On the Maximum Size of *M*-Cliques of Generators on Hermitian Polar Spaces

Ferdinand Ihringer

Justus Liebig University Gießen, Germany

28/02/2014, Ghent University

Finite classical polar spaces are incidence geometries (points, lines, ..., generators):

- $\mathbf{Q}^{-}(2d+1,q)/\Omega^{-}(2d+2,q)$: Elliptic quadric.
- $\mathbf{Q}(2d,q)/\Omega(2d+1,q)$: Parabolic quadric.
- $\mathbf{Q}^+(2d-1,q)/\Omega^+(2d,q)$: Hyperbolic quadric.
- W(2d-1,q)/Sp(2d,q): Symplectic polar space.
- $H(2d-1,q^2)/U(2d,q^2)$: Hermitian polar space.
- $H(2d, q^2)/U(2d + 1, q^2)$: Hermitian polar space.

In this talk:

- All polar spaces are classical and finite.
- Focus on $H(2d 1, q^2)$.

Polar Spaces ○●○○ EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

(Distance-)Regular Graphs

Definition

Let $G_M = (X, \sim_M)$ be a graph, where

- the vertices X are the generators (d-spaces) of $H(2d 1, q^2)$,
- $M \subseteq \{1, \ldots, d\}$,
- the adjacency relation ~_M is defined by x ~_M y if and only if codim(x ∩ y) ∈ M.

Polar Spaces ○●○○ EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

(Distance-)Regular Graphs

Definition

Let $G_M = (X, \sim_M)$ be a graph, where

- the vertices X are the generators (d-spaces) of $H(2d 1, q^2)$,
- $M \subseteq \{1, \ldots, d\}$,
- the adjacency relation ~_M is defined by x ~_M y if and only if codim(x ∩ y) ∈ M.
- This defines a regular graph: The number of generators meeting a fixed generator x in an *i*-space for some *i* ∈ M is independent of x.
- Very regular: the $\sim_{\{i\}}$ are the relations of an association scheme.

Polar Spaces	EKR Sets 000000000	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
M-Cliques			

Problem

Let $M \subseteq \{1, ..., d\}$. Let Y be a set of generators such that $x, y \in Y$, $x \neq y$, implies $codim(x \cap y) \in M$. Classical questions:

- What is the maximum size of Y?
- How does an example of maximum size look like?

The set Y would be a clique of G_M . In this talk: an *M*-clique.

Polar Spaces	EKR Sets 000000000	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
M-Cliques			

Problem

Let $M \subseteq \{1, ..., d\}$. Let Y be a set of generators such that $x, y \in Y$, $x \neq y$, implies $codim(x \cap y) \in M$. Classical questions:

- What is the maximum size of Y?
- How does an example of maximum size look like?

The set Y would be a clique of G_M . In this talk: an *M*-clique.

Examples

- If $M = \{d\}$, then Y is a **(partial) spread** (of generators).
- If $M = \{1, ..., t\}$, then Y is an **Erdős-Ko-Rado set** (often only t = d 1).
- If $M = \{t\}$, then Y is a constant-distance subspace code.
- If $M = \{t + 1, ..., d\}$, then Y is a **subspace code** with minimum distance t.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Adjacency Matrix

Definition

The adjacency matrix A of G_M is defined as follows:

$$(A)_{xy} = egin{cases} 1 & ext{if codim}(x \cap y) \in M \ 0 & ext{if codim}(x \cap y) \notin M \end{cases}$$

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Adjacency Matrix

Definition

The adjacency matrix A of G_M is defined as follows:

$$(A)_{xy} = egin{cases} 1 & ext{if codim}(x \cap y) \in M \ 0 & ext{if codim}(x \cap y) \notin M \end{cases}$$

The matrix A has up to d + 1

- eigenvalues $\theta_0, \theta_1, \ldots, \theta_d$, (in the same order)
- eigenspaces $V_0, \ldots, V_d \subseteq \mathbb{R}^n$ where n := |X|,
- multiplicities $f_0 = \dim(V_0), \ldots, f_d = \dim(V_d)$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Adjacency Matrix

Definition

The adjacency matrix A of G_M is defined as follows:

$$(A)_{xy} = egin{cases} 1 & ext{if codim}(x \cap y) \in M \ 0 & ext{if codim}(x \cap y) \notin M \end{cases}$$

The matrix A has up to d + 1

- eigenvalues $\theta_0, \theta_1, \ldots, \theta_d$, (in the same order)
- eigenspaces $V_0, \ldots, V_d \subseteq \mathbb{R}^n$ where n := |X|,
- multiplicities $f_0 = \dim(V_0), \ldots, f_d = \dim(V_d)$.

The graph G_M is k-regular for some k, so w.l.o.g.

•
$$\theta_0 = k$$
,

• $V_0 = \langle j \rangle$, j is the all-one vector.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Erdős-Ko-Rado Sets

Definition

Let $n \ge 2k$. Consider $X = \{1, ..., n\}$. An **Erdős-Ko-Rado set** (EKR set) of X is a set Y of k-subsets of X such that the elements of Y meet pairwise in at least t elements.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Erdős-Ko-Rado Sets

Definition

Let $n \ge 2k$. Consider $X = \{1, ..., n\}$. An **Erdős-Ko-Rado set** (EKR set) of X is a set Y of k-subsets of X such that the elements of Y meet pairwise in at least t elements.

