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Abstract

In this talk we consider validity of strong maximum principle for the nonlinear system

Gk(x, uk, Duk, D2uk) +

n∑
i=1

ckiu
i = 0

for x ∈ Ω and k = 1, ...N . Here Ω is a bounded domain in Rn with C1 smooth boundary

∂Ω.

The principal symbols Gk are supposed uniformly elliptic ones. Furthermore, functions

Gk(x, s, p, q) are assumed non-decreasimg with respect to s and Lipschitz continuous with

respect to p variable.

Functions cki(x) are supposed continuous, cki(x) ≤ 0 for k 6= i, and
∑n

i=1 cki(x) ≥ 0.

The validity of strong interior maximum principle for the classical sub- and supersolutons

of the nonlinear system above is shown, as well as the validity of strong boundary maximum

principle for the same system.
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1 Introduction

Let Ω be a bounded domain in Rn with C1 smooth boundary ∂Ω. Let us consider in Ω the

weakly coupled non-linear system

F k(x, u1(x), ...un(x), Duk(x), D2uk(x)) = 0 (1)

for k = 1, ...N and x ∈ Ω, where

F k(x, u1(x), ...un(x), Duk(x), D2uk(x)) = Gk(x, uk(x), Duk(x), D2uk(x)) +

n∑
j=1

ckj(x)uj(x)

In the linear case we consider

Lkuk = −
n∑

i,j=1

∂

∂xi

(
akij(x)

∂uk

∂xj

)
+

n∑
i=1

bki (x)
∂uk

∂xi
+

N∑
l=1

mkl(x)ul + fk(x) = 0

for x ∈ Ω and k = 1, ...N .

XX

Here Gk(c, zk, pk, Xk) ∈ C(Ω × R × Rn × Sn), Sn denotes the set of all real symmetric

matrices of order n, and ckj(x) ∈ C(Ω) for k, j = 1, ...N

In the linear case:

akij(x) ∈ C1(Ω), bki (x),mkl(x) ∈ C(Ω), fk(x) ∈ C(Ω)

for i, j = 1, ...n, k, l = 1, ...N .

XX
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Gk(x, uk(x), Duk(x), D2uk(x)) +

n∑
j=1

ckj(x)uj(x)− 0

Lkuk = −
n∑

i,j=1

∂

∂xi

(
akij(x)

∂uk

∂xj

)
+

n∑
i=1

bki (x)
∂uk

∂xi
+

N∑
l=1

mkl(x)ul + fk(x) = 0

XXXXXXXXXXX

We suppose that (1) is a quasimonotone system, i.e.

ckj ≤ 0 for k 6= j,

n∑
j=1

ckj(x) ≥ 0 in Ω (2)

(see Ishii-Koike - [I-K]) as well as stronger condition

ckj ≤ 0 for k 6= j,

n∑
j=1

ckj(x) ≥ λ > 0 in Ω (3)

Condition (3) coincides with condition (A3) in [I-K] for weakly coupled system (1).

Moreover, the system (1) is degenerate elliptic one, i.e.

Gk(c, zk, pk, Xk) ≤ Gk(c, zk, pk, Y k) whenever Xk ≥ Y k (4)

and monotone increasing one w.r.t. z variable, i.e.

Gk(c, zk, pk, Xk) ≥ Gk(c, yk, pk, Xk) whenever zk ≥ yk (5)

for k = 1, ...N , x ∈ Ω, pk ∈ Rn, Xk, Y k ∈ Sn.

In the linear case: The linear system is supposed uniformly elliptic and cooperative one in

Ω, i.e. there is a constant λ > 0 such that

n∑
i,j=1

akij(x)ξiξj ≥ λ |ξ|2

for x ∈ Ω, ξ = (ξ1, ...ξn) ∈ Rn \ {0} and k = 1, ...N ; and

mkl ≤ 0 for k 6= j,

n∑
l=1

mkl(x) ≥ 0 in Ω

for x ∈ Ω and k, l = 1, ...N , k 6= l.

Moreover, we assume that the system (1) is irreducible

Definition: We call system of differential equations (1) irreducible if for every integer 0 <

s < N there is a point x ∈ Ω such that at least one of the coefficients mkj(x), k = 1, ..., s,

j = s + 1, ...N is nonzero (up to reorder of the equations Lk). Otherwise the system is called

reducible.

XX
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Since the principal symbols of system (1) are non-linear, the proper choice of functional

spaces we work in is crucial. In this particular case we work in the class of viscosity solutions.

Let us recall the definition of viscosity sub- and super-solution to (1) (Definition 2,1, page

1997, [I-K]):

Definition 1: Let u = (u1, ...uN ) : Ω→ RN be a locally bounded function.

(i) We call u a viscosity subsolution to (1) if whenever ψ ∈ C2(Ω)), 1 ≤ k ≤ N and uk∗ − ψ
attains its local maximum at x ∈ Ω, then

F k∗ (x, u∗(x), Dψ,D2ψ)) ≤ 0.

