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Function theories and spectral theories

The following diagram illustrates the possible extensions:

Hol(U)
FSQ−−−−→ Two classes of Hyperholomorphic functionsy y

Several complex variables S − spectrum and monogenic spectrumy y
Taylor joint spectrum Hyperholomorphic spectral theories (HST )y y

Complex spectral theory Connections between (HST )

where FSQ denotes the Fueter-Sce-Qian construction that will be
explained in the sequel.
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Hyperholomorphic Function theories and spectral theories

The Fueter-Sce-Qian mapping theorem.

Hol(U)
F1−−−−→ SH(U)

F2=∆ (or F2=∆(n−1)/2))−−−−−−−−−−−−−−−→ M(U)

Holomorphic functions, Cauchy–Riemann ∂z = ∂x + i∂y

Slice hyperholomorphicity set x :=
∑n

j=1 xjej and |x |2 =
∑n

j=1 x2
j

G = |x |2 ∂

∂x0
+ x

n∑
j=1

xj
∂

∂xj

Cauchy- Fueter regularity (or Dirac)

D = ∂x0 +
n∑

j=1

ej
∂

∂xj
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SH(U)
F2=∆−−−−→ M(U)

Slice Cauchy Formula

y Monogenic Cauchy Formula

y
S − spectrum monogenic spectrumy y

S − Functional calculus Monogenic Functional Calculusy y
H∞ − Functional calculus H∞ −Monogenic Functional Calculus

The quaternionic spectral theorem is based on the S-spectrum (D.
Alpay, F.C., D.P.Kimsey 2016)
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The first step in the Fueter-Sce-Qian construction

The Fueter-Sce-Qian mapping theorem is a crucial result to
understand holomorphicity in high dimension.

It is possible to pass from one function theory to the other also with
the Radon and Dual Radon transform.

F.C., R. Lavicka, I. Sabadini, V. Soucek, The Radon transform
between monogenic and generalized slice monogenic functions,
Mathematische Annalen, 363 (2015), no. 3-4, 733–752.

The fist step in the Fueter-Sce-Qian construction generates slice
hyperholomorphic functions and the spectral theory of the
S-spectrum.

Main applications of the spectral theory of the S-spectrum are:

The foundations of quaternionic quantum mechanics (Spectral
Theorem),
Fractional powers of vector operators and fractional diffusion
problems (H∞-functional calculus).
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Recent research directions in the slice hypercomplex setting

Slice hyperholomorphic Schur analysis

F. C., D. Alpay, I. Sabadini, Slice Hyperholomorphic Schur analysis,
Slice hyperholomorphic Schur analysis. Operator Theory: Advances
and Applications, 256. Birkhäuser/Springer, Cham, 2016. xii+362.

Perturbation of normal quaternionic operators (P. Cerejeiras, F.C.,
U. Kaehler, I. Sabadini) in Trans. Amer. Math. Soc. (2019)

Volterra operators (P. Cerejeiras, F.C., U. Kaehler, I. Sabadini)

Function spaces of slice hyperholomorphic functions and
characteristic operator function

F. C., D. Alpay, I. Sabadini, Quaternionic de Branges spaces and
characteristic operator function, SpringerBriefs in Mathematics.
Springer 2020.

Quaternionic spectral operators (J. Gantner) Memoir AMS 2020/21

Composition of operators (Ren, Guangbin, Wang, Xieping) Slice
regular composition operators, Complex Var. Elliptic Equ. 61
(2016), no. 5, 682–711
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The second step in the Fueter-Sce-Qian construction

The second step in the Fueter-Sce-Qian construction generates
Fueter or monogenic functions and the spectral theory on the
monogenic spectrum, harmonic analysis in high dimension. (see the
work of McIntosh, Qian, and many others):

T. Qian, P. Li, Singular integrals and Fourier theory on Lipschitz
boundaries, Science Press Beijing, Beijing; Springer, Singapore, 2019.
xv+306 pp.
B. Jefferies, Spectral properties of noncommuting operators, Lecture
Notes in Mathematics, 1843, Springer-Verlag, Berlin, 2004.

Application in boundary value problems:

K. Gürlebeck, W. Sprössig, Quaternionic Analysis and Elliptic
Boundary Value Problems, International Series of Numerical
Mathematics, 89. Birkhäuser Verlag, Basel, 1990, 253pp.
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Tao Qian, Pengtao Li, Singular Integrals and Fourier
Theory on Lipschitz Boundaries, Science Press Bei-
jing, Beijing; Springer, Singapore, 2019. xv+306
pp.

