A complete characterization of Fujita's blow-up solutions for discrete p-Laplacian paraolic equations

This is a joint work with Prof. Soon-Yeong Chung

Jaeho Hwang

September 1. 2020, GF2020 Ghent

Department of Mathematics, Sogang University, Seoul, Republic of Korea

Contents

What is blow-up?

Main equations and goals

Histories

Networks

Main results

Examples: Blow-up solution and global solution to ODE's

$$\begin{split} & \text{Eq1.} \; \begin{cases} y'\left(t\right) = -2y(t) + 3|y(t)|^2 y(t), & t > 0, \\ y\left(0\right) = 3 \end{cases} \\ & \text{Eq2.} \; \begin{cases} y'\left(t\right) = -2y(t) + 3|y(t)|^2 y(t), & t > 0, \\ y\left(0\right) = 0.5 \end{cases} \end{split}$$

Examples: Blow-up solution and global solution to ODE's

Eq1.
$$\begin{cases} y'(t) = -2y(t) + 3|y(t)|^2 y(t), & t > 0, \\ y(0) = 3 \end{cases}$$

Eq2.
$$\begin{cases} y'\left(t\right) = -2y(t) + 3|y(t)|^2 y(t), & t>0, \\ y\left(0\right) = 0.5 \end{cases}$$

What is Fujita's blow-up?

What is Fujita's blow-up?

The definition of Fujita's blow-up solution

The solution u is Fujita's blows up solution if u blows up in finite time t^* for every nontrivial nonnegative initial data u_0 .

The definition of the blow-up

We say that the solution \boldsymbol{u} blows up in finite time t^* if \boldsymbol{u} satisfies

$$\lim_{t\to t^*-} \lVert u(x,t)\rVert_{\infty} = \infty.$$

Main equations and goals

Main equations

p-Laplcian parabolic equations under mixed boundary conditions

$$(E): \begin{cases} u_t = \Delta_{p,\omega} u + \psi(t) |u|^{q-1} u, & \text{in } S \times (0, t^*), \\ \mu(z) \frac{\partial u}{\partial_p n} + \sigma(z) |u|^{p-2} u = 0, & \text{on } \partial S \times (0, t^*), \\ u(\cdot, 0) = u_0 \ge 0 \ (u_0 \not\equiv 0), & \text{in } S, \end{cases}$$

where S is a network with a boundary ∂S , t^* is the maximal existence time of the solution u, $p \geq 2$, q > 0, and the function ψ is a positive continuous function on $(0, \infty)$.

Here, μ and σ are nonnegative functions with $\mu(z)+\sigma(z)>0$, $z\in\partial S$ satisfying $\sigma\not\equiv 0$.

Main equations and goals

p-Laplcian parabolic equations under mixed boundary conditions

$$(E): \begin{cases} u_t = \Delta_{p,\omega} u + \psi(t) |u|^{q-1} u, & \text{ in } S \times (0,t^*), \\ \mu(z) \frac{\partial u}{\partial_p n} + \sigma(z) |u|^{p-2} u = 0, & \text{ on } \partial S \times (0,t^*), \\ u(\cdot,0) = u_0 \geq 0 \ (u_0 \not\equiv 0), & \text{ in } S. \end{cases}$$

Goals

- When the solutions blow-up or exist globally?
- Can we obtain the blow-up conditions for p, q, and ψ ?
- In the case of blow-up phenomena, then the solutions are Fujita's blow-up solutions?
- Can we characterize the parameters $p,\,q,$ and the function ψ with respect to Fujita's blow-up?

Fujita (1966)

Fujita firstly began studying Fujita's blow-up solutions to the following Laplacian parabolic equations

$$\begin{cases} u_t = \Delta u + u^q, & x \in \mathbb{R}^N, \ t > 0, \\ u(\cdot, 0) = u_0, & x \in \mathbb{R}^N, \end{cases}$$

where q > 1. In their results, if $1 < q < q^* = 1 + \frac{2}{N}$, then the solutions blow up in finite time for every nonnegative nontrivial initial data.

- (i) If $q>q^*$, then there exist global solutions and blow-up solutions with respect to the initial data u_0 .
- (ii) Such q^* in the above is called a critical exponent.

