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1. Plan of the talk

We will talk about 3 topics

Thick distributions and Fourier transforms in one variable

Thick distributions in several variables

Fourier transforms in several variables

The general idea is as follows:

Space of thick test functions,

A ↪→ A∗
corresponding to a space of test functions, A = D, S, E , etc.
A is a closed subspace of A∗, so we have a projection of the space of

thick distributions onto the space of usual distributions,

Π : A′∗A′

To define the Fourier transform we construct a space

W
and an isomorphism, the Fourier transform of thick test functions

F∗,t : S∗ →W
as well as

F∗t :W → S∗
and then construct the Fourier transform of thick distributions by du-
ality

F∗ : S ′∗ →W ′

F∗ :W ′ → S ′∗
In one variable, S∗ ⊂ S ′ so we can take

F∗,t = F∗t = F ,
1
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the usual Fourier transform, but this is more complicated in several
variables because in that case

S∗ * S ′

2. Fourier transform in one variable

The Fourier transform of thick distributions in one variable was pre-
sented in a 2007 article by Fulling and Estrada that appeared in a
volume dedicated to Euler (Estrada, R. and Fulling, S. A., Spaces of
test functions and distributions in spaces with thick points, Int. J.
Appl. Math. Stat. 10 (2007), 25-37).

2.1. A puzzle. We begin with a problem that surely would have de-
lighted Euler: Evaluate the integral

(2.1)

∫ ∞
0

cos (2kx) dx.

In the classical sense it does not converge, but nevertheless it arises
naturally in the spectral theory of simple differential operators and
in related applications to, for example, quantum field theory. (It is a
simple analogue of integrals that arose in (Bondurant, J.D. and Fulling,
S.A., The Dirichlet-to-Robin transform, J. Phys. A 8 (2005), 1505–
1532.) One expects (2.1) to make sense as a distribution in k, with
k ≥ 0. (It is essentially the orthogonality relation for the Fourier cosine
transform, in which k is inherently nonnegative.) We now evaluate the
integral in two very plausible ways, getting two different answers.

First, we argue that∫ ∞
0

cos(2kx) dx =
1

2

∫ ∞
−∞

cos(2kx) dx(2.2)

=
1

2

∫ ∞
−∞

e2ikx dx

= πδ(2k)

=
π

2
δ(k).

On the other hand, we calculate∫ ∞
0

cos(2kx) dx =
sin(2kx)

2k

∣∣∣∣∞
x=0

= lim
x→∞

sin(2kx)

2k
.
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By definition of a distributional integral, we must evaluate this limit
after integrating over a “test function”, f(k), with support in [0,∞):

lim
x→∞

∫ ∞
0

sin(2kx)

2k
f(k) dk = lim

x→∞

∫ ∞
0

sinu

2u
f
( u

2x

)
du(2.3)

=
1

2
f(0)

∫ ∞
0

sinu

u
du

=
π

4
f(0),

where the last step uses a well-known integral.

(2.4)

∫ ∞
0

cos(2kx) dx =
π

4
δ(k).

3. Spaces with thick points

Let a ∈ R. We shall define D∗,a , the space of test functions with
a thick point located at x = a, and D′∗,a , the corresponding space of
distributions. A function φ with domain R belongs to D∗,a if it has
compact support, it is smooth in R\{a}, and at x = a all its one-sided
derivatives,

(3.1) φ(n) (a± 0) = lim
x→a±

φ(n) (x) , n ∈ N ,

exist. D∗,a has a natural topology, in which D (R) is the closed subspace
where φ(n) (a+ 0) = φ(n) (a− 0) , ∀n ∈ N. The elements of D′∗,a are the
distributions defined in the standard way as the linear functionals on
this enlarged space of test functions.

One can also define in a similar way the spaces A∗,a and A′∗,a for any
of the usual spaces of test functions and distributions. For instance,
E ′∗,a is the space of compactly supported distributions with a thick point
at x = a, and S ′∗,a the corresponding space of tempered distributions.
Without loss of generality we shall take a = 0 and use the simpler
notations A∗ and A′∗ . It is clear that instead of one thick point one
could consider a space with a finite number of thick points, or even an
infinite (but discrete) set of them.

In fact, the idea of considering functions and generalized functions in
spaces with thick points was apparently first proposed by Blanchet and
Faye (Blanchet, L. and Faye, G., Hadamard regularization, J. Math.
Phys. 41 (2000), 7675-7714) in the context of finite parts, pseudo-
functions and Hadamard regularization studied by Sellier; their anal-
ysis is aimed at the study of the dynamics of point particles in high
post-Newtonian approximations of general relativity, and it thus devel-
oped in dimension 3.
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If X and Y are topological vector spaces with X ⊂ Y , the inclusion,
i, being continuous, we shall denote by π the adjoint operator, π = i′,
which is a projection from Y ′ to X ′. In the case of spaces with thick
points, one has A ⊂ A∗,a , and thus we have a projection π : A′∗,a −→
A′, given explicitly as

〈π (f) , φ〉A′×A = 〈f, φ〉A′∗,a×A∗,a .

Every distribution g ∈ A′ can be extended to A′∗,a ; that is, there exist
distributions f ∈ A′∗,a such that π (f) = g. If f0 is any extension, then
the most general extension is given as

(3.2) f = f0 +
n∑
j=0

αjsj ,

where sj = sj,a are the distributions that give the saltus (jump) of the
jth derivative across x = a,

(3.3) 〈sj, φ〉 = φ(j) (a+ 0)− φ(j) (a− 0) ,

where n ∈ N, and where α0, . . . , αn are arbitrary constants.
We may define the derivatives of the distributions of A′∗,a by the

usual duality process,

〈f ′, φ〉 = −〈f, φ′〉 .
Clearly,

π (f ′) = π (f)′ .

Also,

sj = (−1)j s
(j)
0 .

We shall consider the one-sided delta functions at the thick point,
δ± (x) = δ (x− (a± 0)) , defined as

(3.4) 〈δ (x− (a± 0)) , φ (x)〉 = φ (a± 0) .

Observe that s0 (x) = δ (x− (a+ 0))− δ (x− (a− 0)) , and more gen-

erally (−1)j sj (x) = δ(j) (x− (a+ 0))− δ(j) (x− (a− 0)) .
It is important to observe that the derivative formulas in the space

A′∗,a can be somewhat different from the usual derivative formulas.
Indeed, suppose that f ∈ A′∗,a is a regular distribution generated by a

function that is of class C1 in both (−∞, a] and [a,∞) but that may
have a jump [f ] = f (a+ 0) − f (a− 0) across the thick point. Then
f can also be considered an element of the usual space of distributions
A′, and we have the well-known formula

(3.5)
df

dx
=
df

dx
+ [f ] δ (x− a) ,
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where the overbar denotes the distributional derivative and df/dx is
the ordinary derivative. However, the derivative in the space A′∗,a ,
denoted d∗f/dx, is given by the relation

(3.6)
d∗f

dx
=
df

dx
+ f (a+ 0) δ+ (x)− f (a− 0) δ− (x) .

Naturally (3.5) and (3.6) satisfy

π

(
d∗f

dx

)
=
df

dx
.

Nevertheless, if f is continuous at x = a, then the distributional
derivative coincides with the ordinary derivative, but in the space A′∗,a
we have

(3.7)
d∗f

dx
=
df

dx
+ f (a) s0 (x) .

The general form of the extensions of the Dirac delta function δ (x− a)
to the thick-point space that are of order 0, that is, that do not contain
derivatives of the deltas, is

(3.8) δ∗,a,λ (x) = λδ (x− (a+ 0)) + (1− λ) δ (x− (a− 0)) ,

where λ is any constant. The case when λ = 1/2 give us the only such
extension,

(3.9) δ̃ (x− a) = δ∗,a,1/2 (x) = 1
2

[δ (x− (a+ 0)) + δ (x− (a− 0))] ,

that is symmetric with respect to x = a.
Let us now consider multiplication in the spaces A′∗,a . Any space

of distributions A′ has a corresponding Moyal algebra B, the space of
multipliers of A and of A′, i.e., those smooth functions ρ that satisfy
ρφ ∈ A, ∀φ ∈ A. If A = D then B = E ; if A = E then B = E ; if A = S
then B = OM . (For more on OM and the other spaces see [?] or [?].)
In the spaces with thick points, if ρ ∈ B∗,a , then ρφ ∈ A∗,a , ∀φ ∈ A∗,a ,
and thus we may define the multiplication ρf ∈ A′∗,a whenever f ∈ A′∗,a
by the formula

(3.10) 〈ρ (x) f (x) , φ (x)〉 = 〈f (x) , ρ (x)φ (x)〉 .

On the other hand, if ρ ∈ B∗,a then the multiplication ρφ belongs to
A∗,a for any φ ∈ A, and thus we can define an operator of multiplication
Mρ : A −→ A∗,a , and, by duality, a corresponding multiplication
operator Mρ : A′∗,a −→ A′. Observe that

(3.11) π (ρf) = Mρ (f) .
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Notice too that if ρ1, ρ2 ∈ B∗,a then we can perform the operation
ρ1(ρ2f), which, naturally, turns out to be (ρ1ρ2)f.However, the product
Mρ1Mρ2 is not defined.

If ρ ∈ E , then ρ (x) δ (x− a) = ρ (a) δ (x− a) . The corresponding
formula when there are thick points is as follows:

ρ (x) δ∗,a,λ (x− a) = λρ (a+ 0) δ (x− (a+ 0))(3.12)

+ (1− λ) ρ (a− 0) δ (x− (a− 0)) .

