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PREFACE

The theory of almost periodic functions is still very popular and unavoidable in
the world of mathematics. The main purpose of this monograph, entitled “Selected
Topics in Almost Periodicity”, is to present the recent research results of author in
adequate detail.

In the existing literature, there are numerous research articles dealing with the
almost periodic (automorphic) properties and asymptotically almost periodic (au-
tomorphic) properties of abstract Volterra integro-differential equations in Banach
spaces, degenerate or non-degenerate in time variable. Special attention has been
paid to fractional integro-differential equations and inclusions, primarily from their
invaluable importance in modeling of real world phenomena appearing in physics,
chemistry, biology, economy, aerodynamics etc. This is probably the first research
monograph considering uniformly recurrent solutions and c-almost periodic solu-
tions of abstract Volterra integro-differential equations as well as Stepanov, Weyl
and Doss generalizations of almost periodic functions in Lebesgue spaces with vari-
able coefficients. We have tried to aggregate many complicated and miscellaneous
parts into a stable, compact unity.

This monograph is consisting of two chapters, which are further divided into
sections and subsections. As in my previously published monographs [232]-[236],
the numbering of theorems, propositions, lemmas, corollaries, definitions, etc., is
done by chapter and section; we sort the reference list in alphabetical order. The
readers should be familiar with the fundamentals of functional analysis and integra-
tion theory, the basic theory of abstract differential equations in Banach spaces, the
basic theory of vector-valued almost periodic functions and vector-valued almost
automorphic functions.

Conventional wisdom says you should know your target audience. Concerning
the groups of people the book would interest, we would like to mention experts in
the fields of almost periodicity and almost automorphicity, researchers in abstract
partial differential equations, experts from all areas of functional analysis and PhD
students in mathematics. We have tried the reference list to be avoided from any
form of plagiarism. The book is not intended to be a thorough and exhaustive
study.

I would like to express my sincere gratitude to my family, closest friends and col-
leagues. Special appreciation go to Prof. S. Pilipović (Novi Sad, Serbia), V. Fedorov
(Chelyabinsk, Russia), C.-C. Chen (Taichung, Taiwan), M. Li (Chengdu, China),
B. Chaouchi (Khemis Miliana, Algeria), D. Velinov, P. Dimovski, B. Prangoski
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PREFACE 2

(Skopje, Macedonia), R. Ponce (Talca, Chile), C. Lizama (Santiago, Chile), M.
Pinto (Santiago, Chile), M. T. Khalladi (Adrar, Algeria), A. Rahmani (Adrar, Al-
geria), F. Boulahia (Bejaia, Algeria), P. J. Miana, L. Abadias, J. E. Galé (Zaragoza,
Spain), M. Murillo-Arcila, J. A. Conejero, A. Peris, J. Bonet (Valencia, Spain), C.
Bianca (Paris, France), E. M. A. El-Sayed (Alexandria, Egypt), M. S. Moslehian
(Mashhad, Iran), A. Arbi (Tunis, Tunisia), C.-C. Kuo (New Taipei City, Taiwan),
V. Valmorin (Pointe-à-Pitre, Guadeloupe), D. N. Cheban (Chisinau, Moldova), V.
Keyantuo (Rio Piedras Campus, Puerto Rico, USA), T. Diagana (Huntsville, USA)
and G. M. N’Guérékata (Baltimor, USA).

Loznica/Novi Sad
September, 2020 Marko Kostić



NOTATION

N, Z, Q, R, C : the natural numbers, integers, rationals, reals, complexes.

For any s ∈ R, we denote bsc = sup{l ∈ Z : s > l} and dse = inf{l ∈ Z : s 6 l}.
Re z, Im z : the real and imaginary part of a complex number z ∈ C; |z| : the modul
of z, arg(z) : the argument of a complex number z ∈ Cr {0}.
C+ = {z ∈ C : Re z > 0}.
B(z0, r) = {z ∈ C : |z − z0| 6 r} (z0 ∈ C, r > 0).

Σα = {z ∈ Cr {0} : | arg(z)| < α}, α ∈ (0, π].

card(G) : the cardinality of G.

N0 = N ∪ {0}.
Nn = {1, · · ·, n}.
N0
n = {0, 1, · · ·, n}.

Rn : the real Euclidean space, n > 2.

If α = (α1, · · ·, αn) ∈ Nn0 is a multi-index, then we denote |α| = α1 + · · ·+ αn.

xα = xα1
1 · · · xαnn for x = (x1, · · ·, xn) ∈ Rn and α = (α1, · · ·, αn) ∈ Nn0 .

f (α) := ∂|α|f/∂xα1
1 · · · ∂xαnn ; Dαf := (−i)|α|f (α).

If (X, τ) is a topological space and F ⊆ X, then the interior, the closure, the
boundary, and the complement of F with respect to X are denoted by int(F ) (or
F ◦), F , ∂F and F c, respectively.

If Z is a vector space over the field F ∈ {R, C}, then for each non-empty subset F
of Z by span(F ) we denote the smallest linear subspace of Z which contains F.

X : a complex Banach space.

L(X,Y ) : the space of all continuous linear mappings between complex Banach
spaces X and Y, L(X) = L(X,X).

X∗ : the dual space of X.

A : a linear operator on X.

A : a multivalued linear operator on X (MLO).

If F is a subspace of X, then we denote by A|F the part of A in F.

χΩ(·) : the characteristic function, defined to be identically one on Ω and zero else-
where.

Γ(·) : the Gamma function.

If α > 0, then gα(t) = tα−1/Γ(α), t > 0; g0(t) ≡ the Dirac delta distribution.
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NOTATION 4

If 1 6 p < ∞, (X, ‖ · ‖) is a complex Banach space, and (Ω,R, µ) is a mea-
sure space, then Lp(Ω, X, µ) denotes the space which consists of those strongly
µ-measurable functions f : Ω → X such that ‖f‖p := (

∫
Ω
‖f(·)‖pdµ)1/p is finite;

Lp(Ω, µ) ≡ Lp(Ω,C, µ).

L∞(Ω, X, µ) : the space which consists of all strongly µ-measurable, essentially
bounded functions.

‖f‖∞ = ess supt∈Ω ‖f(t)‖, the norm of a function f ∈ L∞(Ω, X, µ).

Lp(Ω : X) ≡ Lp(Ω, X) ≡ Lp(Ω, X, µ), if p ∈ [1,∞] and µ = m is the Lebesgue
measure; Lp(Ω) ≡ Lp(Ω : C).

Lploc(Ω : X) : the space consisting of those Lebesgue measurable functions u(·)
such that, for every bounded open subset Ω′ of Ω, one has u|Ω′ ∈ Lp(Ω′ : X);
Lploc(Ω) ≡ Lploc(Ω : C) (1 6 p 6∞).

Assume that I = R or I = [0,∞). By Cb(I : X) we denote the space consisting
of bounded continuous functions from I into X; C0(I : X) denotes the closed sub-
space of Cb(I : X) consisting of functions vanishing as the absolute value of the
argument tends to plus infinity. By BUC(I : X) we denote the space consisting
of all bounded uniformly continuous functions from I to X. The sup-norm turns
these spaces into Banach’s.

Ck(Ω : X) : the space of k-times continuously differentiable functions (k ∈ N0)
from a non-empty subset Ω ⊆ C into X; C(Ω : X) ≡ C0(Ω : X).

D = C∞0 (R), E = C∞(R) and S = S(R): the Schwartz spaces of test functions.

If ∅ 6= Ω ⊆ R, then by DΩ we denote the subspace of D consisting of those functions
ϕ ∈ D for which supp(ϕ) ⊆ Ω; D0 ≡ D[0,∞).

D′ := L(D,C) : the space consisting of all scalar-valued distributions.

If k ∈ N, p ∈ [1,∞] and Ω is an open non-empty subset of Rn, then we denote
by W k,p(Ω : X) the Sobolev space which consists of those X-valued distributions
u ∈ D′(Ω : X) such that, for every i ∈ N0

k and for every α ∈ Nn0 with |α| 6 k, one
has Dαu ∈ Lp(Ω : X).

W k,p
loc (Ω : X) : the space of those X-valued distributions u ∈ D′(Ω : X) such that,

for every bounded open subset Ω′ of Ω, one has u|Ω′ ∈W k,p(Ω′ : X).

F , F−1 : the Fourier transform and its inverse transform.

L1
loc([0,∞)), resp. L1

loc([0, τ)) : the space of scalar-valued locally integrable func-
tions on [0,∞), resp. [0, τ).

Jαt : the Riemann-Liouville fractional integral of order α > 0.

Dα
t : the Riemann-Liouville fractional derivative of order α > 0.

Dα
t : the Caputo fractional derivative of order α > 0.

Dγ
t,+ : the Weyl-Liouville fractional derivative.

Eα,β(z) : the Mittag-Leffler function (α > 0, β ∈ R); Eα(z) ≡ Eα,1(z).

Ψγ(t) : the Wright function (0 < γ < 1).
supp(f) : the support of function f(t).

Lp(x)(Ω : X) : the Lebesgue space with variable exponent p(x).

Let I = R or I = [0,∞), and let 1 6 p <∞.



NOTATION 5

Pc(I : X): the space of all continuous c-periodic functions f : I → X (c > 0).

AP (I : X) : the Banach space consisting of all almost periodic functions from the
interval I into X, equipped with the sup-norm.

UR(I : X) : the collection of all uniformly recurrent functions from the interval I
into X, equipped with the sup-norm.

AAP (I : X) : the Banach space consisting of all asymptotically almost periodic
functions from the interval I into X, equipped with the sup-norm.

AUR(I : X) : the collection of all asymptotically uniformly recurrent functions
from the interval I into X, equipped with the sup-norm.

AP (I × Y : X) : the set consisting of all almost periodic functions f : I × Y → X.

UR(I×Y : X) : the set consisting of all uniformly recurrent functions f : I×Y → X.

AAP (I×Y : X) : the set consisting of all asymptotically almost periodic functions
f : I × Y → X.

AUR(I×Y : X) : the set consisting of all asymptotically uniformly recurrent func-
tions f : I × Y → X.

AP�g (I×Y : X) : the collection of all two-parameter �g-almost periodic functions.

AP�g,b(I × Y : X) : the collection of all two-parameter �g-almost periodic func-
tions on bounded sets.

URb(I × Y : X) : the collection of all two-parameter uniformly recurrent functions
on bounded sets.

e−W p
ap,K(I × Y : X) : the collection of all equi-Weyl p-almost periodic functions.

W p
ap,K(I × Y : X) : the collection of all Weyl p-almost periodic functions.

W p
0,K(I × Y : X) : the collection of all Weyl p-vanishing function.

e−W p
0,K(I × Y : X) : the collection of all equi-Weyl p-vanishing function.

LpS(I : X) : the space of all Stepanov p-bounded functions.

L
p(x)
S (I : X) : the space of all Stepanov p(x)-bounded functions.

APSp(I : X) : the Banach space of all Stepanov p-almost periodic functions I → X,
equipped with the Stepanov norm.

AAPSp(I : X) : the Banach space of all asymptotically Stepanov p-almost periodic
functions f : I → X, equipped with the Stepanov norm.

AURSp(I : X) : the collection of all asymptotically Stepanov p-uniformly recurrent
functions f : I → X.

AAPSp(I × Y : X) : the vector space consisting of all Stepanov p-almost periodic
functions f : I × Y → X.

APSp(x)(I : X) : the space of all Stepanov p(x)-almost periodic functions f : I →
X.

AAPSp(x)(I : X) : the space of all asymptotically Stepanov p(x)-almost periodic
functions f : I → X.

AURSp(x)(I : X) : the collection of all asymptotically Stepanov p(x)-uniformly
recurrent functions f : I → X.



NOTATION 6

AAPSp(x)(I×Y : X) : the vector space consisting of all Stepanov p-almost periodic
functions f : I × Y → X.

e−W p
ap(I : X) : the collection of all equi-Weyl-p-almost periodic functions f : I →

X.

W p
ap(I : X) : the collection of all Weyl-p-almost periodic functions f : I → X.

W p
0 ([0,∞) : X) and e −W p

0 ([0,∞) : X) : the collections consisting of all Weyl-p-
vanishing functions and equi-Weyl-p-vanishing functions, respectively.

Bp(I : X) and Bp(I : X) : the sets consisting of all Besicovitch-Doss-p-almost peri-
odic functions f : I → X and all Besicovitch-p-almost periodic functions f : I → X,
respectively.

Dp(I : X) : the class consisting of all Doss-p-almost periodic functions f : I → X.

Bp0([0,∞) : X) : the vector space consisting of all Besicovitch-p-vanishing func-
tions.

ANP0(I : X) : the linear span of almost anti-periodic functions f : I → X;
ANP (I : X) : the linear closure of ANP0(I : X) in AP (I : X).

AA(R : X) and AAc(R : X) : the Banach spaces consisting of all almost automor-
phic functions and compactly almost automorphic functions, respectively, equipped
with the sup-norm.

W pAA(R : X) : the vector space consisting of all Weyl-p-almost automorphic func-
tions.

BpAA(R : X) : the vector space consisting of all Besicovitch p-almost automorphic
functions.

Pp,k(I : X) : the vector space consisting of all Bloch (p, k)-periodic functions.

Q − AAP (I : X) : the set consisting of all quasi-asymptotically almost periodic
functions from I into X.

Q−AUR(I : X) : the set consisting of all quasi-asymptotically uniformly recurrent
functions from I into X.

SpQ − AAP (I : X) : the set consisting of all Stepanov p-quasi-asymptotically al-
most periodic functions from I into X.

Sp(x)Q−AAP (I : X), Sp(x)Q−AUR(I : X) and Sp(x)SAPω(I : X) : the set consist-
ing of all Stepanov p(x)-quasi-asymptotically almost periodic functions from I into
X, the set consisting of all Stepanov p(x)-quasi-asymptotically uniformly recurrent
functions from I into X and the set consisting of all Stepanov p(x)-asymptotically
ω-periodic functions, respectively.

SBk(I : X): the space of all semi-Bloch k-periodic functions from I into X.

SANP(I : X) : the space consisting of all semi-anti-periodic functions from I into
X.

APSp(x)(I : X) : the space of all Stepanov p(x)-almost periodic functions.

AAPSp(x)(I : X) : the space of all asymptotically Stepanov p(x)-almost periodic
functions.

APSp(x)(I × Y : X) : the space of all Stepanov p(x)-almost periodic functions
f : I × Y → X.
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AAPSp(x)(I × Y : X) : the space of all asymptotically Stepanov p(x)-almost peri-
odic functions f : I × Y → X.

(e−)W
(p,φ,F )
ap (I : X) : the collection of all (equi)-Weyl-(p, φ, F )-almost periodic

functions f : I → X.

(e−)W
(p,φ,F )i
ap (I : X) : the collection of all (equi)-Weyl-(p, φ, F )i-almost periodic

functions f : I → X (i = 1, 2).

(e−)W
[p,φ,F ]
ap (I : X) : the collection of all (equi)-Weyl-[p, φ, F ]-almost periodic func-

tions f : I → X.

(e−)W
[p,φ,F ]i
ap (I : X) : the collection of all (equi)-Weyl-[p, φ, F ]i-almost periodic

functions f : I → X (i = 1, 2).

W
p(x)
φ,F,0([0,∞) : X) and e − W

p(x)
φ,F,0([0,∞) : X) [W

p(x);1
φ,F,0 ([0,∞) : X) and e −

W
p(x);1
φ,F,0 ([0,∞) : X)/W

p(x);2
φ,F,0 ([0,∞) : X) and e−W p(x);2

φ,F,0 ([0,∞) : X)]: the sets con-

sisting of all Weyl-(p, φ, F )-vanishing functions and equi-Weyl-(p, φ, F )-vanishing
functions [Weyl-(p, φ, F )1-vanishing functions and equi-Weyl-(p, φ, F )1-vanishing
functions/Weyl-(p, φ, F )2-vanishing functions and equi-Weyl-(p, φ, F )2-vanishing
functions].

URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) : the space of all
(ω, c)-uniformly recurrent functions, the space of all (ω, c)-almost periodic func-
tions, the space of all (ω, c)-almost automorphic functions and the space of all
compactly (ω, c)-almost automorphic, respectively.

SpURω,c(I : X), SpAPω,c(I : X) and SpAAω,c(I : X) : the space of all Stepanov
(p, ω, c)-uniformly recurrent functions, the space of all Stepanov (p, ω, c)-almost
periodic functions and the space of all Stepanov (p, ω, c)-almost automorphic func-
tions, respectively.

ASpURω,c(I : X), ASpAPω,c(I : X) and ASpAAω,c(I : X) : the space of all
asymptotically Stepanov (p, ω, c)-uniformly recurrent functions, the space of all
asymptotically Stepanov (p, ω, c)-almost periodic functions and the space of all
asymptotically Stepanov (p, ω, c)-almost automorphic functions, respectively.

URω,c,i(I : X) and APω,c,i(I : X): the space of all (ω, c)-uniformly recurrent
functions of type i and the space of all (ω, c)-almost periodic functions of type i,
respectively (i = 1, 2).

URc(I : X): the set consisting of all c-uniformly recurrent functions from the in-
terval I into X.

APc(I : X): the set consisting of all c-almost periodic functions from the interval
I into X.

SPc,i(I : X) : the set of all semi-c-periodic functions of type i, where i = 1, 2.

SPc,i,+(I : X) : the set of all semi-c-periodic functions of type i+, where i = 1, 2.

e − W
(p(x),φ,F )
ur (I : X) : the set of all equi-Weyl-(p(x), φ, F )-uniformly recurrent

functions.

e −W (p(x),φ,F )1
ur (I : X) : the set of all equi-Weyl-(p(x), φ, F )1-uniformly recurrent

functions.
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e −W (p(x),φ,F )2
ur (I : X) : the set of all equi-Weyl-(p(x), φ, F )2-uniformly recurrent

functions.

e−W [p(x),φ,])
ur (I : X) : the set of all equi-Weyl-[p(x), φ, F ]-uniformly recurrent func-

tions.

e −W [p(x),φ,F ]1
ur (I : X) : the set of all equi-Weyl-[p(x), φ, F ]1-uniformly recurrent

functions.

e −W [p(x),φ,F ]2
ur (I : X) : the set of all equi-Weyl-[p(x), φ, F ]2-uniformly recurrent

functions.

Q − AURB(I × Y : X) : the set consisting of all quasi-asymptotically uniformly
recurrent, uniformly on B functions from I × Y into X.

URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) : the space of all
(ω, c)-uniformly recurrent functions, the space of all (ω, c)-almost periodic func-
tions, the space of all (ω, c)-almost automorphic functions and the space of all
compactly (ω, c)-almost automorphic functions, respectively.

SpURω,c(I : X), SpAPω,c(I : X) and SpAAω,c(I : X) : the space of all Stepanov
(p, ω, c)-uniformly recurrent functions, the space of all Stepanov (p, ω, c)-almost
periodic functions and the space of all Stepanov (p, ω, c)-almost automorphic func-
tions, respectively.

URω,c,i(I : X) and APω,c,i(I : X) : the space of all (ω, c)-uniformly recurrent
functions of type i and the space of all (ω, c)-almost periodic functions of type i,
respectively (i = 1, 2).

SpURω,c,2([0,∞) : X) and SpAPω,c,2([0,∞) : X) : the collection of all Stepanov
(p, ω, c)-uniformly recurrent functions of type 2 and the collection of all Stepanov
(p, ω, c)-almost periodic functions of type 2, respectively.

Sp(x)URω,c,2([0,∞) : X) and Sp(x)APω,c,2([0,∞) : X) : the collection of all Stepanov
(p(x), ω, c)-uniformly recurrent functions of type 2 and the collection of all Stepanov
(p9x), ω, c)-almost periodic functions of type 2, respectively.

PAP0;ω,c,i(R × Y : X) : the space of (ω, c, 1)-pseudo ergodic vanishing functions
(i = 1, 2).

APω,c,i(R × Y : X), resp. AAω,c,i(R × Y : X) : the space of all (ω, c, i)-almost
periodic, resp. (ω, c, i)-almost automorphic, functions.(i = 1, 2).

PAPω,c(R : X), resp. PAAω,c(R : X) : the space of all (ω, c)-pseudo almost peri-
odic, resp. (ω, c)-pseudo almost automorphic, functions.

PAPω,c,i(R× Y : X), resp. PAAω,c,i(R× Y : X) : the space of all (ω, c, i)-pseudo
almost periodic, resp. (ω, c, i)-pseudo almost automorphic, functions.

BAPw,c : the space of smooth (w, c)−almost periodic functions defined on R.
B′APw,c : the set of (w, c)−almost periodic distributions.

B′0+ : the space of bounded distributions vanishing at infinity.

B′aap (R+) : the space of asymptotically almost periodic Schwartz distributions.

(e−)W p
ap;c(I : X) : the collection of all (equi-)Weyl-(p, c)-almost periodic functions.

SAPω;c(I : X) and SAPc(I : X) : the sets of all S-asymptotically (ω, c)-periodic
functions and Sc-asymptotically periodic functions (ω ∈ I, c ∈ Cr {0}).
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Sp(x)Q−AAPc(I : X) : the set consisting of all Stepanov p(x)-quasi-asymptotically
c-almost periodic functions from I into X.

SpQ − AAPc(I : X) : the set consisting of all Stepanov p-quasi-asymptotically c-
almost periodic functions from I into X.

Q−AAPc(I : X) : the collection of all quasi-asymptotically c-almost periodic func-
tions from I into X, respectively.

Q − AAPc;F (I × Y : X) : the collection consisting of all quasi-asymptotically c-
almost periodic functions F : I × Y → X on F .



INTRODUCTION

The class of almost periodic functions was introduced by a Danish mathemati-
cian H. Bohr [75] (1925), the younger brother of the Nobel Prize-winning physicist
N. Bohr, and later generalized by many others. The class of almost automorphic
functions was introduced by an American mathematician S. Bochner [73] (1962).
The theories of almost periodic functions and almost automorphic functions are
still very active fields of investigations of numerous authors, full of open problems,
conjectures, hypotheses and possibilities for further expansions.

There is an enormous literature devoted to the study of almost periodic and
almost automorphic solutions of the abstract differential equations of the first order.
PEROV [309]-[310] [49]-[50] opisati rezultate rada The study of almost periodic
solutions of the abstract Volterra integro-differential equations was initiated by J.
Prüss in [319, Section 11.4], where the author has analyzed the almost periodic
solutions, Stepanov almost periodic solutions and asymptotically almost periodic
solutions of the following abstract integro-differential equation

u′(t) =

∫ ∞
0

A0(s)u′(t− s) ds+

∫ ∞
0

dA1(s)u(t− s) + f(t), t ∈ R;

here A0 ∈ L1([0,∞) : L(Y,X)), t 7→ A1(t) ∈ L(Y,X), t > 0 is locally of bounded
variation, X and Y are Banach spaces such that Y is densely and continuously
embedded into X. Almost immediately after that, Q.-P. Vu [345] has investigated
the almost periodicity of the abstract Cauchy problem

u′(t) = Au(t) +

∫ ∞
0

dBu(τ)u(t− τ) + f(t), t ∈ R,

where A is a closed linear operator acting on a Banach space X, (B(t))t>0 is a
family of closed linear operators on X and f : R→ X is continuous.

It is very difficult and unpleasant to say precisely who was the first to study
the almost periodic solutions of the abstract fractional differential equations (for
almost periodic type solutions of abstract diffrerential equations with integer order
derivatives, we refer the reader to [31, 32, 38, 39, 59, 88, 89, 90, 163, 215, 260,
303, 344, 369]). J. Mu, Y. Zhoa and L. Peng [297] have recently investigated the
periodic solutions and S-asymptotically periodic solutions to fractional evolution
equation

Dγ
t,+u(t) = −Au(t) + g(t), t ∈ R

10
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and its semilinear analogue

Dγ
t,+u(t) = −Au(t) + g(t, u(t)), t ∈ R,

where Dγ
t,+ denotes the Weyl-Liouville fractional derivative of order γ ∈ (0, 1),

A is the infinitesimal generator of an exponentially decaying strongly continuous
semigroup of operators and g : R×X → X satisfies certain assumptions (see also the
article [8] by R. Agarwal, B. de Andrade and C. Cuevas). Later, the author of this
monograph extended their results to the abstract fractional differential inclusion

Dγ
t,+u(t) ∈ −Au(t) + g(t), t ∈ R

and its semilinear analogue

Dγ
t,+u(t) ∈ −Au(t) + g(t, u(t)), t ∈ R,

where A is a closed multivalued linear operator satisfying condition (P) below. The
obtained results enable one to consider the almost periodic type solutions of the
following fractional Poisson heat equations{

∂
∂t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t ∈ R, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, Dγ

t [m(x)v(t, x)] = ∆v(t, x) + bv(t, x), t > 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω;
m(x)v(0, x) = u0(x), x ∈ Ω,

and the following fractional semilinear equation with higher order differential op-
erators in the Hölder space X = Cα(Ω) :{

Dγ
t u(t, x) = −

∑
|β|62m

aβ(t, x)Dβu(t, x)− σu(t, x) + f(t, u(t, x)), t > 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω;

see [234] for more details. Let us also recall that R. Ponce [318] has investi-
gated the bounded mild solutions of the following non-degenerate fractional integro-
differential equation

Dγ
t,+u(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)), t ∈ R,(1)

where A is a closed linear operator, a ∈ L1([0,∞)) is a scalar-valued kernel and
f(·, ·) satisfies some Lipschitz type conditions. In particular, almost periodic solu-
tions of (1) have been analyzed.

In the non-degenerate case, many results concerning the existence and unique-
ness of almost periodic type solutions and almost automorphic type solutions to
the abstract (semilinear) fractional differential equations have recently been given
by numerous authors. In almost all these results (in the linear setting, the quite ex-
ceptional are some examples and results presented by S. Zaidman [359, Examples
4, 5, 7, 8; pp. 32-34], which have been employed by numerous authors so far, for
various purposes; we will also use these examples to illustrate our results about the
existence and uniqueness of almost periodic type solutions of the abstract integro-
differential equations), the basic key is to investigate the invariance of certain kinds
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of generalized almost periodicity and generalized almost automorphicity under the
actions of the infinite convolution product

t 7→
∫ t

−∞
R(t− s)f(s) ds, t ∈ R

and the finite convolution product

t 7→
∫ ∞

0

R(t− s)f(s) ds, t > 0.

Here, it is commonly assumed that (R(t))t>0 ⊆ L(X,Y ) is a non-degenerate
strongly continuous operator family between the Banach spaces X and Y which
exponentially or, at least, polynomially decays as t → +∞. In [234], we have
investigated the case (R(t))t>0 ⊆ L(X,Y ) is a degenerate strongly continuous op-
erator family which decays similarly as t→ +∞, but we have allowed (R(t))t>0 to
have a removable singularity at zero; by that we basically mean that there exists
a number ζ ∈ (0, 1) such that the operator family (tζR(t))t>0 is well defined and
strongly continuous at the point t = 0. The integral generator of (R(t))t>0 is not
single-valued any longer and this is the main reason why we have employed the
multivalued linear approach to the abstract integro-differential equations in [234],
which is also obeyed in this monograph. For the theory of abstract degenerate
differential equations of first order, mention should be made of the research mono-
graphs [87] by R. W. Caroll and R. W. Showalter, [167] by A. Favini, A. Yagi,
[317] by M. V. Plekhanova, V. E. Fedorov and [337] by G. A. Sviridyuk, V. E.
Fedorov. The well-posedness of the abstract degenerate Cauchy problem

Bu(t) = f(t) +

t∫
0

a(t− s)Au(s) ds, t ∈ [0, τ),

where 0 < τ 6∞, t 7→ f(t), t ∈ [0, τ) is a continuous mapping, a ∈ L1
loc([0, τ)) and

A, B are closed linear operators, has been thoroughly analyzed in the monograph
[236], which provides the reader a valuable information about the abstract de-
generate Volterra integro-differential equations (for scalar-valued Volterra integro-
differential equations, we refer the reader to the monograph [191] by G. Gripenberg,
S. O. Londen, O. J. Staffans).

We will say just a few words about periodic solutions of the abstract degen-
erate Volterra integro-differential equations. In [37], V. Barbu and A. Favini
have considered 1-periodic solutions of abstract degenerate differential equation
(d/dt)(Bu(t)) = Au(t), t > 0, accompanied with inital condition (Bu)(0) = (Bu)(1),
by using P. Grisvard’s sum of operators method and some results from investiga-
tion of J. Prüss [320] in the non-degenerate case. The authors reduced the above
problem to v′(t) ∈ Av(t), t > 0, v(0) = v(1), where the multivalued linear operator
A is given by A = AB−1. The main problem is whether the inclusion 1 ∈ ρ(A)
holds or not; recall that J. Prüss [320] have proved that 1 ∈ ρ(A) if and only if
2πiZ ⊆ ρ(A) and sup({‖(2πin−A)−1‖ : n ∈ Z}) <∞, provided that A generates a
non-degenerate strongly continuous semigroup. Applications are given to the Pois-
son heat equation in H−1(Ω) and L2(Ω), as well as to some systems of ordinary
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differential equations. On the other hand, C. Lizama and R. Ponce [275] have ana-
lyzed the existence of 2π-periodic solutions to the following abstract inhomogeneous
linear equation

(2)
d

dt
(Bu(t)) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t), t > 0,

subjected with the initial condition (Bu)(0) = (Bu)(2π). The authors also consid-
ered the maximal regularity of (2) in periodic Besov, Triebel-Lizorkin and Lebesgue
vector-valued function spaces.

It is also worth noting that S. Abbas, V. Kavitha and R. Murugesu have re-
cently analyzed Stepanov-like (weighted) pseudo almost automorphic solutions to
the following fractional order abstract integro-differential equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t),Ku(t)), t ∈ R,
where

Ku(t) =

∫ t

−∞
k(t− s)h(s, u(s)) ds, t ∈ R,

1 < α < 2, A is a sectorial operator with domain and range in X, of negative
sectorial type ω < 0, the function k(t) is exponentially decaying, the functions
f : R × X × X → X and h : R × X → X are Stepanov-like weighted pseudo
almost automorphic in time for each fixed elements of X ×X and X, respectively,
satisfying some extra conditions ([3]).

The study of differential equations with discontinuous arguments was initi-
ated by A. D. Myshkis [299] in 1977. The analysis of asymptotically anti-periodic
solutions for nonlinear differential first-order equations with piecewise constant ar-
gument carried out by W. Dimbour and V. Valmorin [150] has been recently re-
considered and extended for asymptotically Bloch periodic solutions for nonlinear
fractional differential inclusions with piecewise constant argument by M. Kostić
and D. Velinov in [253]. We have considered the following fractional differential
Cauchy inclusion with piecewise constant argument:

Dγ
t u(t) ∈ Au(t) +A0u

(
btc
)

+ g
(
t, u
(
btc
))
, t > 0; u(0) = u0,

where A0 ∈ L(X), g : [0,∞) × X → X is a given function, and Dγ
t u(t) denotes

the Caputo fractional derivative or order γ, taken in a weakaned sense (cf. the
paragraph preceding Definition 2.5.21). It is also worth noting that A. Chávez,
S. Castillo and M. Pinto [95] have analyzed the the existence of a unique almost
automorphic solution on R for the following differential equations with a piecewise
constant argument

y′(t) = A(t)y(t) +B(t)y(btc) + f(t, y(t), y(btc)), t ∈ R,(3)

where A(t) and B(t) are almost automorphic p × p complex matrices and f :
R × Cp × Cp → Cp is an almost automorphic function satsifying a condition of
Lipschitz type. The study carried out in [95] leans heavily on the use of results
on discontinuous almost automorphic functions, exponential dichotomies and the
Banach fixed point theorem. The almost periodic solutions of (3) were considered
for the first time by R. Yuan and J. Hong in [358] (1997); for more details about
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differential equations with a piecewise constant argument (DEPCA), the reader
may consult the articles [114] by K. L. Cooke and J. Wiener, [331] by S. M. Shah
and J. Wiener, as well as the articles [14, 105, 106, 298, 305, 315, 357] and the
list of references cited therein.

There is a vast amount of articles in the existing literature which consider al-
most automorphic type solutions for various classes of integro-differential equations.
Let us only mention our analysis (the joint work with Prof. G. M. N’Guérékata
[195]) of the following abstract multi-term fractional differential inclusion:

Dαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) ∈ ADα

t u(t) + f(t), t > 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1,

where n ∈ Nr{1}, A1, ···, An−1 are bounded linear operators on a Banach space X,
A is a closed multivalued linear operator on X, 0 6 α1 < · · · < αn, 0 6 α < αn, f(·)
is an X-valued function, and Dα

t denotes the Caputo fractional derivative of order
α ([52], [233]). Many excellent examples have been presented in the monograph
[135] by T. Diagana; see also the monograph [21] by M. Amerio and G. Prouse for
almost periodic solutions of functional equations, [66] by P. H. Bezandry and T.
Diagana for almost periodic solutions of stochastic differential equations, [96] by
D. N. Cheban for asymptotically almost periodic solutions of linear and nonlinear
equations, [212] by Y. Hino, T. Naito, N. V. Minh and J. S. Shin and [194] by G. M.
N’Guérékata for spectral analysis of almost periodic functions and Massera type
theorems ([284]), [214] by R. Hsu for weakly almost periodic functions, and [334]
by G. Tr. Stamov for almost periodic solutions of impulsive differential equations
(see also the recent article [354] by P. Yang, Y.-R. Wang and M. Fečkan). Concern-
ing almost periodic and almost almost automorphic solutions of the abstract func-
tional integro-differential equations, we refer the reader to [2], [12], [9], [92]-[93],
[162], [161], [208], [356]; for almost periodic and almost automorphic solutions of
abstract nonlinear integro-differential equations, see the reference lists in the article
[108] and the monograph [234]. Concerning semilinear Cauchy inclusions, we can
also recommend the monograph [221] by M. Kamenskii, V. Obukhovskii and P.
Zecca for another approach obeyed.

Concerning the existence and uniqueness of almost periodic type solutions of
inhomogeneous evolution equations of first order, the notions of hyperbolic evolu-
tion systems and Green’s functions are incredible important; for more details on
the subject, we refer the reader to P. Acquistapace [4], P. Acquistapace, B. Terreni
[5], Y.-H. Chang, J.-S. Chen [91], T. Diagana [135], R. Schnaubelt [328] and the
list of references in [234]. Let us recall that a family {U(t, s) : t > s, t, s ∈ R} of
bounded linear operators on X is said to be an evolution system if and only if the
following holds:

(a) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t > r > s and t, r, s ∈ R,
(b) {(τ, s) ∈ R2 : τ > s} 3 (t, s) 7→ U(t, s)x is continuous for any fixed

element x ∈ X.
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If the family A(·) satisfies the following condition introduced by P. Acquistapace
and B. Terreni in [5] (with ω = 0):

(H1): There is a real number ω > 0 such that the family of closed linear operators
A(t), t ∈ R acting on X satisfies Σφ ⊆ ρ(A(t)− ω),∥∥R(λ : A(t)− ω)

∥∥ = O
((

1 + |λ|
)−1
)
, t ∈ R, λ ∈ Σφ, and∥∥∥(A(t)− ω)R(λ : A(t)− ω)

[
R(ω : A(t))−R(ω : A(s))

]∥∥∥ = O
(
|t− s|µ|λ|−ν

)
,

for any t, s ∈ R, λ ∈ Σφ, where φ ∈ (π/2, π), 0 < µ, ν 6 1 and µ+ν > 1,

then we have the existence of an evolution system U(·, ·) generated by A(·), satis-
fying the following properties:

1. U(·, s) ∈ C1((s,∞) : L(X)) for all s ∈ R,
2. ∂tU(t, s) = A(t)U(t, s), s ∈ R, t > s,
3. ‖A(t)kU(t, s)‖ 6 Const. · (t− s)−k, t > s, k ∈ N0,
4. ‖A(t)U(t, s)R(ω : A(s))‖ 6 Const., t > s,
5. ‖U(t, s)(ω−A(s))αx‖ 6 Const. · (µ−α)−1(t−s)−α‖x‖, for 0 < t−s 6 1,
k = 0, 1, 0 6 α < ν, x ∈ D((ω −A(s))α),

6. ∂+
s U(t, s)x = −U(t, s)A(s)x, for s ∈ R, t > s, x ∈ D(A(s)) and A(s)x ∈
D(A(s)).

In many concrete situations, it is very difficult to verify the validity of the following
non-trivial condition

(H2): The evolution system U(·, ·) generated by A(·) is hyperbolic (or, equiva-
lently, has exponential dichotomy), i.e., there exist a family of projections
(P (t))t∈R ⊆ L(X), being uniformly bounded and strongly continuous in
t, and constants M ′, ω > 0 such that the following holds, with Q := I−P
and Q(·) := I − P (·):
(a) U(t, s)P (s) = P (t)U(t, s) for all t > s,
(b) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t > s

(here we set UQ(s, t) = UQ(t, s)−1),

(c) ‖U(t, s)P (s)‖ 6M ′e−ω(t−s) and ‖UQ(s, t)Q(t)‖ 6M ′e−ω(t−s) for all
t > s.

If the choice P (t) = I for all t ∈ R is possible, then U(·, ·) is called exponen-
tially stable. Further on, we say that U(·, ·) is (bounded) exponentially bounded
if and only if there exist real constants M > 0 and (ω = 0) ω ∈ R such that
‖U(t, s)P (s)‖ 6Me−ω(t−s) for all t > s.

The associated Green’s function Γ(·, ·), defined by

Γ(t, s) :=

{
U(t, s)P (s), t > s, t, s ∈ R,
−UQ(t, s)Q(s), t < s, t, s ∈ R,

satisfies

‖Γ(t, s)‖ 6M ′e−ω|t−s|, t, s ∈ R,
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where M ′ is the constant appearing in the formulation of (H2). If the function
f : R→ X is continuous, then the function

u(t) :=

∫ +∞

−∞
Γ(t, s)f(s) ds, t ∈ R

is a unique mild solution of the abstract Cauchy problem

u′(t) = A(t)u(t) + f(t), t ∈ R,(4)

i.e., u(·) is a unique bounded continuous function on R satisfying

u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)f(τ) dτ, t > s;

see e.g. [328] and [135, Lemma 9.11, p. 234]. Furthermore, if the function f :
[0,∞)→ X is continuous, then we say that the function

u(t) := U(t, 0)x+

∫ t

0

U(t, s)f(s) ds, t > 0.

is a mild solution of the abstract Cauchy problem

u′(t) = A(t)u(t) + f(t), t > 0; u(0) = x.(5)

The almost periodic and almost automorphic solutions of the abstract Cauchy
problems (4)-(5) and their semilinear analogues have been investigated in a great
number of research papers. Without going into full details, we will only refer the
readers to the research monographs [135] by T. Diagana, [234] by M. Kostić, the
articles [40] by M. Baroun, L. Maniar, R. Schnaubelt, [41] by M. Baroun, K.
Ezzinbi, K. Khalil, L. Maniar and the list of references therein. Concerning the
applications of evolution systems in the theory of the second-order nonautonomous
differential equations, mention should be made of the paper [361] by D. A. Zakora
(almost periodic solutions of such equations have been investigated in [340]).