Examples (t = 1)

• All k-sets that contain 1. For n = 4, k = 2:

$$\{1,2\},\{1,3\},\{1,4\}.$$

2 n = 2k: All k-sets that do not contain n. For n = 4, k = 2:

 $\{1,2\},\{1,3\},\{2,3\}.$

Maximum size and complete classification by Erdős, Ko, Rado (1961), Frankl, Wilson (1986), and Ahlswede, Khachatrian (1997).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Erdős-Ko-Rado Sets of Generators on Polar Spaces

Definition

An **EKR set** *Y* of generators on a polar space is a $\{1, ..., t\}$ -clique. (Hence, the elements of *Y* meet pairwise in a subspace of at most codimension *t*.)

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Erdős-Ko-Rado Sets of Generators on Polar Spaces

Definition

An **EKR set** *Y* of generators on a polar space is a $\{1, ..., t\}$ -clique. (Hence, the elements of *Y* meet pairwise in a subspace of at most codimension *t*.)

Examples (t = d - 1)

All generators on a fixed point.

• All generators which meet a fixed generator in at most codimension t/2.

Example

All generators on a fixed (d - t)-space.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Results for t = d - 1 resp. $M = \{1, \ldots, d - 1\}$

Theorem (Stanton (1980))

Tight bounds for all polar spaces except $H(2d - 1, q^2)$, d odd.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Results for t = d - 1 resp. $M = \{1, \ldots, d - 1\}$

Theorem (Stanton (1980))

Tight bounds for all polar spaces except $H(2d - 1, q^2)$, d odd.

Theorem (I., Metsch (2013))

An EKR set of $H(2d - 1, q^2)$, d odd, has at most size $\approx q^{(d-1)^2+1}$. (The largest known example for d > 3 has size $\approx q^{(d-1)^2}$.)

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Results for t = d - 1 resp. $M = \{1, \ldots, d - 1\}$

Theorem (Stanton (1980))

Tight bounds for all polar spaces except $H(2d - 1, q^2)$, d odd.

Theorem (I., Metsch (2013))

An EKR set of $H(2d - 1, q^2)$, d odd, has at most size $\approx q^{(d-1)^2+1}$. (The largest known example for d > 3 has size $\approx q^{(d-1)^2}$.)

Theorem (Pepe, Storme, Vanhove (2011))

The classification of all EKR sets of maximum size for all polar spaces except $H(2d - 1, q^2)$, d > 3 odd.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Hoffman Bound

Nearly all mentioned results for EKR sets ($\{1, \ldots, t\}$ -cliques) use the (weighted) Hoffman bound.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Hoffman Bound

Nearly all mentioned results for EKR sets ($\{1, ..., t\}$ -cliques) use the (weighted) Hoffman bound.

Theorem (Hoffman Bound)

Let Y be an M-clique. Let $CM := \{1, \ldots, d\} \setminus M$. Let θ_{\min} be the smallest eigenvalue of the adjacency matrix A of G_{CM} . Then

$$|Y| \le \frac{-n\theta_{\min}}{k - \theta_{\min}}$$

with equality if and only if $\chi \in \langle j \rangle + V_{\min}$, where χ is the characteristic vector of Y.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
The Proof			

Let $CM := \{1, \ldots, d\} \setminus M$. Let A be the adjacency matrix of G_{CM} .

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
The Proof			

Let $CM := \{1, ..., d\} \setminus M$. Let A be the adjacency matrix of G_{CM} . The matrix A has d + 1 eigenvalues θ_i , eigenspaces V_i , and A can be decomposed into pairwise orthogonal, idempotent matrices E_i :

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
The Proof			

Let $CM := \{1, ..., d\} \setminus M$. Let A be the adjacency matrix of G_{CM} . The matrix A has d + 1 eigenvalues θ_i , eigenspaces V_i , and A can be decomposed into pairwise orthogonal, idempotent matrices E_i :

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

If Y is an M-clique, then the characteristic vector $\chi \in \mathbb{R}^n$ of Y satisfies

$$\chi^T A \chi = 0$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
The Proof			

Let $CM := \{1, \ldots, d\} \setminus M$. Let A be the adjacency matrix of G_{CM} . The matrix A has d + 1 eigenvalues θ_i , eigenspaces V_i , and A can be decomposed into pairwise orthogonal, idempotent matrices E_i :

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

If Y is an M-clique, then the characteristic vector $\chi \in \mathbb{R}^n$ of Y satisfies

$$\chi^T A \chi = 0$$

The vector χ can be decomposed into eigenvectors:

$$\chi = \frac{k}{n}j + E_1\chi + \ldots + E_d\chi.$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	00000000000

$$A = \frac{k}{n}J + \theta_1 E_1 + \ldots + \theta_d E_d,$$

$$\chi = \frac{k}{n}j + E_1\chi + \ldots + E_d\chi, \text{ and } \chi^T A\chi = 0.$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	00000000000

$$A = \frac{k}{n}J + \theta_1 E_1 + \ldots + \theta_d E_d,$$

$$\chi = \frac{k}{n}j + E_1\chi + \ldots + E_d\chi, \text{ and } \chi^T A\chi = 0.$$

Hence,

$$0 = \chi^{T} A \chi = \chi^{T} \left(\frac{k}{n} J + \theta_{1} E_{1} + \ldots + \theta_{d} E_{d}\right) \chi$$
$$= \frac{k}{n} |Y|^{2} + \theta_{1} |E_{1}\chi|^{2} + \ldots + \theta_{d} |E_{d}\chi|^{2}$$
$$\geq \frac{k}{n} |Y|^{2} + \theta_{\min} |E_{\min}\chi|^{2}.$$

Here $\theta_{\min} < 0$ is the smallest eigenvalue of A.