Thus Mρ (δ∗,a,λ (x− a)) = [λρ (a+ 0) + (1− λ) ρ (a− 0)] δ (x) , and in
particular

Mρ

(
δ̃ (x− a)

)
= {ρ} δ (x− a) ,

where

{ρ} = (ρ (a+ 0) + ρ (a− 0))/2

is the average value at the thick point.

4. The Fourier transform in spaces with thick points

We adopt the simplest definition of the Fourier transform:

f̂ (u) = F {f (x) ;u}

is given by the integral ∫ ∞
−∞

f (x) eixu dx

when the integral exists and defined by duality or other methods when
the integral diverges. Naturally, our results will remain valid, mod-
ulo trivial modifications, for all the variant conventions, and hence, in
particular, for the inverse Fourier transform,

F−1 {f (x) ;u} = (2π)−1F {f (x) ;−u} .

If φ ∈ S∗ then its Fourier transform φ̂ is a smooth function, but it will

not be of rapid decay at infinity, in general. The behavior of φ̂ (u) as
|u| → ∞ follows from the Erdélyi asymptotic formula (Asymptotic ex-
pansions of Fourier integrals involving logarithmic singularities, SIAM
J. 4 (1956), 38-47),

(4.1)

∫ ∞
−∞

φ (x) eixu dx ∼ c1
u

+
c1
u2

+
c1
u3

+ · · · , |u| → ∞ ,

where

cn+1 = eπi(n+1)/2
[
φ(n)

]
.
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In fact a smooth function ψ belongs to F (S∗) if and only if there exist
constants c1, c2, c3, . . . such that

ψ (x) ∼
∞∑
n=1

cnx
−n as |x| → ∞.

Therefore, we introduce the space W as follows.

Definition. The test-function space W consists of those functions
ψ ∈ C∞ (R) that admit an asymptotic expansion of the type

(4.2) ψ (x) ∼
∞∑
n=1

cnx
−n as |x| → ∞

for some constants c1, c2, c3, . . .. The space of distributions W ′ is the
corresponding dual space.

We can now define the Fourier transform of the distributions of the
space S ′∗ .

Definition. If f ∈ S ′∗ then its Fourier transform f̂ = F (f) is the
element of the space W ′ defined by

(4.3)
〈
f̂ (u) , ψ (u)

〉
=
〈
f (x) , ψ̂ (x)

〉
, ψ ∈ W .

Similarly, if g ∈ W ′ then its Fourier transform ĝ = F (g) is the element
of the space S ′∗ defined by

(4.4) 〈ĝ (x) , φ (x)〉 =
〈
g (u) , φ̂ (u)

〉
, φ ∈ S∗ .

The Fourier transform is an isomorphism between the spaces S ′∗ and
W ′, and between the spaces W ′ and S ′∗ .

In order to understand the Fourier transform in these spaces, it is
convenient to note several properties of the space W ′. This space of
generalized functions was introduced in (Singular Integral Equations,
Birkhäuser, Boston, 2000.) to study the Hilbert transform of distri-
butions. One of the most important characteristics of W ′ is that its
elements are not distributions over R but rather distributions over the
one-point compactification R = R∪{∞} . We denote by δ∞,j the ele-
ment of W ′ given by

(4.5) 〈δ∞,j (u) , ψ (u)〉 = cj

when ψ ∈ W has the development (4.2). Any element g ∈ W ′ admits a
“restriction” πg ∈ S ′, but that restriction might vanish even if g does
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not, namely if g is “concentrated at ∞,” that is, if it has the form

(4.6) g (u) =
n∑
j=1

bjδ∞,j (u) .

Each g ∈ S ′ admits “extensions” g̃ ∈ W ′, but such extensions are not
unique, since we could always add a distribution of the form (4.6).
Some tempered distributions admit canonical extensions to W ′, but
there is no canonical way to extend all elements of S ′ to W ′.

Observe that when a tempered distribution g admits a canonical
extension g̃ ∈ W ′, then its Fourier transform F (g), which is an element
of S ′, admits a canonical extension to the space S ′∗ of distributions over
the line with a thick point at x = 0, and this extension is precisely
F (g̃) .

If g is a distribution of compact support, g ∈ E ′ (R) , then the equa-
tion

(4.7) 〈g̃, ψ〉W ′×W = 〈g, ψ〉E ′×E
defines a canonical extension. On the other hand, if g ∈ S ′ satisfies the
estimate

(4.8) g (u) = O (|u|α) (C) , as |u| → ∞ ,

in the Cesàro sense, and α < 0, then g admits a canonical extension
given by the Cesàro evaluation

(4.9) 〈g̃, ψ〉W ′×W = 〈g, ψ〉 (C) ,

which exists because g (u)ψ (u) = O
(
|u|α−1

)
(C). Any tempered distri-

bution g satisfies (4.8) for some α ∈ R , but if α > 0 the extension toW ′
is not canonical but depends on k arbitrary constants if k− 1 ≤ α < k
for some k ∈ {1, 2, 3, . . .}, much in the same way that a primitive of
order k depends on k arbitrary constants.

Other tempered distributions that admit canonical extensions toW ′,
obtained by analytic continuation, are the distributions uα+ and uα− for
α /∈ Z, the combination |ũ|α = ũα+ + ũα− for α = 0,±2,±4, . . . , and
the combination sgnu |ũ|α = ũα+ − ũα− for α ∈ C \ 2Z Therefore the
distribution ũn is defined for all integers. In particular, the tempered
distribution 1 = |u|α|α=0 admits a canonical extension 1̃ = |ũ|α|α=0 ;
this canonical extension is given by the formula

(4.10)
〈

1̃, ψ (u)
〉

= p.v.

∫ ∞
−∞

ψ (u) du ,
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the principal value being taken at infinity, i.e., p.v.
∫∞
−∞ = limA→∞

∫ A
−A.

Alternatively,

(4.11)
〈

1̃, ψ (u)
〉

=

∫ 1

−1
ψ (u) du+

∫
|u|>1

(
ψ (u)− c1

u

)
du .

5. Some Fourier transforms

We shall now give the Fourier transform of several distributions of
the spaces W ′ and S ′∗ . Observe that if a distribution f0 of W ′ is an
extension of a tempered distribution f of the space S ′, then the Fourier

transform f̂0 is an element of the space S ′∗ that extends the tempered

distribution f̂ . Similar remarks apply to the Fourier transform of the
distributions of the space S ′∗ .

Let us start with the computation of F
{
δ̃ (x) ;u

}
∈ W ′. Observe

that the equation
〈
δ̃ (x) , eixu

〉
= 1, while correct, just tells us that

F
{
δ̃ (x) ;u

}
is a regularization in the space W ′ of the tempered dis-

tribution 1. Therefore, we proceed as follows:〈
F
{
δ̃ (x) ;u

}
, ψ (u)

〉
=

1

2

(
ψ̂
(
0+
)

+ ψ̂
(
0−
))

=
1

2
lim
x→0

(
ψ̂ (x) + ψ̂ (−x)

)
= lim

x→0

∫ ∞
−∞

cosxuψ (u) du .

We cannot set x = 0 in the last integral since that would produce a
divergent integral. However, we observe that

∫
|u|>1

cosxu du/u = 0 for

x > 0 and thus obtain〈
F
{
δ̃ (x) ;u

}
, ψ (u)

〉
= lim

x→0

∫ 1

−1
cosxuψ (u) du

+

∫
|u|>1

cosxu
(
ψ (u)− c1

u

)
du

=

∫ 1

−1
ψ (u) du+

∫
|u|>1

(
ψ (u)− c1

u

)
du

=
〈

1̃, ψ (u)
〉
,

so that

(5.1) F
{
δ̃ (x) ;u

}
= 1̃ .
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We can compute F {s0 (x) , u} in a similar fashion,

〈F {s0 (x) ;u} , ψ (u)〉 = lim
x→0+

(
ψ̂ (x)− ψ̂ (−x)

)
= 2i lim

x→0+

∫ ∞
−∞

sinxuψ (u) du

= 2i lim
x→0+

∫ ∞
−∞

sinxu
(
ψ (u)− c1

u

)
du

+ c1

∫ ∞
−∞

sinxu

u
du

= 2πic1 ,

so that

(5.2) F {s0 (x) ;u} = 2πiδ∞,1 (u) .

Formulas (5.1) and (5.2) immediately give

(5.3) F {δ± (x) ;u} = 1̃± πiδ∞,1 (u) ,

where δ± (x) = δ (x− (0± 0)) . Formulas (5.3), in turn, yield the fol-
lowing limits in the space W ′ :

(5.4) eiu0
±

= lim
x→0±

eiux = 1̃± πiδ∞,1 (u) .

If we now use the fact that F−1 {f (u) ;x} = (2π)−1F {f (u) ;−x} , we
obtain the formulas

(5.5) F
{

1̃;x
}

= 2πδ̃ (x) ,

(5.6) F {δ∞,1 (u) ;x} = is0 (x) .

The usual formulas for the computation of the Fourier transforms
of derivatives need to be modified in our context, since the product
of a function ψ (u) of the space W by the function u does not belong
to W , in general. Therefore, we introduce the modified multiplication
operator Mu :W −→W and its adjoint M ′

u :W ′ −→W ′ as

(5.7) Mu (ψ) = uψ (u)− c1
and, of course, 〈M ′

u (g) , ψ〉 = 〈g,Mu (ψ)〉 . Then

(5.8) F {f ′ (x) ;u} = −iM ′
uF {f (x) ;u} .

