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1. Motivation for the abstract Weyl relations

Schrödinger representation (n degrees of freedom): s.a. Qj and Pj
(j = 1, . . . , n) with Heisenberg (canonical) commutation relations

[Qj , Pk] = iδjkI.

If a, b ∈ Rn, Q(a) =
∑
ajQj , P (b) =

∑
bkPk, then

[Q(a), P (b)] = i(a|b)I.

Exponentiation gives eiQ(a)eiP (b) = e−i(a|b)eiP (b)eiQ(a) etc.

Define z := a+ ib ∈ Cn, W (z) := e−
i
2
(a|b)eiP (b)eiQ(a) ;�

�
�
�W (z)∗ = W (−z), W (y)W (z) = e

i
2
Im〈y|z〉W (y + z)

(i) (y, z) 7→ Im〈y|z〉/2 real symplectic form on Cn := Rn ⊕ iRn,
(ii) t 7→W (tz) strongly continuous one-parameter unitary group.



2. Weyl algebra [Slawny 1972] and ∗-representations

Quantum fields (infinitely many degrees of freedom): Replace Cn by a
real symplectic vector space S, e.g. L2 with β(ϕ,ψ) := Im〈ϕ|ψ〉/2.

Thm/Def: The Weyl algebra W over the symplectic space (S, β)
is the unique C∗-algebra generated by a set {W (z) | z ∈ S} with

W (z)∗ = W (−z), W (y)W (z) = eiβ(y,z)W (y + z).

Equivalence classes of ∗-representations: For dimS <∞ unique
(Schrödinger repr.) and in case dimS =∞ uncountably many.

Let ω be a state (i.e., a normalized positive linear functional) on W
and consider the GNS representation§ π : W → B(H) associated
with ω; let Ω ∈ H be its standard cyclic vector (vacuum in physics).

§(Gelfand-Naimark-Segal) N := {A ∈ W | ω(A∗A) = 0} closed left ideal,
H is the closure of W/N w.r.t. inner product 〈A+ N|B + N〉 := ω(A∗B),
π(A)(B + N ) := AB + N , Ω := 1 + N , ω(A) = 〈Ω|π(A)Ω〉.



3. Dirac states [Grundling and Hurst since the 1980’s]

A state ω is regular, if its GNS representation π is regular, i.e.,
∀z ∈ S, t 7→ π(W (tz)) is a strongly continuous unitary group in H.
In this case, the generators Φ(z) define fields (“Wightman setting”).
Lemma: ω regular ⇐⇒ lim

t→0
ω(W (tz)) = 1 for every z ∈ S.

Def: ω is called a Dirac state adapted to the subspace L ⊆ S, if
ω(W (y)) = 1 for all y ∈ L.

Rem: (i) Dirac states exist for L iff L ⊆ L⊥ (β-isotropic)
(ii) in physics L solution set of constraint equations (e.g., ∇Φ = 0
Coulomb gauge for electromagnetic vector potential in QED).

Prop: (i) ω Dirac state for L ⇐⇒ ∀y ∈ L : π(W (y))Ω = Ω.
(ii) ω Dirac for L 6= {0} =⇒ π not regular.

[Quotient construction ; C∗-algebra O of physical observables;
Dirac states induce regular states on O.]



4. Normal states on Weyl-von Neumann algebras

π : W → B(H) any ∗-representation; W simple ⇒ π(W) ∼=W.
Wπ := von Neumann algebra generated from π(W). (π(W)′′, s/w clos.)

Examples: (i) π irreducible ⇒ Wπ = B(H). (ii) π universal repr.
(sum over all GNS repr.), then Wπ enveloping von Neumann algebra.

Weak* topology on B(H) given by seminorms A 7→ |trace(AT )|,
where T is trace class. A positive linear functional µ on B(H) is
weak* continuous iff it is normal (respecting incr. s.o.t.-conv. nets).
Physics: Reasonable bounds for states from finite measurements.
Vector functionals νξ : B(H)→ C, A 7→ 〈ξ|Aξ〉, are normal.
Prop: Non-existence of normal Dirac states on Wπ, if π is regular.

Def(Function space Vπ on S): For ξ ∈ H we define fξ : S → C by
fξ(z) := νξ(π(W (z))) = 〈ξ|π(W (z))ξ〉

and Vπ as the closure of span{fξ | ξ ∈ H} in the Banach space of
bounded functions S → C with the supremum norm.



