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F rederic, Frank, & 1

From
Subject
Date:

To!

Hello,

: Frédéric Vanhove frederic.vanhove.wetteren@pandora.be &

: latest version

: 2 April 2007 7:55 am

: John Bamberg bamberg@cage.ugent.be, Frank De Clerck fdc@cage.ugent.be

this is the latest version.
In case that is alright, | might upload a newer version today (since a lot

of work i

s being done at the time)

Among the newer things are :

13.10n

page six

1.3.3. on page seven (this is a new approach | came up with, inspired by
mister Bamberg's idea of using k-ovoids)

14.10n

page 11

1.7.(page 14) | spent a lot of time here thinking about subtleties here

The problem with the Q(4,q) and the nucleus efc.. has been solved but hasn't
been included yet.

| do have a question about generalized linear representations. What do
pairs of points such that the line meets a certain fixed point p at infinity

have in common? | mean, does this have an intrinsic geometric meaning?

Greetings and thanks,

Frédéric Vanhove

From: Frédéric Vanhove frederic.vanhove.wetteren@pandora.be &
Subject: Re: latest version
Date: 3 April 2007 8:06 am
To: bamberg@cage.ugent.be, Frank De Clerck fdc@cage.ugent.be

Hello,
Thanks Frederic,

It's getting there... but | guess you still have a lot to do yet. So
perhaps we
should wait for the next version? | had a quick skim through, and
there's still
a lot there that has been untouched.
Yes, there is still a lot that | know that | have to do. The calculations
are quite time consuming at times. I'd expected it to go faster.

The professor has suggested that a proof of that theorem with the graphs
(from Calderbank and Kantor) could be included. | spent some time thinking
about that, and perhaps you could take a look at that graphtheorem.pdf file?

| also included more on hyperovals, ovoids and ovals.. One of my reasons for
this is that | am talking about pseudo ovals and ovoids which is in fact a
generalisation.

| wonder if it's wise to prove everything, but as one of my sources I'm

using

http://cage.ugent.be/~fdc/intensivecourse2/brown 2.pdf

Greetings and thanks,
Frédéric Vanhove
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Two-Graphs and Ovoids in Polar Spaces

Theorem 1. [2] Let " be a graph on v vertices, such that the associated two-graph is reqular of
degree k. Then the (0, —1,+1)-adjacency matriz A satisfies A2 — (2k — (v —2))A+ (1 —v) = 0,
and the two eigenvalues p1, py satisfy the equation x® + (2k — (v — 2))z + (1 —v)I = 0. The
multiplicities m1 and ma are given by :

vp1
p1—p2

my = ki and mo =
P2 — p1

1 W2n+1,9),g=1mod4,Q (2n+1,q),q odd

Let f be the non-singular symplectic form (in the symplectic case), or symmetric form (in the
elliptic case), defining the polar space. Suppose O is an ovoid of the polar space. For every point
p in O, let v, be a vector representing it. Let A be the following two-graph: the vertices are
the points of O, and a triple (p1,p2,p3) is in A if and only if f(vp,, vp,) f(Vpy, Vps) f(Ups, Up,) is
non-square. One can check that this is well-defined and indeed a two-graph by noting that this
is the two-graph defined by the graph with O as vertices, and such that (p1,p2) are adjacent if
and only if f(vp,), f(vp,) is non-square.

Theorem 2. The two-graph A is reqular of degree w .

Proof. Let a and b be two different points in O. Every other point on the line ab is uniquely
represented by v, — tvp for some ¢ # 0. If ¢ is a third point in O, then the unique point in
abN < ¢ >+ is < u — tv >,with t = f(u,w)/f(v,w). The triple {a,b,c} will thus be in A if and
only if t = f(va,vp)e? for some € # 0. This leaves (¢ — 1)/2 possibilities for t. For every fixed ¢,
< v, — tvp >+ will contain exactly ¢" 4+ 1 elements of @ [Theorem 6, [3] ]. Consequently, there
are (¢ — 1)(¢"™ 4+ 1)/2 points ¢ such that {a,b,c} is in A. O

The eigenvalues of the adjacency matrix are:

p1=—q, p2=4q".