B. Jefferies, Spectral properties of noncommuting
operators, Lecture Notes in Mathematics, 1843,
Springer-Verlag, Berlin, 2004.

K. Gürlebeck, W. Sprössig, Quaternionic Analysis
and Elliptic Boundary Value Problems, International
Series of Numerical Mathematics, 89. Birkhäuser
Verlag, Basel, 1990, 253pp.
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Motivation for fractional operators

We observe that the heat equation is based on

Fourier’s law q(t, x) = −K∇u(t, x), t ≥ 0, x ∈ R3, where u is the
temperature, q is the heat flow and K is the thermal diffusivity, and

conservation of energy ∂tu(t, x) + div q(t, x) = 0.

Their combination yields the heat equation

ut(t, x)−K div(∇u(t, x)) = 0.

Setting K = 1, for sake of simplicity, and having at hand the
fractional Laplacian we obtain the fractional evolution equation

∂tu(t, x) + (−∆)αu(t, x) = 0.

The operator (−∆)α is non local and takes into account global
contributions of the heat propagation
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Fractional Laplacian via Fourier transform

The fractional Laplacian, can be defined in different ways, for
example by the Fourier transform

(Fu)(ξ) =

∫
Rn

u(x)e−2πix·ξ dx , (F−1u)(x) =

∫
Rn

û(ξ)e2πix·ξ dξ.

For u ∈ S(Rn), the Schwartz space of rapidly decreasing functions
which is defined as

S(Rn) = {u ∈ C∞(Rn) : ∀β, γ ∈ Nn
0 sup

x∈Rn

|xβ∂γx u(x)| <∞},

we define (−∆)αu(x) = F−1((2π|ξ|2α(Fu)(ξ)), for α ∈ (0, 1).

Fractional Laplacian via semigroup approach

A different approach considers the semigroup generated by −∆.
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Balakrishnan’s approach

Balakrishnan obtains a construction for fractional powers of an
operator A, in which it is not required that A generates a semigroup.

He assumes that the linear operator A is closed with domain and
range in a Banach space X . He proved that if any λ > 0 belongs to
the resolvent set of A and there exists a positive constant M such
that ‖λ(λ− A)−1‖ < M, λ > 0, i.e. if −A is a sectorial
operator in today’s terminology, then the fractional powers of −A
can be defined by the integral

(−A)αx =
sin(απ)

π

∫ ∞
0

λα−1(λ− A)−1(−A)x dλ, x ∈ D(A),

for α ∈ (0, 1).

This formula can be obtained as a particular case of the
H∞-functional calculus introduced by A. McIntosh
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Part II: Motivation for (vector) fractional operators in Physics

Fractional heat equation

∂tu(t, x) + (−∆)αu(t, x) = 0

New approach based on the spectral theory on the S-spectrum:
replace

∇ = e1∂x1 + e2∂x2 + e3∂x3 , e1, e2, e3 imaginary units

by ∇α but for more general operators

∇̃(t, x) = (e1a(x)∂x1 + e2b(x)∂x2 + e3c(x)∂x3 )

to get
∂tu(t, x) + div(∇̃(t, x))αu(t, x) = 0

where (∇̃(t, x))α is the Balakrishnan analogue
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In analogy with the complex case, we say that a linear operator,
whose domain D(T ) := {v ∈ V : Tv ∈ V }, is closed if its graph is
closed.

Definition

We define the S-resolvent set of a linear closed operator T as

ρS(T ) := {s ∈H : (T 2 − 2 Re(s)T + |s|2I)−1 ∈ B(V )},

where
T 2 − 2Re(s)T + |s|2I : D(T 2)→ V ,

and the S-spectrum of T as

σS(T ) :=H \ ρS(T ).
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Definition

Let T be a closed right linear operator on a two-sided quaternionic
Banach space V and assume that s ∈ ρS(T ) 6= ∅, then the operator

Qs(T ) := (T 2 − 2 Re(s)T + |s|2I)−1

is called the pseudo-resolvent of T .
Let T ∈ K(V ), where K(V ) is the set of closed operators.