Similarly, if g ∈ W ′ then

(5.9) F {M ′
ug (u) ;x} = −i d

∗

dx
F {g (u) ;x} .
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Observe that M ′
u (δ∞,j (u)) = δ∞,j+1 (u) . Hence

(5.10) F {sj (x) ;u} = (−1)j F
{
s
(j)
0 (x) ;u

}
= 2πij+1δ∞,j+1 (u) ,

(5.11) F {δ∞,j (u) ;x} = (−i)j−1 sj−1 (x) = ij−1s
(j−1)
0 (x) .

Notice that M ′
u (f) is related to the multiplication uf (u) , but it

is not the same, even if the product is well-defined. For instance, if
f (u) = δ (u) then uδ (u) vanishes, but M ′

u (δ (u)) = −δ∞,1 (u) since

〈M ′
uδ (u) , ψ (u)〉 = 〈δ (u) ,Muψ (u)〉 = 〈δ (u) , uψ (u)− c1〉 = −c1 .

6. An answer

We can now address the puzzle in subsection 2.1.
Now we return to the integral (2.1). Of course it is a Fourier trans-

form, but since it is classically divergent we need to say in which space
we are working, or, what is the same, which regularization of the func-
tion 1 we are using. If we work in W ′ and, consequently, look for a
result in S ′∗, it is natural because of symmetry arguments to consider

the regularization 1̃. Hence,∫ ∞
0

cos (2kx) dx =
1

2

∫ ∞
−∞

cos (2kx) dx

=
1

2

∫ ∞
−∞

e2ikx dx

=
1

2
F
{

1̃; 2k
}

= πδ̃ (2k)

=
π

2
δ̃ (k) .

The result (π/2) δ̃ (k) holds for k positive or negative. If we want
the result for k > 0 in the space S ′ we need to apply the projection
multiplication MH : S ′∗ −→ S ′ ; that is we need to multiply by the
Heaviside function:

(6.1) H (k)

∫ ∞
0

cos (2kx) dx =
π

2
MH

(
δ̃ (k)

)
=
π

4
δ (k) .

That is, both (2.2) and (2.4) are correct, depending upon context!
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7. Thick distributions in several variables

Thick distributions in several variables were first studied by Yunyun
Yang and Estrada starting in 2009.

It must be said that the theory of thick distributions in higher dime-
sions is very different from that in one dimension, and thus our meth-
ods and results are not just a simple extension of those of [?]. Indeed,
if a ∈ Rn, the topology of Rn \ {a} , n ≥ 2, is quite unlike that of
R \ {a} for a ∈ R, since the latter space is disconnected, consisting
of two unrelated rays, while the former is connected, all directions of
approach to the point a are related, and such behavior imposses strong
restrictions on the singularities. In one variable, the derivative of a
function with a jump discontinuity at a point may also have a jump
discontinuity there, but such situation is not to be expected in higher
dimensions, since derivatives of functions with a jump type singularity
at a point will have, in general, derivatives that tend to infinity at the
point. Therefore, we define test functions as those functions that are
smooth away from the thick point but which have strong asymptotic
expansions of the form

(7.1) φ (a + rw) ∼
∞∑
j=m

aj (w) rj,

as x → a for some m ∈ Z. In general if the expansion of φ starts
at m, then that of ∂φ/∂xj will start at m− 1, and more generally,
that of Dφ, where D is a differential operator of degree p, starts at
m− p; therefore our space of test functions contains functions with
developments of the type (7.1) for any integer m ∈ Z. In one variable
[?] it is enough to consider test functions whose expansion starts at
m = 0, but that approach does not work in dimensions n ≥ 2.

8. Space of Test Functions on Rn with a Thick Point

If a is a fixed point of Rn, then the space of test functions with a
thick point at x = a is defined as follows.

Definition 1. Let D∗,a (Rn) denote the vector space of all smooth func-
tions φ defined in Rn \ {a} , with support of the form K \ {a} , where
K is compact in Rn, that admit a strong asymptotic expansion of the
form

(8.1) φ (a + x) = φ (a + rw) ∼
∞∑
j=m

aj (w) rj, as x→ 0 .
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where m is an integer (positive or negative), and where the aj are smooth
functions of w, that is, aj ∈ D (S) .

8.1. The expansion of (∂/∂x)p φ. Notice that the definition of the
space D∗,a (Rn) requires (∂/∂x)p φ (x) to have an asymptotic expansion
equal to the term-by-term differentiation of

∑∞
j=m aj (w) rj. If

(8.2) φ (a + x) = φ (a + rw) ∼
∞∑
j=m

aj (w) rj, as r → 0 .

we obtain

(8.3)
∂φ

∂xi
(a + rw) ∼

∞∑
j=m−1

(
δaj+1

δxi
+ (j + 1) aj+1ni

)
rj, as r → 0 .

Iteration of formula (8.3) yields, in turn, the expansion

∂2φ

∂xi∂xk
(a + rw)

∼
∞∑

j=m−2

(
D2
ikaj+2 + (j + 2)

(
δaj+2

δxi
nk+

δaj+2

δxk
ni

)
+ (j + 2) (δik + jnink) aj+2

)
rj,(8.4)

as r → 0.

9. Space of Distributions on Rn with a Thick Point

We can now consider distributions in a space with one thick point.

Definition 2. The space of distributions on Rn with a thick point at
x = a is the dual space of D∗,a (Rn) . We denote it D′∗,a (Rn) , or just as

D′∗ (Rn) when a = 0.

We shall call the elements of D′∗,a (Rn) “thick distributions.”
Since D (Rn) is closed in D∗,a (Rn) , the Hahn-Banach theorem im-

mediatly yields the following extension result.

Theorem 1. Let f be any distribution in D′ (Rn) , then there exist thick
distributions g ∈ D′∗,a (Rn) such that π (g) = f.

Naturally, if f ∈ D′ (Rn) then there are infinitely many thick dis-
tributions g with π (g) = f. In some cases there is a canonical way
to construct such a g, but no general extension procedure exists. We
could think of this situation as follows: If g ∈ D′∗,a (Rn) , then knowing
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π (g) gives us a lot of information about g, but not enough to know g
completely.

It is well known that any locally integrable function f defined in Rn

yields a distribution, usually denoted by the same notation f, by the
prescription

(9.1) 〈f, φ〉 =

∫
Rn

f (x)φ (x) dx , φ ∈ D (Rn) .

If a /∈ supp f, that is, if f (x) = 0 for |x− a| < ε for some ε > 0,
then (9.1) will also work in D′∗,a (Rn) ; however, if a ∈ supp f then, in

general, the integral
∫
Rn f (x)φ (x) dx would be divergent and thus a

thick distribution that one could call “f” cannot be defined in a canon-
ical way. Nevertheless, it is possible in many cases to define a “finite
part” distribution Pf (f (x)) which is the canonical thick distribution
corresponding to f.

Definition 3. Let f be a locally integrable function defined in Rn\{a} .
The thick distribution Pf (f (x)) is defined as

(9.2) 〈Pf (f (x)) , φ (x)〉 = F.p.

∫
Rn

f (x)φ (x) dx , φ ∈ D∗,a (Rn) ,

provided that the finite part integrals exist for all φ ∈ D∗,a (Rn) .

If ψ is somooth in Rn \ {a} , and near x = a the function ψ has a
strong expansion of the form (8.1), then the finite part Pf (ψ (x)) exists
as an element of D′∗,a (Rn) . In particular, when ψ is smooth in all of
Rn, ψ ∈ E (Rn) , then Pf (ψ (x)) ∈ D′∗,a (Rn) ; notice that the finite part
is always needed if there is a thick point, even if π (Pf (ψ (x))) = ψ (x)
in the space D′ (Rn) of standard distributions, so that no finite part is
needed there.

Suppose g (w) is a distribution in S. Let us now define the “thick
delta function” gδ∗ ∈ D′∗ (Rn) .

〈gδ∗, φ〉D′∗(Rn)×D∗(Rn) :=
1

Cn−1
〈g (w) , a0 (w)〉D′(S)×D(S) ,

where Cn−1 is the surface area of S, the unit sphere in Rn. If g is locally
integrable in S, then

(9.3) 〈gδ∗, φ〉D′∗(Rn)×D∗(Rn) =
1

Cn−1

∫
S
g (w) a0 (w) dσ (w) .

We sometimes use the notations g (w) δ∗ or g (w) δ∗ (x) to denote the
thick delta gδ∗.
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In particular, if g (x) ≡ 1, then we obtain the “plain thick delta
function” δ∗ = gδ∗, given as

(9.4) 〈δ∗, φ〉D′∗(Rn)×D∗(Rn) =
1

Cn−1

∫
S
a0 (w) dσ (w) .

(9.5) π (g (w) δ∗ (x)) = Igδ (x) ,

where the constant Ig is given by

Ig =
1

Cn−1
〈g (w) , 1〉D′(S)×D(S)

=
1

Cn−1

∫
S
g (w) dσ (w) ,(9.6)

the second expression being valid in case g is locally integrable.

In particular, since I1 = 1, the projection of the plain thick delta
function δ∗ is no other than the usual delta function in D′ (Rn) ,

(9.7) π (δ∗) = δ .

In fact, the notion of thick delta functions can be generalized to a
much broader range of the distributions in D′∗ (Rn), the thick delta
functions of degree q, so that gδ∗ is the special case when q = 0. We
have the following definition.

