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What is blow-up?



What is blow-up?

Examples : Blow-up solution and global solution to ODE’s

Eql. {/(t) —2y(t) + 3ly()Py(t), >0,

(0)
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What is blow-up?

Examples : Blow-up solution and global solution to ODE’s
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What is Fujita’s blow-up?
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What is Fujita’s blow-up?

The definition of Fujita’s blow-up solution
The solution u is Fujita's blows up solution if u blows up in finite time
t* for every nontrivial nonnegative initial data wug.
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What is blow-up?

The definition of the blow-up
We say that the solution w blows up in finite time ¢* if u satisfies

Jimlu(z, )]s = oo.
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Main equations and goals



Main equations

p-Laplcian parabolic equations under mixed boundary conditions

up = Apu+P(t)|ullu,  in S x (0,t%),
(F) : M(z)a‘%; + o (2)|[ulP~2u =0, on dS x (0,t*),
u(+,0) =up 20 (ugp £0), inS,
where S is a network with a boundary 0.5, t* is the maximal existence
time of the solution w, p > 2, ¢ > 0, and the function 1 is a positive
continuous function on (0, c0).

Here, 1 and o are nonnegative functions with p(z) + o(z) > 0, z € 95
satisfying o Z 0.
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Main equations and goals

p-Laplcian parabolic equations under mixed boundary conditions
up = Apu+P(t)|ullu,  in S x (0,t%),
(E) : M(Z)% + o (2)|ulP~2u =0, on dS x (0,t*),
u(+,0) =up 20 (up £0), inS.

Goals
e When the solutions blow-up or exist globally?
e Can we obtain the blow-up conditions for p, ¢, and ?

e In the case of blow-up phenomena, then the solutions are Fujita's
blow-up solutions?

e Can we characterize the parameters p, ¢, and the function 1 with
respect to Fujita’s blow-up?
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Histories



Histories

Fujita (1966)

Fujita firstly began studying Fujita's blow-up solutions to the following
Laplacian parabolic equations

u=Au+ul, xRN, t>0,
u('ao) = Uo, ‘TERNv

where ¢ > 1. In their results, if 1 <g¢<q¢* =1+ % then the solutions
blow up in finite time for every nonnegative nontrivial initial data.

(i) If ¢ > ¢*, then there exist global solutions and blow-up solutions
with respect to the initial data wuy.

(ii) Such ¢* in the above is called a critical exponent.

H. Fujita, On the blowing up of solutions of the Cauchy problem for
up = Au+u'™, J. Fac. Sci. Univ. Tokyo Sect. | 13 (1966) 109-124.

8/30



Histories

Galaktionov (1994)
Galaktionov obtained Fujita's blow-up solutions for the following
p-Laplacian parabolic equations

ug = V- (|[VulP~2Vu) +ud, xRN, t>0,
U(,O) = Uo, HASS RN7
where ¢ > p — 1. In their results, if p —1 < ¢ <¢*=p—1+ &, then

the solutions blow up in finite time for every nonnegative nontrivial
initial data.

V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's
exponents, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 517-525.
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Histories

Meier (1990)
Meier obtained Fujita's blow-up solutions for the following parabolic
equations

ug = Au + eBt|u|9 tu, in Q x (0,t%),
uw=0, on 99 x (0,t%),
U(',O):UQ ZO (Uoié()), in Q,
where Q is a general (bounded or unbounded) domain with smooth
boundary 0f). Especially, if 2 is bounded, then the critical exponent is

g =1+ )\% where \q is the first Dirichlet eigenvalue of the Laplace
operator A.

P. Meier, On the critical exponent for reaction-diffusion equations, Arch.
Rational Mech. Anal. 109 (1990), no. 1, 63-71.
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Histories

Zhou, Chen, and Liu (2014)
Zhou et al. obtained Fujita's blow-up solutions for the following
discrete parabolic equations

g = Apu + Pu|Tly,  in S x (0,t%),
u=0, on 98 x (0,t*),
u(+,0) =ug >0 (up £0), inS,
where S is a network with boundary 0S. They also obtained the critical

exponent ¢* as 1 + /\% where \q is the first Dirichlet eigenvalue of the
discrete Laplace operator A,,.

W. Zhou, M. Chen, and W. Liu, Critical exponent and blow-up rate for the
w-diffusion equations on graphs with Dirichlet boundary conditions, Electron.
J. Differential Equations (2014), no. 263, 13 pp.
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Histories

Chung, Park, and Choi (2019)
Chung, Park, and Choi obtained Fujita's blow-up solutions for the
following discrete parabolic equations

up = Ayu+ ()|t u, in S x (0,t),
u=0, on 95 x (0,t*),
u(+,0) =ug >0 (up #0), inS,

where 1) is nonnegative continuous function. They obtained that the
solution w is Fujita's blow-up solution iff ¢ € Ay, (the critical set), where

Ay = {q > 1] / P(t)e~ (@ Dot gt — oo} .
0

S. -Y. Chung, M. -J. Choi, and J. -H. Park, Fujita-type blow-up for
discrete reaction-diffusion equations on networks, Publ. Res. Inst. Math.

