A complete characterization of Fujita's blow-up solutions for discrete p-Laplacian paraolic equations

This is a joint work with Prof. Soon-Yeong Chung

Jaeho Hwang
September 1. 2020, GF2020 Ghent

Department of Mathematics, Sogang University, Seoul, Republic of Korea

Contents

What is blow-up?

Main equations and goals

Histories

Networks

Main results

What is blow-up?

What is blow-up?

Examples : Blow-up solution and global solution to ODE's

Eq1. $\left\{\begin{array}{l}y^{\prime}(t)=-2 y(t)+3|y(t)|^{2} y(t), \quad t>0, \\ y(0)=3\end{array}\right.$
Eq2. $\left\{\begin{array}{l}y^{\prime}(t)=-2 y(t)+3|y(t)|^{2} y(t), \quad t>0, \\ y(0)=0.5\end{array}\right.$

What is blow-up?

Examples : Blow-up solution and global solution to ODE's

Eq1. $\left\{\begin{array}{l}y^{\prime}(t)=-2 y(t)+3|y(t)|^{2} y(t), \quad t>0, \\ y(0)=3\end{array}\right.$
Eq2. $\left\{\begin{array}{l}y^{\prime}(t)=-2 y(t)+3|y(t)|^{2} y(t), \quad t>0, \\ y(0)=0.5\end{array}\right.$

What is Fujita's blow-up?

What is Fujita's blow-up?

The definition of Fujita's blow-up solution

The solution u is Fujita's blows up solution if u blows up in finite time t^{*} for every nontrivial nonnegative initial data u_{0}.

What is blow-up?

The definition of the blow-up
We say that the solution u blows up in finite time t^{*} if u satisfies

$$
\lim _{t \rightarrow t^{*}-}\|u(x, t)\|_{\infty}=\infty
$$

Main equations and goals

Main equations

p-Laplcian parabolic equations under mixed boundary conditions

$$
(E): \begin{cases}u_{t}=\Delta_{p, \omega} u+\psi(t)|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right), \\ \mu(z) \frac{\partial u}{\partial_{p} n}+\sigma(z)|u|^{p-2} u=0, & \text { on } \partial S \times\left(0, t^{*}\right), \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S,\end{cases}
$$

where S is a network with a boundary $\partial S, t^{*}$ is the maximal existence time of the solution $u, p \geq 2, q>0$, and the function ψ is a positive continuous function on $(0, \infty)$.
Here, μ and σ are nonnegative functions with $\mu(z)+\sigma(z)>0, z \in \partial S$ satisfying $\sigma \not \equiv 0$.

Main equations and goals

p-Laplcian parabolic equations under mixed boundary conditions

$$
(E): \begin{cases}u_{t}=\Delta_{p, \omega} u+\psi(t)|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right), \\ \mu(z) \frac{\partial u}{\partial_{p} n}+\sigma(z)|u|^{p-2} u=0, & \text { on } \partial S \times\left(0, t^{*}\right), \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S .\end{cases}
$$

Goals

- When the solutions blow-up or exist globally?
- Can we obtain the blow-up conditions for p, q, and ψ ?
- In the case of blow-up phenomena, then the solutions are Fujita's blow-up solutions?
- Can we characterize the parameters p, q, and the function ψ with respect to Fujita's blow-up?

Histories

Histories

Fujita (1966)

Fujita firstly began studying Fujita's blow-up solutions to the following Laplacian parabolic equations

$$
\begin{cases}u_{t}=\Delta u+u^{q}, & x \in \mathbb{R}^{N}, t>0 \\ u(\cdot, 0)=u_{0}, & x \in \mathbb{R}^{N}\end{cases}
$$

where $q>1$. In their results, if $1<q<q^{*}=1+\frac{2}{N}$, then the solutions blow up in finite time for every nonnegative nontrivial initial data.
(i) If $q>q^{*}$, then there exist global solutions and blow-up solutions with respect to the initial data u_{0}.
(ii) Such q^{*} in the above is called a critical exponent.
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966) 109-124.