Definition 4. (Thick delta functions of degree q) Let g (w) is a dis-

tribution in S. The thick delta function of degree q, denoted as gδ
[q]
∗ , or

as g (w) δ
[q]
∗ , acts on a thick test function φ (x) as

(9.8)
〈
gδ[q]∗ , φ

〉
D′∗(Rn)×D∗(Rn)

=
1

Cn−1
〈g (w) , aq (w)〉D′(S)×D(S) ,

where φ (rw) ∼
∑∞

j=m aj (w) rj, as r → 0+.

If g is locally integrable function in S, then

(9.9)
〈
gδ[q]∗ , φ

〉
D′∗(Rn)×D∗(Rn)

=
1

Cn−1

∫
S
g (w) aq (w) dσ (w) .

Notice, also that

(9.10) π
(
gδ[q]∗

)
= 0 , whenever q < 0 .

The projection of the thick deltas for q > 0 is more interesting; ob-

serve, in particular, that π
(
δ
[1]
∗

)
= 0, but π

(
Cn−1δ (w − ek) δ

[1]
∗

)
=

−∂δ (x) /∂xk if ek is the k-th unit vector. Furthermore,

(9.11) π
(
δ[2]∗
)

=
1

2n
∇2δ (x) ,



16 RICARDO ESTRADA

where ∇2 =
∑n

i=1 ∂
2/∂x2i is the Laplacian. More generally, we have

the following result.

If g ∈ D′ (S) and q ≥ 0 then

(9.12) π
(
gδ[q]∗

)
=

(−1)q

Cn−1

∑
j1+···+jn=q

〈
g (w) ,w(j1,...,jn)

〉
j1! · · · jn!

D(j1,...,jn)δ (x) .

There is an important relation between the finite part distributions

Pf
(
rλ
)

and the thick delta functions δ
[q]
∗ .

The thick distributions Pf
(
rλ
)

are analytic functions of λ in the
region C \ Z. There are simple poles at all of the integers k ∈ Z with
residues

(9.13) Res
λ=k
Pf
(
rλ
)

= Cn−1δ
[−k−n]
∗ .

The distribution Pf
(
rk
)

is the finite part of the analytic function1 at
the pole, namely,

(9.14) Pf
(
rk
)

= lim
λ→k

(
Pf
(
rλ
)
− Cn−1δ

[−k−n]
∗

λ− k

)
.

Formula (9.10) allows us to recover the well known result that rλ =
π
(
Pf
(
rλ
))
, the usual distribution of D′ (Rn) is analytic for λ 6= −n,

−n− 1, −n− 2, . . . since the residues at the poles −n + 1, −n + 2,
−n + 3, . . . vanish.

10. Algebraic and Analytic Operations in D′∗,a (Rn)

Naturally, we define the algebraic and analytic operations inD′∗,a (Rn)
in the same way they are defined for the usual distributions, namely,
by duality.

10.1. Basic Definitions. Let f, g ∈ D′∗,a(Rn) and φ(x) ∈ D∗,a (Rn) be
a thick test function. Then the sum f + g is given as

(10.1) 〈f + g, φ〉 = 〈f, φ〉+ 〈g, φ〉 ,
while if λ ∈ C then λf ∈ D′∗,a(Rn) is given as

(10.2) 〈λf, φ〉 = λ 〈f, φ〉 .
Translations are handled by the formula

(10.3) 〈f (x + c) , φ (x)〉 = 〈f (x) , φ (x− c)〉 ,
1If g (λ) is analytic for 0 < |λ− λ0| < ρ and there is a simple pole with residue

a = Resλ=λ0
g (λ) at λ = λ0, then the finite part of the analytic function g at λ0 is

given by the limit limλ→λ0

(
g (λ)− a (λ− λ0)

−1
)
.
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where c ∈ Rn. Here f ∈ D′∗,a(Rn) while the translation f (x + c) be-
longs to D′∗,a−c(Rn); naturally φ ∈ D∗,a−c(Rn).

Observe that any distribution g of the space D′∗,a(Rn) can be written
as g (x) = f (x− a) for some f ∈ D′∗(Rn), and this justifies studying
most results in D′∗(Rn) only.

Linear changes of variables are as follows. Let A be a non-singular
n× n matrix. If f ∈ D′∗(Rn) then f (Ax) is defined as

(10.4) 〈f (Ax) , φ (x)〉 =
1

|detA|
〈
f (x) , φ

(
A−1x

)〉
,

as in the space D′(Rn) of usual distributions. In particular, f (−x) is
defined as

(10.5) 〈f (−x) , φ (x)〉 = 〈f (x) , φ (−x)〉 .

10.2. Multiplication. The space of multipliers for a space of test
functions and for its dual space are the same, their Moyal algebra.

Definition 5. Let ρ ∈ B, the space of multipliers of a space of test
functions A, that is, ρφ ∈ A, ∀φ ∈ A. Then if f ∈ A′ the multiplication
ρf ∈ A′ is given by

(10.6) 〈ρf, φ〉 = 〈f, ρφ〉 .
The space B is the Moyal algebra of A and of A′.

Thick distributions can be multiplied by certain multipliers, func-
tions that are smooth away from the thick point, and that behave like
test functions near the thick point. Indeed, it is not hard to see that
the Moyal algebra of D∗,a, the set of functions ψ, defined in Rn \ {a} ,
such that ψφ ∈ D∗,a, for any φ ∈ D∗,a, is precisely E∗,a, the set of all
smooth functions in Rn \ {a} , that behave like thick test functions at
x = a. On the other hand, the Moyal algebra of the spaces S and S ′ is
the space OM [?] so that the space of multipliers of S∗,a and S ′∗,a is the
space (OM)∗,a .

Example 1. The function rk is a multiplier of D′∗ (Rn) for any k ∈ Z.
In particular, the multiplication rkδ

[q]
∗ is defined for any q ∈ Z, and a

simple computation yields the useful formula

(10.7) rkδ[q]∗ = δ[q−k]∗ .

Observe that also for any λ ∈ C,
(10.8) rkPf

(
rλ
)

= Pf
(
rλ+k

)
.
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If ρ ∈ B∗,a, then

(10.9)
Mρ : D → D∗,a

φ 7→ ρφ
.

By duality, the corresponding multiplication operator is defined as

(10.10)
M ′

ρ : D′∗,a → D′
f 7→ ρf

.

Notice that

(10.11) π (ρf) = M ′
ρ (f) .

10.3. Derivatives of Thick Distributions. The derivatives of thick
distributions are defined in much the same way as the usual distribu-
tional derivatives, that is, by duality. If f ∈ D′∗,a (Rn) then its thick
distributional derivative ∂∗f/∂xj is defined as

(10.12)

〈
∂∗f

∂xj
, φ

〉
= −

〈
f,
∂φ

∂xj

〉
, φ ∈ D∗,a (Rn) .

Let f ∈ D′∗,a (Rn) . Then

(10.13) π

(
∂∗f

∂xj

)
=
∂ π (f)

∂xj
.

Formula (10.13) has an interesting consequence, as we shall explain
next.

Example 2. Let f ∈ D′∗,a (Rn) ; if π (f) = 0 (which is perhaps easy to
see), then π (∂∗f/∂xj) = 0 (which is perhaps harder to see). Consider,

for instance, f = gδ
[−1]
∗ , a thick delta of order −1; that π

(
gδ

[−1]
∗

)
= 0

is obvious, but the formula π
(

(δg/δxj − (n− 1)njg) δ
[0]
∗

)
= 0, that

follows. In fact, even a particular case, such as g = ni, which gives
δg/δxj−(n− 1)njg = δij−nninj, yields an interesting formula, namely,

π
(
ninjδ

[0]
∗

)
= δij/n.

In general Pf (∂ψ/∂xj) and ∂Pf (ψ) /∂xj, even if both exist, will
not be equal. We shall consider the case when ψ = rλ in detail later on.
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11. Derivatives of Thick Deltas

In this section we shall compute the first order derivatives of thick
deltas of any order.

Let g ∈ D′ (S) . Then

(11.1)
∂∗

∂xj

(
gδ[q]∗

)
=

(
δg

δxj
− (q + n)njg

)
δ[q+1]
∗ .

Observe, in particular, the formula

(11.2)
∂∗

∂xj

(
δ[q]∗
)

= − (q + n)njδ
[q+1]
∗ ,

for the derivatives of plain thick deltas.
We can compute the Laplacian of the plain thick deltas as follows,

(11.3) ∇2
(
δ[q]∗
)

= (q + n) (q + 2) δ[q+2]
∗ .

In particular, if m > 0,

(11.4) ∇2m (δ∗) =
Γ (m + n/2) Γ (1/2) (2m)!

Γ (m + 1/2) Γ (n/2)
δ[2m]
∗ .

If we now consider the projection of this identity onto D′ (Rn) and recall
that π (δ∗) = δ, we obtain

(11.5) π
(
δ[2m]
∗
)

=
Γ (m + 1/2) Γ (n/2)

Γ (m + n/2) Γ (1/2) (2m)!
∇2m (δ) .

Formula (11.3) also yields that ∇2
(
δ
[−2]
∗

)
= 0 and ∇2

(
δ
[−n]
∗

)
= 0.

Notice that since δni/δxj = δij −ninj, we have, more generally than
(11.3),

(11.6)
∂∗2

∂xj∂xi

(
δ[q]∗
)

= (q + n) ((q + n + 2)ninj − δij) δ[q+2]
∗ .

12. Partial Derivatives of Pf
(
rλ
)

Another important set of formulas we want to discuss are the deriva-
tives of Pf

(
rλ
)
.