In this research monograph, we present several recent results concerning various
generalizations of almost periodic functions. The organization and main ideas of
monograph, which consists of two chapters, can be described as follows. The first
chapter is devoted to the recapitulation of basic concepts we will need later on. We
reconsider linear and multivalued linear operators in Banach spaces, integration and
strongly continuous semigroups in Banach spaces as well as the basic definitions
and results from fractional calculus and the theory of abstract degenerate Volterra
integro-differential equations. After introducing these basic concepts, in Subsection
1.1.1 we recall the main definitions and results about Lebesgue spaces with variable
exponents Lp(x).

Chapter 2 consists of ten sections. Section 2.1, Section 2.2 and Section 2.3
are of introductory charachter and there we recollect the basic definitions and re-
sults about almost periodic functions and almost automorphic functions. Compo-
sition principles for Weyl almost periodic functions analyzed in Subsection 2.2.1,
Proposition 2.3.1 and the conclusion clarified in Example 2.3.5 are the only new
contributions of ours given in these sections. The main aims of Section 2.4, which
considers uniformly recurrent functions and �g-almost periodic functions, will be
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explained within itself. Various classes of generalized almost periodic functions in
the Lebesgue spaces with variable exponents have been analyzed in Section 2.5,
Section 2.6 and Section 2.7. Section 2.5 consists of six subsections. In our joint
papers with T. Diagana [142]-[143], we have recently introduced and analyzed sev-
eral important classes of (asymptotically) Stepanov almost periodic functions and
(asymptotically) Stepanov almost automorphic functions in the Lebesgue spaces
with variable exponents (see also the earlier papers [145]-[146] by T. Diagana and
M. Zitane). The material of Subsection 2.5.1, Subsection 2.5.2 and Subsection 2.5.3
is taken from [142].

The classes introduced by H. Weyl [350] and A. S. Kovanko [258] are enor-
mously larger compared with the class of Stepanov almost periodic functions; the
main purpose of papers [241]-[247] has been to initiate the study of generalized
(asymptotical) almost periodicity that intermediates Stepanov and Weyl concept.
In these papers, we have introduced the class of Stepanov p-quasi-asymptotically
almost periodic functions and proved that this class contains all asymptotically
Stepanov p-almost periodic functions and makes a subclass of the class consisting
of all Weyl p-almost periodic functions (p ∈ [1,∞)), taken in the sense of Kovanko’s
approach [258]. The main aim of Subsection 2.5.4-Subsection 2.5.7 is to continue
the research studies raised in [168] and [246]-[247] by investigating several various
classes of asymptotically Weyl almost periodic functions in Lebesgue spaces with
variable exponents Lp(x). The material of these subsections are taken from the pa-
per [249], whose main ideas can be briefly described as follows. In Definition 2.5.22-
Definition 2.5.24, we introduce the classes of (equi-)Weyl-(p, φ, F )-almost periodic
functions and (equi-)Weyl-(p, φ, F )i-almost periodic functions, where i = 1, 2. The
main aim of Proposition 2.5.26 is to clarify some inclusions between these spaces
provided that the function φ(·) is convex and satisfies certain extra conditions. In
order to ensure the translation invariance of generalized Weyl almost periodic func-
tions with variable exponent, in Definition 2.5.28-Definition 2.5.30 we introduce the
classes of (equi-)Weyl-[p, φ, F ]-almost periodic functions and (equi-)Weyl-[p, φ, F ]i-
almost periodic functions, where i = 1, 2. Several useful comments about these
spaces have been provided in Remark 2.5.31. In Example 2.5.33-Example 2.5.34,
we focus our attention on the following special case: p(x) ≡ p ∈ [1,∞), φ(x) = x
and F (l, t) = l(−1)/pσ, σ ∈ R, which is the most important for the investigations
of generalized almost periodicity which stands between the Stepanov and Weyl
concepts. In Subsection 2.5.5, we introduce and analyze various types of Weyl er-
godic components with variable exponent and asymptotically Weyl almost periodic
functions with variable exponent. The introduced classes of generalized (asymptot-
ically) Weyl almost periodic functions are new even in the case that the function
p(x) has a constant value p > 1 and φ(x) 6= x or F (l, t) 6= l(−1)/p(t). From the appli-
cation point of view, Subsection 2.5.6 is very important because there we examine
the invariance of generalized Weyl almost periodicity with variable exponent under
the action of convolution products and the convolution invariance of Weyl almost
periodic functions with variable exponent. In order to do that, we shall basically
follow the method proposed in the proof of Theorem 2.5.45. In Subsection 2.5.7, we
consider the case in which the exponent p(x) ≡ p ∈ [1,∞) is constant and solution
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operator family (R(t))t>0 ⊆ L(X,Y ) has a certain growth order around the points
zero, plus infinity, providing also some illustrative applications in the qualitative
analysis of solutions to the abstract degenerate fractional differential equations with
Weyl-Liouville or Caputo derivatives. Two-parameter asymptotically Weyl almost
periodic functions with variable exponents and related composition principles will
be considered somewhere else.

Section 2.6 is broken down into three subsections. In Subsection 2.6.1, we an-
alyze Stepanov uniformly recurrent functions in the Lebesgue spaces with variable
exponents. Doss almost periodic functions and Doss uniformly recurrent functions
in Lebesgue spaces with variable exponents are investigated in Subsection 2.6.2,
while the invariance of generalized Doss almost periodicity with variable exponent
under the actions of convolution products is investigated in Subsection 2.6.3.

Section 2.7 is broken down into six subsections. Subsection 2.7.1 introduces
the notion of several different types of generalized (equi-)Weyl almost periodicity
in Lebesgue spaces with variable exponents. The spaces introduced in Definition
2.7.1-Definition 2.7.3 may not be translation invariant, in general, which is not
the case with the spaces introduced in Definition 2.7.5-Definition 2.7.7. The main
aim of Subsection 2.7.1 is to explain without proofs how the structural results and
characterizations established for generalized (equi-)Weyl almost periodic functions
in [249] can be straightforwardly extended for the corresponding classes of gener-
alized (equi-)Weyl uniformly recurrent functions. In Definition 2.7.8, we introduce
the class of quasi-asymptotically uniformly recurrent functions (it is worth noting
that some classes of generalized Stepanov and Weyl p(x)-almost periodic type func-
tions and p(x)-uniformly recurrent type functions have not been considered else-
where even for the constant coefficients p(x) ≡ p ∈ [1,∞)). Proposition 2.7.9 shows
that any asymptotically uniformly recurrent function is quasi-asymptotically uni-
formly recurrent; the converse statement is generally false, as a class of very simple
counterexamples shows. In Proposition 2.7.10, we prove that the sum of a quasi-
asymptotically uniformly recurrent function and a continuous function vanishing
at infinity is again quasi-asymptotically uniformly recurrent. In Theorem 2.7.14,
we revisit [247, Theorem 2.5] once more and examine some extra conditions un-
der which a quasi-asymptotically uniformly recurrent function is (asymptotically)
uniformly recurrent. Subsection 2.7.3 introduces and investigates several different
classes of Stepanov quasi-asymptotically uniformly recurrent type functions in the
Lebesgue spaces with variable exponents. The notion introduced in this subsection,
in which we reconsider and slightly improve several known results from [247] in our
new framework, is new even for the constant coefficients p(x) ≡ p ∈ [1,∞), and
can be used to intermediate the concepts of the quasi-asymptotical almost period-
icity (quasi-asymptotical uniform recurrence, S-asymptotical ω-periodicity) and its
Stepanov generalizations with constant exponents. In Proposition 2.7.23, we recon-
sider the assertion of [142, Proposition 4.5] for the Stepanov quasi-asymptotically
uniformly recurrent functions (see also Corollary 2.7.24 and Proposition 2.7.25).
Any Stepanov p-quasi-asymptotically almost periodic function is Weyl p-almost pe-
riodic, and clearly, any (quasi-)asymptotical almost periodic function is Stepanov
p-quasi-asymptotically almost periodic for any finite exponent p > 1 (see [247,
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Proposition 2.12]); as observed here, the same holds for the related concepts of
quasi-asymptotical uniform recurrence. The main objective in Proposition 2.7.26 is
to state and prove a general result in this direction. In Subsection 2.7.4, we clarify
the main composition principles for the class of quasi-asymptotically uniformly re-
current functions. Our main contributions are given in Subsection 2.7.5, where we
examine the invariance of generalized quasi-asymptotical uniform recurrence with
variable exponents under the actions of convolution products. Some applications
to the abstract Volterra integro-differential equations are presented in Subsection
2.7.6. The material of Section 2.6 and Section 2.7 is taken from our recent papers
obtained in a coauthorship with Prof. W.-S. Du [251]-[252].

The definitions and basic properties of (ω, c)-periodic and (ω, c)-pseudo periodic
functions were introduced and analyzed by E. Alvarez, A. Gómez and M. Pinto in
[17]-[16], motivated by some known results regarding the qualitative properties of
solution to Mathieu’s linear differential equation

y′′(t) + [a− 2q cos 2t]y(t) = 0,

arising in modeling of railroad rails and seasonally forced population dynamics (ω >
0, c ∈ C r {0}). The linear delayed equations can have (ω, c)-periodic solutions,
as well (see e.g., [17, Example 2.5]). The notions of anti-periodicity and Bloch
periodicity are special cases of the notion of an (ω, c)-periodicity.

The authors of [17] have analyzed the existence and uniqueness of mild (ω, c)-
periodic solutions to the abstract semilinear integro-differential equation (1). Fur-
ther on, E. Alvarez, S. Castillo and M. Pinto have analyzed in [16] the existence
and uniqueness of mild (ω, c)-pseudo periodic solutions to the abstract semilinear
differential equation of the first order:

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

where A generates a strongly continuous semigroup. The authors have proved
the existence of positive (ω, c)-pseudo periodic solutions to the Lasota-Wazewska
equation with (ω, c)-pseudo periodic coefficients

y′(t) = −δy(t) + h(t)e−a(t)y(t−τ), t > 0.

This equation describes the survival of red blood cells in the blood of an animal (see
e.g., M. Wazewska-Czyzewska and A. Lasota [349]). Concerning the applications
to time varying impulsive differential equations, mention should be made of the
article [346] by J. R. Wang, L. Ren and Y. Zhou; cf. also the article [7] by M.
Agaoglou, M. Fečkan, A. P. Panagiotidou, the article [290] by G. Mophou, G. M.
N’Guérékata and the article [266] by M. Li, J. R. Wang and M. Fečkan.

In Section 2.8, we analyze various types of (ω, c)-almost periodic functions,
(ω, c)-uniformly recurrent functions and (compactly) (ω, c)-almost automorphic
functions. The classes of (ω, c)-uniformly recurrent functions of type i and (ω, c)-
almost periodic functions of type i (i = 1, 2) are introduced and analyzed in Sub-
section 2.8.1. Composition principles for (ω, c)-almost periodic type functions are
analyzed in Subsection 2.8.2. The classes of (ω, c)-pseudo almost periodic functions,
(ω, c)-pseudo almost automorphic functions and related applications are studied in
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Subsection 2.8.4. Subsection 2.8.5 introduces and investigates (ω, c)−almost pe-
riodicity (resp. asymptotic (w, c)−almost periodicity) in the setting of Schwartz-
Sobolev distributions (for simplicity, we will consider only scalar-valued distribu-
tions because the extensions to the vector-valued case are straightforward); in the
next subsection, we apply our abstract theoretical results in the study of the ex-
istence of distributional (w, c)−almost periodic solutions of linear differential sys-
tems. In [319, Chapter II], J. Prüss has analyzed abstract non-scalar Volterra equa-
tions. Applications have been given in the analysis of viscoelastic Timoshenko beam
model, Midlin-Timoshenko plate model and viscoelastic Kirchhoff plate model, with
the corresponding materials being non-synchronous, as well as in the analysis of
some problems of linear thermoviscoelasticity and electrodynamics. In Subsection
2.8.7, we initiate the study of asymptotically (ω, c)-almost periodic type solutions
of abstract degenerate non-scalar Volterra equations.

The organization and main ideas of Section 2.9, which consists of seven sub-
sections, is given as follows. The notion of c-almost periodicity and the notion of
c-uniform recurrence, where c ∈ C r {0}, are introduced in Definition 2.9.2 and
Definition 2.9.4, respectively (in case c = 1, we recover the usual notions of almost
periodicity and uniform recurrence, while in case c = −1, we recover the usual
notions of almost anti-periodicity and uniform anti-recurrence); the main idea is
the use of difference f(· + τ) − cf(·) in place of the usually considered difference
f(·+ τ)− f(·). After that, in Definition 2.9.5 and Proposition 2.9.6, we introduce
the notion of semi-c-periodicity and prove some necessary and sufficient conditions
for a continuous function f : I → X to be semi-c-periodic. Proposition 2.9.11 is
crucially important in our analysis because it states that there does not exist a
c-uniformly recurrent function f : I → X if |c| 6= 1. The invariance of c-almost type
periodicity under the actions of convolution products is also analyzed here. The
composition theorems for c-almost periodic type functions are analyzed in Subsec-
tion 2.9.1 (the structural results in this subsection are given without proofs, which
can be deduced similarly as in our previous research studies; it is also worth noting
that we present numerous illustrative examples and comments about the problems
considered). In Subsection 2.9.2, we will present some illustrative applications of
our abstract results in the analysis of the existence and uniqueness of c-almost
periodic type solutions to the abstract (semilinear) Volterra integro-differential in-
clusions. The class of semi-c-periodic functions with general parameter c ∈ Cr{0}
is introduced and analyzed in Subsection 2.9.3; the main result of this subsection is
Theorem 2.9.45 which states that the notion of c-periodicity and semi-c-periodicity
are equivalent for |c| 6= 1. The material of Section 2.8 and Section 2.9 is obtained in
a couathorship with Prof. M. Pinto, M. T. Khalladi, A. Rahmani and D. Velinov
([223]-[227]).

Let p > 0 and k ∈ R. Recall that a bounded continuous function f : I → X
is said to be Bloch (p, k)-periodic, or Bloch periodic with period p and Bloch wave
vector or Floquet exponent k if and only if f(x+ p) = eikpf(x), x ∈ I, with p > 0
and k ∈ R. The study of Bloch (p, k)-periodic functions is an important subject
of applied functional analysis. The Bloch periodic functions and almost Bloch
periodic functions are widely used in biology, physics, probability, modeling, solid
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mechanics and many other areas (see the papers [203] by M. F. Hasler, [204] by M.
F. Hasler, G. M. N’Guérékata, [253] by M. Kostić, D. Velinov and references cited
therein). As is well known, the notion of an anti-periodic function is a special case
of the notion of a Bloch (p, k)-periodic function (a bounded continuous function
f : I → X is said to f(·) is anti-periodic if and only if there exists p > 0 such
that f(x + p) = −f(x), x ∈ I; any such function needs to be periodic of period
2p). For more details about anti-periodic type functions and their applications, we
refer the reader to [101, 150, 197, 253, 271, 272] and references cited therein.
Semi-Bloch k-periodic functions are investigated in Subsection 2.9.4 (the results
are obtained in a coauthorship with Prof. B. Chaouchi, S. Pilipović and D. Velinov
[94]). The genesis of paper [94] is motivated by reading the research article [25] by
J. Andres and D. Pennequin, where the authors have introduced and analyzed the
class of semi-periodic functions (sequences) and related applications to differential
(difference) equations; see also [26]. Of course, a semi-periodic function is nothing
else but a semi-c-periodic function with c = 1.

The class of S-asymptotically ω-periodic functions, introduced by H. Henŕıquez
et al. [209] for case I = R and M. Kostić [247] for case I = [0,∞), are reconsidered
in Subsection 2.9.6, where we introduce the class of S-asymptotically (ω, c)-periodic
functions. Quasi-asymptotically c-almost periodic functions and related composi-
tion principles are investigated in Subsection 2.9.7.

Several notes and appendicies are provided in the final section of monograph,
where we particularly analyze recurrent strongly continuous semigroups of opera-
tors.



CHAPTER 1

PRELIMINARIES

1.1. Linear operators and integration in Banach spaces, strongly
continuous semigroups and fixed point theorems

In this section, we recollect the indispensable things about vector-valued func-
tions, closed operators, integration and strongly continuous semigroups in Banach
spaces. We also recall the basic fixed point theorems we will employ later on. In
Subsection 1.1.1, we explore the basic definitions and results about the Lebesgue
spaces with variable exponents Lp(x).

Vector-valued functions, closed operators. Generally, by (X, ‖ · ‖) we denote
a Banach space over the field of complex numbers. If (Y, ‖ · ‖Y ) is another Banach
space over the field of complex numbers, then by L(X,Y ) we denote the space
consisting of all continuous linear mappings from X into Y ; L(X) ≡ L(X,X). The
topologies on L(X,Y ) and X∗, the dual space of X, are introduced in the usual
way. If not stated otherwise, by I we denote the identity operator on X. If X and Y
are two Banach spaces such that Y is continuously embedded in X, then we write
Y ↪→ X.

We say that a linear operator A : D(A) → X is closed if and only if the
graph of the operator A, defined by GA := {(x,Ax) : x ∈ D(A)}, is a closed
subset of X × X. The null space and range of A are denoted by N(A) and
R(A), respectively. Let us recall that a linear operator A : D(A) → X is closed
if and only if, for every sequence (xn) in D(A) such that limn→∞ xn = x and
limn→∞Axn = y, the following holds: x ∈ D(A) and Ax = y; a linear operator
A is called closable if and only if there exists a closed linear operator B such that
A ⊆ B. Assuming that F is a linear submanifold of X, then we define the part of
A in F by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F ).

The power An of A is defined inductively (n ∈ N0); set D∞(A) :=
⋂
n>1D(An).

For a closed linear operator A acting on X, we introduce the adjoint A∗ of X∗×X∗
by

A∗ :=
{(
x∗, y∗

)
∈ X∗ ×X∗ : x∗(Ax) = y∗(x) for all x ∈ D(A)

}
.

In the case that A is densely defined, then A∗ is single-valued, closed and also
known as the adjoint operator of A. If α ∈ Cr {0}, A and B are linear operators,
we define the operators αA, A+B and AB in the usual way. The Gamma function
will be denoted by Γ(·) and the principal branch will be always used to take the
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powers. Set, for every α > 0,

gα(t) := tα−1/Γ(α), t > 0,

g0(t) ≡ the Dirac delta distribution and 0ζ := 0. Set Σα := {z ∈ Cr{0} : | arg(z)| <
α}, α ∈ (0, π].

By C(Ω : X) we denote the space consisting of all continuous functions f :
Ω → X, where ∅ 6= Ω ⊆ Cn (n ∈ N); C(Ω) ≡ C(Ω : C). Let 0 < τ 6 ∞ and
a ∈ L1

loc([0, τ)). Then we say that the function a(t) is a kernel on [0, τ) if and only

if for each f ∈ C([0, τ)) the assumption
∫ t

0
a(t − s)f(s) ds = 0, t ∈ [0, τ) implies

f(t) = 0, t ∈ [0, τ). If s ∈ R and n ∈ N, we define bsc := sup{l ∈ Z : s > l},
dse := inf{l ∈ Z : s 6 l}, Nn := {1, · · ·, n} and N0

n := {0, 1, · · ·, n}. If X, Y 6= ∅, put
YX := {f | f : X→ Y}.

Let I = R or I = [0,∞). By Cb(I : X) we denote the space consisting of
all bounded continuous functions from I into X; the symbol C0(I : X) denotes
the closed subspace of Cb(I : X) consisting of those functions f : I → X such that
lim|t|→∞ ‖f(t)‖ = 0. By BUC(I : X) we denote the space consisting of all bounded
uniformly continuous functions from I to X; Cb(I) ≡ Cb(I : C), C0(I) ≡ C0(I : C)
and BUC(I) ≡ BUC(I : C). Equipped with the sup-norms, these vector spaces are
the Banach spaces.

Regarding analytical functions with values in Banach spaces and locally convex
spaces, we refer the reader to [30] and [236] (for almost periodic and almost au-
tomorphic functions in locally convex spaces and general vector topological spaces,
we refer the reader to [234, Section 3.11] and references cited in the first part of
this section).

Integration in Banach spaces. The following definition is elementary.

Definition 1.1.1. (i) A function f : I → X is said to be simple if and only
if there exist k ∈ N, elements zi ∈ X, 1 6 i 6 k and Lebesgue measurable subsets
Ωk, 1 6 i 6 k of I, such that m(Ωi) <∞, 1 6 i 6 k and

(6) f(t) =

k∑
i=1

ziχΩi(t), t ∈ I.

(ii) A function f : I → X is said to be measurable if and only if there exists
a sequence (fn) in XI such that, for every n ∈ N, fn(·) is a simple function and
limn→∞ fn(t) = f(t) for a.e. t ∈ I.

(iii) Let −∞ < a < b <∞ and a < τ 6∞. A function f : [a, b]→ X is said to
be absolutely continuous if and only if for every ε > 0 there exists a number δ > 0
such that for any finite collection of open subintervals (ai, bi), 1 6 i 6 k of [a, b]

with
∑k
i=1(bi−ai) < δ, we have

∑k
i=1 ‖f(bi)−f(ai)‖ < ε; a function f : [a, τ)→ X

is said to be absolutely continuous if and only if for every τ0 ∈ (a, τ), the function
f|[a,τ0] : [a, τ0]→ X is absolutely continuous.

If f : I → X and (fn) is a sequence of measurable functions satisfying that
limn→∞ fn(t) = f(t) for a.e. t ∈ I, then the function f(·) is measurable, as well.
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The Bochner integral of a simple function f : I → X, f(t) =
∑k
i=1 ziχΩi(t), t ∈ I

is defined by ∫
I

f(t) dt :=

k∑
i=1

zim(Ωi).

The definition of Bochner integral does not depend on the representation (6), as
easily approved.

We say that a measurable function f : I → X is Bochner integrable if and only if
there exists a sequence of simple functions (fn) inXI such that limn→∞ fn(t) = f(t)
for a.e. t ∈ I and

(7) lim
n→∞

∫
I

∥∥fn(t)− f(t)
∥∥ dt = 0;

if this is the case, the Bochner integral of f(·) is defined by∫
I

f(t) dt := lim
n→∞

∫
I

fn(t) dt.

This definition does not depend on the choice of a sequence of simple functions (fn)
in XI satisfying limn→∞ fn(t) = f(t) for a.e. t ∈ I and (7). It is well known that
f : I → X is Bochner integrable if and only if f(·) is measurable and the function
t 7→ ‖f(t)‖, t ∈ I is integrable. For any Bochner integrable function f : [0,∞)→ X,
we have

∫∞
0
f(t) dt = limτ→+∞

∫ τ
0
f|[0,τ ](t) dt.

The space of all Bochner integrable functions from I into X is denoted by
L1(I : X); endowed with the norm ‖f‖1 :=

∫
I
‖f(t)‖ dt, L1(I : X) is a Banach

space. It is said that a function f : [0,∞) → X is locally (Bochner) integrable
if and only if f(·)|[0,τ ] is Bochner integrable for every τ > 0. The space of all

locally integrable functions from [0,∞) into X is denoted by L1
loc([0,∞) : X). If

f : [a, b]→ X is Bochner integrable, where −∞ < a < b < +∞, then the function

F (t) :=
∫ t
a
f(s) ds, t ∈ [a, b] is absolutely continuous and F ′(t) = f(t) for a.e. t > 0.

Basically, we will not distinguish a function and its restriction to any subinterval
of its domain.

Theorem 1.1.2. (i) (The dominated convergence theorem) Suppose that
(fn) is a sequence of Bochner integrable functions from XI and that there
exists an integrable function g : I → R such that ‖fn(t)‖ 6 g(t) for a.e.
t ∈ I and n ∈ N. If f : I → X and limn→∞ fn(t) = f(t) for a.e.
t ∈ I, then f(·) is Bochner integrable,

∫
I
f(t) dt = limn→∞

∫
I
fn(t) dt and

limn→∞
∫
I
‖fn(t)− f(t)‖ dt = 0.

(ii) (The Fubini theorem) Let I1 and I2 be segments in R and let I = I1 × I2.
Suppose that F : I → X is measurable and

∫
I1

∫
I2
‖f(s, t)‖ dt ds < ∞.

Then f(·, ·) is Bochner integrable, the repeated integrals
∫
I1

∫
I2
f(s, t) dt ds

and
∫
I2

∫
I1
f(s, t) ds dt exist and equal to the integral

∫
I
f(s, t) ds dt.

Suppose now that 1 6 p <∞ and (Ω,R, µ) is a measure space. By Lp(Ω : X)
we denote the space of all strongly µ-measurable functions f : Ω → X such that
‖f‖p := (

∫
Ω
‖f(·)‖pdµ)1/p is finite. The space L∞(Ω : X) consists of all strongly
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µ-measurable, essentially bounded functions; this space is a Banach space equipped
with the norm ‖f‖∞ := ess supt∈Ω ‖f(t)‖, f ∈ L∞(Ω : X). Let us recall that we
identify functions that are equal µ-almost everywhere on Ω. The famous Riesz–
Fischer theorem states that (Lp(Ω : X), ‖ · ‖p) is a Banach space for all p ∈ [1,∞];
furthermore, (L2(Ω : X), ‖ · ‖2) is a Hilbert space. If limn→∞ fn = f in Lp(Ω : X),
then there exists a subsequence (fnk) of (fn) such that limk→∞ fnk(t) = f(t) µ-
almost everywhere. If the Banach space X is reflexive, then Lp(Ω : X) is reflexive

for all p ∈ (1,∞) and its dual is isometrically isomorphic to L
p
p−1 (Ω : X). We refer

the reader to [30] and [234] for more details about the absolutely continuous func-
tions. The space consisting of all X-valued functions that are absolutely continuous
on any closed subinterval of [0,∞) will be denoted by ACloc([0,∞) : X).

Let ∅ 6= Ω ⊆ Rn (n ∈ N). By Ck(Ω : X) we denote the space of k-times
continuously differentiable functions (k ∈ N) f : Ω→ X. The space Lploc(Ω : X) for
1 6 p 6∞ is defined in the usual way (T, τ > 0); Lploc(Ω) ≡ Lploc(Ω : C).

Assume now that k ∈ N and p ∈ [1,∞]. Then the Sobolev space W k,p(Ω : X)
consists of those X-valued distributions u ∈ D′(Ω : X) such that, for every i ∈ N0

k

and for every multi-index α ∈ Nn0 with |α| 6 k, we have Dαu ∈ Lp(Ω, X). At this

place, the derivative Dα is taken in the sense of distributions. By W k,p
loc (Ω : X)

we denote the space of those X-valued distributions u ∈ D′(Ω : X) such that, for
every bounded open subset Ω′ of Ω, one has u|Ω′ ∈W k,p(Ω′ : X).

We will use the following simple lemma:

Lemma 1.1.3. Let −∞ < a < b < ∞, let 1 6 p′ < p′′ < ∞, and let f ∈
Lp
′′
([a, b] : X). Then f ∈ Lp′([a, b] : X) and[

1

b− a

∫ b

a

‖f(s)‖p
′
ds

]1/p′

6

[
1

b− a

∫ b

a

‖f(s)‖p
′′
ds

]1/p′′

.

Strongly continuous semigroups in Banach spaces. An operator family
(T (t))t>0 ⊆ L(X) is said to be a strongly continuous semigroup if and only if
the following holds:

(i) T (0) = I,
(ii) T (t+ s) = T (t)T (s), t, s > 0 and
(iii) the mapping t 7→ T (t)x, t > 0 is continuous for every fixed x ∈ X.

The linear operator

A :=

{
(x, y) ∈ X ×X : lim

t→0+

T (t)x− x
t

= y

}
(8)

is said to be the infinitesimal generator of (T (t))t>0. A strongly continuous semi-
group (group) (T (t))t>0 is also said to be C0-semigroup; if the condition (i) is
neglected, then the operator T (0) is a projection and then we say that (T (t))t>0 is
a degenerate C0-semigroup.

In both cases, degenerate and non-degenerate, we know that there exist finite
constants M > 1 and ω > 0 such that ‖T (t)‖ 6 Meωt, t > 0. The famous Hille-
Yosida theorem states that a linear operator A generates a non-degenerate strongly
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continuous semigroup (T (t))t>0 satisfying the estimate ‖T (t)‖ 6 Meωt, t > 0 for
some finite constants M > 1 and ω > 0 if and only if A is closed, densely defined,
(ω,∞) ⊆ ρ(A) and

∥∥∥(λ−A)−n
∥∥∥ 6 M

(λ− ω)n
, λ > ω, n ∈ N.

If not stated otherwise, then we will always assume that a C0-semigroup (T (t))t>0

is non-degenerate.
If (T (t))t∈R ⊆ L(X) satisifes (i), (ii) for all t, s ∈ R and (iii) for t ∈ R, then

we say that (T (t))t∈R is a strongly continuous group, C0-group for short. Similarly
as above, if condition (i) is neglected, then we say that (T (t))t∈R is a degenerate
strongly continuous group, degenerate C0-group for short. The infinitesimal gen-
erator of (T (t))t∈R is defined through (8); in the degenerate case, the infinitesimal
generator is a closed multivalued linear operator on X; see Section 1.2 below.

For more details about the theory of strongly continuous semigroups, the reader
may consult the monographs [160, 233, 236, 306] and references quoted therein;
for the theory of integrated semigroups and C-regularized semigroups, we refer the
reader to [30, 127, 232, 233, 368] and references quoted therein.

Fixed point theorems. In this part, we remind the readers of the Banach con-
traction principle and its well known generalization, the Bryant fixed point theorem;
for further information about the fixed point theory, the reader may consult the
monographs [10] and [184].

Let (E, d) be a metric space. Then T : E → E is called a contraction mapping
on E if and only if there exists a constant q ∈ [0, 1) such that d(T (x), T (y)) 6
qd(x, y) for all x, y ∈ E.

Theorem 1.1.4. (The Banach contraction principle, 1922) Let (E, d) be a
complete metric space, and let T : E → E be a contraction mapping. Then T
admits a unique fixed point x in X (i.e. T (x) = x).

Theorem 1.1.5. (The Bryant fixed point theorem, 1968) Let (E, d) be a com-
plete metric space, and let T : E → E be such that there is an integer n ∈ N such
that Tn : E → E is a contraction mapping. Then T has a unique fixed point x in
E.

1.1.1. Lebesgue spaces with variable exponents Lp(x). The monograph
[147] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka is of invaluable
importance in the study of Lebesgue spaces with variable exponents.

Let ∅ 6= Ω ⊆ R be a nonempty subset and let M(Ω : X) stand for the collection
of all measurable functions f : Ω → X; M(Ω) := M(Ω : R). Furthermore, P(Ω)
denotes the vector space of all Lebesgue measurable functions p : Ω → [1,∞]. For
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any p ∈ P(Ω) and f ∈M(Ω : X), set

ϕp(x)(t) :=


tp(x), t > 0, 1 6 p(x) <∞,

0, 0 6 t 6 1, p(x) =∞,

∞, t > 1, p(x) =∞

and

ρ(f) :=

∫
Ω

ϕp(x)(‖f(x)‖) dx.(9)

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent by

Lp(x)(Ω : X) :=
{
f ∈M(Ω : X) : lim

λ→0+
ρ(λf) = 0

}
.

Equivalently,

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) : there exists λ > 0 such that ρ(λf) <∞

}
;

see e.g., [147, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg
norm of u(·) in the following manner (see the doctoral dissertation of W. A. J.
Luxemburg [279] for further information):

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(f/λ) 6 1

}
.

Equipped with the above norm, the space Lp(x)(Ω : X) becomes a Banach space
(see e.g., [147, Theorem 3.2.7] for the scalar-valued case), coinciding with the usual
Lebesgue space Lp(Ω : X) in the case that p(x) = p > 1 is a constant function. For
any p ∈M(Ω), we set

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Define

C+(Ω) :=
{
p ∈M(Ω) : 1 < p− 6 p(x) 6 p+ <∞ for a.e. x ∈ Ω

}
and

D+(Ω) :=
{
p ∈M(Ω) : 1 6 p− 6 p(x) 6 p+ <∞ for a.e. x ∈ Ω

}
.

For p ∈ D+(Ω), the space Lp(x)(Ω : X) behaves nicely, with almost all fundamental
properties of the Lesbesgue space with constant exponent Lp(Ω : X) being retained;
in this case, we know that the function ρ(·) given by (9) is modular in the sense of
[147, Definition 2.1.1], as well as that

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) : for all λ > 0 we have ρ(λf) <∞

}
.

Furthermore, if p ∈ C+(Ω), then Lp(x)(Ω : X) is uniformly convex and thus reflexive
([164]).

We will use the following lemma (see e.g., [147, Lemma 3.2.20, (3.2.22); Corol-
lary 3.3.4; p. 77] for the scalar-valued case):
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Lemma 1.1.6. (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1

q(x)
=

1

p(x)
+

1

r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈
Lq(x)(Ω : X) and

‖uv‖q(x) 6 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q 6 p
a.e. on Ω. Then Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈M(Ω : X) and 0 6 ‖g‖ 6 ‖f‖ a.e. on Ω. Then
g ∈ Lp(x)(Ω : X) and ‖g‖p(x) 6 ‖f‖p(x).

For additional details upon Lebesgue spaces with variable exponents Lp(x), we
refer the reader to the following sources: [145], [146], [164] and [302].

1.2. Multivalued linear operators

This section aims to present a brief synopsis of definitions and results from the
theory of multivalued linear operators that we will use later on. For more details,
we refer to the monograph [120] by R. Cross.

Suppose that X and Y are two Banach spaces. A multivalued map (multimap)
A : X → P (Y ) is said to be a multivalued linear operator (MLO) if and only if the
following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y, then we say that A is an MLO in X. Let us recall that, for every
x, y ∈ D(A) and λ, η ∈ C with |λ|+|η| 6= 0, we have λAx+ηAy = A(λx+ηy). If A
is an MLO, then A0 is a linear submanifold of Y and Ax = f+A0 for any x ∈ D(A)
and f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)} and N(A) := A−10 := {x ∈ D(A) : 0 ∈
Ax} (we call that the range and kernel space of A, respectively). The inverse A−1

of an MLO is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It
follows that A−1 is an MLO in X, as well as that N(A−1) = A0 and (A−1)−1 = A.
If N(A) = {0}, i.e., if A−1 is single-valued, then A is said to be injective.

Assuming that A, B : X → P (Y ) are two MLOs, we define its sum A+ B by
D(A+B) := D(A)∩D(B) and (A+B)x := Ax+Bx, x ∈ D(A+B). Clearly, A+B
is likewise an MLO.

Suppose now that A : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z
is a complex Banach space. The product of A and B is defined by D(BA) := {x ∈
D(A) : D(B) ∩ Ax 6= ∅} and BAx := B(D(B) ∩ Ax). We have BA : X → P (Z) is
an MLO and (BA)−1 = A−1B−1. The scalar multiplication of an MLO A : X →
P (Y ) with the number z ∈ C, zA for short, is defined by D(zA) := D(A) and
(zA)(x) := zAx, x ∈ D(A).

The integer powers of an MLO A : X → P (X) are defined inductively as
follows: A0 =: I; if An−1 is defined, set

D(An) :=
{
x ∈ D(An−1) : D(A) ∩ An−1x 6= ∅

}
,
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and

Anx :=
(
AAn−1

)
x =

⋃
y∈D(A)∩An−1x

Ay, x ∈ D(An).

Assume that A : X → P (Y ) and B : X → P (Y ) are two MLOs. Then the
inclusion A ⊆ B is equivalent to saying that D(A) ⊆ D(B) and Ax ⊆ Bx for all
x ∈ D(A).

It is said that an MLO operator A : X → P (Y ) is closed if and only if for any
sequences (xn) in D(A) and (yn) in Y such that yn ∈ Axn for all n ∈ N we have
that the suppositions limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and
y ∈ Ax.

Assume that A : X → P (Y ) is an MLO. Then A : X → P (Y ) is an MLO,
as well, so that any MLO has a closed linear extension, in contrast to the usually
considered single-valued linear operators.

Let A be an MLO in X and C ∈ L(X). The C-resolvent set of A, ρC(A) for
short, is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A. If C = I, then we
say that ρ(A) ≡ ρC(A) is the resolvent set of A and the mapping λ 7→ (λ−A)−1 is
called the resolvent of A (λ ∈ ρ(A)). For the generalized resolvent equations and
the analytical properties of C-resolvents of multivalued linear operators, we refer
the reader to [236].

Suppose now that (−∞, 0] ⊆ ρ(A) as well as that there exist finite numbers
M > 1 and β ∈ (0, 1] such that

‖R(λ : A)‖ 6M
(
1 + |λ|

)−β
, λ 6 0.

Then there are two positive numbers c > 0 and M1 > 0 such that the resolvent set
of A contains an open region Ω = {λ ∈ C : | Imλ| 6 (2M1)−1(c−Reλ)β , Reλ 6 c}
of complex plane around the half-line (−∞, 0], where we have the estimate ‖R(λ :
A)‖ = O((1+|λ|)−β), λ ∈ Ω. Let Γ′ be the upwards oriented curve {ξ±i(2M1)−1(c−
ξ)β : −∞ < ξ 6 c}. Following A. Favini and A. Yagi [167], we define the fractional
power

A−θ :=
1

2πi

∫
Γ′
λ−θ

(
λ−A

)−1
dλ ∈ L(X),

for θ > 1 − β. Set Aθ := (A−θ)−1 (θ > 1 − β). Then the semigroup properties
A−θ1A−θ2 = A−(θ1+θ2) and Aθ1Aθ2 = Aθ1+θ2 hold for θ1, θ2 > 1 − β (it is worth
recalling that the fractional power Aθ need not be injective and that the meaning
of Aθ is understood in the MLO sense for θ > 1− β).

For any θ ∈ (0, 1), the vector space

Xθ
A :=

{
x ∈ X : sup

ξ>0
ξθ
∥∥∥ξ(ξ +A

)−1
x− x

∥∥∥ <∞},
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endowed with the norm∥∥·∥∥
XθA

:= ‖ · ‖+ sup
ξ>0

ξθ
∥∥∥ξ(ξ +A

)−1 · −·
∥∥∥,

becomes the Banach space.
We will use conditions (P) and (QP) henceforth:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{
λ ∈ C : Reλ > −c

(
| Imλ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ 6M

(
1 + |λ|

)−β
, λ ∈ Ψ.