The corresponding multiplicities are:
mi= (""" +1-¢°) +

Neither of these can be integers if n > 2.

2 Doubly transitive two-graphs

We consider three infinite families of doubly transitive two-graphs (see [1] for instance):



Type Notation v k

Paley P(q),q=1mod4 | g+1 (g—1)/2
Hermitian H(q),q odd G+1](g—1)(#+1)/2

Ree R(g),q odd ¢ +1] (¢—1)(¢*+1)/2

e Ovoids of @ (3,q), g odd, exist of course, and the resulting two-graph is regular, with
v=¢>+1and k= (¢°> —1)/2. It is the two-transitive Paley graph P(¢?).

e An ovoid of Q@ (5,¢q), ¢ odd, would give us a regular two-graph with v = ¢> + 1 and
k= (¢ —1)(¢*> +1)/2. Even though ovoids of Q~(5,¢) don’t exist, two-graphs with these
parameters always exist, since H(q) and R(g) have the same parameters.

e An ovoid of W (3,q), ¢ odd, would result in a regular two-graph with v = ¢? + 1 and
k = (¢*> —1)/2. Even though ovoids of W (3,q) cannot exist if ¢ is odd, these parameters
are always possible, because the Paley two-graph P(¢?) exhibits them.

e Ovoids of W (5,q),q odd, would give us a regular two-graph with v = ¢ 4+ 1 and k =
(¢> — 1)/2. Even though W(5,q) doesn’t have ovoids for any g, these parameters are
possible for all odd prime powers ¢, since H(q) and R(q) have them as well.

References

[1] E. Kuijken. A study of incidence structures and codes related to regular two-graph. PhD
thesis, Ghent University, 2003.

[2] J. J. Seidel. Geometry and combinatorics. Academic Press Inc., Boston, MA, 1991. Selected
works of J. J. Seidel, Edited and with a preface by D. G. Corneil and R. Mathon.

[3] E. E. Shult and J. A. Thas. m-systems of polar spaces. J. Combin. Theory Ser. A, 68(1):184—
204, 1994.



Work with T. Penttila (2012)

From: Tim Penttila penttilaB6@msn.com
Subject: news
Date: 2 June 2012 10:17 pm
To: John Bamberg john.bamberg@uwa.edu.au

John,
Spreads of H(4,q”2) have bitten me again. Frederic and I have shown that each spread
of H(4,9"2), q odd, gives a regular two-graph. But unfortunately, that regular two-graph passes

all known existence conditions. So we have no nonexistence results whatsoever.

Tim
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Theorem 2. Let M be a partial generalised m-system in PG(s,q), such that
for every element m;, the intersection ;- Nm; is a k-space. Then the following
equality holds:

@™ ="+ (M= 1)@ = 1) (¢ = 1= M@ = 1) ~IMI(¢* " ~¢")? >0,

where eguality holds if and only if there is a fized intersection number for hy-

perplanes p~,p ¢ M.

with:

Opposife: 77 not=4

—BD|M|? +

QW
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It turns out that when I demand s > 2m + 1, the discriminant doesn’t even
have rational roots. I did not find a proof for this though. One can however
rewrite the quadratic equation in | M| as follows:

(BC — (A— B)D — A*)|M| + (A - B)C =0, (4)

¢ — gkt
P |
FHo1
¢t

For I moment I thought I could prove that equations like (4) can never have
a discriminant with a rational root, but even when using restrictions, yielded
by the conditions implied by the problem (like A > B), I still keep finding
solutions, so that approach is not useful.
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Pactial spreads of Hemmitian spaces

— Thas (”17-33 H(j-""’l; ﬁ,l) does not L\Mie .SPrEMlS

— De Beule, Medsch (2007): The maximum cze nga poﬁia[ _Spread

0@ H(S) q,z) s OLS+ |

an+|

— Frederic: | pactial spread | < 9 + | in H(ns), 11)

— Partial SFrea.af o{» H('Z'\‘H‘ﬂ > Patidl Spread set o{l nxn Hermitian marices
over H-_., .
%

Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces,
to appear in Elec. J. Combin. With R. Gow, M. Lavrauw, J. Sheekey.

