

The brilliant career of Frédéric Vanhove

John Bamberg, The University of Western Australia. 28/02/2014.

Masters (2006-2007)

Faculteit Wetenschappen
Vakgroep Zuivere Wiskunde en Computeralgebra

En studie van m-systemen en aanverwante incidentiestructuren

Frédéric Vanhove

Promotoren : Dr. J. Bamberg
Prof. Dr. F. De Clerck

Scriptie ingediend tot bet behalen van de academische graad van Licentiaat in de
Wiskunde, optic Zuivere Wiskunde
"A study of m-systems and related incidence structures"

- Original proof of the connection between two-character sets and strongly regular graphs
- Showed that 'field reduction' and linear representation commute.
- Showed that sometimes m-systems give rise to $(0, \alpha)$-geometries, giving insight into non-existence results on m-systems.

Frédéric, Frank, \& I

From: Frédéric Vanhove frederic.vanhove.wetteren@ pandora.be

ubject: latest version

Date: 2 April 2007 7:55 am
To: John Bamberg bamberg@cage.ugent.be, Frank De Clerck fdc@cage.ugent.be

Hello,
this is the latest version
In case that is alright, I might upload a newer version today (since a lot of work is being done at the time)

Among the newer things are :
1.3.1 on page six
1.3.3. on page seven (this is a new approach I came up with, inspired by mister Bamberg's idea of using k-ovoids)
1.4.1 on page 11
1.7.(page 14) I spent a lot of time here thinking about subtleties here

The problem with the $\mathrm{Q}(4, \mathrm{q})$ and the nucleus etc.. has been solved but hasn't been included yet.
I do have a question about generalized linear representations. What do pairs of points such that the line meets a certain fixed point p at infinity have in common? I mean, does this have an intrinsic geometric meaning?

Greetings and thanks,

Fédéric Vanhove

From: Frédéric Vanhove frederic.vanhove.wetteren@pandora.be
b

Subject: Re: latest version

Date: 3 April 2007 8:06 am
To: bamberg@cage.ugent.be, Frank De Clerck fdc@cage.ugent.be

Hello,

Thanks Frederic,
It's getting there... but I guess you still have a lot to do yet. So perhaps we
should wait for the next version? I had a quick skim through, and there's still
a lot there that has been untouched.
Yes, there is still a lot that I know that I have to do. The calculations are quite time consuming at times. I'd expected it to go faster.

The professor has suggested that a proof of that theorem with the graphs
(from Calderbank and Kantor) could be included. I spent some time thinking
about that, and perhaps you could take a look at that graphtheorem.pdf file?
I also included more on hyperovals, ovoids and ovals.. One of my reasons for this is that I am talking about pseudo ovals and ovoids which is in fact a generalisation.
I wonder if it's wise to prove everything, but as one of my sources I'm using
http://cage.ugent.be/~fdc/intensivecourse2/brown 2.pdf

Greetings and thanks, Frédéric Vanhove

PhD.

- FWO-aspirant (2007-2011)
"A study of m-systems in finite projective spaces and related incidence geometries".
Supervisors: Frank De Clerk \& John Bamberg

PhD; the first year

- Attempted to generalise the "two-graph" argument in Gunawardena-Moorhouse (1997) to m-systems

Ovoid of $Q(8, q)$
Regular two-graph
Vertices: points of ovoid θ
triples: $\left\langle p_{1}, p_{2}\right\rangle\left\langle p_{2}, p_{3}\right\rangle\left\langle p_{3}, p_{1}\right\rangle$
is non-square

Complementary two-graph has a

$$
\text { multiplicity } \mu=q^{2}-\frac{q^{2}-1}{q^{2}+1} \notin \mathbb{Z}
$$

Two-Graphs and Ovoids in Polar Spaces

Theorem 1. [2] Let Γ be a graph on v vertices, such that the associated two-graph is regular of degree k. Then the $(0,-1,+1)$-adjacency matrix A satisfies $A^{2}-(2 k-(v-2)) A+(1-v)=0$, and the two eigenvalues ρ_{1}, ρ_{2} satisfy the equation $x^{2}+(2 k-(v-2)) x+(1-v) I=0$. The multiplicities m_{1} and m_{2} are given by :

$$
m_{1}=\frac{v \rho_{2}}{\rho_{2}-\rho_{1}} \text { and } m_{2}=\frac{v \rho_{1}}{\rho_{1}-\rho_{2}}
$$