Histories

Galaktionov (1994)

Galaktionov obtained Fujita's blow-up solutions for the following p-Laplacian parabolic equations

$$
\begin{cases}u_{t}=\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+u^{q}, & x \in \mathbb{R}^{N}, t>0 \\ u(\cdot, 0)=u_{0}, & x \in \mathbb{R}^{N},\end{cases}
$$

where $q>p-1$. In their results, if $p-1<q<q^{*}=p-1+\frac{p}{N}$, then the solutions blow up in finite time for every nonnegative nontrivial initial data.
V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 517-525.

Histories

Meier (1990)

Meier obtained Fujita's blow-up solutions for the following parabolic equations

$$
\begin{cases}u_{t}=\Delta u+e^{\beta t}|u|^{q-1} u, & \text { in } \Omega \times\left(0, t^{*}\right) \\ u=0, & \text { on } \partial \Omega \times\left(0, t^{*}\right) \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } \Omega\end{cases}
$$

where Ω is a general (bounded or unbounded) domain with smooth boundary $\partial \Omega$. Especially, if Ω is bounded, then the critical exponent is $q^{*}=1+\frac{\beta}{\lambda_{0}}$, where λ_{0} is the first Dirichlet eigenvalue of the Laplace operator Δ.
P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal. 109 (1990), no. 1, 63-71.

Histories

Zhou, Chen, and Liu (2014)

Zhou et al. obtained Fujita's blow-up solutions for the following discrete parabolic equations

$$
\begin{cases}u_{t}=\Delta_{\omega} u+e^{\beta t}|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right) \\ u=0, & \text { on } \partial S \times\left(0, t^{*}\right) \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S\end{cases}
$$

where S is a network with boundary ∂S. They also obtained the critical exponent q^{*} as $1+\frac{\beta}{\lambda_{0}}$, where λ_{0} is the first Dirichlet eigenvalue of the discrete Laplace operator Δ_{ω}.
W. Zhou, M. Chen, and W. Liu, Critical exponent and blow-up rate for the ω-diffusion equations on graphs with Dirichlet boundary conditions, Electron. J. Differential Equations (2014), no. 263, 13 pp.

Histories

Chung, Park, and Choi (2019)

Chung, Park, and Choi obtained Fujita's blow-up solutions for the following discrete parabolic equations

$$
\begin{cases}u_{t}=\Delta_{\omega} u+\psi(t)|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right), \\ u=0, & \text { on } \partial S \times\left(0, t^{*}\right), \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S,\end{cases}
$$

where ψ is nonnegative continuous function. They obtained that the solution u is Fujita's blow-up solution iff $q \in \Lambda_{\psi}$ (the critical set), where

$$
\Lambda_{\psi}=\left\{q>1 \mid \int_{0}^{\infty} \psi(t) e^{-(q-1) \lambda_{0} t} d t=\infty\right\}
$$

S. -Y. Chung, M. -J. Choi, and J. -H. Park, Fujita-type blow-up for discrete reaction-diffusion equations on networks, Publ. Res. Inst. Math. Sci. 55 (2019), 235-258.

The critical set

Remark

(i) In the equation

$$
\begin{cases}u_{t}=\Delta_{\omega} u+e^{\beta t}|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right), \\ u=0, & \text { on } \partial S \times\left(0, t^{*}\right), \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S,\end{cases}
$$

$q \in \Lambda_{\psi}=\left\{q>1 \mid \int_{0}^{\infty} e^{\beta t} e^{-(q-1) \lambda_{0} t} d t=\infty\right\}$ implies that $1<q \leq 1+\frac{\beta}{\lambda_{0}}$. It follows that we can discuss the case of $q=q^{*}$, by considering the critical set.
(ii) In our results, we define the critical set as

$$
\Lambda_{p, \psi}:=\left\{q>1 \mid \int_{0}^{\infty} \psi(t) e^{-(q-p+1) \lambda_{p, 0} t} d t=\infty\right\}
$$

where $\lambda_{p, 0}$ is the first eigenvalue of the discrete p-Laplace operator.