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966) 109–124.

Galaktionov (1994)

Galaktionov obtained Fujita's blow-up solutions for the following p-Laplacian parabolic equations

$$\begin{cases} u_t = \nabla \cdot (|\nabla u|^{p-2} \nabla u) + u^q, & x \in \mathbb{R}^N, \ t > 0, \\ u(\cdot, 0) = u_0, & x \in \mathbb{R}^N, \end{cases}$$

where q>p-1. In their results, if $p-1< q< q^*=p-1+\frac{p}{N}$, then the solutions blow up in finite time for every nonnegative nontrivial initial data.

V. A. Galaktionov, *Blow-up for quasilinear heat equations with critical Fujita's exponents*, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 517–525.

Meier (1990)

Meier obtained Fujita's blow-up solutions for the following parabolic equations

$$\begin{cases} u_t = \Delta u + e^{\beta t} |u|^{q-1} u, & \text{in } \Omega \times (0, t^*), \\ u = 0, & \text{on } \partial \Omega \times (0, t^*), \\ u(\cdot, 0) = u_0 \geq 0 \ (u_0 \not\equiv 0), & \text{in } \Omega, \end{cases}$$

where Ω is a general (bounded or unbounded) domain with smooth boundary $\partial\Omega$. Especially, if Ω is bounded, then the critical exponent is $q^*=1+\frac{\beta}{\lambda_0}$, where λ_0 is the first Dirichlet eigenvalue of the Laplace operator Δ .

P. Meier, *On the critical exponent for reaction-diffusion equations*, Arch. Rational Mech. Anal. 109 (1990), no. 1, 63–71.

Zhou, Chen, and Liu (2014)

Zhou et al. obtained Fujita's blow-up solutions for the following discrete parabolic equations

$$\begin{cases} u_t = \Delta_{\omega} u + e^{\beta t} |u|^{q-1} u, & \text{in } S \times (0, t^*), \\ u = 0, & \text{on } \partial S \times (0, t^*), \\ u(\cdot, 0) = u_0 \ge 0 \ (u_0 \ne 0), & \text{in } S, \end{cases}$$

where S is a network with boundary ∂S . They also obtained the critical exponent q^* as $1+\frac{\beta}{\lambda_0}$, where λ_0 is the first Dirichlet eigenvalue of the discrete Laplace operator Δ_ω .

W. Zhou, M. Chen, and W. Liu, *Critical exponent and blow-up rate for the* ω -diffusion equations on graphs with Dirichlet boundary conditions, Electron. J. Differential Equations (2014), no. 263, 13 pp.

Chung, Park, and Choi (2019)

Chung, Park, and Choi obtained Fujita's blow-up solutions for the following discrete parabolic equations

$$\begin{cases} u_t = \Delta_{\omega} u + \psi(t) |u|^{q-1} u, & \text{in } S \times (0, t^*), \\ u = 0, & \text{on } \partial S \times (0, t^*), \\ u(\cdot, 0) = u_0 \ge 0 \ (u_0 \ne 0), & \text{in } S, \end{cases}$$

where ψ is nonnegative continuous function. They obtained that the solution u is Fujita's blow-up solution iff $q \in \Lambda_{\psi}$ (the critical set), where

$$\Lambda_{\psi} = \left\{ q > 1 \mid \int_{0}^{\infty} \psi(t) e^{-(q-1)\lambda_{0}t} dt = \infty \right\}.$$

S. -Y. Chung, M. -J. Choi, and J. -H. Park, *Fujita-type blow-up for discrete reaction-diffusion equations on networks*, Publ. Res. Inst. Math. Sci. 55 (2019), 235-258.

The critical set

Remark

(i) In the equation

$$\begin{cases} u_t = \Delta_\omega u + e^{\beta t} |u|^{q-1} u, & \text{in } S \times (0, t^*), \\ u = 0, & \text{on } \partial S \times (0, t^*), \\ u(\cdot, 0) = u_0 \ge 0 \ (u_0 \not\equiv 0), & \text{in } S, \end{cases}$$

 $q\in \Lambda_{\psi}=\left\{q>1\,|\,\int_0^\infty e^{\beta t}e^{-(q-1)\lambda_0t}dt=\infty
ight\}$ implies that $1< q\le 1+rac{\beta}{\lambda_0}.$ It follows that we can discuss the case of $q=q^*$, by considering the critical set.