Polar Spaces	EKR Sets
0000	00000000000

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Hoffman Bound (Part 3)

 $0 \ge k|Y|^2 + n\theta_{\min}|E_{\min}\chi|^2.$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Se
0000	0000000000	00000000	000000000000

$$0 \ge k|Y|^2 + n\theta_{\min}|E_{\min}\chi|^2.$$

Furthermore,

$$|Y| = |\chi|^2 = \frac{|Y|^2}{n^2} |j|^2 + |E_1\chi|^2 + \ldots + |E_d\chi|^2 \ge \frac{|Y|^2}{n} + |E_{\min}\chi|^2$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000

$$0 \ge k|Y|^2 + n\theta_{\min}|E_{\min}\chi|^2.$$

Furthermore,

$$|Y| = |\chi|^2 = \frac{|Y|^2}{n^2} |j|^2 + |E_1\chi|^2 + \ldots + |E_d\chi|^2 \ge \frac{|Y|^2}{n} + |E_{\min}\chi|^2$$

This yields the Hoffman bound

$$|Y| \le \frac{-n\theta_{\min}}{k - \theta_{\min}}$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000

$$0 \ge k|Y|^2 + n\theta_{\min}|E_{\min}\chi|^2.$$

Furthermore,

$$|Y| = |\chi|^2 = \frac{|Y|^2}{n^2} |j|^2 + |E_1\chi|^2 + \ldots + |E_d\chi|^2 \ge \frac{|Y|^2}{n} + |E_{\min}\chi|^2$$

This yields the Hoffman bound

$$|Y| \le \frac{-n\theta_{\min}}{k - \theta_{\min}}$$

with equality if and only if

$$\chi = \frac{k}{n}j + E_{\min}\chi \in \langle j \rangle + V_{\min}.$$

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let θ_{min} be the smallest eigenvalue of the adjacency matrix A of G_{CM} . Then

$$|Y| \leq rac{-n heta_{\min}}{k- heta_{\min}}$$

with equality if and only if $\chi \in \langle j \rangle + V_{\min}$, where χ is the characteristic vector of Y.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let θ_{min} be the smallest eigenvalue of the adjacency matrix A of G_{CM} . Then

$$|Y| \leq rac{-n heta_{\min}}{k - heta_{\min}}$$

with equality if and only if $\chi \in \langle j \rangle + V_{\min}$, where χ is the characteristic vector of Y.

This bound is sufficient for the results on EKR sets by Stanton (1980), Pepe, Storme, Vanhove (2011).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let θ_{min} be the smallest eigenvalue of the adjacency matrix A of G_{CM} . Then

$$|Y| \leq rac{-n heta_{\min}}{k- heta_{\min}}$$

with equality if and only if $\chi \in \langle j \rangle + V_{\min}$, where χ is the characteristic vector of Y.

This bound is sufficient for the results on EKR sets by Stanton (1980), Pepe, Storme, Vanhove (2011).

The proof never uses that A is the adjacency matrix! Only

$$\chi^T A \chi \leq 0$$
 if χ is the characteristic vector of an *M*-clique

is necessary.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Linear Programming and the Hoffman Bound

Problem

How does one find matrices A' satisfying the following?

 $\chi^{T} A' \chi \leq 0$ if χ is the characteristic vector of an M-clique (1)

Solution (**Delsarte's LP bound**): Consider linear combinations A' of J, E_1, \ldots, E_d with $A'_{ij} \leq 0$ if $A_{ij} = 0$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Linear Programming and the Hoffman Bound

Problem

How does one find matrices A' satisfying the following?

 $\chi^{T} A' \chi \leq 0$ if χ is the characteristic vector of an M-clique (1)

Solution (**Delsarte's LP bound**): Consider linear combinations A' of J, E_1, \ldots, E_d with $A'_{ij} \leq 0$ if $A_{ij} = 0$.

Example ($H(5, q^2)$, $\{1, 2\}$ -cliques)

- The adjacency matrix A for the disjointness graph has the eigenvalues $q^9, q^3, -q^4, -q^6$.
- The Hoffman bound yields approximately $|Y| \le q^6$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Linear Programming and the Hoffman Bound

Problem

How does one find matrices A' satisfying the following?

 $\chi^{T} A' \chi \leq 0$ if χ is the characteristic vector of an M-clique (1)

Solution (**Delsarte's LP bound**): Consider linear combinations A' of J, E_1, \ldots, E_d with $A'_{ij} \leq 0$ if $A_{ij} = 0$.

Example ($H(5, q^2)$, $\{1, 2\}$ -cliques)

- The adjacency matrix A for the disjointness graph has the eigenvalues $q^9, q^3, -q^4, -q^6$.
- The Hoffman bound yields approximately $|Y| \leq q^6$.
- There exists an A' as in (1) that has $-q^5$ as its smallest eigenvalue.
- The weighted Hoffman bound yields approximately $|Y| \le q^5$.