(QP): There exist finite numbers 0 < β 6 1, 0 < d 6 1, M > 0 and 0 < η′ <
η′′ 6 1 such that

Ψd,πη′′/2 :=
{
λ ∈ C : |λ| 6 d or λ ∈ Σπη′′/2

}
⊆ ρ(A)

and
‖R(λ : A)‖ 6M

(
1 + |λ|

)−β
, λ ∈ Ψd,πη′′/2.

hence, the resolvent set of a multivalued linear operator A satisfying (QP) can be
strictly contained in an acute angle. In the single-valued linear case, the class of
almost sectorial operators A = A satisfying condition (P) is crucially important;
for more details about almost sectorial operators and their applications, we refer
the reader to the papers [307] by F. Periago, [308] by F. Periago and B. Straub,
the monographs [233]-[234] and references cited therein.

1.3. Fractional calculus and solution operator families

Fractional calculus and fractional differential equations play an important role
in various fields of theoretical and applied science, such as engineering, physics,
chemistry, mechanics, electricity, economics, control theory and image processing.
For further information about fractional calculus and fractional differential equa-
tions, we refer the reader to the monographs by K. Diethelm [148], C. Goodrich, A.
C. Peterson [?], A. A. Kilbas, H. M. Srivastava, J. J. Trujillo [229], V. Kiryakova
[230], F. Mainardi [280], S. G. Samko, A. A. Kilbas, O. I. Marichev [326] and M.
Kostić [232]-[236], as well as to the doctoral dissertation of E. Bazhlekova [52].

Suppose that α > 0, m = dαe and I = (0, T ) for some T ∈ (0,∞]. Then the
Riemann-Liouville fractional integral Jαt of order α is defined by

Jαt f(t) :=
(
gα ∗ f

)
(t), f ∈ L1(I : X), t ∈ I.

The Caputo fractional derivative Dα
t u(t) is defined for those functions

u ∈ Cm−1([0,∞) : X) for which gm−α ∗ (u−
∑m−1
k=0 ukgk+1) ∈ Cm([0,∞) : X), by

Dα
t u(t) =

dm

dtm

[
gm−α ∗

(
u−

m−1∑
k=0

ukgk+1

)]
.

It is worth noticing that the existence of Caputo fractional derivative Dα
t u for

t > 0 implies the existence of Caputo fractional derivative Dζ
tu for t > 0 and
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any ζ ∈ (0, α). At some places, we will use a slightly weakened notion of Caputo
fractional derivatives, as explicitly emphasized.

The Riemann-Liouville fractional derivative Dα
t of order α is defined for those

functions f ∈ L1(I : X) satisfying gm−α ∗ f ∈Wm,1((0,∞) : X), by

Dα
t f(t) :=

dm

dtm
Jm−αt f(t), t ∈ I.

The Riemann-Liouville fractional integrals and derivatives satisfy the following
equalities:

Jαt J
β
t f(t) = Jα+β

t f(t), Dα
t J

α
t f(t) = f(t),

for f ∈ L1(I : X) and

Jαt D
α
t f(t) = f(t)−

m−1∑
k=0

(gm−α ∗ f)(k)(0)gα+k+1−m(t)

for any f ∈ L1(I : X) with gm−α ∗ f ∈Wm,1(I : X).
The Weyl-Liouville fractional derivative Dγ

t,+u(t) of order γ ∈ (0, 1) is defined

for those continuous functions u : R → X such that t 7→
∫ t
−∞ g1−γ(t − s)u(s) ds,

t ∈ R is a well-defined continuously differentiable mapping, by

Dγ
t,+u(t) :=

d

dt

∫ t

−∞
g1−γ(t− s)u(s) ds, t ∈ R.

Set D1
t,+u(t) := −(d/dt)u(t). For more details about the subject, the reader may

consult the article [297].
The Mittag-Leffler functions and the Wright functions play an incredible role

in fractional calculus. Let α > 0 and β ∈ R. Then the Mittag-Leffler function
Eα,β(z) is defined by

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C;

set, for short, Eα(z) := Eα,1(z), z ∈ C.
The asymptotic behaviour of entire function Eα,β(z) is given by the following

important result (see e.g., [351, Theorem 1.1]):

Theorem 1.3.1. Let 0 < σ < 1
2π. Then, for every z ∈ Cr{0} and m ∈ Nr{1},

Eα,β(z) =
1

α

∑
s

Z1−β
s eZs −

m−1∑
j=1

z−j

Γ(β − αj)
+O

(
|z|−m

)
,

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over all
those integers s satisfying | arg(z) + 2πs| < α(π2 + σ).

Let γ ∈ (0, 1). Then the Wright function Φγ(·) is defined by

Φγ(z) :=

∞∑
n=0

(−z)n

n!Γ(1− γ − γn)
, z ∈ C.
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Let us recall that Φγ(·) is an entire function as well as that:

(i) Φγ(t) > 0, t > 0,

(ii)
∫∞

0
e−λtγst−1−γΦγ(t−γs) dt = e−λ

γs, λ ∈ C+, s > 0, and

(iii)
∫∞

0
trΦγ(t) dt = Γ(1+r)

Γ(1+γr) , r > −1.

The asymptotic expansion of the Wright function Φγ(·), as |z| → ∞ in the sector
| arg(z)| 6 min((1− γ)3π/2, π)− ε, is given by

Φγ(z) = Y γ−1/2e−Y

(
M−1∑
m=0

AmY
−M +O

(
|Y |−M

))
,

where Y = (1− γ)(γγz)1/(1−γ), M ∈ N and Am are certain real numbers (see e.g.,
[52]).

Solution operator families. Suppose now that 0 < τ 6∞, k ∈ C([0, τ)), k 6= 0,
a ∈ L1

loc([0, τ)), a 6= 0, A : X → P (X) is an MLO, C1 ∈ L(Y,X), C2 ∈ L(X) is
injective, C ∈ L(X) is injective and CA ⊆ AC.

We will use the following general definition:

Definition 1.3.2. ([236]) Suppose 0 < τ 6 ∞, k ∈ C([0, τ)), k 6= 0, a ∈
L1
loc([0, τ)), a 6= 0, A : X → P (X) is an MLO, C1 ∈ L(Y,X), and C2 ∈ L(X) is

injective.

(i) Then it is said that A is a subgenerator of a (local, if τ <∞) mild (a, k)-
regularized (C1, C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆
L(Y,X) × L(X) if and only if the mappings t 7→ R1(t)y, t > 0 and
t 7→ R2(t)x, t ∈ [0, τ) are continuous for every fixed x ∈ X and y ∈ Y, as
well as the following conditions hold:

(10)

( t∫
0

a(t− s)R1(s)y ds,R1(t)y − k(t)C1y

)
∈ A, t ∈ [0, τ), y ∈ Y and

(11)

t∫
0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ A.

(ii) Let (R1(t))t∈[0,τ) ⊆ L(Y,X) be strongly continuous. Then it is said that
A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C1-
existence family (R1(t))t∈[0,τ) if and only if (10) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(X) be strongly continuous. Then it is said that A is
a subgenerator of a (local, if τ <∞) mild (a, k)-regularized C2-uniqueness
family (R2(t))t∈[0,τ) if and only if (11) holds.

Let us recall that R(R1(0) − k(0)C1) ⊆ A0 and, if a(t) is a kernel on [0, τ),
then R2(t)A is single-valued for any t ∈ [0, τ) and R2(t)y = 0 for any y ∈ A0 and
t ∈ [0, τ).

Definition 1.3.3. ([236]) Suppose that 0 < τ 6 ∞, k ∈ C([0, τ)), k 6= 0,
a ∈ L1

loc([0, τ)), a 6= 0, A : X → P (X) is an MLO, C ∈ L(X) is injective and CA ⊆
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AC. Then it is said that a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(X)
is an (a, k)-regularized C-resolvent family with a subgenerator A if and only if
(R(t))t∈[0,τ) is a mild (a, k)-regularized C-uniqueness family having A as subgen-
erator, R(t)C = CR(t) and R(t)A ⊆ AR(t) (t ∈ [0, τ)).

If k(t) = gα+1(t), where α > 0, then we also say that (R(t))t∈[0,τ) is an α-
times integrated (a,C)-resolvent family; 0-times integrated (a,C)-resolvent family
is further abbreviated to (a,C)-resolvent family. We will accept a similar termi-
nology for mild (a, k)-regularized C1-existence families and mild (a, k)-regularized
C2-uniqueness families.

Suppose that (R1(t), R2(t))t∈[0,τ) is a mild (a, k)-regularized (C1, C2)-existence
and uniqueness family with a subgenerator A. Then we have(

a ∗R2

)
(s)R1(t)y −R2(s)

(
a ∗R1

)
(t)y

= k(t)
(
a ∗R2

)
(s)C1y − k(s)C2

(
a ∗R1

)
(t)y, t ∈ [0, τ), y ∈ Y.

The integral generator of a mild (a, k)-regularized C2-uniqueness family
(R2(t))t∈[0,τ) (mild (a, k)-regularized (C1, C2)-existence and uniqueness family
(R1(t), R2(t))t∈[0,τ)) is defined by

Aint :=

{
(x, y) ∈ X ×X : R2(t)x− k(t)C2x =

∫ t

0

a(t− s)R2(s)y ds, t ∈ [0, τ)

}
;

we define the integral generator of an (a, k)-regularized C-regularized family
(R(t))t∈[0,τ) in the same way as above. The integral generator Aint is an MLO in X
which extends any subgenerator of (R2(t))t∈[0,τ) ((R(t))t∈[0,τ)) in the set theoretical
sense; furthermore, the assumption R2(t)C2 = C2R2(t), t ∈ [0, τ) implies that
C−1

2 AintC2 = Aint so that C−1AintC = Aint for resolvent families.
Concerning the vector-valued Laplace transform, we can recommend for the

reader the monographs [30, 236, 352]. The following condition on a scalar-valued
function k(t) will be used:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R such that

k̃(λ) := L(k)(λ) := limb→∞
∫ b

0
e−λtk(t) dt :=

∫∞
0
e−λtk(t) dt exists for all

λ ∈ C with Reλ > β. Put abs(k) :=inf{Reλ : k̃(λ) exists}, and denote by
L−1 the inverse Laplace transform.

We have the following ([236]):

Theorem 1.3.4. Suppose A is a closed MLO in X, C1 ∈ L(Y,X), C2 ∈ L(X),
C2 is injective, ω0 > 0 and ω > max(ω0, abs(|a|), abs(k)).

(i) Let (R1(t), R2(t))t>0 ⊆ L(Y,X) × L(X) be strongly continuous, and let
the family {e−ωtRi(t) : t > 0} be equicontinuous for i = 1, 2.
(a) Suppose (R1(t), R2(t))t>0 is a mild (a, k)-regularized

(C1, C2)-existence and uniqueness family with a subgenerator A. Then,

for every λ ∈ C with Reλ > ω and ã(λ)k̃(λ) 6= 0, the operator
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I − ã(λ)A is injective, R(C1) ⊆ R(I − ã(λ)A),

(12) k̃(λ)
(
I − ã(λ)A

)−1
C1y =

∞∫
0

e−λtR1(t)y dt, y ∈ Y,

(13)

{
1

ã(z)
: Re z > ω, k̃(z)ã(z) 6= 0

}
⊆ ρC1

(A)

and

(14) k̃(λ)C2x =

∞∫
0

e−λt
[
R2(t)x−

(
a ∗R2

)
(t)y

]
dt, whenever (x, y) ∈ A.

(b) Let (13) hold, and let (12) and (14) hold for any λ ∈ C with Reλ > ω

and ã(λ)k̃(λ) 6= 0. Then (R1(t), R2(t))t>0 is a mild (a, k)-regularized
(C1, C2)-existence and uniqueness family with a subgenerator A.

(ii) Let (R1(t))t>0 be strongly continuous, and let the family {e−ωtR1(t) : t >
0} be equicontinuous. Then (R1(t))t>0 is a mild (a, k)-regularized C1-
existence family with a subgenerator A if and only if for every λ ∈ C with
Reλ > ω and ã(λ)k̃(λ) 6= 0, one has R(C1) ⊆ R(I − ã(λ)A) and

k̃(λ)C1y ∈
(
I − ã(λ)A

) ∞∫
0

e−λtR1(t)y dt, y ∈ Y.

(iii) Let (R2(t))t>0 be strongly continuous, and let the family {e−ωtR2(t) : t >
0} be equicontinuous. Then (R2(t))t>0 is a mild (a, k)-regularized C2-
uniqueness family with a subgenerator A if and only if for every λ ∈ C
with Reλ > ω and ã(λ)k̃(λ) 6= 0, the operator I − ã(λ)A is injective and
(14) holds.

Theorem 1.3.5. Let (R(t))t>0 ⊆ L(X) be a strongly continuous operator fam-
ily such that there exists ω > 0 satisfying that the family {e−ωtR(t) : t > 0} is
equicontinuous, and let ω0 > max(ω, abs(|a|), abs(k)). Suppose that A is a closed
MLO in X and CA ⊆ AC.

(i) Assume that A is a subgenerator of the global (a, k)-regularized C-resolvent
family (R(t))t>0 satisfying (10) for all x = y ∈ X. Then, for every λ ∈ C
with Reλ > ω0 and ã(λ)k̃(λ) 6= 0, the operator I − ã(λ)A is injective,
R(C) ⊆ R(I − ã(λ)A), as well as

(15) k̃(λ)
(
I − ã(λ)A

)−1
Cx =

∞∫
0

e−λtR(t)x dt, x ∈ X, Reλ > ω0, ã(λ)k̃(λ) 6= 0,

(16)

{
1

ã(λ)
: Reλ > ω0, k̃(λ)ã(λ) 6= 0

}
⊆ ρC(A)

and R(s)R(t) = R(t)R(s), t, s > 0.
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(ii) Assume (15)-(16). Then A is a subgenerator of the global
(a, k)-regularized C-resolvent family (R(t))t>0 satisfying (10) for all x =
y ∈ X and R(s)R(t) = R(t)R(s), t, s > 0.



CHAPTER 2

ALMOST PERIODIC TYPE FUNCTIONS AND
SOLUTIONS TO INTEGRO-DIFFERENTIAL

EQUATIONS

In this chapter, we investigate vector-valued almost periodic type functions and
almost periodic type solutions of the abstract Volterra integro-differential equations
in Banach spaces, which could be degenerate or non-degenerate in time variable.
Special attention is paid to the analysis of various classes of abstract semilinear
fractional Cauchy inclusions.

We start by recalling the basic features of almost periodic functions and asymp-
totically almost periodic functions in Banach spaces.

2.1. Almost periodic functions and asymptotically almost periodic
functions

The notion of almost periodicity was introduced by the famous Danish math-
ematician H. Bohr around 1924-1926 ([75]) and later generalized by many others
(cf. [18], [115], [117], [135], [170], [192]-[193], [212], [265], [333] and [359] for
more details on the subject). Let I = R or I = [0,∞), and let f : I → X be
continuous. Given ε > 0, we call τ > 0 an ε-period for f(·) if and only if

‖f(t+ τ)− f(t)‖ 6 ε, t ∈ I.(17)

By ϑ(f, ε) we denote the set of all ε-periods for f(·). We say that f(·) is almost
periodic if and only if for each ε > 0 the set ϑ(f, ε) is relatively dense in [0,∞),
which means that there exists l > 0 such that any subinterval of [0,∞) of length
l meets ϑ(f, ε). It is said that f(·) is weakly almost periodic if and only if for
each x∗ ∈ X∗ the function x∗(f(·)) is almost periodic. Any weakly almost periodic
function f ∈ BUC(I : X) with relatively compact range in X is almost periodic;
see e.g., [30, Proposition 4.5.12].

By AP (I : X) we denote the space consisting of all almost periodic functions
from the interval I into X; equipped with the sup-norm, AP (I : X) is a Banach
space. This space contains the space Pc(I : X) consisting of all continuous functions
f : I → X of period c > 0; by P (I : X) we denote the space consisting of all
continuous functions f : I → X for which there exists c > 0 such that f(·) is of
period c > 0.

The notion of an almost periodic strongly continuous semigroup was introduced
by H. Bart and S. Goldberg in [43]. The translation semigroup (W (t))t>0 on

36
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AP ([0,∞) : X), defined by [W (t)f ](s) := f(t+s), t > 0, s > 0, f ∈ AP ([0,∞) : X)
is consisting solely of surjective isometries W (t) (t > 0) and can be extended to a
C0-group (W (t))t∈R of isometries on AP ([0,∞) : X), where W (−t) := W (t)−1 for
t > 0. Moreover, the mapping E : AP ([0,∞) : X)→ AP (R : X), defined by

[Ef ](t) := [W (t)f ](0), t ∈ R, f ∈ AP ([0,∞) : X),

is a linear surjective isometry and Ef(·) is the unique almost periodic extension
of a function f(·) from AP ([0,∞) : X) to the whole real line. Let us recall that
[E(Bf)] = B(Ef) for all B ∈ L(X) and f ∈ AP ([0,∞) : X).

In the following theorem, we collect the fundamental properties of almost pe-
riodic vector-valued functions; by c0 we denote the Banach space of all numerical
sequences tending to zero, equipped with the sup-norm.

Theorem 2.1.1. Let f ∈ AP (I : X). Then the following holds:

(i) f ∈ BUC(I : X);
(ii) if g ∈ AP (I : X), h ∈ AP (I : C), α, β ∈ C, then αf + βg and hf ∈

AP (I : X);
(iii) Bohr’s transform of f(·),

Pr(f) := lim
t→∞

1

t

∫ t

0

e−irsf(s) ds,

exists for all r ∈ R and

Pr(f) := lim
t→∞

1

t

∫ t+α

α

e−irsf(s) ds

for all α ∈ I, r ∈ R. The element Pr(f) is called the Bohr coefficient or
the Bohr-Fourier coefficient of f(·);

(iv) if Pr(f) = 0 for all r ∈ R, then f(t) = 0 for all t ∈ I;
(v) Bohr’s spectrum σ(f) := {r ∈ R : Pr(f) 6= 0} is at most countable;

(vi) if X does not contain an isomorphic copy of c0, I = R and g(t) =∫ t
0
f(s) ds (t ∈ R) is bounded, then g ∈ AP (R : X);

(vii) if (gn)n∈N is a sequence in AP (I : X) and (gn)n∈N converges uniformly
to g, then g ∈ AP (I : X);

(viii) if f ′ ∈ BUC(I : X), then f ′ ∈ AP (I : X);

(ix) (Spectral synthesis) f ∈ span{eiµ·x : µ ∈ σ(f), x ∈ R(f)};
(x) R(f) is relatively compact in X;

(xi) (Supremum formula) we have

‖f‖∞ = sup
t>t0
‖f(t)‖, t0 ∈ I;

(xii) (Convolution invariance) if I = R and g ∈ L1(R), then g∗f ∈ AP (R : X),
where

(g ∗ f)(t) =

∫ ∞
−∞

g(t− s)f(s) ds, t ∈ R;
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(xiii) if n ∈ N and f1 ∈ AP (I : X1), · · ·, fn ∈ AP (I : Xn), then (f1, · · ·, fn) ∈
AP (I : X1 × · · · × Xn). Here, Xi is a complex Banach space for all
i = 1, · · ·, n;

(xiv) if f1 ∈ AP (I : X1), · · ·, fn ∈ AP (I : Xn), then for each ε > 0 there exists
a common relatively dense set ϑ(f1, · · ·, fn, ε) of ε-periods for any of these
functions. Here, Xi is a complex Banach space for all i = 1, · · ·, n;

(xv) (Bochner’s criterion) Let I = R. Then f(·) is almost periodic if and only
if for any real sequence (bn) there exists a subsequence (an) of (bn) such
that (f(·+ an)) converges in BUC(R : X).

Before proceeding any further, we would like to mention that the necessary
and sufficient condition for X to contain c0 is given in [30, Theorem 4.6.14]. The
importance of such condition has been recognized already by H. Bohr and later
employed frequently (see e.g., the fomulation of Kadet’s theorem [30, Theorem
4.6.11]).

By APΛ(I : X), where Λ is a non-empty subset of I, we denote the vector
subspace of AP (I : X) consisting of all functions f ∈ AP (I : X) satisfying that
σ(f) ⊆ Λ; APΛ(I : X) is a closed subspace of AP (I : X) and therefore a Banach
space. For numerous equivalent criteria stating the necessary and sufficient con-
ditions for the almost periodicity of a given function, we refer the reader to [234]
and references quoted therein.

In the case that I = [0,∞), the notion of asymptotical almost periodicity was
introduced by A. S. Kovanko [257] in 1929 and later rediscovered, in a slightly
different form, by M. Fréchet [174] in 1941 (for comprehensive information about
the subject, we refer to [96], [135], [192]-[193], [324]-[325], [353] and [366]). A
function f ∈ Cb(I : X) is said to be asymptotically almost periodic if and only if
for every ε > 0 we can find numbers l > 0 and M > 0 such that every subinterval
of I of length l contains, at least, one number τ such that ‖f(t + τ) − f(t)‖ 6 ε
provided |t|, |t+τ | >M. The space consisting of all asymptotically almost periodic
functions from I into X is denoted by AAP (I : X). It is well known that (see W.
M. Ruess, W. H. Summers [323]-[325] for the case that I = [0,∞) and C. Zhang
[365]-[366] for the case that I = R) the following statements are equivalent:

(i) f ∈ AAP (I : X).
(ii) There exist uniquely determined functions g ∈ AP (R : X) and φ ∈ C0(I :

X) such that f = g + φ.

The functions g and φ from (ii) are called the principal and corrective terms of the
function f , respectively. If there exist functions g ∈ P (R : X) (of period c > 0)
and φ ∈ C0(I : X) such that f = g + φ, then we say that f(·) is asymptotically
periodic (asymptotically c-periodic).

By C0(I×Y : X) we denote the space of all continuous functions h : I×Y → X
such that lim|t|→∞ h(t, y) = 0 uniformly for y in any compact subset of Y. A
continuous function f : I×Y → X is called uniformly continuous on bounded sets,
uniformly for t ∈ I if and only if for every ε > 0 and every bounded subset K of
Y there exists a number δε,K > 0 such that ‖f(t, x) − f(t, y)‖ 6 ε for all t ∈ I
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and all x, y ∈ K satisfying that ‖x− y‖ 6 δε,K . If f : I × Y → X, then we define

f̂ : I × Y → Lp([0, 1] : X) by f̂(t, y) := f(t+ ·, y), t > 0, y ∈ Y.
The following definition and related composition principle can be found, e.g.,

in [234]:

Definition 2.1.2. Let 1 6 p <∞.
(i) A function f : I × Y → X is called almost periodic if and only if f(·, ·) is

bounded, continuous as well as for every ε > 0 and every compact K ⊆ Y
there exists l(ε,K) > 0 such that every subinterval J ⊆ I of length l(ε,K)
contains a number τ with the property that ‖f(t+ τ, y)− f(t, y)‖ 6 ε for
all t ∈ I, y ∈ K. The collection of such functions will be denoted by
AP (I × Y : X).

(ii) A function f : I × Y → X is said to be asymptotically almost periodic if
and only if it is bounded continuous and admits a decomposition f(t) =
g(t)+q(t), t ∈ I, where g ∈ AP (R×Y : X) and q ∈ C0(I×Y : X). Denote
by AAP (I × Y : X) the vector space consisting of all such functions.

Theorem 2.1.3. (i) Let f ∈ AP (I × Y : X) and h ∈ AP (I : Y ). Then
the mapping t 7→ f(t, h(t)), t ∈ I belongs to the space AP (I : X).

(ii) Let f ∈ AAP (I × Y : X) and h ∈ AAP (I : Y ). Then the mapping
t 7→ f(t, h(t)), t > 0 belongs to the space AAP (I : X).

Let us recall that f(·) is anti-periodic if and only if there exists p > 0 such
that f(x+ p) = −f(x), x ∈ I. Any such function needs to be periodic, as it can be
easily proved. Given ε > 0, we call τ > 0 an ε-antiperiod for f(·) if and only if

‖f(t+ τ) + f(t)‖ 6 ε, t ∈ I.

By ϑap(f, ε) we denote the set of all ε-antiperiods for f(·). The notion of an al-
most anti-periodic function has recently been introduced in [254, Definition 2.1] as
follows:

Definition 2.1.4. It is said that f(·) is almost anti-periodic if and only if for
each ε > 0 the set ϑap(f, ε) is relatively dense in [0,∞).

We know that any almost anti-periodic function needs to be almost periodic.
Denote by ANP0(I : E) the linear span of almost anti-periodic functions from I
into X. Then [254, Theorem 2.3] implies that ANP0(I : E) is a linear subspace of
AP (I : E) as well as that the linear closure of ANP0(I : E) in AP (I : E), denoted
by ANP (I : E), satisfies

ANP (I : E) = APRr{0}(I : E).(18)

Later, we will generalize the notion of almost anti-periodicity by introducing the
notion of almost c-periodicity (see Section 2.9).

Within the theory of topological dynamical systems, the notion of recurrence
plays an important role; for more details, the reader may consult the research
monographs [129] by J. de Vries and [159] by T. Eisner et al. Following A. Haraux
and P. Souplet [202], we introduce the following notion:
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Definition 2.1.5. It is said that a continuous function f : I → X is uniformly
recurrent if and only if there exists a strictly increasing sequence (αn) of positive
real numbers such that limn→+∞ αn = +∞ and

lim
n→∞

sup
t∈I

∥∥f(t+ αn)− f(t)
∥∥ = 0.(19)

It is well known that any almost periodic function is uniformly recurrent, while
the converse statement is not true in general. It is worth noting that the convergence
of the above limit is uniform in the variable t ∈ R, so that the notion of a uniformly
recurrent function should not be mistakenly identified with the notion of a reccurent
function in the continuous Bebutov system [53], where the author has analyzed the
usual Fréchet space C(R) and the topology of uniform convergence on compact sets
(cf. also Subection 2.3.9 in the monograph [61] by G. Bertotti and I. D. Mayergoyz,
the paper [124] by L. I. Danilov and references cited therein for further information
in this direction).

Let us recall that the notion of a pseudo almost periodic function was in-
troduced by C. Zhang in his doctoral dissertation [362] (cf. also [363]-[364]).
Henceforth, PAP0(R : X) stands for the space consisting of all pseudo-ergodic
components, i.e., the bounded continuous functions Φ : R→ X such that

lim
l→∞

1

2l

∫ l

−l
‖Φ(s)‖ ds = 0.

Concerning the space PAP0(R : C), it should be recalled that f ∈ PAP0(R : C) if
and only if f · f ∈ PAP0(R : C).

We say that a continuous function f : R → X is pseudo almost periodic if
and only if it admits a decomposition f = g + q, where g ∈ AP (R : X) and
q ∈ PAP0(R : X). It is well known that, if such a decomposition exists, then it
must be unique. The space consisting of all pseudo almost periodic functions will
be denoted by PAP (R : X) henceforth.

Example 2.1.6. Define

f(t) :=
1

2t

∫ t

−t
s| sin s|s

N

ds, t ∈ R,

where N > 6. From [13, Example p. 1143] we know that limt→+∞ f(t) = 0 and

therefore ·| sin ·|·N ∈ PAP0(R : C) for N > 6.

For more details about pseudo almost periodic functions, see the book [136]
by T. Diagana and the doctoral dissertation of C. Zhang [362]. Mention should be
made of the monograph [304] by A. A. Pankov.

The almost periodic and almost automorphic functions on time scales and their
applications to the abstract Volterra integro-differential equations have been re-
cently considered by numerous mathematicians (for time scale calculus, we warmly
recommend the monograph [72] by M. Bochner and A. Peterson). For more details
about this problematic, we refer the reader to [132, 133, 134, 219, 267, 268,
269, 273, 274, 291] and references cited therein.
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Concerning Hartman almost periodic functions, we recommend for the reader
the article [113] by G. Cohen and V. Losert.

2.2. Stepanov, Weyl and Besicovitch classes

Suppose that 1 6 p < ∞, l > 0 and f, g ∈ Lploc(I : X), where I = R or
I = [0,∞). We define the Stepanov ‘metric’ by

Dp
Sl

[
f(·), g(·)

]
:= sup

x∈I

[
1

l

∫ x+l

x

∥∥f(t)− g(t)
∥∥p dt]1/p

.

Then, for every two numbers l1, l2 > 0, there exist two positive real constants
k1, k2 > 0 independent of f, g, such that

k1D
p
Sl1

[
f(·), g(·)

]
6 Dp

Sl2

[
f(·), g(·)

]
6 k2D

p
Sl1

[
f(·), g(·)

]
,

as well as that there exists

Dp
W

[
f(·), g(·)

]
:= lim

l→∞
Dp
Sl

[
f(·), g(·)

]
(20)

in [0,∞]. The distance appearing above is called the Weyl distance of f(·) and g(·).
The Stepanov and Weyl ‘norm’ of f(·) are defined by∥∥f∥∥

Spl
:= Dp

Sl

[
f(·), 0

]
and

∥∥f∥∥
Wp := Dp

W

[
f(·), 0

]
,

respectively.
Before proceeding further, we would like to note that it is not clear how we can

define the Stepanov distance by considering a general variable exponent p ∈ P(I)
in place of the constant coefficient p > 1 above; morover, it is not clear whether
the formula (20) can be generalized in this context.

Henceforth we assume that l1 = l2 = 1. It is said that a function f ∈ Lploc(I : X)
is Stepanov p-bounded, Sp-bounded for short, if and only if

‖f‖Sp := sup
t∈I

(∫ t+1

t

‖f(s)‖p ds

)1/p

<∞.

Equipped with the above norm, the space LpS(I : X) consisting of all Sp-bounded
functions is a Banach space. A function f ∈ LpS(I : X) is said to be Stepanov

p-almost periodic, Sp-almost periodic shortly, if and only if the function f̂ : I →
Lp([0, 1] : X), defined by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1],(21)

is almost periodic. We say that the function f ∈ LpS(I : X) is asymptotically
Stepanov p-almost periodic if and only if there exist two locally p-integrable func-
tions g : R→ X and q : I → X satisfying the following conditions:

(i) g is Sp-almost periodic,
(ii) q̂ belongs to the class C0(I : Lp([0, 1] : X)),
(iii) f(t) = g(t) + q(t) for all t ∈ I.
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Recall, if f(·) is an (asymptotically) almost periodic function, then f(·) is
also (asymptotically) Stepanov p-almost periodic for 1 6 p < ∞. The converse
statement is false, however ([264]):

Example 2.2.1. Assume that α, β ∈ R and αβ−1 is a well-defined irrational
number. Then the functions

f(t) := sin

(
1

2 + cosαt+ cosβt

)
, t ∈ R(22)

and

g(t) := cos

(
1

2 + cosαt+ cosβt

)
, t ∈ R(23)

are Stepanov p-almost periodic but not almost periodic (1 6 p < ∞). The case

α = 1 and β =
√

2 has been further analyzed by A. Nawrocki in [301], who proved
with the help of Liouville’s theorem and some results from the theory of continuous
fractions [301, Theorem 1, Theorem 2] that

lim
t→+∞

t−2−ε

2 + cos t+ cos
√

2t
= 0, ε > 0

and

lim
t→+∞

t−2

2 + cos t+ cos
√

2t

does not exist. Recall, the function t 7→ 1/(2+cos t+cos
√

2t), t ∈ R is well defined,
continuous and unbounded.

Denote by APSp(I : X) and AAPSp(I : X) the space consisting of all Sp-
almost periodic functions f : I → X and the space consisting of all asymptotically
Sp-almost periodic functions f : I → X, respectively. The Bochner theorem asserts
that any uniformly continuous function which is also Stepanov p-almost periodic
needs to be almost periodic (1 6 p < ∞); the Bochner theorem for Stepanov p-
almost periodic functions has been established by Z. Hu and A. B. Mingarelli in
[213, Theorem 1].

Definition 2.2.2. Let 1 6 p <∞. A function f : I×Y → X is called Stepanov

p-almost periodic if and only if f̂ : I × Y → Lp([0, 1] : X) is almost periodic.

Recall that a bounded continuous function f : I × Y → X is asymptotically
almost periodic if and only if for every ε > 0 and every compact K ⊆ Y there exist
l(ε,K) > 0 and M(ε,K) > 0 such that every subinterval J ⊆ I of length l(ε,K)
contains a number τ with the property that ‖f(t + τ, y) − f(t, y)‖ 6 ε provided
|t|, |t+ τ | > M(ε,K), y ∈ K. The notion of an asymptotically Stepanov p-almost
periodic function f(·, ·) is introduced in [234] for case I = [0,∞) as follows:

Definition 2.2.3. Let 1 6 p < ∞. A function f : I × Y → X is said to

be asymptotically Sp-almost periodic if and only if f̂ : I × Y → Lp([0, 1] : X) is
asymptotically almost periodic. The collection of such functions will be denoted
by AAPSp(I × Y : X).
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Let ω ∈ I. Then we say that a bounded continuous function f : I → X is
S-asymptotically ω-periodic if and only if lim|t|→∞ ‖f(t + ω) − f(t)‖ = 0. Denote
by SAPω(I : X) the space consisting of all such functions. A Stepanov p-bounded
function f(·) is said to be Stepanov p-asymptotically ω-periodic if and only if

lim
|t|→∞

∫ t+1

t

∥∥f(s+ ω)− f(s)
∥∥p ds = 0.

If we denote by SpSAPω(I : X) the space consisting of all such functions, then
we have that SAPω(I : X) ⊆ SpSAPω(I : X) and the inclusion is strict (for more
details, see H. R. Henŕıquez [206] and H. R. Henŕıquez, M. Pierri, P. Táboas [209]).

The (Stepanov) quasi-asymptotically almost periodic functions have been an-
alyzed in [247]. For our further work, it will be necessary to recall the following
definition:

Definition 2.2.4. Suppose that I = [0,∞) or I = R.
(i) A bounded continuous function f : I → X is said to be quasi-asymptotically

almost periodic if and only if for each ε > 0 there exists a finite number
L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one
number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0
such that

‖f(t+ τ)− f(t)‖ 6 ε, provided t ∈ I and |t| >M(ε, τ).

Denote by Q−AAP (I : X) the set consisting of all quasi-asymptotically
almost periodic functions from I into X.

(ii) Let f ∈ LpS(I : X). Then it is said f(·) is Stepanov p-quasi-asymptotically
almost periodic if and only if for each ε > 0 there exists a finite number
L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one
number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0
such that∫ t+1

t

‖f(s+ τ)− f(s)‖p ds 6 εp, provided t ∈ I and |t| >M(ε, τ).

Denote by SpQ− AAP (I : X) the set consisting of all Stepanov p-quasi-
asymptotically almost periodic functions from I into X.

Let us recall that for each number p ∈ [1,∞) we have that Q − AAP (I :
X) ⊆ SpQ − AAP (I : X) as well as that any asymptotically Stepanov p-almost
periodic function is Stepanov p-quasi-asymptotically almost periodic. Furthermore,
if 1 6 p 6 q < ∞, then SqQ − AAP (I : X) ⊆ SpQ − AAP (I : X) and for any
function f ∈ LpS(I : X), we have that f(·) is Stepanov p-quasi-asymptotically

almost periodic if and only if the function f̂ : I → Lp([0, 1] : X), defined by
(21), is quasi-asymptotically almost periodic. It is said that f(·) is Stepanov quasi-
asymptotically almost periodic if and only if f(·) is Stepanov 1-quasi-asymptotically
almost periodic. Any asymptotically almost periodic function f : I → X is quasi-
asymptotically almost periodic. Furthermore, we have SAPω(I : X) ⊆ Q−AAP (I :
X) and SpSAPω(I : X) ⊆ SpQ−AAP (I : X).
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Let 1 6 p < ∞. In order to introduce the Besicovitch-p-almost periodic func-
tions and the Besicovitch-Doss-p-almost periodic functions, suppose that X and
Y are two complex Banach spaces (see also the article [125] by L. I. Danilov for
the corresponding notion in complete metric spaces). If f ∈ Lploc(R : X), then we
define

‖f‖Mp := lim sup
t→+∞

[
1

2t

∫ t

−t
‖f(s)‖p ds

]1/p

;

if f ∈ Lploc([0,∞) : X), then

‖f‖Mp := lim sup
t→+∞

[
1

t

∫ t

0

‖f(s)‖p ds

]1/p

;

see also J. Marcinkiewicz’s article [282] and M. A. Picardello’s article [313].
In any case, ‖ · ‖Mp is a seminorm on the space Mp(I : X) consisting of those

Lploc(I : X)-functions f(·) for which ‖f‖Mp < ∞. Denote Kp(I : X) := {f ∈
Mp(I : X) : ‖f‖Mp = 0} and

Mp(I : X) :=Mp(I : X)/Kp(I : X).

The seminorm ‖ · ‖Mp onMp(I : X) induces the norm ‖ · ‖Mp on Mp(I : X) under
which Mp(I : X) is complete so that (Mp(I : X), ‖ · ‖Mp) is a Banach space.

Now we are able to introduce the following notion:

Definition 2.2.5. Let 1 6 p < ∞. We say that a function f ∈ Lploc(I : X)
is Besicovitch-p-almost periodic if and only if there exists a sequence of X-valued
trigonometric polynomials converging to f(·) in (Mp(I : X), ‖ · ‖Mp).

The vector space consisting of all Besicovitch-p-almost periodic functions is
denoted by Bp(I : X). It is well known that Bp(I : X) is a closed subspace of
Mp(I : X) and therefore a Banach space equipped with the norm ‖ · ‖Mp .

The Besicovitch class can be equivalently introduced in a Bohr-like manner,
by using the notion of satisfactorily uniform sets (see e.g. [62] and [23, Definition
5.10, Definition 5.11]). We will not use this approach henceforth.

We define the Besicovitch ‘distance’ of functions f, g ∈ Lploc(I : X) by

DBp [f(·), g(·)] := ‖f − g‖Mp ;

the Besicovitch ‘norm’ of f ∈ Lploc(I : X) is defined by

‖f‖Bp := DBp [f(·), 0] := ‖f‖Mp .

We say that f(·) is Besicovitch p-bounded if and only if ‖f‖Mp <∞. Recall that

‖f − g‖∞ > DSpl
[f(·), g(·)] > DWp [f(·), g(·)] > DBp [f(·), g(·)],

for 1 6 p < ∞, l > 0 and f, g ∈ Lploc(I : X), as well as that the assumption
‖f‖Mp = 0 does not imply f = 0 a.e. on I.