If λ ∈ C \ Z, then

(12.1)
∂∗

∂xj

(
Pf
(
rλ
))

= λxjPf
(
rλ−2

)
= λwjPf

(
rλ−1

)
,

while if k ∈ Z,

(12.2)
∂∗

∂xj

(
Pf
(
rk
))

= kxjPf
(
rk−2

)
+ Cn−1njδ

[−k−n+1]
∗ .
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In R3, ∂∗Pf (r−1) /∂xj is given by

(12.3)
∂∗Pf (r−1)

∂xj
= −xjPf

(
r−3
)

+ 4πnjδ
[−1]
∗ .

This is very similar to the usual distributional derivative of 1/r except

for the extra term 4πnjδ
[−1]
∗ . Of course, π

(
4πnjδ

[−1]
∗

)
= 0, so that we

recover the well known formula ∂ (r−1) /∂xj = −xj/r3.
If we apply the projection operator to (12.1) and (12.2), we obtain

the formulas for the partial derivatives of Pf
(
rλ
)

in D′ (Rn) . Since

(11.2) yields that π
(
njδ

[q]
∗

)
= 0 unless q = 2m + 1, m ≥ 0, in which

case

(12.4) π
(
njδ

[2m+1]
∗

)
=

−Γ (m + 1/2) Γ (n/2)

(2m + n) Γ (m + n/2) Γ (1/2) (2m)!

∂

∂xj
∇2mδ ,

we obtain ∂/∂xj
(
Pf
(
rλ
))

= λxjPf
(
rλ−2

)
unless λ = −n, −n− 2,

−n− 4, . . .. If λ = −p = −n− 2m,

(12.5)
∂

∂xj

(
Pf
(

1

rp

))
= −pxjPf

(
1

rp+2

)
− cm,n

(2m)!p

∂

∂xj
∇2mδ ,

We will write

(12.6) cm,n =
2Γ (m+ 1/2) π(n−1)/2

Γ (m+ n/2)
=

∫
S
ω2m
j dσ (ω) , C = c0,n .

Notice that c0,n = C = 2πn/2/Γ (n/2) , is the surface area of the unit
sphere S of Rn.

Let us now discuss the second-order thick derivatives of rλ. If λ ∈
C \ Z, then

(12.7)
∂∗2Pf

(
rλ
)

∂xi∂xj
= (λδij + λ (λ− 2)ninj)Pf

(
rλ−2

)
.

If λ = k ∈ Z, then

∂∗2Pf
(
rk
)

∂xi∂xj
= (kδij + k (k− 2)ninj)Pf

(
rk−2

)
(12.8)

+ (δij + 2 (k− 1)ninj) δ
[−k−n+2]
∗ .

When n = 3 and k = −1 we obtain

(12.9)
∂∗2Pf (r−1)

∂xi∂xj
=
(
3xixj − δijr2

)
Pf
(
r−5
)

+ 4π (δij − 4ninj) δ∗ .
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Since π (ninjδ∗) = (1/3) δ (x) in R3, we obtain the well known formula
of Frahm

(12.10)
∂
2

∂xi∂xj

(
1

r

)
=

3xixj − r2δij
r5

−
(

4π

3

)
δijδ (x) ,

when we apply the projection operator π to (12.9).

13. Fourier transforms in several variables

The Fourier transform of thick distributions was developed by Yun-
yun Yang, Jasson Vindas, and Estrada in 2019-2020 (Ricardo Estrada,
Jasson Vindas and Yunyun Yang, The Fourier transform of thick dis-
tributions, that just appear in Analysis and Applications)

We construct isomorphisms

(13.1) F∗ : S ′∗ (Rn) −→W ′ (Rn
c ) ,

(13.2) F∗ :W ′ (Rn
c ) −→ S ′∗ (Rn) ,

that extend the Fourier transform of tempered distributions, namely,

ΠW ′,S′F∗ = FΠS′∗,S′ , ΠS′∗,S′F
∗ = FΠW ′,S′ ,

where ΠW ′,S′ and ΠS′∗,S′ are the canonical projections of S ′∗ (Rn) or
W ′ (Rn

c ) onto S ′ (Rn) .

14. Preliminaries

(14.1) F {f (x) ; u} =

∫
Rn
f (x) eix·u dx .

We need the Fourier transform of several distributions in Rn for later
use, especially transforms of the type F

{
Pf
(
r−N

)
a (w) ; u

}
where

x = rw are polar coordinates, and where a is a smooth function de-
fined on the unit sphere S. See (Samko, S. G., On the Fourier trans-

form of the functions
Ym( x

|x|)
|x|n+α , Soviet Math. 22 (1978), 60-64; Ricardo

Estrada, Jasson Vindas and Yunyun Yang, The Fourier transform of
thick distributions, Analysis and Applications). We have

(14.2) F
{
rλ; u

}
=
πn/22λ+nΓ

(
λ+n
2

)
s−λ−n

Γ
(
−λ

2

) ,

whenever λ 6= −n,−n− 2,−n− 4, . . .
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If m = 0, 1, 2, . . . then

F
{
Pf
(

1

rn+2m

)
; u

}
=(14.3)

(−1)m πn/2

m!Γ
(
n
2

+m
) (s

2

)2m {
ψ (m+ 1) + ψ

(n
2

+m
)
− 2 ln

(s
2

)}
.

Our next task is to find the Fourier transform of distributions of the
form Pf

(
r−N

)
a (w) when a = Yk is a spherical harmonic of degree k.

If Yk ∈ Hk and λ 6= −n− k,−n− k − 2,−n− k − 4, . . .

(14.4) F
{
rλYk (w) ; sv

}
=
ikπn/22λ+nΓ

(
k+n+λ

2

)
Γ
(
k−λ
2

) s−(λ+n)Yk (v) .

If Yk ∈ Hk and m = 0, 1, 2, . . . then

(14.5) F
{
Pf
(

1

rn+k+2m

)
Yk (w) ; sv

}
=

(−1)m ikπn/2

m!Γ
(
n
2

+ k +m
) (s

2

)2m+k {
ψ (1 +m) + ψ

(n
2

+ k +m
)
− 2 ln

(s
2

)}
Yk (v) .

Let now a be a smooth function on the sphere, a ∈ D (S) . Then we
can write it in terms of spherical harmonics as

(14.6) a (w) =
∞∑
m=0

Ym (w) ,

where Ym = Ym {a} ∈ Hm are given as Ym (w) =
∫
S Zm (w,v) a (v) dσ (v) ;

here Zm (w,v) is the reproducing kernel of Hm, namely [?, Thm. 5.38]
(14.7)

(n+ 2m− 2)

[[ m/2 ]]∑
q=0

(−1)q
n (n+ 2) · · · (n+ 2m− 2q − 4)

2qq! (m− 2q)!
(w · v)m−2q .

We thus obtain the following.
If β 6= 0, 1, 2, . . . then

(14.8) F
{
Pf
(

1

rn+β

)
a (w) ; u

}
= Pf

(
sβ
)
Kβ {a (w) ; v} ,

where Kβ {a (w) ; v} = 〈Kβ (w,v) , a (w)〉w ,and

(14.9) Kβ (w,v) =
∞∑
m=0

κβ,mZm (w,v) , κβ,m =
imπn/22−βΓ

(
m−β
2

)
Γ
(
m+n+β

2

) .

The operator Kβ is analytic for β 6= 0, 1, 2, . . .; for β = q ∈ N we
have the next formula.



THE FOURIER TRANSFORM OF THICK DISTRIBUTIONS 23

If q = 0, 1, 2, . . . then
(14.10)

F
{
Pf
(

1

rn+q

)
a (w) ; u

}
= sq (Kq {a (w) ; v}+ Lq {a (w) ; v} ln s) ,

where Kq {a (w) ; v} = 〈Kq (w,v) , a (w)〉w ,

(14.11) Kq (w,v) =
∞∑
m=0

κq,mZm (w,v) ,

the constants κq,m being given by (14.9) if m 6= q, q − 2, . . . and as
(14.12)

κq,q−2m =
iqπn/22−q

m!Γ
(
n
2

+ q −m
) {ψ (1 +m) + ψ

(n
2

+ q −m
)

+ 2 ln 2
}
,

for 0 ≤ m ≤ [[ q/2 ]].On the other hand, Lq {a (w) ; v} = 〈Lq (w,v) , a (w)〉w ,
(14.13)

Lq (w,v) =

[[ q/2 ]]∑
m=0

λq,q−2mZq−2m (w,v) , λq,q−2m =
−iq2−q+1πn/2

m!Γ
(
n
2

+ q −m
) .

14.1. The operators Kβ.

(14.14) Kβ (w,v) = Γ (−β) e−iπβ/2 (w · v + i0)β ,

a distributional kernel for β 6= 0, 1, 2, . . . that becomes an integral op-
erator if <e β > 0. Observe that the distribution (t+ i0)β is an entire
function of β. The singularity of Kβ (w,v) at β = q ∈ N is produced
by the term Γ (−β) ,
(14.15)

Kq (w,v) =
(−1)q e−iπq/2

q!

(
ψ (q + 1) + ln

(
eiπ/2

(w · v + i0)

))
(w · v)q ,

and

(14.16) Lq (w,v) =
(−1)q e−iπq/2

q!
(w · v)q .