$1 W(2 n+1, q), q \equiv 1 \bmod 4, Q^{-}(2 n+1, q), q$ odd

Let f be the non-singular symplectic form (in the symplectic case), or symmetric form (in the elliptic case), defining the polar space. Suppose \mathcal{O} is an ovoid of the polar space. For every point p in \mathcal{O}, let v_{p} be a vector representing it. Let Δ be the following two-graph: the vertices are the points of \mathcal{O}, and a triple $\left(p_{1}, p_{2}, p_{3}\right)$ is in Δ if and only if $f\left(v_{p_{1}}, v_{p_{2}}\right) f\left(v_{p_{2}}, v_{p_{3}}\right) f\left(v_{p_{3}}, v_{p_{1}}\right)$ is non-square. One can check that this is well-defined and indeed a two-graph by noting that this is the two-graph defined by the graph with \mathcal{O} as vertices, and such that $\left(p_{1}, p_{2}\right)$ are adjacent if and only if $f\left(v_{p_{1}}\right), f\left(v_{p_{2}}\right)$ is non-square.

Theorem 2. The two-graph Δ is regular of degree $\frac{(q-1)\left(q^{n}+1\right)}{2}$.
Proof. Let a and b be two different points in \mathcal{O}. Every other point on the line $a b$ is uniquely represented by $v_{a}-t v_{b}$ for some $t \neq 0$. If c is a third point in \mathcal{O}, then the unique point in $a b \cap<c>^{\perp}$ is $<u-t v>$, with $t=f(u, w) / f(v, w)$. The triple $\{a, b, c\}$ will thus be in Δ if and only if $t=f\left(v_{a}, v_{b}\right) \epsilon^{2}$ for some $\epsilon \neq 0$. This leaves $(q-1) / 2$ possibilities for t. For every fixed t, $<v_{a}-t v_{b}>^{\perp}$ will contain exactly $q^{n}+1$ elements of \mathcal{O} [Theorem $\left.6,[3]\right]$. Consequently, there are $(q-1)\left(q^{n}+1\right) / 2$ points c such that $\{a, b, c\}$ is in Δ.

The eigenvalues of the adjacency matrix are:

$$
\rho_{1}=-q, \rho_{2}=q^{n}
$$

The corresponding multiplicities are:

$$
m_{1}=\left(q^{n+1}+1-q^{2}\right)+\frac{q^{2}-1}{q^{n-1}+1}, m_{2}=q^{2}-\frac{q^{2}-1}{q^{n-1}+1}
$$

Neither of these can be integers if $n \geq 2$.

2 Doubly transitive two-graphs

We consider three infinite families of doubly transitive two-graphs (see [1] for instance):

Type	Notation	v	k
Paley	$\mathcal{P}(q), q \equiv 1 \bmod 4$	$q+1$	$(q-1) / 2$
Hermitian	$\mathcal{H}(q), q$ odd	$q^{3}+1$	$(q-1)\left(q^{2}+1\right) / 2$
Ree	$\mathcal{R}(q), q$ odd	$q^{3}+1$	$(q-1)\left(q^{2}+1\right) / 2$