The notion of a Besicovitch-Doss-p-almost periodic function is introduced in
[234] following the fundamental analyses of R. Doss [155]-[156]:
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Definition 2.2.6. Let 1 6 p <∞. It is said that f ∈ Lploc(I : X) is Besicovitch-
Doss-p-almost periodic if and only if the following conditions hold:

(i) (Bp-boundedness) We have ‖f‖Mp <∞.
(ii) (Bp-continuity) We have

lim
τ→0

lim sup
t→+∞

[
1

2t

∫ t

−t
‖f(s+ τ)− f(s)‖p ds

]1/p

= 0,

in the case that I = R, resp.,

lim
τ→0+

lim sup
t→+∞

[
1

t

∫ t

0

‖f(s+ τ)− f(s)‖p ds

]1/p

= 0,

in the case that I = [0,∞).
(iii) (Doss-p-almost periodicity) For every ε > 0, the set of numbers τ ∈ I for

which

lim sup
t→+∞

[
1

2t

∫ t

−t
‖f(s+ τ)− f(s)‖p ds

]1/p

< ε,(24)

in the case that I = R, resp.,

lim sup
t→+∞

[
1

t

∫ t

0

‖f(s+ τ)− f(s)‖p ds

]1/p

< ε,

in the case that I = [0,∞), is relatively dense in I.
(iv) For every λ ∈ R, we have that

lim
l→+∞

lim sup
t→+∞

1

l

[
1

2t

∫ t

−t

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsf(s) ds

∥∥∥∥∥
p

dx

]1/p

= 0,

in the case that I = R, resp.,

lim
l→+∞

lim sup
t→+∞

1

l

[
1

t

∫ t

0

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsf(s) ds

∥∥∥∥∥
p

dx

]1/p

= 0,

in the case that I = [0,∞).

The vector space consisting of all Besicovitch-Doss-p-almost periodic functions
f : I → X in the sense of Definition 2.2.6 will be denoted by Bp(I : X). In the case
that X = C, an intriguing result of R. Doss says that Bp(I : X) = Bp(I : X). It
is still an unsolved problem whether the equality Bp(I : X) = Bp(I : X) holds in
vector-valued case.

2.2.1. Composition principles for Weyl almost periodic functions.
The notion of an (equi-)Weyl-p-almost periodic function plays an important role in
our investigations (cf. [234, Section 2.3] for more details):

Definition 2.2.7. Let 1 6 p <∞ and f ∈ Lploc(I : X).
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(i) We say that the function f(·) is equi-Weyl-p-almost periodic, f ∈ e −
W p
ap(I : X) for short, if and only if for each ε > 0 we can find two real

numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L
contains a point τ ∈ I ′ such that

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p dt]1/p

6 ε.

(ii) We say that the function f(·) is Weyl-p-almost periodic, f ∈ W p
ap(I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0
such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

lim
l→∞

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p dt]1/p

6 ε.

It is well known that APSp(I : X) ⊆ e − W p
ap(I : X) ⊆ W p

ap(I : X) and
e −W p

ap(I : X) ⊆ Bp(I : X). In the remainder of this subsection, we will present
some the research results obtained recently in [242], which have not been presented
in any other research monograph by now.

The following definition is slightly different from the corresponding definitions
introduced recently in [56] and [243] for the class of equi-Weyl-p-almost periodic
functions, with only one pivot space X = Y :

Definition 2.2.8. (i) A function F : I×Y → X is said to be equi-Weyl
p-almost periodic in t ∈ I uniformly with respect to compact subsets of Y
iff f(·, u) ∈ Lploc(I : X) for each fixed element u ∈ Y and if for each ε > 0
and each compact K of Y there exist two numbers l > 0 and L > 0 such
that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

sup
u∈K

sup
x∈I

[
1

l

∫ x+l

x

∥∥F (t+ τ, u)− F (t, u)
∥∥p dt]1/p

< ε.

We denote by e−W p
ap,K(I×Y : X) the vector space consisting of all such

functions.
(ii) A function F : I × Y → X is said to be Weyl p-almost periodic in t ∈ I

uniformly with respect to compact subsets of Y if f(·, u) ∈ Lploc(I : X)
for each fixed element u ∈ Y and if for each ε > 0 and each compact
K of Y we can find a real number L > 0 such that any interval I ′ ⊆ I
of length L contains a point τ ∈ I ′ satisfying that there exists a finite
number l(ε, τ) > 0 such that

sup
u∈K

sup
x∈I

[
1

l

∫ x+l

x

∥∥F (t+ τ, u)− F (t, u)
∥∥p dt]1/p

< ε, l > l(ε, τ).

We denote by W p
ap,K(I × Y : X) the vector space consisting of all such

functions.

The following definition is known in the case that X = Y (cf. [243]):
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Definition 2.2.9. Let q : [0,∞)× Y → X be such that q(·, u) ∈ Lploc([0,∞) :
X) for each fixed element u ∈ Y.

(i) It is said that q(·, ·) is Weyl p-vanishing uniformly with respect to compact
subsets of Y if and only if for each compact set K of Y we have:

lim
t→∞

lim
l→∞

sup
ξ>0,u∈K

[
1

l

∫ ξ+l

ξ

∥∥q(t+ s, u)
∥∥p ds]1/p

= 0.

(ii) It is said that q(·, ·) is equi-Weyl p-vanishing uniformly with respect to
compact subsets of Y if and only if for each compact set K of Y we have:

lim
l→∞

lim
t→∞

sup
ξ>0,u∈K

[
1

l

∫ ξ+l

ξ

∥∥q(t+ s, u)
∥∥p ds]1/p

= 0.

We denote by W p
0,K(I × Y : X) and e−W p

0,K(I × Y : X) the classes consisting of
all Weyl p-vanishing functions, uniformly with respect to compact subsets of Y and
all equi-Weyl p-vanishing functions, uniformly with respect to compact subsets of
Y , respectively.

Similarly, for the class of (equi-)Weyl p-almost periodic functions, we have
the following result which is not comparable with [56, Theorem 3] in the case of
consideration of equi-Weyl p-almost periodic functions, with I = R and X = Y :

Theorem 2.2.10. Suppose that the following conditions hold:

(i) F ∈ (e−)W p
ap,K(I × Y : X) with p > 1, and there exist a number r >

max(p, p/(p− 1)) and a function LF ∈ LrS(I) such that

‖F (t, x)− F (t, y)‖ 6 LF (t)‖x− y‖Y , t ∈ I, x, y ∈ Y.(25)

(ii) x ∈ (e−)W p
ap(I : Y ), and there exists a set E ⊆ I with m(E) = 0 such

that K := {x(t) : t ∈ I r E} is relatively compact in Y.
(iii) For every ε > 0, there exist two numbers l > 0 and L > 0 such that any

interval I ′ ⊆ I of length L contains a number τ ∈ I ′ such that

sup
t∈I,u∈K

[
1

l

∫ t+l

t

∥∥F (s+ τ, u)− F (s, u)
∥∥p ds]1/p

6 ε(26)

and

sup
t∈I

[
1

l

∫ t+l

t

∥∥x(s+ τ)− x(s)
∥∥p
Y
ds

]1/p

6 ε(27)

in the case of consideration of equi-Weyl p-almost periodic functions,
resp., there exists a finite number L > 0 such that any interval I ′ ⊆ I
of length L contains a number τ ∈ I ′ satisfying that there exists a number
l(ε, τ) > 0 so that (26)-(27) hold for all numbers l > l(ε, τ), in the case
of consideration of Weyl p-almost periodic functions.

Then q := pr/(p+ r) ∈ [1, p) and F (·, x(·)) ∈ (e−)W q
ap(I : X).
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Proof. Without loss of generality, we may assume that X = Y. Since the
function LF (·) is Stepanov r-bounded, equivalently, Weyl r-bounded, the measur-
ability and Sp-boundedness of function F (·, x(·)) follow similarly as in the proof of
[276, Theorem 2.2]. Applying the Hölder inequality and an elementary calculation
involving the estimate (25) and condition (ii), we get that, for every t, τ ∈ I and
l > 0,

1

l

∫ t+l

t

∥∥F (s+ τ, x(s+ τ))− F (s, x(s))
∥∥q ds

6
1

l

[(∫ t+l

t

LrF (s+ τ) ds

)1/r(∫ t+l

t

∥∥x(s+ τ)− x(s)
∥∥p dt)1/p

+

(∫ t+l

t

∥∥F (s+ τ, x(s))− F (s, x(s))
∥∥q ds)1/q]

6
1

l

[(∫ t+l

t

LrF (s+ τ) ds

)1/r(∫ t+l

t

∥∥x(s+ τ)− x(s)
∥∥p dt)1/p

+

(∫ t+l

t

(
sup
u∈K

∥∥F (s+ τ, u)− F (s, u)
∥∥)q ds)1/q]

.

The remaining part of proof is almost the same for both classes of functions, equi-
Weyl p-almost periodic functions and Weyl p-almost periodic functions; because of
that, we will consider only the first class up to the end of proof. Let ε > 0 be given.
By (iii), there exist two numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of
length L contains a number τ ∈ I ′ such that (26)-(27) hold. Since the validity of
(26)-(27) with given numbers l > 0 and τ ∈ I implies the validity of (26)-(27) with
numbers nl and τ ∈ I (n ∈ N), we may assume that the number l > 0 is as large
as we want to be. Then, due to Lemma 1.1.3, we obtain the existence of a finite
number M > 0 such that:

1

l

(∫ t+l

t

LrF (s+ τ) ds

)1/r

6Ml(1/r)−1‖LF ‖W r , t ∈ I

and

1

l

(∫ t+l

t

LrF (s+ τ) ds

)1/r(∫ t+l

t

∥∥x(s+ τ)− x(s)
∥∥p dt)1/p

6Ml(1/p)+(1/r)−1‖LF ‖W r = l(1/q)−1‖LF ‖W r 6 ‖LF ‖W r , t ∈ I.
For the estimation of term

1

l

(∫ t+l

t

(
sup
u∈K

∥∥F (s+ τ, u)− F (s, u)
∥∥)q ds)1/q

, t ∈ I

we can use the trick employed for proving [276, Lemma 2.1]. Since K is totally
bounded, there exist an integer k ∈ N and a finite subset {x1, ···, xk} of K such that
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K ⊆
⋃k
i=1B(xi, ε), where B(x, ε) := {y ∈ X : ‖x− y‖ 6 ε}. Applying Minkowski’s

inequality and a simple argumentation similar to that used in the proof of above-
mentioned lemma, we get the existence of a finite positive real number cq > 0 such
that

1

l

(∫ t+l

t

(
sup
u∈K

∥∥F (s+ τ, u)− F (s, u)
∥∥)q ds)1/q

6
cq
l

[
ε

(∫ t+l

t

[
LqF (s+ τ) + LqF (s)

]
ds

)1/q

+

k∑
i=1

(∫ t+l

t

∥∥F (s+ τ, xi)− F (s, xi)
∥∥q ds)1/q]

.

The term 1
l (
∫ t+l
t

[LqF (s+ τ) +LqF (s)] ds)1/q can be estimated by using Lemma 1.1.3
in the following way:

6
1

l

(∫ t+l+τ

t+τ

LqF (s) ds

)1/q

+
1

l

(∫ t+l

t

LqF (s) ds

)1/q

6Ml(−1/r)+(1/q)−1
∥∥LF∥∥W r l

1/r 6M
∥∥LF∥∥W r , t ∈ I.

Similarly, using Lemma 1.1.3 and (iii), we get

1

l

k∑
i=1

(∫ t+l

t

∥∥F (s+ τ, xi)− F (s, xi)
∥∥q ds)1/q

6
1

l
l(1/q)−(1/p)

k∑
i=1

(∫ t+l

t

∥∥F (s+ τ, xi)− F (s, xi)
∥∥p ds)1/p

6 εl(1/q)−1, t ∈ I.

This completes the proof of theorem. �

Remark 2.2.11. To the best knowledge of the author, it is not known whether
the assumptions F ∈ (e−)W p

ap(I × Y : X) and x ∈ (e−)W p
ap(I : Y ) imply the

validity of condition (iii), as for the class of Stepanov p-almost periodic functions.

The following result for the class of Weyl p-almost periodic functions can be
also deduced with the help of argumentation contained in [276] (compare with
Theorem 2.4.49, where we have analyzed the Stepanov class):

Theorem 2.2.12. Suppose that p, q ∈ [1,∞), r ∈ [1,∞], 1/p = 1/q + 1/r and
the following conditions hold:

(i) F ∈ W p
ap,KAP (I × Y : X) and there exists a function LF ∈ LrS(I) such

that (25) holds.
(ii) x ∈W q

apAP (I : Y ), and there exists a set E ⊆ I with m(E) = 0 such that
K := {x(t) : t ∈ I r E} is relatively compact in Y.
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(iii) For every ε > 0, there exists a finite number L > 0 such that any interval
I ′ ⊆ I of length L contains a number τ ∈ I ′ satisfying that there exists a
number l(ε, τ) > 0 so that (26) holds for all numbers l > l(ε, τ) and (27)
holds for all numbers l > l(ε, τ), with the number p replaced by q therein.

Then F (·, x(·)) ∈W p
apAP (I : X).

After proving Theorem 2.2.10, the subsequent composition principle for asymp-
totically (equi-)Weyl p-almost periodic functions follows almost immediately; cf.
also [243, Theorem 3.4] for a similar result in this direction.

Theorem 2.2.13. Suppose that p > 1, r > max(p, p/(p − 1)), q = pr/(p + r),
and the conditions (i)-(iii) of Theorem 2.2.10 hold with the interval I = [0,∞) and
the functions F (·, ·), x(·) replaced therein with the functions G(·, ·), y(·). Suppose,
further, that the following holds:

(i) The function Q := F −G : [0,∞)×Y → X is in class (e−)W q′

0,K([0,∞)×
Y : X) for some number q′ ∈ [1,∞).

(ii) The function z : [0,∞) → Y is in class (e−)W q′′

0 ([0,∞) : Y ) for some
number q′′ ∈ [1,∞).

(iii) x(t) = y(t) + z(t) for a.e. t > 0, and there exists a set E ⊆ I with
m(E) = 0 such that K := {x(t) : t ∈ I r E} is relatively compact in Y.

Then the mapping t 7→ F (t, x(t)), t > 0 is in class (e−)W q
ap([0,∞) : X) +

(e−)W q′

0 ([0,∞) : X)+(e−)W q′′′

0 ([0,∞) : X), provided q′′′ ∈ [1,∞) and 1/r+1/q′′ =
1/q′′′.

Proof. It is clear that F (t, x(t)) =
[
G(t, x(t)) − G(t, y(t))

]
+ G(t, y(t)) +

Q(t, x(t)), t > 0. By Theorem 2.2.10, we know that G(·, y(·)) ∈ (e−)W q
ap([0,∞) :

X). Keeping in mind (i) and (iii), the function t 7→ Q(t, x(t)), t > 0 is in class

(e−)W q′

0 ([0,∞) : X) by definition (see the notions of classes W p
0,K(I × Y : X) and

e−W p
0,K(I × Y : X) introduced in Definition 2.2.9). Therefore, it suffices to show

that the mapping t 7→ G(t, x(t))−G(t, y(t)), t > 0 is in class (e−)W q′′′

0 ([0,∞) : X).
But, this follows similarly as in the proof of [243, Theorem 3.4], with the exponents
p, q, r replaced therein with the exponents q′′′, q′′, r, respectively. �

An analogue of [243, Theorem 3.4] for the class of asymptotically Weyl p-almost
periodic functions can be also deduced by means of Theorem 2.2.12.

2.3. Almost automorphic type functions

Suppose that f : R → X is continuous. Then we say that f(·) is almost
automorphic if and only if for every real sequence (bn) there exist a subsequence
(an) of (bn) and a map g : R→ X such that

lim
n→∞

f
(
t+ an

)
= g(t) and lim

n→∞
g
(
t− an

)
= f(t),(28)

pointwise for t ∈ R (see the foundational paper [73] by S. Bochner for the scalar-
valued case). If this is the case, we have f ∈ Cb(R : X) and that the limit function
g(·) is bounded on R but not necessarily continuous on R. If the convergence of
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limits appearing in (28) is uniform on compact subsets of R, then we say that
f(·) is compactly almost automorphic. The vector space consisting of all almost
automorphic, resp., compactly almost automorphic functions, is denoted by AA(R :
X), resp., AAc(R : X). By Bochner’s criterion [135], any almost periodic function
is compactly almost automorphic. The converse statement is not true, however
[171]. Recall that P. R. Bender proved in his doctoral dissertation [58] that an
almost automorphic function f(·) is compactly almost automorphic if and only if
it is uniformly continuous (1966, Iowa State University).

The almost automorphy of a function f : R→ X can be also introduced in the
following equivalent way: A function f : R→ X is said to be almost automorphic
if and only if for every real sequence (bn) there exist a subsequence (an) of (bn)
such that

lim
m→∞

lim
n→∞

f
(
t+ an − am

)
= f(t), t ∈ R.

An interesting example of an almost automorphic function that is not compactly
almost automorphic has been constructed by W. A. Veech ([341]-[342])

f(t) :=
2 + eit + eit

√
2∣∣2 + eit + eit
√

2
∣∣ , t ∈ R.(29)

Let I = R or I = [0,∞). A continuous function f : I → X is said to be
asymptotically (compactly) almost automorphic, if and only if there exist a function
q ∈ C0(I : X) and a (compactly) almost automorphic function h : R → X such
that f(t) = h(t) + q(t), t ∈ I. Any asymptotically almost periodic function f :
I → X is asymptotically (compactly) almost automorphic. Asymptotically almost
periodic functions and asymptotically (compactly) almost automorphic functions
form closed subspaces of Cb(R : X) equipped with the sup-norm.

For the sake of completeness, we will include the proof of following simple
proposition:

Proposition 2.3.1. (i) Suppose that f ∈ AA(R : C) and g ∈ AA(R :
X). Then fg ∈ AA(R : X).

(ii) Suppose that f ∈ AAc(C : R) and g ∈ AAc(R : X). Then fg ∈ AAc(R :
X).

Proof. Suppose that (bn) is a given real sequence. Then there exist a sub-
sequence (an) of (bn) and a map g : R → X such that (28) holds pointwise
for t ∈ R, with the function g(·) replaced therein with the function h1(·). Fur-
ther on, there exist a subsequence (ank) of (an) and a map h2 : R → C such
that limk→∞ f(t + ank) = h2(t) and limk→∞ h2(t − ank) = f(t), pointwise for
t ∈ R. This simply implies that limk→∞ f(t + ank)g(t + ank) = h1(t)h2(t) and
limk→∞ h1(t−ank)h2(t−ank) = f(t)g(t), pointwise for t ∈ R, finishing the proof of
(i). The proof of (ii) follows from (i) and the fact that the pointwise product of two
bounded uniformly continuous functions is a uniformly continuous function. �

Let p ∈ [1,∞). Then a function f ∈ Lploc(R : X) is said to be Stepanov p-almost
automorphic (see e.g., G. M. N’Guérékata and A. Pankov [196], and V. Casarino
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[88]-[90] for a slightly different approach) if and only if for every real sequence (an),
there exist a subsequence (ank) and a function g ∈ Lploc(R : X) such that

lim
k→∞

∫ t+1

t

∥∥∥f(ank + s
)
− g(s)

∥∥∥p ds = 0 and lim
k→∞

∫ t+1

t

∥∥∥g(s− ank)− f(s)
∥∥∥p ds = 0

for each t ∈ R; a function f ∈ Lploc(I : X) is called asymptotically Stepanov
p-almost automorphic if and only if there exist an Sp-almost automorphic func-
tion g : R → X and a function q ∈ LpS(I : X) such that f(t) = g(t) + q(t),
t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)). Any Stepanov p-almost automorphic func-
tion f(·) has to be Stepanov p-bounded. Furthermore, if 1 6 p 6 q < ∞ and
a function f(·) is (asymptotically) Stepanov q-almost automorphic, then f(·) is
(asymptotically) Stepanov p-almost automorphic. We say that a function f(·) is
(asymptotically) Stepanov almost automorphic if and only if f(·) is (asymptoti-
cally) Stepanov 1-almost automorphic. Let us recall that any uniformly continuous
Stepanov almost periodic (automorphic) function f(·) is almost periodic (automor-
phic). The vector space consisting of all Sp-almost automorphic functions, resp.,
asymptotically Sp-almost automorphic functions, will be denoted by AASp(R : X),
resp., AAASp([0,∞) : X). By the (asymptotical) Stepanov almost automorphy we
mean (asymptotical) Stepanov 1-almost automorphy. Recall, the (asymptotical)
Stepanov p-almost periodicity of f(·) for some p ∈ [1,∞) implies the (asymptoti-
cal) Stepanov p-almost automorphy of f(·).

Example 2.3.2. ([152]) Let ε ∈ (0, 1/2), and let f(t) := sin(1/(2 + cosn +

cos
√

2n)), provided that n ∈ Z and t ∈ (n−ε, n+ε). Otherwise, we define f(t) := 0.
Then for each p ∈ [1,∞) we have that f(·) is Sp-almost automorphic.

Let us recall that any uniformly continuous Stepanov almost periodic (auto-
morphic) function f(·) is almost periodic (automorphic); see [151, Theorem 3.3].
The following lemma can be deduced by using an elementary argumentation involv-
ing [218, Proposition 3.1], the above-mentioned theorem and a simple observation
that any uniformly continuous function q ∈ C0(I : Lp([0, 1] : X)) belongs to the
space C0(I : X) :

Lemma 2.3.3. Let f : I → X be uniformly continuous and p ∈ [1,∞).

(i) If f(·) is asymptotically Stepanov p-almost periodic, then f(·) is asymp-
totically almost periodic.

(ii) If f(·) is asymptotically Stepanov p-almost automorphic, then f(·) is asymp-
totically almost automorphic.

The concepts of Weyl almost automorphy and Weyl pseudo almost automorphy
were introduced by S. Abbas [1] in 2012:

Definition 2.3.4. Let p > 1. Then we say that a function f ∈ Lploc(R : X) is
Weyl p-almost automorphic if and only if for every real sequence (sn), there exist
a subsequence (snk) and a function f∗ ∈ Lploc(R : X) such that

lim
k→+∞

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f(t+ snk + x
)
− f∗(t+ x)

∥∥∥p dx = 0(30)
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and

lim
k→+∞

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f∗(t− snk + x
)
− f(t+ x)

∥∥∥p dx = 0(31)

for each t ∈ R. The set of all such functions are denoted by W pAA(R : X).

The set W pAA(R : X), equipped with the usual operations of pointwise addi-
tion of functions and multiplication of functions with scalars, has a linear vector
structure. As the next illustrative example shows, the Weyl p-almost automorphic-
ity does not imply the Besicovitch p-unboundedness:

Example 2.3.5. Let p = 1 and let h(x) :=
√
|x|, x ∈ R. Then h(·) is Weyl

(1-)almost automorphic with the limit function h∗ ≡ h. This simply follows from
the fact that for each numbers t, ω ∈ R we have

lim
l→+∞

1

2l

∫ l

−l
|h(t+ x+ ω)− h(t+ x)| dx = 0.

The class of Besicovitch p-almost automorphic functions has been analyzed by
F. Bedouhene, N. Challali, O. Mellah, P. Raynaud de Fitte and M. Smaali in [54].
This class extends the class of Weyl p-almost automorphic functions and its full
importance lies in the fact that we do allow now the possible non-existence of limit

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f(t+ snk + x
)
− f∗(t+ x)

∥∥∥p dx,
resp.,

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f∗(t− snk + x
)
− f(t+ x)

∥∥∥p dx
in (30), resp., (31).

Definition 2.3.6. Let p > 1. Then we say that a function f ∈ Lploc(R : X) is
Besicovitch p-almost automorphic if and only if for every real sequence (sn), there
exist a subsequence (snk) and a function f∗ ∈ Lploc(R : X) such that

lim
k→∞

lim sup
l→+∞

1

2l

∫ l

−l

∥∥∥f(t+ snk + x
)
− f∗(t+ x)

∥∥∥p dx = 0

and

lim
k→∞

lim sup
l→+∞

1

2l

∫ l

−l

∥∥∥f∗(t− snk + x
)
− f(t+ x)

∥∥∥p dx = 0

for each t ∈ R. The set of all such functions are denoted by BpAA(R : X).

As in the case of Weyl almost automorphic functions, we can prove that the set
BpAA(R : X), equipped with the usual operations, has a linear vector structure.
Let us stress once more that it is not clear how we can prove that a Besicovitch
p-almost periodic function is Besicovitch p-almost automorphic ([234]).

We refer the reader to S. Abbas [1] for the notion of Weyl p-pseudo almost
automorphicity. For more details about the class of Besicovitch p-pseudo almost
automorphic functions, we refer the reader to [234].
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For more details about about almost periodic functions (sequences), almost
automorphic functions (sequences) and their applications, we refer the reader to
[3, 11, 68, 74, 81, 82, 102, 103, 104, 141, 200, 231, 332] and [110, 111, 112,
138, 139, 179, 180, 240, 273, 274, 285, 316, 360].

2.4. Almost periodic type functions and densities

We will first describe the main ideas and aims of this section, which consists
of three subsections. Albeit the definitions of an almost periodic function and a
uniformly recurrent function are quite easy and understandable, the class consisting
of all almost periodic functions and the class consisting of all uniformly recurrent
functions are sometimes very unpleasant and difficult to deal with. For example,
already H. Bohr has marked in his pioneering papers that it is not so satisfactory
to introduce the concept of almost periodicity by requiring that for each number
ε > 0 the set ϑ(f, ε) is unbounded (see e.g., [76]). A bounded uniformly continuous
function f : I → R satisfying this property need not be almost periodic, its Bohr-
Fourier coefficients cannot be defined in general, and moreover, if two bounded
uniformly continuous functions f : I → R and g : I → R satisfy this property,
then its sum f + g : I → R need not satisfy this property (see [75, part I, pp.
117-118]). Furthermore, saying that for each number ε > 0 the set ϑ(f, ε) is
unbounded is equivalent to saying that f(·) is uniformly recurrent; hence, the sum
of two bounded uniformly continuous uniformly recurrent functions is not uniformly
recurrent, in general. Taking into account Proposition 2.4.31 below, we get that
the sum of two bounded uniformly continuous �g-almost periodic functions is not
�g-almost periodic, in general. This example can be also used for proving the
fact that the pointwise product of two bounded uniformly continuous, uniformly
recurrent (�g-almost periodic) functions is not uniformly recurrent (�g-periodic),
in general.

The above observation of H. Bohr has motivated us to further analyze some
very specific examples of generalized almost periodic functions in more detail (see
[44] for a non-updated list of unsolved problems in the theory). First of all, we recall
that B. Basit and H. Güenzler have constructed, in [47, Example 3.2], a bounded

continuous function f : R → R such that its first antiderivative t 7→
∫ t

0
f(s) ds,

t ∈ R is almost periodic, while the function f(·) itself is not uniformly continuous,
not Stepanov almost periodic, not almost automorphic as well as

sup
t∈[−2,0]

|f(t+ τ)− f(t)| > 1 for all τ > 2.(32)

The construction concretely goes as follows. Define a continuous 2n+1-periodic
function fn : R → R by fn(t) := sin(2nπt) for t ∈ [2n − 1, 2n], fn(t) := 0 for
t ∈ [−2n, 2n − 1), and extend it 2n+1-periodically to the whole real axis. Then
supp(fn) = [2n− 1, 2n] + 2n+1Z, which simply implies that supp(fn) and supp(fm)
are disjunct sets for each integers n, m ∈ N with n 6= m. Therefore, the function
f(x) :=

∑∞
n=1 fn(x), x ∈ R is well-defined. This function satisfies all above prop-

erties, and we will provide a small contribution here by proving that the set ϑ(f, ε)
is empty for each number ε ∈ (0, 1) :
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4. Suppose that τ ∈ ϑ(f, ε). Due to (32), we have τ ∈ (0, 2) so that there
exist two possibilities: τ ∈ (0, 1) or τ ∈ [1, 2). In the first case, there exists
a sufficiently large number n ∈ N such that (2n+1)−(2n−1+2−n−1) > τ.
Let t = 2n − 1 + 2−n−1; then t + τ ∈ (2n, 2n + 1) and therefore f(t) = 1
while f(t + τ) = 0 so that |f(t + τ) − f(t)| = 1 > ε. In the second case,
there exists a sufficiently large number n ∈ N such that τ > 2−n−1. In
this case, take t = 2n − 2−n−1; then t + τ ∈ (2n, 2n + 1) and therefore
f(t) = −1 while f(t+ τ) = 0 so that |f(t+ τ)− f(t)| = 1 > ε.

Essentially, the functions f(·) satisfying that there exists a number ε ∈ (0, 1)
such that the set ϑ(f, ε) is bounded will not occupy our attention henceforth. In
connection with the above example, we would like to propose the following question:

Question 2.4.1. Suppose that f : I → X is a bounded, continuous and
Stepanov almost periodic. Is it true that ϑ(f, ε) 6= ∅ (ϑ(f, ε) is unbounded) for
all ε > 0?

More concretely, assume that α, β ∈ R and αβ−1 is a well defined irrational
number. Let the function f(·) and g(·) be given through (22) and (23), respectively.
Is it true that ϑ(f, ε) 6= ∅ (ϑ(f, ε) is unbounded) [ϑ(g, ε) 6= ∅ (ϑ(g, ε) is unbounded)]
for all ε > 0?

We continue by observing that A. Haraux and P. Souplet have proved, in [202,
Theorem 1.1], that the function f : R→ R, given by

f(t) :=

∞∑
n=1

1

n
sin2

( t

2n

)
dt, t ∈ R,(33)

is uniformly continuous, uniformly recurrent and unbounded. From the argumen-
tation given in the proof of the above-mentioned theorem, it immediately follows
that the function f(·) given by (33) is neither Besicovitch almost periodic [234] nor
asymptotically Stepanov almost automorphic. The reason for that is quite simple,
this function is even and enjoys the property that

lim sup
t→+∞

1

2t

∫ t

−t
f(s) ds = +∞.

Since the concepts of H. Weyl and A. S. Besicovitch suggest very general ways of
approaching almost automorphicity ([234]), it is logical to ask whether the function
f(·) is Weyl almost automorphic. We will prove the following result:

Theorem 2.4.2. The function f(·), given by (33), is Weyl p-almost automor-
phic for any finite exponent p > 1 and satisfies that for each number τ ∈ R the
function f(·+ τ)− f(·) belongs to the space ANP (R : C).

Concerning this contribution, it is worth noting that the unbounded functions
f : R→ R such that for each number τ ∈ R the function f(·+τ)−f(·) belongs to the
space AP (R : C) have been analyzed by A. M. Samoilenko and S. I. Trofimchuk
in [327] (let us recall that the bounded functions satisfying this condition are
always almost periodic due to the famous Loomis theorem [277]; see also the results
obtained in the articles [60] by I. Berg and [338] by R. Terras). Let us also note
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that the function f(·), given by (33), has been employed by H. Y. Zhao and M.
Fečkan in [367], for proving the fact that for each finite real numbers M, L > 0
the set consisting of all almost periodic functions h : R→ R such that |h(t)| 6M,
t ∈ R and |h(t1)− h(t2)| 6 L|t1 − t2|, t1, t2 ∈ R is not precompact in C(R).

Further on, in [202, Theorem 1.2], A. Haraux and P. Souplet have proved that
for each real number c > 0 the function h(·) = min(c, f(·)), where f(·) is given by
(33), is bounded uniformly continuous, uniformly recurrent and not asymptotically
almost periodic. Since the function h(·) is uniformly continuous, Lemma 2.3.3(ii)
below implies that h(·) is asymptotically Stepanov p-almost automorphic (p > 1)
if and only if h(·) is asymptotically almost automorphic. But, this is actually not
the case because [202, Lemma 2.1] can be improved in the following manner:

Lemma 2.4.3. Let ω : R → [0,∞) be Lipschitz continuous and such that the
set ω([0,+∞)) is unbounded. Define, for each finite number c > lim inft→+∞ ω(t),
the function ω1 : R → [0,∞) by ω1(t) := min(c, ω(t)), t ∈ R. Then the restric-
tion of function ω1(·) to the non-negative real axis is not asymptotically almost
automorphic.

The proof of Lemma 2.4.3 is almost the same as that of [202, Lemma 2.1]. The
only thing worth noticing is that the existence of an almost automorphic function
ω∗1(·) such that limt→+∞ |ω1(t) − ω∗1(t)| = 0 implies, as in the proof of the above-
mentioned lemma, that ω∗1 ≡ c; this follows by using the same arguments, almost
directly from definition of almost automorphicity (we do not need the fact that the
limits in the second part of proof are uniform on R).

We will extend [202, Theorem 1.2] in the following way:

Theorem 2.4.4. Let the function f(·) be given by (33), and let c > 0. Then
the function h(t) := min(c, f(t)), t ∈ R is bounded uniformly continuous, uniformly
recurrent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov)
quasi-asymptotically almost periodic.

Concerning this contribution, we have made a decision to further analyze the
function constructed by H. Bohr on pp. 113–115 of the first part of his landmark
trilogy [75]. In actual fact, the results obtained by A. M. Fink in his doctoral
dissertation [172] tell us that this function is uniformly continuous (nonexpansive,
in fact), uniformly recurrent and not almost periodic. The construction of this
function goes as follows. Let τ1 := 1, τ2 > 2 and let the sequence (τn)n∈N of

positive real numbers satisfy τn > 2
∑n−1
i=1 iτi for all n ∈ N. Let the sequence

(fn : R → R)n∈N be defined as follows. Set f1(x) := 1 − |x| for |x| 6 1 and
f1(x) := 0, otherwise. If the functions f1(·), · · ·, fn−1(·) are already defined, set

fn(x) := fn−1(x) +

n−1∑
m=1

n−m
n

[
fn−1

(
x−mτn

)
+ fn−1

(
x+mτn

)]
, x ∈ R.

Then ∣∣fn(x+ τn)− fn(x)
∣∣ 6 1

n
, n ∈ N, x ∈ R,
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and the function

f(x) := lim
n→+∞

fn(x), x ∈ R(34)

is well defined, even and satisfies that 0 6 f(x) 6 1 for all x ∈ R. It is worth
observing that this function also satisfies all clarified properties of function h(·)
from Theorem 2.4.4:

Theorem 2.4.5. The function f : R→ R, given by (34), is bounded uniformly
continuous, uniformly recurrent, not asymptotically (Stepanov) almost automor-
phic, and not (Stepanov) quasi-asymptotically almost periodic.

In Example 2.4.37, we will show that, for some concrete choices of sequences
(τn)n∈N, the function f : R → R, given by (34), is Weyl p-almost automorphic
for each finite exponent p > 1. Since any Stepanov p-quasi-asymptotically almost
periodic function is Weyl-p-almost periodic (p > 1) in the sense of A. S. Kovanko’s
approach (see [247, Proposition 2.11]), it is quite reasonable to ask the following:

Question 2.4.6. Is it true that the function f(·), given by (34), is (equi-)Weyl-
p-almost periodic for some (each) finite exponent p > 1?

We would like to note that the function used by J. de Vries in [129, point 6.,
p. 208] can serve as a much simpler example of a bounded uniformly continuous
function f : R → R satisfying all clarified properties of functions examined in
Theorem 2.4.4 and Theorem 2.4.5: Let (pi)i∈N be a strictly increasing sequence
of natural numbers such that pi|pi+1, i ∈ N and limi→∞ pi/pi+1 = 0. Define the
function fi : [−pi, pi]→ [0, 1] by fi(t) := |t|/pi, t ∈ [−pi, pi] and extend the function
fi(·) periodically to the whole real axis; the obtained function, denoted by the same
symbol fi(·), is of period 2pi (i ∈ N). Set

f(t) := sup
{
fi(t) : i ∈ N

}
, t ∈ R.(35)

We will prove the following:

Theorem 2.4.7. The function f : R→ R, given by (35), is bounded uniformly
continuous, uniformly recurrent, not asymptotically (Stepanov) almost automor-
phic, and not (Stepanov) quasi-asymptotically almost periodic.

We proceed with much elementary things, by considering a general continuous
function f : I → X. Suppose first that there exists a number ε > 0 such that
ϑ(f, ε) 6= ∅, say τ ∈ ϑ(f, ε). Setting M := supt∈I,|t|6τ ‖f(t)‖, it can be simply

proved by induction that we have ‖f(t)‖ 6M +nε for all t ∈ I with |t| ∈ [nτ, (n+
1)τ ] (n ∈ N). Hence, ‖f(t)‖ 6 M + |t|ε/τ for all t ∈ I with |t| ∈ [nτ, (n + 1)τ ]
(n ∈ N), so that

‖f(t)‖ 6M + |t|ε/τ, t ∈ R(36)

and the function f(·) is linearly bounded as |t| → +∞. Further on, it is clear that
the assumption ϑ(f, ε) 6= ∅ for each ε > 0 implies that ϑ(f, ε) is infinite for each
ε > 0 as well as that there does not exist a finite constant M such that the interval
[0,M ] contains the union of sets ϑ(f, ε) when ε > 0; this is a simple consequence of
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the fact that for each ε > 0 we have jϑ(f, ε/n) ⊆ ϑ(f, ε) for all j = 1, · · ·, n. Let us
observe that a linear function f : I → C can serve as an example of a function for
which the growth order in (36) cannot be improved and for which the assumption
ϑ(f, ε) 6= ∅ for each ε > 0 does not imply the existence of a number ε0 > 0 such
that the set ϑ(f, ε0) is unbounded.

To the best of our knowledge, this is the first systematic study of vector-valued
uniformly recurrent functions. In this section, we attempt to further profile the sets
of ε-periods of uniformly recurrent functions by introducing the class of �g-almost
periodic functions, which is simply defined by using the notions of lower and upper
(Banach) densities for the subsets of the non-negative real axis (we feel it is our duty
to say that we have only partially succeeded in our mission because it is very difficult
to practically control and give intrinsic characterizations of ε-periods). The lower
and upper (Banach) mn-densities for the subsets of N, considered recently in [244],
are discrete analogues of the lower and upper (Banach) g-densities considered in
this paper. In the discrete setting, these densities play an important role in the field
of linear chaos, for example, in definitions of frequent hypercyclicity and reiterative
mn-distributional chaos of linear continuous operators on Fréchet spaces. In the
continuous setting, these densities play an important role in the qualitative analysis
of solutions to the abstract (fractional) integro-differential equations in Fréchet
spaces; see e.g., the recent research monograph [235] by the author and references
cited therein for a brief introduction to the theory of linear chaos. We generalize the
notion of almost periodicity by analyzing several different types of (Stepanov) �g-
almost periodicity for functions with values in complex Banach spaces. Speaking-
matter-of-factly, we analyze the lower and upper (Banach) g-densities of sets ϑ(f, ε),
where ε > 0 and g : [0,∞) → [1,∞) is an increasing mapping satisfying condition
(38) below.

The organization of section can be briefly described as follows. Subsection 2.4.1
investigates the lower and upper (Banach) g-densities for the subsets of the non-
negative real line; in this subsection, we present our first significant contributions,
Theorem 2.4.10 and Theorem 2.4.11, in which we transfer the main result of paper
[186] by G. Grekos, V. Toma and J. Tomanová to the continuous setting and
reconsider the notion and several recent results from [244].

