GF2020, September 1, 2020, Ghent, Belgium

BEURLING INTEGERS WITH RH AND LARGE OSCILLATION

Frederik Broucke - fabrouck.broucke@ugent.be based on joint work with G. Debruyne and J. Vindas

GHENT
UNIVERSITY

■ Prime number theorem (PNT):

$$
\pi(x):=\sum_{p \leq x} 1 \sim \frac{x}{\log x}
$$

■ PNT with de la Vallée Poussin remainder:

$$
\pi(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x}))
$$

■ PNT equivalence:

$$
\pi(x) \sim \operatorname{Li}(x) \Longleftrightarrow M(x):=\sum_{n \leq x} \mu(x)=o(x)
$$

■ Prime number theorem (PNT):

$$
\pi(x):=\sum_{p \leq x} 1 \sim \frac{x}{\log x}
$$

■ PNT with de la Vallée Poussin remainder:

$$
\pi(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x}))
$$

- PNT equivalence:

$$
\pi(x) \sim \operatorname{Li}(x) \Longleftrightarrow M(x):=\sum_{n \leq x} \mu(x)=o(x)
$$

Question: What is needed to prove these theorems?

Beurling generalized primes

Introduced by A. Beurling in 1937;

$$
\begin{gathered}
\mathcal{P}=\left\{p_{j}\right\}, \quad 1<p_{1} \leq p_{2} \leq \ldots, \quad p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left\{p_{1}^{\nu_{1}} \cdots p_{J}^{\nu_{J}} \mid \nu_{j} \geq 0\right\} .
\end{gathered}
$$

Beurling generalized primes

Introduced by A. Beurling in 1937;

$$
\begin{gathered}
\mathcal{P}=\left\{p_{j}\right\}, \quad 1<p_{1} \leq p_{2} \leq \ldots, \quad p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left\{p_{1}^{\nu_{1}} \cdots p_{J}^{\nu_{J}} \mid \nu_{j} \geq 0\right\} .
\end{gathered}
$$

We can define their counting functions (including multiplicities)

$$
\begin{aligned}
& \pi(x):=\sum_{p_{j} \leq x} 1, \quad N(x):=\sum_{n_{k} \leq x} 1 \\
& \Pi(x):=\sum_{p_{j}^{\nu} \leq x} \frac{1}{\nu}=\sum_{\nu=1}^{\infty} \frac{1}{\nu} \pi\left(x^{1 / \nu}\right) .
\end{aligned}
$$

BEURLING GENERALIZED PRIMES

Introduced by A. Beurling in 1937;

$$
\begin{gathered}
\mathcal{P}=\left\{p_{j}\right\}, \quad 1<p_{1} \leq p_{2} \leq \ldots, \quad p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left\{p_{1}^{\nu_{1}} \cdots p_{J}^{\nu_{J}} \mid \nu_{j} \geq 0\right\} .
\end{gathered}
$$

We can define their counting functions (including multiplicities)

$$
\begin{aligned}
\pi(x):=\sum_{p_{j} \leq x} 1, \quad N(x):=\sum_{n_{k} \leq x} 1, \\
\Pi(x):=\sum_{p_{j}^{\nu} \leq x} \frac{1}{\nu}=\sum_{\nu=1}^{\infty} \frac{1}{\nu} \pi\left(x^{1 / \nu}\right) .
\end{aligned}
$$

Example: odd numbers $\mathcal{P}=\{3,5,7,11, \ldots\}, \mathcal{N}=\{1,3,5, \ldots\}$,

$$
\pi_{\mathrm{odd}}(x)=\pi_{\mathrm{cl}}(x)-1, \quad N_{\mathrm{odd}}(x)=\frac{x}{2}+O(1)
$$

Abstract PNT's

■ Beurling, 1937:

$$
\exists \rho>0, \gamma>3 / 2: N(x)=\rho x+O\left(\frac{x}{\log ^{\gamma} x}\right) \Longrightarrow \pi(x) \sim \operatorname{Li}(x)
$$

Abstract PNT's

■ Beurling, 1937:

$$
\exists \rho>0, \gamma>3 / 2: N(x)=\rho x+O\left(\frac{x}{\log ^{\gamma} x}\right) \Longrightarrow \pi(x) \sim \mathrm{Li}(x)
$$

■ Landau, 1903:

$$
\begin{aligned}
& \exists \rho>0, \theta<1: N(x)=\rho x+O\left(x^{\theta}\right) \\
& \quad \Longrightarrow \pi(x)=\mathrm{Li}(x)+O(x \exp (-c \sqrt{\log x}))
\end{aligned}
$$

Abstract PNT's

■ Beurling, 1937:

$$
\exists \rho>0, \gamma>3 / 2: N(x)=\rho x+O\left(\frac{x}{\log ^{\gamma} x}\right) \Longrightarrow \pi(x) \sim \mathrm{Li}(x)
$$

■ Landau, 1903:

$$
\begin{aligned}
& \exists \rho>0, \theta<1: N(x)=\rho x+O\left(x^{\theta}\right) \\
& \Longrightarrow \pi(x)=\mathrm{Li}(x)+O(x \exp (-c \sqrt{\log x}))
\end{aligned}
$$

■ Diamond, Montgomery, Vorhauer, 2006: Landau's result is optimal.