- Ovoids of $Q^{-}(3, q), q$ odd, exist of course, and the resulting two-graph is regular, with $v=q^{2}+1$ and $k=\left(q^{2}-1\right) / 2$. It is the two-transitive Paley graph $\mathcal{P}\left(q^{2}\right)$.
- An ovoid of $Q^{-}(5, q), q$ odd, would give us a regular two-graph with $v=q^{3}+1$ and $k=(q-1)\left(q^{2}+1\right) / 2$. Even though ovoids of $Q^{-}(5, q)$ don't exist, two-graphs with these parameters always exist, since $\mathcal{H}(q)$ and $\mathcal{R}(q)$ have the same parameters.
- An ovoid of $W(3, q), q$ odd, would result in a regular two-graph with $v=q^{2}+1$ and $k=\left(q^{2}-1\right) / 2$. Even though ovoids of $W(3, q)$ cannot exist if q is odd, these parameters are always possible, because the Paley two-graph $\mathcal{P}\left(q^{2}\right)$ exhibits them.
- Ovoids of $W(5, q), q$ odd, would give us a regular two-graph with $v=q^{3}+1$ and $k=$ $\left(q^{2}-1\right) / 2$. Even though $W(5, q)$ doesn't have ovoids for any q, these parameters are possible for all odd prime powers q, since $\mathcal{H}(q)$ and $\mathcal{R}(q)$ have them as well.

References

[1] E. Kuijken. A study of incidence structures and codes related to regular two-graph. PhD thesis, Ghent University, 2003.
[2] J. J. Seidel. Geometry and combinatorics. Academic Press Inc., Boston, MA, 1991. Selected works of J. J. Seidel, Edited and with a preface by D. G. Corneil and R. Mathon.
[3] E. E. Shult and J. A. Thas. m-systems of polar spaces. J. Combin. Theory Ser. A, 68(1):184204, 1994.

Work with T. Pentila (2012)

```
From: Tim Penttila penttila86@msn.com
Subject: news
Date: 2 June 2012 10:17 pm
To: John Bamberg john.bamberg@uwa.edu.au
```

John,
Spreads of $\mathrm{H}\left(4, \mathrm{q}^{\wedge} 2\right)$ have bitten me again. Frederic and I have shown that each spread of $\mathrm{H}\left(4, \mathrm{q}^{\wedge} 2\right)$, q odd, gives a regular two-graph. But unfortunately, that regular two-graph passes all known existence conditions. So we have no nonexistence results whatsoever.

Tim
"Generalised m-systems":

$$
\begin{aligned}
& \text { - polarity e of } \operatorname{PG}(n, q) \\
& \text { - set } m \text { of mutually disjoint, pairwise } \\
& \text { opposite } m \text {-subspaces, such that } \\
& (\exists k)(\forall \pi \in M) \quad \operatorname{dim}\left(\pi n \pi^{p}\right)=k \\
& \quad k=m \longrightarrow \text { partial } \begin{array}{l}
m \text {-system } \\
k=-1
\end{array} \quad \text { partial perp-system }
\end{aligned}
$$

Theorem 2. Let \mathcal{M} be a partial generalised m-system in $\mathrm{PG}(s, q)$, such that for every element π_{i}, the intersection $\pi_{i}^{\perp} \cap \pi_{i}$ is a k-space. Then the following equality holds:

$$
\left(q^{s-m}-q^{k+1}+(|\mathcal{M}|-1)\left(q^{s-2 m-1}-1\right)\right)\left(q^{s+1}-1-|\mathcal{M}|\left(q^{m+1}-1\right)\right)-|\mathcal{M}|\left(q^{s-m}-q^{k+1}\right)^{2} \geq 0
$$

where equality holds if and only if there is a fixed intersection number for byperplanes $p^{\perp}, p \notin \tilde{\mathcal{M}}$.

It turns out that when I demand $s>2 m+1$, the discriminant doesn't even have rational roots. I did not find a proof for this though. One can however rewrite the quadratic equation in $|\mathcal{M}|$ as follows:

$$
\begin{equation*}
-B D|\mathcal{M}|^{2}+\left(B C-(A-B) D-A^{2}\right)|\mathcal{M}|+(A-B) C=0 \tag{4}
\end{equation*}
$$

with:
Oppositit: $\pi \cap \sigma^{\perp}=\varnothing$

$$
\begin{aligned}
A & =q^{s-m}-q^{k+1} \\
B & =q^{s-2 m-1}-1 \\
C & =q^{s+1}-1 \\
D & =q^{m+1}-1
\end{aligned}
$$

For I moment I thought I could prove that equations like (4) can never have a discriminant with a rational root, but even when using restrictions, yielded by the conditions implied by the problem (like $A>B$), I still keep finding solutions, so that approach is not useful.