(ii) In our results, we define the critical set as

$$\Lambda_{p,\psi} := \left\{ q > 1 \mid \int_0^\infty \psi(t) e^{-(q-p+1)\lambda_{p,0}t} dt = \infty \right\},\,$$

where $\lambda_{p,0}$ is the first eigenvalue of the discrete p-Laplace operator.

Networks

 $\label{eq:Graph} \mbox{Graph } G \mbox{ is simple and connected}.$

A weight ω on a graph $G(\overline{S},E)$ is a function $\omega:\overline{S}\times\overline{S}\to[0,\infty)$ satisfying

- (i) $\omega(x,x)=0, \quad x\in \overline{S}$,
- (ii) $\omega(x,y) = \omega(y,x)$, for all x,y,
- (iii) $\omega(x,y) > 0 \Leftrightarrow \{x,y\} \in E$.
 - $G(\overline{S}, E : \omega)$ is called a weighted graph or a <u>network.</u>

What is network?

Discrete *p*-Laplace operator and *p*-normal derivative

For a function f (defined on the set \overline{S} of nodes in G), we define

$$\Delta_{p,\omega} f(x) := \sum_{y \in \overline{S}} |f(y) - f(x)|^{p-2} [f(y) - f(x)] \omega(x, y), \quad x \in S,$$

$$\frac{\partial f}{\partial_p n}(x) := \sum_{y \in \overline{S}} |f(x) - f(y)|^{p-2} [f(x) - f(y)] \omega(x, y), \quad x \in \partial S.$$

What is network?

Discrete p-Laplace operator and p-normal derivative

For a function f (defined on the set \overline{S} of nodes in G), we define

$$\Delta_{p,\omega}f(x) := \sum_{y \in \overline{S}} |f(y) - f(x)|^{p-2} [f(y) - f(x)]\omega(x,y), \quad x \in S,$$

$$\frac{\partial f}{\partial_p n}(x) := \sum_{y \in \overline{S}} |f(x) - f(y)|^{p-2} [f(x) - f(y)] \omega(x, y), \quad x \in \partial S.$$

Especially, if p=2, then we have

$$\Delta_{2,\omega} f(x) := \sum_{y \in \overline{S}} [f(y) - f(x)] \omega(x,y), \quad x \in S.$$

Main results

Recall the main equations

Main equations

$$(E): \begin{cases} u_t = \Delta_{p,\omega} u + \psi(t) |u|^{q-1} u, & \text{in } S \times (0, t^*), \\ \mu(z) \frac{\partial u}{\partial_p n} + \sigma(z) |u|^{p-2} u = 0, & \text{on } \partial S \times (0, t^*), \\ u(\cdot, 0) = u_0 \ge 0 \ (u_0 \not\equiv 0), & \text{in } S, \end{cases}$$

where S is a network with a boundary ∂S , t^* is the maximal existence time of the solution u, $p \geq 2$, q > 0, and the function ψ is a positive continuous function on $(0, \infty)$.

Here, the boundary condition B[u]=0 on $\partial S\times (0,t^*)$ stands for the boundary condition

$$\mu(z)\frac{\partial u}{\partial_p n}(z,t) + \sigma(z)|u(z,t)|^{p-2} = 0, \ (z,t) \in \partial S \times (0,t^*),$$

where μ and σ are nonnegative functions with $\mu(z) + \sigma(z) > 0$, $z \in \partial S$.

