gauss sums in terms of our favorite additive character ψ.

We now consider the absolute trace function

Tr : Fq → Fp via

Tr (x) = x+ xp + · · ·+ xpt−1

.

Let ξp be a pth root of unity in some field. Trace is an additive function, so

ψ(x) := ξTr(x)
p

is an additive character of Fq. Now we define

g(χ) := G(ψ, χ).

2.5.3 Jacobi sums

We will also need to use Jacobi sums of multiplicative characters of a finite

field.

Definition 2.5.3. Let χ1 and χ2 be multiplicative characters of the finite field Fq

with the convention that χi(0) = 0 if χi is nontrivial. Then the Jacobi sum is defined

as

J(χ1, χ2) =
∑
x∈Fq

χ1(x)χ2(1− x).

We list some properties of the Jacobi sum.
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1. J(χ1, χ2) = J(χ2, χ1).

2. If χ1 and χ2 are both trivial, then J(χ1, χ2) = q.

3. If χ1 is trivial and χ2 is principal, then J(χ1, χ2) = q − 1.

4. If χ1 and χ2 are both principal, then J(χ1, χ2) = q − 2.

5. If χ1 is trivial and χ2 is neither trivial nor principal, then J(χ1, χ2) = 0.

6. If χ1 is principal and χ2 is neither trivial nor principal, then J(χ1, χ2) = −1.

7. If neither χ1 nor χ2 is principal but χ1χ2 is principal, then J(χ1, χ2) = −χ(−1).

8. If none of χ1, χ2, and χ1χ2 is trivial or principal, then

J(χ1, χ2) =
g(χ1)g(χ2)

g(χ1χ2)
.

We include a proof of the last fact.

Proof: Letting z = x+ y we get

g(χ1)g(χ2) =
∑
x∈Fq

χ1(x)ξ
Tr(x)
p

∑
y∈Fq

χ2(y)ξ
Tr(y)
p

=
∑
x∈Fq

∑
z∈Fq

χ1(x)χ2(z − x)ξTr(z)
p

=
∑
z 6=0

χ1(z)χ2(z)ξ
Tr(z)
p

∑
x∈Fq

χ1(x/z)χ2(1− x/z)

= g(χ1χ2)J(χ1, χ2)

2.5.4 The Stickelberger congruence

Using the Stickelberger congruence we know the p-adic valuation of Gauss

sums and Jacobi sums in both the local case and the global case. Again let q = pt.
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Definition 2.5.4. Let R = Zp[ξq−1] be as before with maximal ideal p. Let R/p = Fq

be the field with q elements. We define the Teichmüller character T to be the map

from Fq to the (q − 1)th roots of unity of R such that T (x) (mod p) = x for each

x ∈ Fq. Each multiplicative character of Fq can be expressed as a power of T .

If we let ξq−1 denote a primitive complex (q − 1)th root of unity and let

p denote a maximal ideal of Z[ξq−1] dividing p, then we can similarly define the

(global) Teichmüller character which maps elements of Fq to powers of ξq−1 in the

complex numbers. We refer the reader to [41, p. 95] for details.

Theorem 2.5.5. Let k be either the field of rational numbers or of p-adic numbers,

let ξq−1 be a primitive (q − 1)th root of unity in some extension of k, let ξp be a

primitive pth root of unity in some extension of k, and let K̃ = k(ξq−1, ξp). Let R̃ be

the ring of integers of K̃, and let P̃ be a maximal ideal of R̃ lying over p. Let r be

an integer with 0 < r < q − 1 = pt − 1 and with p-adic expansion

r = r0 + r1p+ · · ·+ rt−1p
t−1

with 0 ≤ ri ≤ p− 1. Define

s(r) = r0 + r1 + · · ·+ rt−1

γ(r) = r0!r1! · · · rt−1!

Then we have the congruence

g(T−r) ≡ −(ξp − 1)s(r)

γ(r)
(mod P̃s(r)+1).

The proof of this theorem in the global case can be found in [29, p. 7]. We

will give a proof of the theorem in the local case by using the so-called splitting of an

additive character of a finite field. This proof is due to Dwork [15]. First, we briefly

explain the splitting of an additive character of Fq. Let ψ : Fq → {1, ξp, ξ2
p , . . . , ξ

p−1
p }
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be the additive character defined by ψ(x) = ξ
Tr(x)
p , for all x ∈ Fq. Dwork (cf.

[15], [26, p. 117]) constructed a p-adic power series θ(X) =
∑∞

i=0 βiX
i ∈ Qp[[X]]

satisfying the following properties:

(1). νp(βi) ≥ i/(p− 1),

(2). νp(βi) = i/(p− 1), if 0 ≤ i < p,

(3). βi =
(ξp − 1)i

i!
, if 0 ≤ i < p.

Thus, θ(x) converges p-adically for those x with p-adic norm satisfying ‖x‖p < p
1

p−1 .

In particular, θ is defined at the Teichmüller lifts of the nonzero finite field elements,

whose p-adic norms are equal to 1. The importance of the function θ is that it splits

ψ as follows:

ψ(x) = θ(x)θ(xp) · · · θ(xpt−1

),

where x is the Teichmüller representative of x ∈ Fq. We can now give the proof of

the Stickelberger congruence in the local case.

Proof: For x ∈ Fq, let x be its Teichmüller lifting. We have

g(T−r) =
∑
x∈F∗q

x−rψ(x)

=
∑

x∈Tq ,x 6=0

x−rθ(x)θ(xp) · · · θ(xpt−1

)

=
∑

(i0≥0,i1≥0,...,it−1≥0)

βi0βi1 · · · βit−1

∑
x∈Tq ,x 6=0

x(i0+pi1+···+pt−1it−1−r)

= (q − 1)
∑

∑t−1
`=0 i`p`≡r (mod q−1)

βi0βi1 · · · βit−1

Note that we are summing over all t-tuples (i0, i1, . . . , it−1) of nonnegative integers

such that
∑t−1

`=0 i`p
` ≡ r (mod q − 1). For these t-tuples we have

t−1∑
`=0

i` ≥
t−1∑
`=0

r` = s(r).
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By Property (1) above satisfied by the βi, we have

νp(βi0βi1 · · · βrt−1) ≥
∑t−1

`=0 i`
p− 1

≥ s(r)

p− 1
.

Therefore

νp(g(T
−r)) ≥ s(r)

p− 1
.

Now note that
∑t−1

`=0 i` = s(r) if and only if (i0, i1, . . . , it−1) = (r0, r1, . . . , rt−1). That

is, there is a unique term in the summation above for g(T−r) which has the lowest

p-adic valuation s(r)
p−1

. Hence

νp(g(T
−r)) = νp(βr0βr1 · · · βrt−1),

which, by Property (2) above, is equal to s(r)
p−1

. Thus far, we obtained the p-adic

valuation of the Gauss sum g(T−r). To prove the Stickelberger congruence, we

simply use Property (3) above. By the preceding discussion, we have

g(T−r) ≡ −βr0βr1 · · · βrt−1 (mod P̃s(r)+1),

which, by Property (3) above, is equal to − (ξp−1)s(r)

γ(r)
. This completes the proof.

2.5.5 Wan’s theorem

To pin down the Smith normal form of the designs given in Example 2.1.3,

we had to show that the invariants are divisible by at least certain powers of p, and

then show that those divisibilities are sharp. The first problem was the easier one.

The key was a theorem of Daqing Wan which we now state and prove.

Again let q = pt, let K = Qp(ξq−1) be the unique unramified extension of

degree t over Qp, let R = Zp[ξq−1] be the ring of integers in K, and let p be the

unique maximal ideal in R. Define x̄ to be x (mod p) for x ∈ R. Let Tq be the set of

roots of xq = x in R and let T be the Teichmüller character of Fq, so that T (x̄) = x

for x ∈ Tq. Then T is a p-adic multiplicative character of Fq of order (q− 1) and all
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multiplicative characters of Fq are powers of T . Following the convention of Ax [6],

let T 0 be the character that maps all elements of Fq to 1 (which we have called the

trivial multiplicative character), and let T q−1 (which we have called the principal

multiplicative character) map 0 to 0 and all other elements to 1.

For 0 ≤ i ≤ n let Fi(x1, . . . , xr) be polynomials of degree di over Fq and let

χi = T bi (0 ≤ bi ≤ q − 1)

be multiplicative characters. We want the p-adic valuation νp(Sq(χ, F )) of the mul-

tiplicative character sum

Sq(χ, F ) =
∑
x∈Fr

q

χ0(F0(x)) · · ·χn(Fn(x)).

For an integer k ≥ 0 we define σq(k) to be the sum of the digits in the expansion of

k as a base q number and σ(k) as the sum of the digits in the expansion of k as a

base p number. Wan’s Theorem ([40], Theorem 3.1) is the following:

Theorem 2.5.6 (Wan). Let d = maxi di and q = pt. Then the p-adic valuation of

Sq(χ, F ) is at least
t−1∑
`=0

⌈
r − 1

q−1

∑n
i=0 σq(p

`bi)di

d

⌉
.

Here we state a slightly stronger version of the theorem, which follows im-

mediately from the proof in [40]:

Theorem 2.5.7.

νp(Sq(χ, F )) ≥
t−1∑
`=0

max
{

0,

⌈
r − 1

q−1

∑n
i=0 σq(p

`bi)di

d

⌉}
.

We will use this theorem only in the case where each Fi is a linear homoge-

neous function. For the convenience of the reader we specialize the proof given in

[40].
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Theorem 2.5.8. For each i, 0 ≤ i ≤ n, let F i(x̄) = γ̄i1x̄1 + · · · + γ̄irx̄r be a linear

functional on Fr
q. Then

νp(Sq(χ, F )) ≥
t−1∑
`=0

max{0, r − 1

q − 1

n∑
i=0

σq(p
`bi)}.

Proof: We will write

Fi(x) = γi1 x1 + · · ·+ γir xr

to represent the lifted functions from T r
q to R with γij = T (γ̄ij). Using the congru-

ence

T (x̄) ≡ xqr

(mod qr)

for all x ∈ R we get

Sq(χ, F ) ≡
∑

x∈Tq
r

(
F0(x)

)b0qr

· · ·
(
Fn(x)

)bnqr

(mod qr). (2.5)

Expanding (2.5) we get

Sq(χ, F ) ≡∑
ki1 + · · ·+ kir = biq

r

0 ≤ i ≤ n

n∏
i=0

(
biq

r

ki1, . . . , kir

)( n∏
i=0

r∏
j=1

γij
kij
)( r∏

j=1

∑
x∈Tq

x
∑

i kij
)

(mod qr)

(2.6)

We use the formula of Legendre, νp(k!) = (k−σ(k))/(p− 1) and get that the p-adic

valuation of the multinomial coefficient part of (2.6) is

1

p− 1

n∑
i=0

(
biq

r − σ(bi)−
r∑

j=1

(kij − σ(kij))
)

=
1

p− 1

n∑
i=0

( r∑
j=1

σ(kij)− σ(bi)

)
. (2.7)

For the Teichmüller set Tq we have

∑
x∈Tq

xk =


0, if (q − 1) does not divide k,

q, if k = 0,

q − 1, if (q − 1)|k and k > 0.

(2.8)
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Therefore, in (2.6) we only need to consider those terms for which

n∑
i=0

kij ≡ 0 (mod q − 1) (2.9)

for all j = 1, 2, . . . , r. Since k ≡ σq(k) (mod q − 1), we also have

n∑
i=0

σq(kij) ≡ 0 (mod q − 1). (2.10)

Given kij such that
∑r

j=1 kij = biq
r for 0 ≤ i ≤ n and (2.9) is satisfied, assume that

s coordinates of the vector(
n∑

i=0

ki1,
n∑

i=0

ki2, . . . ,
n∑

i=0

kir

)

are not identically 0. Then the same is true for the corresponding entries of the

vector (
n∑

i=0

σq(ki1),
n∑

i=0

σq(ki2), . . . ,
n∑

i=0

σq(kir)

)
. (2.11)

Summing up the entries of the vector in (2.11) we get

s(q − 1)−
n∑

i=0

bi ≤
n∑

i=0

( r∑
j=1

σq(kij)− bi

)
. (2.12)

We note that for a non-negative integer `, (2.10) still holds with σq(kij) replaced

by σq(p
`kij). Also

∑n
i=0 σq(p

`kij) is not identically 0 for the same s subscripts of j.

Thus we have

s(q − 1)−
n∑

i=0

σq(p
`bi) ≤

n∑
i=0

( r∑
j=1

σq(p
`kij)− σq(p

`bi)

)
.

Noting that the right-hand side is non-negative since
∑r

j=1 kij = biq
r, we sum over

` to get

t−1∑
`=0

max
{
0, s(q − 1)−

n∑
i=0

σq(p
`bj)
}
≤ q − 1

p− 1

n∑
i=0

( r∑
j=1

σ(kij)− σ(bi)

)
,
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using the fact that
t−1∑
`=0

σq(p
`k) =

q − 1

p− 1
σ(k).

Comparing with (2.7) we get that each term of (2.6) (with kij satisfying (2.9)) has

p-adic valuation at least

t(r−s)+
t−1∑
l=0

max

{
0, s− 1

q − 1

n∑
i=0

σq(p
`bi)

}
≥

t−1∑
l=0

max

{
0, r− 1

q − 1

n∑
i=0

σq(p
`bi)

}
.

This completes the proof.

2.6 Representations of finite groups

2.6.1 Modules

We begin with the definition of a module.

Definition 2.6.1. Let R be a ring and let M be an abelian group (with group

operation written additively). We say that M is a (left) R-module if there is a map

from R ×M to M (written as juxtaposition) which satisfies the following for every

r, s ∈ R and for every X, Y ∈M :

1. r(X + Y ) = rX + rY ,

2. (r + s)X = rX + sY ,

3. (rs)X = r(sX),

4. 1RX = X

5. 0RX = 0M .

If N is a subgroup of M , we will say that N is an R-submodule of M if for

every r ∈ R and for every X ∈ N , rX ∈ N .
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If there exists a set of generators {X1, X2, . . . , Xk} such that M is the direct

sum RX1 ⊕ RX2 ⊕ · · · ⊕ RXk, with RXi
∼= R for each i, then we say that M is a

free module of (finite) rank k.

If the only submodules of a module M are M itself and 0, we say that M is

a simple module.

Since a module is abelian as an additive group, every submodule is auto-

matically a normal subgroup of every module which contains it. Additionally, the

property of being a submodule is an invariance property. Under these conditions,

the Jordan-Hölder theorem tells us that the composition factors of a module are

well defined (see [22, pp. 130-133]).

Theorem 2.6.2 (Jordan-Hölder). Suppose

A : 0 = A0 / · · · / Aa = M

and

B : 0 = B0 / · · · / Bb = M

are two series of R-submodules of M , such that each factor Ai+1/Ai for 0 ≤ i < a

and each factor Bi+1/Bi for 0 ≤ i < b is a simple R-module. Then a = b, and the

two lists of factor modules are rearrangements of each other up to isomorphism as

R-modules.

The modules we use can be thought of initially as free modules over a field

(vector spaces), or free modules over the integer ring of a field. A generator set,

which we will call the natural basis, will be a set of vectors indexed by geometric

subspaces. For instance, in Example 2.1.3, we denote the set of projective points by

L1 and the set of projective (r − 1)-spaces by Lr. We have the corresponding free

modules FL1
q , FLr

q , RL1 , and RLr .

Now let the general linear group G = GL(n + 1,Fq) have its natural per-

mutation action on L1 and on Lr. We extend this action linearly to an action of
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the group ring FqG on the free modules, which we continue to call FL1
q and FLr

q as

FqG-modules. We similarly extend the action of G linearly to get the RG-modules

RL1 , and RLr .

2.6.2 Representations

Definition 2.6.3. An F -representation of a finite group G is a homomorphism

from G to the general linear group GL(v, F ) for some positive integer v.

Since every group permutes its own elements by multiplication, every fi-

nite group has the regular representation of these |G| × |G| permutation matrices.

It is also true that for a field F , every FG-module M can be viewed as an F -

representation of G in GL(v, F ) with v now being the dimension of M as an F -vector

space. In particular, every submodule is also a representation. Thus representation

theory and submodule structure are closely intertwined. In Section 3.4 will will give

the complete module structure of FL1
q , which was determined by Bardoe and Sin in

[7].
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Chapter 3

THE STATEMENT OF THEOREM A

3.1 The incidence map

We have defined A = (ai,j) to be the incidence matrix with columns indexed

by points of PG(n, q) and rows indexed by (r− 1)-dimensional projective subspaces

of PG(n, q) (referred to as r-subspaces), and with ai,j = 1 if the jth point is contained

in the ith r-subspace. We can view A as a linear map from the module ZL1 to the

module ZLr as follows:

Definition 3.1.1. Let V be an (n+ 1)-dimensional vector space over Fq as before,

and let Lr and Ls be the sets of r-dimensional and s-dimensional vector subspaces

of V , respectively. If Z ∈ Lr and Y ∈ Ls, we will say that Z is incident with Y ,

and write Z ∼ Y , if either Z ⊂ Y or Y ⊂ Z. We define the map

ηr,s : ZLr → ZLs (3.1)

by letting

ηr,s(Z) =
∑

Y ∈Ls,Z∼Y

Y

for every Z ∈ Lr, and then extending ηr,s linearly to ZLr . In particular, if we write

U ∈ ZL1 as a column vector indexed by points, then AU is the column vector indexed

by r-subspaces representing η1,r(U).

Note that we are using the same symbols, Y and Z, both to denote subspaces

of V , and to denote basis vectors of the respective modules.
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Also, if s ≤ ` ≤ r or s ≥ ` ≥ r, we have the composition maps:

η`,r ◦ ηs,` =

[
r − s

`− s

]
q

ηs,r (3.2)

η`,s ◦ ηr,` =

[
r − s

`− s

]
q

ηr,s.

The reason is that ηs,` maps Y ∈ Ls to all those elements of L` which are incident

with Y . Those elements of L` which are incident with both Y and Z contribute 1 to

the coefficient of Z in η`,r ◦ ηs,`(Y ). If Y ∼ Z, the total number of such elements of

L` is
[

r−s
`−s

]
q
, while if Y and Z are not incident, there are no intermediate elements

of L`.

In Section 3.5 we will state the Smith normal form of A.

3.2 The p’-part of the Smith normal form of PG(n, q)

In this section we give the part of the Smith normal form of PG(n, q) which

is coprime to p. Let q = pt, and let V be an (n+ 1)-dimensional space over Fq. As

before we use A to denote the |Lr| × |L1| matrix of the linear map η1,r : ZL1 → ZLr

with respect to the standard bases of ZL1 and ZLr . It is known that all invariant

factors of A (as a matrix over Z) are p-powers except the last one, which is also

divisible by (qr − 1)/(q − 1). In [37], a proof was given using the structure of the

permutation module for GL(n+1, q) acting on L1 over fields of characteristic prime

to p. We give an elementary proof of the result.