Change of focus

- Summer 2008, Luke Bayens is visiting
- I propose Frédéric, Luke, and I study "intriguing sets" of lines of polar spaces
- We end up using the language of association schemes.
- We get some nice observations Gut Luke loses interest.
- Frédéric toils and toils....
- Reads Delsarte, Stanton, Eisfeld
- He finds mistakes in the literature, new proofs, and new perspectives.

Design orthogonality

Technique
Geometry \longrightarrow Binary Relations $\longrightarrow \begin{gathered}\text { Association } \\ \text { Scheme }\end{gathered}$

Lines of a polar space
equality
Spans a ti. plane
spans a non-ti. plane
spans a ti. solid spans a degenerate solid opposite
positive semidefiniteness

$$
\begin{gathered}
\mathbb{C} L^{2}= \\
\langle\mathbb{1}\rangle \perp V^{\prime} \perp V^{2} \perp V^{3} \perp V^{4} \perp V^{5}
\end{gathered}
$$

Partial spreads of Hermitian spaces

- Thas (1992): H(2n+1, $\left.q^{2}\right)$ does not have spreads
- De Beule, Metsch (2007): The maximum size of a partial spread of $H\left(5, q^{2}\right)$ is $q^{3}+1$.
- Frédéric: | partial spread $\mid \leqslant q^{2 n+1}+1$ in $H\left(4 n+1, q^{2}\right)$
- Partial spread of $H\left(2 n-1, q^{2}\right) \longleftrightarrow$ Partial spread set of $n \times n$ Hermitian matrices over $\mathbb{F}_{q^{2}}$.

Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces, to appear in Elec. J. Combin. With R. Gow, M. Lavrauw, J. Sheekey.

A geometric proof of the upper bound on the size of partial spreads in $H\left(4 n+1, q^{\wedge} 2\right)$, Adv. Math. Commun. 2011

The maximum size of a partial spread in $H\left(4 n+1, q^{\wedge} 2\right)$ is $q^{\wedge}\{2 n+1\}+1$, Alec. J. Combin. 2009

Dual polar spaces
Subconfigurations yielding "regularity": designs, antidesigns, completely regular codes.
partial spread of $H\left(2 d-1, q^{2}\right)$ size $q^{d}+1$ antidesign, 1 -regular code, $d=3 \Rightarrow$ c.r. spread of $Q(2 d, q)$ or $W(2 d-1, q) d$ odd

$$
\begin{aligned}
& Q^{+} \subseteq Q, H_{2 d-1} \subseteq H_{2 d}, Q \subseteq Q^{-} \\
& G_{2}(q) \subseteq Q(6, q)
\end{aligned}
$$

1 -design, 2 -regular code, $d \in\{3,5\} \Rightarrow$ c.r. 1-antidesign, CPr.

1-design, 2-antidesign, C.r.

Regular near polygons
Regular near 2d-gon $5 \rightarrow$ distance regular graph $\left(a_{i}, b_{i}, c_{i}\right)$
parameters $\left(s, t_{2}, t_{3}, \ldots, t_{d-1}, t\right)$
E.g., Generalised 2d-gon, dual polar spaces

Higman inequality for generalised quadrangles of order $(s, t): \sqrt{s} \leqslant t \leqslant s^{2}$
Theorem: $C_{i} \leqslant \frac{s^{2 i}-1}{s^{2}-1} . \forall i \in\{1, \ldots, d\}$.
Corollary $(i=d): \quad t+1 \leqslant \frac{s^{2 d}-1}{s^{2}-1}$.
Theorem: If $\exists j \in\{2, \ldots, d\}$ st. $c_{j}=\frac{s^{2 j}-1}{s^{2}-1}$, then m-ovoids $(0<m<s+1)$ can ONLY EXIST when $m=\frac{s+1}{2}$.