The left S-resolvent operator is defined as

S−1
L (s,T ) := Qs(T )s − TQs(T ), s ∈ ρS(T ), (1)

and the right S-resolvent operator is defined as

S−1
R (s,T ) := −(T − Is)Qs(T ), s ∈ ρS(T ). (2)

Fabrizio Colombo Politecnico di Milano, Italy Applications of the spectral theory on the S-spectrum to fractional diffusion problems



PART I: Function theories and spectral theories
Some research directions

PART II: Motivation for (complex) fractional operators in Physics
Motivation for (vector) fractional operators in Physics

Preliminaries on the S-functional calculus
PART III: Fractional quaternionic operators and the heat equation

Formulations of the quaternionic functional calculus

Let U ⊂H be a suitable domain that contains the S-spectrum of
T . We define the quaternionic functional calculus for left slice
hyperholomorphic functions f : U →H as

f (T ) =
1

2π

∫
∂(U∩Cj )

S−1
L (s,T ) dsj f (s), (3)

where dsj = −dsj ;

for right slice hyperholomorphic functions, we define

f (T ) =
1

2π

∫
∂(U∩Cj )

f (s) dsj S−1
R (s,T ). (4)

These definitions are well posed since the integrals depend neither
on the open set U nor on the complex plane Cj .
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Fractional Evolution

Recall that

u = temperature, q = heat flow, k = 1 thermal diffusivity

q = −∇u (Fourier’s law)

∂tu + div q = 0 (Conservation of Energy)

Their combination yields the heat equation

∂tu −∆u = 0

Alternative model: fractional heat equation

∂tu + (−∆)αu = 0
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The main idea

We identify
R3 ∼= {s ∈H : Re(s) = 0}

We identify the gradient with the quaternionic nabla operator

∇ = ∂x1 e1 + ∂x2 e2 + ∂x3 e3

We replace the gradient in Fourier’s law

ut − div(∇αu) = 0.

Modifies flow, keeps conservation of energy, if this strategy works it
is applicable to a large class of operators, for instance

∇̂ = a(x1, x2, x3)∂x1 e1 + b(x1, x2, x3)∂x2 e2 + c(x1, x2, x3)∂x3 e3.
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Technical problems and Workaround

Theorem

Consider ∇ on L2(R3,H). Then

σS(∇) = R

∇α cannot be defined because sα is not defined on (−∞, 0)

workaround: define ∇α only on the subspace associated to [0,∞) via

Pα(∇)u =
1

2π

∫
−jR

S−1
L (s,∇) dsj sα−1∇u

for u : R3 → R sufficiently regular; corresponds to Balakrishnan
approach (deduced here by the quaternionic H∞-functional
calculus).
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A surprising relation

We have
S−1
L (−tj ,∇) = (−tj +∇) (−t2 + ∆)−1︸ ︷︷ ︸

=R−t2 (−∆)

Some computations yield

Pα(∇)u =
1

2π

∫
−jR

S−1
L (s,∇) dsj sα−1∇u = . . .

=
1

2
∇(−∆)

α
2 −1∇u︸ ︷︷ ︸

ScalPα(∇)u

+
1

2
(−∆)

1
2 (−∆)

α
2 −1∇u︸ ︷︷ ︸

=VecPα(∇)u

.

We observe

divVecPα(∇)u = −1

2
(−∆)

α
2 + 1

2 u
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Definition (The S-spectrum approach to fractional diffusion processes)

Suppose that Ω ⊆ R3 is a suitable bounded or unbounded domain.

(1) Suppose we are given the initial-boundary value problem for
non-homogeneous materials, for (x , t) ∈ Ω× (0,T ] we consider

(a) T := q(x) = a1(x1)∂x1e1 + a2(x2)∂x2e2 + a3(x3)∂x3e3,

(b) ∂tu(x , t) + divq(x , t)u(x , t) = 0, +initial–boundary conditions

(2) The obtain the S-resolvent operator we need invertibility of

Qs(T ) := T 2 − 2 Re(s)T + |s|2I.

(3) Using the H∞-functional calculus we get, for α ∈ (0, 1):

Pα(T )u =
1

2π

∫
−jR

S−1
L (s,T ) dsj sα−1Tu

where S−1
L (s,T ) := Q−1

s (T )s − T Q−1
s (T )
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Definition (The S-spectrum approach to fractional diffusion processes)

Given T := q(x) = a1(x1)∂x1 e1 + a2(x2)∂x2 e2 + a3(x3)∂x3 e3 we have

Qs(T ) = T 2 + s2
1I = −(a1(x1)∂x1 )2 − (a2(x2)∂x2 )2 − (a3(x3)∂x3 )2 + s2

1I.