Networks

Graph G is simple and connected.

Graph G

A weight ω on a graph $G(\bar{S}, E)$ is a function $\omega: \bar{S} \times \bar{S} \rightarrow[0, \infty)$ satisfying
(i) $\omega(x, x)=0, \quad x \in \bar{S}$,
(ii) $\omega(x, y)=\omega(y, x)$, for all x, y,
(iii) $\omega(x, y)>0 \Leftrightarrow\{x, y\} \in E$.

- $G(\bar{S}, E: \omega)$ is called a weighted graph or a network.

What is network?

Discrete p-Laplace operator and p-normal derivative

For a function f (defined on the set \bar{S} of nodes in G), we define

$$
\begin{aligned}
& \Delta_{p, \omega} f(x):=\sum_{y \in \bar{S}}|f(y)-f(x)|^{p-2}[f(y)-f(x)] \omega(x, y), \quad x \in S, \\
& \frac{\partial f}{\partial_{p} n}(x):=\sum_{y \in \bar{S}}|f(x)-f(y)|^{p-2}[f(x)-f(y)] \omega(x, y), \quad x \in \partial S .
\end{aligned}
$$

What is network?

Discrete p-Laplace operator and p-normal derivative

For a function f (defined on the set \bar{S} of nodes in G), we define

$$
\begin{aligned}
& \Delta_{p, \omega} f(x):=\sum_{y \in \bar{S}}|f(y)-f(x)|^{p-2}[f(y)-f(x)] \omega(x, y), \quad x \in S, \\
& \frac{\partial f}{\partial_{p} n}(x):=\sum_{y \in \bar{S}}|f(x)-f(y)|^{p-2}[f(x)-f(y)] \omega(x, y), \quad x \in \partial S .
\end{aligned}
$$

Especially, if $p=2$, then we have

$$
\Delta_{2, \omega} f(x):=\sum_{y \in \bar{S}}[f(y)-f(x)] \omega(x, y), \quad x \in S
$$

Main results

Recall the main equations

Main equations

$$
(E): \begin{cases}u_{t}=\Delta_{p, \omega} u+\psi(t)|u|^{q-1} u, & \text { in } S \times\left(0, t^{*}\right), \\ \mu(z) \frac{\partial u}{\partial_{p} n}+\sigma(z)|u|^{p-2} u=0, & \text { on } \partial S \times\left(0, t^{*}\right), \\ u(\cdot, 0)=u_{0} \geq 0\left(u_{0} \not \equiv 0\right), & \text { in } S,\end{cases}
$$

where S is a network with a boundary ∂S, t^{*} is the maximal existence time of the solution $u, p \geq 2, q>0$, and the function ψ is a positive continuous function on $(0, \infty)$.
Here, the boundary condition $B[u]=0$ on $\partial S \times\left(0, t^{*}\right)$ stands for the boundary condition

$$
\mu(z) \frac{\partial u}{\partial_{p} n}(z, t)+\sigma(z)|u(z, t)|^{p-2}=0, \quad(z, t) \in \partial S \times\left(0, t^{*}\right),
$$

where μ and σ are nonnegative functions with $\mu(z)+\sigma(z)>0, z \in \partial S$.

The first eigenvalue $\lambda_{p, 0}$

The first eigenvalue of the discrete p-Laplace operator

There exist a nonnegative constant $\lambda_{p, 0}$ and nonnegative function ϕ_{0} on \bar{S} satisfying

$$
\begin{cases}-\Delta_{p, \omega} \phi_{0}(x)=\lambda_{p, 0}\left|\phi_{0}(x)\right|^{p-2} \phi_{0}(x), & x \in S \\ \mu(z) \frac{\partial \phi_{0}}{\partial_{p} n}(z)+\sigma(z)\left|\phi_{0}(z)\right|^{p-2} \phi_{0}(z)=0, & z \in \partial S\end{cases}
$$

Moreover, $\lambda_{p, 0}$ can be represented by

$$
\lambda_{p, 0}=\min _{\substack{u \neq 0 \\ u=0 \text { on } \partial S \backslash \Gamma}} \frac{\sum_{x, y \in \bar{S}}|u(x)-u(y)|^{p} \omega(x, y)+\sum_{z \in \Gamma} \frac{\sigma(z)}{\mu(z)}|u(z)|^{p}}{\sum_{x \in S}|u(x)|^{p}},
$$

where $\Gamma:=\{z \in \partial S \mid \mu(z)>0\}$.