A Higman inequality for regular near polygons, JAC (2011)

$$
\begin{array}{r}
\frac{\left(s^{i}-1\right)\left(c_{i-1}-s^{i-2}\right)}{s^{i-2}-1} \leqslant c_{i} \leqslant \frac{\left(s^{i}+1\right)\left(c_{i-1}+s^{i-2}\right)}{s^{i-2}+1} \\
\forall i \in\{3,4, \ldots, d\}
\end{array}
$$

Extends results of Neumaier (1990)
Mathon (unpublished)

- Characterises equality in the bound
- $D Q(2 d, q), D W(2 d-1, q), d \geqslant 3$, have no 1 -ovoids.
- Generalised hexagon of order $\left(s, s^{3}\right), s \geqslant 2$, have no 1 -ovoids.
- $G H\left(s, t^{\prime}\right)$ cannot have maximal $G H s$ (as full proper subgeos)

Inequalities for regular near polygons, with applications to m-ovoids, JCTA 2013, with De Bruyn.

Erdos- No - Rade sets

Table 1

Polar space	Maximum size	Classification
$Q^{-}(2 n+1, q)$	$\left(q^{2}+1\right) \cdots\left(q^{n}+1\right)$	p.-p., Theorem 15
$Q(4 n, q)$	$(q+1) \cdots\left(q^{2 n-1}+1\right)$	p.-p., Theorem 15
$Q(4 n+2, q), n \geqslant 2$	$(q+1) \cdots\left(q^{2 n}+1\right)$	p.-p., Latins $Q^{+}(4 n+1, q)$,
$Q(6, q)$	$(q+1)\left(q^{2}+1\right)$	Theorem 23
$Q^{+}(4 n+1, q)$	p.-p., Latins $Q^{+}(5, q)$,	
Latins $Q^{+}(4 n+3, q), n \geqslant 2$	$(q+1) \cdots\left(q^{2 n}+1\right)$	base, Theorem 23
Latins $Q^{+}(7, q)$	one system, Theorem 16	
$W(4 n+1, q), n \geqslant 2, q$ odd	$(q+1) \cdots\left(q^{2 n}+1\right)$	p.-p., Theorem 21
$W(4 n+1, q), n \geqslant 2, q$ even	$(q+1)\left(q^{2}+1\right)$	p.-p., meeting Greek in plane,
	$(q+1) \cdots\left(q^{2 n}+1\right)$	Theorem 22
$W(5, q), q$ odd	$(q+1) \cdots\left(q^{2 n}+1\right)$	p.-p., Theorem 39
$W(5, q), q$ even	$(q+1)\left(q^{2}+1\right)$	p.-p., Latins $Q^{+}(4 n+1, q)$,
$W(4 n+3, q)$	$(q+1)\left(q^{2}+1\right)$	p.-p., base, Theorem 40
$H\left(2 n, q^{2}\right)$	p.	p.-p., base, Latins $Q^{+}(5, q)$,
$H\left(4 n+3, q^{2}\right)$	p.-p., Theorem 24	

Frédéric's Open Problems
(1) Are there any $t-(n, k, \mid ; q)$-designs with $2 \leqslant t<k<n$?
(2) What is the max size of a partial spread of $H\left(2 d-1, q^{2}\right)$, d even?
F. Ihringer: $q^{2 d-1}-q \frac{q^{2 d-2}-1}{q+1}$.
(3) Can $Q(2 d, q)$ have spreads for $d \geqslant 5, q$ odd?
(4) What is the max size of a set of pairwise non-trivially intersecting maximals of $H\left(2 d-1, q^{2}\right)$ for odd $d \geqslant 5$?
(5) Can $Q(2 d, q)$ or $W(2 d-1, q), d=2^{m}-1, m \geqslant 3$, have a perfect 1 -code of maximals?
(6) In a polar space with rank $\geqslant 3$, are there any nontrivial combinatorial designs of maximals with respect to t-spaces $(t \geqslant 2)$?
(7) Do there exist $\frac{q+1}{2}$-aroids of $\operatorname{DH}\left(2 d-1, q^{2}\right), q$ odd, $d \geqslant 3$?
(8) Are all drag's with classical parameters $(d, b, \alpha, \beta)=\left(d,-q,-(q+1) / 2,-\left((-q)^{d}+1\right) / 2\right)$, q odd, subgraphs of the dual polar graph on $H\left(2 d-1, q^{2}\right)$?