The Reverse direction

Theorem (Hilberdink, Lapidus, 2006)
If for some $\theta<1, \pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right)$, then

$$
\exists \rho>0: N(x)=\rho x+O(x \exp (-c \sqrt{\log x \log \log x})) .
$$

THE REVERSE DIRECTION

Theorem (Hilberdink, Lapidus, 2006)
If for some $\theta<1, \pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right)$, then

$$
\exists \rho>0: N(x)=\rho x+O(x \exp (-c \sqrt{\log x \log \log x}))
$$

Theorem (B., Debruyne, Vindas, 2020)

There exist Beurling primes such that $\pi(x)=\operatorname{Li}(x)+O(\sqrt{x})$, yet for any $c>2 \sqrt{2}$,

$$
N(x)=\rho x+\Omega_{ \pm}(x \exp (-c \sqrt{\log x \log \log x}))
$$

MELLIN TRANSFORMS

For a set of Beurling primes \mathcal{P}, one defines its zeta-function

$$
\zeta_{\mathcal{P}}(s)=\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} N(x)=\sum_{n_{k} \in \mathcal{N}} \frac{1}{n_{k}^{s}}
$$

Mellin-transform of Π :

$$
\log \zeta_{\mathcal{P}}(s)=\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} \Pi(x)=\sum_{p_{j} \in \mathcal{P}} \sum_{\nu=1}^{\infty} \frac{1}{\nu p_{j}^{\nu s}} .
$$

MELLIN TRANSFORMS

For a set of Beurling primes \mathcal{P}, one defines its zeta-function

$$
\zeta_{\mathcal{P}}(s)=\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} N(x)=\sum_{n_{k} \in \mathcal{N}} \frac{1}{n_{k}^{s}} .
$$

Mellin-transform of $П$:

$$
\log \zeta_{\mathcal{P}}(s)=\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} \Pi(x)=\sum_{p_{j} \in \mathcal{P}} \sum_{\nu=1}^{\infty} \frac{1}{\nu p_{j}^{\nu s}} .
$$

Indeed:

$$
\zeta_{\mathcal{P}}(s)=\prod_{p_{j} \in \mathcal{P}} \frac{1}{1-p_{j}^{-s}}=\exp \left(\sum_{p_{j} \in \mathcal{P}}-\log \left(1-p_{j}^{-s}\right)\right)=\exp \left(\log \zeta_{\mathcal{P}}(s)\right)
$$

(In fact, one might define $\exp ^{*}$ such that $\mathrm{d} N=\exp ^{*}(\mathrm{~d} \Pi)$.)

CONTINUOUS PRIME SYSTEMS

Extend the notion of Beurling generalized prime systems to include continuous systems:
Pair (Π, N) of right-continuous, non-decreasing functions with $\Pi(1)=0$, $N(1)=1$ and satisfying

$$
\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} N(x)=\exp \left(\int_{1^{-}}^{\infty} x^{-s} \mathrm{~d} \Pi(x)\right)
$$

or equivalently,

$$
\mathrm{d} N=\exp ^{*}(\mathrm{~d} \Pi) .
$$

Proof of H \& L

Suppose $\Pi(x)=\operatorname{Li}(x)+R(x)$, with $R(x)=O\left(x^{\theta}\right)$. Then

$$
\log \zeta(s)=\log \left(\frac{s}{s-1}\right)+\int_{1^{-}}^{\infty} x^{-s} d R(x)
$$

By integrating by parts, one sees that $\log \zeta(s)-\log (s /(s-1))$ has analytic continuation to $\operatorname{Re} s>\theta$.

PROOF OF H \& L

Suppose $\Pi(x)=\operatorname{Li}(x)+R(x)$, with $R(x)=O\left(x^{\theta}\right)$. Then

$$
\log \zeta(s)=\log \left(\frac{s}{s-1}\right)+\int_{1^{-}}^{\infty} x^{-s} d R(x)
$$

By integrating by parts, one sees that $\log \zeta(s)-\log (s /(s-1))$ has analytic continuation to $\operatorname{Re} s>\theta$.
Classical arguments yield the convexity bound

$$
\log \zeta(s)=O\left(\frac{|t|^{\frac{1-\sigma}{1-\theta}}-1}{(1-\sigma) \log |t|}\right), \quad s=\sigma+\mathrm{i} t
$$

PROOF OF H \& L PART 2

By Perron inversion:

$$
\begin{aligned}
N^{*}(x) & :=\frac{1}{2}\left(N\left(x^{+}\right)+N\left(x^{-}\right)\right) \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 \pi \mathrm{i}} \int_{\kappa-\mathrm{i} T}^{\kappa+\mathrm{i} T} x^{s} \zeta(s) \frac{\mathrm{d} s}{s}, \quad \text { for } \kappa>1 .
\end{aligned}
$$

Move the contour to the right: optimal contour

$$
\sigma(t)=1-(1-\theta) \frac{\log \log t}{\log t}
$$

The pole at $s=1$ gives the main term ρx, the remaining integral can be shown to be $O(x \exp (-c \sqrt{\log x \log \log x}))$.