In Subsection 2.9.64, we analyze �g-almost periodic functions, uniformly re-
current functions and their Stepanov generalizations. With the notation explained
below, we say that a continuous function f : I → X is �g-almost periodic if and
only if for each ε > 0 we have �g(ϑ(f, ε)) > 0; see Definition 2.4.12, in which the

symbol �g denotes exactly one of the densities dgc, dgc, Bdl;gc, Bdu;gc, Bdl;gc or

Bdu;gc. In the paragraph following Definition 2.4.12, we collect the basic proper-
ties of �g-almost periodic functions and uniformly recurrent functions. The main
purpose of Proposition 2.4.13 is to clarify the supremum formula for uniformly
recurrent functions; in Proposition 2.4.14, we prove that any almost periodic func-
tion f : I → X is �g-almost periodic. All introduced concepts are equivalent in
case g(x) ≡ x, and reduced then to the concept of almost periodicity (Proposition
2.4.15). After that, in Proposition 2.4.16, we prove that the almost periodicity
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is equivalent with the Bdl;gc-almost periodicity and Bdu;gc-almost periodicity for
every increasing mapping g(·) satisfying the condition (38).

Definition 2.4.20 introduces the notions of asymptotical uniform recurrence
and asymptotical �g-almost periodicity, while Proposition 2.4.21 restates all re-
sults from Subsection 2.9.64 proved by then in this context. We introduce the no-
tion of (asymptotical) Stepanov p-uniform recurrence and (asymptotical) Stepanov
(p,�g)-almost periodicity in Definition 2.4.22. The main purpose of Theorem 2.4.24
is to show that any asymptotically uniformly recurrent, quasi-asymptotically al-
most periodic function is asymptotically almost periodic; the Stepanov analogue of
this statement is also considered here. Proposition 2.4.26 shows that the uniform
recurrence and asymptotical almost automorphicity (asymptotical almost period-
icity) implies almost automorphicity (almost periodicity), for the usually consid-
ered classes and Stepanov classes. Further on, in Theorem 2.4.28 and Proposi-
tion 2.4.29, we prove that any uniformly continuous (asymptotically) Stepanov p-
uniformly recurrent [(asymptotically) Stepanov (p,�g)-almost periodic/Stepanov
p-quasi-asymptotically almost periodic] function f : I → X is asymptotically uni-
formly recurrent [asymptotically �g-almost periodic, quasi-asymptotically almost
periodic].

Proposition 2.4.31 clarifies an interesting result which shows that for any (asymp-
totically) uniformly continuous, uniformly recurrent function we can find an increas-
ing mapping g : [0,∞) → [1,∞) such that (38) holds and f(·) is (asymptotically)
·g-almost periodic for ·g ∈ {dgc, dgc} (see also Remark 2.4.32, where we use the

densities Bdl:gc(·) and Bdu:gc(·)). In Example 2.4.35, we prove that the compactly
almost automorphic function constructed by A. M. Fink in [171] is not asymptot-
ically uniformly recurrent; the proofs of Theorem 2.4.2, Theorem 2.4.4, Therorem
2.4.5 and Theorem 2.4.7 are provided after that.

We investigate the existence and uniqueness of uniformly recurrent and �g-
almost periodic type solutions of abstract integro-differential equations in Banach
spaces in a concise, semi-heuristical manner, paying special attention to the invari-
ance of (asymptotical) uniform recurrence and (asymptotical)�g-almost periodicity
under the actions of convolution products.

The function sign : R → {−1, 0, 1} is defined by sign(t) := −1 (0, 1) if and
only if t < 0 (t = 0, t > 0); if c ∈ R and A ⊆ R, then we define cA := {ca : a ∈ A}.
Let us recall that a function f : (0,∞) → R is called subadditive if and only
if f(x + y) 6 f(x) + f(y), x, y > 0. A continuous version of Fekete’s lemma
states that, for every measurable subadditive function f : (0,∞) → R, the limit

limt→+∞
f(t)
t exists in [−∞,∞) and limt→+∞

f(t)
t = inft>0

f(t)
t (see e.g., [210,

Theorem 6.6.1]). We will use the following simple lemma:

Lemma 2.4.8. There do not exist k ∈ N and n0 ∈ N such that

sign
(

cos
(
(n+ k)π

√
2
))

= sign
(

cos
(
nπ
√

2
))
, n ∈ Z, |n| > n0.(37)

Proof. Since cos(nπ
√

2) 6= 0 for all n ∈ Z, it is clear that (37) is equivalent to

saying that cos((n+k)π
√

2) · cos(nπ
√

2) > 0, n ∈ Z, |n| > n0. If k ∈ N satisfies the

above condition and kπ
√

2 = 2k0π + a for some numbers k0 ∈ Z and a ∈ (0, 2π),
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then we get from the above: cos(nπ
√

2 + a) · cos(nπ
√

2) > 0, n ∈ Z, |n| > n0. This

cannot be satisfied because the set {einπ
√

2 : n ∈ Z, |n| > n0} is dense in the unit
sphere and cosx = Re(eix), x ∈ R. �

2.4.1. Lower and upper (Banach) g-densities. Unless stated otherwise,
in this subsection we will always assume that g : [0,∞) → [1,∞) is an increasing
mapping satisfying that there exists a finite number L > 1 such that

x 6 Lg(x), x > 0,(38)

which clearly implies lim infx→+∞ g(x)/x > 0. If A ⊆ [0,∞) and a, b > 0, then we
define A(a, b) := {x ∈ A ; x ∈ [a, b]}.

For simplicity and better exposition, in this subsection we will use the Lebesgue
measure m(·) on the non-negative real line, only, which will be sufficiently enough
for our analyses of uniformly continuous �g-almost periodic functions; we feel it
is our duty to say that the general case is much more complicated and almost not
considered below.

Let us define (cf. [235]-[244] for more details):

(i) The lower g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim inf
x→+∞

m(A(0, g(x)))

x
;

(ii) the upper g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim sup
x→+∞

m(A(0, g(x)))

x
,

as well as:

(i) the lower l; gc-Banach density of A, denoted in short by Bdl;gc(A), as
follows

Bdl;gc(A) := lim inf
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(ii) the lower u; gc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(iii) the (upper) l; gc-Banach density of A, denoted in short by Bdl;gc(A), as
follows

Bdl;gc(A) := lim inf
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
;

(iv) the (upper) u; fc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
.
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Remark 2.4.9. It is worth noting that, for every set A ⊆ [0,∞), we have

lim inf
x→+∞

lim sup
y→+∞

m([I rA](y, y + g(x)))

x

= lim inf
x→+∞

lim sup
y→+∞

[
g(x)−m(A(y, y + g(x)))

x

]

= lim inf
x→+∞

[
g(x)

x
− lim inf

y→+∞

m(A(y, y + g(x)))

x

]
.(39)

Similarly,

lim sup
x→+∞

lim sup
y→+∞

m([I rA](y, y + g(x)))

x

= lim sup
x→+∞

[
g(x)

x
− lim inf

y→+∞

m(A(y, y + g(x)))

x

]
,(40)

lim inf
x→+∞

m([I rA](0, g(x)))

x
= lim inf

x→+∞

[
g(x)

x
− lim sup

x→+∞

m(A(0, g(x)))

x

]
(41)

and

lim sup
x→+∞

m([I rA](0, g(x)))

x
= lim sup

x→+∞

[
g(x)

x
− lim inf
x→+∞

m(A(0, g(x)))

x

]
.(42)

Case g(x) := (1 + |x|)q, x > 0 is the most important (q > 1), when we denote
the corresponding densities by dqc(A), dqc(A), Bdl;qc(A), Bdu;qc(A), Bdl;qc(A) and
Bdl;qc(A). Arguing similarly as in [244, Example 2.1(i)], for each number q > 1 we

can simply construct a set A ⊆ [0,∞) such that Bdl;qc(A) = 0 and Bdu;qc(A) =
+∞; using the construction given in [244, Example 2.1(ii)], for each number q > 1
we can simply construct a setA ⊆ [0,∞) such that dqc(A) = +∞ andBdu;qc(A) = 0
so that the case q > 1 is not standard. Further on, if q = 1, then we get the usual
concepts of lower and upper Banach densities: in this case, we have the following

Theorem 2.4.10. Let A ⊆ [0,∞). Then we have

Bdl;1c(A) = Bdu;1c(A)

= sup
x>0

lim inf
y→+∞

m(A(y, y + x))

x
= sup

x>0
inf
y>0

m(A(y, y + x))

x
:= Bdc(A)(43)

and

Bdl;1c(A) = Bdu;1c(A)

= inf
x>0

lim sup
y→+∞

m(A(y, y + x))

x
= inf
x>0

sup
y>0

m(A(y, y + x))

x
:= Bdc(A).(44)
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Proof. Using the continuous version of Fekete’s lemma, for the proof of first
equality in (44) it suffices to show that the function

F (x) := lim sup
y→+∞

m(A(y, y + x)), x > 0

is subadditive, i.e., that for each fixed real numbers x1, x2 > 0 we have

lim
t→+∞

sup
t>y

m
(
A(t, t+x1+x2)

)
6 lim
t→+∞

sup
t>y

m
(
A(t, t+x1)

)
+ lim
t→+∞

sup
t>y

m
(
A(t, t+x2)

)
.

This follows immediately if we prove that for each real number y > 0 we have

m
(
A(t, t+ x1 + x2)

)
6 sup

t>y
m
(
A(t, t+ x1)

)
+ sup

t>y
m
(
A(t, t+ x2)

)
.

But, this is a simple consequence of the fact that for each real number y > 0 we
have t+ x1 > y and

m
(
A(t, t+ x1 + x2)

)
6 m

(
A(t, t+ x1)

)
+m

(
A(t+ x1, t+ x1 + x2)

)
;

see also P. Ribenboim’s paper [321]. Since

lim sup
y→+∞

m(A(y, y + x))

x
6 sup

y>0

m(A(y, y + x))

x
6 lim inf

x→+∞
sup
y>0

m(A(y, y + x))

x
,

for the proof of (44) it remains to be shown that

lim inf
x→+∞

sup
y>0

m(A(y, y + x))

x
6 Bdu;1c(A).(45)

For this, we will slightly adapt the arguments proposed in the proof of discrete
version of this statement, given in [186]. Define

D =
{
x ∈ [0, 1] : ∀L > 0 ∃interval I ′ ⊆ [0,∞) s.t. m(I ′) > L and m(A ∩ I ′)/m(I ′) > x

}
.

Repeating literally the arguments given in [186, Subsection 2.1], we obtain that

lim infx→+∞ supy>0
m(A(y,y+x))

x 6 b := supD. The proof of (44) will be completed
if one shows that b 6 infx>0(lim supy→+∞m(A(y, y+x))/x). Suppose the contrary.
Then there are a positive real number x0 > 0 and two real numbers x1, x2 ∈ [0, 1]
such that x1 < x2 < b and

lim sup
y→+∞

m(A(y, y + x0)) < x0x1.

By definition of lim supy→+∞ ·, this implies that there exists a positive real number
y0 > 0 such that m(A(y, y + x0)) < x0x1 for all y > y0. We will prove that there
exists a sufficiently large number L > 0 such that every subinterval I ′ ⊆ I with
m(I ′) > L satisfies m(A ∩ I ′) < x2m(I ′), showing that x2 /∈ D and implying the
contradiction. To see this, suppose that I ′ = [y, y + h] for some h > 0. Then there
exists q ∈ N0 such that qx0 6 h < (q + 1)x0 and therefore

m(A(y, y + h)) 6 y0 +m
(
A(y0, y + h)

)
6 y0 +

q∑
j=0

m
(
A(y0 + jx0, y0 + (j + 1)x0)

)
6 y0 + (q + 1)x0x1 6 y0 + x0x1 + qx0x1 < y0 + x0x1 + hx1 < hx2,
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for any h > 0 sufficiently large. The proof of (45) follows from (39)-(40) and
(44). �

By the proof of Theorem 2.4.10, it follows that for each subset A ⊆ [0,∞) we
have

Bdc(I rA) +Bdc(A) = 1.(46)

Since the case g(x) ≡ x is very special in our analysis, we will also prove the
following result which is well known in the discrete case (we then write dc(A) ≡
dgc(A) and dc(A) ≡ dgc(A)):

Theorem 2.4.11. Let A ⊆ [0,∞). Then we have

0 6 Bdc(A) 6 dc(A) 6 dc(A) 6 Bdc(A) 6 1.

Proof. The only non-trivial parts are Bdc(A) 6 dc(A) and dc(A) 6 Bdc(A);
due to (46), it suffices to show that dc(A) 6 Bdc(A). Suppose the contrary. Due
to (44) and definition of lim supx→+∞ ·, it follows that

lim
t→+∞

sup
t>x

m(A(0, t))

t
> inf
x>0

sup
y>0

m(A(y, y + x))

x
.

Since the mapping in the above limit is monotonically decreasing in variable t, we
get the existence of positive real numbers δ > 0, x0 > 0 and y0 > 0 such that

m(A(0, y))

y
>
m
(
A(z, z + x0)

)
x0

+ δ, y > y0, z > 0.(47)

Due to (47), we get

m(A(0, y)) 6
by/x0c∑
j=0

m
(
A(jx0, (j + 1)x0

)
6
(⌊
y/x0

⌋
+ 1
)(m(A(0, y))

y
− δ

)
x0,

i.e., (
1− x0

y

(⌊
y/x0

⌋
+ 1
))m(A(0, y))

y
6 −δx0

(⌊
y/x0

⌋
+ 1
)
/y, y > y0.

After taking the limits as y → +∞, we obtain 0 6 −δ, which is a contradiction. �

For more details about densities, see also Section 2.10. Let us finally note
that, in the combinatorial and additive number theory, the sets with positive upper
Banach density play a major role; see e.g., [181, Section 5.7, Section 5.8]. A great
number of results about the lower and upper (Banach) densities, known for subsets
of integers, cannot be so easily reformulated and reconsidered for the subsets of the
non-negative real axis. This is not the case with the statements of [244, Proposition
2.5-Proposition 2.7, Corollary 2.2], which can be simply reformulated for (Banach)
g-densities; details can be left to the interested reader.
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2.4.2. �g-Almost periodic functions, uniformly recurrent functions
and their Stepanov generalizations. We will always assume henceforth that
g : [0,∞) → [1,∞) is an increasing mapping satisfying that there exists a finite
number L > 1 such that (38) holds. Let �g denote exactly one of the symbols dgc,

dgc, Bdl;gc, Bdu;gc, Bdl;gc or Bdu;gc.
We start by introducing the following notion:

Definition 2.4.12. Let f : I → X be continuous. Then it is said that f(·) is
�g-almost periodic if and only if for each ε > 0 we have �g(ϑ(f, ε)) > 0.

We will use hereafter the following fundamental properties of �g-almost pe-
riodic functions and uniformly recurrent functions, collected as follows (for parts
(iv)-(vi), see [62, pp. 3-4]; for parts (vii)-(viii), see [265, p. 3]):

(i) Any constant function is �g-almost periodic, and for any �g-almost peri-
odic (uniformly recurrent) function f(·) we have that the function ‖f(·)‖ is
�g-almost periodic (uniformly recurrent). Any �g-almost periodic func-
tion is uniformly recurrent.

(ii) Since for each ε > 0 and c ∈ C r {0} we have ϑ(cf, ε) = ϑ(f, ε/|c|), the
�g-almost periodicity of function f(·) implies the �g-almost periodicity
of function cf(·). Similarly, the uniform recurrence of function f(·) implies
the uniform recurrence of function cf(·).

(iii) The set consisting of all �g-almost periodic (uniformly recurrent) func-
tions is translation invariant in the sense that for each τ ∈ I and any �g-
almost periodic (uniformly recurrent) function f(·), the function f(·+ τ)
is also �g-almost periodic (uniformly recurrent).

(iv) If (fn(·)) is a sequence of �g-almost periodic (uniformly recurrent) func-
tions and (fn(·)) converges uniformly to a function f : I → X, then the
function f(·) is �g-almost periodic (uniformly recurrent).

(v) If X = C, infx∈I |f(x)| > m > 0 and f(·) is a bounded �g-almost peri-
odic (uniformly recurrent) function, then the function 1/f(·) is likewise a
bounded �g-almost periodic (uniformly recurrent).

(vi) If f(·) is a bounded �g-almost periodic (uniformly recurrent) function
and g : [0,∞)→ X is continuous, then the mapping g(‖f(·)‖) is bounded
and �g-almost periodic (uniformly recurrent).

(vii) If f(·) is a bounded �g-almost periodic (uniformly recurrent) function
and r > 0, then the function ‖f(·)‖r is bounded and �g-almost periodic
(uniformly recurrent).

Furthermore, it can be simply shown that:

(viii) If f : R → X is a bounded �g-almost periodic (uniformly recurrent)
function and ψ ∈ L1(R), then the function (ψ∗f)(·) is bounded, uniformly
continuous and �g-almost periodic (uniformly recurrent).

(ix) If f : [0,∞)→ X is uniformly recurrent and belongs to the space C0([0,∞) :
X), then f ≡ 0.

(x) If f : R → X is �g-almost periodic (uniformly recurrent), then the

function f̌ : R → X, defined by f̌(·) := f(−·), is �g-almost periodic
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(uniformly recurrent). If, additionally, f|[0,∞)(·) ∈ C0([0,∞) : X) or

f̌|[0,∞)(·) ∈ C0([0,∞) : X), then f ≡ 0.
(xi) If a ∈ I and the function f(·) is �g-almost periodic (uniformly recur-

rent), then the function f(· + a) − f(·) is �g-almost periodic (uniformly
recurrent).

For the sake of completeness, we will include short proofs of the following two
propositions (the first proposition improves the corresponding result for almost
periodic functions; for almost automorphic functions, see [234, Lemma 3.9.9]):

Proposition 2.4.13. (Supremum formula) Suppose that f : I → X is uni-
formly recurrent. Then we have

sup
t∈I
‖f(t)‖ = sup

t>a
‖f(t)‖ ∈ [0,∞], a ∈ I.

Proof. Let a ∈ I, t ∈ I and ε > 0 be fixed. It suffices to show that

‖f(t)‖ 6 ε+ sup
s>a
‖f(s)‖.

In order to do that, take any strictly increasing sequence (αn) of positive real
numbers such that limn→+∞ αn = +∞ and (19) holds. Let n ∈ N be such that
t+ αn > a. Then ‖f(t+ αn)− f(t)‖ 6 ε and therefore

‖f(t)‖ 6 ε+ ‖f(t+ αn)‖ 6 ε+ sup
s>a
‖f(s)‖,

as claimed. �

Proposition 2.4.14. Any almost periodic function f : I → X is �g-almost
periodic.

Proof. Let us recall that any almost periodic function is uniformly continuous.
Using this fact, it can be easily seen that for each ε > 0 there exist two finite
constants δ > 0 and l > 0 such that any segment [y, y + g(x)] for x > L(1 + l) and
y > 0 contains the segment [y, y+x/L] (cf. (38)) and therefore at least bx/Llc > 1
disjunct intervals of length δ whose elements are ε-periods for f(·); see also [62,
Corollary, p. 2]. This clearly implies �g(ϑ(f, ε)) > δ/Ll > 0. �

Now we will prove the following

Proposition 2.4.15. Let f : I → X be continuous and g(x) ≡ x. Then f(·) is
almost periodic if and only if f(·) is �g-almost periodic.

Proof. Having in mind Proposition 2.4.14 and Theorem 2.4.11, it suffices to
show that any Bdc-almost periodic function f : I → X is almost periodic. Towards
this end, it suffices to show that any set A ⊆ [0,∞) satisfying Bdc(A) > 0 is
relatively dense. Otherwise, for every real number L > 0, we have that there exists
an interval IL of length L which does not contain any ε-period of f(·). Thus, an
unbounded set

⋃
n∈N I2n does not contain any ε-period of f(·), which immediately

implies that Bdc(A) = 0 by definition. �
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Concerning the notions of Bdl;gc-almost periodicity and Bdu;gc-almost peri-
odicity, the things are pretty clear. In the following proposition, whose discrete
analogue has been considered in [244, Proposition 2.4], we will prove that these
notions are equivalent with the almost periodicity:

Proposition 2.4.16. Let f : I → X be continuous and let g : [0,∞)→ [1,∞)
be an increasing mapping satisfying that there exists a finite number L > 1 such
that (38) holds. Then f(·) is almost periodic if and only if f(·) is Bdl;gc-almost
periodic if and only if f(·) is Bdu;gc-almost periodic.

Proof. Due to Proposition 2.4.14 and the fact that any Bdl;gc-almost pe-
riodic function is Bdu;gc-almost periodic, it suffices to show that any Bdu;gc-
almost periodic function is almost periodic. Suppose the contrary and fix a num-
ber x > 0. Then there exists a number ε > 0 such that, for every n ∈ N,
there exists an interval In = [yn, yn + 2n + 2g(x)] ⊆ [0,∞) of length 2n + 2g(x)
such that the set ϑ(f, ε) does not meet In. Then, for every n ∈ N, the inter-
val I ′n = [yn + n+ g(x), yn + 2n+ 2g(x)] does not meet ϑ(f, ε) and has the length
n+g(x) > g(x). This implies m(([ϑ(f, ε)](yn+n+g(x), yn+2n+2g(x))) = 0. Hence,
lim infy→+∞m([ϑ(f, ε)](y, y+x)) = 0, which contradicts conditionBdu;gc(ϑ(f, ε)) >
0. �

Remark 2.4.17. Let f : I → X be continuous and let c ∈ I r {0}. Define the
function fc : I → X by fc(t) := f(ct), t ∈ I. Then we have |c|ϑ(f, ε) ⊆ ϑ(fc, ε)
for all ε > 0, which simply implies that for any uniformly recurrent function f(·)
we have that the function fc(·) is uniformly recurrent. Due to Proposition 2.4.16
and the corresponding statement for almost periodic functions, the same holds for
�g-almost periodicity with �g ∈ {Bdl;gc, Bdu;gc}. If �g is one of the densities

dgc, dgc, Bdl;gc or Bdu;gc, then directly from their definitions and the definition
of �g-almost periodicity we may conclude, keeping in mind the fact that for any
Lebesgue measurable subset A ⊆ [0,∞) the set cA is also Lebesgue measurable
with m(cA) = cm(A), that the �g-almost periodicity of function f(·) implies the
�g-almost periodicity of function fc(·) for any c ∈ I r {0} with |c| 6 1. Assume
now that �g is one of the above four densities and |c| > 1. In this case, it is
almost inevitable to impose some additional conditions on the function g(·) under
which the �g-almost periodicity of function f(·) implies the �g-almost periodicity
of function fc(·). For example, it is very natural to assume additionally that g(·)
is continuous, strictly increasing as well as that there exist two numbers t0 > 0
and δ > 0 such that |c|g(t) 6 g(t/δ) for all t > t0. For the Banach density Bdu;gc,
the claimed statement then follows from the computation (x > 0 satisfies that
t = g−1(g(x)/c) > t0):

lim sup
y→+∞

m(cA(y, y + g(x)))

x
= lim sup

y→+∞

cm(A(y/c, y/c+ (g(x)/c)))

x

= lim sup
y→+∞

m(A(y, y + (g(x)/c)))

x
= lim sup

y→+∞

m(A(y, y + g(t)))

g−1(cg(t))
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= lim sup
y→+∞

m(A(y, y + g(t)))

t

t

g−1(cg(t))
> δ lim sup

y→+∞

m(A(y, y + g(t)))

t
.

For the Banach density Bdl;gc and for the densities dgc, dgc, the claimed statement
follows similarly.

Remark 2.4.18. (see also [202, Lemma 2.1]) If f : R → R is a (uniformly)
continuous, �g-almost periodic (uniformly recurrent) function, ε > 0, c ∈ R and
τ ∈ ϑ(f, ε), then τ ∈ ϑ(min(c, f), ε) and the function min(c, f(·)) is (uniformly)
continuous and �g-almost periodic (uniformly recurrent).

Remark 2.4.19. Let f : R → R be an almost periodic function such that
there exist two real numbers a and b such that a < 0 < b and an analytic function
F : {z ∈ C : a < Re z < b} → C such that F (ix) = f(x) for all x ∈ R. Then
the function h : R → R, defined by h(x) := sign(f(x)), x ∈ R is Stepanov p-
almost periodic for any finite exponent p > 1. For p = 1, this has been proved in
[264, Theorem 5.3.1, p. 210], while the general case follows from the consideration
given in [234, Example 2.2.3(i)] (we feel duty bound to say that we have made
small mistakes in the formulations of conditions in [234, Example 2.2.2, Example
2.2.3(ii)] by neglecting the necessary condition on the analytical extensibility of
function f((−i)·) to the strip {z ∈ C : a < Re z < b}). The Bochner criterion is
essentially employed in the proof of the above-mentioned theorem and we would like
to observe here that the above condition on the analytical extensibility of function
f((−i)·) can be neglected in some situations, even for the uniform recurrence and
�g-almost periodicity. More precisely, let f : R → R be a uniformly recurrent
function (an �g-almost periodic function) satisfying that

(∃L > 1) (∀ε > 0) (∀y ∈ R) m
(
{x ∈ [y, y + 1] : |f(x)| 6 ε}

)
6 Lε.

Then the function h(·), defined above, is uniformly recurrent (�g-almost periodic),
which follows from the foregoing arguments.

Now we will introduce the following definition:

Definition 2.4.20. (i) Suppose that f ∈ C(I : X). Then we say that the
function f(·) is asymptotically uniformly recurrent if and only if there exist
a uniformly recurrent function h : R → X and a function φ ∈ C0(I : X)
such that f(t) = h(t) + φ(t) for all t ∈ I.

(ii) Suppose that f ∈ C(I : X). Then we say that the function f(·) is asymp-
totically �g-almost periodic if and only if there exist an �g-almost pe-
riodic function h : R → X and a function φ ∈ C0(I : X) such that
f(t) = h(t) + φ(t) for all t ∈ I.

Assume that the function f : [0,∞) → X is continuous and the function
h : [0,∞)→ X is continuous. For each ε > 0 and M > 0, we define

ϑM (f, ε) := {τ > 0 : ‖f(t+ τ)− f(t)‖ 6 ε, t >M}.

Then it is clear that the assumption M1 6 M2 implies ϑM1
(f, ε) ⊆ ϑM2

(f, ε).
Furthermore, if φ ∈ C0([0,∞) : X) and ε > 0, then we have the existence of a
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number M > 0 such that

‖[h+ φ](t+ τ)− [h+ φ](t)‖ 6 ‖h(t+ τ)− h(t)‖+ ‖φ(t+ τ)− φ(t)‖

6 ‖h(t+ τ)− h(t)‖+
ε

2
, t >M,

so that ϑ(h, ε/2) ⊆ ϑM (h + φ, ε). Therefore, for any asymptotically �g-almost
periodic function f : [0,∞) → X we have that for each ε > 0 there exists M > 0
such that �g(ϑM (f, ε)) > 0 (a similar statement holds for the Stepanov classes).
In the case that g(x) ≡ x, then we also have the converse: if for each ε > 0 there
exists M > 0 such that �g(ϑM (f, ε)) > 0, then the function f(·) is asymptotically
almost periodic; if �g is Bdl;gc or Bdu;gc, then the converse also holds in general
case. For the remaining four densities, it seems very conceivable that the converse
does not hold in general case.

From this definition and previously proved results in this section, it is clear
that we have the following:

Proposition 2.4.21. (i) Any asymptotically almost periodic function is
asymptotically �g-almost periodic, and any asymptotically �g-almost pe-
riodic function is asymptotically uniformly recurrent.

(ii) Let f : I → X be continuous and g(x) ≡ x. Then f(·) is asymptotically
almost periodic if and only if f(·) is asymptotically �g-almost periodic.

(iii) Let f : I → X be continuous and let g : [0,∞)→ [1,∞) be an increasing
mapping satisfying that there exists a finite number L > 1 such that (38)
holds. Then f(·) is asymptotically almost periodic if and only if f(·) is
asymptotically Bdl;gc-almost periodic if and only if f(·) is asymptotically
Bdu;gc-almost periodic.

Now we have an open door to introduce the concepts of (asymptotical) Stepanov
p(x)-uniform recurrence and (asymptotical) Stepanov (p(x),�g)-almost periodicity:

Definition 2.4.22. (i) Let p ∈ P([0, 1]). A function f ∈ Lp(x)
loc (I : X) is

said to be Stepanov p(x)-uniformly recurrent if and only if the function

f̂ : I → Lp(x)([0, 1] : X), defined by (21), is uniformly recurrent.

(ii) Let p ∈ P([0, 1]). A function f ∈ L
p(x)
loc (I : X) is said to be Stepanov

(p(x),�g)-almost periodic if and only if the function f̂ : I → Lp(x)([0, 1] :
X), defined by (21), is �g-almost periodic.

If p(x) ≡ p ∈ [1,∞), then we alo say that the function f(·) is Stepanov p-
uniformly recurrent (Stepanov (p,�g)-almost periodic).

Definition 2.4.23. (i) Let p ∈ P([0, 1]). A function f ∈ Lp(x)
loc (I : X) is

said to be asymptotically Stepanov p(x)-uniformly recurrent if and only
if there exist a Stepanov p(x)-uniformly recurrent function h : R → X

and a function q ∈ Lp(x)
S (I : X) such that f(t) = h(t) + q(t), t ∈ I and

q̂ ∈ C0(I : Lp(x)([0, 1] : X)).

(ii) Let p ∈ P([0, 1]). A function f ∈ Lp(x)
loc (I : X) is said to be asymptotically

Stepanov (p(x),�g)-almost periodic if and only if there exist a Stepanov
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(p(x),�g)-almost periodic function h : R→ X and a function q ∈ Lp(x)
S (I :

X) such that f(t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp(x)([0, 1] : X)).
If p(x) ≡ p ∈ [1,∞), then we alo say that the function f(·) is asymptotically

Stepanov p-uniformly recurrent (asymptotically Stepanov (p,�g)-almost periodic).

We can simply state the analogues of Proposition 2.4.14-2.4.16 and Proposi-
tion 2.4.21 for the Stepanov classes. Taking into account Proposition 2.4.16 and
Proposition 2.4.21(iii), in the remainder of section we will always assume, if not
explicitly stated otherwise, that �g denotes exactly one of the densities dgc, dgc,

Bdl;gc or Bdu;gc. Before proceeding any further, we would like to note that we
can similarly introduce and analyze the concepts of �g-almost anti-periodicity and
Stepanov (p,�g)-almost anti-periodicity ([234]).

The following result, which is closely related with [247, Theorem 2.5, Theorem
2.10], plays a significant role in the proof of Theorem 2.4.4:

Theorem 2.4.24. (i) Suppose that the function f : I → X is asymptoti-
cally uniformly recurrent and quasi-asymptotically almost periodic. Then
the function f(·) is asymptotically almost periodic.

(ii) Suppose that p ∈ P([0, 1]), the function f ∈ Lp(x)
S (I : X) is asymptotically

Stepanov p(x)-uniform recurrent and Stepanov p(x)-quasi-asymptotically
almost periodic. Then the function f(·) is asymptotically Stepanov p(x)-
almost periodic.

Proof. The proof of theorem essentially follows from the argumentation con-
tained in the proof of [234, Theorem 2.5]; for the sake of completeness, we will
include all details of proof. Suppose that the function f : I → X satisfies the
assumptions in (i). Then there exist a uniformly recurrent function h(·) and a
function q ∈ C0(I : X) such that f(t) = h(t) + q(t), t ∈ I and for each ε > 0 there
exists a finite number L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains
at least one number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0
such that

‖[h(t+ τ)− h(t)] + [q(t+ τ)− q(t)]‖ 6 ε, provided t ∈ I and |t| >M(ε, τ).(48)

Since f(·) is bounded and q ∈ C0(I : X), we have that h(·) is bounded. The above
implies the existence of a finite number M1(ε, τ) >M(ε, τ) such that

‖h(t+ τ)− h(t)‖ 6 2ε, provided t ∈ I and |t| >M1(ε, τ).(49)

Define the function H : I → X by H(t) := h(t+ τ)−h(t), t ∈ I. Then the function
H(·) is bounded and, due to the property (xi), we have that the function H(·) is
uniformly recurrent. Applying supremum formula clarified in Proposition 2.4.13
and (49), we get

sup
t∈I
‖H(t)‖ = sup

t>M1(ε,τ)

‖H(t)‖ = sup
t>M1(ε,τ)

‖h(t+ τ)− h(t)‖ 6 2ε.

Hence, ‖h(t+ τ)−h(t)‖ 6 2ε for all t ∈ I and h(·) is almost periodic by definition,
which completes the proof of part (i). For part (ii), observe first that there exist
an Stepanov p-uniformly recurrent function h(·) and a function q ∈ LpS(I : X) such
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that f(t) = h(t)+ q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)). Repeating verbatim the
arguments given in the proof of part (i), with the function f(·) replaced therein with

the function f̂(·), we get that the function ĥ : I → Lp([0, 1] : X) is asymptotically
almost periodic. This simply completes the proof of (ii). �

Example 2.4.25. Define

f(t) :=

(
4n2t2

(t2 + n2)2

)
n∈N

, t > 0.

Then f ∈ Q − AAA([0,∞) : c0) ∩ BUC([0,∞) : c0) and f(·) is not asymptoti-
cally almost automorphic (see [247, Example 2.6, Theorem 2.5]). Due to Theorem
2.4.24(ii) and Lemma 2.3.3(i), we have that the function f(·) is not asymptotically
Stepanov (1-)uniformly recurrent.

The results presented in the subsequent proposition are expected to a certain
extent:

Proposition 2.4.26. Let p ∈ P([0, 1]).

(i) If f : R → X is uniformly recurrent and asymptotically almost automor-
phic, then f(·) is almost automorphic.

(ii) If f : I → X is uniformly recurrent and asymptotically almost periodic,
then f(·) is almost periodic.

(iii) If f : R → X is Stepanov p(x)-uniformly recurrent and asymptotically
Stepanov p(x)-almost automorphic, then f(·) is Stepanov p(x)-almost au-
tomorphic.

(iv) If f : I → X is Stepanov p(x)-uniformly recurrent and asymptotically
Stepanov p(x)-almost periodic, then f(·) is Stepanov p(x)-almost periodic.

Proof. We will prove only (i). Suppose that f : R→ X is uniformly recurrent
and asymptotically almost automorphic. Then there exist a function h ∈ AA(R :
X), a function q ∈ C0(R : X) and a strictly increasing sequence (αn) of positive
real numbers tending to plus infinity such that (19) holds and f(t) = h(t)+ q(t) for
all t ∈ R. Fix a number t ∈ R. Then limn→+∞ q(t + αn) = 0 and, in combination
with (19), we get

lim
n→+∞

h
(
t+ αn

)
= f(t) and lim

n→+∞
f
(
t− αn

)
= f(t).(50)

Since h(·) is almost automorphic, we can extract a subsequence (βn) of (αn) such
that there exists a mapping f1 : R→ X satisfying

lim
n→+∞

h
(
t+ βn

)
= f1(t) and lim

n→+∞
f1

(
t− βn

)
= h(t) for all t ∈ R.(51)

The uniqueness of the first limits in (50) and (51) yields f1(t) = f(t). Using the
uniqueness of the second limits in (50) and (51), we get f(t) = h(t), which completes
the proof of (i). �

Combining Theorem 2.4.24 and Proposition 2.4.26, we may deduce the follow-
ing:
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Corollary 2.4.27. Let p ∈ P([0, 1]).

(i) If f : I → X is uniformly recurrent and asymptotically almost periodic,
then f(·) is almost periodic.

(ii) If f ∈ Lp(x)
S (I : X) is Stepanov p(x)-uniform recurrent and Stepanov p(x)-

quasi-asymptotically almost periodic, then f(·) is Stepanov p(x)-almost
periodic.

In the following theorem, we reconsider the statements given in Lemma 2.3.3 for
the (asymptotical) Stepanov p(x)-uniform recurrence and (asymptotical) Stepanov
(p(x),�g)-almost periodicity:

Theorem 2.4.28. Let p ∈ P([0, 1]).

(i) If the function h : I → X is uniformly recurrent, φ ∈ C0(I : X) and
f(t) = h(t) + φ(t) for all t ∈ I, then

{h(t) : t ∈ I} ⊆ {f(t) : t ∈ I}.(52)

(ii) If h : I → X is uniformly continuous and Stepanov p(x)-uniformly re-
current (Stepanov (p(x),�g)-almost periodic), then the function h(·) is
uniformly recurrent (�g-almost periodic).

(iii) If f : I → X is uniformly continuous and asymptotically Stepanov p(x)-
uniformly recurrent (asymptotically Stepanov (p(x),�g)-almost periodic),
then the function f(·) is asymptotically uniformly recurrent (asymptoti-
cally �g-almost periodic).

Proof. Part (i) can be simply deduced as follows. Let the numbers t ∈ R
and ε > 0 be fixed. It is clear that there exists a strictly increasing sequence (αn)
of positive real numbers such that ‖h(t) − h(t + αn)‖ < ε/2, n ∈ N. Hence, there
exists n0 ∈ N such that∥∥h(t)− f(t+ αn)

∥∥ 6 ∥∥h(t)− h(t+ αn)
∥∥+

∥∥q(t+ αn)
∥∥ 6 ε/2 + ε/2 = ε.

This, in turn, implies (52). For the proofs of (ii) and (iii), it suffices to consider
case p(x) ≡ 1. If the function h : I → X satisfies the requirements of (ii), then for
each σ ∈ (0, 1) the function hσ : I → X, given by

hσ(t) :=
1

σ

∫ t+σ

t

h(s) ds, t ∈ I,(53)

is continuous and, due to the uniform continuity of h(·), we have the existence of a
number δ ∈ (0, 1) such that ‖h(t′)−h(t′′)‖ < ε, provided t′, t′′ ∈ I and |t′−t′′| < δ.
Therefore, if σ ∈ (0, δ), then we have∥∥hσ(t)− h(t)

∥∥ 6 1

σ

∫ t+σ

t

‖h(s)− h(t)‖ ds < ε, t ∈ R,(54)

and limσ→0+ hσ(t) = h(t) uniformly in t ∈ I. By property (iv) from the beginning of
section, it suffices to show that for each fixed number σ ∈ (0, 1) the function hδ(·) is
uniformly recurrent (�g-almost periodic). But, this follows from the argumentation
given on [62, p. 80], where it has been proved that for each number ε > 0 we have

ϑ(ĥ, σε) ⊆ ϑ(hσ, ε). This completes the proof of (ii). To deduce (iii), observe that
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there exist a Stepanov 1-uniformly recurrent (Stepanov (1,�g)-almost periodic)
function h(·) and a function q ∈ L1

S(I : X) such that f(t) = h(t) + q(t), t ∈ I and
q̂ ∈ C0(I : L1([0, 1] : X)). Using (i) and the arguments contained in the proof of
[218, Proposition 3.1], we get that the both functions h(·) and q(·) are uniformly
continuous. This yields that q ∈ C0(I : X) and, due to part (ii), h(·) is uniformly
recurrent (�g-almost periodic). The proof of the theorem is thereby completed. �

In [353, Proposition 12], R. Xie and C. Zhang have proved that any uniformly
continuous function f ∈ SpSAPω(I : X) belongs to the space APω(I : X); see [353]
for the notion. As already mentioned, we have SpSAPω(I : X) ⊆ SpQ− AAP (I :
X) and it is reasonable to ask whether we can extend the above result by showing
that any uniformly continuous function f ∈ SpQ − AAP (I : X) belongs to the
space Q−AAP (I : X). This is actually the case, as the next proposition shows (an
extension to the variable exponent p ∈ P([0, 1]) can be made):

Proposition 2.4.29. Let p ∈ [1,∞), and let f ∈ SpQ − AAP (I : X) be
uniformly continuous. Then f ∈ Q−AAP (I : X).