Remark

- $\lambda_{p, 0}>0$ if and only if $\sigma \not \equiv 0$.
- $\Lambda_{p, \psi}:=\left\{q>1 \mid \int_{0}^{\infty} \psi(t) e^{-(q-p+1) \lambda_{p, 0} t} d t=\infty\right\}$.

Comparison principle

Comparison principle

Let $T>0$ (T may be $+\infty$), $p \geq 2$, and $q \geq 1$. Suppose that real-valued functions $u(x, \cdot), v(x, \cdot) \in C[0, T)$ are differentiable in $(0, T)$ for each $x \in \bar{S}$ and satisfy

$$
\begin{cases}u_{t}(x, t)-\Delta_{p, \omega} u(x, t)-\psi(t)|u(x, t)|^{q-1} u(x, t) & \\ \geq v_{t}(x, t)-\Delta_{p, \omega} v(x, t)-\psi(t)|v(x, t)|^{q-1} v(x, t), & (x, t) \in S \times(0, T), \\ \mu(z) \frac{\partial u}{\partial_{p} n}(z, t)+\sigma(z)|u(z, t)|^{p-2} u(z, t) & \\ -\mu(z) \frac{\partial v}{\partial_{p} n}(z, t)+\sigma(z)|v(z, t)|^{p-2} v(z, t) \geq 0, & (z, t) \in \partial S \times(0, T), \\ u(x, 0) \geq v(x, 0), & x \in \bar{S} .\end{cases}
$$

Then $u(x, t) \geq v(x, t)$ for all $(x, t) \in \bar{S} \times[0, T)$.

Conclusion

- $p \geq 2, q>0$.

Main results : The case $p-1 \neq q$ or $q \leq 1$

The case $q<p-1$ or $q \leq 1$
Let $q<p-1$ or $q \leq 1$. Then every solution u to the equation (E) exists globally.

The case $q>p-1$
Let u be the solution to the equation (E).
(i) Suppose that $q \in \Lambda_{p, \psi}$. Then u blows up at finite time t^{*} for every nontrivial and nonnegative initial data u_{0}.
(ii) Suppose that $q \notin \Lambda_{p, \psi}$. Then u blows up at finite time t^{*} whenever the initial data u_{0} is sufficiently large.
(iii) Suppose that $q \notin \Lambda_{p, \psi}$. Then u exists globally whenever the initial data u_{0} is sufficiently small.

Sketch of proof the case $q>p-1$

Let us consider two ODE problems

$$
\left\{\begin{array}{l}
z^{\prime}(t)=-\lambda_{p, 0} z^{p-1}(t)+k \psi(t) z^{q}(t), t>t_{0} \tag{1}\\
z\left(t_{0}\right)=z_{0}>0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
w^{\prime}(t)=-\lambda_{p, 0} w(t)+k \psi(t) w^{q-p+2}(t), t>t_{0} \tag{2}\\
w\left(t_{0}\right)=w_{0}>0
\end{array}\right.
$$

We will use the Comparision Principle. By taking k, z_{0}, w_{0} suitably small or large, we can obtain the following relations

$$
w(t) \phi_{0}(x) \leq z(t) \phi_{0}(x) \leq u(x, t) \text { or } w(t) \phi_{0}(x) \geq z(t) \phi_{0}(x) \geq u(x, t)
$$

Also, the solution w can be expressed as

$$
w(t)=\left[\frac{1}{e^{(q-p+1) \lambda_{p, 0}\left(t-t_{0}\right)}\left[w_{0}^{-(q-p+1)}-k(q-p+1) \int_{t_{0}}^{t} \psi(\tau) e^{-(q-p+1) \lambda_{p, 0}\left(\tau-t_{0}\right)} d \tau\right]}\right]^{\frac{1}{q-p+1}},
$$

we can obtain the desired results.

