# On the Maximum Size of $M$-Cliques of Generators on Hermitian Polar Spaces 

Ferdinand Ihringer<br>Justus Liebig University Gießen, Germany

28/02/2014, Ghent University






## Polar Spaces

Finite classical polar spaces are incidence geometries (points, lines,
..., generators):

- $\mathbf{Q}^{-}(2 d+1, q) / \Omega^{-}(2 d+2, q)$ : Elliptic quadric.
- $\mathbf{Q}(2 d, q) / \Omega(2 d+1, q)$ : Parabolic quadric.
- $\mathbf{Q}^{+}(2 d-1, q) / \Omega^{+}(2 d, q)$ : Hyperbolic quadric.
- $\mathbf{W}(2 d-1, q) / S p(2 d, q)$ : Symplectic polar space.
- $\mathbf{H}\left(2 d-1, q^{2}\right) / U\left(2 d, q^{2}\right)$ : Hermitian polar space.
- $\mathbf{H}\left(2 d, q^{2}\right) / U\left(2 d+1, q^{2}\right)$ : Hermitian polar space.

In this talk:

- All polar spaces are classical and finite.
- Focus on $\mathbf{H}\left(2 d-1, q^{2}\right)$.


## (Distance-)Regular Graphs

## Definition

Let $G_{M}=\left(X, \sim_{M}\right)$ be a graph, where

- the vertices $X$ are the generators ( $d$-spaces) of $\mathbf{H}\left(2 d-1, q^{2}\right)$,
- $M \subseteq\{1, \ldots, d\}$,
- the adjacency relation $\sim_{M}$ is defined by $x \sim_{M} y$ if and only if $\operatorname{codim}(x \cap y) \in M$.


## (Distance-)Regular Graphs

## Definition

Let $G_{M}=\left(X, \sim_{M}\right)$ be a graph, where

- the vertices $X$ are the generators ( $d$-spaces) of $\mathbf{H}\left(2 d-1, q^{2}\right)$,
- $M \subseteq\{1, \ldots, d\}$,
- the adjacency relation $\sim_{M}$ is defined by $x \sim_{M} y$ if and only if $\operatorname{codim}(x \cap y) \in M$.
- This defines a regular graph: The number of generators meeting a fixed generator $x$ in an $i$-space for some $i \in M$ is independent of $x$.
- Very regular: the $\sim_{\{i\}}$ are the relations of an association scheme.


## M-Cliques

## Problem

Let $M \subseteq\{1, \ldots, d\}$. Let $Y$ be a set of generators such that $x, y \in Y$, $x \neq y$, implies codim $(x \cap y) \in M$. Classical questions:

- What is the maximum size of $Y$ ?
- How does an example of maximum size look like?

The set $Y$ would be a clique of $G_{M}$. In this talk: an $M$-clique.

## M-Cliques

## Problem

Let $M \subseteq\{1, \ldots, d\}$. Let $Y$ be a set of generators such that $x, y \in Y$, $x \neq y$, implies codim $(x \cap y) \in M$. Classical questions:

- What is the maximum size of $Y$ ?
- How does an example of maximum size look like?

The set $Y$ would be a clique of $G_{M}$. In this talk: an $M$-clique.

## Examples

- If $M=\{d\}$, then $Y$ is a (partial) spread (of generators).
- If $M=\{1, \ldots, t\}$, then $Y$ is an Erdös-Ko-Rado set (often only $t=d-1)$.
- If $M=\{t\}$, then $Y$ is a constant-distance subspace code.
- If $M=\{t+1, \ldots, d\}$, then $Y$ is a subspace code with minimum distance $t$.


## The Adjacency Matrix

## Definition

The adjacency matrix $A$ of $G_{M}$ is defined as follows:

$$
(A)_{x y}= \begin{cases}1 & \text { if } \operatorname{codim}(x \cap y) \in M \\ 0 & \text { if } \operatorname{codim}(x \cap y) \notin M\end{cases}
$$

## The Adjacency Matrix

## Definition

The adjacency matrix $A$ of $G_{M}$ is defined as follows:

$$
(A)_{x y}= \begin{cases}1 & \text { if } \operatorname{codim}(x \cap y) \in M \\ 0 & \text { if } \operatorname{codim}(x \cap y) \notin M\end{cases}
$$

The matrix $A$ has up to $d+1$

- eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$, (in the same order)
- eigenspaces $V_{0}, \ldots, V_{d} \subseteq \mathbb{R}^{n}$ where $n:=|X|$,
- multiplicities $f_{0}=\operatorname{dim}\left(V_{0}\right), \ldots, f_{d}=\operatorname{dim}\left(V_{d}\right)$.


## The Adjacency Matrix

## Definition

The adjacency matrix $A$ of $G_{M}$ is defined as follows:

$$
(A)_{x y}= \begin{cases}1 & \text { if } \operatorname{codim}(x \cap y) \in M \\ 0 & \text { if } \operatorname{codim}(x \cap y) \notin M\end{cases}
$$

The matrix $A$ has up to $d+1$

- eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$, (in the same order)
- eigenspaces $V_{0}, \ldots, V_{d} \subseteq \mathbb{R}^{n}$ where $n:=|X|$,
- multiplicities $f_{0}=\operatorname{dim}\left(V_{0}\right), \ldots, f_{d}=\operatorname{dim}\left(V_{d}\right)$.

The graph $G_{M}$ is $k$-regular for some $k$, so w.l.o.g.

- $\theta_{0}=k$,
- $V_{0}=\langle j\rangle, j$ is the all-one vector.


## Erdős-Ko-Rado Sets

## Definition

Let $n \geq 2 k$. Consider $X=\{1, \ldots, n\}$. An Erdős-Ko-Rado set (EKR set) of $X$ is a set $Y$ of $k$-subsets of $X$ such that the elements of $Y$ meet pairwise in at least $t$ elements.