Proof. The proof of proposition is very similar to the proof of Theorem
2.4.28(ii). Clearly, it suffices to consider the case p = 1. Define, for every num-
ber σ ∈ (0, 1), the function fσ(·) by replacing the function h(·) in (53) with the
function f(·). Then the function fσ(·) is bounded and continuous (σ ∈ (0, 1)). Fur-
thermore, (54) holds with the functions hσ(·) and h(·) replaced therein with the
functions fσ(·) and f(·). Due to [247, Theorem 2.13(ii)], it suffices to show that the
function fσ(·) is quasi-asymptotically almost periodic for each number σ ∈ (0, 1).
But, this simply follows from the estimate∥∥fσ(t+ τ)− fσ(t)

∥∥ 6 1

σ

∫ t+1

t

‖f(s+ τ)− f(s)‖ ds, t ∈ I, τ ∈ I, σ ∈ (0, 1),

which can be proved as on [62, p. 80]. �

Remark 2.4.30. The proof of Proposition 2.4.29 considerably shortens the
proof of [353, Proposition 12]. Therefore, the word “Stepanov” in the formulations
of Theorem 2.4.4 and Theorem 2.4.5 can be encompassed with the round brackets.

The following proposition will be important in the sequel:

Proposition 2.4.31. Suppose that the function f : I → X is uniformly con-
tinuous and (asymptotically) uniformly recurrent. Then there exist a finite number
L > 1 and an increasing mapping g : [0,∞)→ [1,∞) such that (38) holds and f(·)
is (asymptotically) ·g-almost periodic for ·g ∈ {dgc, dgc}.

Proof. Without loss of generality, we may assume that the equation (19)
holds with the sequence (αn) satisfying αn+1 − αn > 1. It suffices to prove the
proposition for uniformly recurrent functions. Let ε > 0 be fixed. Due to the
uniform continuity of f(·), we have that there exist an integer n0 ∈ N and a finite
real number δ > 0 such that the set ϑ(f, ε) contains the union of disjunct intervals
[αn − δ, αn + δ] for n > n0. Let g : [0,∞) → [1,∞) be any increasing mapping
such that g(n) > αn+1 for all n ∈ N. Hence, (38) holds with some finite number
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L > 1. Furthermore, if x ∈ [n, n + 1], then the interval [0, g(x)] contains at least
(n− n0) disjunct intervals of length δ whose union belongs to ϑ(f, ε). This simply
implies thatm([ϑ(f, ε)](0, g(x))) > δ(n−n0) and thereforem([ϑ(f, ε)](0, g(x)))/x >
δ(n − n0)/(n + 1). This simply implies dc(ϑ(f, ε)) > 0, so that f(·) is dgc-almost

periodic and therefore dgc-almost periodic. �

Remark 2.4.32. The proof of Proposition 2.4.31 does not work for the up-
per l; gc-Banach density Bdl;gc(·) and the upper u; gc-Banach density Bdu;gc(·). In
general, these densities differ from the densities

Bdl:gc(A) := lim inf
x→+∞

sup
y>0

m(A(y, y + g(x)))

x

and

Bdu:gc(A) := lim sup
x→+∞

sup
y>0

m(A(y, y + g(x)))

x
,

respectively. Repeating verbatim the above arguments, it can be simply proved
that for any uniformly continuous, uniformly recurrent function f : I → X there
exist a finite number L > 1 and an increasing mapping g : [0,∞) → [1,∞) such
that (38) holds and f(·) is ·g-almost periodic for ·g ∈ {Bdl:gc, Bdu:gc}.

Remark 2.4.33. By the proof of Proposition 2.4.31, it follows that, for every
uniformly continuous, uniformly recurrent functions fi : I → X (1 6 i 6 n), we
can find a finite number L > 1 and an increasing mapping g : [0,∞)→ [1,∞) such
that (38) holds and fi(·) is ·g-almost periodic for all 1 6 i 6 n and ·g ∈ {dgc, dgc}.

Keeping in mind the corresponding definitions and Proposition 2.4.31, the next
result follows immediately (the previous two remarks can be reformulated in this
context, as well):

Proposition 2.4.34. Suppose that p ∈ P([0, 1]), f : I → X is (asymptoti-

cally) Stepanov p(x)-uniformly recurrent and f̂ : I → Lp(x)([0, 1] : X) is uniformly
continuous. Then there exist a finite number L > 1 and an increasing mapping
g : [0,∞) → [1,∞) such that (38) holds and f(·) is (asymptotically) Stepanov
(p(x),�g)-almost periodic for ·g ∈ {dgc, dgc}.

It is worth noticing that Proposition 2.4.31 cannot be applied to the compactly
almost automorphic functions which are not asymptotically uniformly recurrent,
in general. Concerning this problematic, we would like to present the following
illustrative example:

Example 2.4.35. Any almost periodic function has to be compactly almost au-
tomorphic, while the converse statement is not true, however. The first example of a
scalar-valued compactly almost automorphic function which is not almost periodic
has been constructed by A. M. Fink (see [171, p. 521]). Set an :=sign(cos(nπ

√
2)),

n ∈ Z and define after that the function f : R → R by f(t) := αan + (1 − α)an+1

if t ∈ [n, n + 1) for some integer n ∈ Z and t = αn + (1 − α)(n + 1) for some
number α ∈ (0, 1]. As verified in [171], this function is compactly almost automor-
phic (therefore, uniformly continuous) but not almost periodic. We will extend this
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result by showing that the function f(·) is not asymptotically uniformly recurrent.
If we suppose the contraposition, then there exists a strictly increasing sequence
(τn) of positive real numbers tending to plus infinity such that, for every ε > 0, we
have the existence of two finite numbers M > 0 and n0 ∈ N such that∥∥f(x+ τn)− f(x)

∥∥ 6 2ε, |x| >M, n > n0.

Let ε ∈ (0, 1/2) and n > n0. Then it is clear that there exists l ∈ N, as large as
we want, such that al > 0 and al+1 < 0. Then f(l + (1/2)) = 0 and therefore
|f(l + (1/2) + τn)| 6 2ε. This clearly implies the existence of an integer k ∈ Z
such that the number l+ (1/2) + τn lies in a certain small neighborhood of number
k + (1/2); more precisely, since the linear function connecting the points (k,−1)
and (k + 1, 1) is given by y = 2x − 2k − 1, we get from the above that |2(l +
(1/2) + τn) − 2k − 1| 6 2ε, which simply implies |τn − (k − l)| 6 ε and therefore
τn ∈ (0, ε] ∪

⋃
k∈N[k − ε, k + ε]. Fix now an integer k ∈ N. We will show that the

inclusion τn ∈ [k − ε, k + ε] cannot be true. Otherwise, for each real number t ∈ R
we have |f(t+ τn)− f(t+ k)| 6 2 · ε = 2ε, which can be easily approved, so that

|f(t+ k)− f(t)| 6
∣∣f(t+ k)− f(t+ τn)

∣∣+
∣∣f(t+ τn)− f(t)

∣∣
6 2ε+ ε = 3ε, |t| >M.

This contradicts Lemma 2.4.8. Notice also that the argumentation given above
shows that, for every ε ∈ (0, 1), we have ϑ(f, ε) ∩ (ε/2,+∞) = ∅. Furthermore, for
every ε ∈ (0, 1) and τ ∈ (0, ε/2], we have |f(t+τ)−f(t)| 6 2τ 6 ε so that, actually,

∀ε ∈ (0, 1) : ϑ(f, ε) = (0, ε/2].

Let us recall that A. M. Fink has constructed in [170, Example 6.1] an odd
almost periodic function f : R→ R satisfying that∫ t

0

f(s) ds 6 0, t ∈ R,
∫ 2n−1

0

f(s) ds 6 −n, n ∈ N

and the function

F (t) := e
∫ t
0
f(s) ds, t ∈ R

is bounded but not almost periodic. The construction goes as follows. For any
number n ∈ Nr{1}, we define the function fn : R→ R by fn(t) := (−n)/(2n−1−1),
t ∈ [1, 2n−1 − 1], fn(0) := 0, fn(2n−1 − 1) := 0, fn(·) is linear on segments [0, 1]
and [2n−1 − 1, 2n−1]; after that, we extend fn(·) to be odd and periodic of period
2n. The function f(t) :=

∑∞
n=2 fn(t), t ∈ R is well defined, odd and satisfies

the above-mentioned properties. Further on, we have F (t) 6 1 for all t ∈ R so
that the Lagrange mean value theorem directly yields that the function F (·) is
Lipschitzian with the Lipschitz constant ‖f‖∞; in particular, F (·) is uniformly
continuous. It could be of some interest to know whether the function F (·) is not
uniformly recurrent.

Finally, it should be note that several intriguing examples of functions with
almost periodic behaviour have been constructed by D. Bugajewski, A. Nawrocki
in [84] and M. Vesely in [343].
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Before providing the proofs of Theorem 2.4.2, Theorem 2.4.4, Theorem 2.4.5
and Theorem 2.4.7, we would like to address one more problem to our readers:

Question 2.4.36. Let us recall that the function f(·), given by (29), is almost
automorphic function and not compactly almost automorphic. We would like to ask
whether for each number ε ∈ (0, 1) we have that ϑ(f, ε) 6= ∅ (ϑ(f, ε) is unbounded)?

Proof of Theorem 2.4.2. We will first prove that for each fixed number
τ ∈ R we have that the function f(·+ τ)− f(·) belongs to the space ANP (R : C).
Towards this end, note that

f(t+ τ)− f(t) =

∞∑
n=1

1

n

[
sin2 t+ τ

2n
− sin2 t

2n

]

=

∞∑
n=1

1

2n

[
cos

t

2n−1
− cos

t+ τ

2n−1

]

=

∞∑
n=1

1

n
sin

2t+ τ

2n
sin

τ

2n

=

∞∑
n=1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n
, t ∈ R.

Since the functions t 7→ sin t
2n−1 , t ∈ R and t 7→ cos t

2n−1 , t ∈ R are anti-periodic of

anti-period T = 2n−1π, it follows that the function

fk(t) :=

k∑
n=1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n
, t ∈ R

belongs to the space ANP0(R : C). Moreover, limk→+∞ fk(t) = f(t + τ) − f(t)
uniformly on R since∣∣∣∣∣

∞∑
n=k+1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n

∣∣∣∣∣ 6 |τ |
∞∑

n=k+1

1

n2n−1
, t ∈ R.

Especially, due to the fact that ANP (R : C) = APRr{0}(R : C), we have 0 /∈
σ(f(·+ τ)− f(·)), i.e.,

lim
t→+∞

1

t

∫ t

0

|f(s+ τ)− f(s)| ds = 0.

This readily implies

lim
t→+∞

1

t

∫ t

0

|f(s+ τ)− f(s)|p ds = 0, p > 1,

because

|f(s+ τ)− f(s)|p 6 |f(s+ τ)− f(s)| ·

(
sup
x>0
|f(x+ τ)− f(x)|

)p−1

, s > 0.
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Taking into account [234, Proposition 2.13.4], we easily get that for each numbers
t, τ ∈ R we have

lim
l→+∞

1

2l

∫ l

−l

∣∣f(t+ τ + x
)
− f(t+ x)

∣∣p dx
= lim sup

l→+∞

1

2l

∫ l

−l

∣∣f(t+ τ + x
)
− f(t+ x)

∣∣p dx = 0,

so that the function f(·) is Weyl p-almost automorphic with the limit function
f∗ ≡ f. This completes the proof of Theorem 2.4.2. �

Proof of Theorem 2.4.4. Suppose that the function h(·) is Stepanov quasi-
asymptotically almost periodic. It is clear that the function h(·) is asymptotically
Stepanov uniform recurrent, so that Theorem 2.4.24(ii) implies that the function
h(·) is asymptotically Stepanov almost periodic. Since h(·) is uniformly continuous,
Lemma 2.3.3(i) implies that the function h(·) is asymptotically almost periodic.
This cannot be true because the restriction of function h(·) to the non-negative
real axis is not asymptotically (Stepanov) almost automorphic by Lemma 2.4.3. �

Proof of Theorem 2.4.5. The function f(·), given by (34), satisfies that for
each ε > 0 there exists a positive real number δ > 0 such that the set ϑ(f, ε) contains
the set

⋃
n>d1/εe[τn − δ, τn + δ] as well as f(x) = fn(x) for all x ∈ [−τn−1, τn−1]

(n ∈ N). Furthermore, the function f(·) equals zero on arbitrarily long intervals
and for each number ε ∈ (0, 1) we have that the sets {x ∈ R : f(x) /∈ [1− ε, 1 + ε]}
and ϑ(f, ε) are disjunct (see [172, Example 8, pp. 31-33] for more details). This
essentially implies that the function f(·) cannot be asymptotically Stepanov almost
automorphic (we will present a direct proof, without appealing to Lemma 2.3.3(ii)
and Proposition 2.4.26(iii)). If we suppose the contraposition, then there exist a
Stepanov almost automorphic function h(·) and a function q ∈ C0(R : L1([0, 1] : C))
such that f(t) = h(t) + q(t) for a.e. t ∈ R. Moreover, we have the existence of
disjunct intervals In = [bn, b

′′
n] ⊆ [0,∞) whose length is strictly greater than n2

and which satisfy that f(x) = 0 for all x ∈ In (n ∈ N). Define bn := (b′n + b′′n)/2
(n ∈ N). Then there exist a subsequence (an) of (bn) and a function g∗ ∈ L1

loc(R : C)
such that

lim
n→+∞

∫ t+1

t

∣∣f(x+ an)− q(x+ an)− g∗(x)
∣∣ dx = 0

for all t ∈ R, and

lim
n→+∞

∫ t+1

t

∣∣g∗(x− an)− [f(x)− q(x)]
∣∣ dx = 0

for all t > 0. Let ε ∈ (0, 1/2) be given. Then there exists n0 ∈ N such that n0/(n0−
1) > 3ε/2 and

∫ 1+τn0

τn0
|q(x)| dx < ε/8. Since 1 > f(x) > fn(x) > n0/(n0 − 1) for

x = τn0
, fn(x) = 0 for x = τn0

+ 1 and the function fn(·) is linear on the interval
[τn0

, τn0
+ 1] (see also [75, part I, p. 115]), the second limit equality with t = τn0
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easily implies the existence of an integer n1 > n0 such that∫ 1+τn0
−an

τn0−an

∣∣g∗(x)
∣∣ dx > n0

2(n0 − 1)
− ε

2
>
ε

4
, n > n1.

Returning to the first limit equation, with t = τn0
− an1

, and taking into account

that limm→∞
∫ t+1

t
|q(x + am)| dx < ε/8 for all m ∈ N sufficiently large, we obtain

the existence of an integer m1 > n1 such that∫ 1+τn0
−an1

+am

τn0−an1+am

|f(x)| dx =

∫ 1+τn0
−an1

τn0−an1

∣∣f(x+ am
)∣∣ dx > ε

4
− ε

8
> 0

for all m > m1. But, this is simply impossible because for large values of m we have
that [τn0 − an1 + am, 1 + τn0 − an1 + am] is contained in a larger interval where the
function f(·) equals zero. If we assume that the function f(·) is Stepanov quasi-
asymptotically almost periodic, then the first part of proof of Theorem 2.4.4 yields
that the function f(·) is asymptotically Stepanov almost periodic, which cannot be
true according to the first part of proof of this theorem. �

Example 2.4.37. Without going into full details, let us only note that the
function f(·) considered above can be Weyl p-almost automorphic (p > 1) if the
sequence (τn) marches rapidly to plus infinity. This follows from the fact that the
function f(·) is bounded and belongs to the space PAP0(R : C). To explain this
in more detail, let an denote the number of triangles appearing on the graph of
function fn(·). Then a1 = 1 and an = (2n − 1)an−1, n ∈ N r {1} so that an =
(2n− 1)!!, n ∈ N. The Lebesgue measure of each such triangle cannot exceed 1 so

that
∫ +∞
−∞ fn(x) dx 6 (2n−1)!!, n ∈ N. Suppose, for simplicity, that limn→+∞(2n−

1)!!/τn−2 = 0. If τn−1 > l > τn−2 for some sufficiently large integer n ∈ N, then

1

l

∫ l

−l
f(x) dx =

1

l

∫ l

−l
fn(x) dx 6

1

τn−2

∫ ∞
−∞

fn(x) dx 6
(2n− 1)!!

τn−2
,

so that liml→+∞(1/2l)
∫ l
−l f(x) dx = 0, as claimed. Needless to say that, due to

Proposition 2.4.31, there exists a suitable function g(·) such that the function f(·)
is ·g-almost periodic for ·g ∈ {dgc, dgc} (see also [198, pp. 477-478]).

Proof of Theorem 2.4.7. It is already known that the function f(·) satisfies
limi→+∞ ‖f(·+ 2pi)− f(·)‖∞ = 0, so that f(·) is uniformly recurrent. Keeping in
mind Proposition 2.4.29 and arguing as in the proof of Theorem 2.4.4, we get
that f(·) is (Stepanov) quasi-asymptotically almost periodic if and only if f(·) is
asymptotically almost periodic. By Proposition 2.4.26(ii), this would imply that
the function f(·) is almost periodic; this is not the case because the function f(·) is
not almost automorphic (asymptotically almost automorphic, equivalently, due to
Proposition 2.4.26(i)). If we suppose the contrary, then there exist a subsequence
(pik) of (pi) and a function ω : R → R such that limk→+∞ f(t + pik) = ω(t) and
limk→+∞ ω(t − pik) = f(t) for all t ∈ R. Observe that the function fi(·) satisfies
fi(t + pi) > 1 − ε, provided |t| 6 εpi and i ∈ N. Let t ∈ R and ε > 0 be given.
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Then there exists i0 ∈ N such that |t| 6 εpi for all integers i > i0. Therefore, for
any integer i > i0, we have

1 > f
(
t+ pi

)
> fi

(
t+ pi

)
> 1− ε,

so that 1 = limi→+∞ f(t + pi) = limk→+∞ f(t + pik) = ω(t). Therefore, ω(t) ≡ 1
and returning to the second limit equality we get f(t) ≡ 1, which is a contradiction
(see also [129, Figure 3.7.3, p. 208]). �

We continue by proposing an interesting result closely connected with our pre-
vious analysis of uniformly recurrent functions and the recent researches of I. Area,
J. Losada and J. J. Nieto [27]-[28] concerning the quasi-periodic properties of frac-
tional integrals and fractional derivatives of scalar-valued periodic functions (see
also I. Area, J. Losada, J. J. Nieto [29] and J. M. Jonnalagadda [216] for the dis-
crete analogues). In [234], we have emphasized that the almost periodic properties
and the almost automorphic properties of the Riemann-Liouville integrals are very
unexplored in the vector-valued case.

Suppose that α ∈ (0, 1) and T > 0. In [27, Theorem 1], the authors have proved

that the Riemann-Liouville integral Jαt f(t) :=
∫ t

0
gα(t − s)f(s) ds, t ∈ R of a non-

zero essentially bounded T−periodic function f : R → R cannot be T−periodic.
Suppose now that f : R → X is a non-zero essentially bounded T−periodic func-
tion. Then [28, Lemma 3] continues to holds for f(·), as it can be simply verified,
so that the function Jαt f(·) is S-asymptotically T -periodic. If we suppose that the
function Jαt f(·) is uniformly recurrent (compactly almost automorphic), this would
imply by [209, Lemma 3.1] and the arguments used in the proof of [209, Proposi-
tion 3.4] that the function Jαt f(·) is T -periodic. This will be used in the proof of
the following proper extension of [28, Theorem 9]:

Theorem 2.4.38. Suppose that α ∈ (0, 1), T > 0 and f : R→ X is a non-zero
essentially bounded T -periodic function. Then Jαt f(·) cannot be uniformly recurrent
(almost automorphic).

Proof. Suppose that Jαt f(·) is uniformly recurrent (almost automorphic) and
x∗ ∈ X∗ is an arbitrary functional. Let 〈x∗, f(·)〉 = a(·) + ib(·), where a(·) and
b(·) are real-valued functions. Then it is clear that the function Jαt 〈x∗, f(·)〉 =
Jαt a(·)+iJαt b(·) is uniformly recurrent (almost automorphic) because Jαt 〈x∗, f(·)〉 =
〈x∗, Jαt f(·)〉, which further implies that the functions Jαt a(·) and Jαt b(·) are uni-
formly recurrent (almost automorphic). Let us assume first that the functions
Jαt a(·) and Jαt b(·) are uniformly recurrent. Since a(·) and b(·) are essentially
bounded functions of period T, the above discussion implies that Jαt a(·) and Jαt b(·)
are periodic functions of period T. Then we can apply [27, Theorem 1] in order
to see that a(·) ≡ b(·) ≡ 0. This implies 〈x∗, f(·)〉 ≡ 0 and therefore f(·) ≡ 0.
The proof is quite similar if we assume that the function Jαt f(·) is almost automor-
phic, when the functions Jαt a(·) and Jαt b(·) are also almost automorphic. Since the
function Jαt f(·) is bounded, repeating verbatim the above arguments we may de-
duce from [28, Theorem 5] that the functions Jαt a(·) and Jαt b(·) are asymptotically
T -periodic and, in particular, bounded and uniformly continuous. Therefore, the
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functions Jαt a(·) and Jαt b(·) are compactly almost automorphic. But, then we can
argue in the same way as for the uniform recurrence to get that a(·) ≡ b(·) ≡ 0. �

Applying the trick used in the first part of the proof and the well known fact
that a weakly bounded set in a locally convex space is bounded, we may conclude
that the statements of [27, Theorem 1, Corollary 2] and [28, Lemma 2, Lemma 3;
Proposition 1, Proposition 2; Theorem 2, Theorem 3, Theorem 4, Theorem 8] hold
in the vector-valued case (concerning the above-mentioned statements from [28],
it seems very plausible that the continuity of function f(·) in their formulations
can be replaced with the essential boundedness). It is clear that [28, Corollary 1]
cannot be reformulated even for the complex-valued functions and, regarding the
main structural results established in [27]-[28], it remains to be considered whether
the statements of [28, Theorem 5, Theorem 6, Theorem 7] hold in the vector-valued
case. We will analyze this question somewhere else.

We proceed further with some applications of (asymptotically) uniformly recur-
rent functions and (asymptotically) �g-almost periodic functions. We shall mostly
be concerned with the invariance of (asymptotical) uniform recurrence and (asymp-
totical) �g-almost periodicity under the actions of convolution products.

Let f : R→ X. We will first investigate the uniformly recurrent and �g-almost
periodic properties of the function

F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R,(55)

where a strongly continuous operator family (R(t))t>0 ⊆ L(X,Y ) satisfies certain
assumptions. In our recent research studies regarding this question, it is commonly
assumed that the function f(·) is Stepanov p(x)-bounded for some function p ∈
P([0, 1]). If this is the case, we can simply reformulate the statement of Proposition
2.5.17 in our new framework (cf. also [359, Examples 4, 5, 7, 8; pp. 32-34], which
can be simply reformulated for the uniform recurrence and �g-almost periodicity):

Proposition 2.4.39. Suppose that p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1
and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that
M :=

∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If f̌ : R → X is Stepanov p(x)-bounded and

Stepanov p(x)-uniformly recurrent (Stepanov (p(x),�g)-almost periodic), as well

as the mapping t 7→ f̌(· − t) ∈ Lp(x)([0, 1] : X) is continuous, then the function
F : R → Y, given by (55), is well-defined and uniformly recurrent (�g-almost
periodic).

Proof. The function F (·) is well defined due to the computation carried out
in the proof of Proposition 2.5.17. The proof of the above-mentioned proposition

also shows that, if τ ∈ R is an ε-period of function ˆ̌f : R → Lp(x)([0, 1] : X),
then the resulting function F (·) satisfies, under given conditions on (R(t))t>0, an
estimate of the type ‖F (t + τ) − F (t)‖Y 6 Lε, t ∈ R, where L > 1 is a finite

constant independent of t, ε and τ. Hence, the assumption �g(ϑ( ˆ̌f, ε)) > 0 for all
ε > 0 implies that �g(ϑ(F, ε)) > 0 for all ε > 0. Therefore, it remains to be proved
that the function F (·) is continuous. But, this follows similarly as in the proof
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of [234, Proposition 3.5.3] and our assumption that the mapping t 7→ f̌(· − t) ∈
Lp(x)([0, 1] : X) is continuous (see also [143, Proposition 5.1]). �

Remark 2.4.40. In general case p ∈ P([0, 1]), the mapping t 7→ f̌(· − t) ∈
Lp(x)([0, 1] : X) is not necessarily continuous (see e.g., [256, p. 602]). This is
always true provided that p ∈ D+([0, 1]).

Basically, case in which the function f : R→ X is not Stepanov p(x)-bounded
has not attracted the attention of the authors so far. Keeping in mind our previous
results, we would like to state the following proposition with regards to this question

(the uniform continuity of function ˆ̌f : R→ Lp(x)([0, 1] : X) has not been assumed
above):

Proposition 2.4.41. Suppose that p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1, f̌ :
R→ X is Stepanov p(x)-uniformly recurrent (Stepanov (p(x),�g)-almost periodic),
there exists a continuous function P : R→ [1,∞) such that

‖f(t− ·)‖Lp(·)[0,1] 6 P (t), t ∈ R(56)

and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that
for each t ∈ R we have

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1]P (t− k) <∞.(57)

If the function ˆ̌f : R→ Lp(x)([0, 1] : X) is uniformly continuous, then the function
F : R → Y, given by (55), is well-defined and uniformly recurrent (�g-almost
periodic).

Proof. We will only outline the most important details for Stepanov (p,�g)-
almost periodic functions. The function F (·) is well defined since, due to Lemma
1.1.6(i) and the estimates (56)-(57), we have:∫ ∞

0

‖R(s)‖‖f(t− s)‖ ds =

∞∑
k=0

∫ k+1

k

‖R(s)‖‖f(t− s)‖ ds

=

∞∑
k=0

∫ 1

0

‖R(s+ k)‖‖f(t− s− k)‖ ds

6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)([0,1]:X)‖f(t− k − ·)‖Lp(x)([0,1]:X)

6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)([0,1]:X)P (t− k) <∞,

for any t ∈ R. It is clear that our assumptions imply

M :=

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1] <∞,
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so that ϑ(f, ε) ⊆ ϑ(F,Mε). Since we have assumed that the function ˆ̌f : R →
Lp(x)([0, 1] : X) is uniformly continuous, the arguments contained in the proof of
[234, Proposition 2.6.11] can be repeated verbatim in order to see that the function
F (·) is continuous. This completes the proof of proposition. �

Proposition 2.4.39 and Proposition 2.4.41 can be simply incorporated in the
study of the existence and uniqueness of uniformly recurrent and�g-almost periodic
solutions of the fractional Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + f(t), t ∈ R,(58)

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1],

f : R→ X satisfies certain properties, and A is a closed multivalued linear operator
satisfying condition (P) (see Subsection 2.5.3 and [234] for more details).

Taking into account Proposition 2.4.39 and Proposition 2.4.41, we can simply
provide extensions of [234, Proposition 2.6.13, Theorem 2.9.5, Theorem 2.9.7, The-
orem 2.9.15], concerning the asymptotical Stepanov p-uniform recurrence/asympto-
tical Stepanov (p,�g)-almost periodicity of the finite convolution product

F(t) :=

∫ t

0

R(t− s)f(s) ds, t > 0.

These results can be applied in the qualitative analysis of asymptotically uniformly
recurrent/asymptotically �g-almost periodic solutions (asymptotically Stepanov p-
uniformly recurrent/asymptotically Stepanov (p,�g)-almost periodic solutions) of
the following abstract Cauchy inclusion

(DFP)f,γ :

{
Dγ
t u(t) ∈ Au(t) + f(t), t > 0,
u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ ∈ (0, 1], x0 ∈ X,

f : [0,∞) → X satisfies certain properties, and A is a closed multivalued linear
operator satisfying condition (P) (see Subsection 2.5.3 and [234] for more details).

The sum of two uniformly recurrent (�g-almost periodic) functions need not be
uniformly recurrent (�g-almost periodic), unfortunately. But, it is worth noticing
that there exist many concrete situations where this difficulty can be overcomed.
For example, it is very simple to extend the assertions of [234, Theorem 2.14.7]
and [153, Theorem 2.3] for the asymptotical Stepanov (p,�g)-almost periodicity.
To explain this in more detail, let us observe that the equation appearing on [153,
p. 240, l. 5] can be rewritten as∫ t

−∞
Γ(t, s)f(s) ds = lim

k→+∞

∫ k

0

Γ(t, t− s)f(t− s) ds, t ∈ R;

arguing as in the proof of above-mentioned theorem from [153] we may conclude

that for each integer k ∈ N the function t 7→
∫ k

0
Γ(t, t − s)f(t − s) ds, t ∈ R

is �g-almost periodic, provided that the function f(·) is Stepanov (p,�g)-almost
periodic and Stepanov p-bounded (p > 1), while the case p = 1 follows from the
same arguments and the proof of [234, Theorem 2.14.6], when it is necessary to
assume that f(·) is Stepanov (1,�g)-almost periodic and Stepanov 1-bounded. In
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both cases, p > 1 and p = 1, we need to employ the property (iv) to achieve the
final results.

We close the subsection with the observation that the results whose proofs lean
heavily on the use of Bochner criterion cannot be really reconsidered for uniformly
recurrent and �g-almost periodic functions.

2.4.3. Composition principles for almost periodic type functions and
applications. In this subsection, we introduce and analyze the classes of two-
parameter (asymptotically) uniformly recurrent functions, two-parameter (asymp-
totically) �g-almost periodic functions and their Stepanov generalizations. Several
composition principles are established in this context, which enables one to provide
certain applications to the abstract semilinear integro-differential Cauchy problems
and inclusions. Since the structural results presented in this subsection can be de-
duced by uncomplicated modifications of results known in the existing literature,
we have decided to provide the main details of proofs for only two statements,
Theorem 2.4.44 and Theorem 2.4.46.

For every ε > 0 and for every bounded set B ⊆ Y, we define ϑ(F ; ε,B) as the
set constituted of all numbers τ > 0 such that

‖F (t+ τ, y)− F (t, y)‖ 6 ε, t ∈ I, y ∈ B.
The following definition is crucial in our analysis:

Definition 2.4.42. (i) A continuous function F : I × Y → X is called
uniformly recurrent, resp. �g-almost periodic, if and only if for every
ε > 0 and every compact K ⊆ Y there exists a strictly increasing sequence
(αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥F (t+ αn, y)− F (t, y)
∥∥ = 0, y ∈ K,(59)

resp. if and only if for every ε > 0 and every compact K ⊆ Y we have
�g(ϑ(f ; ε,K)) > 0.

The collection of all two-parameter uniformly recurrent functions,
resp. �g-almost periodic functions, will be denoted by UR(I × Y : X),
resp. AP�g (I × Y : X).

(ii) A continuous function F : I × Y → X is called uniformly recurrent on
bounded sets, resp. �g-almost periodic on bounded sets, if and only if for
every ε > 0 and every bounded set B ⊆ Y there exists a strictly increasing
sequence (αn) of positive reals tending to plus infinity such that (59) holds
with K = B, resp. if and only if for every ε > 0 and every bounded set
B ⊆ Y we have �g(ϑ(f ; ε,B)) > 0.

The collection of all two-parameter uniformly recurrent functions on
bounded sets, resp. �g-almost periodic functions on bounded sets, will
be denoted by URb(I × Y : X), resp. AP�g,b(I × Y : X).

(iii) A continuous function F : I × Y → X is said to be asymptotically uni-
formly recurrent, resp. asymptotically �g-almost periodic, if and only if
F (·) admits a decomposition F = G + Q, where G ∈ UR(R × Y : X),
resp. G ∈ AP�g (R× Y : X), and Q ∈ C0(I × Y : X).



2.4. ALMOST PERIODIC TYPE FUNCTIONS AND DENSITIES 83

Denote by AUR(I × Y : X), resp. AAP�g (I × Y : X), the collec-
tion consisting of all asymptotically uniformly recurrent functions, resp.
asymptotically �g-almost periodic functions.

(iv) A continuous function F : I × Y → X is said to be asymptotically
uniformly recurrent on bounded sets, resp. asymptotically �g-almost
periodic on bounded sets, if and only if F (·) admits a decomposition
F = G + Q, where G ∈ URb(R × Y : X), resp. G ∈ AP�g,b(R × Y : X),
and Q ∈ C0(I × Y : X).

Denote by AURb(I × Y : X), resp. AAP�g,b(I × Y : X), the collec-
tion consisting of all asymptotically uniformly recurrent functions, resp.
asymptotically �g-almost periodic functions.

In the contrast to the approach of C. Zhang for almost periodic functions
depending on the parameter [366] (see also [234, Definition 2.1.4]), we do not
assume a priori the boundedness of function f(·, ·) in our approach. This is quite
reasonable because uniformly recurrent functions and �g-almost periodic functions
of one real variable need not be bounded, in general. It is worth noticing that
introducing parts (ii) and (iv) is motivated by definition of almost periodicity used
by T. Diagana in [234, Definition 3.29].

For the Stepanov classes, we will use the following notion (see also [234, Defi-
nition 2.2.4, Definition 2.2.5; Lemma 2.2.7]):

Definition 2.4.43. Let p ∈ P([0, 1]).

(i) A function F : I × Y → X is called Stepanov p(x)-uniformly recur-
rent/Stepanov p(x)-uniformly recurrent on bounded sets (Stepanov
(p(x),�g)-almost periodic/Stepanov (p(x),�g)-almost periodic on boun-

ded sets) if and only if the function F̂ : I × Y → Lp(x)([0, 1] : X)
is uniformly recurrent/uniformly recurrent on bounded sets (�g-almost
periodic/�g-almost periodic on bounded sets).

(ii) We say that F : I × Y → X is asymptotically Stepanov p(x)-uniformly
recurrent/asymptotically Stepanov p(x)-uniformly recurrent on bounded
sets (asymptotically Stepanov (p(x),�g)-almost periodic/asymptotically
Stepanov (p(x),�g)-almost periodic on bounded sets) if and only if there
exist two functions G : R×Y → X and Q : I×Y → X satisfying that for
each y ∈ Y the functions G(·, y) and Q(·, y) are locally p(x)-integrable, as
well as that the following holds:
(a) Ĝ : R × Y → Lp(x)([0, 1] : X) is uniformly recurrent/uniformly re-

current on bounded sets (�g-almost periodic/�g-almost periodic on
bounded sets),

(b) Q̂ ∈ C0(I × Y : Lp(x)([0, 1] : X)),
(c) F (t, y) = G(t, y) +Q(t, y) for all t ∈ I and y ∈ Y.

If p(x) ≡ p ∈ [1,∞), then we also say that a function F : I × Y → X is Stepanov
p-uniformly recurrent/Stepanov p-uniformly recurrent on bounded sets etc.

The serious difficulty in our investigations presents the fact that for two given
uniformly recurrent functions f : I → X and g : I → X, the sequence (αn) for
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which (19) holds need not have a subsequence (αnk) for which

lim
k→∞

sup
t∈R

∥∥g(t+ αnk)− g(t)
∥∥ = 0;

moreover, for given two �g-almost periodic functions f : I → X and g : I → X,
the set consisting of their joint ε-periods can be bounded (this cannot occur for
almost periodic functions). Now we will slightly improve [234, Theorem 3.30] for
uniformly recurrent functions and �g-almost periodic functions:

Theorem 2.4.44. Suppose that f : I → Y is uniformly recurrent (�g-almost
periodic) and the range of f(·) is relatively compact, resp. bounded. If F : I ×
Y → X is uniformly recurrent (�g-almost periodic), resp. uniformly recurrent on
bounded sets (�g-almost periodic on bounded sets), and there exists a finite constant
L > 0 such that

‖F (t, x)− F (t, y)‖ 6 L‖x− y‖Y , t ∈ I, x, y ∈ Y,(60)

then the mapping F(t) := F (t, f(t)), t ∈ I is uniformly recurrent (�g-almost pe-
riodic), providing additionally the following condition: there exists a strictly in-
creasing sequence (αn) of positive reals tending to plus infinity for which (19)

holds and (59) holds with K = {f(t) : t ∈ I}, resp. for each ε > 0 we have that

�g(ϑ(F ; ε, {f(t) : t ∈ I}) ∩ ϑ(f, ε)) > 0.

Proof. The proof of theorem is very similar to the proof of [234, Theorem
3.30] and we will only outline the main details for �g-almost periodic functions.

Let ε > 0 be given, and let τ ∈ ϑ(F ; ε/2(1 + L), {f(t) : t ∈ I}) ∩ ϑ(f, ε/2(1 + L)).
Then ‖f(t+ τ)− f(t)‖ 6 ε/2(1 + L), t ∈ I and we have

‖F(t+ τ)−F(t)‖ 6 L‖f(t+ τ)− f(t)‖Y + ‖F (t+ τ, f(t))−F (t+ τ, f(t))‖, t ∈ I.
Hence,

‖F(t+ τ)−F(t)‖ 6 [Lε/2(1 + L)] + ε/2(1 + L) < ε, t ∈ I,
which completes the proof. �

Similarly we can prove the following slight extension of [234, Theorem 3.31]:

Theorem 2.4.45. Suppose that f : I → Y is a bounded uniformly recurrent
function (bounded �g-almost periodic function). If F : I × Y → X is uniformly
recurrent on bounded sets (�g-almost periodic on bounded sets) and uniformly con-
tinuous on bounded sets, uniformly for t ∈ I, then the mapping F(t) := F (t, f(t)),
t ∈ I is uniformly recurrent (�g-almost periodic), providing additionally the fol-
lowing condition: there exists a strictly increasing sequence (αn) of positive reals

tending to plus infinity for which (19) holds and (59) holds with K = {f(t) : t ∈ I},
resp. for each ε > 0 we have that �g(ϑ(F ; ε, {f(t) : t ∈ I}) ∩ ϑ(f, ε)) > 0.