(ii) We call u a viscosity supersolution to (1) if whenever ψ ∈ C2(Ω)), 1 ≤ k ≤ N and uk∗−ψ
attains its local minimum at x ∈ Ω, then

F k∗(x, u∗(x), Dψ,D2ψ)) ≥ 0.

(iii) Finally, we call u a viscosity solution to (1) if it is both viscosity sub-and supersolution

of (1).

Here

uk∗ = limsupε→0{uk∗(y)|||x− y| < ε, y ∈ Ω}

and

uk∗ = liminfε→0{uk∗(y)|||x− y| < ε, y ∈ Ω}.

Note that uk∗ and uk∗ are upper and lower semicontinuous functions, respectively, on Ω with

values in R ∪ {±∞} and uk∗ ≤ uk ≤ uk∗ in Ω.

In the linear case:

The vector function u = (u1, ...uN ), uk(x) ∈ C2(Ω)
⋂
C(Ω), is a classical subsolution of the

linear system if

Lkuk ≤ 0 (6)

for x ∈ Ω and k = 1, 2, ...N .

If u satisfies the opposite inequality to (6) then u is a supersolution of (1).

XX

Some more definitions:

Definition 2: The set ot upper semicontinuous functions u = (u1, ...uN ) : Ω→ RN is named

USC(Ω)

Definition 3: If supΩu
k(x) = Mk then M = max1≤k{Mk} we call the absolute maximum

of u(x).

4



2 Strong interior maximum principle

In the following theorem is formulated the strong interior maximum principle for viscosity sub-

solutions of the nonlinear, weakly coupled and cooperative system (1).

Theorem 1 (Strong interior maximum principle) Suppose conditions (3)-(5) hold. If u(x) ∈
USC(Ω), u = (u1, ...uN ), is a viscosity subsolution to (1) and

F k(x, 0, 0) = Gk(x, 0, 0) ≥ 0 (7)

for x ∈ Ω and k = 1, 2, ...N , then u(x) does not attain absolute positive maximum at an interior

poin of Ω.

In the linear case:

Theorem 2 (Strong interior maximum principle) Let u = (u1, ...uN ), uk(x) ∈ C2(Ω)
⋂
C(Ω),

k = 1, 2, ...N , be a classical subsolution of (1) and M1 be its absolute maximum. Suppose

conditions (2*)-(5*), (7*) hold and

fk(x) ≥ 0 (8)

for x ∈ Ω and k = 1, 2, ...N .

If M1 is attained at some interior point x1 ∈ Ω and M1 ≥ 0, then uk(x) ≡M1 and

(i) fk(x) ≡ 0

for all k = 1, 2, ...N . Moreover, if M1 > 0 then

(ii)

N∑
l=1

mkl = 0

for k = 1, 2, ...N .

XX
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As a consequence of Theorem 1 we obtain the following comparison principle for viscosity

sub-and supersolutions to (1) when one of them is a classical sub- or supersolution:

Theorem 3 Suppose conditions (3)-(5) hold, u = (u1, ...uN ) and u(x) ∈ USC(Ω) is a viscosity

subsolution to (1) and v(x), vk(x) ∈ C2(Ω)∩C(Ω), k = 1, ...N is a classical supersolution to (1).

If uk(x) ≤ vk(x) for k = 1, ...N and x ∈ ∂Ω, then uk(x) ≤ vk(x) for x ∈ ∂Ω and k = 1, ...N .
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3 Strong boundary maximum principle

In this section we prove strong boundary maximum principle for the viscosity subsolutions of

the nonlinear cooperative elliptic system (1).

Theorem 4 (Strong boundary maximum principle) Suppose conditions (3)-(5) hold, Ω satisfies

an interior sphere condition and u(x) ∈ USC(Ω),u = (u1, ...uN ) is a viscosity subsolution to

(1). If u(x) atteins an absolute positive maximum M at some boundary point x0 ∈ ∂Ω, i.e.

uk(x0) = M for some 1 ≤ k ≤ N , then for every nontangential direction ρ pointionf into Ω, i.e.

(x0, ρ) < 0, the following inequality holds:

limt→+0
uk(x0 + ρt)− uk(x0)

t
< 0 (9)

for every x ∈ Ω, k = 1, 2, ...N , and t ∈ [0,M0]

In the linear case:

Theorem 5 (Strong boundary maximum principle) Suppose u = (u1, ...uN ), uk(x) ∈ C2(Ω)
⋂
C1(Ω),

k = 1, 2, ...N , is a subsolution of (1), conditions (2)-(5), (7) and (8) hold and ∂Ω satisfies an

interior sphere condition. If the absolute maximum M1 of u is attained for uk1(x), 1 ≤ k1 ≤ N

at a boundary point z ∈ ∂Ω and M1 ≥ 0, then either

uk(x) ≡M1, f
k(x) ≡ 0 (10)

for x ∈ Ω, k = 1, 2, ...N , and if M1 > 0 then
∑N
j=1mkj = 0 for k = 1, 2, ...N ,

or
∂uk1

∂ν
(z) > 0, (11)

where ν is the unite outer normal to ∂Ω at the point z.

XX
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