












Two-Graphs and Ovoids in Polar Spaces

Theorem 1. [2] Let � be a graph on v vertices, such that the associated two-graph is regular of

degree k. Then the (0,�1,+1)-adjacency matrix A satisfies A

2 � (2k� (v� 2))A + (1� v) = 0,
and the two eigenvalues ⇢1, ⇢2 satisfy the equation x

2 + (2k � (v � 2))x + (1 � v)I = 0. The

multiplicities m1 and m2 are given by :

m1 =
v⇢2

⇢2 � ⇢1
and m2 =

v⇢1

⇢1 � ⇢2
.

1 W (2n + 1, q), q ⌘ 1 mod 4, Q�
(2n + 1, q), q odd

Let f be the non-singular symplectic form (in the symplectic case), or symmetric form (in the
elliptic case), defining the polar space. Suppose O is an ovoid of the polar space. For every point
p in O, let vp be a vector representing it. Let � be the following two-graph: the vertices are
the points of O, and a triple (p1, p2, p3) is in � if and only if f(vp1 , vp2)f(vp2 , vp3)f(vp3 , vp1) is
non-square. One can check that this is well-defined and indeed a two-graph by noting that this
is the two-graph defined by the graph with O as vertices, and such that (p1, p2) are adjacent if
and only if f(vp1), f(vp2) is non-square.

Theorem 2. The two-graph � is regular of degree

(q�1)(qn+1)
2 .

Proof. Let a and b be two di↵erent points in O. Every other point on the line ab is uniquely
represented by va � tvb for some t 6= 0. If c is a third point in O, then the unique point in
ab\ < c >

? is < u� tv >,with t = f(u, w)/f(v, w). The triple {a, b, c} will thus be in � if and
only if t = f(va, vb)✏2 for some ✏ 6= 0. This leaves (q � 1)/2 possibilities for t. For every fixed t,
< va � tvb >

? will contain exactly q

n + 1 elements of O [Theorem 6, [3] ]. Consequently, there
are (q � 1)(qn + 1)/2 points c such that {a, b, c} is in �.

The eigenvalues of the adjacency matrix are:

⇢1 = �q, ⇢2 = q

n
.

The corresponding multiplicities are:

m1 = (qn+1 + 1� q

2) +
q

2 � 1
q

n�1 + 1
, m2 = q

2 � q

2 � 1
q

n�1 + 1
.

Neither of these can be integers if n � 2.

2 Doubly transitive two-graphs

We consider three infinite families of doubly transitive two-graphs (see [1] for instance):
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Type Notation v k
Paley P(q), q ⌘ 1 mod 4 q + 1 (q � 1)/2

Hermitian H(q),q odd q

3 + 1 (q � 1)(q2 + 1)/2
Ree R(q),q odd q

3 + 1 (q � 1)(q2 + 1)/2

• Ovoids of Q

�(3, q), q odd, exist of course, and the resulting two-graph is regular, with
v = q

2 + 1 and k = (q2 � 1)/2. It is the two-transitive Paley graph P(q2).

• An ovoid of Q

�(5, q), q odd, would give us a regular two-graph with v = q

3 + 1 and
k = (q � 1)(q2 + 1)/2. Even though ovoids of Q

�(5, q) don’t exist, two-graphs with these
parameters always exist, since H(q) and R(q) have the same parameters.

• An ovoid of W (3, q), q odd, would result in a regular two-graph with v = q

2 + 1 and
k = (q2 � 1)/2. Even though ovoids of W (3, q) cannot exist if q is odd, these parameters
are always possible, because the Paley two-graph P(q2) exhibits them.

• Ovoids of W (5, q),q odd, would give us a regular two-graph with v = q

3 + 1 and k =
(q2 � 1)/2. Even though W (5, q) doesn’t have ovoids for any q, these parameters are
possible for all odd prime powers q, since H(q) and R(q) have them as well.
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