5. Description of states on W by functions S → C

[Recall: (S, β) symplectic space, W with generators W (z) (z ∈ S),
π : W → B(H) ∗-representation, Wπ vNA generated in B(H), Vπ.]

Prop: (i) If µ is a normal state on Wπ and h : S → C defined by
h(z) := µ(π(W (z))), then h ∈ Vπ.

(ii) If S Hilbert sp., ω state on W s.t. z 7→ ω(W (z)) Borel meas.,
π GNS representation associated with ω, then Vπ ⊆ Bb(S).

(iii) If S Hilbert space and π regular, then Vπ ⊆ Cb(S).

Examples: (i) S = R2n, π Schrödinger repr., then Vπ ⊆ C0(R2n).
(ii) S Hilbert, ω Fock state, ω(W (z)) = exp(−‖z‖2/4), then Vπ ⊆
Cb0(S) := {f ∈ Cb(S) | ∀ε > 0∃R ≥ 0: sup‖z‖≥R |f(z)| ≤ ε}.

(This is larger than C0(S) := closure of Cc(S), if dimS =∞.)

Correspondence: Let g : S → C, g(0) = 1. ∃! state ω on W s.t.
∀z ∈ S : ω(W (z)) = g(z),

iff G(x, y) := g(x− y) exp(−iβ(x, y)) defines pos. def. kernel.



6. Now specifically S = L2(Rn) with β(ϕ, ψ) = Im〈ϕ|ψ〉/2

GF aspect: If g : L2 → C induces smooth function on D(Rn) and
is moderate upon insertion of ε-scaled delta nets ; [g] ∈ G(Rn).

Dirac state ω0 (with QED context [Thirring-Narnhofer 1992])
corresponding to discontinuous function g0(ψ) = 1, if Reψ = 0,
and g0(ψ) = 0 otherwise ; GNS representation π0 : W → B(H0)
with non-separable H0; vacuum vector state ν0 : A 7→ 〈Ω0|AΩ0〉 is
a normal Dirac state on Wπ0 with ν0 ◦ π0 = ω0; π0 not regular.

Lemma: ω0 is the weak* limit of the regular states ωk on W with
ωk(ψ) = exp(−k2

4 ‖Reψ‖
2 − 1

4k2
‖Imψ‖2) =: gk(ψ).

Observations: (i) Every gk smooth on D(Rn), but 0 in G(Rn).
(ii) As function on S (Rn), every gk is the inverse Fourier transform of a
Gaussian measure on S ′(Rn) (background: Bochner-Minlos theorem).

Prop: ω regular state ↔ g continuous (with G pos. def. kernel)

↔ Borel probability measure µ on S ′ [g smooth on D ]→ [g] ∈ G.



7. S (Rn) as Abelian topological group (not loc. compact)

Recall: δ̂L = (2π)dimL δL⊥ , if L subsp. of Rd, δL Euclid. surf. measure.

g0 gives indicator function of L := {ψ ∈ S | Reψ = 0}. ĝ0 = ?

Thm: Dual group Ŝ is isomorphic (as a topological group) to S ′
R

and S has the Pontryagin property. [Smith 1952]

Fourier transform of µ ∈M(S ) (complex Borel meas.) µ̂ : S ′
R → C,

∀u ∈ S ′
R : µ̂(u) :=

∫
S e−i〈u,ϕ〉 dµ(ϕ),

co-Fourier transform of ν ∈M(S ′
R), ν̃(ϕ) :=

∫
S ′R
ei〈u,ϕ〉 dν(u).

h0 := indicator function of L⊥ = {u ∈ S ′
R | ∀ϕ ∈ L : 〈u, ϕ〉 = 0},

K := {ψ ∈ S | Imψ = 0}, then S = K ⊕L and S ′
R = L⊥⊕K⊥.

Prop: ρ = ρ1 ⊗ δ0, µ = δ0 ⊗ µ2 with finite positive measures

ρ1 ∈M(L⊥), µ2 ∈M(L), then ‖ρ‖(̂g0µ) = (h0ρ) ∗ µ̂ .

Intuitively, µ1 ≈ 1 leads to ‖ρ‖ĝ0 ≈ ‖ρ‖h0, thus ĝ0 ≈ h0.