Theorem 3.2.1. Let A be the matrix of the map η1,r with respect to the standard

bases of ZLr and ZL1, and let v = |L1|. The invariant factors of A are all p-powers

except for the vth invariant, which is a p-power times (qr − 1)/(q − 1).

Proof: It will be more convenient to work with the map ηr,1 : ZLr → ZL1 , which

we define to be the linear map sending each element of Lr to the formal sum of all

the 1-spaces incident with it. Then the matrix of ηr,1 with respect to the standard
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bases of ZLr and ZL1 is A>. Let A> = PDQ, where P and Q are two unimodular

matrices of order |L1| and |Lr| respectively, and D is the Smith normal form of A>

with diagonal entries d1, d2, . . . , dv. Let yi be the ith column of P , 1 ≤ i ≤ v. Then

{yi : 1 ≤ i ≤ v} and {diyi : 1 ≤ i ≤ v} are bases of the free Z-modules ZL1 and

Im(ηr,1) respectively.

We define the augmentation map

ε : ZL1 → Z

to be the function sending each element in L1 to 1. Clearly ε maps ZL1 onto Z and

ε ◦ ηr,1 maps ZLr onto qr−1
q−1

Z. As a consequence,

ε(yi)di ∈
qr − 1

q − 1
Z,

for all i = 1, 2, . . . , v.

First we show that qr−1
q−1

indeed divides dv. Let ` be a prime. If `β | qr−1
q−1

but

`β - dv then `β does not divide any of the invariants di. Note that `β | qr−1
q−1

, which in

turn divides ε(yi)di for all i, so ` must be a common divisor of ε(yi), i = 1, 2, . . . , v.

This contradicts with the fact that ε is a surjective map from ZL1 to Z.

Next we show that if the index [Ker(ε) : Ker(ε)∩ Im(ηr,1)] is a p-power, then

the theorem holds. (Note that [Ker(ε) : Ker(ε)∩ Im(ηr,1)] is a p-power if and only if

for any x ∈ Ker(ε) there is a positive integer α such that pαx ∈ Im(ηr,1).) Assume

to the contrary that there exists some prime ` 6= p such that ` | di for some i < v or

` · qr−1
q−1

| dv.

Suppose that ` | di for some i < v. Since ε is surjective there exists a basis

vector yk such that ` - ε(yk).

If i 6= k, then

x = ε(yk) yi − ε(yi) yk

is a nonzero vector in Ker(ε). Since ` - ε(yk) and ` | di, p
αε(yk) can not be a multiple

of di for any α, hence pαx 6∈ Im(ηr,1) for any α, a contradiction.
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If i = k < v, then instead we consider the nonzero vector

x := ε(yk) yv − ε(yv) yk

in Ker(ε). Since ` - ε(yk) and ` | di | dv, p
αε(yk) can not be a multiple of dv for any

α, hence pαx 6∈ Im(ηr,1) for any α, again a contradiction.

Now suppose that ` · qr−1
q−1

| dv. Note that qr−1
q−1

| ε(yi)di for each i, but for some

k that

` · q
r − 1

q − 1
- ε(yk)dk,

since ε ◦ ηr,1 is a surjective map from ZLr to qr−1
q−1

Z. So ` - ε(yk)dk. We similarly get

a contradiction by considering the nonzero vector ε(yk) yv − ε(yv) yk in Ker(ε).

To finish the proof of the theorem, we are reduced to showing that

(Ker ε+ Im ηr,1)/ Im ηr,1

is a p-group. We show that if x ∈ Ker ε then qr−1x ∈ Im ηr,1. Now Ker ε is spanned

by vectors of the form u − w, where u and w are vectors representing individual

elements in L1, so it is enough to show that qr−1(u−w) is in Im ηr,1. Let U be some

(r + 1)-subspace of V which contains both u and w. We define η̃1,r to be the linear

map which maps a projective point to the formal sum of the r-subspaces which both

contain the point and are contained in U and define jU to be the formal sum of all

the projective points inside U . Then ηr,1 restricted to r-subspaces inside U and η̃1,r

are simply the hyperplane-to-point and point-to-hyperplane maps for the space U .

By standard formula from design theory we have

ηr,1(η̃1,r(z)) = qr−1z +
qr−1 − 1

q − 1
jU

for every z ∈ L1. Hence by setting z = u and z = w respectively, and subtracting

the resulting equations, we get

ηr,1(η̃1,r(u− w)) = qr−1(u− w)
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which is the desired result.

Note: A shorter proof of this theorem can be found in [11].

In view of Theorem 3.2.1, in order to get the Smith normal form of A, we

just need to view A as a matrix with entries from Zp, the ring of p-adic integers,

and get its Smith normal form over Zp. This will be the approach we take. To state

Theorem A, we need to explain the monomial basis developed in [7].
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3.3 Monomial bases

As we have seen, most of the invariant factors of A are p-powers. It will be

helpful to view the entries of A as coming from some p-adic local ring. Let q = pt

and let K = Qp(ξq−1) be the unique unramified extension of degree t over Qp, the

field of p-adic numbers, where ξq−1 is a primitive (q − 1)th root of unity in K. Let

R = Zp[ξq−1] be the ring of integers in K and let p be the unique maximal ideal in

R. Then R is a principal ideal domain, and the reduction of R (mod p) will be Fq.

Define x̄ to be x (mod p) for x ∈ R. Let Tq be the set of roots of xq = x in R (a

Teichmüller set) and let T be the Teichmüller character of Fq, so that T (x̄) = x for

x ∈ Tq. We will use T to lift a basis of FL1
q to a basis of RL1 .

In (3.1), we defined the map η1,r from ZL1 to ZLr . Now we use the same

η1,r to denote the map from RL1 to RLr sending a 1-space to the formal sum of all

r-spaces incident with it. The matrix A is then the matrix of η1,r with respect to

the (standard) basis L1 of RL1 and the (standard) basis Lr of RLr . Crucial to our

approach of finding the Smith form of A is what we call a monomial basis for RL1 .

We introduce this basis below.

We start with the monomial basis of FL1
q . This basis was discussed in detail

in [7]. Let V = Fn+1
q . Then V has a standard basis v0, v1, . . . , vn, where

vi = (0, 0, . . . , 0, 1︸ ︷︷ ︸
i+1

, 0, . . . , 0).

We regard FV
q as the space of functions from V to Fq. Any function f ∈ FV

q can

be given as a polynomial function of n + 1 variables corresponding to the n + 1

coordinate positions: write the vector x ∈ V as

x = (x0, x1, . . . , xn) =
n∑

i=0

xivi;

then f = f(x0, x1, . . . , xn). The function xi is, for example, the linear functional

that projects a vector in V onto its ith coordinate in the standard basis.
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As a function on V , xq
i = xi, for each i = 0, 1, . . . , n, so we obtain all the

functions via the qn+1 monomial functions{
n∏

i=0

xbi
i | 0 ≤ bi < q, i = 0, 1, . . . , n

}
. (3.3)

Since the characteristic function of {0} in V is
∏n

i=0(1−x
q−1
i ), we obtain a basis for

FV \{0}
q by excluding xq−1

0 xq−1
1 · · ·xq−1

n from the set in (3.3).

The functions on V \ {0} which descend to L1 are exactly those which are

invariant under scalar multiplication by F∗q. Therefore we obtain a basis M of FL1
q

as follows.

M =

{
n∏

i=0

xbi
i | 0 ≤ bi < q,

∑
i

bi ≡ 0 (mod q − 1),

(b0, b1, . . . , bn) 6= (q − 1, q − 1, . . . , q − 1)

}
.

This basis M will be called the monomial basis of FL1
q , and its elements are called

basis monomials.

Now we lift the function xi : V → Fq to a function T (xi) : V → R, where T

is the Teichmüller character of Fq. For (a0, a1, . . . , an) ∈ V , we have

T (xi)(a0, a1, . . . , an) = T (ai) ∈ R.

For each basis monomial
∏n

i=0 x
bi
i , we define T (

∏n
i=0 x

bi
i ) similarly. We have the

following lemma.

Lemma 3.3.1. The elements in the set

MR =

{
T (

n∏
i=0

xbi
i ) | 0 ≤ bi < q,

∑
i

bi ≡ 0 (mod q − 1),

(b0, b1, . . . , bn) 6= (q − 1, q − 1, . . . , q − 1)

}

form a basis of the free R-module RL1.
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Proof: To simplify notation, we use M to denote the free R-module RL1 , set

v = |L1|, and enumerate the elements of MR as f1, f2, . . . , fv. Since the images of

the elements of MR in the quotient M/pM are exactly the elements in M, which

form a basis of FL1
q
∼= M/pM (as vector spaces over Fq) , by Nakayama’s lemma [5],

the elements in MR generate N and since their number equals rankM , they form

a basis.

The basis MR will be called the monomial basis of RL1 , and its elements are

called basis monomials.
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3.4 The module structure of Fq
L1

In this section we state the main results of [7]. We give a modified version of

the proof in Section 5.5.

Let H denote the set of t-tuples ξ = (s0, s1, . . . , st−1) of integers satisfying

(for 0 ≤ j ≤ t− 1) the following:

(1) 1 ≤ sj ≤ n,

(2) 0 ≤ psj+1 − sj ≤ (p− 1)(n+ 1),
(3.4)

with the subscripts read (mod t). The set H was introduced in [19], and used in [7]

to describe the module structure of FL1
q under the natural action of GL(n+ 1, q).

For a nonconstant basis monomial

f(x0, x1, . . . , xn) = xb0
0 · · ·xbn

n ,

in M, we expand the exponents

bi = ai,0 + pai,1 + · · ·+ pt−1ai,t−1 0 ≤ ai,j ≤ p− 1

and let

λj = a0,j + · · ·+ an,j. (3.5)

Because the total degree
∑n

i=0 bi is divisible by q − 1, there is a uniquely defined

t-tuple (s0, . . . , st−1) ∈ H [7] such that

λj = psj+1 − sj.

Explicitly

sj =
1

q − 1

n∑
i=0

( j−1∑
`=0

p`+t−jai,` +
t−1∑
`=j

p`−jai,`

)
(3.6)

One way of interpreting the numbers sj is that the total degree of fpi
is st−i(q− 1),

when the exponent of each coordinate xi is reduced to be no more than q− 1 by the

substitution xq
i = xi. We will say that f is of type ξ = (s0, s1, . . . , st−1). Also we say
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that the corresponding basis monomial T (f) ∈MR is of type ξ. (Note that in [7] ξ

is called a tuple in H and the term type is used for certain other t-tuples in bijection

with H. However, since we will not use the latter there is no risk of confusion.)

Let di be the coefficient of xi in the expansion of (
∑p−1

k=0 x
k)n+1. Explicitly,

di =

bi/pc∑
j=0

(−1)j

(
n+ 1

j

)(
n+ i− jp

n

)
.

Lemma 3.4.1. Let di and λj be as defined above. The number of basis monomials

in both M and MR of type ξ = (s0, s1, . . . , st−1) is
∏t−1

j=0 dλj
.

Proof: From (3.5) each λj is the sum of n + 1 integers which can be anywhere

from 0 to p − 1. The number of such choices is the same as the coefficient of xλj

in (
∑p−1

k=0 x
k)n+1. Counting the choices for each λj as j runs from 0 to t− 1 we get∏t−1

j=0 dλj
.

We can now state the complete submodule structure of FL1
q ([7, Theorem A]).

Theorem 3.4.2. Let FL1
q be the FqG-module as above. Every FqG-submodule W of

FL1
q consists of the subspace of functions from L1 to Fq which is spanned by certain

basis monomials. If one basis monomial of a certain type (s0, s1, . . . , st−1) is in W ,

then every basis monomial of type (s′0, s
′
1, . . . , s

′
t−1) is also in W if 1 ≤ s′i ≤ si for

each i ∈ 0, . . . , t− 1. In particular, FL1
q is the direct sum of the span of the all-one

function (of type (0, . . . , 0)) and the span of all the other monomial functions. Either

the constant functions are in W , or all the functions in W can be expressed in terms

of nonconstant monomials only.

The following corollary is [7, Theorem B].

Corollary 3.4.3. Let f(x0, . . . , xn) be a polynomial function in FL1
q and let Hf ⊂

H∪{(0, . . . , 0)} be the set of the tuples (s0, . . . , st−1) of the basis monomials appearing

with nonzero coefficients in the expression for f . Then the submodule generated by

f is the smallest submodule containing all those basis monomials.
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Proof: Every submodule is spanned by the basis monomials which it contains.

3.5 The Smith normal form of PG(n, q)

We can now state the main theorem.

Theorem 3.5.1 (Theorem A). Let L1 be the set of projective points and let Lr

be the set of projective (r− 1)-spaces in PG(n, q), and let di and H be as above. For

each t-tuple ξ = (s0, s1, . . . , st−1) ∈ H let

λi = psi+1 − si

and let

dξ =
t−1∏
i=0

dλi
.

Then the p-adic invariant factors of the incidence matrix A between L1 and Lr are

pα, 0 ≤ α ≤ (r − 1)t, with multiplicity

mα =
∑
ξ∈Hα

dξ + δ(0, α)

where

Hα =
{

(s0, s1, . . . , st−1) ∈ H |
t−1∑
i=0

max{0, r − si} = α
}
, (3.7)

and

δ(0, α) =

 1, if α = 0,

0, otherwise.
(3.8)

Remark 3.5.2. The theorem was conjectured by Liebler and Sin [30].

Remark 3.5.3. The multiplicity of 1 among the p-adic invariant factors, m0, is

exactly the p-rank of A. From Theorem 3.5.1, we have

m0 = 1 +
∑

(s0,s1,...,st−1)∈H,si≥r,∀i

d(s0,s1,...,st−1).
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We mention that d(s0,...,st−1) = d(n+1−s0,...,n+1−st−1) for each (s0, . . . , st−1) ∈ H, di = 0

if i < 0, d(0,...,0) = d(n+1,...,n+1) = 1 (but we are not counting the monomial of type

(n + 1, . . . , n + 1)), and dξ = 0 for all other cases that ξ 6∈ H. So the above p-rank

formula is the same as the formula of Hamada [19].

Remark 3.5.4. We also mention that the largest α of the exponents of the p-adic

invariant factors of A is (r− 1)t. It arises in the case where ξ = (1, 1, . . . , 1). From

Theorem 3.5.1, we find that the multiplicity of p(r−1)t is

m(r−1)t = d(1,1,...,1) =

(
n+ p− 1

n

)t

,

which is one less than the p-rank of η1,n.

We indicate how we proceed to prove Theorem 3.5.1. In order to get the

Smith normal form of A over R, we will find two invertible matrices P and Q−1

with entries in R, such that

A = PDQ−1,

where D is a |Lr|×|L1| diagonal matrix with p powers on its diagonal. The matrices

Q and P will come from basis changes in RL1 and RLr respectively.

Let {e1, e2, . . . , ev}, where v = |L1|, be the standard basis of RL1 , and let

MR = {f1, f2, . . . , fv} be the monomial basis of RL1 constructed in Lemma 3.3.1.

For 1 ≤ j ≤ v, let fj =
∑v

i=1 qijei, qij ∈ R, and let Q = (qij). Then

η1,r(fj) =
v∑

i=1

qijη1,r(ei).

Therefore the columns of AQ are the vectors η1,r(fj), written with respect to the

standard basis of RLr . For 1 ≤ j ≤ v, let paj be the largest power of p dividing
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every coordinate of η1,r(fj). Then we factorize AQ as PD, where

D =



pα1 0 0 · · · 0

0 pα2 0

0
. . .

...
... pαv−1 0

0 · · · 0 pαv

0 · · · 0
...

. . .
...

0 · · · 0



,

and P is an |Lr| × |Lr| matrix whose first v columns are 1
pαj η1,r(fj), j = 1, 2, . . . , v.

The matrix D will be the Smith normal form of A if the determinant of P is a unit of

R. First we find a lower bound on the numbers αj, the minimum p-adic valuations

of the coordinates of η1,r(fj). Let fj be a typical basis monomial T (xb0
0 x

b1
1 · · ·xbn

n )

in MR, and let Y ∈ Lr. Then the Y -coordinate of η1,r(fj) is

η1,r(fj)(Y ) =
∑

Z⊂Y,Z∈L1

fj(Z)

=
1

q − 1

∑
x∈Fn+1

q \{(0,0,...,0)},x∈Y

T b0(x0)T
b1(x1) · · ·T bn(xn),

where in the last summation, x = (x0, x1, . . . , xn) ∈ Fn+1
q . Therefore the coordinates

of η1,r(fj) are all multiplicative character sums. Thanks to a theorem of Wan [40],

one can indeed obtain lower bounds on the p-adic valuations of these multiplicative

character sums. We discuss Wan’s theorem and its application in Chapter 5.
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Chapter 4

THE HYPERPLANE CASE

4.1 An explicit formula

Sin proved Theorem A in the case r = n, that is for hyperplanes, using

representation theory ([36]). Liebler [30] also had a proof for the same case using

Gauss sums. Even though we prove Theorem A in the general case in Chapter 5, we

give here a new proof of the theorem in the case r = n. In the process we derive an

explicit formula for η1,n(f) for any basis monomial f in MR. The formula involves

p-adic Gauss sums. The Smith form for η1,n follows from Stickelberger’s theorem

(see [21]). Let T b be a multiplicative p-adic character of Fq, tr the absolute trace

from Fq to Fp, and ξp a p-adic primitive pth root of unity. The p-adic Gauss sum is

defined to be

g(T b) =
∑
x∈Fq

T b(x)ξp
tr(x).

We also need the Jacobi sums for more than two multiplicative characters (see [21,

p. 98-100]).

J0(χ0, . . . , χn) =
∑

x ∈ Fq
n+1

x0 + · · ·+ xn = 0

χ0(x0) · · ·χn(xn)

J(χ0, . . . , χn) =
∑

x ∈ Fq
n+1

x0 + · · ·+ xn = 1

χ0(x0) · · ·χn(xn)

45



We state explicitly the image of any monomial function.

Proposition 4.1.1. Let f(x) = T (x0
b0 · · ·xn

bn) be a basis monomial in MR. The

coordinate of η1,n(f) indexed by the hyperplane γ0 x0 + · · ·+ γn xn = 0 is

1

q

n∏
i=0

φi +
1

q(q − 1)

n∏
i=0

θi −
1

q − 1

n∏
i=0

ψi (4.1)

where

φi =


g(T bi)T (γi)

−bi if 0 < bi < q − 1

(1− T (γi)
q−1)q if bi = 0

(1− T (γi)
q−1)q − 1 if bi = q − 1

(4.2)

θi =


0 if 0 < bi < q − 1

q if bi = 0

q − 1 if bi = q − 1

(4.3)

ψi =

 1 if bi = 0

0 if bi 6= 0
(4.4)

Proof: Let Y denote the hyperplane in Ln defined by the equation γ ·x = 0, where

γ = (γ0, . . . , γn), x = (x0, x1, . . . , xn) ∈ Fq
n+1 and γ · x = γ0x0 + · · · + γnxn. The

Y -coordinate of η1,n(f) is

η1,n(f)(Y ) =
1

q − 1

∑
x ∈ Fq

n+1

x 6= (0, . . . , 0)

γ · x = 0

T b0(x0)T
b1(x1) · · ·T bn(xn). (4.5)

We will compute η1,n(f)(Y ) explicitly by considering three cases.