A geometric proof of the upper bound on the size of partial spreads in H(4n+1, g~2), Adv. Math. Commun. 2011

The maximum size of a partial spread in H(4n + 1, g/2) is g*2n+1} + 1, Elec. J. Combin. 2009



Dual polar spaces
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Antidesigns and regularity of partial spreads in dual polar graphs, J. Combin. Designs (2011)




Reguler near pelygons

R&zular near 2d-gan S —> distance regular graph (a;‘b;, C;)
parameters (s, b, g, é)
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A Higman inequality for regular near polygons, JAC (2011)
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Inequalities for regular near polygons, with applications to m-ovoids, JCTA 2013, with De Bruyn.



Frdé's-Ko-Rado sets

V. Pepe et al. / Journal of Combinatorial Theory, Series A 118 (2011) 1291-1312 1311

Table 1

Polar space

Maximum size

Classification

Q (2n+1,9)
Q(4n,q)
Q@n+2,9,n=2

Q(6.q)

Q*(dn+1,q)
Latins Q “(4n+3,9),n =22
Latins Q " (7,q)

W(4n+1,q9),n =2, q odd

Vv WV

W(4n+1,9), n > 2, q even

W(5,q), g odd
W(5,q), q even

W(4n +3,q)
H(2n,q%)
H(4n +3,4%)

@+ (" +1)
@+ @ +1)
@+1)-- (@ +1)

@+ 1@ +1)

@+ @ +1)
@+1)--(@"+1)
@+ 1(@*+1)

@+1 @ +1)
@+1) @ +1)

@+1@+1)
@+ 1)(@*+1)

@+ (@ +1)
@+D@+1D-- @ +1)
@+D@ +1)--- @ +1)

p.-p., Theorem 15
p.-p., Theorem 15

p.-p., Latins Q *(4n+1,q),
Theorem 23

p.-p., Latins Q 7 (5,9),
base, Theorem 23

one system, Theorem 16
p.-p., Theorem 21

p.-p., meeting Greek in plane,
Theorem 22

p.-p., Theorem 39

p--p., Latins Q *(4n+1,q),
Theorem 24

p.-p., base, Theorem 40

p--p., base, Latins Q * (5, q),
Theorem 24

p.-p., Theorem 15
p.-p., Theorem 15
p.-p., Theorem 15

Hdn+1,¢%),n>2

<|R21/(g* 1 +1)

?, Theorem 42 /

H(5,9%)

q@* +? + 1) +1

base, Theorem 45




Frédéric's Open Problems

© Are there any t-(n,k,159) ~designs with 2 £t <k<n ]
@ What is the Max Size of a partial spread of H(zd-1,4), d even 7

o | d-2_ )
B an
@ Can Q24g) have spreeds for d 25, q 0dd ?
@ \2}”}- 1S -H:; >ME‘ ;iie o»{, a st o£ Fairwbe, r’lom-l-rlviallg l'n-ler_cerﬁna, Max imals of H(?_d_l) "ﬂ
r odd z &

@ Can Q[24, qy\ or W(2d~|,1,)‘ A=) m23, have a Ferfed' |-code o} Maximals §

F- ]hr‘;n&er . ‘12

@ In « ralar space N'l“\ mnkaz, are +heve any ’lo’l-‘f"’l‘vial Combim%r(al o{e.su'%/u of defwlj
V\II'H\ Pf’spec‘l‘ +o f‘j?a(ej ('é 2Q> Z

(7) Do there exist 2L —oroids of DH(ad-1, %), §odd) d>3 7

Are all ofr‘ar'; wWith cassica| parameters (d\bi% 133:("[) “1»‘(1‘“\/2) H((wnd" l\/2>)
9 odd, Subgraphs of e dusl pola- graph on H(2d- 1, ‘f>z



