Dirac states on the Weyl algebra

Günther Hörmann DiANA group, Fakultät für Mathematik, Universität Wien, Austria

International Conference on Generalized Functions GF2020, Ghent, 31 August – 4 September 2020 Dedicated to the 70th birthday of Prof. Stevan Pilipović

3 September 2020

1. Motivation for the abstract Weyl relations

Schrödinger representation (*n* degrees of freedom): s.a. Q_j and P_j (j = 1, ..., n) with *Heisenberg* (canonical) commutation relations

$$[Q_j, P_k] = i\delta_{jk}I.$$

If $a, b \in \mathbb{R}^n$, $Q(a) = \sum a_j Q_j$, $P(b) = \sum b_k P_k$, then

[Q(a), P(b)] = i(a|b)I.

Exponentiation gives $e^{iQ(a)}e^{iP(b)} = e^{-i(a|b)}e^{iP(b)}e^{iQ(a)}$ etc.

 $\text{Define } z:=a+ib\in \mathbb{C}^n \text{, } W(z):=e^{-\frac{i}{2}(a|b)}e^{iP(b)}e^{iQ(a)} \quad \leadsto \quad$

$$W(z)^* = W(-z), \quad W(y)W(z) = e^{\frac{i}{2} \ln \langle y | z \rangle} W(y+z)$$

(i) $(y, z) \mapsto \text{Im}\langle y|z\rangle/2$ real symplectic form on $\mathbb{C}^n := \mathbb{R}^n \oplus i\mathbb{R}^n$, (ii) $t \mapsto W(tz)$ strongly continuous one-parameter unitary group.

2. Weyl algebra [Slawny 1972] and *-representations

Quantum fields (infinitely many degrees of freedom): Replace \mathbb{C}^n by a real symplectic vector space S, e.g. L^2 with $\beta(\varphi, \psi) := \operatorname{Im}\langle \varphi | \psi \rangle / 2$.

Thm/Def: The *Weyl algebra* \mathcal{W} over the symplectic space (S, β) is the unique C^* -algebra generated by a set $\{W(z) \mid z \in S\}$ with

$$W(z)^* = W(-z), \quad W(y)W(z) = e^{i\beta(y,z)}W(y+z).$$

Equivalence classes of *-representations: For $\dim S < \infty$ unique (Schrödinger repr.) and in case $\dim S = \infty$ uncountably many.

Let ω be a *state* (i.e., a normalized positive linear functional) on \mathcal{W} and consider the *GNS representation*[§] $\pi: \mathcal{W} \to B(H)$ associated with ω ; let $\Omega \in H$ be its standard *cyclic vector* (*vacuum in physics*).

 $\begin{aligned} & \mbox{$$} \mbox{$$}$

A state ω is *regular*, if its GNS representation π is *regular*, i.e., $\forall z \in S, t \mapsto \pi(W(tz))$ is a strongly continuous unitary group in H. In this case, the generators $\Phi(z)$ define *fields* ("Wightman setting"). Lemma: ω regular $\iff \lim_{t \to 0} \omega(W(tz)) = 1$ for every $z \in S$. Def: ω is called a *Dirac state* adapted to the subspace $L \subseteq S$, if $\omega(W(y)) = 1$ for all $y \in L$.

Rem: (i) Dirac states exist for L iff $L \subseteq L^{\perp}$ (β -isotropic) (ii) in physics L solution set of constraint equations (e.g., $\nabla \Phi = 0$ Coulomb gauge for electromagnetic vector potential in QED).

Prop: (i) ω Dirac state for $L \iff \forall y \in L \colon \pi(W(y))\Omega = \Omega$. (ii) ω Dirac for $L \neq \{0\} \implies \pi$ not regular.

[Quotient construction $\rightsquigarrow C^*$ -algebra \mathcal{O} of *physical observables*; Dirac states induce regular states on \mathcal{O} .]