Case 1: Some exponent b` in f is strictly between 0 and q − 1. In this case (4.1)

reduces to 1
q

∏n
i=0 φi because θ` = ψ` = 0.
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First we consider the case where all the exponents bi are strictly between 0

and q − 1. If all the γi’s are nonzero, then

η1,n(f)(Y ) =
T−1(

∏n
i=0 γ

bi
i )

q − 1

∑
γ·x=0

T b0(γ0x0) · · ·T bn(γnxn)

=
T−1(

∏n
i=0 γ

bi
i )

q − 1
J0(T

b0 , . . . , T bn) (4.6)

from the definition of the Jacobi sum, while if γi = 0 for some i, (4.5) is 0 because∑
xi∈Fq

T bi(xi) =
∑

xi∈F∗q T
bi(xi)0 and (4.6) is also 0 because

∏n
i=0 γ

bi
i = 0. Hence

(4.6) is valid in both cases.

Since (q − 1) | (b0 + · · ·+ bn) and
∑n

i=0 bi 6= 0, by our convention, T b0 · · ·T bn

is the multiplicative character of Fq sending 0 to 0, and every nonzero element of Fq

to 1. Note that none of the individual characters T bi is trivial. We have (see [21, p.

98-100] for details)

J0(T
b0 , T b1 , . . . , T bn) = T bn(−1)(q − 1)J(T b0 , T b1 , . . . , T bn−1),

g(T b0)g(T b1) · · · g(T bn−1) = J(T b0 , T b1 , . . . , T bn−1)g(T b0+b1+···+bn−1),

g(T bn)g(T−bn) = qT bn(−1).

Combining the above identities with the fact that T b0 · · ·T bn−1 = T−bn , we have

η1,n(f)(Y ) =
T−1(

∏n
i=0 γ

bi
i )

q − 1
J0(T

b0 , . . . , T bn)

=
T−1(

∏n
i=0 γ

bi
i )

q
g(T b0) · · · g(T bn)

=
1

q

n∏
i=0

φi.

Now suppose that all but one bi are strictly between 0 and q − 1. Without

loss of generality, assume that b0 = 0 or q− 1, and 0 < bi < q− 1 for i = 1, 2, . . . , n.
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If b0 = 0 and γ0 = 0, then

η1,n(f)(Y ) = q · 1

q − 1

∑
x ∈ Fq

n∑n
i=1 γixi = 0

T b1(x1) · · ·T bn(xn),

which, by our computations above, is equal to

q · 1

q

n∏
i=1

φi =
1

q

(
(1− T (γ0)

q−1)q
) n∏

i=1

φi =
1

q

n∏
i=0

φi.

If b0 = 0 and γ0 6= 0, then we can solve for x0 and the values of x1, . . . , xn

are unrestricted. We have

η1,n(f)(Y ) =
1

q − 1

n∏
i=1

∑
xi∈Fq

T bi(xi) = 0,

since T bi is nontrivial for i = 1, 2, . . . , n. Hence in this case we also have

η1,n(f)(Y ) =
1

q

(
(1− T (γ0)

q−1)q
) n∏

i=1

φi.

If b0 = q − 1 and γ0 = 0, then we sum over nonzero values of x0.

η1,n(f)(Y ) =
q − 1

q

n∏
i=1

φi =
1

q

(
(1− T (γ0)

q−1)q − 1
) n∏

i=1

φi.

If b0 = q − 1 and γ0 6= 0, note that T q−1(0) = 0. We sum over values of

x1, . . . , xn with γ1x1 + · · ·+ γnxn 6= 0.

η1,n(f)(Y ) = −1

q

n∏
i=1

φi =
1

q

(
(1− T (γ0)

q−1)q − 1
) n∏

i=1

φi.

We have established (4.1) in this case. The rest of Case 1 follows by induction.

Case 2: All the exponents are either q − 1 or 0, but (b0, b1, . . . , bn) 6= (0, 0, . . . , 0).

We consider two subcases.
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Case 2a: Suppose for some i that bi = 0 and γi 6= 0. Say b0 = 0 but γ0 6= 0. Then

the values of x1, . . . , xn are unrestricted since we can solve for x0 and

η1,n(f)(Y ) =
1

q − 1

n∏
i=1

∑
xi∈Fq

T bi(xi).

Note that
∑

xi∈Fq
T q−1(xi) = q − 1 while

∑
xi∈Fq

T 0(xi) = q. We have

η1,n(f)(Y ) = (q − 1)s−1qn−s,

where s = {bi|bi = q − 1, i = 1, . . . , n}. That is, η1,n(f)(Y ) = 1
q(q−1)

∏n
i=0 θi, with θi

defined by (4.3).

Case2b: Next suppose γi = 0 whenever bi = 0. Now the sum η1,n(f)(Y ) depends

on how many γi’s are nonzero. Let d be the number of γi’s that are not zero (say,

γi 6= 0, for i = 0, 1, . . . , d− 1), let s be the number of the exponents that are q − 1,

and n + 1 − s be the number of the exponents that are 0 (say, the last n + 1 − s

exponents are all 0). We have d ≤ s and γi = 0 for all i = s, s+ 1, . . . , n.

Define Nd be the number of solutions of

x0 + · · ·+ xd−1 = 0

with (x0, . . . xd−1) ∈ (F∗q)d. We get the recursion

Nd = (q − 1)d−1 −Nd−1, N0 = 1, N1 = 0.

Therefore

Nd =
(q − 1)d + (−1)d(q − 1)

q
.
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Now we compute η1,n(f)(Y ). we have

η1,n(f)(Y ) =
1

q − 1
qn+1−s

∑
γ0x0+···+γd−1xd−1=0

T q−1(x0) · · ·T q−1(xs−1)

=
1

q − 1
qn+1−s(q − 1)s−d

∑
γ0x0+···+γd−1xd−1=0

T q−1(x0) · · ·T q−1(xd−1)

=
1

q − 1
Nd(q − 1)s−dqn+1−s

=
1

q(q − 1)

n∏
i=0

θi +
1

q
(−1)d(q − 1)s−dqn+1−s.

Note that here 1
q
(−1)d(q − 1)s−dqn+1−s = 1

q

∏n
i=0 φi, so that (4.1) is established in

this subcase.

Case 3: All the exponents are 0.

Since there must be γi 6= 0 for some i we have φi = 0 and (4.1) reduces to

qn−1
q−1

. From (4.5), we see that in this case

η1,n(f)(Y ) =
qn − 1

q − 1
,

agreeing with (4.1).

Corollary 4.1.2. Theorem 3.5.1 holds in the hyperplane case (i.e., r = n).

Proof: Let {e1, e2, . . . , ev}, where v = |L1|, be the standard basis of RL1 , and let

MR = {f1, f2, . . . , fv} be the monomial basis of RL1 constructed in Lemma 3.3.1.

For 1 ≤ ` ≤ v, let f` =
∑v

i=1 qi`ei, qi` ∈ R, and let Q = (qi`). Then

η1,r(f`) =
v∑

i=1

qi`η1,r(ei).

Therefore the columns of AQ are the vectors η1,r(f`), written with respect to the

standard basis of RLr .
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Let f` = T (xb0
0 x

b1
1 · · ·xbn

n ) be a basis monomial in MR and let pα` be the

largest power of p dividing every coordinate of η1,r(f`). We also specify that f1 =

T (x0
0x

0
1 · · ·x0

n) (i.e., the constant basis monomial in MR). We will show that α1 = 0

and for 1 < ` ≤ v, α` =
∑t−1

j=0(n− sj), where (s0, s1, . . . , st−1) is the type of f`.

Let P be the prime ideal of R[ξp] lying over p. Stickelberger’s theorem states

that the number of times that P divides g(T−b) is σ(b), where 0 < b < q − 1 and

σ(b) is the sum of the digits in the p-adic expansion of b. Since (p) = Pp−1 we have

νP(q) = (p− 1)t.

In each case of (4.2), we have

νP(φi) = (p− 1)t− σ(bi)

except when bi = 0 and γi 6= 0 (in which case, φi = 0). Thus in Case 1 of the proof

of Proposition 4.1.1 the p-adic valuation of any nonzero coordinate of η1,n(f`) is

1

p− 1

n∑
i=0

νP(φi)− t = nt− 1

p− 1

n∑
i=0

σ(bi) = nt− 1

p− 1

t−1∑
j=0

λj =
t−1∑
j=0

(n− sj)

recalling that λj is the jth column sum of the p-adic digits of bi (see (3.5)) and

λj = psj+1 − sj. So in this case, the largest power of p dividing every coordinate of

η1,n(f`) is
∑t−1

j=0(n− sj).

In Case 2a of the proof of Proposition 4.1.1, we have η1,n(f`)(Y ) = (q −

1)s−1qn−s, which has p-adic valuation t(n − s). In Case 2b of the proof of Propo-

sition 4.1.1, η1,n(f`)(Y ) is a sum of two terms, each with p-adic valuation t(n− s).

So the sum will have p-adic valuation at least t(n − s). In summary, in Case 2 of

the proof of Proposition 4.1.1, every coordinate of η1,n(f`) has p-adic valuation at

least t(n − s), and since we can always find a hyperplane
∑n

i=0 γixi = 0 such that

for some 0 ≤ i ≤ n, γi 6= 0 while bi = 0, we see that the largest power of p dividing

every coordinate of η1,n(f`) is t(n− s).

In Case 3 of the proof of Proposition 4.1.1, the basis monomial under con-

sideration is f1 = T (x0
0 · · ·x0

n). Every coordinate of η1,n(f1) is qn−1
q−1

, which is not
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divisible by p; hence, 1 is the largest power of p dividing every coordinate of η1,n(f1),

and α1 = 0.

Now we factorize the matrix AQ as PD, where

D =



pα1 0 0 · · · 0

0 pα2 0

0
. . .

...
... pαv−1 0

0 · · · 0 pαv


,

and P is an |Ln| × |Ln| = v × v matrix with the v columns being 1
pα`
η1,r(f`),

` = 1, 2, . . . , v. It remains to show that P is invertible as a matrix with entries from

R. We use the well-known formula for the determinant of a symmetric design. (See

Theorem 2.2.4 (a).) Thus if A is the incidence matrix for a symmetric 2-design with

block size k and order n = r − λ = k − λ, then

det(A) = kn(v−1)/2.

In our case k = (qn − 1)/(q − 1) and n = qn−1, so

det(A) =
qn − 1

q − 1
· q(n−1)(v−1)/2.

Hence

νp(det(A)) = t(n− 1)(v − 1)/2.

From our discussion above, we have

∑
`

α` =
∑

(s0,s1,...,st−1)∈H

d(s0,s1,...,st−1)

(
t−1∑
j=0

(n− sj)

)
.

Now using the fact that for every (s0, s1, . . . , st−1) ∈ H, we have

d(s0,s1,...,st−1) = d(n+1−s0,n+1−s1,...,n+1−st−1),
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and
∑

(s0,s1,...,st−1)∈H d(s0,s1,...,st−1) = v − 1, we find that∑
`

α` = t(n− 1)(v − 1)/2 = νp(det(A)).

Since det(A) = p
∑

` α`det(P )det(Q−1), and
∑

` α` = νp(det(A)), we see that det(P )

is a unit in R; hence, P is invertible. This completes the proof.

Note that we could also argue that P is invertible by writing the columns

of P as polynomials in the dual coordinates γi. Changing to the dual-coordinate

monomial basis, we get column vectors which can clearly be seen to be independent

(mod p), using the formulas derived in this chapter.
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Chapter 5

THE PROOF OF THEOREM A

In this chapter we prove Theorem A by showing that the lower bounds for the

invariants which we can get from Wan’s theorem are also the upper bounds. In the

last section we also provide a proof of the result of Bardoe and Sin, Theorem 3.4.2.

5.1 Lower bounds on the invariants

To get lower bounds on the p-powers dividing the invariants of η1,r we apply

Wan’s theorem. Let f = T (xb0
0 x

b1
1 · · ·xbn

n ) ∈ MR be a basis monomial. Using

Theorem 2.5.8, we get the lower bound on the p-adic valuation of the coordinates of

η1,r(f). Note that the coordinates of η1,r(f) are indexed by the r-spaces in Lr. An r-

subspace Y of V = Fn+1
q can be defined by a system of (n+1−r) independent linear

homogeneous equations. Putting the n + 1 − r equations in reduced row echelon

form, we have r independent coordinates which run through Fq. The remaining

n + 1 − r coordinates are linear functions of those r coordinates. Without loss of

generality, we label the free coordinates (x0, . . . , xr−1) = x and express the defining

equations of Y as xi = Fi(x) for (r ≤ i ≤ n). The Y -coordinate of η1,r(f) is:

η1,r(f)(Y ) =
1

q − 1

∑
x∈Fq

r\{(0,0,...,0)}

T b0(x0) · · ·T br−1(xr−1)T
br(Fr(x)) · · ·T bn(Fn(x)).

(5.1)
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Lemma 5.1.1. Let f(x0, . . . , xn) = T (x0
b0 · · ·xn

bn) be a nonconstant basis mono-

mial in MR. Then every coordinate of the image vector η1,r(f) is divisible by pα

with

α =
t−1∑
i=0

max{0, r − si}, (5.2)

where (s0, s1, . . . , st−1) is the type of f as defined in (3.6).

Proof: Let Y be an arbitrary r-space in Lr. By the above discussion, we assume

that Y is defined by xi = Fi(x), i = r, r + 1, . . . , n and x = (x0, x1, . . . , xr−1) ∈ Fr
q.

The Y -coordinate of η1,r(f) is then given by (5.1), and by Theorem 2.5.8, we have

νp(η1,n(f)(Y )) ≥
t−1∑
`=0

max{0, r − 1

q − 1

n∑
i=0

σq(p
`bi)}.

Recalling that the type of f is denoted by (s0, s1, . . . , st−1) and noting that st−` =

1
q−1

∑n
i=0 σq(p

`bi) (reading st as s0) for all ` = 0, 1, . . . , t− 1, we have

νp(η1,n(f)(Y )) ≥
t−1∑
i=0

max{0, r − si}.

This completes the proof.

Let Q be the basis change matrix between the standard basis and the mono-

mial basisMR = {f1, f2, . . . , fv} of RL1 (as used in Section 3.5). Using Lemma 5.1.1,

we see that one can factorize AQ as PD, where

D =



pα1 0 0 · · · 0

0 pα2 0

0
. . .

...
... pαv−1 0

0 · · · 0 pαv

0 · · · 0
...

. . .
...

0 · · · 0



,
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pαi corresponds to the basis monomial fi ∈MR with type (s0, s1, . . . , st−1), and

αi =
t−1∑
j=0

max{0, r − sj}.

The matrix P is an |Lr| × |Lr| matrix whose first v columns are 1
pαi
η1,r(fi), i =

1, 2, . . . , v. We still need to show thatD (with the diagonal entries suitably arranged)

is indeed the Smith normal form of A.
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5.2 p-filtrations and Smith normal form bases

Let R = Zp[ξq−1] with maximal ideal p = pR and residue field Fq, and let

η1,r : RL1 → RLr be the map defined before. In this section we prove that there

exists a basis B of RL1 , whose reduction modulo p is the monomial basis of FL1
q , such

that the matrix of η1,r with respect to B and some basis of RLr is the Smith normal

form of η1,r. We begin with some general results on injective homomorphisms of

free R-modules.

For any free R-module M we set M = M/pM and for any R-submodule L

of M , let L = (L+ pM)/pM be the image in M .

Let φ : M → N be an injective homomorphism of free R-modules of finite

rank, with rankM = m ≥ 1.

Let

N ′ = {x ∈ N | ∃j ≥ 0, pjx ∈ Imφ}

ThenN ′ is the smallest R-module direct summand ofN containing Imφ, (sometimes

called its purification) and is also of rank m. The invariant factors of φ stay the

same if we change the codomain to N ′, which will often allow us to reduce to the

case rankN = m.

Define

Mi = {m ∈M | φ(m) ∈ piN}, i = 0, 1, ...

Then we have a filtration

M = M0 ⊇M1 ⊇ · · ·

of M and the filtration

M = M0 ⊇M1 ⊇ · · ·

of M .
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Since φ is injective, and N ′/ Imφ has finite exponent, it follows that there

exists a smallest index ` such that M ` = 0. So we have a finite filtration

M = M0 ⊇M1 ⊇ · · · ⊇M ` = {0}.

The inclusions need not be strict, although the last one is, by minimality of `.

Proposition 5.2.1. For 0 ≤ i ≤ `− 1, pi is an invariant factor of φ with multi-

plicity dim(M i/M i+1).

Proof: The theory of modules over PIDs says there are bases of M and N ′ such

that φ is represented by an m×m diagonal matrix whose entries are the invariant

factors of φ. From this matrix we see that the multiplicity of pi is dim(M i/M i+1).

Suppose we start with a basis B`−1 of M `−1 and extend it to a basis of M `−2

by adding a set B`−2 of vectors and so on until we have a basis

B = B0 ∪ B1 ∪ . . . ∪ B`−1

of M . At each stage we also select a set Bi ⊂Mi of preimages of Bi and expand the

sets in the same way. The resulting set B = ∪`−1
i=0Bi is a basis of M , by Nakayama’s

lemma.

We show that this basis can be used to compute the Smith normal form of

φ, that is, that there is a basis C of N such that the matrix of φ with respect to B

and C is the Smith normal form.

For e in Bi, we have pi ‖ φ(e); so y = 1
piφ(e) is an element of N ′. The

elements y thus obtained from all elements of B are linearly independent elements

of N ′, since φ is injective. Moreover, the index of Imφ in the R-submodule of N ′

generated by these elements y is equal to the index of Imφ in N ′ by the proposition.

Therefore, these elements y form a basis of N ′. The matrix of φ with respect to B
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and any basis of N obtained by extending this basis will then be in Smith normal

form.

For convenience, we introduce a special name for bases such as B above.

Definition 5.2.2. We will call a basis B of M an SNF basis of M for φ if B =

∪`−1
i=0Bi, where for each i we have Bi ⊆ Mi and Bi maps bijectively to a basis of

M i/M i+1 under the composite map Mi →M i →M i/M i+1 .

We now apply the above general theory to our situation. We will look at the

case where M = RL1 , N = RLr , and φ = η1,r. Let G = GL(n + 1, q). Then G acts

on L1 and Lr, and the map η1,r is an injective homomorphism of RG-modules; so

the Mi are RG-modules and the M i are FqG-modules.

We will use the following special properties of the FqG-module FL1
q .

Proposition 5.2.3. 1. Two basis monomials of the same type generate the same

FqG-submodule of FL1
q .

2. Every FqG-submodule of FL1
q has a basis consisting of all of the basis monomials

in the submodule.