If β 6= 0, 1, 2, . . . , the coefficients κβ,m never vanish for β 6= −n− q,
q = 0, 1, 2, . . ., but they could vanish for some m when β = −n− q, so
that the operator Kβ is an isomorphism of D (S) for β 6= −n − q, but
K−n−q (D (S)) is a subspace of finite codimension of D (S) . The Fourier
inversion formula yields the inverses of the operators Kβ for β ∈ C \ Z
or for β ∈ {1− n, 2− n, . . . ,−1} as

(14.17) K−1β {A (v) ; w} =
1

(2π)n
K−n−β {A (v) ;−w} , A ∈ D (S) .
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14.2. The operators Kq and Lq. It is convenient to consider a variant
of the operators Kβ in case β ∈ Z. Let us start with some notation.
If q ∈ N we denote as Pq the space of restrictions of homogeneous
polynomials of degree q to S, that is Pq = Hq⊕Hq−2⊕Hq−4⊕· · · . Let X
be a space of functions or generalized functions over S, as D (S) , L2 (S) ,
or D′ (S) , that equals the closure in X of the sum H0⊕H1⊕H2⊕· · · 2.
Then Xq is the space X if 1 − n ≤ q ≤ −1; if q ≥ 0, Xq is the sum⊕̂
X |m 6=q,q−2....Hm, while if q ≤ −n then Xq = X−n−q. Notice that

(14.18) Xq ⊕ P−n−q = X , q ≤ −n , Xq ⊕ Pq = X , q ≥ 0 .

We define the operators Kq : Dq −→ Dq as ΠKqι, where ι is the
canonical injection of Dq into D (S) and Π the canonical projection of
D (S) onto Dq. We can also consider the Kq as operators from D′q to
itself, by duality or employing the expansion (14.9). The Propositions
?? and ?? immediately give the ensuing.

Proposition 1. The operators Kq are isomorphisms of the space Xq to
itself for3 X = D (S) or D′ (S) . Its inverses are given as

(14.19) K−1q {A (v) ; w} =
1

(2π)n
K−n−q {A (v) ;−w} , A ∈ Xq .

Observe that for X = D (S) or D′ (S) we have Xq = Kq (X ) , for
q < 0. This is not true for q ≥ 0, but we have Xq = ΠKq (X ) where Π
is the canonical projection of X onto Xq.

The operators Lq : Pq −→ Pq are defined as ΠLqι, where ι is the
canonical injection of Pq into D (S) and Π the canonical projection of
D (S) onto Pq. They are isomorphisms of the space Pq.

15. The Fourier transform of thick test functions

In this section we will construct a space W (Rn) such that it is pos-
sible to define an operator

(15.1) F∗,t : S∗ (Rn) −→W (Rn) ,

the Fourier transform of test functions, which has the expected prop-
erties of such a transform.

Let us start by observing that if φ is a thick test function in Rn, then
in general it is not locally integrable at the origin, so that, in general,
it does not give a unique distribution. Therefore, we cannot imbed
S∗ (Rn) into S ′ (Rn) and consequently, if φ ∈ S∗ (Rn) then in general

2Such closures will be denoted as
⊕̂
X |

∞
m=0Hm

3The results also holds for X = L2 (S) , but we will not need this case presently.
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we cannot define F (φ) as a distribution of the space S ′ (Rn)4. On the
other hand, any φ ∈ S∗ (Rn) does have regularizations f ∈ S ′ (Rn) ;
however f is not unique, since if f0 is a regularization, then so are all
distributions of the form f0 + g, where supp g ⊂ {0} , that is, where g
is a sum of derivatives of the Dirac delta function at the origin. It will
be convenient to use the notation

S∗,reg (Rn) ⊂ S ′ (Rn)

S∗,reg (Rn) for the subspace of S ′ (Rn) whose elements are the regular-
izations of thick test functions.

The space Wpre (Rn) consists of those smooth functions Φ defined in
Rn that admit a strong asymptotic expansion of the form

(15.2) Φ (sv) ∼
Q∑
q=0

(Aq (v) + Pq (v) ln s) sq +
∞∑
q=1

A−q (v) s−q,

where Aq ∈ Kq (D (S)) for q ≤ −n, Aq ∈ D (S) for q > n, and where
the Pq ∈ Pq for q ∈ N.

Our analysis so far yields the ensuing result:

The Fourier transform is an isomorphism of the vector spaces S∗,reg (Rn)
and Wpre (Rn) .

15.1. Delta parts and polynomial parts. In general it is not pos-
sible to separate the contribution to a distribution from a given point;
to talk about the “delta part at x0” of all distributions does not make
sense. However, sometimes, we can actually separate the delta part.

Let f0 ∈ D′ (Rn \ {0}) be a distribution defined in the complement
of the origin. Suppose the pseudofunction Pf (f0 (x)) exists in D′ (Rn)
(respectively inD′∗ (Rn)). Let f ∈ D′ (Rn) (respectively in f ∈ D′∗ (Rn))
be any regularization of f0. Then the delta part at 0 of f is the distri-
bution f − Pf (f0 (x)) , whose support is the origin.

In a similar fashion, one may consider the polynomial part of dis-
tributions. Not all distributions have a well defined polynomial part,
but all the elements of Wpre (Rn) do. Let us start with the case of a
distribution that is homogeneous of degree q ≥ 0 in Rn \ {0} , that is
Fq (u) = Aq (v) sq, u = sv being polar coordinates and Aq ∈ D′ (S) .
Then we can write Aq in terms of spherical harmonics as Aq (v) =∑∞

m=0 Ym,q (v) , where Ym,q ∈ Hm. Therefore

(15.3) Fq (u) = Eq (u) + F̃q (u) ,

4It is possible to consider F (φ) as a distribution of the Lizorkin distributional
spaces, but for our purposes a different approach is more convenient.
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where Eq = Πpol (Fq) is the homogeneous polynomial of degree q given
as

(15.4) Eq (u) = Πpol (Fq) = (
∑
k≤q/2

Yq−2k,q (v))sq,

and F̃q = Fq − Eq is the polynomial free part of Fq.
In the general case when F has the asymptotic expansion of the form

(15.5) F (sv) ∼
Q∑
q=0

(Aq (v) + Pq (v) ln s) sq +
∞∑
q=1

A−q (v) s−q,

then the polynomial part of F is the polynomial

(15.6) Πpol (F ) =

Q∑
q=0

Πpol (Aq (v) sq) .

The polynomial free part of F is F − Πpol (F ) .
Let A ∈ D (S) . If m ∈ N, then A ∈ K−(n+m) (D (S)) if and only

if the function A (v) sm is polynomial free. Similarly, if A ∈ D′ (S) ,
then A ∈ K−(n+m) (D′ (S)) if and only if the distribution A (v) sm is
polynomial free.

15.2. The space W (Rn). The space S∗,reg (Rn) admits the represen-
tation

(15.7) S∗,reg (Rn) = S∗,ord (Rn)⊕D′{0} (Rn) ,

where D′{0} (Rn) is the space of distributions with support at the origin

and where S∗,ord (Rn) is the space of ordinary parts of regularizations
of thick test functions. Clearly the Pf operator is an isomorphism
of S∗ (Rn) onto S∗,ord (Rn) . We define the topology of S∗,ord (Rn) by
asking Pf to be a topological isomorphism. The space D′{0} (Rn) has

a topology as a closed subspace of S ′ (Rn) . The topology of S∗,reg (Rn)
is the direct sum topology. Notice that the topology of S∗,reg (Rn) is
stronger but not equal to the subspace topology inherited from S ′ (Rn) .
We can now complete the Theorem ??: The Fourier transform is a
topological isomorphism of the spaces S∗,reg (Rn) and Wpre (Rn) .

We now define the space W (Rn) .
The space W (Rn) is formed by the polynomial free elements of
Wpre (Rn) , with the subspace topology. Explicitly, Φ ∈ W if it is
smooth in Rn and at infinity it has an asymptotic expansion

(15.8) Φ (sv) ∼
Q∑
q=0

(Aq (v) + Pq (v) ln s) sq +
∞∑
q=1

A−q (v) s−q,
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where Aq ∈ Dq for q ∈ Z and the Pq ∈ Pq are homogeneous polynomials
of degree q.

The space W (Rn) is exactly the space needed to define the Fourier
transform of thick test functions; the condition Aq ∈ Dq in the expan-
sion (15.8), which is equivalent to the fact that Φ is polynomial free,
will play a very important role in the behavior of the Fourier transform
of thick distributions. Notice in fact that

(15.9) Wpre (Rn) =W (Rn)⊕ P (Rn) ,

as topological vector spaces. Therefore the space W (Rn) can also be
constructed as a quotient space. Namely, if we define the equivalence
relation F ∼ G if F −G is a polynomial, then

W (Rn) ≈ Wpre (Rn) / ∼ .

Similarly, if we consider the equivalence relation f ∼ g when supp (f − g) ⊂
{0} in S∗,reg (Rn) , then

S∗ (Rn) ' S∗,ord (Rn) ' S∗,reg (Rn) / ∼ .

When φ ∈ S∗ (Rn) we shall denote by

F∗,t (φ) = ΠWpre,W (F (Pf (φ)))

and call it the thick Fourier transform of φ. We can also define a Fourier
transform in W (Rn) , F∗t :W (Rn) −→ S∗ (Rn) , as

(15.10) F∗t {Φ (u) ; x} = (2π)nF−1∗,t {Φ (u) ;−x} .
We immediately obtain the following important result:

The thick Fourier transform F∗,t is a topological isomorphism of
S∗ (Rn) onto W (Rn) . The thick Fourier transform F∗t is a topological
isomorphism of W (Rn) onto S∗ (Rn) .