## Erdős-Ko-Rado Sets

## Definition

Let $n \geq 2 k$. Consider $X=\{1, \ldots, n\}$. An Erdös-Ko-Rado set (EKR set) of $X$ is a set $Y$ of $k$-subsets of $X$ such that the elements of $Y$ meet pairwise in at least $t$ elements.

Examples $(t=1)$
(1) All $k$-sets that contain 1 . For $n=4, k=2$ :

$$
\{1,2\},\{1,3\},\{1,4\} .
$$

(2) $n=2 k$ : All $k$-sets that do not contain $n$. For $n=4, k=2$ :

$$
\{1,2\},\{1,3\},\{2,3\} .
$$

Maximum size and complete classification by Erdős, Ko, Rado (1961), Frankl, Wilson (1986), and Ahlswede, Khachatrian (1997).

## Erdős-Ko-Rado Sets of Generators on Polar Spaces

## Definition

An EKR set $Y$ of generators on a polar space is a $\{1, \ldots, t\}$-clique. (Hence, the elements of $Y$ meet pairwise in a subspace of at most codimension $t$.)

## Erdős-Ko-Rado Sets of Generators on Polar Spaces

## Definition

An EKR set $Y$ of generators on a polar space is a $\{1, \ldots, t\}$-clique. (Hence, the elements of $Y$ meet pairwise in a subspace of at most codimension $t$.)

## Examples $(t=d-1)$

(1) All generators on a fixed point.
(2) All generators which meet a fixed generator in at most codimension $t / 2$.

## Example

All generators on a fixed $(d-t)$-space.

## Some Results for $t=d-1$ resp. $M=\{1, \ldots, d-1\}$

Theorem (Stanton (1980))
Tight bounds for all polar spaces except $\mathbf{H}\left(2 d-1, q^{2}\right)$, d odd.

## Some Results for $t=d-1$ resp. $M=\{1, \ldots, d-1\}$

## Theorem (Stanton (1980))

Tight bounds for all polar spaces except $\mathbf{H}\left(2 d-1, q^{2}\right)$, d odd.
Theorem (I., Metsch (2013))
An EKR set of $\mathbf{H}\left(2 d-1, q^{2}\right), d$ odd, has at most size $\approx q^{(d-1)^{2}+1}$. (The largest known example for $d>3$ has size $\approx q^{(d-1)^{2}}$.)

## Some Results for $t=d-1$ resp. $M=\{1, \ldots, d-1\}$

## Theorem (Stanton (1980))

Tight bounds for all polar spaces except $\mathbf{H}\left(2 d-1, q^{2}\right)$, d odd.

## Theorem (I., Metsch (2013))

An EKR set of $\mathbf{H}\left(2 d-1, q^{2}\right), d$ odd, has at most size $\approx q^{(d-1)^{2}+1}$. (The largest known example for $d>3$ has size $\approx q^{(d-1)^{2}}$.)

Theorem (Pepe, Storme, Vanhove (2011))
The classification of all EKR sets of maximum size for all polar spaces except $\mathbf{H}\left(2 d-1, q^{2}\right), d>3$ odd.

## The Hoffman Bound

Nearly all mentioned results for EKR sets ( $\{1, \ldots, t\}$-cliques) use the (weighted) Hoffman bound.

## The Hoffman Bound

Nearly all mentioned results for EKR sets ( $\{1, \ldots, t\}$-cliques) use the (weighted) Hoffman bound.

## Theorem (Hoffman Bound)

Let $Y$ be an $M$-clique. Let $\mathcal{C} M:=\{1, \ldots, d\} \backslash M$. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{C M}$. Then

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

with equality if and only if $\chi \in\langle j\rangle+V_{\text {min }}$, where $\chi$ is the characteristic vector of $Y$.

## The Proof

The Hoffman Bound (Part 1)
Let $\mathcal{C} M:=\{1, \ldots, d\} \backslash M$. Let $A$ be the adjacency matrix of $G_{\mathcal{C} M}$.

## The Proof

## The Hoffman Bound (Part 1)

Let $\mathcal{C} M:=\{1, \ldots, d\} \backslash M$. Let $A$ be the adjacency matrix of $G_{\mathcal{C} M}$. The matrix $A$ has $d+1$ eigenvalues $\theta_{i}$, eigenspaces $V_{i}$, and $A$ can be decomposed into pairwise orthogonal, idempotent matrices $E_{i}$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

## The Proof

## The Hoffman Bound (Part 1)

Let $\mathcal{C} M:=\{1, \ldots, d\} \backslash M$. Let $A$ be the adjacency matrix of $G_{\mathcal{C} M}$. The matrix $A$ has $d+1$ eigenvalues $\theta_{i}$, eigenspaces $V_{i}$, and $A$ can be decomposed into pairwise orthogonal, idempotent matrices $E_{i}$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

If $Y$ is an $M$-clique, then the characteristic vector $\chi \in \mathbb{R}^{n}$ of $Y$ satisfies

$$
\chi^{T} A \chi=0
$$

## The Proof

## The Hoffman Bound (Part 1)

Let $\mathcal{C} M:=\{1, \ldots, d\} \backslash M$. Let $A$ be the adjacency matrix of $G_{\mathcal{C M}}$. The matrix $A$ has $d+1$ eigenvalues $\theta_{i}$, eigenspaces $V_{i}$, and $A$ can be decomposed into pairwise orthogonal, idempotent matrices $E_{i}$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

If $Y$ is an $M$-clique, then the characteristic vector $\chi \in \mathbb{R}^{n}$ of $Y$ satisfies

$$
\chi^{T} A \chi=0
$$

The vector $\chi$ can be decomposed into eigenvectors:

$$
\chi=\frac{k}{n} j+E_{1} \chi+\ldots+E_{d} \chi .
$$

The Hoffman Bound (Part 2)

$$
\begin{aligned}
& A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d}, \\
& \chi=\frac{k}{n} j+E_{1} \chi+\ldots+E_{d} \chi, \text { and } \chi^{T} A \chi=0 .
\end{aligned}
$$

The Hoffman Bound (Part 2)

$$
\begin{aligned}
& A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d}, \\
& \chi=\frac{k}{n} j+E_{1} \chi+\ldots+E_{d} \chi, \text { and } \chi^{T} A \chi=0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
0 & =\chi^{T} A \chi=\chi^{T}\left(\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d}\right) \chi \\
& =\frac{k}{n}|Y|^{2}+\theta_{1}\left|E_{1} \chi\right|^{2}+\ldots+\theta_{d}\left|E_{d} \chi\right|^{2} \\
& \geq \frac{k}{n}|Y|^{2}+\theta_{\min }\left|E_{\min } \chi\right|^{2} .
\end{aligned}
$$

Here $\theta_{\text {min }}<0$ is the smallest eigenvalue of $A$.