The first eigenvalue $\lambda_{p,0}$

The first eigenvalue of the discrete *p*-Laplace operator

There exist a nonnegative constant $\lambda_{p,0}$ and nonnegative function ϕ_0 on \overline{S} satisfying

$$\begin{cases} -\Delta_{p,\omega}\phi_0(x) = \lambda_{p,0}|\phi_0(x)|^{p-2}\phi_0(x), & x \in S, \\ \mu(z)\frac{\partial\phi_0}{\partial_p n}(z) + \sigma(z)|\phi_0(z)|^{p-2}\phi_0(z) = 0, & z \in \partial S, \end{cases}$$

Moreover, $\lambda_{p,0}$ can be represented by

$$\lambda_{p,0} = \min_{\substack{u \neq 0 \\ u=0 \text{ on } \partial S \backslash \Gamma}} \frac{\sum_{x,y \in \overline{S}} |u(x) - u(y)|^p \omega(x,y) + \sum_{z \in \Gamma} \frac{\sigma(z)}{\mu(z)} |u(z)|^p}{\sum_{x \in S} |u(x)|^p}$$

where $\Gamma := \{ z \in \partial S \, | \, \mu(z) > 0 \}.$

Remark

- $\lambda_{p,0} > 0$ if and only if $\sigma \not\equiv 0$.
- $\Lambda_{p,\psi} := \{q > 1 \mid \int_0^\infty \psi(t) e^{-(q-p+1)\lambda_{p,0}t} dt = \infty \}.$

Comparison principle

Comparison principle

Let T>0 (T may be $+\infty)$, $p\geq 2$, and $q\geq 1$. Suppose that real-valued functions $u(x,\cdot)$, $v(x,\cdot)\in C[0,T)$ are differentiable in (0,T) for each $x\in \overline{S}$ and satisfy

$$\begin{cases} u_{t}(x,t) - \Delta_{p,\omega}u(x,t) - \psi(t)|u(x,t)|^{q-1}u(x,t) \\ \geq v_{t}(x,t) - \Delta_{p,\omega}v(x,t) - \psi(t)|v(x,t)|^{q-1}v(x,t), & (x,t) \in S \times (0,T), \\ \mu(z)\frac{\partial u}{\partial_{p}n}(z,t) + \sigma(z)|u(z,t)|^{p-2}u(z,t) \\ -\mu(z)\frac{\partial v}{\partial_{p}n}(z,t) + \sigma(z)|v(z,t)|^{p-2}v(z,t) \geq 0, & (z,t) \in \partial S \times (0,T), \\ u(x,0) \geq v(x,0), & x \in \overline{S}. \end{cases}$$

Then $u(x,t) \ge v(x,t)$ for all $(x,t) \in \overline{S} \times [0,T)$.

Conclusion

$$p \geq 2, q > 0.$$

Main results : The case $p-1 \neq q$ or $q \leq 1$

The case $q or <math>q \le 1$

Let q < p-1 or $q \le 1$. Then every solution u to the equation (E) exists globally.

The case q > p-1

Let u be the solution to the equation (E).

- (i) Suppose that $q \in \Lambda_{p,\psi}$. Then u blows up at finite time t^* for every nontrivial and nonnegative initial data u_0 .
- (ii) Suppose that $q \notin \Lambda_{p,\psi}$. Then u blows up at finite time t^* whenever the initial data u_0 is sufficiently large.
- (iii) Suppose that $q \not\in \Lambda_{p,\psi}$. Then u exists globally whenever the initial data u_0 is sufficiently small.

Sketch of proof the case q > p - 1

Let us consider two ODE problems

$$\begin{cases} z'(t) = -\lambda_{p,0} z^{p-1}(t) + k\psi(t) z^{q}(t), \ t > t_{0}, \\ z(t_{0}) = z_{0} > 0, \end{cases}$$
 (1)

and

$$\begin{cases} w'(t) = -\lambda_{p,0}w(t) + k\psi(t)w^{q-p+2}(t), \ t > t_0, \\ w(t_0) = w_0 > 0. \end{cases}$$
 (2)

We will use the Comparision Principle. By taking k, z_0 , w_0 suitably small or large, we can obtain the following relations

$$w(t)\phi_0(x) \leq z(t)\phi_0(x) \leq u(x,t) \quad \text{or} \quad w(t)\phi_0(x) \geq z(t)\phi_0(x) \geq u(x,t).$$

Also, the solution w can be expressed as

$$w(t) = \left\lceil \frac{1}{e^{(q-p+1)\lambda_{p,0}(t-t_0)} \left\lceil w_0^{-(q-p+1)} - k(q-p+1) \int_{t_0}^t \psi(\tau) e^{-(q-p+1)\lambda_{p,0}(\tau-t_0)} d\tau \right\rceil} \right\rceil^{\frac{1}{q-p+1}},$$

we can obtain the desired results.