Proof: Part (1) is immediate from Corollary 3.4.3. (See [7, Theorem B]. The field

in [7] is taken to be an algebraically closed field k, not Fq, but it follows from [7,

Theorem A] that in fact all the kG-submodules of kL1 are simply scalar extensions

of FqG-submodules of FL1
q , so for example [7, Theorems A, B] hold also over Fq.) Let

S be an FqG-submodule of FL1
q and let f ∈ S. By Corollary 3.4.3, S must contain

all the basis monomials needed to express f . Therefore, S is the linear span over Fq

of all the basis monomials it contains.

Corollary 5.2.4. RL1 has an SNF basis for η1,r whose image in FL1
q is the monomial

basis.
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Proof: By Proposition 5.2.3(2) we can choose Bi in the construction above to be

the set of monomials in M i which are not in M i+1.

Whenever we have a basis B ofRL1 whose reduction modulo p is the monomial

basis, the type of an element of B will always mean the type of its image in the

monomial basis.

Corollary 5.2.5. Let B be an SNF basis of RL1 for η1,r whose image in FL1
q is

the monomial basis. Then the invariants corresponding to two elements of B of the

same type are equal.

Proof: Let e, f ∈ B be two such basis elements, with images e and f . Then

e ∈Mj ⇐⇒ e ∈M j (def. of SNF basis)

⇐⇒ f ∈M j (Proposition 5.2.3(1))

⇐⇒ f ∈Mj (def. of SNF basis).
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5.3 Jacobi sums and the action of the general linear group on RL1

In this section we will prove a refinement of Corollary 5.2.4 (see Lemma 5.3.6

for details). In order to prove this refinement, we need to use Jacobi sums and the

action of the general linear group on RL1 .

Again let T be the Teichmüller character of Fq defined in Section 2.5.4, where

q = pt. We know that T is a p-adic multiplicative character of Fq of order (q−1) and

all multiplicative characters of Fq are powers of T . Again we adopt the convention

that T 0 is the character that maps all elements of Fq to 1, while T q−1 maps 0 to 0

and all other elements to 1. Recall that given two multiplicative characters on F∗q,

T b0 and T b1 , the Jacobi sum is

J(T b0 , T b1) =
∑

x0∈Fq

T b0(x0)T
b1(1− x0). (5.3)

From the above definition and our convention on T 0 and T q−1, we see that if b0 6≡ 0

(mod q − 1), then

J(T b0 , T 0) = 0, and J(T b0 , T q−1) = −1.

Also we have J(T−1, T ) = 1. The Jacobi sum J(T b0 , T b1) lies in R = Zp[ξq−1].

Naturally we want to know its p-adic valuation. Using Stickelberger’s theorem on

Gauss sums (Section 2.5.4 and see [15, 39] for further reference) and the relation

between Gauss and Jacobi sums (Section 2.5.3),

J(χ1, χ2) =
g(χ1)g(χ2)

g(χ1χ2)
,

we have the following relation.

Theorem 5.3.1. Let b0 and b1 be integers such that bi 6≡ 0 (mod q − 1), i = 0, 1,

and b0 + b1 6≡ 0 (mod q − 1). For any integer b, we use σ(b) to denote the sum of

digits in the expansion of the least nonnegative residue of b modulo q − 1 as a base

p number. Then

νp(J(T−b0 , T−b1)) =
σ(b0) + σ(b1)− σ(b0 + b1)

p− 1
.
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In other words, the number of times that p divides J(T−b0 , T−b1) is equal to the

number of carries in the addition b0 + b1 (mod q − 1).

We will now construct an element of RG with certain special properties. For

this purpose, we will first describe the action of G on RL1 . In this section, we think

of elements of L1 in homogeneous coordinates as row vectors and elements of G as

matrices acting by right multiplication. Then RL1 is the left RG-module given in

the following way. For each function f ∈ RL1 , the function gf is given by

(gf)(Z) = f(Zg), Z ∈ L1.

Let fi = T (xb0
0 x

b1
1 · · ·xbn

n ) ∈MR be an arbitrary basis monomial. Let ξ = ξq−1

be a primitive (q − 1)th root of unity in the Teichmüller set Tq ⊂ R, and let ξ̄ be

its reduction modulo p. We define g` ∈ G to be the element which replaces x0 by

x0 + ξ̄`x1 and leaves all other xi unchanged. Then

g`fi = T
(
(x0 + ξ̄`x1)

b0xb1
1 · · ·xbn

n

)
.

Let g =
∑q−2

`=0 ξ
−`g` ∈ RG. The following lemma gives us gfi.

Lemma 5.3.2. Let fi and g be as given. Then

gfi =



0, if b0 = 0

T (xq−2
0 xb1+1

1 xb2
2 · · ·xbn

n ), if b0 = q − 1(
q(1− T (xq−1

0 ))− 1
)
T (xb1+1

1 xb2
2 · · ·xbn

n ), if b0 = 1

−J(T−1, T b0)T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ), otherwise.

Proof: First note that

J(T−1, T 0) = 0,

J(T−1, T q−1) = −1,

so the cases b0 = 0 and b0 = q − 1 are really covered by the general case. Therefore

we will only consider two cases.
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Case 1. b0 6= 1. First assume that x0 and x1 are both nonzero. We have

gfi =

q−2∑
`=0

ξ−`g`fi

= T (xb1
1 · · ·xbn

n )

q−2∑
`=0

T−1(ξ̄`)T b0(x0 + ξ̄`x1) (5.4)

= T (xb1
1 · · ·xbn

n )
∑
u∈Fq

T−1(−x1u

x0

)T b0

(
1− (−x1u

x0

)

)
T (−1)T (xb0−1

0 x1)

= −J(T−1, T b0)T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ). (5.5)

If x1 = 0 we verify directly that (5.4) and (5.5) are both zero, so the formula is still

valid. If x0 = 0, since b0 6= 1, we see that (5.5) is 0; and (5.4) is also 0, since a

nontrivial (multiplicative) character summed over Fq is zero. Therefore the formula

still holds.

Case 2. b0 = 1. In this case

gfi = T (xb1
1 x

b2
2 · · ·xbn

n )

q−2∑
`=0

T (ξ̄−`x0 + x1).

If x0 = 0, then gfi = (q − 1)T (xb1+1
1 xb2

2 · · ·xbn
n ). If x0 6= 0 but x1 = 0, then clearly

we have gfi = 0. If x0 6= 0 and x1 6= 0, then using the same calculations as in the

case b0 6= 1, we have

gfi = −J(T−1, T )T (xb1+1
1 xb2

2 · · ·xbn
n ) = −T (xb1+1

1 xb2
2 · · ·xbn

n ).

In summary, the formula for gfi in this case is

(
q(1− T (xq−1

0 ))− 1
)
T (xb1+1

1 xb2
2 · · ·xbn

n ).

This completes the proof.
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Corollary 5.3.3. Let fi = T (xb0
0 x

b1
1 · · ·xbn

n ) ∈ MR be a basis monomial, and let

g(j) =
∑q−2

`=0 ξ
−`g`p−j be the jth Frobenius analog of g in Lemma 5.3.2 above. Then

g(j)fi =



0, if b0 = 0

T (xq−1−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ), if b0 = q − 1(
q(1− T (xq−1

0 ))− 1
)
T (xb1+pj

1 xb2
2 · · ·xbn

n ), if b0 = pj

−J(T−pj
, T b0)T (xb0−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ), otherwise.

Proof: Let ρ denote the Frobenius automorphism of R, which maps an element

of the Teichmüller set Tq to its pth power, and let y = (y0, . . . , yn) = (xpj

0 , . . . , x
pj

n ).

We can write fi(x) = fρ−j

i (y) = T (yb0p−j

0 · · · ybnp−j

n ). We observe that g`p−j replaces

y0 by y0 + ξ̄`y1. Therefore we can apply the previous lemma to get

g(j)fρ−j

i (y) =



0, if b0 = 0

T (yq−2
0 yb1p−j+1

1 yb2p−j

2 · · · ybnp−j

n ), if b0 = q − 1(
q(1− T (yq−1

0 ))− 1
)
T (yb1p−j+1

1 yb2p−j

2 · · · ybnp−j

n ), if b0 = pj

−J(T−1, T b0p−j
)T (yb0p−j−1

0 yb1p−j+1
1 yb2p−j

2 · · · ybnp−j

n ) otherwise.

Substituting x back in and noting that J(χp, ψp) = J(χ, ψ) we get the result.

For each basis monomial in MR with at least one exponent strictly between

0 and q − 1, we want to construct an element of RG which acts as the identity on

that basis monomial and annihilates all other members of MR. To begin we define

a finite abelian group

(M̃, ∗) = {Xb0 (mod q−1)
0 · · ·Xbn (mod q−1)

n |
n∑

i=0

bi is divisible by q − 1},

where the operation ∗ is the (natural) componentwise multiplication. The group

(M̃, ∗) has order (q − 1)n. Next we define a map from MR to (M̃, ∗).

τ : MR −→ M̃

T (xb0
0 · · ·xbn

n ) 7−→ X
b0 (mod q−1)
0 · · ·Xbn (mod q−1)

n
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If m̃ ∈ M̃ has i ≤ n of its exponents divisible by q − 1, then m̃ has 2i preimages

in MR. If all exponents are divisible by (q − 1) then there are (2n − 1) preimages

since we have excluded T (xq−1
0 · · ·xq−1

n ) from MR.

The following formulas are well known (see [8, p. 314]).

Lemma 5.3.4. (Inversion formulas) Let H be a finite abelian group of exponent

e, R a ring containing 1
|H| and a primitive eth root of unity, and H ′ the group of

characters from H to R. Let A =
∑

h∈H ahh ∈ RH and B =
∑

χ∈H′ bχχ ∈ RH ′.

Then

ah =
1

|H|
∑
χ∈H′

χ(A)χ−1(h) (5.6)

bχ =
1

|H|
∑
h∈H

B(h)χ−1(h) (5.7)

In what follows we will apply Lemma 5.3.4 to the group (M̃, ∗). We construct

an element of RG that kills each basis monomial except those which are preimages

of τ(fi) ∈ M̃. Then we construct elements of RG that kill each element of the

preimage set except the one we choose.

Let S = {λI | λ ∈ F∗q} be the subgroup of scalar matrices in G. The

diagonal matrices of G form a maximal abelian subgroup or torus, and their images

in PGL(n + 1, q) = G/S form a torus in that group. Let T ⊂ G be a complete

set of coset representatives in G of this torus of PGL(n + 1, q) = G/S. There is a

1-to-1 correspondence between elements of T and characters of the group (M̃, ∗).

For m̃ = τ(m) ∈ M̃, g ∈ T we define χg via gm = χg(m̃)m. Hence if

g =


d0 0

. . .

0 dn

 ∈ T

then

χg(X
b0 (mod q−1)
0 · · ·Xbn (mod q−1)

n ) = T (d0
b0 · · · dn

bn) ∈ R.
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We want to find B such that

B(τ(fi)) =
∑
g∈T

bgχg(τ(fi)) = 1

B(τ(fj)) = 0, if τ(fi) 6= τ(fj).

Using (5.7) in Lemma 5.3.4 to solve for bg we get

B =
1

|T |
∑
g∈T

χ−1
g (τ(fi))χg

and the corresponding element of RG is

1

(q − 1)n

∑
g∈T

χ−1
g (τ(fi))g.

This element is in RG because p does not divide the order of M̃, and it annihilates

all basis monomials in MR except those in the preimage of τ(fi).

In the language of representation theory, we would say that two monomials

afford the same character if and only if their exponents are all congruent (mod q−1).

Lemma 5.3.5. Let MR = {f1, f2, . . . , fv} be the monomial basis of RL1. For each

fi = T (xb0
0 x

b1
1 · · ·xbn

n ) ∈ MR with some bj strictly between 0 and q − 1, there is an

element hi ∈ RG with the following property. If

f = c1f1 + c2f2 + · · ·+ cvfv

is any element in RL1 then

hif = cifi.

Proof: We will construct the required hi in two steps. Let H denote the subgroup

of diagonal matrices of G. Then each basis monomial in MR spans a rank one

RH-submodule of RL1 , which is the direct sum of all such submodules. Two basis

monomials fi = T (xb0
0 x

b1
1 · · ·xbn

n ) and fj = T (x
b′0
0 x

b′1
1 · · ·x

b′n
n ) afford the same character

of H if and only if bi ≡ b′i (mod q − 1) for 0 ≤ i ≤ n.
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Since the order of H is not divisible by p, for each character χ of H, the group

ring RH contains an idempotent element projecting onto the χ-isotypic component

of RL1 , the span of all the basis monomials affording χ. In other words, we can start

with the group ring element constructed above from the inversion formula.

If none of the exponents the of fi is divisible by q − 1, then no other basis

monomials afford the same character as fi and we can take hi to be the above

idempotent. Now suppose that some exponents of fi are divisible by q − 1. We

proceed successively for each exponent of fi which is either 0 or q− 1. Without loss

of generality, assume that fi has b0 = q−1. We construct an element h ∈ RG which

annihilates every basis monomial in MR for which b0 = 0 and acts as the identity

on fi. (If fi instead has b0 = 0, then the element we want is 1− h.)

Without loss of generality, we will take b1 = a1,t−1p
t−1 + · · · + a1,0 to be an

exponent lying strictly between 0 and q − 1 with a1,j < p− 1 for some j. Then we

take the element h1 = g(j) ∈ RG from Lemma 5.3.3 that shifts pj from b0 to b1. We

get

h1fi = T (xq−1−pj

0 xb1+pj

1 xb2
2 · · ·xbn

n ).

If e is any other basis monomial of the form e = T (xq−1
0 xb1

1 · · · ), then we similarly

have

h1e = T (xq−1−pj

0 xb1+pj

1 · · · );

and if x0 has exponent 0 in e then from Corollary 5.3.3, we have

h1e = 0.

Next we set h2 = g′(j) ∈ RG to be the analog of g(j) but with the roles of x0 and

x1 interchanged. Noting that here b1 + pj 6= pj (we assumed that 0 < b1 < q − 1),
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we get

h2h1fi = −J(T−pj

, T b1+pj

)fi

h2h1e = −J(T−pj

, T b1+pj

)e, if the exponent of x0 in e is q − 1

h2h1e = 0 otherwise.

Since there is no carry in the sum pj + b1, the Jacobi sum J(T−pj
, T b1+pj

) is a unit

in R (cf. Lemma 5.3.1). Hence the element h of RG we want is − 1

J(T−pj
,T b1+pj

)
h2h1.

We can repeat the above process for each exponent of fi which is divisible by

q − 1. The product of all the elements we have constructed is the element hi ∈ RG

which kills every basis monomial in MR except fi.

We now prove the main result in this section.

Lemma 5.3.6. Assume q > 2. There exists an SNF basis of RL1 for η1,r, whose

reduction modulo p is M, and which contains all the basis monomials of MR having

at least one exponent lying strictly between 0 and q − 1.

Proof: By Corollary 5.2.4, there exists an SNF basis B = ∪`−1
j=0Bj of RL1 for η1,r

such that the reduction of B modulo p is M. Let f ∈ B, and let the reduction of f

modulo p be

f = xb0
0 x

b1
1 · · ·xbn

n ∈M,

with some bj satisfying 0 < bj < q − 1. Let MR = {f1, f2, . . . , fv} with f1 =

T (xb0
0 x

b1
1 · · ·xbn

n ), where v = |L1|. We write

f = c1f1 + c2f2 + · · ·+ cvfv, ci ∈ R.

Since f = f1, we see that c1 = 1. Hence c1 is a unit in R. Since there is an exponent

bj lying strictly between 0 and q − 1, by Lemma 5.3.5, we can find h1 ∈ RG such

that h1f = c1f1. In the notation of Definition 5.2.2 with M = RL1 , we see that if

f ∈ Bj, then f1 ∈Mj since Mj is an RG-submodule , so that B′ = (B \ {f}) ∪ {f1}
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is again an SNF basis of RL1 for η1,r. We can repeat this process for every element

in B whose reduction modulo p has one exponent strictly lying between 0 and q−1.

At the end, we obtain the required SNF basis of RL1 for η1,r.

We will use M′
R to denote the special SNF basis of RL1 for η1,r produced by

Lemma 5.3.6. Again the type of f ∈M′
R is defined to be that of f ∈M.

Lemma 5.3.7. The invariants of η1,r corresponding to two elements of M′
R of types

(s0, . . . , st−1) and (s1, s2, . . . , st−1, s0), respectively, are equal.

Proof: We may assume t ≥ 2 since there is nothing to prove otherwise. For any

type ξ ∈ H, we can always find a basis monomial f ∈MR of type ξ and with at least

one exponent lying strictly between 0 and q−1. Hence f ∈M′
R. By Corollary 5.2.5,

the invariants of η1,r corresponding to two elements in M′
R of the same type are

equal. Therefore we may assume that the two elements of M′
R in the statement of

the lemma are actually in MR.

The Frobenius field automorphism

ρ : Fq → Fq

xi 7→ xp
i

applied to the coordinates of V is an automorphism of the projective geometry. It

maps points to points, subspaces to subspaces, and preserves incidence . The image

of a point Z = (x0, . . . , xn) is Zρ = (xp
0, . . . , x

p
n) and for an r-subspace Y , Y ρ is

the r-subspace containing the images of all the points incident with Y . Given a

monomial function fi = T (xb0
0 · · ·xbn

n ) we have

fρ
i = T (xpb0

0 · · ·xpbn
n ).
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Clearly if fi is of type (s0, . . . , st−1) then fρ
i is of type (st−1, s0, . . . , st−2)

because λj becomes λj+1 in (3.5). It is also clear that

fi(Z
ρ) = fρ

i (Z)

so that

η1,r(fi)(Y
ρ) = η1,r(f

ρ
i )(Y ).

As Y runs through RLr so does Y ρ. Thus, the coordinates of η1,r(fi) are the same as

the coordinates of η1,r(fi
ρ) but permuted by ρ, so that the invariants corresponding

to fi and fρ
i are equal.

70



5.4 The proof of Theorem A

Our aim in this section to prove Theorem 3.5.1 (Theorem A). We will achieve

this by proving the more detailed result Theorem 5.4.2 below. Our proof depends on

Lemma 5.1.1, which gives lower bounds on the p-adic valuations of the coordinates

of η1,r(f), where f ∈MR, and the results in Section 5.2 and Section 5.3.

We first prove a lemma.

Lemma 5.4.1. Let f be a nonconstant basis monomial in MR. Then p does not

divide η1,r(f) if and only if f has type (s0, s1, . . . , st−1), with sj ≥ r for all 0 ≤ j ≤

t− 1.

Proof: Let f be the image modulo p of f . Then p does not divide η1,r(f) if and

only if the image of f under the induced map η1,r : FL1
q → FLr

q is nonzero. Suppose

that sj < r for some j. By Lemma 5.1.1, p | η1,r(f). That is, only those basis

monomials f of type (s0, s1, . . . , st−1), where sj ≥ r for all 0 ≤ j ≤ t − 1, could

possibly have nonzero image under η1,r. On the other hand, by Hamada’s formula,

rank of η1,r is equal to one plus the number of f ’s with this property. Therefore,

the images of all such basis monomials must be linearly independent, in particular,

nonzero. Hence p - η1,r(f), if and only if f has type (s0, s1, . . . , st−1), where sj ≥ r

for all 0 ≤ j ≤ t− 1. This completes the proof.