The Hoffman Bound (Part 3)

$$
0 \geq k|Y|^{2}+n \theta_{\min }\left|E_{\min } \chi\right|^{2} .
$$

The Hoffman Bound (Part 3)

$$
0 \geq k|Y|^{2}+n \theta_{\min }\left|E_{\min } \chi\right|^{2} .
$$

Furthermore,

$$
|Y|=|\chi|^{2}=\frac{|Y|^{2}}{n^{2}}|j|^{2}+\left|E_{1} \chi\right|^{2}+\ldots+\left|E_{d} \chi\right|^{2} \geq \frac{|Y|^{2}}{n}+\left|E_{\min } \chi\right|^{2} .
$$

The Hoffman Bound (Part 3)

$$
0 \geq k|Y|^{2}+n \theta_{\min }\left|E_{\min } \chi\right|^{2} .
$$

Furthermore,

$$
|Y|=|\chi|^{2}=\frac{|Y|^{2}}{n^{2}}|j|^{2}+\left|E_{1} \chi\right|^{2}+\ldots+\left|E_{d} \chi\right|^{2} \geq \frac{|Y|^{2}}{n}+\left|E_{\min } \chi\right|^{2} .
$$

This yields the Hoffman bound

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

The Hoffman Bound (Part 3)

$$
0 \geq k|Y|^{2}+n \theta_{\min }\left|E_{\min } \chi\right|^{2} .
$$

Furthermore,

$$
|Y|=|\chi|^{2}=\frac{|Y|^{2}}{n^{2}}|j|^{2}+\left|E_{1} \chi\right|^{2}+\ldots+\left|E_{d} \chi\right|^{2} \geq \frac{|Y|^{2}}{n}+\left|E_{\min } \chi\right|^{2} .
$$

This yields the Hoffman bound

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

with equality if and only if

$$
\chi=\frac{k}{n} j+E_{\min } \chi \in\langle j\rangle+V_{\min } .
$$

## The Weighted Hoffman Bound

Theorem (Hoffman Bound)
Let $Y$ be an $M$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{C M}$. Then

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

with equality if and only if $\chi \in\langle j\rangle+V_{\min }$, where $\chi$ is the characteristic vector of $Y$.

## The Weighted Hoffman Bound

## Theorem (Hoffman Bound)

Let $Y$ be an $M$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{C M}$. Then

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

with equality if and only if $\chi \in\langle j\rangle+V_{\min }$, where $\chi$ is the characteristic vector of $Y$.

This bound is sufficient for the results on EKR sets by Stanton (1980), Pepe, Storme, Vanhove (2011).

## The Weighted Hoffman Bound

## Theorem (Hoffman Bound)

Let $Y$ be an $M$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{C M}$. Then

$$
|Y| \leq \frac{-n \theta_{\min }}{k-\theta_{\min }}
$$

with equality if and only if $\chi \in\langle j\rangle+V_{\min }$, where $\chi$ is the characteristic vector of $Y$.

This bound is sufficient for the results on EKR sets by Stanton (1980), Pepe, Storme, Vanhove (2011).
The proof never uses that $A$ is the adjacency matrix! Only

$$
\chi^{\top} A \chi \leq 0 \text { if } \chi \text { is the characteristic vector of an } M \text {-clique }
$$

is necessary.

## Linear Programming and the Hoffman Bound

## Problem

How does one find matrices $A^{\prime}$ satisfying the following?

$$
\begin{equation*}
\chi^{T} A^{\prime} \chi \leq 0 \text { if } \chi \text { is the characteristic vector of an } M \text {-clique } \tag{1}
\end{equation*}
$$

Solution (Delsarte's LP bound): Consider linear combinations $A^{\prime}$ of $J, E_{1}, \ldots, E_{d}$ with $A_{i j}^{\prime} \leq 0$ if $A_{i j}=0$.

## Linear Programming and the Hoffman Bound

## Problem

How does one find matrices $A^{\prime}$ satisfying the following?

$$
\begin{equation*}
\chi^{\top} A^{\prime} \chi \leq 0 \text { if } \chi \text { is the characteristic vector of an } M \text {-clique } \tag{1}
\end{equation*}
$$

Solution (Delsarte's LP bound): Consider linear combinations $A^{\prime}$ of $J, E_{1}, \ldots, E_{d}$ with $A_{i j}^{\prime} \leq 0$ if $A_{i j}=0$.

Example ( $\mathbf{H}\left(5, q^{2}\right),\{1,2\}$-cliques)

- The adjacency matrix $A$ for the disjointness graph has the eigenvalues $q^{9}, q^{3},-q^{4},-q^{6}$.
- The Hoffman bound yields approximately $|Y| \leq q^{6}$.


## Linear Programming and the Hoffman Bound

## Problem

How does one find matrices $A^{\prime}$ satisfying the following?

$$
\begin{equation*}
\chi^{\top} A^{\prime} \chi \leq 0 \text { if } \chi \text { is the characteristic vector of an } M \text {-clique } \tag{1}
\end{equation*}
$$

Solution (Delsarte's LP bound): Consider linear combinations $A^{\prime}$ of $J, E_{1}, \ldots, E_{d}$ with $A_{i j}^{\prime} \leq 0$ if $A_{i j}=0$.