A variant of this technique was used to prove better upper bounds for $H(2d-1, q^2)$, d odd, by I., Metsch (2013).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

What if t < d - 1?

Some geometrical results on EKR sets with pairwise intersections in at least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all $\{1,2\}$ -cliques in non-Hermitian polar spaces.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

What if t < d - 1?

Some geometrical results on EKR sets with pairwise intersections in at least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1,2}-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

- A classification of examples of maximum size for $t \le c\sqrt{d}$ for some constant c.
- Estimates of the (non-weighted) Hoffman bound for all t.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

What if t < d - 1?

Some geometrical results on EKR sets with pairwise intersections in at least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1,2}-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

- A classification of examples of maximum size for $t \le c\sqrt{d}$ for some constant c.
- Estimates of the (non-weighted) Hoffman bound for all t.

Theorem (De Boeck)

- Classification of all EKR sets of planes (not necessarily generators) in nearly all polar spaces.
- Classification of EKR sets on $Q^+(4n+1,q)$ for t = d-1.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Further Improvements?

How to determine the maximum size of an EKR set in $H(2d - 1, q^2)$?

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Further Improvements?

How to determine the maximum size of an EKR set in $H(2d - 1, q^2)$?

Idea

Let Y be a EKR set $(\{1, \ldots, t\}$ -clique) of $H(2d - 1, q^2)$. Let P be a point of $H(2d - 1, q^2)$. Let Y_1 be subset of Y on P, and let $Y_2 := Y \setminus Y_1$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Further Improvements?

How to determine the maximum size of an EKR set in $H(2d - 1, q^2)$?

Idea

Let Y be a EKR set $(\{1, \ldots, t\}$ -clique) of $H(2d - 1, q^2)$. Let P be a point of $H(2d - 1, q^2)$. Let Y_1 be subset of Y on P, and let $Y_2 := Y \setminus Y_1$. Then the projection of the elements of Y from P onto a $H(2d - 3, q^2)$ creates **cross-intersecting EKR sets** Y_1 and Y_2 :

- The projected elements of Y_1 meet all elements of Y_2 in at least codimension t.
- The projected elements of Y_2 meet all elements of Y_1 in at least codimension t.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Further Improvements?

How to determine the maximum size of an EKR set in $H(2d - 1, q^2)$?

Idea

Let Y be a EKR set $(\{1, \ldots, t\}$ -clique) of $H(2d - 1, q^2)$. Let P be a point of $H(2d - 1, q^2)$. Let Y_1 be subset of Y on P, and let $Y_2 := Y \setminus Y_1$. Then the projection of the elements of Y from P onto a $H(2d - 3, q^2)$ creates **cross-intersecting EKR sets** Y_1 and Y_2 :

- The projected elements of Y_1 meet all elements of Y_2 in at least codimension t.
- The projected elements of Y_2 meet all elements of Y_1 in at least codimension t.

Can this be used to improve results on EKR sets?

Polar	Spaces	
000	0	

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Maximum Size?

Definition

A cross-intersecting EKR set is a pair of sets of generators Y_1 , Y_2 such that

- the elements of Y_1 meet all elements of Y_2 in at least codimension t,
- the elements of Y_2 meet all elements of Y_1 in at least codimension t.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Maximum Size?

Definition

A cross-intersecting EKR set is a pair of sets of generators Y_1 , Y_2 such that

- the elements of Y_1 meet all elements of Y_2 in at least codimension t,
- the elements of Y_2 meet all elements of Y_1 in at least codimension t.

How do we measure the size of a cross-intersecting EKR set? There are many possibilities:

- The product: $|Y_1| \cdot |Y_2|$.
- The sum: $|Y_1| + |Y_2|$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Maximum Size?

Definition

A cross-intersecting EKR set is a pair of sets of generators Y_1 , Y_2 such that

- the elements of Y_1 meet all elements of Y_2 in at least codimension t,
- the elements of Y_2 meet all elements of Y_1 in at least codimension t.

How do we measure the size of a cross-intersecting EKR set? There are many possibilities:

- The product: $|Y_1| \cdot |Y_2|$.
- The sum: $|Y_1| + |Y_2|$.
- Some linear combination: $|Y_1| + q|Y_2|$.
- Something silly: $e^{|Y_1|} \cdot |Y_2| + \log(|Y_1|)$.

In this talk: $|Y_1| \cdot |Y_2|$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The (weighted) Hoffman Bound

The Hoffman bound for cross-intersecting sets was used by ...