Theorem 5.4.2. Let f ′i ∈ M′
R be of type (s0, . . . , st−1) and let pβi be the invariant

of f ′i with respect to η1,r. Then

βi =
t−1∑
i=0

max{0, r − si}.

Proof: We shall assume that t ≥ 2. When t = 1 a similar and easier argument

works, but we omit the details to keep the notation simple and the argument clear,

since this case is already known [37]. (However if t = 1 and q = 2, arguments based
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on Jacobi sums do not work. It is still possible, though, to construct elements of

RG to get an SNF basis in a favorable form.) Let αi =
∑t−1

j=0 max{0, r − sj}. Let

fi ∈ M′
R and let fi ∈ MR be the basis monomial which has the same reduction

modulo p as f ′i , namely fi := T (f̄ ′i). We use the notation of Definition 5.2.2 with

M = RL1 and φ = η1,r. By Lemma 5.1.1, we have fi ∈ Mαi
. Since the image of

f̄i = f̄ ′i in Mβi
/Mβi+1 is not zero, it follows that αi ≤ βi.

Suppose by way of contradiction that βk > αk for some k. Let fk =

T (xb0
0 x

b1
1 · · ·xbn

n ) be of type (s0, s1, . . . , st−1). Assume that we have picked k so

that if αj < αk then αj = βj. By Lemma 5.3.7 we can assume for convenience that

s1 = min{s0, . . . , st−1}. We have

λ0 = ps1 − s0 ≤ n(p− 1)

with equality only if s0 = s1 = · · · = st−1 = n and

λ1 = ps2 − s1 ≥ 1.

We note that the case s0 = s1 = · · · = st−1 = n will not occur by our

assumption that βk > αk. The reason is as follows. If fk has type (s0, s1, . . . , st−1) =

(n, n, . . . , n), by Lemma 5.4.1, we see that p - η1,r(fk). Since f̄ ′k = f̄k, we have

p - η1,r(f
′
k). But the invariant corresponding to f ′k is pβk , and we assumed that

βk > αk = 0, so p | η1,r(f
′
k), a contradiction.

By Lemma 5.2.5, basis vectors in M′
R of the same type correspond to the

same invariant, so in the sum λ0 =
∑n

i=0 ai,0 we can assume that a0,0 = 0, and we

can also assume that a1,0 < p − 1 since the case s0 = s1 = · · · = st−1 = n has

been excluded. In the sum λ1 =
∑n

i=0 ai,1, we can assume that a0,1 ≥ 1. By these

assumptions, we see that 0 < p ≤ b0 < q − 1. Hence from our definition of M′
R we

have

f ′k = fk.
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Since the exponent b0 in fk is not equal to 1, applying the group ring element

h ∈ RG in Lemma 5.3.2, we get

hf ′k = hfk = −J(T−1, T b0)T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ). (5.8)

Set T (xb0−1
0 xb1+1

1 xb2
2 · · ·xbn

n ) := f` ∈ MR. The type of f` is (s0, s1 + 1, s2, . . . , st−1)

because we have increased λ0 by p and decreased λ1 by 1. Also note that b0 − 1 is

still strictly between 0 and q − 1, so f` = f ′` ∈ M′
R. As for the coefficient of f` in

(5.8), Lemma 5.3.1 tells us that p divides J(T−1, T b0) exactly once because when 1

is added to q − 1− b0 there is exactly one carry: from the ones place to the p place

of the sum. Since pβk | η1,r(f
′
k) and η1,r is an RG-module homomorphism, we have

pβk | η1,r(hf
′
k).

Since p ‖ J(T−1, T b0), we get

p(βk−1) | η1,r(f
′
`),

where the type of f ′` is (s0, s1 + 1, s2, . . . , st−1). Since we assumed that αk was the

smallest such that αk < βk, we must conclude that

t−1∑
j=0

max{0, r − sj} =
t−1∑

j=0,j 6=1

max{0, r − sj}+ max{0, r − (s1 + 1)}.

That is, s1 ≥ r. Since s1 is assumed to be the smallest among sj, 0 ≤ j ≤ t− 1, we

see that

sj ≥ r, 0 ≤ j ≤ t− 1, and hence αk = 0.

By Lemma 5.4.1, p - η1,r(fk), so p - η1,r(f
′
k) since f ′k = fk. However we have assumed

that βk > αk = 0, that is, p | η1,r(f
′
k), which is a contradiction. The theorem is

proved.

The theorem shows that the bound in Theorem 2.5.8 is exact.
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Corollary 5.4.3. The monomial basis MR is an SNF basis of RL1 for the map η1,r

and the invariant of a monomial of type (s0, . . . , st−1) is equal to

t−1∑
i=0

max{0, r − si}.

Remark 5.4.4. We have seen that, for each r, the RGL(n + 1, q) homomorphism

η1,r defines a filtration {M i} of FL1
q by FqGL(n + 1, q)-modules. In the case r = n,

it follows from Theorem 5.4.2 and [7, Theorems A, B] that this filtration is equal to

the radical filtration, the most rapid descending filtration with semisimple factors.

Equivalently, Mi = J i(FL1
q ), where J is the Jacobson radical of the group algebra

FqGL(n+ 1, q).
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5.5 Proof of the Bardoe/Sin module structure result

In this section we give a proof of Theorem 3.4.2. First, we need to supplement

Lemma 5.3.5 with the following lemma to cover those monomials in which every

exponent is divisible by q − 1, which were excluded from Lemma 5.3.5.

Lemma 5.5.1. Let fi = T (xb0
0 x

b1
1 · · ·xbn

n ) ∈ MR be a basis monomial with every

exponent either 0 or q − 1, let bk = 0, and let f ∗i = T (xq−1
k )fi. For any

f = c1f1 + c2f2 + · · ·+ cvfv

in RL1. There is an element gi ∈ RG, which depends on f , such that

gif = ci(fi +
q

1− q
f ∗i )

Proof: Without loss of generality we can take b0 = q − 1 and k = 1 (i.e., b1 = 0).

We will first treat the case where fi = T (xq−1
0 x0

1x
q−1
2 · · ·xq−1

n ). In this case we have

f ∗i = T (xq−1
0 xq−1

1 xq−1
2 · · ·xq−1

n ),

which is not a basis monomial—but we can write this f ∗i as a linear combination of

some basis monomials in MR with coefficients ±1. Explicitly,

f ∗i = T (xq−1
0 · · ·xq−1

n )−
n∏

j=0

(
T (xq−1

j )− 1
)
. (5.9)

Note that here we are dealing with functions from L1 to R, so at least one xj is

nonzero. By Corollary 5.3.3, we can find an element g1 = g(0) ∈ RG such that

g1fi = T (xq−2
0 x1x

q−1
2 · · ·xq−1

n ). (5.10)

No other basis monomial will have the monomial (5.10) in its image. Since the

exponent of x0 is q−2, lying strictly between 0 and q−1, we can apply Lemma 5.3.5

to get an element g3 ∈ RG such that

g3g1f = ciT (xq−2
0 x1x

q−1
2 · · ·xq−1

n ).
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Now apply Corollary 5.3.3 to the above monomial (with the roles of x0 and x1

interchanged), we get an element g2 = 1
q−1

g′(0) ∈ RG such that

g2g3g1f = ci(fi +
q

1− q
f ∗i ).

Therefore the lemma is proved in this case.

From now on we assume that at least two of the exponents of fi are 0. By this

assumption, we see that f ∗i = T (xq−1
0 xq−1

1 xb2
2 · · ·xbn

n ) is actually a basis monomial.

Let f ∗i = fj ∈ MR. Using the element g1 = g(0) ∈ RG from Corollary 5.3.3 we

have

g1fi = g1fj = T (xq−2
0 x1x

b2
2 · · ·xbn

n ).

No other monomials will have exactly this monomial as its image, so by the previous

lemma there is g3 ∈ RG such that

g3g1f = (ci + cj)T (xq−2
0 x1x

b2
2 · · ·xbn

n ).

If νp(ci) 6= νp(cj), then

gi =
ci

ci + cj
g2g3g1,

with g2 as above, will be exactly the element of RG we want. Otherwise, we need

to premultiply f by an element of RG which raises the p-adic valuation of cj while

leaving the valuation of ci unchanged.

Suppose in fi that κ ≥ 2 is the number of coordinates whose exponent is 0,

and (n+1−κ) is the number which are q− 1. For this construction, we will relabel

the monomials and renumber the coordinates so that

fi = f ′1 = T (xq−1
0 x0

1x
0
2 · · ·x0

κx
q−1
κ+1x

q−1
κ+2 · · ·xq−1

n )

f ′2 = T (xq−1
0 xq−1

1 x0
2 · · ·x0

κx
q−1
κ+1x

q−1
κ+2 · · ·xq−1

n )

f ′3 = T (xq−1
0 xq−1

1 xq−1
2 x0

3 · · ·x0
κx

q−1
κ+1x

q−1
κ+2 · · ·xq−1

n )

...
...

...

f ′κ = T (xq−1
0 · · ·xq−1

κ−1x
0
κx

q−1
κ+1 · · ·xq−1

n )
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and with the renumbering we have

f = c′1f
′
1 + · · ·+ c′κf

′
κ + c′κ+1f

′
κ+1 + · · · c′vf ′v.

We consider two cases. First suppose that the coefficients

c′1, c
′
2, . . . , c

′
ι, ι < κ

all have the same p-adic valuation, but that the valuations of c′ι and c′ι+1 are different.

Then by the above argument there exists gι ∈ RG for which

gιf = c′ιfι +
c′ιq

1− q
fι+1

and

(1− g)f = c′1f
′
1 + · · ·+ c′ι−1f

′
ι−1 + 0 · f ′ι + · · · .

Now the valuations of c′ι−1 and c′ι are different. By induction we have the required

premultiplier.

Now suppose that the coefficients c′1, c
′
2, . . . , c

′
κ all have the same p-adic val-

uation. We apply the element g4 ∈ RG to f , which in particular shifts 1 from the

exponent of xκ−1 to the exponent of xκ in the basis monomial f ′κ. Then we apply

g5 ∈ RG from the previous lemma to g4f , which kills every monomial except

T (xq−1
0 · · ·xq−1

κ−2x
q−2
κ−1xκx

q−1
κ+1 · · ·xq−1

v ).

Next we apply g6 ∈ RG which shifts 1 from the exponent of xκ back to the exponent

of xκ−1. Since T (xq−1
κ f ′κ) is not in our basis, the calculation above gives

g6g5g4f = c′κ(q − 1)f ′κ − c′κqT (xq−1
κ )f ′κ.

The expression

T (xq−1
κ )f ′κ = T (xq−1

0 · · ·xq−1
n )
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is not a basis monomial, but by (5.9), it can be written as a linear combination of

basis monomials with ±1 coefficients. Using (5.9), we calculate that

(1 + g6g5g4)f = (c′1 ± qc′κ)f
′
1 + (c′2 ∓ qc′κ)f

′
2 + · · ·+ (c′κ−1 + qc′κ)f

′
κ−1 + 0 · f ′κ + · · ·

and we are back to the first case. This completes the proof.

The following observation allows us to apply Lemma 5.3.5 and Lemma 5.5.1

to FL1
q .

Lemma 5.5.2. Let X ∈ RL1 and let g ∈ RG. By g (mod p) we mean the element of

FqG obtained by reducing the coefficient of each element of G in g modulo p. Then

gX (mod p) = [g (mod p)][X (mod p)].

Proof: Clear from the definitions.

We are now ready to prove Theorem 3.4.2 for q 6= 2. The theorem is still true

for q = 2, but using Jacobi sums and summing over (q−1)th roots of unity does not

help when q = 2.

Proof: [Theorem 3.4.2] Since |L1| is not divisible by p, FL1
q is the direct sum of the

module of the constant functions and the module of functions which sum to 0 over

L1. We only need to consider functions of the second type, those with no constant

term. To prove the theorem, we need to demonstrate four claims.

1. The module that is generated by any function contains all the monomials with

nonzero coefficients in the representation of that function in the monomial

basis.

2. The module generated by any monomial contains all the other monomials of

the same type.

3. The module generated by a monomial of a given type generates at least

one monomial of any given lower type, in the sense that if (s0, . . . , st−1)
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and (s′0, . . . , s
′
t−1) are both in H, then (s′0, . . . , s

′
t−1) is a lower type than

(s0, . . . , st−1) if s′i ≤ si for each i ∈ {0, . . . , t− 1}.

4. The expression for the image of any monomial under the action of any group

element has coefficient zero for any basis monomial whose type is higher than

the original monomial. Thus each module described in the theorem is invariant

under the group action.

The first claim is clear from Lemma 5.3.5 and Lemma 5.5.1, since we can

start with any polynomial function and kill all the monomial terms except one, by

applying the appropriate group ring element.

The second and third claims follow from Corollary 5.3.3. We write the p-adic

expansions of the exponents of our given monomial.

bi = ai,0 + · · ·+ ai,t−1p
t−1

The lemma allows us to subtract 1 from any nonzero digit of any exponent and add

the corresponding power of p to any other exponent. The Jacobi sum will be a unit

in R, (since the subtraction bi− pj did not require borrowing), so its reduction mod

(p) is not zero. Thus we can partition the sums

λj = a0,j + · · ·+ an,j

in any way we like, proving the second claim.

To change a monomial of type (s0, . . . , sj, . . . , st−1) to one of type (s0, . . . , sj−

1, . . . , st−1), we need to add 1 to the sum λj and subtract p from the sum λj−1. If

λj−1 < p, or if λj = (n+1)(p− 1), then (s0, . . . , sj− 1, . . . , st−1) 6∈ H. Otherwise we

pick bi such that ai,j < p− 1, move enough units of pj−1 to bi to cause a carry from

ai,j−1 to ai,j, and we have the desired monomial. Then we note that if (s0, . . . , st−1)

and (s′0, . . . , s
′
t−1) are both in H, and if s′j ≤ sj for each i ∈ {0, . . . , t− 1}, then the

following algorithm gets us from (s0, . . . , st−1) to (s′0, . . . , s
′
t−1) by way of t-tuples
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which are all in H and with each step involving subtracting 1 from only one entry

of the t-tuple. Of all those cases where sj 6= s′j, we pick one where sj is as large as

possible. We know that

0 ≤ psj+1 − sj ≤ (p− 1)(n+ 1)

0 ≤ psj − sj−1 ≤ (p− 1)(n+ 1)

2 ≤ sj ≤ n

either sj+1 = s′j+1 or sj+1 ≤ sj

either sj−1 = s′j−1 or sj−1 ≤ sj.

We conclude that

0 ≤ psj+1 − (sj − 1) ≤ (p− 1)(n+ 1)

0 ≤ p(sj − 1)− sj−1 ≤ (p− 1)(n+ 1)

so that (s0, . . . , sj − 1, . . . , st−1) ∈ H.

To prove the last claim, let f = xb0
0 · · ·xbn

n . Recall that sj(q−1) is the degree

of

fpt−j

= (xb0
0 · · ·xbn

n )pt−j

,

with all the exponents reduced by the substitution xq
i = xi. Then for any g ∈ G,

the image gf has the form

(c0,0x0 + · · ·+ c0,nxn)b0 · · · (cn,0x0 + · · ·+ cn,nxn)bn

which is a homogeneous polynomial of degree s0(q − 1) before reduction. After

reduction, all the monomials are of degree at least q − 1 and at most s0(q − 1).

Similarly,

(gf)pt−j

= (cp
t−j

0,0 xpt−j

0 + · · ·+ cp
t−j

0,n xpt−j

n )b0 · · · (cp
t−j

n,0 x
pt−j

0 + · · ·+ cp
t−j

n,n x
pt−j

n )bn

is homogeneous of degree sj(q− 1) before reduction. After reduction, all the mono-

mials are of degree at least q − 1 and at most sj(q − 1). The proof is complete.
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Chapter 6

AFFINE GEOMETRIES

6.1 The Invariant Factors of the Incidence between points and r-flats in

AG(n, q)

In this chapter, we consider the incidence between points and r-flats in the

affine geometry AG(n, q). We will view AG(n, q) as obtained from PG(n, q) by

deleting a hyperplane and all the subspaces it contains. Let H0 be the hyperplane

of PG(n, q) given by the equation x0 = 0. Then for any integer r, 0 ≤ r ≤ n, the

set of r-flats of AG(n, q) is

Fr = {Y \ (Y ∩H0) | Y ∈ Lr+1}.

(The empty set is not considered as an r-flat for any r.) In particular, the set of

points of AG(n, q) is F0. We define the incidence map

η′0,r : ZF0 → ZFr (6.1)

by letting η′0,r(Z) =
∑

Y ∈Fr,Z⊂Y Y for every Z ∈ F0, and then extending η′0,r linearly

to ZF0 . Similarly, we define η′r,0 to be the map from ZFr to ZF0 sending an r-flat

of AG(n, q) to the formal sum of all points incident with it. Let A1 be the matrix

of η′0,r with respect to the standard bases of ZF0 and ZFr . We have the following

counterpart of Theorem 3.2.1.

Theorem 6.1.1. The invariant factors of A1 are all powers of p.
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Proof: The proof is parallel to that of Theorem 3.2.1. We will actually work with

A>
1 , which is the matrix of η′r,0 : ZFr → ZF0 with respect to the standard bases of

ZFr and ZF0 . We define

ε′ : ZF0 → Z

to be the function sending each element in F0 to 1. Clearly ε′ maps ZF0 onto Z

and Im η′r,0 onto qrZ. Thus, ZF0/(Ker ε′ + Im η′r,0)
∼= Z/qrZ, and we are reduced to

proving that (Ker ε′ + Im η′r,0)/ Im η′r,0 is a p-group. The proof goes in exactly the

same way as that in Theorem 3.2.1. Note that Ker(ε′) is spanned by elements in

ZF0 of the form u−w, where u and w are distinct points of AG(n, q); so it is enough

to show that qr(u− w) ∈ Im(η′r,0) for any two distinct points u and w. We pick an

(r+ 1)-flat containing the two distinct points u and w and let η̃′0,r be the restricted

map. The number of r-flats through one point in AG(r + 1, q) is (qr+1 − 1)/(q − 1)

while the number of r-flats through two points in AG(r+ 1, q) is (qr − 1)/(q− 1) so

we get

η′r,0(η̃
′
0,r(z)) = qrz +

qr − 1

q − 1
jU

for any point z. Therefore

η′r,0(η̃
′
0,r(u− w)) = qr(u− w).

This completes the proof.