Example ( $\mathbf{H}\left(5, q^{2}\right),\{1,2\}$-cliques)

- The adjacency matrix $A$ for the disjointness graph has the eigenvalues $q^{9}, q^{3},-q^{4},-q^{6}$.
- The Hoffman bound yields approximately $|Y| \leq q^{6}$.
- There exists an $A^{\prime}$ as in (1) that has $-q^{5}$ as its smallest eigenvalue.
- The weighted Hoffman bound yields approximately $|Y| \leq q^{5}$.

A variant of this technique was used to prove better upper bounds for $\mathbf{H}\left(2 d-1, q^{2}\right), d$ odd, by I., Metsch (2013).

## What if $t<d-1$ ?

Some geometrical results on EKR sets with pairwise intersections in at least codimension $t$ :

Theorem (Brouwer, Hemmeter (1992))
A classification of all $\{1,2\}$-cliques in non-Hermitian polar spaces.

## What if $t<d-1$ ?

Some geometrical results on EKR sets with pairwise intersections in at least codimension $t$ :

Theorem (Brouwer, Hemmeter (1992))
A classification of all $\{1,2\}$-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

- A classification of examples of maximum size for $t \leq c \sqrt{d}$ for some constant c.
- Estimates of the (non-weighted) Hoffman bound for all $t$.


## What if $t<d-1$ ?

Some geometrical results on EKR sets with pairwise intersections in at least codimension $t$ :

Theorem (Brouwer, Hemmeter (1992))
A classification of all $\{1,2\}$-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

- A classification of examples of maximum size for $t \leq c \sqrt{d}$ for some constant c.
- Estimates of the (non-weighted) Hoffman bound for all $t$.


## Theorem (De Boeck)

- Classification of all EKR sets of planes (not necessarily generators) in nearly all polar spaces.
- Classification of EKR sets on $Q^{+}(4 n+1, q)$ for $t=d-1$.


## Further Improvements?

How to determine the maximum size of an EKR set in $\mathbf{H}\left(2 d-1, q^{2}\right)$ ?

## Further Improvements?

How to determine the maximum size of an EKR set in $\mathbf{H}\left(2 d-1, q^{2}\right)$ ?

## Idea

Let $Y$ be a EKR set $\left(\{1, \ldots, t\}\right.$-clique) of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $P$ be a point of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $Y_{1}$ be subset of $Y$ on $P$, and let $Y_{2}:=Y \backslash Y_{1}$.

## Further Improvements?

How to determine the maximum size of an EKR set in $\mathbf{H}\left(2 d-1, q^{2}\right)$ ?

## Idea

Let $Y$ be a EKR set $\left(\{1, \ldots, t\}\right.$-clique) of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $P$ be a point of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $Y_{1}$ be subset of $Y$ on $P$, and let $Y_{2}:=Y \backslash Y_{1}$. Then the projection of the elements of $Y$ from $P$ onto a $\mathbf{H}\left(2 d-3, q^{2}\right)$ creates cross-intersecting EKR sets $Y_{1}$ and $Y_{2}$ :

- The projected elements of $Y_{1}$ meet all elements of $Y_{2}$ in at least codimension $t$.
- The projected elements of $Y_{2}$ meet all elements of $Y_{1}$ in at least codimension $t$.


## Further Improvements?

How to determine the maximum size of an EKR set in $\mathbf{H}\left(2 d-1, q^{2}\right)$ ?

## Idea

Let $Y$ be a EKR set ( $\{1, \ldots, t\}$-clique) of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $P$ be a point of $\mathbf{H}\left(2 d-1, q^{2}\right)$. Let $Y_{1}$ be subset of $Y$ on $P$, and let $Y_{2}:=Y \backslash Y_{1}$. Then the projection of the elements of $Y$ from $P$ onto a $\mathbf{H}\left(2 d-3, q^{2}\right)$ creates cross-intersecting EKR sets $Y_{1}$ and $Y_{2}$ :

- The projected elements of $Y_{1}$ meet all elements of $Y_{2}$ in at least codimension $t$.
- The projected elements of $Y_{2}$ meet all elements of $Y_{1}$ in at least codimension $t$.
Can this be used to improve results on EKR sets?


## Maximum Size?

## Definition

A cross-intersecting EKR set is a pair of sets of generators $Y_{1}, Y_{2}$ such that

- the elements of $Y_{1}$ meet all elements of $Y_{2}$ in at least codimension $t$,
- the elements of $Y_{2}$ meet all elements of $Y_{1}$ in at least codimension $t$.


## Maximum Size?

## Definition

A cross-intersecting EKR set is a pair of sets of generators $Y_{1}, Y_{2}$ such that

- the elements of $Y_{1}$ meet all elements of $Y_{2}$ in at least codimension $t$,
- the elements of $Y_{2}$ meet all elements of $Y_{1}$ in at least codimension $t$.

How do we measure the size of a cross-intersecting EKR set? There are many possibilities:

- The product: $\left|Y_{1}\right| \cdot\left|Y_{2}\right|$.
- The sum: $\left|Y_{1}\right|+\left|Y_{2}\right|$.


## Maximum Size?

## Definition

A cross-intersecting EKR set is a pair of sets of generators $Y_{1}, Y_{2}$ such that

- the elements of $Y_{1}$ meet all elements of $Y_{2}$ in at least codimension $t$,
- the elements of $Y_{2}$ meet all elements of $Y_{1}$ in at least codimension $t$.

How do we measure the size of a cross-intersecting EKR set? There are many possibilities:

- The product: $\left|Y_{1}\right| \cdot\left|Y_{2}\right|$.
- The sum: $\left|Y_{1}\right|+\left|Y_{2}\right|$.
- Some linear combination: $\left|Y_{1}\right|+q\left|Y_{2}\right|$.
- Something silly: $e^{\left|Y_{1}\right|} \cdot\left|Y_{2}\right|+\log \left(\left|Y_{1}\right|\right)$.