Sci. 55 (2019), 235-258. 12/30



The critical set

Remark

(i) In the equation

up = Ayu + ePtu|iu, in S x (0,t%),
u =0, on 95 x (0,t*),
u(-,0) =ug >0 (ug £0), inS,

g€y ={qg>1]| [T efte=(a=DNldt = oo} implies that
1<g<1+ )\% It follows that we can discuss the case of ¢ = ¢*, by
considering the critical set.

(ii) In our results, we define the critical set as

Apy = {q > 1| / Y(t)e~ @ PH w0t gy — oo} )
0

where )\, o is the first eigenvalue of the discrete p-Laplace operator.
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Networks




Graph G

Graph G is simple and connected.
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Graph G
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Boundary aS
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Boundary aS
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§ =S (Interior) U @S (boundary)

A weight w on a graph G(S, E) is a function w : S x S — [0, 00)
satisfying
(i) w(z,z) = zes,
(i) w(z,y) = ( ,x), forall 2,y,
(i) w(z,y) >0 {z,y} € E.

e G(S,E :w) is called a weighted graph or a network. 18/30



What is network?

Discrete p-Laplace operator and p-normal derivative

For a function f (defined on the set S of nodes in G), we define

Dpuf(@) =Y 11 W) — F@P2[f () - f@)lw(z,y), z€S,
yES
=) If(@) YIP2f(2) — fFW)|w(z,y), =€ IS.
yeS
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What is network?

Discrete p-Laplace operator and p-normal derivative

For a function f (defined on the set S of nodes in G), we define

Dpuf(@) =Y 11 W) — F@P2[f () - f@)lw(z,y), z€S,
yES
=) If(@) YIP2f(2) — fFW)|w(z,y), =€ IS.
yeS

Especially, if p = 2, then we have

Do f(@) = [f(y) - f@)w(z,y), €S

yeS
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Main results




Recall the main equations

Main equations

up = Apu+P(t)|ullu,  in S x (0,t%),
(E) : M(Z)% + o (2)|ulP~2u =0, on dS x (0,t*),
u(+,0) = ug > 0 (ug £ 0), in S,
where S is a network with a boundary 0.5, t* is the maximal existence

time of the solution w, p > 2, ¢ > 0, and the function 1 is a positive
continuous function on (0, c0).

Here, the boundary condition Blu] =0 on 95 x (0,¢*) stands for the
boundary condition

u(z)g:;(z,t) +0(2)|u(z,t)P72 =0, (2,t) € S x (0,t%),

where 11 and o are nonnegative functions with u(2) +o(z) > 0, z € 9S.
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The first eigenvalue )\,

The first eigenvalue of the discrete p-Laplace operator
There exist a nonnegative constant )\, o and nonnegative function ¢g
on S satisfying

—Apwo(z) = )‘p,0|¢0($)|p_2¢0($)7 z €8,
1(2) 322 (2) + 0 (2)|do(2)[P2do(2) = 0, 2 € BS,

Moreover, A, o can be represented by

o min | Zewes @) —u@PeE ) + F e G
2 ’

uz0 > wes [wW(@)[P

u=0 ONn HS\T'

where T := {z € 95 | u(z) > 0}.

Remark
o/\p0>0ifand only ifo;‘éO
Apy = {q > 1] fo t)e=(@-PtDApotds = } 21/30



Comparison principle

Comparison principle
Let 7> 0 (T may be +00), p > 2, and ¢ > 1. Suppose that

real-valued functions u(z, ), v(z,-) € C[0,T) are differentiable in
(0,T) for each x € S and satisfy

u(x,t) — Apou(@,t) — Y(t)|u(z, )17 u(z, 1)
> v, t) — Apv(a,t) — (t)|v(z, t)| T u(z, t), (z,t) € Sx(0,T),
p(2) $% (2, t) + o (2)|ulz, 1) [P~ >u(z, t)
—p(z )a” (2,8) + 0 (2)|v(z, 1) [P"?v(2,t) > 0, (2,t) €95 % (0,7),
u(z,0) > v (z,0), z€S.