Main results : The case $p-1=q>1$

The case $p-1=q>1$
Let u be the solution to the equation (E).
(i) Suppose that $\int_{0}^{\infty}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau=\infty$. Then u blows up at finite time t^{*} for every nontrivial and nonnegative initial data u_{0}.
(ii) Suppose that $0<\sup _{t>0} \int_{0}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau<\infty$. Then u blows up at finite time t^{*} whenever the initial data u_{0} is sufficiently large.
(iii) Suppose that $0<\sup _{t>0} \int_{0}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau<\infty$. Then u exists globally whenever the initial data u_{0} is sufficiently small.
(iv) Suppose that $\sup _{t>0} \int_{0}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau \leq 0$. Then u exists globally for every initial data u_{0}.

Sketch of proof the case $p-1=q>1$

Consider the following ODE problem:

$$
\left\{\begin{array}{l}
z^{\prime}(t)=k(t)\left(\psi(t)-\lambda_{p, 0}\right) z^{p-1}(t), t>t_{0} \\
z\left(t_{0}\right)=z_{0}>0
\end{array}\right.
$$

where k is a positive real-valued function and z_{0} is a positive constant which are determined later. Then we have

$$
z(t)=\left[\frac{1}{z_{0}^{2-p}-(p-2) k(t) \int_{t_{0}}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau}\right]^{\frac{1}{p-2}}
$$

for all $t \geq t_{0}$. Now, we define $v(x, t):=\phi_{0}(x) z(t)$ on $\bar{S} \times\left[t_{0}, t^{*}\right)$. Then we obtain

$$
\begin{aligned}
& v_{t}(x, t)-\Delta_{p, \omega} v(x, t)-\psi(t) v^{p-1}(x, t) \\
= & \phi_{0}(x) k(t)\left[\psi(t)-\lambda_{p, 0}\right] z^{p-1}(t)+\lambda_{p, 0} \phi_{0}^{p-1}(x) z^{p-1}(t)-\psi(t) \phi_{0}^{p-1}(x) z^{p-1}(t) \\
= & z^{p-1}(t) \phi_{0}(x)\left(\psi(t)-\lambda_{p, 0}\right)\left(k(t)-\phi_{0}^{p-2}(x)\right) .
\end{aligned}
$$

Sketch of proof the case $p-1=q>1$

By choosing $k(t)$ and z_{0} suitably, we can obtain from comparison principle that

$$
\begin{aligned}
& {\left[\frac{\left[\phi_{0}(x)\right]^{p-2}}{\left[\min _{x \in S \cup \Gamma} \frac{u\left(x, t_{0}\right)}{\phi_{0}(x)}\right]^{2-p}-(p-2) \min _{x \in S} \phi_{0}^{p-2}(x) \int_{t_{0}}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau}\right]^{\frac{1}{p-2}}} \\
& \leq u(x, t) \leq \\
& {\left[\frac{\left[\phi_{0}(x)\right]^{p-2}}{\left[\max _{x \in S \cup \Gamma} \frac{u\left(x, t_{0}\right)}{\phi_{0}(x)}\right]^{2-p}-(p-2) \max _{x \in S} \phi_{0}^{p-2}(x) \int_{t_{0}}^{t}\left[\psi(\tau)-\lambda_{p, 0}\right] d \tau}\right]^{\frac{1}{p-2}}}
\end{aligned}
$$

Conclusion

Conclusion

For instance, if $\psi(t)=e^{\beta t}$, then the blue line is $q=p-1+\frac{\beta}{\lambda_{p, 0}}$, since

$$
\Lambda_{p, \psi}=\left\{q>1 \left\lvert\, q \leq p-1+\frac{\beta}{\lambda_{p, 0}}\right.\right\} .
$$

efthark