In this talk: $\left|Y_{1}\right| \cdot\left|Y_{2}\right|$.

## The (weighted) Hoffman Bound

The Hoffman bound for cross-intersecting sets was used by ...

- Vector spaces: "The eigenvalue method for cross $t$-intersecting families.", Tokushige (2013).
- Permutations: "Intersecting families of permutations.", Ellis, Friedgut, Pilpel (2011).
- Coding Theory: "Scalable secure storage when half the system is faulty.", Alon, Kaplan, Krivelevich, Malkhi, Stern (2000).


## The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)
Let $Y_{1}, Y_{2}$ be an cross-intersecting EKR set. Let $\theta_{2 \text { max }}$ be a second largest absolute eigenvalue of the adjacency matrix $A$ of $G_{\{t+1, \ldots, d\}}$.

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \leq \frac{n \cdot\left|\theta_{2 \max }\right|}{k+\left|\theta_{2 \max }\right|}
$$

## The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)
Let $Y_{1}, Y_{2}$ be an cross-intersecting EKR set. Let $\theta_{2 \text { max }}$ be a second largest absolute eigenvalue of the adjacency matrix $A$ of $G_{\{t+1, \ldots, d\}}$.

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \leq \frac{n \cdot\left|\theta_{2 \max }\right|}{k+\left|\theta_{2 \max }\right|}
$$

with equality if and only if $\chi_{i} \in\langle j\rangle+V_{-}+V_{+}$, where

- $\chi_{i}$ is the characteristic vector of $Y_{i}$,
- $V_{+}$is the eigenspace corresponding to $\left|\theta_{2 \text { max }}\right|$ (if it exists),
- $V_{-}$is the eigenspace corresponding to $-\left|\theta_{2 \max }\right|$ (if it exists).


## The (weighted) Hoffman Bound

## Theorem (Hoffman bound for cross-intersecting EKR sets)

Let $Y_{1}, Y_{2}$ be an cross-intersecting EKR set. Let $\theta_{2 \text { max }}$ be a second largest absolute eigenvalue of the adjacency matrix $A$ of $G_{\{t+1, \ldots, d\}}$.

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \leq \frac{n \cdot\left|\theta_{2 \max }\right|}{k+\left|\theta_{2 \max }\right|}
$$

with equality if and only if $\chi_{i} \in\langle j\rangle+V_{-}+V_{+}$, where

- $\chi_{i}$ is the characteristic vector of $Y_{i}$,
- $V_{+}$is the eigenspace corresponding to $\left|\theta_{2 \max }\right|$ (if it exists),
- $V_{-}$is the eigenspace corresponding to $-\left|\theta_{2 \max }\right|$ (if it exists).
- The proof is the same. Only with $0=\chi_{1}^{T} A \chi_{2}$ instead of $0=\chi^{T} A \chi$.
- Again, $A$ can be replaced with other matrices $A^{\prime}$ with $0 \geq \chi_{1}^{T} A^{\prime} \chi_{2}$.
- Hence, everything works the same as in the "normal" case.


## The (weighted) Hoffman Bound

## Theorem (Hoffman bound for cross-intersecting EKR sets)

Let $Y_{1}, Y_{2}$ be an cross-intersecting EKR set. Let $\theta_{2 \text { max }}$ be a second largest absolute eigenvalue of the adjacency matrix $A$ of $G_{\{t+1, \ldots, d\}}$.

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \leq \frac{n \cdot\left|\theta_{2 \max }\right|}{k+\left|\theta_{2 \max }\right|}
$$

with equality if and only if $\chi_{i} \in\langle j\rangle+V_{-}+V_{+}$, where

- $\chi_{i}$ is the characteristic vector of $Y_{i}$,
- $V_{+}$is the eigenspace corresponding to $\left|\theta_{2 \text { max }}\right|$ (if it exists),
- $V_{-}$is the eigenspace corresponding to $-\left|\theta_{2 \text { max }}\right|$ (if it exists).

The proof reveals some more details:

- If $\chi_{1} \in\langle j\rangle+V_{-}$, then $Y_{1}=Y_{2}$ is an EKR set.
- If $\chi_{1}=\alpha j+v_{-}+v_{+}\left(\right.$with $\left.v_{-} \in V_{-}, v_{+} \in V_{+}\right)$, then $\chi_{2}=\alpha j+v_{-}-v_{+}$.


## Some Results for $M=\{1, \ldots, d-1\}$

## Example

The matrix $A$ that belongs to $\mathbf{Q}^{-}(5, q)$ has the eigenvalues

$$
q^{9} \quad-q^{5} \quad q^{3} \quad-q^{3} .
$$

The absolute second largest eigenvalue is the smallest eigenvalue.

## Some Results for $M=\{1, \ldots, d-1\}$

## Example

The matrix $A$ that belongs to $\mathbf{Q}^{-}(5, q)$ has the eigenvalues

| $q^{9}$ | $-q^{5}$ | $q^{3}$ | $-q^{3}$. |
| :--- | :--- | :--- | :--- |

The absolute second largest eigenvalue is the smallest eigenvalue. Hence, $Y_{1}=Y_{2}$ : the classification of all EKR sets by Pepe, Storme, and Vanhove is sufficient.

## Theorem

For all polar spaces except $\mathbf{H}\left(2 d-1, q^{2}\right), \mathbf{Q}^{+}(2 d-1, q)$ (if $d$ even), $\mathbf{Q}(2 d, q)$ (if $d$ even), and $\mathbf{W}(2 d-1, q)$ ( $d, q$ both even) the cross-intersecting EKR sets of maximum size are EKR sets.

## $\mathbf{Q}^{+}(2 d-1, q)$ and $\mathbf{Q}(2 d, q), d$ even

Example $\left(\mathbf{Q}^{+}(7, q)\right)$

$$
\begin{array}{lllll}
q^{6} & -\mathbf{q}^{3} & q^{2} & -\mathbf{q}^{3} & q^{6} .
\end{array}
$$

- The absolute second largest eigenvalue is the second largest eigenvalue.
- $Y_{1}$ are the latins of $\mathbf{Q}^{+}(7, q), Y_{2}$ are the greeks of $\mathbf{Q}^{+}(7, q)$.