4. Normal states on Weyl-von Neumann algebras

 $\pi: \mathcal{W} \to B(H) \text{ any *-representation; } \mathcal{W} \text{ simple } \Rightarrow \pi(\mathcal{W}) \cong \mathcal{W}.$ $\mathcal{W}_{\pi} := \text{von Neumann algebra generated from } \pi(\mathcal{W}). \quad (\pi(\mathcal{W})'', \mathsf{s/w clos.})$ **Examples:** (i) π irreducible $\Rightarrow \mathcal{W}_{\pi} = B(H).$ (ii) π universal repr. (sum over all GNS repr.), then \mathcal{W}_{π} enveloping von Neumann algebra.

Weak* topology on B(H) given by seminorms $A \mapsto |\text{trace}(AT)|$, where T is trace class. A positive linear functional μ on B(H) is weak* continuous iff it is *normal* (respecting incr. s.o.t.-conv. nets). *Physics:* Reasonable bounds for states from finite measurements. *Vector functionals* $\nu_{\xi} \colon B(H) \to \mathbb{C}, A \mapsto \langle \xi | A \xi \rangle$, are normal. **Prop:** Non-existence of normal Dirac states on \mathcal{W}_{π} , if π is regular.

Def(Function space V_{π} on S): For $\xi \in H$ we define $f_{\xi} \colon S \to \mathbb{C}$ by $f_{\xi}(z) := \nu_{\xi}(\pi(W(z))) = \langle \xi | \pi(W(z)) \xi \rangle$

and V_{π} as the *closure of* span{ $f_{\xi} | \xi \in H$ } in the Banach space of bounded functions $S \to \mathbb{C}$ with the supremum norm.

5. Description of states on \mathcal{W} by functions $S \to \mathbb{C}$

[Recall: (S, β) symplectic space, \mathcal{W} with generators W(z) ($z \in S$), $\pi : \mathcal{W} \to B(H)$ *-representation, \mathcal{W}_{π} vNA generated in B(H), V_{π} .]

Prop: (i) If μ is a normal state on \mathcal{W}_{π} and $h: S \to \mathbb{C}$ defined by $h(z) := \mu(\pi(W(z)))$, then $h \in V_{\pi}$.

(ii) If S Hilbert sp., ω state on W s.t. z → ω(W(z)) Borel meas., π GNS representation associated with ω, then V_π ⊆ B_b(S).
(iii) If S Hilbert space and π regular, then V_π ⊆ C_b(S).

Examples: (i) $S = \mathbb{R}^{2n}$, π Schrödinger repr., then $V_{\pi} \subseteq C_0(\mathbb{R}^{2n})$. (ii) S Hilbert, ω Fock state, $\omega(W(z)) = \exp(-||z||^2/4)$, then $V_{\pi} \subseteq C_{b0}(S) := \{f \in C_b(S) \mid \forall \varepsilon > 0 \exists R \ge 0 : \sup_{\|z\| \ge R} |f(z)| \le \varepsilon\}$. (This is larger than $C_0(S) :=$ closure of $C_c(S)$, if dim $S = \infty$.)

Correspondence: Let $g: S \to \mathbb{C}$, g(0) = 1. \exists ! state ω on \mathcal{W} s.t. $\forall z \in S: \quad \omega(W(z)) = g(z)$, iff $G(x, y) := g(x - y) \exp(-i\beta(x, y))$ defines pos. def. kernel.

6. Now specifically $S = L^2(\mathbb{R}^n)$ with $\beta(\varphi, \psi) = \text{Im}\langle \varphi | \psi \rangle / 2$

GF aspect: If $g: L^2 \to \mathbb{C}$ induces *smooth* function on $\mathscr{D}(\mathbb{R}^n)$ and is *moderate* upon insertion of ε -scaled delta nets $\rightsquigarrow [g] \in \mathcal{G}(\mathbb{R}^n)$.