Before proceeding further, it should be observed that the statement of [234,
Theorem 3.32] (see also the proof of [170, Theorem 2.11]) can be formulated and
slightly extended for uniformly recurrent (�g-almost periodic) functions with rela-
tively compact range.
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Composition principles for asymptotically almost periodic functions have been
analyzed in a great number of research papers. With regards to this question, we
will state and give the main details of proof for the following slight extension of
[135, Theorem 3.49], only (observe, however, that we can similarly reconsider and
slightly extend the statements of [135, Theorem 3.50-Theorem 3.52]).

Theorem 2.4.46. Suppose that h : I → Y is uniformly recurrent (�g-almost
periodic), the range of h(·) is relatively compact, resp. bounded, q ∈ C0(I : X) and
f(t) = h(t) + q(t) for all t ∈ I. Suppose, further, H : I × Y → X is uniformly
recurrent (�g-almost periodic), resp. uniformly recurrent on bounded sets (�g-
almost periodic on bounded sets), there exists a finite constant L > 0 such that (60)
holds with the function F (·, ·) replaced therein with the function H(·, ·), and there
exists a strictly increasing sequence (αn) of positive reals tending to plus infinity
for which (19) holds with the function f(·) replaced therein with the function h(·)
and (59) holds with the function f(·) replaced therein with the function h(·) and set

K = {h(t) : t ∈ I}, resp. for each ε > 0 we have that �g(ϑ(H; ε, {h(t) : t ∈ I}) ∩
ϑ(h, ε)) > 0. If f(·) has a relatively compact range, Q ∈ C0(I×Y : X) and F (t, y) =
H(t, y) +Q(t, y) for all t ∈ I and y ∈ Y, then the mapping F(t) := F (t, f(t)), t ∈ I
is asymptotically uniformly recurrent (asymptotically �g-almost periodic).

Proof. Due to Theorem 2.4.44, we have that the mapping t 7→ H(t, h(t)),
t ∈ I is uniformly recurrent (�g-almost periodic). Furthermore, we have the de-
composition

F (t, f(t)) = H(t, h(t)) + [H(t, f(t))−H(t, h(t))] +Q(t, f(t)), t ∈ I.
Since the function H(·, ·) satisfies (60), we have

‖H(t, f(t))−H(t, h(t))‖ 6 L‖f(t)− h(t)‖Y 6 L‖q(t)‖Y → 0 as |t| → +∞.
The proof of theorem completes the observation that lim|t|→+∞ ‖Q(t, f(t))‖ = 0,
which follows from definition of space C0(I × Y : X) and our assumption that f(·)
has a relatively compact range. �

Remark 2.4.47. The assumption [135, (3.13)] is superfluous. Furthermore,
we note that the assumption that the range of h(·) is relatively compact, resp.
bounded, implies that f(·) is bounded; therefore, if we use the space C0,b(I×Y : X)
in place of C0(I × Y : X) here, the assumption that f(·) has a relatively compact
range is superfluous, as well.

Remark 2.4.48. Consider, for simplicity, asymptotically uniformly recurrent
functions. The principal part f(·) of function F(t) = F (t, f(t)), t ∈ I satisfies (19)
with the same sequence (αn) and the function f(·) in place of f(·). This holds for
all remaining results established in this subsection, and this fact will be of some
importance for applications made later on.

Concerning the composition principles for Stepanov almost periodic functions,
the most influential paper written by now is the paper [276] by W. Long and H.-S.
Ding. Repating almost verbatim the arguments given in the proof of [276, Lemma
2.1, Theorem 2.2] (see also [142, Theorem 2.4]), we can deduce the following result
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(we feel it is our duty to say that the previously proved results are more appro-
priate for applications in finite-dimensional spaces because condition on relative
compactness of range of function f(·) is almost inevitable to be used; see condition
(ii) below):

Theorem 2.4.49. Let I = R or I = [0,∞), and let p ∈ P([0, 1]). Suppose that
the following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, resp.
Stepanov (p(x),�g)-almost periodic and there exist a function r(·) >
max(p(·), (p(·)/(p(·) − 1)) and a function LF ∈ L

r(x)
S (I) such that (25)

holds true.
(ii) The function f : I → Y is Stepanov p(x)-uniformly recurrent, resp.

Stepanov (p(x),�g)-almost periodic, and there exists a set E ⊆ I with
m(E) = 0 such that K := {f(t) : t ∈ I r E} is relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈K
‖F (t+ s+ αn, u)− F (t+ s, u)‖Lp(s)[0,1] = 0(61)

and (19) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lp(x)([0,1]:X) therein, resp. for every
number ε > 0 and for every compact set K ⊆ Y, the set consisting of all
positive real numbers τ > 0 such that

sup
t∈I

sup
u∈K
‖F (t+ s+ τ, u)− F (t+ s, u)‖Lp(s)[0,1] < ε(62)

and (17) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lp(x)([0,1]:X) therein.

Set q(x) := p(x)r(x)/(p(x) + r(x)) ∈ [1, p(x)) provided x ∈ [0, 1] and r(x) < ∞
and q(x) := p(x) provided r(x) = +∞. Then q(x) := p(x)r(x)/(p(x) + r(x)) ∈
[1, p(x)) provided x ∈ [0, 1] and r(x) <∞ and F (·, f(·)) is Stepanov q(x)-uniformly
recurrent, resp. Stepanov (q(x),�g)-almost periodic. Furthermore, the assumption
that F (·, 0) is Stepanov q(x)-bounded implies that the function F (·, f(·)) is Stepanov
q(x)-bounded, as well.

In [234, Theorem 2.7.2], we have also considered the value p = 1 in Theorem
2.4.49 and the usual condition regarding the existence of a Lipschitz constant L > 0
such that (60) holds.

Using the foregoing arguments, we can simply deduce the following extension
of the above-mentioned theorem:

Theorem 2.4.50. Let I = R or I = [0,∞), and let p ∈ P([0, 1]). Suppose that
the following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, resp.
Stepanov (p(x),�g)-almost periodic, L > 0 and (60) holds.

(ii) The same as condition (ii) of Theorem 2.4.49.
(iii) The same as condition (iii) of Theorem 2.4.49.
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Then the function F (·, f(·)) is Stepanov p(x)-uniformly recurrent, resp. Stepanov
(p9x),�g)-almost periodic. Furthermore, the assumption that F (·, 0) is Stepanov
p(x)-bounded implies that the function F (·, f(·)) is Stepanov p(x)-bounded, as well.

Following the analysis of F. Bedouhene, Y. Ibaouene, O. Mellah and P. Raynaud
de Fitte [56, Theorem 3] for the class of equi-Weyl p-almost periodic functions and
the analysis of W. Long and H.-S. Ding [276], in [242, Theorem 2.1] we have
established a new composition principle for the class of Stepanov p-almost periodic
functions that is not comparable with [276, Theorem 2.2]. Using the proof of the
last-mentioned theorem and the proof of [242, Theorem 2.1], we can deduce the
following generalization of Theorem 2.4.50:

Theorem 2.4.51. Suppose that p(x), q(x) ∈ [1,∞), r(x) ∈ [1,∞], 1/p(x) =
1/q(x) + 1/r(x) and the following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, resp.
Stepanov (p(x),�g)-almost periodic, and there exists a function LF ∈
L
r(x)
S (I) such that (25) holds.

(ii) The same as condition (ii) of Theorem 2.4.49, with the function p replaced
with the function q therein.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that (61) holds
and (19) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lq(x)([0,1]:X) therein, resp. for every
number ε > 0 and for every compact set K ⊆ Y, the set consisting of all
positive real numbers τ > 0 such that (62) holds and (17) holds with the

function f(·) and the norm ‖ · ‖ replaced respectively by the function f̂(·)
and the norm ‖ · ‖Lq(x)([0,1]:X) therein.

Then the function F (·, f(·)) is Stepanov p(x)-uniformly recurrent, resp. Stepanov
(p(x),�g)-almost periodic. Furthermore, the assumption that F (·, 0) is Stepanov
p(x)-bounded implies that the function F (·, f(·)) is Stepanov p(x)-bounded, as well.

It is also straightforward to reformulate the statements of [234, Proposition
2.7.3-Proposition 2.7.4], resp. [242, Proposition 2.1], for the asymptotical Stepanov
p(x)-uniform recurrence and the asymptotical Stepanov (p(x),�g)-almost period-
icity. Details can be left to the interested readers.

Now we will present two interesting applications of established theoretical re-
sults in the analysis of the existence and uniqueness of uniformly recurrent type
solutions of the abstract semilinear fractional integro-differential inclusions.

1. In the first application, we will consider the finite-dimensional space X :=
Cn, where n > 2. Suppose that c > 0, A, B ∈ Cn,n (the space of all complex
matrices of format n×n), the matrix B is not invertible, as well as that the degree
of complex polynomial P (λ) := det(λB − A), λ ∈ C is equal to n and its roots lie
in the region {λ ∈ C : Reλ < −c(| Imλ| + 1)}. Due to [236, Proposition 2.1.2],
we have that the region Ψ from the formulation of condition (P) belongs to the
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resolvent set of multivalued linear operator A = AB−1 as well as that(
λ−AB−1

)−1
= B

(
λB −A

)−1
, λ ∈ Ψ.

Since the degree of complex polynomial P (·) is equal to n, the above formula sim-
ply implies that there exists a positive real constant M > 0 such that condition
(P) holds with β = 1, so that the operator A generates an exponentially decay-
ing strongly continuous degenerate semigroup (T (t))t>0 which can be analytically
extented to a sector around positive real axis (cf. [236] for more details).

Suppose now that 0 < γ < 1 and ν > −1. Define

Tγ,ν(t)x := tγν
∫ ∞

0

sνΦγ(s)T
(
stγ
)
x ds, t > 0, x ∈ X,(63)

Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/tγ , t > 0;

see also E. Bazhlekova [52] and R.-N. Wang, D.-H. Chen, T.-J. Xiao [348]. Recall
[236] that, in general case β ∈ (0, 1], there exists a finite constant M1 > 0 such
that ∥∥Sγ(t)

∥∥+
∥∥Pγ(t)

∥∥ 6M1t
γ(β−1), t > 0,(64)

as well as ∥∥Sγ(t)
∥∥ 6M1t

−γ , t > 1 and
∥∥Pγ(t)

∥∥ 6M2t
−2γ , t > 1.(65)

Set Rγ(t) := tγ−1Pγ(t), t > 0. Then (64)-(65) yield

‖Rγ(t)‖ = O
(
tγ−1 + t−γ−1

)
, t > 0.(66)

Consider now the following abstract fractional inclusion

Dγ
+~u(t) ∈ −A~u(t) + F (t, ~u(t)), t ∈ R,(67)

where Dγ
+u(t) denotes the Weyl-Liouville fractional derivative of order γ and F :

R × X → X; after the usual substitution ~v(t) ∈ B−1~u(t), t ∈ R, this inclusion
becomes

Dγ
+

[
B~v(t)

]
= −A~v(t) + F

(
t, B~v(t)

)
, t ∈ R.

Following J. Mu, Y. Zhoa and L. Peng [297], it will be said that a continuous
function u : R→ X is a mild solution of (67) if and only if

~u(t) =

∫ t

−∞
Rγ(t− s)F

(
s, ~u(s)

)
ds, t ∈ R.

For the sequel, fix a strictly increasing sequence (αn) of positive reals tending to
plus infinity. Denote

BUR(αn)(R : X) :=
{
~u ∈ UR(R : X) ; ~u(·) is bounded and (19) holds with f = ~u

}
.

Equipped with the metric d(·, ·) := ‖ ·− · ‖∞, BUR(αn)(R : X) becomes a complete
metric space.

Now we are able to state the following result:
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Theorem 2.4.52. Suppose that the function F : R × X → X satisfies that
for each bounded subset B of X there exists a finite real constant MB > 0 such
that supt∈R supy∈B ‖F (t, y)‖ 6 MB . Suppose, further, that the function F : R ×
X → X is Stepanov p-uniformly recurrent with p > 1, and there exist a number
r > max(p, p/(p − 1)) and a function LF ∈ LrS(I) such that q := pr/(p + r) > 1
and (25) holds with I = R. If

(γ − 1)q

q − 1
> −1,(68)

there exists an integer n ∈ N such that Mn < 1, where

Mn := sup
t>0

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞

∥∥∥Rγ(t− xn)
∥∥∥

×
n∏
i=2

∥∥∥Rγ(xi − xi−1)
∥∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn,

and for every compact set K ⊆ Y, (61) holds, then the abstract fractional Cauchy
inclusion (67) has a unique bounded uniformly recurrent solution.

Proof. Define Υ : BUR(αn)(R : X)→ BUR(αn)(R : X) by

(Υ~u)(t) :=

∫ t

−∞
Rγ(t− s)F (s, ~u(s)) ds, t ∈ R.

Let us firstly show that the mapping Υ(·) is well defined. Suppose that ~u ∈
BUR(αn)(R : X). Then R(~u) = B is a bounded set so that the mapping t 7→
F (t, ~u(t)), t ∈ R is bounded due to the prescribed assumption. Applying Theorem
2.4.49, we have that the function F (·, ~u(·)) is Stepanov q-uniformly recurrent. De-

fine q′ := q/(q− 1). Then (66) and (68) together imply that ‖Rγ(·)‖ ∈ Lq′ [0, 1] and∑∞
k=0 ‖Rγ(·)‖Lq′ [k,k+1] < ∞ due to our analysis from [234, Remark 2.6.12]. Ap-

plying Proposition 2.4.39, we get that the function t 7→
∫ t
−∞Rγ(t− s)F (s, ~u(s)) ds,

t ∈ R is bounded, continuous and uniformly recurrent, which yields that Υ~u ∈
BUR(αn)(R : X), as claimed. Furthermore, a simple calculation shows that∥∥∥(Υn~u1

)
−
(
Υn~u2

)∥∥∥
∞
6Mn

∥∥ ~u1 − ~u2

∥∥
∞, ~u1, ~u2 ∈ BUR(αn)(R : X), n ∈ N.

Since we have assumed that there exists an integer n ∈ N such that Mn < 1, the
well known extension of the Banach contraction principle shows that the mapping
Υ(·) has a unique fixed point, finishing the proof of the theorem. �

2. Suppose that a closed multivalued linear operator A satisfies condition (P) in
X, which can be finite-dimensional or infinite-dimensional, with general exponent
β ∈ (0, 1]. Consider the abstract semilinear fractional differential inclusion

(DFP)f,γ,s :

{
Dγ
t u(t) ∈ Au(t) + F (t, u(t)), t > 0,
u(0) = x0,
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where Dγ
t denotes the Caputo fractional derivative of order γ, x0 ∈ X and F :

[0,∞) × X → X. By a mild solution of (DFP)f,γ,s, we mean any function u ∈
C([0,∞) : X) satisfying that

u(t) = Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t > 0.

In what follows, we will assume that limt→0+ Sγ(t)x0 = x0 so that the mapping t 7→
Sγ(t)x0, t > 0 belongs to the space C0([0,∞) : X); see the estimate (64). Arguing as
in the proof of [135, Theorem 3.46], we may conclude that X := BUR(αn)([0,∞) :
X) ⊕ C0([0,∞) : X) is a complete metric space equipped with the distance d(·, ·)
used above. Set, for every u ∈ X and n ∈ N,(

ΥAu
)
(t) := Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t > 0;

An := sup
t>0

∫ t

0

∫ xn

0

· · ·
∫ x2

0

∥∥Rγ(t− xn)
∥∥

×
n∏
i=2

∥∥Rγ(xi − xi−1)
∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn.

Then a simple calculation shows that∥∥∥(Υn
Au
)
−
(
Υn
Av
)∥∥∥
∞
6 An

∥∥u− v∥∥∞, u, v ∈ X , n ∈ N.

Keeping in mind [248, Proposition 3.1], Theorem 2.4.46, Remark 2.4.47-Remark
2.4.48 and the proof of [234, Lemma 2.6.3], we can similarly clarify the following
result:

Theorem 2.4.53. Suppose that the function F : [0,∞) × X → X is contin-
uous and satisfies that for each bounded subset B of X there exists a finite real
constant MB > 0 such that supt>0 supy∈B ‖F (t, y)‖ 6 MB . Suppose, further, that
H : [0,∞) × X → X is uniformly recurrent on bounded sets, there exists a finite
constant L > 0 such that (60) holds with the function F (·, ·) replaced therein with
the function H(·, ·) and I = [0,∞). Let (59) hold with any bounded set B = K,
and let there exist an integer n ∈ N such that An < 1. If Q ∈ C0,b(I × Y : X)
and F (t, y) = H(t, y) +Q(t, y) for all t > 0 and y ∈ Y, then the abstract fractional
Cauchy inclusion (DFP)f,γ,s has a unique mild solution.

Let Ω be a bounded domain in Rn, b > 0, m(x) > 0 a.e. x ∈ Ω, m ∈ L∞(Ω),
1 < p < ∞ and X := Lp(Ω). Suppose that the operator A := ∆ − b acts on X
with the Dirichlet boundary conditions, and that B is the multiplication operator
by the function m(x). As explained in [234], we can apply Theorem 2.4.53 with
A = AB−1 in the study of existence and uniqueness of asymptotically uniformly
recurrent solutions of the semilinear fractional Poisson heat equation Dγ

t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t > 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω.
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2.5. Generalized almost periodicity in Lebesgue spaces with variable
exponents. Part I

The main purpose of this section is to investigate generalized asymptotically
almost periodic functions in Lebesgue spaces with variable exponents. Suppose
that f : [a, b]→ R is a non-negative Lebesgue-integrable function, where a, b ∈ R,
a < b, and φ : [0,∞) → R is a convex function. Let us recall that the Jensen
integral inequality states that

φ

(
1

b− a

∫ b

a

f(x) dx

)
6

1

b− a

∫ b

a

φ(f(x)) dx.

Using this integral inequality, we can simply prove that, for every two sequences
(ak) and (xk) of non-negative real numbers such that

∑∞
k=0 ak = 1, we have

φ

( ∞∑
k=0

akxk

)
6
∞∑
k=0

akφ
(
xk
)
.(69)

If φ : [0,∞)→ R is a concave function, then the above inequalities reverse.

2.5.1. Almost periodic and asymptotically almost periodic type so-
lutions with variable exponents Lp(x). Before proceeding further, we need
to recall the recently introduced notions of Sp(x)-boundedness and (asymptotical)
Stepanov p(x)-almost periodicity:

Definition 2.5.1. ([142]) Let p ∈ P([0, 1]) and let I = R or I = [0,∞). A
function f ∈ M(I : X) is said to be Stepanov p(x)-bounded (or Sp(x)-bounded) if
and only if f(· + t) ∈ Lp(x)([0, 1] : X) for all t ∈ I, and the sup norm of Bochner
transform satisfies supt∈I ‖f(·+ t)‖p(x) <∞; more precisely,

‖f‖Sp(x) := sup
t∈I

inf

{
λ > 0 :

∫ 1

0

ϕp(x)

(
‖f(x+ t)‖

λ

)
dx 6 1

}
<∞.

The collection of such functions will be denoted by L
p(x)
S (I : X).

From Definition 2.5.1 it follows that the space L
p(x)
S (I : X) is translation

invariant in the sense that, for every f ∈ L
p(x)
S (I : X) and τ ∈ I, we have

f(·+ τ) ∈ Lp(x)
S (I : X). This is not the case with the notion introduced by T. Dia-

gana and M. Zitane in [145]-[146]. In the second part of the following definition,
we extend the notion of asymptotical Stepanov p(x)-almost periodicity introduced
in case I = [0,∞) to the general case of interval I (see also [142, Proposition 4.12]):

Definition 2.5.2. ([142])

(i) Let p ∈ P([0, 1]) and let I = R or I = [0,∞). A function f ∈ Lp(x)
S (I : X)

is said to be Stepanov p(x)-almost periodic (or Stepanov p(x)-a.p.) if and

only if the function f̂ : I → Lp(x)([0, 1] : X) is almost periodic. The
collection of such functions will be denoted by APSp(x)(I : X).
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(ii) Let p ∈ P([0, 1]). Then a function f ∈ Lp(x)
S (I : X) is said to be asymp-

totically Stepanov p(x)-almost periodic (or asymptotically Stepanov p(x)-
a.p.) if and only if the function if and only if there exist two locally p-
integrable functions g : R → X and q : I → X satisfying the following
conditions:

(i) g is Sp(x)-almost periodic,
(ii) q̂ belongs to the class C0(I : Lp(x)([0, 1] : X)),
(iii) f(t) = g(t) + q(t) for all t ∈ I.
The collection of such functions will be denoted by AAPSp(x)(I : X).

As in the case of Stepanov p(x)-boundedness, the space APSp(x)(I : X) is
translation invariant in the sense that, for every f ∈ APSp(x)(I : X) and τ ∈
I, we have f(· + τ) ∈ APSp(x)(I : X). A similar statement holds for the space
AAPSp(x)([0,∞) : X).

We will extend [145, Definition 3.10] in the following way (in this paper, the
authors have considered the case I = R and p ∈ C+(R); we can extend the notion
introduced in [145, Definition 3.11] in the same way):

Definition 2.5.3. Let I = R or I = [0,∞), and let p ∈ P(I). Then it is said
that a measurable function f : I → X belongs to the space BSp(x)(I : X) if and
only if ∥∥f∥∥

Sp(x)
:= sup

t∈I
inf

{
λ > 0 :

∫ t+1

t

ϕp(x)(‖f(x)‖/λ) dx 6 1

}
<∞.

Equipped with the norm ‖ · ‖Sp(x) , the space L
p(x)
S (I : X) consisting of all Sp-

bounded functions is a Banach space, which is continuously embedded in L1
S(I : X),

for any p ∈ P([0, 1]). Furthermore, it can be easily shown that APSp(x)(I : X)

(AAPSp(x)(I : X) with I = [0,∞)) is a closed subspace of L
p(x)
S (I : X) and

therefore is a Banach space itself, for any p ∈ P([0, 1]).
If p ∈ P([0, 1]), then Lemma 1.1.6(ii) yields Lp(x)([0, 1] : X) ↪→ L1([0, 1] : X),

where the symbol ↪→ stands for a “continuous embedding”, so that L
p(x)
S (I : X) ↪→

L1
S(I : X), as well.

We have the following:

Proposition 2.5.4. Suppose p ∈ P([0, 1]). Then the following continuous
embeddings hold:

(i) L
p(x)
S (I : X) ↪→ L1

S(I : X), as well as

(ii) APSp(x)(I : X) ↪→ APS1(I : X) and
AAPSp(x)([0,∞) : X) ↪→ AAPS1([0,∞) : X).

Similarly, the following holds:

Proposition 2.5.5. Suppose p ∈ D+([0, 1]) and 1 6 p− 6 p(x) 6 p+ <∞ for
a.e. x ∈ [0, 1]. Then the following continuous embeddings hold:

(i) Lp
+

S (I : X) ↪→ L
p(x)
S (I : X) ↪→ Lp

−

S (I : X), as well as
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(ii) APSp
+

(I : X) ↪→ APSp(x)(I : X) ↪→ APSp
−

(I : X) and AAPSp
+

([0,∞) :

X) ↪→ AAPSp(x)([0,∞) : X) ↪→ AAPSp
−

([0,∞) : X).

Now we will prove that any almost periodic function is Sp(x)-almost periodic,
for any p ∈ P([0, 1]).

Proposition 2.5.6. Let p ∈ P([0, 1]), and let f : I → X be almost periodic.
Then f(·) is Sp(x)-almost periodic.

Proof. To prove that f(·) is Sp(x)-bounded and ‖f‖
L
p(x)
S

6 ‖f‖∞, it suffices

to show that, for every t ∈ R, we have:[
‖f‖∞,∞

)
⊆

{
λ > 0 :

∫ 1

0

ϕp(x)

(
‖f(x+ t)‖

λ

)
dx 6 1

}
.(70)

For λ > ‖f‖∞, we have ‖f(x + t)‖/λ 6 1, t ∈ I. It can be simply perceived that,
in this case,

ϕp(x)

(
‖f(x+ t)‖

λ

)
6 1, t ∈ I,

so that the integrand does not exceed 1; as a matter of fact, by definition of
ϕp(x)(·), we only need to observe that, for every x ∈ [0, 1] with p(x) < ∞, we

have (‖f(t + x)‖/λ)p(x) 6 1p(x) = 1, t ∈ I. Hence, (70) holds. Using the uni-
form continuity of f(·) and a similar argumentation, we can show that the func-

tion f̂ : I → Lp(x)([0, 1] : X) is uniform continuous. For direct proof of almost

periodicity of function f̂ : I → Lp(x)([0, 1] : X), we can argue as follows. For
ε > 0 given as above, there is a finite number l > 0 such that any subinterval
I ′ of I of length l contains a number τ ∈ I ′ such that ‖f(t + τ) − f(t)‖ 6 ε,
t ∈ I. It suffices to observe that, for this ε > 0, we can choose the same length
l > 0 and the same ε-almost period τ from I ′ ensuring the validity of inequality

‖f̂(t+τ+ ·)− f̂(t+ ·)‖Lp(x)([0,1]:X) 6 ε, t ∈ I : in order to see that the last inequality
holds true, we only need to prove that, for every t ∈ I, we have

[ε,∞) ⊆

{
λ > 0 :

∫ 1

0

ϕp(x)

(
‖f(t+ τ + x)− f(t+ x)‖

λ

)
dx 6 1

}
.

Indeed, if λ > ε, then ‖f(t+τ+x)−f(t+x)‖/λ 6 1, t ∈ I and the integrand cannot
exceed 1 : this simply follows from definition of ϕp(x)(·) and observation that, for

every x ∈ [0, 1] with p(x) <∞, we have (‖f(t+τ+x)−f(t+x)‖/λ)p(x) 6 1p(x) = 1,
t ∈ I. The proof of the proposition is thereby complete. �

We can similarly prove the following proposition:

Proposition 2.5.7. Let p ∈ P([0, 1]), and let f : I → X be asymptotically
almost periodic. Then f(·) is asymptotically Sp(x)-almost periodic.

Taking into account Proposition 2.6.19(ii) and the method employed in the
proof of Proposition 2.5.6, we can state the following:
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Proposition 2.5.8. Assume that p ∈ P([0, 1]) and f ∈ Lp(x)
S (I : X). Then the

following holds:

(i) L∞(I : X) ↪→ L
p(x)
S (I : X) ↪→ L1

S(I : X).

(ii) AP (I : X) ↪→ APSp(x)(I : X) ↪→ APS1(I : X) and AAP (I : X) ↪→
AAPSp(x)(I : X) ↪→ AAPS1(I : X).

(iii) The continuity (uniform continuity) of f(·) implies continuity (uniform

continuity) of f̂(·).

In general case, we have the following:

Proposition 2.5.9. Assume that p, q ∈ P([0, 1]) and p 6 q a.e. on [0, 1].
Then we have:

(i) L
q(x)
S (I : X) ↪→ L

p(x)
S (I : X).

(ii) APSq(x)(I : X) ↪→ APSp(x)(I : X) and AAPSq(x)(I : X) ↪→ AAPSp(x)(I :
X).

(iii) If p ∈ D+([0, 1]), then

L∞(I : X) ∩APSp(x)(I : X) = L∞(I : X) ∩APS1(I : X)

and

L∞(I : X) ∩AAPSp(x)(I : X) = L∞(I : X) ∩AAPS1(I : X).

Proof. We will prove only (iii) for almost periodicity. Keeping in mind
Proposition 2.5.5(ii), it suffices to assume that p(x) ≡ p > 1. Then, clearly,
L∞(I : X) ∩ APSp(I : X) ⊆ L∞(I : X) ∩ APS1(I : X) and it remains to be
proved the opposite inclusion. So, let f ∈ L∞(I : X) ∩ APS1(I : X). The re-
quired conclusion follows from the elementary definitions and the following simple
calculation, which is valid for any t, τ ∈ R :[∫ t+1

t

∥∥f(τ + s)− f(s)
∥∥p ds]1/p

6

[∫ t+1

t

(
2‖f‖∞

)p−1∥∥f(τ + s)− f(s)
∥∥ ds]1/p

=
(
2‖f‖∞

)(p−1)/p

[∫ t+1

t

∥∥f(τ + s)− f(s)
∥∥ ds]1/p

.

�

Remark 2.5.10. Recall that APSp(x)(I : X) can be strictly contained in
APS1(I : X), even in the case that p(x) ≡ p > 1 is a constant function. The
already employed example of H. Bohr and E. Følner shows that AAPSp(I : X) can
be strictly contained in AAPS1(I : X) for p > 1 (see e.g. [205, Lemma 1]).

Remark 2.5.11. Proposition 2.5.6 and Proposition 2.5.7 can be simply deduced
by using Proposition 2.5.9(ii) and the equalities AP (I : X) = APS∞(I : X)∩C(I :
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X), AAP (I : X) = AAPS∞(I : X) ∩ C([0,∞) : X), which can be proved almost
trivially.

Now we would like to present the following illustrative example:

Example 2.5.12. Define sign(0) := 0. Then, for every trigonometric polyno-
mial f : R → R, we have that the function F (·) :=sign(f(·)) is Stepanov 1-almost
periodic. Since F ∈ L∞(R), Proposition 2.5.9(iii) yields that the function F (·) is
Stepanov p-almost periodic for any p > 1, while Proposition 2.5.8(i) yields that the
function F (·) is Stepanov p(x)-bounded for any p ∈ P([0, 1]). Due to Proposition
2.5.5(ii), we have F ∈ APSp(x)(R : C) for any p ∈ D+([0, 1]).

Consider now the case that f(x) := sinx+ sin
√

2x, x ∈ R and p(x) := 1− lnx,
x ∈ [0, 1]. We will prove that F /∈ APSp(x)(R : C). Speaking-matter-of-factly, it is
sufficient to show that, for every λ ∈ (0, 2/e) and for every l > 0, we can find an
interval I ⊆ R of length l > 0 such that, for every τ ∈ I, there exists t ∈ R such
that ∫ 1

0

( 1

λ

)1−ln x∣∣∣sign
[
sin(x+ t+ τ) + sin

√
2(x+ t+ τ)

]
− sign

[
sin(x+ t) + sin

√
2(x+ t)

]∣∣∣1−ln x

dx =∞.(71)

Let λ ∈ (0, 2/e) and l > 0 be given. Take arbitrarily any interval I ⊆ R r {0} of
length l and after that take arbitrarily any number τ ∈ I. Since (1/λ)1−ln x > 1/x,
x ∈ [0, 1] and 1− lnx > 1, x ∈ [0, 1], a continuity argument shows that it is enough
to prove the existence of a number t ∈ R such that[

sin(t+ τ) + sin
√

2(t+ τ)
]
·
[
sin t+ sin

√
2t
]
< 0.(72)

If sin τ + sin
√

2τ > 0 (sin τ + sin
√

2τ < 0), then we can take t ∼ 0− (t ∼ 0+).

Hence, we assume henceforward sin τ + sin
√

2τ = 0 and τ 6= 0. There exist two
possibilities:

τ ∈ 2Zπ
1 +
√

2
r {0} or τ ∈ (2Z + 1)π√

2− 1
.

In the first case, take t0 = π√
2−1

. Then an elementary argumentation shows that

τ + t0 /∈ 2Zπ
1+
√

2
∪ (2Z+1)π√

2−1
so that sin(t0 + τ) + sin

√
2(t0 + τ) 6= 0. If sin(t0 + τ) +

sin
√

2(t0 + τ) > 0 (sin(t0 + τ) + sin
√

2(t0 + τ) < 0), then for t satisfying (72) we
can take any number belonging to a small left/right interval around t0 for which

sin t+ sin
√

2t < 0 (sin t+ sin
√

2t > 0). In the second case, there exists an integer

m ∈ Z such that τ = (2m+1)π√
2−1

and we can take t0 = (−2m+1)π√
2−1

. Then τ + t0 = 2π√
2−1

and sin(t0 + τ) + sin
√

2(t0 + τ) 6= 0, so that we can use a trick similar to that used
in the first case. Let us only mention in passing that, with the notion introduced
in [143], the function F (·) cannot be Sp(x)-almost automorphic, as well.

The situation is quite different if we consider the case that f(x) := sinx, x ∈ R.
Then F (·) is Stepanov p(x)-almost periodic for any p ∈ P([0, 1]). Speaking-matter-

of-factly, it can be easily shown that the mapping F̂ : R→ Lp(x)[0, 1] is continuous
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and ‖F (t+ τ + ·)− F (t+ ·)‖Lp(x)[0,1] = 0 for all t ∈ R and τ ∈ 2πZ. This, in turn,
implies the claimed statement.

2.5.2. Generalized two-parameter almost periodic type functions and
composition principles. Assume that I = R or I = [0,∞). The notion of
(asymptotical) Stepanov p(x)-almost periodicity for the functions depending on
two parameters is introduced as follows:

Definition 2.5.13. Let p ∈ P([0, 1]).

(i) A function f : I × Y → X is called Stepanov p(x)-almost periodic, Sp(x)-

almost periodic for short, if and only if f̂ : I × Y → Lp(x)([0, 1] : X) is
almost periodic. The vector space consisting of all such functions will be
denoted by APSp(x)(I × Y : X).

(ii) A function f : I × Y → X is said to be asymptotically Sp(x)-almost
periodic if and only if it admits a decomposition f(t, y) = g(t, y) + q(t, y),
t ∈ I, where g ∈ APSp(x)(R× Y : X) and q ∈ C0(I × Y : X). The vector
space consisting of all such functions will be denoted by AAPSp(x)(I×Y :
X).

The proof of following proposition is very similar to the proof of [234, Lemma
2.2.7] and therefore omitted (for simplicity, we wil not consider case I = R here).

Proposition 2.5.14. Let p ∈ P([0, 1]). Suppose that f̂ : [0,∞)×Y → Lp(x)([0, 1] :
X) is an asymptotically almost periodic function. Then there are two functions
g : R×Y → X and q : [0,∞)×Y → X satisfying that for each y ∈ Y the functions
g(·, y) and q(·, y) are Stepanov p(x)-bounded, as well as that the following holds:

(i) ĝ : R× Y → Lp(x)([0, 1] : X) is almost periodic,
(ii) q̂ ∈ C0([0,∞)× Y : Lp(x)([0, 1] : X)),

(iii) f(t, y) = g(t, y) + q(t, y) for all t > 0 and y ∈ Y.
Moreover, for every compact set K ⊆ Y, there exists an increasing sequence (tn)n∈N
of positive reals such that limn→∞ tn =∞ and g(t, y) = limn→∞ f(t+ tn, y) for all
y ∈ Y and a.e. t > 0.

In [234, Theorem 2.7.1, Theorem 2.7.2], we have slightly improved the impor-
tant composition principle attributed to W. Long, S.-H. Ding [276, Theorem 2.2].
Further refinements for Sp(x)-almost periodicity can be deduced similarly, with ap-
pealing to Lemma 1.1.6(i)-(iii) and the arguments employed in the proof of [276,
Theorem 2.2]:

Theorem 2.5.15. Let I = R or I = [0,∞), and let p ∈ P([0, 1]). Suppose that
the following conditions hold:

(i) F ∈ APSp(x)(I×Y : X) and there exist a function r ∈ P([0, 1]) such that

r(·) > max(p(·), p(·)/(p(·) − 1)) and a function LF ∈ Lr(x)
S (I) such that

(25) holds;
(ii) u ∈ APSp(x)(I : Y ), and there exists a set E ⊆ I with m(E) = 0 such that

K := {u(t) : t ∈ I r E} is relatively compact in Y ; here, m(·) denotes the
Lebesgue measure.
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Define q ∈ P([0, 1]) by q(x) := p(x)r(x)/(p(x) + r(x)), if x ∈ [0, 1] and r(x) < ∞,
q(x) := p(x), if x ∈ [0, 1] and r(x) = +∞. Then q(x) ∈ [1, p(x)) for x ∈ [0, 1],
r(x) <∞ and F (·, u(·)) ∈ APSq(x)(I : X).

Concerning asymptotical two-parameter Stepanov p(x)-almost periodicity, we
can deduce the following composition principles with X = Y ; the proof is very
similar to those of [234, Proposition 2.7.3, Proposition 2.7.4] established in the
case of constant functions p, q, r and the interval I = [0,∞) :

Proposition 2.5.16. Let p ∈ P([0, 1]). Suppose that the following conditions
hold:

(i) g ∈ APSp(x)(R × X : X), there exist a function r ∈ P([0, 1]) such that

r(·) > max(p(·), p(·)/(p(·) − 1)) and a function Lg ∈ Lr(x)
S (R) such that

(25) holds with the function f(·, ·) replaced by the function g(·, ·) therein.
(ii) v ∈ APSp(x)(R : X), and there exists a set E ⊆ R with m(E) = 0 such

that K = {v(t) : t ∈ Rr E} is relatively compact in X.
(iii) f(t, x) = g(t, x) + q(t, x) for all t ∈ I and x ∈ X, where q̂ ∈ C0(I ×X :

Lq(x)([0, 1] : X)) with q(·) defined as above;
(iv) u(t) = v(t) + ω(t) for all t > 0, where ω̂ ∈ C0(I : Lp(x)([0, 1] : X)).
(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K ′ = {u(t) : t ∈ IrE′}

is relatively compact in X.

Then f(·, u(·)) ∈ AAPSq(x)(I : X).

2.5.3. Generalized (asymptotical) almost periodicity in Lebesgue
spaces with variable exponents Lp(x) : action of convolution products.
Throughout this subsection, which has also appeared as a part of [236], we assume
that p ∈ P([0, 1]) and a multivalued linear operator A fulfills condition (P). Then
we know that the degenerate strongly continuous semigroup (T (t))t>0 ⊆ L(X)
generated by A satisfies the estimate ‖T (t)‖ 6 M0e

−cttβ−1, t > 0 for some finite
constant M0 > 0. Furthermore, (T (t))t>0 is given by

T (t)x =
1

2πi

∫
Γ

eλt
(
λ−A

)−1
x dλ, t > 0, x ∈ X,

where Γ is the upwards oriented curve λ = −c(|η| + 1) + iη (η ∈ R). For any
0 < γ < 1 and ν > −β, we define the operator family (Tγ,ν(t))t>0 through (63). Set,
as before, Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/tγ , t > 0. Then (Sγ(t))t>0 is a
subordinated (gγ , I)-regularized resolvent family generated by A, which is generally
not strongly continuous at zero. By our analysis from [236], we know that there
exists a finite constant M1 > 0 such that∥∥Sγ(t)

∥∥+
∥∥Pγ(t)

∥∥ 6M1t
γ(β−1), t > 0

as well as that there exists a finite constant M2 > 0 such that∥∥Sγ(t)
∥∥ 6M2t

−γ , t > 1 and
∥∥Pγ(t)

∥∥ 6M2t
−2γ , t > 1.