## $\mathbf{Q}^{+}(2 d-1, q)$ and $\mathbf{Q}(2 d, q), d$ even

Example $\left(\mathbf{Q}^{+}(7, q)\right)$
$q^{6} \quad-\mathbf{q}^{3} \quad q^{2} \quad-\mathbf{q}^{3} \quad q^{6}$.

- The absolute second largest eigenvalue is the second largest eigenvalue.
- $Y_{1}$ are the latins of $\mathbf{Q}^{+}(7, q), Y_{2}$ are the greeks of $\mathbf{Q}^{+}(7, q)$.

Example $(\mathbf{Q}(8, q))$
$q^{10}$

$q^{4}$
$-q^{4}$
$q^{6}$.

- The absolute second largest eigenvalue is the second largest eigenvalue as well as the smallest eigenvalue.
- Either $Y_{1}=Y_{2}$ or the $\mathbf{Q}^{+}(7, q)$ example.


## Example

$\mathbf{H}\left(5, q^{2}\right): \quad q^{9}$
$\mathbf{H}\left(7, q^{2}\right): q^{16}$
$-q^{4}$
$-\mathbf{q}^{9}$
$q^{3}$
$q^{6}$
resp.
$q^{12}$.

- The blue eigenvalues belong to nice EKR sets.
- The bold eigenvalues are the smallest.
- The red eigenvalues are the absolute second largest.


## $\mathbf{H}\left(2 d-1, q^{2}\right)$

## Example

$\mathbf{H}\left(5, q^{2}\right): \quad q^{9}$
$\mathbf{H}\left(7, q^{2}\right): q^{16}$
$-q^{4}$
$-\mathbf{q}^{9}$
$q^{3}$
resp.
$q^{12}$.

- The blue eigenvalues belong to nice EKR sets.
- The bold eigenvalues are the smallest.
- The red eigenvalues are the absolute second largest.

The bounds for $\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|}$.

- The cross-intersecting Hoffman bound yields $\approx q^{d(d-1)}$.
- The cross-intersecting Hoffman bound with LP yields $\approx q^{(d-1)^{2}+1}$.
- The largest known examples have size $\approx q^{5}$ for $d=3, q^{19 / 2}$ for $d=4$, and $q^{(d-1)^{2}}$ for $d>4$.


## Example ( $\mathbf{H}\left(5, q^{2}\right)$ )

$Y_{1}=Y_{2}$ is the set of all generators meeting a fixed plane in at least a line: $\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{5}$.

Example ( $\mathbf{H}\left(7, q^{2}\right)$ )
$Y_{1}$ is the set of all generators meeting a fixed generator $G$ in at least a line, $Y_{2}$ the set of all generators meeting $G$ in at least a plane:
$\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{19 / 2}$.

## Largest Known Examples on $\mathbf{H}\left(2 d-1, q^{2}\right)$

## Example ( $\mathbf{H}\left(5, q^{2}\right)$ )

$Y_{1}=Y_{2}$ is the set of all generators meeting a fixed plane in at least a line: $\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{5}$.

Example ( $\mathbf{H}\left(7, q^{2}\right)$ )
$Y_{1}$ is the set of all generators meeting a fixed generator $G$ in at least a line, $Y_{2}$ the set of all generators meeting $G$ in at least a plane:
$\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{19 / 2}$.

Example (H(9, $\left.\left.\boldsymbol{q}^{2}\right)\right)$
$Y_{1}=Y_{2}$ is the set of all generators on a fixed point: $\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{16}$.

Example ( $\left.\mathbf{H}\left(11, q^{2}\right)\right)$
$Y_{1}=Y_{2}$ is the set of all generators on a fixed point: $\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{25}$.

## Summary for $\mathbf{H}\left(2 d-1, q^{2}\right)$

Theorem (I., Metsch (2013))
Let $Y$ be an EKR set, $d$ odd. Then

$$
|Y| \lesssim q^{(d-1)^{2}+1} .
$$

Theorem
Let $Y_{1}, Y_{2}$ be a cross-intersecting EKR set. Then

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \lesssim q^{(d-1)^{2}+1} .
$$

## Summary for $\mathbf{H}\left(2 d-1, q^{2}\right)$

## Theorem (I., Metsch (2013))

Let $Y$ be an EKR set, $d$ odd. Then

$$
|Y| \lesssim q^{(d-1)^{2}+1}
$$

## Theorem

Let $Y_{1}, Y_{2}$ be a cross-intersecting EKR set. Then

$$
\sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \lesssim q^{(d-1)^{2}+1} .
$$

## Examples

The largest known examples:

- $\mathbf{H}\left(5, q^{2}\right): \sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{(d-1)^{2}+1}$.
- $\mathbf{H}\left(7, q^{2}\right): \sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{(d-1)^{2}+1 / 2}$.
- $\mathbf{H}\left(2 d-1, q^{2}\right): \sqrt{\left|Y_{1}\right| \cdot\left|Y_{2}\right|} \approx q^{(d-1)^{2}}$.


## Spreads

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set $Y$ with pairwise intersections in $\{t+1, \ldots, d\}$.


## Spreads

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set $Y$ with pairwise intersections in $\{t+1, \ldots, d\}$.
- If $t=d-1$, then such a set is called a partial spread.
- If $Y$ partitions the points, then it is a spread.


## Spreads

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set $Y$ with pairwise intersections in $\{t+1, \ldots, d\}$.
- If $t=d-1$, then such a set is called a partial spread.
- If $Y$ partitions the points, then it is a spread.

History:

- In $1981 \mathrm{~J} . \mathrm{A}$. Thas publishes "Ovoids and spreads of finite classical polar spaces.", a first complete survey of spreads on polar spaces.
- Upper bounds for the size of partial spreads and sets reaching these bounds were investigated since the 70's.