Dirac state ω_0 (with QED context [Thirring-Narnhofer 1992]) corresponding to *discontinuous* function $g_0(\psi) = 1$, if $\operatorname{Re} \psi = 0$, and $g_0(\psi) = 0$ otherwise \rightsquigarrow GNS representation $\pi_0 \colon W \to B(H_0)$ with *non-separable* H_0 ; vacuum vector state $\nu_0 \colon A \mapsto \langle \Omega_0 | A \Omega_0 \rangle$ is a normal Dirac state on W_{π_0} with $\nu_0 \circ \pi_0 = \omega_0$; π_0 not regular.

Lemma: ω_0 is the weak* limit of the regular states ω_k on \mathcal{W} with $\omega_k(\psi) = \exp(-\frac{k^2}{4} \|\operatorname{Re} \psi\|^2 - \frac{1}{4k^2} \|\operatorname{Im} \psi\|^2) =: g_k(\psi).$

Observations: (i) Every g_k smooth on $\mathscr{D}(\mathbb{R}^n)$, but 0 in $\mathcal{G}(\mathbb{R}^n)$. (ii) As function on $\mathscr{S}(\mathbb{R}^n)$, every g_k is the inverse Fourier transform of a Gaussian measure on $\mathscr{S}'(\mathbb{R}^n)$ (background: Bochner-Minlos theorem).

 $\begin{array}{lll} \textbf{Prop:} \ \omega \ \text{regular state} & \leftrightarrow \ g \ \text{continuous} \ (\text{with} \ G \ \text{pos. def. kernel}) \\ \leftrightarrow \ \text{Borel probability measure} \ \mu \ \text{on} \ \mathscr{S'} & \stackrel{[g \ \text{smooth on} \ \mathscr{D}]}{\rightarrow} \ [g] \in \mathcal{G}. \end{array}$

7. $\mathscr{S}(\mathbb{R}^n)$ as Abelian topological group (not loc. compact)

 $\text{Recall: } \left| \widehat{\delta_L} = (2\pi)^{\dim L} \, \delta_{L^\perp} \right| \text{, if } L \text{ subsp. of } \mathbb{R}^d \text{, } \delta_L \text{ Euclid. surf. measure.}$

 g_0 gives indicator function of $L := \{ \psi \in \mathscr{S} \mid \operatorname{Re} \psi = 0 \}. | \widehat{g_0} = ? |$ **Thm:** Dual group $\widehat{\mathscr{S}}$ is isomorphic (as a topological group) to $\mathscr{S}'_{\mathbb{R}}$ and \mathscr{S} has the Pontryagin property. [Smith 1952] *Fourier transform* of $\mu \in M(\mathscr{S})$ (complex Borel meas.) $\widehat{\mu} \colon \mathscr{S}'_{\mathbb{R}} \to \mathbb{C}$, $\forall u \in \mathscr{S}'_{\mathbb{R}} : \quad \widehat{\mu}(u) := \int_{\mathscr{Q}} e^{-i\langle u, \varphi \rangle} \, d\mu(\varphi),$ co-Fourier transform of $\nu \in M(\mathscr{S}'_{\mathbb{R}}), \ \widetilde{\nu}(\varphi) := \int_{\mathscr{S}'} e^{i\langle u, \varphi \rangle} d\nu(u).$ $h_0 :=$ indicator function of $L^{\perp} = \{ u \in \mathscr{S}'_{\mathbb{R}} \mid \forall \varphi \in L \colon \langle u, \varphi \rangle = 0 \},\$ $K := \{ \psi \in \mathscr{S} \mid \text{Im } \psi = 0 \}$, then $\mathscr{S} = K \oplus L$ and $\mathscr{S}'_{\mathbb{R}} = L^{\perp} \oplus K^{\perp}$. **Prop:** $\rho = \rho_1 \otimes \delta_0$, $\mu = \delta_0 \otimes \mu_2$ with *finite positive* measures $\rho_1 \in M(L^{\perp}), \ \mu_2 \in M(L), \ \text{then} \ \Big| \|\rho\| (g_0 \mu) = (h_0 \rho) * \widehat{\mu} \Big|.$

Intuitively, $\mu_1 \approx 1$ leads to $\|\rho\|\widehat{g_0} \approx \|\rho\|h_0$, thus $\widehat{g_0} \approx h_0$.