Main results : The case p-1=q>1

The case p - 1 = q > 1

Let u be the solution to the equation (E).

- (i) Suppose that $\int_0^\infty [\psi(\tau) \lambda_{p,0}] d\tau = \infty$. Then u blows up at finite time t^* for every nontrivial and nonnegative initial data u_0 .
- (ii) Suppose that $0 < \sup_{t>0} \int_0^t [\psi(\tau) \lambda_{p,0}] d\tau < \infty$. Then u blows up at finite time t^* whenever the initial data u_0 is sufficiently large.
- (iii) Suppose that $0 < \sup_{t>0} \int_0^t [\psi(\tau) \lambda_{p,0}] d\tau < \infty$. Then u exists globally whenever the initial data u_0 is sufficiently small.
- (iv) Suppose that $\sup_{t>0}\int_0^t [\psi(\tau)-\lambda_{p,0}]d\tau \leq 0$. Then u exists globally for every initial data u_0 .

Sketch of proof the case p-1=q>1

Consider the following ODE problem:

$$\begin{cases} z'(t) = k(t)(\psi(t) - \lambda_{p,0})z^{p-1}(t), \ t > t_0, \\ z(t_0) = z_0 > 0, \end{cases}$$

where k is a positive real-valued function and z_0 is a positive constant which are determined later. Then we have

$$z(t) = \left[\frac{1}{z_0^{2-p} - (p-2)k(t) \int_{t_0}^t [\psi(\tau) - \lambda_{p,0}] d\tau} \right]^{\frac{1}{p-2}},$$

for all $t \geq t_0$. Now, we define $v(x,t) := \phi_0(x)z(t)$ on $\overline{S} \times [t_0,t^*)$. Then we obtain

$$\begin{aligned} v_t(x,t) - \Delta_{p,\omega} v(x,t) - \psi(t) v^{p-1}(x,t) \\ = \phi_0(x) k(t) [\psi(t) - \lambda_{p,0}] z^{p-1}(t) + \lambda_{p,0} \phi_0^{p-1}(x) z^{p-1}(t) - \psi(t) \phi_0^{p-1}(x) z^{p-1}(t) \\ = z^{p-1}(t) \phi_0(x) (\psi(t) - \lambda_{p,0}) \left(k(t) - \phi_0^{p-2}(x) \right). \end{aligned}$$

Sketch of proof the case p-1=q>1

By choosing $\boldsymbol{k}(t)$ and \boldsymbol{z}_0 suitably, we can obtain from comparison principle that

$$\left[\frac{[\phi_{0}(x)]^{p-2}}{\left[\min_{x \in S \cup \Gamma} \frac{u(x,t_{0})}{\phi_{0}(x)}\right]^{2-p} - (p-2)\min_{x \in S} \phi_{0}^{p-2}(x) \int_{t_{0}}^{t} [\psi(\tau) - \lambda_{p,0}] d\tau}\right]^{\frac{1}{p-2}} \\
\leq u(x,t) \leq \\
\left[\frac{[\phi_{0}(x)]^{p-2}}{\left[\max_{x \in S \cup \Gamma} \frac{u(x,t_{0})}{\phi_{0}(x)}\right]^{2-p} - (p-2)\max_{x \in S} \phi_{0}^{p-2}(x) \int_{t_{0}}^{t} [\psi(\tau) - \lambda_{p,0}] d\tau}\right]^{\frac{1}{p-2}}.$$

Conclusion

Conclusion

For instance, if $\psi(t)=e^{\beta t}$, then the blue line is $q=p-1+\frac{\beta}{\lambda_{p,0}}$, since

$$\Lambda_{p,\psi} = \left\{ q > 1 \mid q \le p - 1 + \frac{\beta}{\lambda_{p,0}} \right\}.$$

Chank