Theorem (J. A. Thas (1981/1990))
The Hermitian polar space $\mathbf{H}\left(2 d-1, q^{2}\right)$ has no spread.

## Theorem (J. A. Thas (1981/1990))

The Hermitian polar space $\mathbf{H}\left(2 d-1, q^{2}\right)$ has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))
A partial spread of $\mathbf{H}\left(2 d-1, q^{2}\right), d$ even, has at most

- $\frac{1}{2}\left(q^{3}+q+2\right)$ elements if $d=2$ (sharp for $\left.q=2,3\right)$, (Dye $(q=2,1992)$, Ebert, Hirschfeld $(q=3,1999))$
- $q^{2 d-1}-q^{3 d / 2}(\sqrt{q}-1)$ elements if $d>2$.


## Theorem (J. A. Thas (1981/1990))

The Hermitian polar space $\mathbf{H}\left(2 d-1, q^{2}\right)$ has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))
A partial spread of $\mathbf{H}\left(2 d-1, q^{2}\right)$, $d$ even, has at most

- $\frac{1}{2}\left(q^{3}+q+2\right)$ elements if $d=2$ (sharp for $\left.q=2,3\right)$,
(Dye $(q=2,1992)$, Ebert, Hirschfeld $(q=3,1999))$
- $q^{2 d-1}-q^{3 d / 2}(\sqrt{q}-1)$ elements if $d>2$.

Theorem (De Beule, Metsch ( $d=3$, 2007)/Vanhove (2009))
A partial spread of $\mathbf{H}\left(2 d-1, q^{2}\right)$, $d$ odd, has at most

$$
q^{d}+1
$$

elements. This bound is sharp.
(Agulglia, Cossidente, Ebert ( $d=3,2003$ )/Luyckx (2008))

## More Results

Theorem (Vanhove (2011))
A $\{t\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right)$, $t$ odd, has at most

$$
q^{t}+1
$$

elements.

## More Results

Theorem (Vanhove (2011))
A $\{t\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right)$, $t$ odd, has at most

$$
q^{t}+1
$$

elements.
Theorem (I. (2014))
A $\{t\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right)$ has at most

$$
q^{2 d-1}-q \frac{q^{2 d-2}-1}{q+1}
$$

elements.

## Theorem (Another Hoffman Bound)

Let $Y$ be a $\{t\}$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$. Then

$$
|Y| \leq 1-\frac{k}{\theta_{\min }}
$$

with equality if and only if the characteristic vector $\chi$ of $Y$ satisfies
$\chi \in V_{\text {min }}^{\perp}$.

## Theorem (Another Hoffman Bound)

Let $Y$ be a $\{t\}$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$. Then

$$
|Y| \leq 1-\frac{k}{\theta_{\min }}
$$

with equality if and only if the characteristic vector $\chi$ of $Y$ satisfies $\chi \in V_{\text {min }}^{\perp}$.

## Theorem (Godsil (1978))

Let $f_{i}$ be the multiplicity of an eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$ not equal to $k$. Then

$$
|Y| \leq 1+f_{i}
$$

with equality only if the Hoffman bound is sharp.

## Proof.

Let $Y$ be a $\{t\}$-clique. The decomposition of $A$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

## Proof.

Let $Y$ be a $\{t\}$-clique. The decomposition of $A$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

The entry $\left(E_{i}\right)_{x y}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of $E_{i}$ indexed by $Y$ has the form $\alpha I+\beta J$.

## Proof.

Let $Y$ be a $\{t\}$-clique. The decomposition of $A$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

The entry $\left(E_{i}\right)_{x y}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of $E_{i}$ indexed by $Y$ has the form $\alpha I+\beta J$. Hence, the characteristic vector $\chi$ of $Y$ satisfies

$$
0 \leq \chi^{\top} E_{i} \chi=\chi^{\top}(\alpha I+\beta J) \chi=\alpha|Y|+\beta|Y|^{2}
$$

## Proof.

Let $Y$ be a $\{t\}$-clique. The decomposition of $A$ :

$$
A=\frac{k}{n} J+\theta_{1} E_{1}+\ldots+\theta_{d} E_{d} .
$$

The entry $\left(E_{i}\right)_{x y}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of $E_{i}$ indexed by $Y$ has the form $\alpha I+\beta J$. Hence, the characteristic vector $\chi$ of $Y$ satisfies

$$
0 \leq \chi^{\top} E_{i} \chi=\chi^{\top}(\alpha I+\beta J) \chi=\alpha|Y|+\beta|Y|^{2}
$$

with equality if and only if $E_{i} \chi=0$ resp. $\chi \in V_{i}^{\perp}$.

## Proof.

Rearranging yields

$$
|Y| \leq \frac{-\alpha}{\beta} \text { resp. }|Y| \leq 1-\frac{k}{\theta_{i}}
$$

if $\beta<0$ resp. $\theta_{i}<0$. This proves the Hoffman bound.

## Proof.

Rearranging yields

$$
|Y| \leq \frac{-\alpha}{\beta} \text { resp. }|Y| \leq 1-\frac{k}{\theta_{i}}
$$

if $\beta<0$ resp. $\theta_{i}<0$. This proves the Hoffman bound.
The $|Y| \times|Y|$-submatrix $S:=\alpha I+\beta J$ of $E_{i}$ indexed by $Y$ satisfies

$$
\operatorname{rank}(S)=\operatorname{rank}(\alpha I+\beta J) \leq \operatorname{rank}\left(E_{i}\right)=f_{i} .
$$

## Proof.

Rearranging yields

$$
|Y| \leq \frac{-\alpha}{\beta} \text { resp. }|Y| \leq 1-\frac{k}{\theta_{i}}
$$

if $\beta<0$ resp. $\theta_{i}<0$. This proves the Hoffman bound.
The $|Y| \times|Y|$-submatrix $S:=\alpha I+\beta J$ of $E_{i}$ indexed by $Y$ satisfies

$$
\operatorname{rank}(S)=\operatorname{rank}(\alpha I+\beta J) \leq \operatorname{rank}\left(E_{i}\right)=f_{i} .
$$

Now

$$
\begin{array}{ll}
\operatorname{rank}(S)=|Y|-1 & \text { if } \alpha=-\beta|Y|, \\
\operatorname{rank}(S)=|Y| & \text { if } \alpha \neq-\beta|Y|,
\end{array}
$$

yields Godsil's bound.