- **Vector spaces**: "The eigenvalue method for cross *t*-intersecting families.", Tokushige (2013).
- **Permutations**: "Intersecting families of permutations.", Ellis, Friedgut, Pilpel (2011).
- **Coding Theory**: "Scalable secure storage when half the system is faulty.", Alon, Kaplan, Krivelevich, Malkhi, Stern (2000).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y_1 , Y_2 be an cross-intersecting EKR set. Let $\theta_{2\max}$ be a second largest **absolute** eigenvalue of the adjacency matrix A of $G_{\{t+1,\ldots,d\}}$.

$$\sqrt{|Y_1| \cdot |Y_2|} \le \frac{n \cdot |\theta_{2\max}|}{k + |\theta_{2\max}|}$$

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y_1 , Y_2 be an cross-intersecting EKR set. Let $\theta_{2 \max}$ be a second largest **absolute** eigenvalue of the adjacency matrix A of $G_{\{t+1,\ldots,d\}}$.

$$\sqrt{|Y_1| \cdot |Y_2|} \le \frac{n \cdot |\theta_{2 \max}|}{k + |\theta_{2 \max}|}$$

with equality if and only if $\chi_i \in \langle j \rangle + V_- + V_+$, where

- χ_i is the characteristic vector of Y_i ,
- V_+ is the eigenspace corresponding to $|\theta_{2 \max}|$ (if it exists),
- V_{-} is the eigenspace corresponding to $-|\theta_{2 \max}|$ (if it exists).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y_1 , Y_2 be an cross-intersecting EKR set. Let $\theta_{2 \max}$ be a second largest **absolute** eigenvalue of the adjacency matrix A of $G_{\{t+1,\ldots,d\}}$.

$$\sqrt{|Y_1| \cdot |Y_2|} \le \frac{n \cdot |\theta_{2\max}|}{k + |\theta_{2\max}|}$$

with equality if and only if $\chi_i \in \langle j \rangle + V_- + V_+$, where

- χ_i is the characteristic vector of Y_i ,
- V_+ is the eigenspace corresponding to $|\theta_{2 \max}|$ (if it exists),
- V_{-} is the eigenspace corresponding to $-|\theta_{2 \max}|$ (if it exists).
- The proof is the same. Only with $0 = \chi_1^T A \chi_2$ instead of $0 = \chi^T A \chi$.
- Again, A can be replaced with other matrices A' with $0 \ge \chi_1^T A' \chi_2$.
- Hence, everything works the same as in the "normal" case.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y_1 , Y_2 be an cross-intersecting EKR set. Let $\theta_{2 \max}$ be a second largest **absolute** eigenvalue of the adjacency matrix A of $G_{\{t+1,\ldots,d\}}$.

$$\sqrt{|Y_1| \cdot |Y_2|} \le \frac{n \cdot |\theta_{2\max}|}{k + |\theta_{2\max}|}$$

with equality if and only if $\chi_i \in \langle j \rangle + V_- + V_+$, where

- χ_i is the characteristic vector of Y_i ,
- V_+ is the eigenspace corresponding to $|\theta_{2 \max}|$ (if it exists),
- V_{-} is the eigenspace corresponding to $-|\theta_{2 \max}|$ (if it exists).

The proof reveals some more details:

• If $\chi_1 \in \langle j \rangle + V_-$, then $Y_1 = Y_2$ is an EKR set.

• If
$$\chi_1 = \alpha j + v_- + v_+$$
 (with $v_- \in V_-$, $v_+ \in V_+$),
then $\chi_2 = \alpha j + v_- - v_+$.

Spreads & Constant Distance Sets

Some Results for $M = \{1, \ldots, d-1\}$

Example The matrix A that belongs to $\mathbf{Q}^-(5,q)$ has the eigenvalues $q^9 - \mathbf{q}^5 \qquad q^3 \qquad -q^3.$

The absolute second largest eigenvalue is the smallest eigenvalue.

EKR Sets

 q^9

Crossintersecting EKR Sets

 a^3

 $-a^{3}$.

Spreads & Constant Distance Sets

Some Results for $M = \{1, \ldots, d-1\}$

Example

Polar Spaces

The matrix A that belongs to $\mathbf{Q}^{-}(5,q)$ has the eigenvalues

-a⁵

The absolute second largest eigenvalue is the smallest eigenvalue. Hence, $Y_1 = Y_2$: the classification of all EKR sets by Pepe, Storme, and Vanhove is sufficient.

Theorem

For all polar spaces except $\mathbf{H}(2d-1,q^2)$, $\mathbf{Q}^+(2d-1,q)$ (if d even), $\mathbf{Q}(2d,q)$ (if d even), and $\mathbf{W}(2d-1,q)$ (d, q both even) the cross-intersecting EKR sets of maximum size are EKR sets.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

$\mathbf{Q}^+(2d-1,q)$ and $\mathbf{Q}(2d,q)$, d even

Example (Q⁺(7, q)) q⁶ -q³ q² -q³ q⁶. The absolute second largest eigenvalue is the second largest eigenvalue. Y₁ are the latins of Q⁺(7, q), Y₂ are the greeks of Q⁺(7, q).

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

$\mathbf{Q}^+(2d-1,q)$ and $\mathbf{Q}(2d,q)$, d even

Example $(\mathbf{Q}^+(7,q))$

- q^6 $-\mathbf{q^3}$ q^2 $-\mathbf{q^3}$ q^6 .
- The absolute second largest eigenvalue is the second largest eigenvalue.
- Y_1 are the latins of $\mathbf{Q}^+(7, q)$, Y_2 are the greeks of $\mathbf{Q}^+(7, q)$.