16. The space W ′ (Rn
c)

In this section we shall consider the distributions of the spaceW ′ (Rn) .
The first thing we would like to point out is that the functions ofW (Rn)
are smooth functions in Rn with a special type of thick behavior at in-
finity; therefore the elements ofW ′ (Rn) are actually distributions over
the space Rn

c = Rn∪{∞} , the one point compactification of Rn. From
now on we shall also employ the more informative notation W ′ (Rn

c )
when we want to call attention to the dimension n and the simpler
notation W ′ when no explicit mention of n is needed. The elements of
W ′ shall be called sl−thick distributions, since the thick test functions
of W have a special type of logarithmic expansion at infinity.
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Several distributions defined on Rn admit canonical extensions to
W ′ (Rn

c ) . Indeed, if W (Rn) ⊂ A (Rn) continuously and with dense im-
age, where A (Rn) is a space of test functions, then A′ (Rn) is canon-
ically imbedded into W ′ (Rn

c ) . The simplest case is when A (Rn) =
E (Rn) , the space of all smooth functions in Rn, which gives that each
distribution of compact support, f ∈ E ′ (Rn) admits a canonical ex-
tension to W ′ (Rn

c ) , namely one whose support in Rn
c is precisely the

original support of f,

(16.1) 〈f,Φ〉W ′×W = 〈f,Φ〉E ′×E .
Actually we can also take A (Rn) = K (Rn) , so that any distribution
f ∈ K′ (Rn) admits a canonical extension to W ′ (Rn

c ) , given by the
Cesàro evaluation,

(16.2) 〈f,Φ〉W ′×W = 〈f,Φ〉 (C)

since 〈f,Φ〉 (C) exists whenever Φ ∈ K (Rn) [?] andW (Rn) ⊂ K (Rn) .
We shall employ the same notation for both the distribution of K′ (Rn)
and its canonical extension to W ′ (Rn

c ) . On the other hand, W (Rn) is
not contained in S (Rn) , and this means that tempered distributions do
not have canonical extensions in W ′ (Rn

c ) . In fact, it is not hard to see
that actually all elements of S ′ (Rn) have many extensions toW ′ (Rn

c ) ,
but it is not possible to construct a continuous extension procedure.

Another important class of sl−thick distributions are the thick deltas
at infinity.

If G ∈ D′q then we define G (v) δ
[q]
∞ , the thick delta at infinity of order

q as

(16.3)
〈
G (v) δ[q]∞ ,Φ

〉
W ′×W =

1

C
〈G,Aq〉D′q×Dq ,

if Φ ∈ W has the asymptotic expansion (15.8). Similarly, if H ∈ P ′q =

Pq then we define H (v) δ
[q]
ln,∞ the thick logarithmic delta of order q at

infinity as

(16.4)
〈
H (v) δ

[q]
ln,∞,Φ

〉
W ′×W

=
1

C
〈H,Pq〉P ′q×Pq .

Sometimes one may construct extensions of a tempered distribution
g by considering a finite part at infinity5, a construction we shall now
denote as PfW (g) , or later simply as Pf (g) if there is no danger of
confusion. Consider for example the distribution Pf

(
sλ
)
, s = |u| ,

of S ′ (Rn) : this tempered distribution yields the sl−thick distribution
PfW

(
sλ
)

obtained from the generally divergent integral
∫
Rn s

λΦ (u) du,

5Clearly the finite part at infinity does not exist for all g ∈ S ′ (Rn) .
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Φ ∈ W , by taking the radial finite part at 0, or at∞, or at both. Using
the ideas of the Example ?? we can see the structure of PfW

(
sλ
)
.

The parametric sl−thick distribution PfW
(
sλ
)

is a meromorphic
function of λ, analytic in the region (C \ Z)∪{0, 2, 4, . . .} , with simple
poles at λ = m, m ∈ {−n− 1,−n− 3,−n− 5, . . .}∪{−1,−2, . . . , 1− n}∪
{1, 3, 5, . . .} , the residues at these poles being

(16.5) Resλ=mPfW
(
sλ
)

= −Cδ[−n−m]
∞ (u) ,

and double poles at λ = m, m = −n− 2q ∈ {−n,−n− 2,−n− 4, . . .}
with singular part

(16.6)
Cδ

[2q]
ln,∞ (u)

(λ−m)2
+

cq,n∇2qδ (u)

(2q)! (λ−m)
.

The finite part of PfW
(
sλ
)

at any pole λ = m is precisely PfW (sm) .
Many of the constructions that we have discussed can also be done

in the space W ′pre. Notice, however, that several distributions of W ′pre
could vanish in W so that their projection to W ′ could be zero. For

instance, the plain thick delta δ
[0]
∞ is not zero in W ′pre but it is zero in

W ′. If one considers the finite part PfWpre

(
sλ
)

then it would not be
analytic at λ = 0, 2, 4, . . . ; for instance, it has a simple pole at λ = 0

with residue −Cδ[0]∞ .
One of the consequences of the fact that W ′ is a space over the

compact space Rn
c is that several of the usual operations on sl−thick

distributions could have additional terms at infinity. This is the case
for the linear changes of variables and for the multiplications by poly-
nomials. Curiously, however, derivatives in W ′ can be defined in the
standard way by duality, since the derivative operators send W to W ,

(16.7) 〈∇j (F ) ,Φ〉 = −〈F,∇j (Φ)〉 , F ∈ W ′,Φ ∈ W .

16.1. Linear changes of variables in W ′. Let A be a non-singular
n×n matrix. If Φ ∈ W then the function ΦA given by ΦA (u) = Φ (Au)
does not belong to W , in general, but it belongs to Wpre. Therefore we
define the function of W obtained by the change of variables, τWA (Φ)
as

(16.8) τWA (Φ) = ΠWpre,W (ΦA) .

We can then define the change of variables in sl−thick distributions by
duality.
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Let A be a non-singular n×n matrix. If F ∈ W ′ then the distribution
τW

′
A (F ) , the sl−thick version of F (Au) , is defined as

(16.9)
〈
τW

′

A (F ) ,Φ
〉

=
1

|det (A)|
〈
F, τWA−1 (Φ)

〉
.

A simple example is provided by the delta function at the origin,
δ (x) , and the change A = tI for t 6= 0. We have δ (tx) = |t|−n δ (x) ,
of course, but

(16.10) τW
′

tI (δ) (x) = |t|−n δ (x)− |t|−n ln t δ
[0]
∞,ln (x) .

Interestingly, if A is an orthogonal matrix, in particular if it is a ro-
tation, and F ∈ K′ (Rn) then the canonical extension of F (Ax) is
precisely τW

′
A (F ) (x) . Therefore we give the following definitions.

A sl−thick distribution F ∈ W ′ is called radial if τW
′

A (F ) = F for
all orthogonal matrices A. We say that F is homogeneous of order λ if

(16.11) τW
′

tI (F ) (x) = tλF (x) , t > 0 .

Notice that a distribution F ∈ K′ (Rn) is radial if and only if its
canonical extension is, but (16.10) shows that a corresponding result
does not hold for homogeneous distributions. On the other hand, a

distribution of the form G (v) δ
[q]
∞ is radial if and only if G is constant,

where we observe that the plain thick delta at infinity δ
[q]
∞ is a non

zero sl−thick distribution for q 6= 0, 2, 4, . . . and q 6= −n,−n− 2,−n−
4, . . . . Furthermore, since the plain thick logarithmic deltas at infinity

δ
[1]
ln,∞, δ

[3]
ln,∞, δ

[5]
ln,∞, . . . vanish, the distributions cδ

[q]
ln,∞ for q = 0, 2, 4, . . .

and c constant are the radial distributions of the form G (v) δ
[q]
ln,∞.

It is useful to know the sl−thick radial homogeneous distributions.
Let λ ∈ C. Then the set of sl−thick radial homogeneous distribu-

tions of order λ form a vector space of dimension 1, generated by the
distribution

(16.12) PfW
(
sλ
)

for λ ∈ (C \ Z) ∪ {0, 2, 4, . . .} ,

δ[−n−m]
∞ for λ = m,

(16.13)

m ∈ {−n− 1,−n− 3,−n− 5, . . .} ∪ {1, 2, . . . , n− 1} ∪ {1, 3, 5, . . .} ,

(16.14) δ
[−n−m]
ln,∞ for λ = m, m ∈ {−n,−n− 2,−n− 4, . . .} .
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16.1.1. Multiplication by polynomials in W ′. In general if Φ ∈ W then
ujΦ (u) is in Wpre but it does not belong to W . Therefore we define
the multiplication operator

(16.15) MW
uj

:W −→W , Muj (Φ) = ΠWpre,W (ujΦ) ,

and by duality the operator MW ′
uj

:W ′ −→W ′ as

(16.16)
〈
MW ′

uj
(F ) ,Φ

〉
=
〈
F,MW

uj
(Φ)
〉
.

The multiplication operators MW
p and MW ′

p , where p is a polynomial,
can be defined in a similar way.

17. The Fourier transform of thick distributions

The Fourier transform of thick tempered distributions f ∈ S ′∗ (Rn) ,
F∗ (f) ∈ W ′ (Rn

c ) can now be defined in the usual way,
(17.1)
〈F∗ {f (x) ; u} ,Φ (u)〉 = 〈f (x) ,F∗t {Φ (u) ; x}〉 , Φ ∈ W (Rn

c ) .

Similarly, the Fourier transform of distributionsG ∈ W ′ (Rn
c ) , F∗ (G) ∈

S ′∗ (Rn) is defined as
(17.2)
〈F∗ {G (u) ; x} , φ (x)〉 = 〈G (u) ,F∗,t {φ (x) ; u}〉 , φ ∈ S∗ (Rn) .