In view of the above theorem, we view A1 as a matrix with entries from

R = Zp[ξq−1]. The Smith normal form of A1 over R will completely determine the

Smith normal form of A1 over Z. We will get the p-adic invariants of A1 from the

invariants of the incidence between points and (r+ 1)-spaces in PG(n, q) and those

of the incidence between points and (r + 1)-spaces in PG(n− 1, q).
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Let A be the matrix of the incidence map η1,r+1 : RL1 → RLr+1 with respect

to the standard bases of RL1 and RLr+1 . We want to partition A into a certain block

form. For this purpose, we define

LH0
1 = {Z ∈ L1 | Z ⊆ H0},

and

LH0
r+1 = {Y ∈ Lr+1 | Y ⊆ H0}.

So we have the partitions

L1 = F0 ∪ LH0
1 ,

and

Lr+1 = Fr ∪ LH0
r+1.

We now partition A as

A =


F0︷︸︸︷
A1

LH0
1︷︸︸︷
A2

0 A3

} Fr

} LH0
r+1

where A3 is the incidence matrix of the incidence between LH0
1 and LH0

r+1, which

can be thought as the matrix of the incidence between points and (r + 1)-spaces in

PG(n− 1, q).

In order to obtain the SNF of A1, we need to modify the monomial basis MR

of RL1 slightly. We replace the constant monomial in MR by T (xq−1
0 xq−1

1 · · ·xq−1
n )

and denote the resulting set by M∗
R. Note that M∗

R is still a basis of RL1 because

(1 − aq−1
0 )(1 − aq−1

1 ) · · · (1 − aq−1
n ) = 0 for each point (a0, a1, . . . , an) of PG(n, q).

Furthermore M∗
R is an SNF basis of RL1 for η1,r+1 since MR is an SNF basis of RL1

for η1,r+1 and the invariant corresponding to T (xq−1
0 xq−1

1 · · ·xq−1
n ) is 1. So we have

the factorization

P ∗D = AQ∗, (6.2)
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where the columns of Q∗ are the basis vectors in M∗
R written with respect to the

standard basis of RL1 , P ∗ is nonsingular over R and D is the Smith normal form of

A.

We now partition M∗
R as B1 ∪ B2, where

B1 = {T (xb0
0 x

b1
1 · · ·xbn

n ) | b0 6= 0, T (xb0
0 x

b1
1 · · ·xbn

n ) ∈M∗
R},

and

B2 = {T (xb0
0 x

b1
1 · · ·xbn

n ) | b0 = 0, T (xb0
0 x

b1
1 · · ·xbn

n ) ∈M∗
R}.

We partition the matrix Q∗ according to the partition of M∗
R as B1 ∪ B2 and the

partition of L1 as F0 ∪ LH0
1 . Explicitly we have

Q∗ =


B1︷︸︸︷
Q1

B2︷︸︸︷
Q2

0 Q3

} F0

} LH0
1

where the columns of Q3 are the basis vectors in {f |H0
| f ∈ B2} written with

respect to the standard basis of RLH0
1 .

Now we rewrite (6.2) according to the block forms of the matrices A and Q∗.

We have

 P1 P3 P5

0 P2 P4




D1 0

0 D2

0 0

 =

 A1 A2

0 A3

 Q1 Q2

0 Q3

 (6.3)

which gives us

P1D1 = A1Q1,

and

P2D2 = A3Q3.

Since P1 and Q1 inherit the property that the reductions modulo p of their columns

are linearly independent, D1 must be the Smith normal form of A1. By Corol-

lary 5.4.3, {f |H0
| f ∈ B2} is an SNF basis of RLH0

1 for the incidence map η1,r+1
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between points and (r + 1)-spaces in PG(n − 1, q). We see that D2 is the Smith

normal form of A3.

For any n ≥ 2, 1 < i ≤ n, and α ≥ 0, let m(α, n, i) denote the multiplicity

of pα as a p-adic invariant of the incidence between points and projective (i − 1)-

dimensional subspaces in PG(n, q). (The numbers m(α, n, i) are determined by

Theorem 3.5.1.) We have the following theorem.

Theorem 6.1.2 (Theorem B). The p-adic invariants of A1 are pα, 0 ≤ α ≤ rt,

with multiplicity m(α, n, r + 1)−m(α, n− 1, r + 1).

Proof: From (6.3), we see that the multiplicity of pα as an invariant of A1 is equal

to the number of times pα appears in D minus the number of times pα appears in

D2.
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Chapter 7

THE INCIDENCE AMONG OTHER SETS OF

SUBSPACES

In this chapter we present what we know about the incidence matrix Ar,s

between r-subspaces and s-subspaces of the n-dimensional vector space V over Fq

when 1 < s < r < n. In this case we do not have a 2-design, because the number

of r-subspaces which are incident with two distinct s-subspaces depends on the

dimension of the intersection of those two s-subspaces. We do still have a 1-design,

because each s-subspace is incident with
[

n+1−s
r−s

]
q
r-subspaces and each r-subspace is

incident with
[

r
r−s

]
q
s-subspaces. Recall that the “generalized” binomial coefficient[
r

r − s

]
q

=
[r
s

]
q

=
( s∏

i=1

(qr+1−i − 1)
)
/
( s∏

i=1

(qi − 1)
)

is the number of s-subspaces of an r-dimensional vector space over Fq.

7.1 The cross-characteristic invariants

In [17], Frumkin and Yakir proved the following theorem giving the rank of

Ar,s over any field whose characteristic is not p (the cross-characteristic rank). Let

Ar,s be as before.

Theorem 7.1.1. Let s ≤ r, let s + r ≤ n + 1, and let K be any field whose

characteristic is not p. Let

Y =

{
i | 0 ≤ i ≤ s,

[
r − i

s− i

]
q

6= 0

}
.
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Then with the convention
[

n+1
−1

]
q

= 0,

rankK(Ar,s) =
∑
i∈Y

[
n+ 1

i

]
q

−
[
n+ 1

i− 1

]
q

.

Thus the rank is full if the characteristic of K is 0. As far as we know, the

following result, which gives a diagonal form for Ar,s, is new.

Theorem 7.1.2 (Theorem C). Let s ≤ r, s+r ≤ n+1, and Ar,s be as before. Let

` be any prime not dividing q. Then over Z`, the `-adic integers, Ar,s has a diagonal

form whose entries are
[

r−i
s−i

]
q

with multiplicity
[

n+1
i

]
q
−
[

n+1
i−1

]
q
.

Proof: The proof is exactly the same as the proof of Theorem 7.1.1, except at

the very end. We give some highlights of that proof. In [23], James develops the

theory of Specht submodules of the KG-module KLr where K is some field. When

the characteristic of K does not divide q, he has some strong results.

The Specht submodule Sr ⊂ KLr can be viewed as follows. If r < n/2 + 1

then

Sr = ∩r−1
i=0ker(ηr,i),

where, as before, ηr,s : KLr → KLs is the incidence map. James calls this the kernel

intersection theorem.

If K has characteristic 0, the kernels are nested. In this case, Sr = ker(ηr,r−1).

Since this map has full rank, the dimension of Sr is
[

n+1
r

]
q
−
[

n+1
r−1

]
q
. If K = F`, then

ηr,r−1 does not in general have full rank, but the dimension of the Specht submodule

Sr is still
[

n+1
r

]
q
−
[

n+1
r−1

]
q
. We can obtain it from the `-adic Specht module. Let

Sr be the `-adic Specht submodule of the Q`G-module QLr
` . Then the finite-field

Specht submodule is

S̄r =
{
X (mod `) | X ∈ Sr ∩ ZLr

`

}
.

The main result of James used in this proof is the submodule theorem.

87



Theorem 7.1.3. If X ∈ KLr and X is not orthogonal to every vector in Sr under

the ordinary inner product, then the KG-submodule generated by X contains Sr.

In particular, it is easily shown in [17] that for r > i, r + i ≤ n+ 1, we have

Si ⊆ Im(ηr,i). Using this last fact, and some other properties of Specht submodules,

we get the following result.

Theorem 7.1.4. Let s ≤ r, s+ r ≤ n+ 1. Let char(K) 6= p. Then the vector space

spanned over K by all the rows of the matrices Ai,r, 0 ≤ i ≤ s has dimension
[

n+1
s

]
q

and it has a basis consisting of
[

n+1
i

]
q
−
[

n+1
i−1

]
q
rows from Ai,r for each i, 0 ≤ i ≤ s.

Now we use the well-known formula for i ≤ s ≤ r

Ai,s ◦ As,r =

[
r − i

s− i

]
q

Ai,r, (7.1)

which says there are
[

r−i
s−i

]
q
s-subspaces which contain a given i-subspace and are

contained by a given r-subspace, if the given i-subspace is contained in the r-

subspace, and no such s-subspaces otherwise. Then we apply Theorem 7.1.4 twice

with K = F`. First we pick |Ls| linearly independent rows from the matrices Ai,s for

0 ≤ i ≤ s as specified in Theorem 7.1.4. If we stack up those rows, we get a matrix

P , which is invertible over F`. By Nakayama’s Lemma, it is also invertible viewed

as a matrix over Z`. Then stacking up the corresponding rows of (7.1), 0 ≤ i ≤ s,

we get the matrix equation in Z`

PAs,r = DQ′

where P is invertible in the `-adic ring, D is the diagonal form specified in Theorem

C, and Q′ is some |Ls| × |Lr| matrix. Therefore the diagonal matrix D (suitably

arranged) can be taken as a lower bound on the `-adic Smith normal form of As,r.

Then we use Theorem 7.1.4 again to pick |Ls| linearly independent (over F`)

rows from the matrices Ai,r for 0 ≤ i ≤ s. We can extend this set of vectors to get
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an |Lr| × |Lr| matrix which is invertible over F`. Again by Nakayama’s lemma, the

Teichmüller lifting of this matrix is invertible over Z`. Stacking up the corresponding

rows of (7.1) we get

P ′As,r = D′Q

where D′ is the same as D with |Lr| − |Ls| columns of zeros added, Q is invertible

over Z`, and P ′ is some |Ls| × |Ls| matrix. This equation shows that D can be

viewed as giving an upper bound on the `-adic Smith normal form. Together, we

find that the `-adic invariants of As,r are exactly the diagonal entries of D.

7.2 The open question

Since we have determined the `-adic invariants for ` 6= p, the question that

remains is the p-adic part of the Smith normal form, including the p-rank. It turns

out that we can calculate the eigenvalues and eigenspaces of As,rAr,s. In particular,

if r+ s = n+ 1, that is, if Ar,s is a square matrix, we can calculate the determinant

of Ar,s. The p-part of this determinant will be the product of the p-adic invariants.

In this section we shall work over Q. That is, we view the incidence matrix As,r as

a matrix over Q and use ηs,r to denote the incidence map from QLs to QLr .

Theorem 7.2.1. Let 0 ≤ i ≤ s ≤ r and let s+r ≤ n+1. Let Si = Ker (ηi,i−1) ⊂ QLi

be the Specht submodule and let ηi,s(Si) be the image of Si in QLs under the incidence

map. Then ηi,s(Si) is an eigenspace of As,rAr,s with eigenvalue

qi(r−s)

[
r − i

r − s

]
q

[
n+ 1− i− s

r − s

]
q

.

Proof: First, we claim that As,rAr,s is invertible over a field of characteristic 0.

We use Frumkin’s and Yakir’s result (see [17]) that As,r has full rank over such a

field. We have |Ls| ≤ |Lr| so ηr,s is surjective and ηs,r is injective. Thus ηs,r ◦ηr,s has

rank equal to |Ls|. Since Ar,sAs,r is symmetric, it is diagonizable, and eigenspaces of

nonequal eigenvalues are mutually orthogonal. In effect, ηr,s maps the eigenspaces
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of the nonzero eigenvalues of Ar,sAs,r onto the eigenspaces of As,rAr,s with the same

eigenvalues, and ηs,r maps the eigenspaces of As,rAr,s onto the eigenspaces of Ar,sAs,r

having nonzero eigenvalues. We conclude that QLr is the direct sum of the orthog-

onal subspaces ηs,r(QLs) and Ker(ηr,s). In particular, QLi = Im(ηi−1,i)⊕ Si.

Next we show that QLs is the direct sum of subspaces

QLs = η0,s(S0)⊕ η1,s(S1)⊕ · · · ⊕ ηi−1,s(Ss−1)⊕ Ss (7.2)

where the first i + 1 terms of the sum give us Im(ηi,s). (We view η0,−1 as mapping

a one-dimensional space to a zero-dimensional space, so that S0 = Ker(η0,−1) ∼= Q,

and η0,s(S0) is the span of the all-one vector in QLs .) By the transitivity property

(3.2) of incidence maps, η`,s ◦ ηi,` =
[

s−i
`−i

]
q
ηi,s, i ≤ ` ≤ s, we have the nesting of

subspaces

Im(η0,s) ⊂ Im(η1,s) ⊂ · · · ⊂ Im(ηs−1,s) ⊂ QLs .

We use induction. Assume we have the direct sum

Im(ηi−1,s) = η0,s(S0)⊕ η1,s(S1)⊕ · · · ⊕ ηi−1,s(Si−1).

By injectivity of ηi,s and transitivity we have

ηi,s(QLi) = ηi,s

(
ηi−1,i(QLi−1)⊕ Si

)
= ηi−1,s(QLi−1)⊕ ηi,s(Si)

= η0,s(S0)⊕ · · · ⊕ ηi−1,s(Si−1).

Since the base case is trivial, (7.2) is a direct sum.

Now we pick Z ∈ QLi . We will define M
(Z)
` to be the following subspace of

QL` (which is not an invariant subspace with respect to the action of G). Let Y be

any element of L`. We require that every element f ∈ M
(Z)
` , viewed as a function

from L` to the rational numbers, can be specified by a function h from the integers

to the rationals via

f(Y ) = h

(
dim(Y ∩ Z)

)
(7.3)
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so that the value of f(Y ) depends only on the size of the intersection of Y with

the fixed i-subspace Z inside V . Note that if i ≤ ` ≤ n + 1 − i, then M
(Z)
` is an

(i+1)-dimensional subspace of QL` . It is also clear that η`,r maps M
(Z)
` to M

(Z)
r , and

that M
(Z)
` ⊂ Im(ηi,`). If we assume that ` ≤ r ≤ n+1− ` then η`,r and ηr,` ◦ η`,r are

injective, so we can represent the restriction ηr,` |(Z) ◦ η`,r |(Z) to M
(Z)
` and M

(Z)
r as

an invertible
(
(i+1)× (i+1)

)
-matrix. If we know the first i eigenvalues, then there

can be at most one more. Furthermore, since the original (|Li| × |Li|)-matrix was

symmetric, the eigenspace of this last eigenvector must be orthogonal to the other

eigenspaces (with respect to the ordinary dot product of vectors of length |Li|).

Next, define W to be the set of all those (i− 1)-dimensional subspaces con-

tained in Z. For eachW ∈ W we can set up an i-dimensional subspace of QL` similar

to what we did for Z. What we want is to combine them into a single i-dimensional

space. Take any vector f ∈M (W)
` to be a vector of the form

f =
∑

W∈W

i−1∑
j=0

cj
∑

Y ∈ L`,

dim(Y ∩W ) = j

Y.

We know that M
(W)
` is i-dimensional because if c0 = c1 = · · · = cj−1 = 0 but

cj 6=) then the coefficient of an element of L` whose intersection with Z has size j

is nonzero, but the coefficient of any element with smaller intersection is zero. Also

M
(W)
` ⊂ M

(Z)
` because the total coefficient of an element of L` can depend only on

its intersection size with Z. The eigenvalues of M
(W )
` also have eigenvectors in M

(W)
` ,

because we can sum the corresponding eigenvector in M
(W )
` over each W ∈ W.

We claim that the one extra eigenvector that is in M
(Z)
` but not in M

(W)
` lies

inside ηi,`(Si). We know that Si is orthogonal to Im(ηi−1,i). By inductive hypothesis

we have the first i eigenvalues of η`,i ◦ ηi,`, corresponding to Im(ηi−1,i). The other

eigenvector must be orthogonal to these, so it is in Si. Now assume that this last

eigenvalue is different from the others. When we map it to M
(Z)
` via ηi,`, we get an
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eigenvector of ηi,` ◦ η`,i with the same eigenvalue. Therefore M
(W)
` is also orthogonal

to ηi,`(Si). Again by inductive hypothesis we have i eigenspaces inside M
(W)
` for

ηr,` ◦ η`,r, so the last eigenspace must be orthogonal to M
(W)
` , that is, in ηi,`(Si).

Now we claim that ∑
Z∈Li

M
(Z)
` = Im(ηi,`).

In (7.3), let h be the function which maps i to 1 and all other integers to 0. The

corresponding vector is exactly the image of Z. Therefore ηi,`(Z) ∈ M (W)
` . Since Z

could be any i-space, we get all of = Im(ηi,`).

Finally, we calculate the eigenvalues and verify that they are all different, as

claimed. Our typical eigenvector lies in M
(Z)
` ∩ ηi,`(Si) = M

(Z)
` ∩ Ker(η`,i−1. We

assume that i ≤ ` ≤ n− i.

We begin by calculating the eigenvalue for the map η`+1,` ◦ η`,`+1. First we

get information about the eigenvector from the fact that it lies in Ker(η`,i−1). Let

W ∈ Li−1 be contained in Z. The coefficient of W must be zero in the image of the

eigenvector under the map η`,i−1. We calculate the coefficients of the eigenvector cor-

responding to intersection dimension with Z of i and i−1. These are the only coeffi-

cients which contribute toW under the map η`,i−1. There are
[

n+2−i
`−i+1

]
q
elements of L`

which contain W . Of these,
[

n+1−i
`−i

]
q

contain Z and the rest,
[

n+2−i
`−i+1

]
q
−
[

n+1−i
`−i

]
q

=

q`+1−i
[

n+1−i
`−i+1

]
q

have intersection dimension i − 1. We let 1 be the coefficient of

those elements of L` which contain Z and let −
[

n+1−i
`−i

]
q

/(
q`+1−i

[
n+1−i
`−i+1

]
q

)
=

−
(
q`−i+1 − 1

)
qi−`−1

/(
qn−`+1 − 1

)
be the coefficient of those elements of L` inter-

secting Z in dimension i− 1.

Let Y ∈ L` contain Z. We calculate its coefficient after applying η`+1,` ◦

η`,`+1, which will be the eigenvalue. This coefficient will be the sum over the three

classes of `-spaces of the coefficient in the starting vector times the multiplicity times

the corresponding entry of the matrix for η`+1,` ◦ η`,`+1. No element of L` whose

intersection dimension with Y is less than i − 1 contributes because no element of
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L`+1 contains both it and Y . We count the contribution of Y itself, from elements of

L` containing Z but intersecting Y in dimension `− 1, and from those intersecting

Z in dimension i − 1 and Y in dimension ` − 1. The matrix entries are (qn+1−` −

1)/(q − 1), 1, and 1, respectively. The multiplicities of the elements are

1,

(
q`−i − 1

q − 1

)(
qn+2−` − 1

q − 1
− 1

)
, and

(
q` − 1

q − 1

)(
qn+2−` − 1

q − 1
− 1

)
−

(
q`−i − 1

q − 1

)(
qn+2−` − 1

q − 1
− 1

)
=

(
q` − 1

q − 1
− q`−i − 1

q − 1

)(
qn+2−` − 1

q − 1
− 1

)
.