ShOWING OPTIMALITY: THE EXAMPLE

We require a zeta function with extreme growth: $\log \zeta$ needs to attain the convexity bound. Our example is Inspired by a construction of H. Bohr. Set

$$
R(x)= \begin{cases}\sin (\tau \log x) & \text { for } \tau^{1+\delta}<x \leq \tau^{\nu} \\ 0 & \text { else }\end{cases}
$$

This has Mellin transform

$$
\frac{1}{2}\left(\tau^{1-(1+\delta) s}-\tau^{1-\nu s}\right)\left(\frac{1}{s-\mathrm{i} \tau}+\frac{1}{s+\mathrm{i} \tau}\right)
$$

ShOWING OPTIMALITY: THE EXAMPLE

We require a zeta function with extreme growth: $\log \zeta$ needs to attain the convexity bound. Our example is Inspired by a construction of H. Bohr. Set

$$
R(x)= \begin{cases}\sin (\tau \log x) & \text { for } \tau^{1+\delta}<x \leq \tau^{\nu} \\ 0 & \text { else }\end{cases}
$$

This has Mellin transform

$$
\frac{1}{2}\left(\tau^{1-(1+\delta) s}-\tau^{1-\nu s}\right)\left(\frac{1}{s-\mathrm{i} \tau}+\frac{1}{s+\mathrm{i} \tau}\right)
$$

Let $\tau_{k} \rightarrow \infty$ rapidly, and set

$$
\Pi(x)=\operatorname{Li}(x)+\sum_{k} R_{k}(x) .
$$

TECHNICAL CHALLENGES

How to show that

$$
\int x^{s} \exp (\log \zeta(s)) \frac{\mathrm{d} s}{s}
$$

is large?
ζ peaks around $s=1+\mathrm{i} \tau_{k}$. Define x_{k} via

$$
\log \tau_{k}=\frac{1}{\sqrt{2}} \sqrt{\log x_{k} \log \log x_{k}} .
$$

To extract a contribution of the integral, we used the saddle point method.

$$
f(s)=s \log x_{k}+\frac{1}{2} \frac{\tau_{k}^{1-(1+\delta) s}}{s-\mathrm{i} \tau_{k}}
$$

has saddle points near $s=1+\mathrm{i} \tau_{k}$.

DISCRETIZATION

We have found a continuous example. How to find a discrete example? Probabilistic discretization procedure due to Diamond, Montgomery, and Vorhauer, and refined by Zhang:

■ let v_{j} be a slowly increasing sequence. Include v_{j} as a prime with probability $\int_{v_{j}}^{v_{j+1}} \mathrm{~d} \Pi(v)$.
■ Show that the events

$$
E(y, t)=\left\{\sum_{p_{k} \leq y} p_{k}^{-\mathrm{i} t}-\int_{1}^{y} v^{-\mathrm{i} t} \mathrm{~d} \Pi(v) \text { is large }\right\}
$$

have small probability.

GENERALIZATION

The theorem of Hilberdink and Lapidus can be generalized to

Theorem (Diamond, 1970)

Suppose for some $\alpha \in(0,1), c>0$

$$
\Pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c(\log x)^{\alpha}\right)\right)
$$

Then for some $\rho>0$ and $c^{\prime}>0$,

$$
N(x)=\rho x+O\left(x \exp \left(-c^{\prime}(\log x \log \log x)^{\frac{\alpha}{\alpha+1}}\right)\right) .
$$

Similar ideas might be used to show optimality of this theorem, including optimality of the constant $c^{\prime}=(c(\alpha+1))^{\frac{1}{\alpha+1}}$ (work in progress).

References

■ H. G. Diamond, H. L. Montgomery, U. M. U. Vorhauer, Beurling primes with large oscillation, Math. Ann. 334 (2006), 1-36.

■ T. W. Hilberdink, M. L. Lapidus, Beurling zeta functions, generalised primes, and fractal membranes, Acta Appl. Math 94 (2006), 21-48.

■ F. Broucke, G. Debruyne, J. Vindas, Beurling integers with RH and large oscillation, Adv. Math. 370 (2020), 107240.

Thank you for your attention! Questions?