Theorem 2. The thick Fourier transform F∗ is a topological isomor-
phism of S ′∗ (Rn) onto W ′ (Rn

c ) . The thick Fourier transform F∗ is a
topological isomorphism of W ′ (Rn

c ) onto S ′∗ (Rn) .

The properties of the Fourier transform of thick distributions are
similar to those of the transform in S ′ (Rn) but one must remember
that the operations in W ′ (Rn

c ) may or may not be the standard ones.
We have,

(17.3) F∗ {f (Ax) ; u} =
1

|detA|
τW

′

A−1 (F∗ {f (x) ; u}) ,

for A a non-singular matrix, and in particular, if t 6= 0

(17.4) F∗ {f (tx) ; u} = t−nτW
′

t−nI (F∗ {f (x) ; u}) .
It follows that F∗ and F∗ send radial thick distributions to radial thick
distributions, and homogeneous distributions of degree λ to homoge-
neous distributions of degree−n−λ.We also have the usual interchange
of multiplication and differentiation,

(17.5) F∗ {xjf (x) ; u} = −i∇ujF∗ {f (x) ; u} ,

(17.6) F∗
{
∇xjf (x) ; u

}
= −iMW ′

uj
F∗ {f (x) ; u} ,
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where the modified multiplication operator MW ′
uj

is given by (16.16).
The formulas for the inverse transforms are a variant of the usual ones,

(17.7) (F∗)−1 {f (x) ; u} =
1

(2π)n
F∗ {f (x) ;−u} ,

(17.8) (F∗)−1 {F (u) ; x} =
1

(2π)n
F∗ {F (u) ;−x} .

Another important property is that the Fourier transforms F∗ or F∗ of
extensions of distributions of S ′ (Rn) to S ′∗ (Rn) or W ′ (Rn

c ) are exten-
sions of the Fourier transform, that is

(17.9) ΠW ′,S′F∗ {f (x) ; u} = F
{

ΠS′∗,S′f (x) ; u
}
,

(17.10) ΠS′∗,S′F
∗ {F (u) ; x} = F {ΠW ′,S′F (u) ; x} .

We are now ready to give the Fourier transform of several thick
distributions.

Example 3. Let us compute the Fourier transform F∗
{
δ
[0]
∗ (x) ; u

}
of

the plain thick delta function. Since δ
[0]
∗ (x) is radial and homogenous

of degree −n, its transform is radial and homogeneous of degree 0. Also,

the projection of δ
[0]
∗ (x) onto S ′ is the standard delta function δ (x) ,

whose transform is the constant function 1. It follows that the only
radial, homogeneous of degree 0 sl−thick distribution whose projection
to S ′ is the constant distribution 1 is precisely PfW (1) . Hence

(17.11) F∗
{
δ[0]∗ (x) ; u

}
= PfW (1) .

A similar argument yields

(17.12) F∗
{
δ[2m]
∗ (x) ; u

}
=

(−1)m Γ (m+ 1/2) Γ (n/2)

Γ (m+ n/2) Γ (1/2) (2m)!
PfW

(
s2m
)
,

and by inversion,
(17.13)

F∗
{
PfW

(
s2m
)

; x
}

=
(−1)m Γ (m+ n/2) Γ (1/2) (2m)!

(2π)n Γ (m+ 1/2) Γ (n/2)
δ[2m]
∗ (x) .

Example 4. The ensuing formulas, reminiscent of (14.2), also follow
along the same lines,

(17.14) F∗
{
Pf
(
rλ
)

; u
}

=
πn/22λ+nΓ

(
λ+n
2

)
Γ
(
−λ

2

) PfW
(
s−λ−n

)
,

(17.15) F∗
{
PfW

(
sλ
)

; x
}

=
πn/22λ+nΓ

(
λ+n
2

)
Γ
(
−λ

2

) Pf
(
r−λ−n

)
,
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whenever λ ∈ C \ Z. Interestingly, PfW
(
sλ
)

is analytic at 0, 2, 4, . . .
so that (17.13) can be recovered by taking the limit as λ → 2m in the
right side of (17.15).

Example 5. Formulas (17.14) and (17.15) are equalities of meromor-
phic functions and thus by considering the residues, finite parts, or sin-
gular parts at the poles of both sides we obtain the Fourier transform of
several thick distributions. Let start with m ∈ {−n− 1,−n− 3,−n− 5, . . .}∪
{−1,−2, . . . , 1− n} ∪ {1, 3, 5, . . .} , so that λ = m is a simple pole
of the function in (17.15). From the Lemma ?? the residue of the

left side is F∗
{
−Cδ[−n−m]

∞ (u) ; x
}
, while if we recall [?, (4.13)] that

Resµ=k Pf (rµ) = Cδ
[−k−n]
∗ (x) , we obtain the residue of the right side

as Cg (m) δ
[m]
∗ (x) where

(17.16) g (λ) =
πn/22λ+nΓ

(
λ+n
2

)
Γ
(
−λ

2

) .

Therefore

(17.17) F∗
{
δ[−n−m]
∞ (u) ; x

}
= −g (m) δ[m]

∗ (x) ,

and by inversion,

(17.18) F∗
{
δ[m]
∗ (x) ; u

}
= −g (−n−m) δ[−n−m]

∞ (u) ,

since g (m) g (−n−m) = (2π)n . Similarly, consideration of the finite
parts of both sides of (17.15) yields

(17.19) F∗ {PfW (sm) ; x} = g (m)
{
Pf
(
r−m−n

)
+ χmδ

[m]
∗ (x)

}
,

and
(17.20)
F∗
{
Pf
(
r−m−n

)
; u
}

= g (−n−m)
{
PfW (sm) + χ−m−nδ

[−n−m]
∞ (u)

}
,

where

(17.21) χm = χ−m−n =
C

2

(
2 ln 2 + ψ

(
m+ n

2

)
+ ψ

(
−m

2

))
.

Studying the coefficients of order −2 at the poles of order 2, m = −n−
2q for q ∈ N gives

(17.22) F∗
{
δ
[2q]
ln,∞ (u) ; x

}
=

(−1)n 21−2qπn/2

q!Γ
(
n+2q
2

) δ[−n−2q]∗ (x) ,

and
(17.23)

F∗
{
δ[−n−2q]∗ (x) ; u

}
= (−1)n 2n+2q−1πn/2q!Γ

(
n+ 2q

2

)
δ
[2q]
ln,∞ (u) .
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We have considered the transform of plain thick deltas so far, now
we compute the Fourier transform of general thick deltas.

Example 6. Let φ ∈ S∗, with expansion
∑∞

j=m ajr
j at zero and let

Φ = F∗,t (φ) ∈ W , with expansion
∑n−m

q=0 (Aq (v) + Pq (v) ln s) sq +∑∞
q=1A−q (v) s−q at infinity. Then Aq = Kq (a−n−q) , therefore if G ∈

D′q then

〈
Gδ[q]∞ ,Φ

〉
=

1

C
〈G,Aq〉 =

1

C
〈G,Kq (a−n−q)〉

=
1

C
〈Kq (G) , a−n−q〉 =

〈
Kq (G) δ[−n−q]∗ , φ

〉
,

or

(17.24) F∗
{
G (v) δ[q]∞ (u) ; x

}
= Kq {G (v) ; w} δ[−n−q]∗ (x) ,

giving the transform of all thick deltas at infinity Gδ
[q]
∞ , for arbitrary

q ∈ Z, since G needs to be D′q. Similarly, for q ∈ N

(17.25) F∗
{
H (v) δ

[q]
ln,∞ (u) ; x

}
= Lq {H (v) ; w} δ[−n−q]∗ (x) .

Example 7. We now consider the transform of the general thick deltas

f (w) δ
[m]
∗ (x) . Let m = −n− q. Different formulas arise depending on

m and q. If 1 − n ≤ m, q ≤ −1 then D′q = D′m = D′ so that inversion
of (17.24), remembering (14.19), gives

(17.26) F∗
{
f (w) δ[m]

∗ (x) ; u
}

= Km {f (w) ; v} δ[−n−m]
∞ (u) .

If m ≥ 0, that is q ≤ −n, we decompose f ∈ D′ (S) as f = pm + fm

where fm ∈ D
′
q = D′m and pm ∈ Pm. We now notice that F∗

(
pδ

[m]
∗

)
is

the finite part regularization PfW (Pm (u)) of a homogeneous polyno-

mial of degree m, namely Pm = F
(

ΠS′∗,S′
(
fδ

[m]
∗

))
, obtaining

(17.27)
F∗
{
f (w) δ[m]

∗ (x) ; u
}

= PfW (Pm (u)) + Km {fm (w) ; v} δ[−n−m]
∞ (u) .

In particular, when m = 0, since F∗
(
δ
[0]
∗

)
= PfW (1) , we obtain

(17.28)
F∗
{
f (w) δ[0]∗ (x) ; u

}
= MPfW (1) + K0 {f (w)−M ; v} δ[−n]∞ (u) ,

where M is the constant M = (1/C) 〈f (w) , 1〉 .
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Finally, if m ≤ −n, i.e. q ≥ 0, the decomposition f = pm+fm where
fm ∈ D

′
q = D′m and pm ∈ P−n−m = Pq yields

F∗
{
f (w) δ[m]

∗ (x) ; u
}

= (2π)n L−1−n−m {pm (w) ;−v} δ[−n−m]
ln,∞ (u)

(17.29)

+ Km {fm (w) ; v} δ[−n−m]
∞ (u) .
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