Example $(\mathbf{Q}(8,q))$

- q^{10} $-q^6$ q^4 $-q^4$ q^6 .
- The absolute second largest eigenvalue is the second largest eigenvalue **as well** as the smallest eigenvalue.
- Either $Y_1 = Y_2$ or the $\mathbf{Q}^+(7, q)$ example.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
H(2d - 1,	q^{2})		

- The blue eigenvalues belong to nice EKR sets.
- The **bold** eigenvalues are the smallest.
- The red eigenvalues are the absolute second largest.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
H(2d - 1,	<i>q</i> ²)		

Example

$$H(5, q^2): q^9 -q^4 q^3 -q^6$$
 resp.
 $H(7, q^2): q^{16} -q^9 q^6 -q^7 q^{12}$.

- The blue eigenvalues belong to nice EKR sets.
- The **bold** eigenvalues are the smallest.
- The red eigenvalues are the absolute second largest.

The bounds for $\sqrt{|Y_1| \cdot |Y_2|}$.

- The cross-intersecting Hoffman bound yields $\approx q^{d(d-1)}$.
- The cross-intersecting Hoffman bound with LP yields $\approx q^{(d-1)^2+1}$.
- The largest known examples have size $\approx q^5$ for d = 3, $q^{19/2}$ for d = 4, and $q^{(d-1)^2}$ for d > 4.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Largest Known Examples on $H(2d - 1, q^2)$

Example $(\mathbf{H}(5, q^2))$

 $Y_1=Y_2$ is the set of all generators meeting a fixed plane in at least a line: $\sqrt{|Y_1|\cdot|Y_2|}\approx q^5.$

Example $(\mathbf{H}(7, q^2))$

 Y_1 is the set of all generators meeting a fixed generator G in at least a line, Y_2 the set of all generators meeting G in at least a plane: $\sqrt{|Y_1|\cdot|Y_2|}\approx q^{19/2}.$

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Largest Known Examples on $H(2d - 1, q^2)$

Example $(\mathbf{H}(5, q^2))$

 $Y_1=Y_2$ is the set of all generators meeting a fixed plane in at least a line: $\sqrt{|Y_1|\cdot|Y_2|}\approx q^5.$

Example $(\mathbf{H}(7, q^2))$

 Y_1 is the set of all generators meeting a fixed generator G in at least a line, Y_2 the set of all generators meeting G in at least a plane: $\sqrt{|Y_1|\cdot|Y_2|}\approx q^{19/2}.$

Example ($\mathbf{H}(9, q^2)$)

 $Y_1 = Y_2$ is the set of all generators on a fixed point: $\sqrt{|Y_1| \cdot |Y_2|} \approx q^{16}$.

Example $(\mathbf{H}(11, q^2))$

 $Y_1 = Y_2$ is the set of all generators on a fixed point: $\sqrt{|Y_1| \cdot |Y_2|} \approx q^{25}$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Summary for $H(2d - 1, q^2)$

Theorem (I., Metsch (2013))

Let Y be an EKR set, d odd. Then

$$|Y| \lessapprox q^{(d-1)^2+1}.$$

Theorem

Let Y_1, Y_2 be a cross-intersecting EKR set. Then

 $\sqrt{|Y_1|\cdot|Y_2|} \lessapprox q^{(d-1)^2+1}.$

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Summary for $H(2d - 1, q^2)$

Theorem (I., Metsch (2013))

Let Y be an EKR set, d odd. Then

$$|Y| \lessapprox q^{(d-1)^2+1}.$$

Theorem

Let Y_1, Y_2 be a cross-intersecting EKR set. Then

$$\sqrt{|Y_1|\cdot|Y_2|} \lessapprox q^{(d-1)^2+1}$$

Examples

The largest known examples:

- $\mathbf{H}(5, q^2)$: $\sqrt{|Y_1| \cdot |Y_2|} \approx q^{(d-1)^2+1}$.
- $\mathbf{H}(7, q^2)$: $\sqrt{|Y_1| \cdot |Y_2|} \approx q^{(d-1)^2 + 1/2}$.
- $H(2d-1,q^2)$: $\sqrt{|Y_1| \cdot |Y_2|} \approx q^{(d-1)^2}$.

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set Y with pairwise intersections in $\{t+1,\ldots,d\}$.

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set Y with pairwise intersections in $\{t+1,\ldots,d\}$.
- If t = d 1, then such a set is called a **partial spread**.
- If Y partitions the points, then it is a **spread**.

- An EKR set has pairwise intersections in $\{1, \ldots, t\}$.
- The dual problem: a set Y with pairwise intersections in $\{t+1,\ldots,d\}$.
- If t = d 1, then such a set is called a **partial spread**.
- If Y partitions the points, then it is a **spread**.

History:

- In 1981 J. A. Thas publishes "Ovoids and spreads of finite classical polar spaces.", a first complete survey of spreads on polar spaces.
- Upper bounds for the size of **partial spreads** and sets reaching these bounds were investigated since the 70's.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000000000000000000000000000000

Theorem (J. A. Thas (1981/1990))

The Hermitian polar space $H(2d - 1, q^2)$ has no spread.