Set
(

qn+2−`−1
q−1

− 1
)

= ψ. Summing up, we find the eigenvalue to be

(
1
)(qn+1−` − 1

q − 1

)(
1
)

+
(
1
)(

1
)(q`−i − 1

q − 1

)
ψ

− qi−`−1 q
`−i+1 − 1

qn−`+1 − 1

(
1
)(q` − q`−i

q − 1

)
ψ

=
qn+2−i − qn+1−` − q`+1 + qi

(q − 1)(q − 1)

= qi (q
`+1−i − 1)(qn+1−i−` − 1)

(q − 1)(q − 1)

= qi

[
`+ 1− i

1

]
q

[
n+ 1− i− `

1

]
q

.

We get the eigenvalue for the map ηr,s ◦ηs,r by induction. Setting ` = r−1 in

the above calculation, we multiply the eigenvalue for ηr−1,s ◦ηs,r−1 by the eigenvalue

for ηr,r−1 ◦ ηr−1,r to get the eigenvalue for ηr−1,s ◦ ηr,r−1 ◦ ηr−1,r ◦ ηs,r−1. Using (3.2)

again, we divide by
([

r−s
1

]
q

)2

to get the eigenvalue for ηr,s ◦ ηs,r as stated.
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Chapter 8

TWO OTHER FAMILIES OF DIFFERENCE SETS

8.1 Introduction

Recall that for a prime power q = pt, the parameters for a Singer difference

set are

v =
qm − 1

q − 1
, k =

qm−1 − 1

q − 1
, λ =

qm−2 − 1

q − 1
. (8.1)

or the complementary These parameters, or the complementary parameters, v =

(qm − 1)/(q − 1), k = qm−1, λ = qm−2(q − 1), where m is a positive integer greater

than 2, are called classical parameters. Difference sets with classical parameters exist

in abundance when m is composite. See [43] for a survey of known constructions up

to 1999.

In the study of difference sets with classical parameters, one typically faces

the following question. After constructing a family of difference sets with classical

parameters, how can one tell whether the difference sets constructed are equivalent

to the known ones or not? The standard proof of inequivalence has been comparison

of p-ranks of the difference sets involved (see [16], [13], [1]). Recent constructions of

difference sets with classical parameters provided us with examples of (3m−1
2
, 3m−1, 2·

3m−2) difference sets having the same 3-ranks, the HKM difference sets and the Lin

difference sets. It remained to decide whether these difference sets are equivalent or

not. We will use the Smith normal forms of the designs associated with the HKM

and Lin difference sets to show not only that the HKM and Lin difference sets are

inequivalent, but also that the associated designs are nonisomorphic.
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We now define the HKM and Lin difference sets. Let Fqm denote the finite

field with qm elements, let F∗qm be the multiplicative group of Fqm , let Trqm/q denote

the trace from Fqm to Fq, and let the map ρ : F∗qm → F∗qm/F∗q denote the natural

epimorphism.

Definition 8.1.1. Let q = 3t, t ≥ 1, let m = 3k, k a positive integer, d = q2k−qk+1,

and set

R = {x ∈ Fqm | Trqm/q(x+ xd) = 1}. (8.2)

We will call the set ρ(R) the HKM difference set.

Helleseth, Kumar, and Martinsen proved that ρ(R) is a ((qm − 1)/(q −

1), qm−1, qm−2(q − 1)) difference set in F∗qm/F∗q, in the case q = 3, using the lan-

guage of sequences with ideal 2-level autocorrelation in [20]. See [13] for the proof

when q is any 3-power ([13] also showed that R is a relative difference set).

Definition 8.1.2. Let m ≥ 3 be an odd integer, let d = 2 · 3(m−1)/2 + 1, and set

R = {x ∈ F3m | Tr3m/3(x+ xd) = 1}. (8.3)

We will call the set ρ(R) the Lin difference set.

Arasu, Dillon and Player recently proved that ρ(R) is a ((3m− 1)/2, 3m−1, 2 ·

3m−2) difference set in F∗3m/F∗3 [2], as Lin conjectured.

In the case q = 3, m = 3k, k > 1, the 3-rank of the HKM difference set is

2m2−2m (see [13, 33]). One can similarly show that the Lin difference set has 3-rank

2m2 − 2m, where m > 3 is odd (see [33]). Therefore when m is an odd multiple of

3, these two difference sets have the same 3-rank. It is natural to ask whether there

are some other invariants beyond 3-rank which can be used to distinguish these two

families of difference sets. We will show that these families are indeed inequivalent

by using Smith normal forms of the incidence matrices of the symmetric designs

developed from these difference sets.
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8.2 The Smith Normal Forms of Difference Sets

Let G be a (multiplicative) abelian group of order v, and let D be a (v, k, λ)

difference set in G. Recall that D = (P ,B) is a (v, k, λ) symmetric design with a

regular automorphism group G, where the set P of points of D is G, and where the

set B of blocks of D is {Dg | g ∈ G}. We call this design the development of D. We

will examine the Smith normal form of the incidence matrix of D, the v by v matrix

A whose rows are indexed by the blocks B of D and whose columns are indexed by

the points g of D, where the entry AB,g in row B and column g is 1 if g ∈ B, and 0

otherwise.

Since A is an integral matrix, we know that there exist two integral unimod-

ular matrices P and Q such that PAQ = diag(d1, d2, . . . , dv) is the Smith normal

form of A where di are integers, and di|di+1, for i = 1, 2, . . . , rank(A)− 1. Moreover

the invariant factors, di, of A, are determined up to sign. For convenience, we define

the Smith normal form of the symmetric design D to be the Smith normal form of

its incidence matrix A. This Smith normal form is also called the Smith normal

form of the difference set D, and the invariant factors of A are called the invariant

factors of D.

Let D1 and D2 be two (v, k, λ) symmetric designs, and let A1 and A2 be the

incidence matrices of D1 and D2 respectively. If D1 and D2 are isomorphic, that is,

there exist two permutation matrices U and V such that

UA1V = A2, (8.4)

then it is clear that A1 and A2 should have the same Smith normal form. So

the Smith normal forms can help us decide whether two symmetric designs are

isomorphic or not.

If the design D is developed from a (v, k, λ) abelian difference set, then the

following lemmas can be used to compute the number of invariant factors not divis-

ible by pα, where p is a prime not dividing v.
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We will start with the local case, then move to the global case. The following

notation will be used: p is a prime, νp is the p-adic valuation on Q, Qp is the field

of p-adic rational numbers (the completion of Q with respect to νp), Zp is the ring

of p-adic integers, ζv is a primitive vth root of unity in the algebraic closure of Qp,

K = Qp(ζv), OK is the ring of integers in K, and finally p is the unique maximal

ideal in OK lying above p.

Lemma 8.2.1. Let G be an abelian group of order v, and p be a prime not dividing

v. Let D be a (v, k, λ) difference set in G, and let α be a positive integer. Then

the number of invariant factors of D which are not divisible by pα is equal to the

number of characters χ : G→ K satisfying

χ(D) 6≡ 0 (mod pα). (8.5)

Proof: Let
∑

g∈G agg, where ag = 0 or 1, be the group ring element in Z[G]

corresponding to the subset D of G. That is, ag = 1 if g ∈ D, 0 otherwise. We

associate with D the matrix A = (ag−1h) whose rows and columns are indexed by

the group elements g and h. This matrix A can serve as the incidence matrix of the

design (G, {Dg | g ∈ G}) developed from D.

Let
(
χ−1(g)

)
be a matrix whose rows are labeled by the v characters χ : G→

K and whose columns are labeled by the v group elements g, so that the entry in

row χ and column g is χ−1(g). This matrix is invertible in OK , since gcd(p, v) = 1

and 1
v

(
χ−1(g)

)(
χ(g)

)>
is the identity matrix. We may diagonalize A over OK as

follows. (
χ−1(g)

)
A
(
χ(g)

)>
= v · diag

(
χ(D)

)
, (8.6)

where χ(D) =
∑

g∈G agχ(g).
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Viewing A as a matrix with entries in Z, we use S = diag(d1, d2, . . . , dv) to

denote the Smith normal form of A over Z. Then there exist integral unimodular

matrices P and Q such that A = PSQ. Therefore we have

(
χ−1(g)

)
PSQ

(
χ(g)

)>
= v · diag

(
χ(D)

)
. (8.7)

This equation shows that S and diag
(
χ(D)

)
, viewed as matrices with entries in OK ,

are equivalent over OK . Noting that OK is a principal ideal domain, we see that S

and diag
(
χ(D)

)
have the same invariant factors up to unit multipliers. Since OK is

local, and as p - v implies that K is unramified over Qp, each χ(D) can be written

as the product of a power of p and a unit in OK . So if we arrange the elements

on the diagonal of diag
(
χ(D)

)
in such a way that the νp(χ(D)) are nondecreasing,

then diag
(
χ(D)

)
can serve as a Smith normal form of A over OK . Therefore the

two lists νp(di) and νp(χ(D)) are exactly the same. Noting that p - v, we have

νp(χ(D)) = νp(χ(D)): the conclusion of the lemma follows.

We now state the global version of Lemma 8.2.1.

Lemma 8.2.2. Let G be an abelian group of order v, let p be a prime not dividing

v, and let P be a prime ideal in Z[ξv] lying above p , where ξv is a complex primitive

vth root of unity. Let D be a (v, k, λ) difference set in G, and let α be a positive

integer. Then the number of invariant factors of D which are not divisible by pα is

equal to the number of complex characters χ of G such that χ(D) 6≡ 0 (mod Pα).

Proof: Let A be the matrix defined in the proof of Lemma 8.2.1. We may use A

as the incidence matrix of the design (G, {Dg | g ∈ G}) developed from D. Similarly

let
(
χ−1(g)

)
be a matrix whose rows are labeled by the v complex characters χ and

whose columns are labeled by the v group elements g, so that the entry in row χ

and column g is χ−1(g). Then we may diagonalize A over Q(ξv) as follows.

(
χ−1(g)

)
A
(
χ(g)

)>
= v · diag

(
χ(D)

)
, (8.8)
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where χ(D) =
∑

g∈D χ(g).

Viewing A as a matrix with entries in Z, we use S = diag(d1, d2, . . . , dv) to

denote the Smith normal form of A over Z. Then there exist integral unimodular

matrices P and Q such that A = PSQ. Therefore we have

(
χ−1(g)

)
PSQ

(
χ(g)

)>
= v · diag

(
χ(D)

)
. (8.9)

Let L = Q(ξv), and let LP be the completion of L at P. LP is an extension

field of Qp, and we may view L as embedded in LP. Since gcd(p, v) = 1, L is

unramified over Q. Hence LP is unramified over Qp. Let OP be the valuation ring

in LP, and let p be the unique prime ideal in OP lying above p. Then for every

a ∈ LP, we have

νP(a) = νp(a) (8.10)

Now view all matrices in (8.9) as matrices with entries in OP. We see that

S and diag
(
χ(D)

)
are equivalent over OP. Noting that OP is a principal ideal

domain, we see that S and diag
(
χ(D)

)
have the same invariant factors up to unit

multipliers. Since OP is local and LP is unramified over Qp, each χ(D) can be

written as the product of a power of p and a unit in OP. So if we arrange the

elements on the diagonal of diag
(
χ(D)

)
appropriately so that the νp(χ(D)) are

nondecreasing, then diag
(
χ(D)

)
can serve as a Smith normal form of A over OP.

Hence the two lists νp(di) and νp(χ(D)) are exactly the same. Note that by (8.10),

we have νP(χ(D)) = νp(χ(D)), and νp(χ(D)) = νp(χ(D)). The conclusion of the

lemma follows.

Remark 8.2.3. Lemma 8.2.2 generalizes a result of MacWilliams and Mann [32],

which asserts that the GF(p)-rank of A is equal to the number of complex characters

χ such that χ(D) 6≡ 0 (mod P).
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Finally, we note that if D is a ((qm−1)/(q−1), qm−1, qm−2(q−1)) symmetric

design, where q = ps, p is prime, and A is the incidence matrix of D, then

det(A) = q(m−2)(v−1)/2+(m−1), (8.11)

where v = (qm− 1)/(q− 1). Therefore the invariant factors of A are all powers of p.

The number of invariant factors of A which are 1 is exactly the rank of A over Z/pZ,

which is usually called the p-rank of D. In the next section, we will be interested in

not only the number of ones among the invariant factors of A, but also the number

of p’s among the invariant factors of A.

8.3 The Invariant Factors of the HKM and Lin Difference Sets

In this section we will show that the Lin difference sets and the HKM dif-

ference sets are in general inequivalent when they are comparable. Note that both

these difference sets have parameters ((qm − 1)/(q − 1), qm−1, qm−2(q − 1)), q = 3e,

so by the discussion at the end of the previous section, the invariant factors of these

difference sets are all powers of 3. Although the numbers of ones among the invari-

ant factors of these two difference sets are the same in the case e = 1 (cf. [13], [33]),

we will show that the numbers of 3’s are different.

Let q = 3e, e ≥ 1, let m = 3k and d = q2k − qk + 1 (this is the HKM case);

or let q = 3e, e = 1, m = 2n + 1 and d = 2 · 3n + 1 (this is the Lin case). Let

ρ : F∗qm → F∗qm/F∗q be the natural epimorphism, and let

D = {ρ(x) | x ∈ Fqm and Trqm/q(x+ xd) = 1}

be the difference sets defined in Section 1. We first give explicit expressions for the

character sums χ(D), where χ is any complex character of F∗qm/F∗q. This was done

in [13]; we include these computations here for the convenience of the reader.
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Let L be a complete system of coset representatives of F∗q in F∗qm , and let

L0 = {x ∈ L | Trqm/q(x + xd) = 0}. If x ∈ L and Trqm/q(x + xd) = a 6= 0, then we

may replace x by x/a, and

Trqm/q

(x
a

+ (
x

a
)d
)

= Trq3k/q(x+ xd)/a = 1.

Therefore we may choose L such that L = L0 ∪L1, where L1 = {x ∈ L | Trqm/q(x+

xd) = 1}. It is then easy to see that

L1 = {x ∈ Fqm | Trqm/q(x+ xd) = 1} and D = ρ(L1).

Given any multiplicative character χ of Fqm , we define the sum

Sd(χ) =
∑

x∈F∗qm

χ(x)ξ
Trqm/3(x+xd)

3 . (8.12)

Writing x = ay, with a ∈ F∗q and y ∈ L, we have

Sd(χ) =
∑
a∈F∗q

χ(a)
∑
y∈L

χ(y)ξ
Trq/3(aTrqm/q(y+yd))
3

=
∑
y∈L0

χ(y)
∑
a∈F∗q

χ(a) +
∑
y∈L1

χ(y)
∑
a∈F∗q

χ(a) ξ
Trq/3(a)

3

If χ = 1, then Sd(1) = (q − 1) |L0| − |L1| = qm − 1− q |L1|.

If χ 6= 1, but χ|F∗q = 1, then Sd(χ) = −q χ(L1).

If χ 6= 1, and χ|F∗q 6= 1, then Sd(χ) = χ(L1)·g1(χ1), where χ1 is the restriction

of χ to F∗q, and g1(χ1) is the Gauss sum over the finite field Fq with respect to χ1.

In summary, if χ is a nontrivial multiplicative character of Fqm , then

χ(L1) =

 −1
q
Sd(χ) , if χ|F∗q = 1 ,

Sd(χ)
g1(χ1)

, if χ|F∗q 6= 1 .
(8.13)

For P a prime ideal in Z[ξqm−1] lying over 3, let ωP be the Teichmüller

character on Fqm . Then any nontrivial character of F∗qm/F∗q takes the form ω−a
P ,
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0 < a < (qm−1) with (q−1)|a. By (8.13), for any a, 0 < a < (qm−1) and (q−1)|a,

we have

ω−a
P (D) = ω−a

P (L1) = −1

q
Sd(ω

−a
P ). (8.14)

Let P̃ be the prime of Z[ξqm−1, ξ3] lying above P, and let

td(a) = νP̃(Sd(ω
−a
P )) (8.15)

be the P̃-adic valuation of Sd(ω
−a
P ).

Lemma 8.3.1. With the above notation, for any nonnegative integer α ≤ m − 2,

the number of invariant factors of D which are 3α is

|{a | 0 < a < (qm − 1), (q − 1)|a, td(a) = 2e+ 2α}|.

Proof: By Lemma 8.2.2, the number of invariant factors of D which are 3α is

equal to the number of ω−a
P , 0 < a < (qm− 1) and (q− 1)|a, such that Pα||ω−a

P (D).

As ideals in Z[ξqm−1, ξ3] , P = P̃2. Hence the number of invariant factors of D which

are 3α is equal to the number of ω−a
P , 0 < a < (qm − 1) and (q − 1)|a, such that

P̃2α||ω−a
P (D).

To simplify notation, we will usually drop the index in ωP if there is no

confusion. By (8.14), we have ω−a(D) = − 1
3e Sd(ω

−a). By definition, we have

νP̃(Sd(ω
−a)) = td(a).

Also it is clear that νP̃(3e) = 2e. Therefore, the number of a, 0 < a < (qm − 1),

(q − 1)|a such that P̃2α ‖ ω−a(D) is equal to the cardinality of the set

Tα = {a | 0 < a < (qm − 1), (q − 1)|a, td(a) = 2e+ 2α}. (8.16)

We will denote this cardinality by Tα, and we have shown that the number of

invariant factors of D which are 3α is equal to Tα. This completes the proof.
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In order to compute explicitly the number of invariant factors of D which are

3α, we need to compute td(a) first. By the definition of Gauss sums, we have

g(ωb) =
∑

x∈F∗qm

ωb(x)ξ
Trqm/3(x)

3 .

Using Fourier inversion, we find that

ξ
Trqm/3(xd)

3 =
1

qm − 1

qm−2∑
b=0

g(ω−b)ωb(xd).

Therefore

Sd(ω
−a) =

1

qm − 1

∑
x∈F∗qm

ω−a(x)ξ
Trqm/3(x)

3

qm−2∑
b=0

g(ω−b)ωbd(x)

=
1

qm − 1

qm−2∑
b=0

g(ω−b)g(ωbd−a)

As usual, for any integer x not divisible by qm − 1 we use s(x) to denote the

3-adic weight (the base-3 digit sum) of x (mod qm − 1). In addition, if x ≡ 0 (mod

qm − 1), we set s(x) = 0. With this convention, using Stickelberger’s theorem on

the prime ideal decomposition of Gauss sums [21, p. 212], we find that

td(a) ≥ min0≤b≤qm−2 {s(b) + s(a− bd)}. (8.17)

Moreover, if the above minimum is attained at exactly one value of b in the range

[0, qm − 2], then

td(a) = min0≤b≤qm−2 {s(b) + s(a− bd)}.