## Theorem (Another Hoffman Bound)

Let $Y$ be a $\{t\}$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$. Then

$$
|Y| \leq 1-\frac{k}{\theta_{\min }}
$$

with equality if and only if the characteristic vector $\chi$ of $Y$ satisfies $\chi \in V_{\text {min }}^{\perp}$.

## Theorem (Godsil (1978))

Let $f_{i}$ be the multiplicity of an eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$ not equal to $k$. Then

$$
|Y| \leq 1+f_{i}
$$

with equality only if the Hoffman bound is sharp.

## Theorem (Another Hoffman Bound)

Let $Y$ be a $\{t\}$-clique. Let $\theta_{\text {min }}$ be the smallest eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$. Then

$$
|Y| \leq 1-\frac{k}{\theta_{\min }}
$$

with equality if and only if the characteristic vector $\chi$ of $Y$ satisfies $\chi \in V_{\text {min }}^{\perp}$.

## Theorem (Godsil (1978))

Let $f_{i}$ be the multiplicity of an eigenvalue of the adjacency matrix $A$ of $G_{\{t\}}$ not equal to $k$. Then

$$
|Y| \leq 1+f_{i}
$$

with equality only if the Hoffman bound is sharp.
Another application: distance-2 ovoids in the generalized hexagon with parameter ( $s, s^{3}$ ) by Coolsaet, Van Maldeghem (2000).

## More Results

Theorem (Vanhove (2011))
A $\{t\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right), t$ odd, has at most

$$
q^{t}+1
$$

elements.
Theorem (I. (2014))
A $\{t\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right)$ has at most

$$
q^{2 d-1}-q \frac{q^{2 d-2}-1}{q+1}
$$

elements.

## Some Comparsions for Codimension 2

Example ( $\left.\mathbf{H}\left(3, q^{2}\right), t=2\right)$

- Multiplicity bound: $q^{3}-q^{2}+q$.
- Best known bound for $q \neq 4: \frac{1}{2}\left(q^{3}+q+2\right)$.
- Largest examples: probably $\approx \alpha q^{2}$.


## Some Comparsions for Codimension 2

Example ( $\left.\mathbf{H}\left(3, q^{2}\right), t=2\right)$

- Multiplicity bound: $q^{3}-q^{2}+q$.
- Best known bound for $q \neq 4: \frac{1}{2}\left(q^{3}+q+2\right)$.
- Largest examples: probably $\approx \alpha q^{2}$.

Example ( $\left.\mathbf{H}\left(5, q^{2}\right), t=2\right)$

- Multiplicity bound: $q^{5}-q^{4}+q^{3}-q^{2}+q$.
- Sharp bound by Maarten De Boeck: $q^{4}+q^{2}+2$.

Example $\left(\mathbf{H}\left(2 d-1, q^{2}\right), t=2\right)$

- Multiplicity bound: $\frac{q^{2 d}-1}{q+1}+1$.
- Largest example: $\frac{q^{2 d}-1}{q^{2}-1}$.


## Some Comparsions for Partial Spreads

Example ( $\left.\mathbf{H}\left(3, q^{2}\right), t=2\right)$

- Multiplicity bound: $q^{3}-q^{2}+q$.
- Best known bound for $q \neq 4: \frac{1}{2}\left(q^{3}+q+2\right)$.
- Largest examples: probably $\approx \alpha q^{2}$.


## Some Comparsions for Partial Spreads

Example ( $\left.\mathbf{H}\left(3, q^{2}\right), t=2\right)$

- Multiplicity bound: $q^{3}-q^{2}+q$.
- Best known bound for $q \neq 4: \frac{1}{2}\left(q^{3}+q+2\right)$.
- Largest examples: probably $\approx \alpha q^{2}$.

Example $\left(\mathbf{H}\left(7, q^{2}\right), t=4\right)$

- Multiplicity bound: $q^{7}-q^{6}+q^{5}-q^{4}+q^{3}-q^{2}+q$.
- Best known bound for $q>3: q^{7}-q^{6}(\sqrt{q}-1)$.

Example ( $\mathbf{H}\left(2 d-1, q^{2}\right), t=d>4$ even $)$

- Multiplicity bound: $q^{2 d-1}-q^{\frac{q^{2 d-2}-1}{q+1}}$.
- Previously best known bound: $q^{2 d-1}-q^{3 d / 2}(\sqrt{q}-1)$.

Theorem (Vanhove (2011))
A $\{d\}$-clique of $\mathbf{H}\left(2 d-1, q^{2}\right), d$ odd, has at most

$$
q^{d}+1
$$

elements.
Frédéric Vanhove also provided a second, geometrical proof.

## Problem

Is there a better geometrical argument?

## What is Missing?

## Problem

The dual problem to $\{1, \ldots, t\}$-cliques resp. EKR sets:

- $\{t+1, \ldots, d\}$-cliques of polar spaces.
- analog problems for sets (codes) and vector spaces (network codes) are hard.


## What is Missing?

## Problem

The dual problem to $\{1, \ldots, t\}$-cliques resp. EKR sets:

- $\{t+1, \ldots, d\}$-cliques of polar spaces.
- analog problems for sets (codes) and vector spaces (network codes) are hard.


## Problem

The dual problem to $\{t\}$-cliques resp. constant distance codes:

- $\{1, \ldots, t-1, t+1, \ldots, d\}$-cliques of polar spaces.
- an alternative generalization of $\{1, \ldots, d-1\}$-cliques.

Thank You!