EKR Sets

Crossintersecting EKR Sets

Theorem (J. A. Thas (1981/1990))

The Hermitian polar space $H(2d - 1, q^2)$ has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))

A partial spread of $H(2d - 1, q^2)$, d even, has at most

• $\frac{1}{2}(q^3 + q + 2)$ elements if d = 2 (sharp for q = 2, 3), (Dye (q = 2, 1992), Ebert, Hirschfeld (q = 3, 1999))

•
$$q^{2d-1} - q^{3d/2}(\sqrt{q} - 1)$$
 elements if $d > 2$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Theorem (J. A. Thas (1981/1990))

The Hermitian polar space $H(2d - 1, q^2)$ has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))

A partial spread of $H(2d - 1, q^2)$, d even, has at most

Theorem (De Beule, Metsch (d = 3, 2007)/Vanhove (2009))

A partial spread of $H(2d - 1, q^2)$, d odd, has at most

$$q^d + 1$$

elements. This bound is sharp. (Agulglia, Cossidente, Ebert (d = 3, 2003)/Luyckx (2008))

Polar Spaces	EKR Sets 000000000	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
More Results	5		

Theorem (Vanhove (2011))

A
$$\{t\}$$
-clique of $H(2d - 1, q^2)$, t odd, has at most

 q^t+1

elements.

Polar Spaces	EKR Sets 0000000000	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
More Result	S		

Theorem (Vanhove (2011))

A {t}-clique of
$$H(2d - 1, q^2)$$
, t odd, has at most

$$q^t + 1$$

elements.

Theorem (I. (2014))

A
$$\{t\}$$
-clique of $H(2d - 1, q^2)$ has at most

$$q^{2d-1}-qrac{q^{2d-2}-1}{q+1}$$

elements.

Polar	S	ра	ce	S
000	0			

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θ_{\min} be the smallest eigenvalue of the adjacency matrix A of $G_{\{t\}}$. Then

$$|Y| \leq 1 - rac{k}{ heta_{\min}}$$

with equality if and only if the characteristic vector χ of Y satisfies $\chi \in V_{\min}^{\perp}$.

Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θ_{\min} be the smallest eigenvalue of the adjacency matrix A of $G_{\{t\}}$. Then

$$|Y| \leq 1 - rac{k}{ heta_{\min}}$$

with equality if and only if the characteristic vector χ of Y satisfies $\chi \in V_{\min}^{\perp}$.

Theorem (Godsil (1978))

Let f_i be the multiplicity of an eigenvalue of the adjacency matrix A of $G_{\{t\}}$ not equal to k. Then

$$|Y| \leq 1 + f_i$$

with equality only if the Hoffman bound is sharp.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000000000000000000000000000000

Let Y be a $\{t\}$ -clique. The decomposition of A:

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000

Let Y be a $\{t\}$ -clique. The decomposition of A:

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

The entry $(E_i)_{xy}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of E_i indexed by Y has the form $\alpha I + \beta J$.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	000000000000

Let Y be a $\{t\}$ -clique. The decomposition of A:

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

The entry $(E_i)_{xy}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of E_i indexed by Y has the form $\alpha I + \beta J$. Hence, the characteristic vector χ of Y satisfies

$$0 \le \chi^T E_i \chi = \chi^T (\alpha I + \beta J) \chi = \alpha |Y| + \beta |Y|^2$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	00000000000

Let Y be a $\{t\}$ -clique. The decomposition of A:

$$A=\frac{k}{n}J+\theta_1E_1+\ldots+\theta_dE_d.$$

The entry $(E_i)_{xy}$ only depends on $\operatorname{codim}(x \cap y)$. Hence, the submatrix of E_i indexed by Y has the form $\alpha I + \beta J$. Hence, the characteristic vector χ of Y satisfies

$$0 \leq \chi^{T} E_{i} \chi = \chi^{T} (\alpha I + \beta J) \chi = \alpha |Y| + \beta |Y|^{2}$$

with equality if and only if $E_i \chi = 0$ resp. $\chi \in V_i^{\perp}$.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
0000	000000000	00000000	00000000000

Rearranging yields

$$|Y| \leq \frac{-\alpha}{\beta}$$
 resp. $|Y| \leq 1 - \frac{k}{\theta_i}$

if $\beta < 0$ resp. $\theta_i < 0$. This proves the Hoffman bound.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets

Rearranging yields

$$|Y| \leq \frac{-lpha}{eta}$$
 resp. $|Y| \leq 1 - \frac{k}{ heta_i}$

if $\beta < 0$ resp. $\theta_i < 0$. This proves the Hoffman bound. The $|Y| \times |Y|$ -submatrix $S := \alpha I + \beta J$ of E_i indexed by Y satisfies

$$\operatorname{rank}(S) = \operatorname{rank}(\alpha I + \beta J) \leq \operatorname{rank}(E_i) = f_i.$$

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets

Rearranging yields

$$|Y| \leq \frac{-lpha}{eta}$$
 resp. $|Y| \leq 1 - \frac{k}{ heta_i}$

if $\beta < 0$ resp. $\theta_i < 0$. This proves the Hoffman bound. The $|Y| \times |Y|$ -submatrix $S := \alpha I + \beta J$ of E_i indexed by Y satisfies

$$\operatorname{rank}(S) = \operatorname{rank}(\alpha I + \beta J) \leq \operatorname{rank}(E_i) = f_i.$$

Now

$$\begin{aligned} \mathsf{rank}(\mathcal{S}) &= |Y| - 1 & \text{if } \alpha &= -\beta |Y|, \\ \mathsf{rank}(\mathcal{S}) &= |Y| & \text{if } \alpha \neq -\beta |Y|, \end{aligned}$$

yields Godsil's bound.

Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θ_{\min} be the smallest eigenvalue of the adjacency matrix A of $G_{\{t\}}$. Then

$$|Y| \leq 1 - rac{k}{ heta_{\min}}$$

with equality if and only if the characteristic vector χ of Y satisfies $\chi \in V_{\min}^{\perp}$.

Theorem (Godsil (1978))

Let f_i be the multiplicity of an eigenvalue of the adjacency matrix A of $G_{\{t\}}$ not equal to k. Then

$$|Y| \leq 1+f_i$$

with equality only if the Hoffman bound is sharp.

Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θ_{\min} be the smallest eigenvalue of the adjacency matrix A of $G_{\{t\}}$. Then

$$|Y| \leq 1 - rac{k}{ heta_{\min}}$$

with equality if and only if the characteristic vector χ of Y satisfies $\chi \in V_{\min}^{\perp}$.

Theorem (Godsil (1978))

Let f_i be the multiplicity of an eigenvalue of the adjacency matrix A of $G_{\{t\}}$ not equal to k. Then

$$|Y| \leq 1 + f_i$$

with equality only if the Hoffman bound is sharp.

Another application: **distance**-2 **ovoids** in the **generalized hexagon** with parameter (s, s^3) by Coolsaet, Van Maldeghem (2000).

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets
More Result	S		

Theorem (Vanhove (2011))

A {t}-clique of
$$H(2d - 1, q^2)$$
, t odd, has at most

$$q^t + 1$$

elements.

Theorem (I. (2014))

A
$$\{t\}$$
-clique of $H(2d - 1, q^2)$ has at most

$$q^{2d-1}-qrac{q^{2d-2}-1}{q+1}$$

elements.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Comparsions for Codimension 2

Example (**H**(3, q^2), t = 2)

- Multiplicity bound: $q^3 q^2 + q$.
- Best known bound for $q \neq 4$: $\frac{1}{2}(q^3 + q + 2)$.
- Largest examples: probably $\approx \alpha q^2$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Comparsions for Codimension 2

Example (**H**(3, q^2), t = 2)

- Multiplicity bound: $q^3 q^2 + q$.
- Best known bound for $q \neq 4$: $\frac{1}{2}(q^3 + q + 2)$.
- Largest examples: probably $\approx \alpha q^2$.

Example (**H**(5, q^2), t = 2)

- Multiplicity bound: $q^5 q^4 + q^3 q^2 + q$.
- Sharp bound by Maarten De Boeck: $q^4 + q^2 + 2$.

Example ($H(2d - 1, q^2)$, t = 2)

• Multiplicity bound: $\frac{q^{2d}-1}{q+1} + 1$.

• Largest example:
$$\frac{q^{2d}-1}{q^2-1}$$
.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Comparsions for Partial Spreads

Example (**H**(3, q^2), t = 2)

- Multiplicity bound: $q^3 q^2 + q$.
- Best known bound for $q \neq 4$: $\frac{1}{2}(q^3 + q + 2)$.
- Largest examples: probably $\approx \alpha q^2$.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

Some Comparsions for Partial Spreads

Example (**H**(3, q^2), t = 2)

- Multiplicity bound: $q^3 q^2 + q$.
- Best known bound for $q \neq 4$: $\frac{1}{2}(q^3 + q + 2)$.
- Largest examples: probably $\approx \alpha q^2$.

Example (**H**(7, q^2), t = 4)

- Multiplicity bound: $q^7 q^6 + q^5 q^4 + q^3 q^2 + q$.
- Best known bound for q>3: $q^7-q^6(\sqrt{q}-1)$.

Example ($H(2d - 1, q^2)$, t = d > 4 even)

• Multiplicity bound: $q^{2d-1} - q \frac{q^{2d-2}-1}{q+1}$.

• Previously best known bound: $q^{2d-1} - q^{3d/2}(\sqrt{q} - 1)$.

Polar Spaces	EKR Sets	Crossintersecting EKR Sets	Spreads & Constant Distance Sets

Theorem (Vanhove (2011))

A
$$\{d\}$$
-clique of $H(2d - 1, q^2)$, d odd, has at most

 q^d+1

elements.

Frédéric Vanhove also provided a second, geometrical proof.

Problem

Is there a better geometrical argument?

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

What is Missing?

Problem

The dual problem to $\{1, \ldots, t\}$ -cliques resp. EKR sets:

- $\{t+1,\ldots,d\}$ -cliques of polar spaces.
- analog problems for sets (codes) and vector spaces (network codes) are hard.

EKR Sets

Crossintersecting EKR Sets

Spreads & Constant Distance Sets

What is Missing?

Problem

The dual problem to $\{1, \ldots, t\}$ -cliques resp. EKR sets:

- $\{t+1,\ldots,d\}$ -cliques of polar spaces.
- analog problems for sets (codes) and vector spaces (network codes) are hard.

Problem

The dual problem to $\{t\}$ -cliques resp. constant distance codes:

- $\{1, \ldots, t-1, t+1, \ldots, d\}$ -cliques of polar spaces.
- an alternative generalization of $\{1, \ldots, d-1\}$ -cliques.

Polar Spaces	EKR Sets
0000	000000000

Thank You!