In general, the function td(a) is hard to control. Hence it is difficult to compute

explicitly the cardinality of Tα (see (8.16) for definition). In [13], we computed T0

in the case q = 3. In the following, we will assume that q = 3, i.e., e = 1, and find

explicit formulas for the cardinality T1 of

T1 = {a | 0 < a < 3m − 1, 2|a, td(a) = 4},
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for both d given at the beginning of this section.

When calculating the 3-ranks of the HKM and Lin difference sets in [13] in the

case q = 3, that is computing the number of even a, 0 < a < 3m−1, for which td(a) =

2, we first list all a, 0 < a < 3m−1, such that min0≤b≤3m−2 {s(b)+s(a−bd)} = 2; in

both the HKM and Lin cases, there are exactly two values of a, up to cyclic shift, for

which s(b)+ s(a− bd) = 2 at more than one value of b when m > 3. (For all other a

in the list, there is a unique b in the range [0, 3m− 2] such that s(b) + s(a− bd) = 2:

thus td(a) = 2.) For these two “exceptional” values of a, we had to do more detailed

analysis to decide whether td(a) = 2 or td(a) > 2. In the former case, we count the

a towards the 3-rank, and in the latter case we do not. The final conclusion is that

both HKM and Lin difference sets have 3-rank 2m2− 2m when m > 3 (see [13] and

[33]).

Now if we want to count the number of invariant factors which are 3 for

the HKM and Lin difference sets, we need to compute the number T1 of even a,

0 < a < 3m − 1, for which td(a) = 4. Again we need to pay special attention

to those a, for which s(b) + s(a − bd) = 4 at more than one value of b (we again

call these a “exceptional”). Unfortunately, the list of such a’s already becomes

awkwardly large. Instead of analyzing each “exceptional” a individually, we argue

that, except for small m, T1 is a fourth degree polynomial in m with leading term

2
3
m4, or differs from it by exactly m. Then we use a computer to calculate T1 for

various m to pin down the remaining coefficients of the fourth degree polynomial.

Lemma 8.3.2. With the notation above, for m > 7 in the Lin case, and for m > 9

in the HKM case, the number of even values of a for which min0≤b≤3m−2 {s(b) +

s(a− bd)} = 4 is a fourth degree polynomial in m. Furthermore, the leading term is

2
3
m4.

Proof: First we count the total number of pairs (a, b), 0 < a ≤ 3m − 2, 0 ≤ b ≤

3m − 2, for which s(b) + s(a − bd) = 4. If s(b) = 4 and s(a − bd) = 0, then a = bd
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and b has 3-adic representation as one of the following: four 1’s and the rest 0’s; two

1’s, one 2, and the rest 0’s; or two 2’s and the rest 0’s. Similarly if s(b) = 3 then b is

either three 1’s and the rest 0’s; or one 1, one 2, and the rest 0’s; while a = bd+ 3i

for some i between 0 and m − 1. If s(b) = 2 then b has either two 1’s and the rest

0’s; or one 2 and the rest 0’s; while a − bd also has one of those forms. The cases

s(b) = 1 and s(b) = 0 mirror the cases s(b) = 3 and s(b) = 4.

Since s(a − bd) = 4 − s(b), we can write a = bd + x, where s(x) = 4 − s(b).

So we may think of a as represented by the sum of 4 terms, each either a shift of

d, or a shift of 1. Here if the 3-adic representation of b or a − bd has a digit 2,

then the corresponding copy of d or of 1 is viewed as 3id + 3id, or 3i + 3i (i.e., a

sum of two terms). Observe that a = bd + x is necessarily even because d is odd

and s(b) + s(x) = 4 implies b+ x is even. Thus from the discussion in the previous

paragraph the total number of pairs (a, b) for which s(b) + s(a − bd) = 4 and a is

even is

2

(
m

4

)
+ 2

(
m

2

)
(m− 2) + 2

(
m

2

)
+ 2

(
m

3

)
m+ 2m2(m− 1) + (

(
m

2

)
+m)2

=
2

3
m4 + 2m3 − 13

6
m2 +

1

2
m (8.18)

In order to prove the assertion of the lemma we need to subtract from this polynomial

the number of pairs (a, b) which are redundant for any value of a, as well as the

number of those a’s included here but which can also be represented as bd+x, with

s(b) + s(x) = 2.

For convenience we will sometimes think of a and d as written using the digits

0,1, and −1 (mostly in the HKM case). Thus, if a has a 2 in it, replace it with −1

and carry 1 to the next higher place. Similarly, −2 gets replaced by 1 and −1 gets

carried. With this convention, it is easy to see that the possible number of nonzero

digits in a does not grow as m grows.

We now partition the above a’s into classes according to the sums of four

shifts of 1 or of d which produce them. If there is a carry (in the addition of the
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four terms which produces a) from one place to another, we group those places

together (and call these places a segment of the sum). Two values of a are in the

same class if these segments of the sum involving nonzero digits have shifted, but

the corresponding nonzero digits come from corresponding digits of shifts of d or

shifts of 1. If the nonzero digits of two addends are disjoint from each other, and

from each other’s carry digits, then they are free to shift relative to each other and

the sums would be considered in the same class. For instance, the following sums

would produce a’s in the same class:

0 0 0 2 0 0 0 1 0

0 2 0 0 0 1 0 0 0

1

1

2 2 0 2 0 1 0 1 0

0 0 0 2 0 0 0 1 0

1 0 0 0 0 2 0 0 0

1

1

1 0 0 2 2 2 0 1 0

but the following would represent two other classes:

0 0 0 0 2 0 0 0 1

0 0 0 0 2 0 0 0 1

1

1

0 0 1 0 1 0 0 0 2

0 0 0 0 2 0 0 0 1

0 0 2 0 0 0 1 0 0

1

1

0 1 2 1 2 0 1 0 1

In the first example the addends have three degrees of freedom to shift, while in the

last example there are four degrees of freedom and in the middle one there is only

one degree of freedom. Thus, in the first example, there are m = 9 choices of shift

for the first copy of d. There are only m− 3 choices for the second copy of d, m− 4

choices for the first copy of 1, and the second copy of 1 is determined by the first.

Here we ignore the possibility that other values of b might be associated with some

of these a’s. It is also clear that the pattern remains the same if we increase m by

inserting extra pairs of columns of 0’s.
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Now we continue the definition of classes where a given value of a is associated

with more than one value of b. The following sums give an example of such a

situation.

0 0 0 0 2 0 0 0 1

0 0 0 0 2 0 0 0 1

1

1

2 0 0 1 1 0 0 0 2

=

2 0 0 0 1 0 0 0 0

1

1

1

2 0 0 1 1 0 0 0 2

=

0 0 0 1 0 0 0 0 2

1

1

1

2 0 0 1 1 0 0 0 2

Here, two values of a1 and a2 will be considered to be in the same class only if

the pairs (a1, b1i) and (a2, b2i) are in one-to-one correspondence such that the sum

a1 = b1id+ x1i is a shift of a2 = b2id+ x2i for each i.

Each class of a has some number of degrees of freedom. The maximum is

4, in the case that the nonzero digits of the addends are totally disjoint. If two

different sums b1d + x1 and b2d + x2 are the same, say both equal a, the degree of

freedom of that class of a is at most 3. Otherwise, the nonzero digits of the addends

are totally disjoint; hence the positions of the 2’s in a, in the Lin case, or of (−1)’s

in a, in the HKM case, reflect the positions of copies of d in the sum. Thus b1 = b2,

contradicting our assumption that there are two different sums producing the same

a.

In general, for each degree of freedom, we can pick any shift from 0 to m− 1,

except for a fixed number of possibilities that cause sectors of a to overlap. In cases
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such as

0 0 1 0 0 −1 0 0 1

0 0 1 0 0 1 0 0 −1

0 0 −1 0 0 1 0 0 1

1

1 0 1 0 0 1 0 0 1

shifts of the three copies of d have a period of m/3. Thus the size of this class

of a (ignoring other values of b) would be (m/3)(m − 3). So each class of a’s has

cardinality of a polynomial of degree equal to the number of degrees of freedom

and each a in a class has the same number of associated b’s. In order to prove the

assertion of the lemma, we subtract from (8.18) a polynomial of degree at most

three for each class of a for which the number of associated b is more than one.

We also have to subtract the number of a’s which we have counted but for which

min0≤b≤qm−2 {s(b)+s(a−bd)} = 2. These cases have at most two degrees of freedom,

so we subtract from (8.18) another polynomial of degree at most two.

Finally the following sums for m = 7 (in the Lin case) and m = 9 (in the

HKM case) represent the only classes of a for those m for which a sequence of carries

continues from one nonzero digit of d to the next.

0 0 0 2 0 0 1 = d

0 0 2 0 0 1 0 = 3d

0 2 0 0 1 0 0 = 9d

2 0 0 1 0 0 0 = 27d

0 0 0 0 1 1 2 = 32 + 3 + 2

(8.19)
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0 0 1 0 0 −1 0 0 1 = d

0 0 1 0 0 −1 0 0 1 = d

0 1 0 0 −1 0 0 1 0 = 3d

1 0 0 −1 0 0 1 0 0 = 9d

−1 −1 −1 −1 −1 −1 −1 −1 0

0 0 1 0 0 1 0 0 −1 = 36d

0 1 0 0 1 0 0 −1 0 = 37d

1 0 0 1 0 0 −1 0 0 = 38d

1 = 33

−1 −1 −1 −1 −1 −1 −1 −1 0

(8.20)

In each of these two cases we have two values of b associated with the same a, while

for all higher m, we get two different values of a for the corresponding sums. That

is, these sums are special, and would not happen if the number m of digits is large.

So for m > 7 in the Lin case, and for m > 9 in the HKM case, the number of even

a such that min0≤b≤3m−2 {s(b) + s(a− bd)} = 4 is a fourth degree polynomial in m

with leading term 2
3
m4.

We proceed to compute T1 = |T1| = |{a | 0 < a < 3m − 1, 2|a, td(a) = 4}|.

By (8.17), we see that

T1 = |A \ B|+ |C|,

where

A = {a | 0 < a < 3m − 1, 2|a,min0≤b≤3m−2{s(b) + s(a− bd)} = 4},

B = {a | 0 < a < 3m − 1, 2|a,min0≤b≤3m−2{s(b) + s(a− bd)} = 4 and td(a) > 4},

C = {a | 0 < a < 3m − 1, 2|a,min0≤b≤3m−2{s(b) + s(a− bd)} = 2 and td(a) = 4}.

By Lemma 3.2, for m > 7 in the Lin case, and for m > 9 in the HKM case,

|A| is a polynomial in m of degree 4 with leading term 2
3
m4. We will show that
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|B| is a polynomial in m of degree at most 3. In order to compute |B|, we have to

distinguish those classes of a in A for which td(a) = 4, and those for which td(a) > 4,

that is, decide whether

P̃4 ‖ 1

3m − 1

3m−2∑
b=0

g(ω−b)g(ωbd−a)

or

P̃5 | 1

3m − 1

3m−2∑
b=0

g(ω−b)g(ωbd−a).

The distinction can be made with the help of Stickelberger’s congruence for Gauss

sums as stated in the following theorem.

Theorem 8.3.3. ([29, p. 7]) Let r be an integer with 0 ≤ r < q − 1 = pm − 1 and

with p-adic expansion

r = r0 + r1p+ · · ·+ rm−1p
m−1

with 0 ≤ ri ≤ p− 1. Define

γ(r) = r0!r1! · · · rm−1!

Then with s(r) and ω as above we have the congruence

g(ω−r)

(ξp − 1)s(r)
≡ −1

γ(r)
(mod P̃).

Lemma 8.3.4. For m > 7 in the Lin case, and for m > 9 in the HKM case, |B| is

a polynomial in m of degree at most 3.

Proof: Given an integer r, 0 ≤ r < 3m − 1, since P̃ | 3, we have γ(r) ≡ 1 or

γ(r) ≡ −1 (mod P̃), depending on whether the 3-adic representation of r has an even

number of twos or an odd number of twos. Given a ∈ A, applying Stickelberger’s

congruence to those terms in the sum
∑3m−2

b=0 g(ω−b)g(ωbd−a) for which s(b) + s(a−

bd) = 4 we get
g(ω−b)g(ωbd−a)

(ξ3 − 1)4
≡ γ(b)γ(a− bd) (mod P̃).
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Summing over these b’s, noting that P̃||(ξ3 − 1), we see that a ∈ B iff∑
s(b)+s(a−bd)=4

γ(b)γ(a− bd) ≡ 0 (mod 3).

For example in (8.19), m = 7, for a = 32 + 3 + 2, we have two b’s such that

s(b) + s(a − bd) = 4. The first is b = 1111 (and a − bd = 0). The second is b = 0

(and a−bd = 112). Since γ(1111)γ(0)+γ(0)γ(112) = 1·1+1·(−1) = 0, we conclude

that this a is in B. Similarly, in (8.20), m = 9, for a = −3− 32 − 33 − · · · − 38, we

also have two b’s such that s(b) + s(a− bd) = 4, namely, b = 112 (and a− bd = 0),

or b = 111 (and a − bd = 1000). Again the sum γ(112)γ(0) + γ(111)γ(1000) is 0,

and so this a is in B.

We observe that if an a ∈ A is in B, then the whole class to which a belongs

is in B. The reason is given as follows. By definition, within each class of a’s, the

set of b’s for which s(b) + s(a− bd) = 4 for one a have 3-adic representations which

are permutations of the 3-adic representations of the b’s corresponding to any other

a in that class, and since the 3-adic representations of the corresponding values of

a− bd are also permutations of each other, the set of values of γ(b)γ(a− bd) are the

same for each a in a class, therefore for two a’s in the same class, the corresponding

td(a)’s are either both equal to 4 or both greater than 4.

Finally note that if an element a ∈ A is in B then there are more than one b

such that s(b)+s(a− bd) = 4. By the discussion in the proof of Lemma 3.2, the size

of these classes of a is a polynomial in m of degree at most 3 when m > 7 in the Lin

case, and m > 9 in the HKM case. Hence the conclusion of the lemma follows.

We were not able to determine C completely. However from our work in [13],

we know that when m > 3, in both the Lin and HKM cases, there is only one value

of a (and its cyclic shifts) satisfying

min0≤b≤qm−2 {s(b) + s(a− bd)} = 2
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but td(a) > 2. Hence |C| = 0 or m. The a’s which are possibly in C are given below.

In the Lin case we have:

0 0 · · · 0 2 0 · · · 1 = d

0 0 · · · 0 2 0 · · · 1 = d

0 0 · · · 1 1 0 · · · 2 = a

0 0 · · · 1 0 0 · · · 2 = 3
m+1

2 d

· · · 1 · · · = 3
m−1

2

0 0 · · · 1 1 0 · · · 2 = a

(8.21)

while in the HKM case we have:

0 · · · 0 1 0 · · · 0 −1 0 · · · 0 1 = d

0 · · · 0 −1 0 · · · 0 1 0 · · · 0 1 = 3m/3d

0 · · · 0 0 0 · · · 0 0 0 · · · 0 2 = a

(8.22)

Using MAPLE to compute |A\B| up tom = 27, we get the following theorem.

Theorem 8.3.5. Let q = 3. The number of 3’s in the Smith normal form of the

Lin difference sets when m > 7 is

2

3
m4 − 4m3 − 14

3
m2 + 39m+ δ(m) ·m.

The number of 3’s in the Smith normal form of the HKM difference sets when m > 9

is
2

3
m4 − 4m3 − 28

3
m2 + 62m+ ε(m) ·m.

The values of δ(m) and ε(m) are 0 or 1.

Based on numerical evidence, we conjecture that δ and ε above are always 1.

By direct calculations (i.e., not using Gauss sums), the Smith normal form

of the Lin difference set with m = 9 is:

1144314409157227176481176424315727291440218714465611,

where for example, 31440 means the number of invariant factors of the Lin difference

set which are 3 is 1440. The Smith normal form of the HKM difference set with

m = 9 is:

1144312519184227168381168324318427291251218714465611.
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These computations were done by Saunders using a “LinBox” package [35, 14].

Since the two “almost” polynomial functions in Theorem 3.5 are never equal,

and since the Smith normal forms of the Lin and HKM difference sets are also

different when m = 9, we have the following conclusion:

Theorem 8.3.6. Let m be an odd multiple of 3. The Lin and HKM difference

sets with parameters (3m−1
2
, 3m−1, 2 · 3m−2) are inequivalent when m > 3, and the

associated designs are nonisomorphic when m > 3.

The investigation reported in this chapter prompts the following question:

If two cyclic difference sets with classical parameters have the same Smith normal

form, are the associated designs necessarily isomorphic?

We note that certainly there are examples of nonisomorphic symmetric de-

signs with classical parameters having the same Smith normal form. Projective

planes of order 9 provide such examples. From Theorem 2.2.4 (see also [3]), we

calculate that the Smith normal form of a projective plane of order p2, p prime, is

1rp(p4+p2−2r+2)(p2)(r−2)((p2 + 1)p2)1,

where the exponents indicate the multiplicities of the invariant factors and r is the

p-rank of the plane. That is, the p-rank of the plane determines the Smith normal

form of the plane. There are four projective planes of order 9. The desarguesian

one has 3-rank 37, while the other three all have 3-rank 41 (cf. [34]), so the three

non-desarguesian projective planes have the same Smith normal form, yet they are

nonisomorphic.

So far, we do not know any examples of difference sets with classical param-

eters which provide a negative answer to the question above. Difference set designs

are special; it is of interest to investigate the above problem.
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Geometriae Dedicata 21 (1986), 349–356.

115



[26] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Second
Edition, Springer, 1984.

[27] E. S. Lander, Symmetric Designs: An Algebraic Approach, London Mathemat-
ical Society Lecture Note Series 74, Cambridge University Press, 1983.

[28] E. S. Lander, Topics in algebraic coding theory, D. Phil. Thesis, Oxford Uni-
versity, 1980.

[29] S. Lang, Cyclotomic Fields, Springer-Verlag, New York, 1978.

[30] R. Liebler, personal communication (2002).

[31] C. C. MacDuffee, The Theory of Matrices, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Volume 2, Chelsea Publishing Company, 1946.

[32] J. MacWilliams and H. B. Mann, On the p-rank of the design matrix of a
difference set, Information and Control 12 (1968), 474–488.

[33] J.-S. No, D.-J. Shin, T. Helleseth, On the p-ranks and characteristic polynomials
of cyclic difference sets, Designs, Codes and Cryptography 33 (2004), 23–37.

[34] H. E. Sachar, Error-correcting Codes Associated with Finite Projective Planes,
Ph.D. Thesis, Lehigh University, Bethlehem, PA, 1973.

[35] B. D. Saunders, personal communication.

[36] P. Sin, The invariant factors of the incidence matrices of points and hyperplanes
in P n(Fq), preprint.

[37] P. Sin, The elementary divisors of the incidence matrices of points and linear
subspaces in P n(Fp), Journal of Algebra 232 (2000), 76–85.

[38] K. J. C. Smith, Majority Decodable Codes Derived from Finite Geometries,
(Ph.D. Thesis), Mimeograph Series 561, Institute of Statistics, Chapel Hill,
NC, 1967.
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