To get the S-resolvent operator for s = js1 ∈H we have to solve

(
− (a1(x1)∂x1 )2 − (a2(x2)∂x2 )2 − (a3(x3)∂x3 )2 + s2

1I
)

X (x) = F (x),

X (x) = 0, x ∈ ∂Ω.

Given F we want to find existence and uniqueness on X in H1
0 (Ω;H) and

show that ∃C > 0 such that∥∥Qs(T )−1
∥∥
B(L2)

≤ C
1

s2
1

,
∥∥TQs(T )−1

∥∥
B(L2)

≤ C
1

s1
.
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Theorem

Let Ω be a bounded domain in R3 with sufficiently smooth boundary. Let
a` ∈ C1(Ω,R) and a`(x`) ≥ m > 0. Moreover, assume that

inf
x∈Ω

∣∣a`(x`)
2
∣∣− √CΩ

2

∥∥∂x`a`(x`)
2
∥∥
∞ > 0, ` = 1, 2, 3,

and
1

2
− 1

2
‖Φ‖2

∞C 2
ΩC 2

a > 0

where CΩ is the Poincaré constant of Ω and

Φ(x) :=
3∑
`=1

e`∂x`a`(x`) and Ca := sup
x∈Ω
`=1,2,3

1

|a`(x`)|
.

Then any s ∈H \ {0} with Re(s) = 0 belongs to ρS(T ) and the
S-resolvents.
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Theorem

Moreover, S−1
L (s,T ) satisfy the estimate

∥∥S−1
L (s,T )

∥∥ ≤ Θ

|s|
and

∥∥S−1
R (s,T )

∥∥ ≤ Θ

|s|
, if Re(s) = 0,

(5)
with a constant Θ > 0 that does not depend on s and for α ∈ (0, 1), and
for any v ∈ dom(T ), the integral

Pα(T )v :=
1

2π

∫
−jR

sα−1 dsj S−1
R (s,T )Tv

converges absolutely in L2(Ω,H).
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Existence of the fractional powers with Robin-like boundary conditions

Let Ω be a bounded domain. Let T be the vector operators defined

T =
3∑
`=1

e`a`(x)∂x` , x ∈ Ω, (6)

and we suppose that the coefficient a1, a2, a3 : Ω ⊂ R3 → R of T are
not necessarily nonconstant. Let F : Ω→H be a given function and
denote by u : Ω→H the unknown function satisfying the boundary
value problem:{ (

T 2 − 2s0T + |s|2I
)
u(x) = F (x), x ∈ Ω,∑3

`=1 a2
`(x)n`(x)∂x`u(x) + a(x)u(x) = 0, x ∈ ∂Ω,

(7)

where a : ∂Ω→ R is a given function and n = (n1, n2, n3) is the outward
unit normal vector to ∂Ω.
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The boundary operator of the spectral problem

3∑
`=1

a2
`(x)n`(x)∂x`u(x) + a(x)u(x) = 0, x ∈ ∂Ω

naturally arise in the definition of the bilinear form associated with the
existence of the pseudo S-resolvent operator as a bounded linear
operator, while the operator

n · T (x) =
3∑
`=1

a`(x)n`(x)∂x`

in associated with the boundary condition of the flux condition. The
stationary heat equation for nonhomogeneous materials with Robin
boundary conditions, for v : Ω→ R, is given by{

divT (x)v(x) = 0, x ∈ Ω,

b(x)v(x) +
∑3
`=1 a`(x)n`(x)∂x`v(x) = 0, x ∈ ∂Ω,

(8)
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This approach has several advantages

(I) It modifies the Fourier law but keeps the law of conservation of
energy.

(II) It is applicable to a large class of operators that includes the
gradient but also operators with variable coefficients

T = a(x1, x2, x3)∂x1 e1 + b(x1, x2, x3)∂x2 e2 + c(x1, x2, x3)∂x3 e3 (∗).

(III) The fractional powers of the operator T are more realistic for non
homogeneous materials.

(IV) The fact that we keep the evolution equation in divergence form
allows an immediate definition of the weak solution of the fractional
evolution problem.
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