Then u (x,t) > v (x,t) for all (z,t) € S x [0,T).
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Conclusion

q qu_l'l'wﬂ ”qu—l

Case g £/, g
General blow-up -
or /< Case S 1) — Ay gldt = o0 - N

Fujita’s blow-up

global existence
"Case O<sup [} [¢Ar) — A, pldt < oo :
t>0

depending on
the initial data . General blow-up or global existence
Case sup [ [g(t) — dr<0:
sup Iy ) = A, 0

Global existence \Global existence /’

&=

1+

167

{Global existence |

“p>2,q>0.
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Main results : Thecase p—1+#qorqg<1

Thecaseg<p—lorg<1

Let ¢ <p—1or g <1. Then every solution u to the equation (E)
exists globally.

Thecase g >p—1

Let u be the solution to the equation (E).

(i) Suppose that ¢ € A, . Then u blows up at finite time ¢* for every
nontrivial and nonnegative initial data u.

(i) Suppose that ¢ € A, ;. Then u blows up at finite time t* whenever
the initial data wg is sufficiently large.

(iii) Suppose that g € A, . Then u exists globally whenever the initial
data wy is sufficiently small.
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Sketch of proof the case ¢ > p— 1

Let us consider two ODE problems

2(t) = —Apo 1 () + kp()=9(), ¢ > to,
(1)
z(to) = 20 > 0,
and
w'(t) = —Apow(t) + kp(t)wi PF2(t), t > to,
(2)
w(to) = wg > 0.

We will use the Comparision Principle. By taking k, zg, wg suitably small
or large, we can obtain the following relations

w(t)o(x) < 2()do(x) < ulz,t) or w(t)do(z) > z(t)po(z) > ulz, t).
Also, the solution w can be expressed as

_1__
a—p+T

(t) 1
w =
e(@=p+1)Ap,0(t—to) [w(] (a=p+1) _ k(q —p+ 1) ft (7-)6 (g=p+1)Ap, o('f*to)d-r]

we can obtain the desired results. 25/30



Main results : Thecasep—1=¢ > 1

Thecasep—1=¢>1
Let u be the solution to the equation (E).

(i) Suppose that fooo [¢(T) — A\poldT = co. Then u blows up at finite
time ¢* for every nontrivial and nonnegative initial data u.

(ii) Suppose that 0 < sup,~ fot [¢(T) — A\poldT < co. Then u blows up
at finite time ¢* whenever the initial data u is sufficiently large.

(iii) Suppose that 0 < sup,~ fot [¢(T) — A\poldT < co. Then w exists
globally whenever the initial data wg is sufficiently small.

(iv) Suppose that sup;- fot[¢(7') — ApoldT < 0. Then u exists globally
for every initial data wuy.
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Sketch of proof the case p — 1 =¢ > 1

Consider the following ODE problem:
() = k(t)(W(t) — Apo)2" (1), t > to,
z(to) = 20 > 0,

where k is a positive real-valued function and zq is a positive constant
which are determined later. Then we have

z(t)zlz_ - ]
2 "= (0= k() [, () = Apoldr
for all t > t5. Now, we define v(x,t) := ¢o(z)z(t) on S x [tg,t*). Then
we obtain
vz, t) — A, wv(x t) — ()P (1)
=o(@)k(t)[¥ () p.0]2"~ 1(75) +>\p 00h (2)2" (1) — (t)dh ()2 (1)
=27 (t)do(x) — @)
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Sketch of proof the case p — 1 =¢ > 1

By choosing k(t) and zj suitably, we can obtain from comparison
principle that

[¢o()]P~?
: u(eto)]27P : p—2 t
I [mlnwESUF b0 (z) } - (p - 2) minges ¢ (J?) ftg W(T) - )‘P,O]dT
< ufz,t) <
[¢o()]P~?
u(e.to) ]* 7P p—
I [maxwesur W} — (p — 2) maxges ¢o LO Ap,oldT
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Conclusion

g=p—-1+¢

Case g £/, g
General blow-up
or

global existence
depending on
the initial data

1+,

167

{Global existence |

/< Case 7 Tw(0) = A g)dt = oo : \

Global existence \Global existence /’

g=p-1

~

Fujita’s blow-up
"Case O<sup [} [¢A) — A, pldt < oo :
t>0

. General blow-up or global existence
Case sup [ [¢(t) — dt=0:
sup J; [400) ~ Aol
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Conclusion

q g=p—-1+¢ *Z:::)'"q=p—l

Case g £/, g

General blow-up e p-

or R A KCase I T = Ay plde = o0 ™
global existence \o\oxr\’ Fujita's blow-up

depending on
the initial data

22

. ; "Case O<sup [} [¢A) — A, pldt < oo :
\)\“ ‘ >0 '

. General blow-up or global existence
Case sup [} [@(t) — A, oldr <0 :
t>0 .
Global existence \Global existence /’

1+,

167

" ‘Global existence |

p-2

For instance, if ¥(t) = P, then the blue lineis g =p — 1+ % since
P,

A B

pb =94>1g<p—14+—>1.

py
P0 29/30
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