Set Rγ(t) := tγ−1Pγ(t), t > 0.
We will first investigate infinite convolution products. Keeping in mind com-

position principles clarified in the previous section, it is almost straightforward to
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reformulate some known results concerning semilinear analogues of the above in-
clusions (see e.g. [234, Theorem 2.7.6-Theorem 2.7.9; Theorem 2.9.10-Theorem
2.9.11; Theorem 2.9.17-Theorem 2.9.18]); because of that, this question will not be
examined here for the sake of brevity.

We start by stating the following generalization of [239, Proposition 2.11]
(the reflexion at zero keeps the spaces of Stepanov p-almost periodic functions
unchanged, which may or may not be the case with the spaces of Stepanov p(x)-
almost periodic functions):

Proposition 2.5.17. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that M :=∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If ǧ : R → X is Sp(x)-almost periodic, then the

function G : R→ Y, given by (55), is well-defined and almost periodic.

Proof. Without loss of generality, we may assume that X = Y. It is clear
that, for every t ∈ R, we have that G(t) =

∫∞
0
R(s)g(t − s) ds and that the last

integral is absolutely convergent due to Lemma 1.1.6(i) and Sp(x)-boundedness of
function ǧ(·) :∫ ∞

0

‖R(s)‖‖g(t− s)‖ ds =

∞∑
k=0

∫ k+1

k

‖R(s)‖‖g(t− s)‖ ds

=

∞∑
k=0

∫ 1

0

‖R(s+ k)‖‖g(t− s− k)‖ ds

6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)([0,1]:X)‖g(t− k − ·)‖Lp(·)([0,1]:X)

6 2M sup
t∈R
‖ǧ(· − t)‖Lp(·)([0,1]:X),

for any t ∈ R. Let a number ε > 0 be fixed. Then there is a finite number l > 0
such that any subinterval I of R of length l contains a number τ ∈ I such that
‖ǧ(t − τ + ·) − ǧ(t + ·)‖Lp(x)([0,1]:X) 6 ε, t ∈ R. Invoking Lemma 1.1.6(i) and this
fact, we get

‖G(t+ τ)−G(t)‖

6
∫ ∞

0

‖R(r)‖ · ‖g(t+ τ − r)− g(t− r)‖ dr

=

∞∑
k=0

∫ k+1

k

‖R(r)‖ · ‖g(t+ τ − r)− g(t− r)‖ dr

=

∞∑
k=0

∫ 1

0

‖R(r + k)‖ · ‖g(t+ τ − r − k)− g(t− r − k)‖ dr

6 2

∞∑
k=0

‖R(·+ k)‖Lq(x)[0,1]‖g(t+ τ − · − k)− g(t− · − k)‖Lp(x)[0,1]
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= 2

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1]‖ǧ(· − t− τ + k)− ǧ(· − t+ k)‖Lp(·)[0,1]

6 2ε

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1] = 2Mε, t ∈ R,

which clearly implies that the set of all ε-periods of G(·) is relatively dense in R.
It remains to be proved the uniform continuity of G(·). Since ˆ̌g(·) is uniformly
continuous, we have the existence of a number δ ∈ (0, 1) such that

‖ǧ(· − t′)− ǧ(· − t)‖Lp(x)[0,1] < ε, provided t, t′ ∈ R and |t− t′| < δ.(73)

For any δ′ ∈ (0, δ), the above computation with τ = δ′ = t′ − t and (73) together
imply that, for every t ∈ R,∥∥G(t+ δ′)−G(t)

∥∥
6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1]‖ǧ(· − t′ + k)− ǧ(· − t+ k)‖Lp(·)[0,1]

6 2ε

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1] = 2Mε.

This completes the proof of proposition. �

Example 2.5.18. (i) Suppose that β ∈ (0, 1) and (R(t))t>0 = (T (t))t>0

is a degenerate semigroup generated by A. Let us recall that there exists a
finite constant M > 0 such that ‖T (t)‖ 6Mtβ−1, t ∈ (0, 1] and ‖T (t)‖ 6
Me−ct, t > 1. Let p0 > 1 be such that

p0

p0 − 1
(β − 1) 6 −1,

let p ∈ P([0, 1]), and let ‖T (·)‖Lq(x)[0,1] < ∞. Assume that we have con-

structed a function ǧ ∈ APSp(x)(R : X) such that ǧ /∈ APSp(R : X)
for all p > p0 (Question: Could we manipulate here somehow with the
construction established in [77, Example, p. 70]?) Then, in our concrete
situation, [239, Proposition 2.11] cannot be applied since

p

p− 1
(β − 1) 6 −1, p ∈ [1, p0).

Now we will briefly explain that
∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞, show-

ing that Proposition 2.5.17 is applicable. Strictly speaking, for k = 0,
‖T (·)‖Lq(x)[0,1] <∞ by our assumption, while, for k > 1, it can be simply

shown that ‖R(·+k)‖Lq(x)[0,1] 6Me−ck so that
∑∞
k=0 ‖R(·+k)‖Lq(x)[0,1] <

∞, as claimed.
(ii) By a mild solution of problem obtained by replacing the MLO A with the

MLO −A in (58), we mean the function t 7→
∫ t
−∞Rγ(t− s)g(s) ds, t ∈ R

(cf. also [297, Lemma 6]). Let p ∈ P([0, 1]), and let ‖Rγ(·)‖Lq(x)[0,1] <
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∞. Then, for k > 1, we have ‖Rγ(· + k)‖Lq(x)[0,1] 6 M2k
−1−γ . Hence,∑∞

k=0 ‖Rγ(·+ k)‖Lq(x)[0,1] <∞ and we can apply Proposition 2.5.17.

The results obtained for the infinite convolution product can be simply incor-
porated in the study of existence and uniqueness of almost periodic solutions of the
following abstract Cauchy differential inclusion of first order

u′(t) ∈ Au(t) + g(t), t ∈ R

and the abstract Cauchy relaxation differential inclusion (58) with the MLO A
replaced therein with −A. I t is also clear that Proposition 2.5.17 can be used to
study the existence and uniqueness of almost periodic solutions of the following
abstract integral inclusion

u(t) ∈ A
∫ t

−∞
a(t− s)u(s) ds+ g(t), t ∈ R

where a ∈ L1
loc([0,∞)), a 6= 0, ǧ : R→ X is Sp(x)-almost periodic and A is a closed

multivalued linear operator on X; see e.g., [234].
In the following proposition, whose proof is very similar to that of [143, Propo-

sition 3.12], we state some invariance properties of generalized asymptotical almost
periodicity in Lebesgue spaces with variable exponents Lp(x) under the action of
finite convolution products (see also [234, Proposition 2.7.5, Lemma 2.9.3] for sim-
ilar results). This proposition generalizes [239, Proposition 2.13] provided that
p > 1 in its formulation.

Proposition 2.5.19. Suppose that p ∈ P([0, 1]), q ∈ D+([0, 1]), 1/p(x) +
1/q(x) = 1 and (R(t))t>0 ⊆ L(X) is a strongly continuous operator family satisfying
that, for every t > 0, we have that mt :=

∑∞
k=0 ‖R(· + t + k)‖Lq(x)[0,1] < ∞.

Suppose, further, that ǧ : R → X is Sp(x)-almost periodic, q ∈ Lp(x)
S ([0,∞) : X)

and f(t) = g(t) + q(t), t > 0. Let r1, r2 ∈ P([0, 1]) and the following holds:

(i) For every t > 0, the mapping x 7→
∫ t+x

0
R(t + x − s)q(s) ds, x ∈ [0, 1]

belongs to the space Lr1(x)([0, 1] : X) and we have

lim
t→+∞

∥∥∥∥∥
∫ t+x

0

R(t+ x− s)q(s) ds

∥∥∥∥∥
Lr1(x)[0,1]

= 0.

(ii) For every t > 0, the mapping x 7→ mt+x, x ∈ [0, 1] belongs to the space
Lr2(x)[0, 1] and we have

lim
t→+∞

∥∥mt+x

∥∥
Lr2(x)[0,1]

= 0.

Then the function H(·), given by

H(t) :=

∫ t

0

R(t− s)f(s) ds, t > 0,

is well-defined, bounded and belongs to the class APSp(x)(R : X) + S
r1(x)
0 ([0,∞) :

X) + S
r2(x)
0 ([0,∞) : X), with the meaning clear.
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Remark 2.5.20. In [239, Remark 2.14], we have examined the conditions under
which the function H(·) defined above is asymptotically almost periodic, provided
that the function g(·) is Sp-almost periodic for some p ∈ [1,∞). The interested
reader may try to analyze similar problems with function ǧ(·) being Sp(x)-almost
periodic for some p ∈ P([0, 1]).

In order to describe how Proposition 2.5.19 can be applied in concrete situa-
tions, we need the following weakened definition of Caputo fractional derivatives of
order γ ∈ (0, 1). The Caputo fractional derivative Dγ

t u(t) is defined for those func-
tions u : [0, T ]→ X for which u|(0,T ](·) ∈ C((0, T ] : X), u(·)−u(0) ∈ L1((0, T ) : X)

and g1−γ ∗ (u(·)− u(0)) ∈W 1,1((0, T ) : X), by

Dγ
t u(t) =

d

dt

[
g1−γ ∗

(
u(·)− u(0)

)]
(t), t ∈ (0, T ].

We will use the following definition:

Definition 2.5.21. (cf. [236, Section 3.5] for more details) By a classical
solution of the abstract fractional Cauchy problem

(DFP)f,γ :

{
Dγ
t u(t) ∈ Au(t) + f(t), t > 0,
u(0) = x0,

we mean any function u ∈ C([0,∞) : X) satisfying that the function Dγ
t u(t) is

well-defined on any finite interval (0, T ] and belongs to the space C((0, T ] : X), as
well as that u(0) = u0 and Dγ

t u(t)− f(t) ∈ Au(t) for t > 0.

Applying [236, Theorem 3.5.3], we have that the unique classical solution of
(DFP)f,γ is given by the formula

u(t) = Sγ(t)x0 +

∫ t

0

(
t− s

)γ−1
Pγ(t− s)f(s) ds, t > 0.

Suppose that x0 ∈ X belongs to the domain of continuity of (Sγ(t))t>0 (by that,
we mean that limt→0+ Sγ(t)x0 = x0; this holds in the case that x ∈ D((−A)θ)
with 1 > θ > 1 − β or that x ∈ Xθ

A with 1 > θ > 1 − β). Then the function
t 7→ Sγ(t)x0, t > 0 is continuous and tends to zero as t→ +∞. Keeping this in mind
and imposing some additional conditions of function f(·), we can straightforwardly
apply Proposition 2.5.19. This proposition can be also applied in the qualitative
properties of solutions to the following inhomogeneous abstract Cauchy problems
of third order:

αu′′′(t) + u′′(t)− βAu(t)− γAu′(t) = f(t), α, β, γ > 0, t > 0,

appearing in the theory of dynamics of elastic vibrations of flexible structures [126].

Finally, we will present some illustrative applications. Let Ω ⊆ Rn be an open
bounded subset with smooth boundary ∂Ω and let 1 < p <∞. Among other things,
one can make use of Proposition 2.5.19 to establish the existence and uniqueness
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of asymptotically Sp(x)-almost automorphic solutions to the damped Poisson-wave
type equation, in the spaces X := H−1(Ω) or X := Lp(Ω), given by

∂

∂t

(
m(x)

∂u

∂t

)
+
(
2ωm(x)−∆

)∂u
∂t

+
(
A(x;D)− ω∆ + ω2m(x)

)
u(x, t) = f(x, t),

t > 0, x ∈ Ω;

u =
∂u

∂t
= 0, (x, t) ∈ ∂Ω× [0,∞),

u(0, x) = u0(x), m(x)
[
(
∂u

∂t
)(x, 0) + ωu0

]
= m(x)u1(x), x ∈ Ω,

where m(x) ∈ L∞(Ω), m(x) > 0 a.e. x ∈ Ω, ∆ is the Dirichlet Laplacian in L2(Ω),
acting on its maximal domain, H1

0 (Ω)∩H2(Ω), and A(x;D) is a second-order linear
differential operator on Ω with continuous coefficients on Ω, see, e.g., [167, Example
6.1] and [234] for further details.

Notice that we can also consider the existence and uniqueness of asymptotically
Sp(x)-almost periodic solutions to the following fractional damped Poisson-wave
type equation, in the spaces X := H−1(Ω) or X := Lp(Ω), given by

Dγ
t

(
m(x)Dγ

t u
)

+
(
2ωm(x)−∆

)
Dγ
t u+

(
A(x;D)− ω∆ + ω2m(x)

)
u(x, t) = f(x, t),

t > 0, x ∈ Ω;

u = Dγ
t u = 0, (x, t) ∈ ∂Ω× [0,∞),

u(0, x) = u0(x), m(x)
[
Dγ
t u(x, 0) + ωu0

]
= m(x)u1(x), x ∈ Ω.

2.5.4. (p, φ, F )-Classes and [p, φ, F ]-classes of Weyl almost periodic
functions. Throughout this subsection, we assume the following general condi-
tions:

(A): I = R or I = [0,∞), φ : [0,∞) → [0,∞), p ∈ P(I) and F : (0,∞)× I →
(0,∞).

(B): The same as (A) with the assumption p ∈ P(I) replaced by p ∈ P([0, 1])
therein.

We introduce the notions of an (equi-)Weyl-(p, φ, F )-almost periodic function
and an (equi-)Weyl-(p, φ, F )i-almost periodic function, where i = 1, 2, as follows
(see [234] for the case that p(x) ≡ p ∈ [1,∞), φ(x) = x and F (l, t) = l(−1)/p, when
we deal with the usually considered (equi-)Weyl-p-almost periodic functions, as well
as to [142, Remark 4.13] for the case that φ(x) = x and and F (l, t) = l(−1)/p(t)):

Definition 2.5.22. Suppose that condition (A) holds, f : I → X and φ(‖f(·+
τ)− f(·)‖) ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p, φ, F )-almost periodic,

f ∈ e−W (p,φ,F )
ap (I : X) for short, if and only if for each ε > 0 we can find
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two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length
L contains a point τ ∈ I ′ such that

e− ‖f‖(p,φ,F,τ) := sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(·)[t,t+l]

]]
6 ε.(74)

(ii) It is said that the function f(·) is Weyl-(p, φ, F )-almost periodic, f ∈
W

(p,φ,F )
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

‖f‖(p,φ,F,τ) := lim sup
l→∞

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(·)[t,t+l]

]]
6 ε.(75)

Definition 2.5.23. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p, φ, F )1-almost periodic,

f ∈ e −W (p,φ,F )1
ap (I : X) for short, if and only if for each ε > 0 we can

find two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of
length L contains a point τ ∈ I ′ such that

e− ‖f‖(p,φ,F,τ)1 := sup
t∈I

[
F (l, t)φ

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
6 ε.

(ii) It is said that the function f(·) is Weyl-(p, φ, F )1-almost periodic, f ∈
W

(p,φ,F )1
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

‖f‖(p,φ,F,τ)1 := lim sup
l→∞

sup
t∈I

[
F (l, t)φ

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
6 ε.

Definition 2.5.24. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p, φ, F )2-almost periodic,

f ∈ e −W (p,φ,F )2
ap (I : X) for short, if and only if for each ε > 0 we can

find two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of
length L contains a point τ ∈ I ′ such that

e− ‖f‖(p,φ,F,τ)2 := sup
t∈I

φ

[
F (l, t)

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
6 ε.

(ii) It is said that the function f(·) is Weyl-(p, φ, F )2-almost periodic, f ∈
W

(p,φ,F )2
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
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τ ∈ I ′ such that

‖f‖(p,φ,F,τ)2 := lim sup
l→∞

sup
t∈I

φ

[
F (l, t)

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
6 ε.

Before we go any further, we would like to that the above definitions are in-
capable of being compared to each other: for example, in Definition 2.5.22, we
calculate the value of φ(‖f(· + τ) − f(·)‖)Lp(·)[t,t+l], while in Definition 2.5.23 we

first calculate the value of ‖f(· + τ) − f(·)‖Lp(·)[t,t+l] and after that we apply the

function φ(·).
If i = 1, 2 and F (l, t) = ψ(l)(−1)/p(t) for some function ψ : (0,∞) → (0,∞)

and all t ∈ I, then we also say that the function f(·) is (equi-)Weyl-(p, φ, ψ)-almost
periodic, resp. (equi-)Weyl-(p, φ, ψ)i-almost periodic, when the corresponding class

of functions is also denoted by (e−)W
(p,φ,ψ)
ap (I : X), resp. (e−)W

(p,φ,ψ)i
ap (I : X).

There is no need to say that the above classes coincide in the case that φ(x) ≡ x.

Example 2.5.25. (i) If φ(0) = 0, then any continuous periodic function
f : I → X belongs to any of the above introduced function spaces. If
φ(0) > 0, then a constant function cannot belong to any of the function
spaces introduced in Definition 2.5.24, while the function spaces intro-
duced in Definition 2.5.22-Definition 2.5.23 can contain constant functions
(see also Remark 2.5.27(iii)).

(ii) If φ(x) = x and p(x) ≡ p ∈ [1,∞), then any Stepanov p-bounded function
f : I → X belongs to any of the above introduced function spaces with
F (l, t) ≡ l−σ, where σ > 1/p; in particular, if f(·) is Stepanov p(x)-
bounded and p ∈ D+(I), then f(·) belongs to any of the above introduced
function spaces with F (l, t) ≡ l−σ, where σ > 1/p+. This simply follows
from the inequality(∫ t+l

t

‖f(s+ τ)− f(s)‖p ds

)1/p

6
blc∑
k=0

(∫ t+k+1

t+k

‖f(s+ τ)− f(s)‖p ds

)1/p

,

which is valid for any t, τ ∈ I, l > 0, and a simple argumentation. Suppose
now that I = R or I = [0,∞), p ∈ P(I) and f ∈ BSp(x)(I : X). A similar
line of reasoning shows that f(·) belongs to any of the above introduced
function spaces provided that
(a) p ∈ D+(I) and F (l, t) ≡ l−σ, where σ > 1/p+, or
(b) F (l, t) ≡ l−σ, where σ > 1, in general case. For this, it is only worth

noting that we have ϕp(x)(t/l
σ) 6 (1/lσ)ϕp(x)(t) for any t > 0 and

l > 1.
(iii) If X does not contain an isomorphic copy of the sequence space c0,

φ(x) = x and F (l, t) ≡ F (t), where limt→+∞ F (t) = +∞, then there
is no trigonometric polynomial f(·) and function p ∈ P(R) such that

f ∈ e − W
(p,x,F )
ap (R : X). If we suppose the contrary, then using the

fact that the space Lp(x)[t, t+ l] is continuously embedded into the space
L1[t, t+ l] with the constant of embeddings less than or equal to 2(1 + l)
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(see, e.g., [147, Corollary 3.3.4]), where t ∈ R and l > 0, we get that for
each ε > 0 we can find two real numbers l > 0 and L > 0 such that any
interval I ′ ⊆ R of length L contains a point τ ∈ I ′ such that

sup
t∈R

[
F (t)

∥∥f(·+ τ)− f(·)
∥∥
L1[t,t+l]

]
6 2ε(1 + l).(76)

Let such numbers l > 0 and τ ∈ R be fixed. By (76), we get that the

mapping t 7→ f1(t) ≡
∫ t+l
t
‖f(s+ τ)− f(s)‖ ds, t > 0 belongs to the space

C0([0,∞) : C). On the other hand, the mapping s 7→ ‖f(s+τ)−f(s)‖, s ∈
R is almost periodic and satisfies that

∫ t
0
‖f(s+τ)−f(s)‖ ds <∞, so that

the mapping t 7→ f2(t) ≡
∫ t

0
‖f(s+ τ)− f(s)‖ ds, t ∈ R is almost periodic

by Theorem 2.1.1(vi). By the translation invariance, the same holds for
the mapping f1(·) = f2(· + τ) − f2(·). Since f1 ∈ C0([0,∞) : C), we get
that f1 ≡ 0, so that ‖f(s+τ)−f(s)‖ = 0 for all s > 0 and f(·) is periodic,
which is a contradiction. Based on the conclusion obtained in this part,
we will not examine the question whether, for a given number ε > 0 and
an equi-Weyl-(p, φ, F )-almost periodic function or an equi-Weyl-(p, φ, F )i-
almost periodic function (i = 1, 2), we can find a trigonometric polynomial
P (·) such that ‖P − f‖(p,φ,F ) < ε or ‖P − f‖(p,φ,F )i < ε (i = 1, 2), where

e− ‖f‖(p,φ,F ) := sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·)

∥∥)
Lp(·)[t,t+l]

]]
,

e− ‖f‖(p,φ,F )1 := sup
t∈I

[
F (l, t)φ

[(∥∥f(·)
∥∥)
Lp(·)[t,t+l]

]]
and

e− ‖f‖(p,φ,F )2 := sup
t∈I

φ

[
F (l, t)

[(∥∥f(·)
∥∥)
Lp(·)[t,t+l]

]]
.

For the usually considered class of equi-Weyl-p-almost periodic functions,
where 1 6 p <∞, the answer to the above question is affirmative (see, e.g.,
[234, Theorem 2.3.2]). Observe also that the sub-additivity of function
φ(·) implies the sub-additivity of functions e−‖·‖(p,φ,F ) and e−‖·‖(p,φ,F )i ,
where i = 1, 2; since the limit superior is also a sub-additive operation,
the same holds for the functions ‖ · ‖(p,φ,F ) and ‖ · ‖(p,φ,F )i , where i =
1, 2, defined as above (cf. the second parts of Definition 2.5.22-Definition
2.5.24, as well as Definition 2.5.28-Definition 2.5.30 below).

In the case that the function φ(·) is convex and p(x) ≡ 1, we have the following
result:

Proposition 2.5.26. Suppose that p(x) ≡ 1, f : I → X, ‖f(· + τ) − f(·)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I, as well as condition

(C): φ(·) is convex and there exists a function ϕ : [0,∞) → [0,∞) such that
φ(lx) 6 ϕ(l)φ(x) for all l > 0 and x > 0



2.5. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 106

holds. Set F1(l, t) := F (l, t)l[ϕ(l)]−1, l > 0, t ∈ I and F2(l, t) := l−1ϕ(F (l, t)l),
l > 0, t ∈ I. Then we have:

(i) f ∈ (e−)W
(1,φ,F )
ap ⇒ f ∈ (e−)W

(1,φ,F1)1
ap .

(ii) f ∈ (e−)W
(1,φ,F2)
ap ⇒ f ∈ (e−)W

(1,φ,F )2
ap .

Proof. To prove (i), suppose that f ∈ (e−)W
(1,φ,F )
ap . Then the assumption

(C) and the Jensen integral inequality together imply

φ
(
‖f(·+ τ)− f(·)‖L1[t,t+l]

)
= φ

(
l · l−1‖f(·+ τ)− f(·)‖L1[t,t+l]

)
6ϕ(l)φ

(
l−1‖f(·+ τ)− f(·)‖L1[t,t+l]

)
6 ϕ(l)l−1

[
φ
(
‖f(·+ τ)− f(·)‖

)]
L1[t,t+l]

.

This simply yields f ∈ (e−)W
(1,φ,F1)1
ap . To prove (ii), suppose that f ∈ (e−)W

(1,φ,F2)
ap .

Then the assumption (C) and the Jensen integral inequality together imply

φ
(
F (l, t)‖f(·+ τ)− f(·)‖L1[t,t+l]

)
= φ

(
F (l, t)l · l−1‖f(·+ τ)− f(·)‖L1[t,t+l]

)
6ϕ(F (t, l)l)l−1

[
φ
(
‖f(·+ τ)− f(·)‖

)]
L1[t,t+l]

.

This simply yields f ∈ (e−)W
(1,φ,F )2
ap . �

Before we go any further, let us recall that any equi-Weyl-p-almost periodic
function needs to be Weyl p-almost periodic, while the converse statement does
not hold in general. On the other hand, it is not true that an equi-Weyl-(p, φ, ψ)-
almost periodic function, resp. equi-Weyl-(p, φ, ψ)i-almost periodic function, is
Weyl-(p, φ, ψ)-almost periodic, resp. Weyl-(p, φ, ψ)i-almost periodic; moreover, an
unrestrictive choice of function ψ(·) allows us to work with a substantially large class
of quasi-almost periodic functions: As it can be simply approved, any Stepanov p-
almost periodic function f(·) is equi-Weyl-(p, φ, ψ)-almost periodic with p(x) ≡ p ∈
[1,∞), ψ(l) ≡ 1, φ(x) = x; on the other hand, any continuous Stepanov p-almost
periodic function f(·) which is not periodic cannot be Weyl-(p, x, 1)-almost periodic,
for example. Let us explain the last fact in more detail. If we suppose the contrary,
then for each ε > 0 we can find a real number L > 0 such that any interval I ′ ⊆ I
of length L contains a point τ ∈ I ′ such that (75) holds with p(x) ≡ p ∈ [1,∞),
ψ(l) ≡ 1 and φ(x) = ϕ(x) = x. This simply implies that for each ε > 0 we can find
a strictly increasing sequence (ln) of positive real numbers tending to infinity such

that for each t ∈ I and n ∈ N we have
∫ t
t+ln
‖f(x+τ)−f(x)‖p dx 6 ε for each ε > 0;

hence,
∫
I
‖f(x+τ)−f(x)‖p dx 6 ε and therefore

∫
I
‖f(x+τ)−f(x)‖p dx = 0. This

yields f(x+ τ) = f(x), x ∈ I, which is a contradiction with our preassumption.

Remark 2.5.27. (i) It is clear that, if f(·) is an (equi-)Weyl-(p, φ, F )-
almost periodic function, resp. (equi-)Weyl-(p, φ, F )1-almost periodic func-
tion, and F (l, t) > F1(l, t) for every l > 0 and t ∈ I, then f(·) is (equi-
)Weyl-(p, φ, F1)-almost periodic, resp. (equi-)Weyl-(p, φ, F1)1-almost pe-
riodic. Furthermore, if f(·) is an (equi-)Weyl-(p, φ, F )2-almost periodic
function, then f(·) is an (equi-)Weyl-(p, φ, F1)2-almost periodic function
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provided that F (l, t) > F1(l, t) for every l > 0, t ∈ I and φ(·) is mono-
tonically increasing, or F (l, t) 6 F1(l, t) for every l > 0, t ∈ I and φ(·) is
monotonically decreasing.

(ii) If f(·) is an (equi-)Weyl-(p, φ, F )-almost periodic function, resp. (equi-
)Weyl-(p, φ, F )i-almost periodic function, φ1(·) is measurable and 0 6
φ1 6 φ, then Lemma 1.1.6(iii) yields that f(·) is (equi-)Weyl-(p, φ1, F )-
almost periodic, resp. (equi-)Weyl-(p, φ1, F )i-almost periodic, where i =
1, 2.

(iii) Regarding the first parts in the above definitions, it is worth noticing that
we do not allow the number l > 0 to be sufficiently large: in some concrete
situations, it is crucial to allow the number l > 0 to be sufficiently small;
we will explain this fact by two illustrative examples. First, let us consider
Definition 2.5.22(i). Suppose that p(x) ≡ p ∈ [1,∞) and there exists an
absolute constant c > 0 such that for each l > 0 and τ ∈ I we have

sup
t∈I

φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(x)[t,t+l]

6 c.

Then it simply follows that the function f(·) is equi-Weyl-(p, φ, ψ)-almost
periodic provided that liml→0+ ψ(l) = +∞. Second, suppose that f ∈
L∞(I : X). Then f(·) is equi-Weyl-(p, x, 1)-almost periodic for any p ∈
D(I), which can be simply approved by considering the case of constant
coefficient p(x) ≡ p+ and the choice l = l(ε) = ε.

In order to ensure the translation invariance of Weyl spaces with variable ex-
ponent, we need to follow a slightly different approach ([142]-[143]):

Definition 2.5.28. Suppose that condition (B) holds, f : I → X and φ(‖f(·l+
t+ τ)− f(t+ ·l)‖) ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.

(i) It is said that the function f(·) is equi-Weyl-[p, φ, F ]-almost periodic, f ∈
e−W [p,φ,F ]

ap (I : X) for short, if and only if for each ε > 0 we can find two
real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L
contains a point τ ∈ I ′ such that

e− ‖f‖[p,φ,F,τ ] := sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·l + t+ τ)− f(t+ ·l)

∥∥)
Lp(·)[0,1]

]]
6 ε.

(ii) It is said that the function f(·) is Weyl-[p, φ, F ]-almost periodic, f ∈
W

[p,φ,F ]
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

‖f‖[p,φ,F,τ ] := lim sup
l→∞

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·l + t+ τ)− f(t+ ·l)

∥∥)
Lp(·)[0,1]

]]
6 ε.

Definition 2.5.29. Suppose that condition (B) holds, f : I → X and ‖f(·l +
t+ τ)− f(t+ ·l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
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(i) It is said that the function f(·) is equi-Weyl-[p, φ, F ]1-almost periodic,

f ∈ e −W [p,φ,F ]1
ap (I : X) for short, if and only if for each ε > 0 we can

find two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of
length L contains a point τ ∈ I ′ such that

e− ‖f‖[p,φ,F,τ ]1 := sup
t∈I

[
F (l, t)φ

[(∥∥f(·l + t+ τ)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
6 ε.

(ii) It is said that the function f(·) is Weyl-[p, φ, F ]2-almost periodic, f ∈
W

[p,φ,F ]2
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

‖f‖[p,φ,F,τ ]1 := lim sup
l→∞

sup
t∈I

[
F (l, t)φ

[(∥∥f(·l + t+ τ)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
6 ε.

Definition 2.5.30. Suppose that condition (B) holds, f : I → X and ‖f(·l +
t+ τ)− f(t+ ·l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.

(i) It is said that the function f(·) is equi-Weyl-[p, φ, F ]2-almost periodic,

f ∈ e −W [p,φ,F ]2
ap (I : X) for short, if and only if for each ε > 0 we can

find two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of
length L contains a point τ ∈ I ′ such that

e− ‖f‖[p,φ,F,τ ]2 := sup
t∈I

φ

[
F (l, t)

[(∥∥f(·l + t+ τ)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
6 ε.

(ii) It is said that the function f(·) is Weyl-[p, φ, F ]2-almost periodic, f ∈
W

[p,φ,F ]2
ap (I : X) for short, if and only if for each ε > 0 we can find a real

number L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

‖f‖[p,φ,F,τ ]2 := lim sup
l→∞

sup
t∈I

φ

[
F (l, t)

[(∥∥f(·l + t+ τ)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
6 ε.

Remark 2.5.31. (i) Let p ∈ P([0, 1]), let I = R or I = [0,∞), and let

a function f ∈ Lp(x)
S (I : X) be Stepanov p(x)-almost periodic. Then it

readily follows that f(·) is equi-Weyl-[p, φ, F ]-almost periodic with φ(x) ≡
x and F (l, t) ≡ 1.

(ii) In the case that p(x) ≡ p ∈ [1,∞), it can be simply verified that the class
of (equi)-Weyl-[p, φ, [l/ψ(l)]1/p]-almost periodic functions, resp. (equi)-
Weyl-[p, φ, [l/ψ(l)]1/p]2-almost periodic functions, coincides with the class
of (equi)-Weyl-(p, φ, ψ)-almost periodic functions, resp. (equi)-Weyl-
(p, φ, ψ)2-almost periodic functions. It is clear that the class of (equi)-
Weyl-[p, φ, [l/ψ(l)]1/p]1-almost periodic functions and the class of (equi)-
Weyl-(p, φ, ψ)1-almost periodic functions coincide provided that φ(cx) =
cφ(x) for all c, x > 0.

(iii) It can be simply verified that the validity of condition
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(D): For any τ0 ∈ I there exists c > 0 such that

F (l, t)

F (l, t+ τ0)
6 c, t ∈ I, l > 0

implies that the spaces (e−)W
[p,φ,F ]
ap (I : X) and (e−)W

[p,φ,F ]1
ap (I : X) are

translation invariant; this particularly holds provided the function F (l, t)

does not depend on the variable t. Furthermore, the space (e−)W
[p,φ,F ]2
ap (I :

X) is translation invariant provided condition
(D)’: For any τ0 ∈ I there exists c > 0 such that

φ(F (l, t)x) 6 cφ
(
F (l, t+ τ0)x

)
, x > 0, t ∈ I, l > 0.

(iv) If p, q ∈ P([0, 1]) and q(x) 6 p(x) for a.e. x ∈ [0, 1], then Lemma
1.1.6(ii) yields that any (equi)-Weyl-[p, φ, F ]-almost periodic function is
(equi)-Weyl-[q, φ, F ]-almost periodic. Furthermore, condition x, y > 0
and x 6 cy implies φ(x) 6 cφ(y), resp. x, y > 0 and x 6 cy implies
φ(F (l, t)x) 6 cφ(F (l, t)y) for all l > 0 and t ∈ I, ensures that any
(equi)-Weyl-[p, φ, F ]1-almost periodic function is (equi)-Weyl-[q, φ, F ]1-
almost periodic, resp. any (equi)-Weyl-[p, φ, F ]2-almost periodic function
is (equi)-Weyl-[q, φ, F ]2-almost periodic.

(v) It is clear that, if f(·) is an (equi)-Weyl-[p, φ, F ]-almost periodic function,
resp. (equi)-Weyl-[p, φ, F ]1-almost periodic function, and F (l, t) > F1(l, t)
for every l > 0 and t ∈ I, then f(·) is (equi)-Weyl-[p, φ, F1]-almost pe-
riodic, resp. (equi)-Weyl-[p, φ, F1]1-almost periodic. Furthermore, any
(equi)-Weyl-[p, φ, F ]2-almost periodic function is (equi)-Weyl-[p, φ, F ]2-
almost periodic provided that F (l, t) > F1(l, t) for every l > 0, t ∈ I
and φ(·) is monotonically increasing, or F (l, t) 6 F1(l, t) for every l > 0,
t ∈ I and φ(·) is monotonically decreasing.

(vi) If f(·) is an (equi-)Weyl-[p, φ, F ]-almost periodic function, φ1(‖f(·l + t+
τ)− f(t+ ·l)‖) is measurable for any τ ∈ I, t ∈ I, l > 0, and 0 6 φ1 6 φ,
then Lemma 1.1.6(iii) yields that f(·) is an (equi)-Weyl-[p, φ1, F ]-almost
periodic. Furthermore, if 0 6 φ1 6 φ, only, and f(·) is an (equi-)Weyl-
[p, φ, F ]i-almost periodic function, then f(·) is an (equi-)Weyl-[p, φ1, F ]i-
almost periodic function, where i = 1, 2.

In the case that the function φ(·) is convex and p(x) ≡ 1, we have the following
proposition which can be shown following the lines of the proof of Proposition
2.5.26:

Proposition 2.5.32. Suppose that φ(·) is convex, p(x) ≡ 1, f : I → X and
‖f(·l + t + τ) − f(t + ·l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0. Then the
following holds:

(i) f ∈ (e−)W
[1,φ,F ]
ap ⇒ f ∈ (e−)W

[1,φ,F ]1
ap .

(ii) If condition (C) holds, then f ∈ (e−)W
[1,φ,ϕ◦F ]
ap ⇒ f ∈ (e−)W

[1,φ,F ]2
ap .

Regarding Proposition 2.5.26 and Proposition 2.5.32, it should be observed that
the reverse inclusions and inequalities can be obtained assuming condition



2.5. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 110

(C)’: φ(·) is concave and there exists a function ϕ : [0,∞) → [0,∞) such that
φ(lx) > ϕ(l)φ(x) for all l > 0 and x > 0.

It is clear that any (equi-)Weyl-p-almost periodic function f(·) is (equi-)Weyl-
(p, φ, ψ)-almost periodic with p(x) ≡ p ∈ [1,∞), φ(x) = x, ψ(l) = l. Concerning
this observation, we wish to present two illustrative examples:

Example 2.5.33. Let us recall (see e.g., Example 4.27 in the survey article [23]
by J. Andres, A. M. Bersani, R. F. Grande) that the function g(·) := χ[0,1/2](·) is
equi-Weyl-p-almost periodic for any p ∈ [1,∞) but not Stepanov almost periodic.
Since for each l, τ ∈ R we have(

sup
t∈R

∫ t+l

t

|f(x+ τ)− f(x)|p dx

)1/p

6 1,

it can be easily seen that the function g(·) is equi-Weyl-(p, x, ψ)-almost periodic
for any function ψ : (0,∞)→ (0,∞) such that liml→+∞ ψ(l) = +∞; moreover, for
each ε ∈ (0, 1/2) we can always find t ∈ R such that∫ t+1

t

|f(x+ τ)− f(x)|p dx > ε, τ > ε.

Hence, the function g(·) cannot be equi-Weyl-(p, x, l0)-almost periodic. Taking into
account Remark 2.5.27(iii) and the above conclusions, we get that g(·) is equi-Weyl-
(p, x, lσ)-almost periodic if and only if σ 6= 0.

Example 2.5.34. Let us recall ([23, Example 4.29], [234]) that the Heaviside
function g(·) := χ[0,∞)(·) is not equi-Weyl-1-almost periodic but it is Weyl-p-almost
periodic for any number p ∈ [1,∞). Furthermore, it is not difficult to see that for
each real number τ ∈ R we have

sup
t∈R

(∫ t+l

t

|f(x+ τ)− f(x)|p dx

)1/p

= |τ |1/p

for any real number l > |τ |. This implies that the function g(·) is Weyl-(p, x, ψ)-
almost periodic for any function ψ : (0,∞) → (0,∞) such that liml→+∞ ψ(l) =
+∞ as well as that g(·) cannot be Weyl-(p, x, ψ)-almost periodic for any function
ψ : (0,∞)→ (0,∞) such that lim supl→+∞[ψ(l)]−1 > 0; in particular, g(·) is Weyl-
(p, x, lσ)-almost periodic if and only if σ > 0. On the other hand, the function g(·)
cannot be equi-Weyl-(p, x, ψ)-almost periodic for any function ψ : (0,∞)→ (0,∞);
in actual fact, if we suppose contrary, then the equation (74) is violated with
|τ |1/p > εψ(l)1/p. See also [234, Example 2.11.15-Example 2.11.17].

Before we switch to the next subsection, we feel it is our duty to say that the
approach used for definition of functions spaces introduced in Definition 2.5.22-
Definition 2.5.24 and Definition 2.5.28-Definition 2.5.30 will be exploited mutiple
times in the remainder of book, for various types of generalized almost periodicity.
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2.5.5. Weyl ergodic components with variable exponents. Unless stated
otherwise, in this subsection we assume that p ∈ P([0,∞)), φ : [0,∞) → [0,∞)
and F : (0,∞)× [0,∞)→ (0,∞). In the following three definitions, we extend the
notion of an (equi-)Weyl-p-vanishing function introduced in [246], where the case
p(x) ≡ p ∈ [1,∞), F (l, t) ≡ l(−1)/p and φ(x) ≡ x has been considered:

Definition 2.5.35. (i) It is said that a function q : [0,∞)→ X is equi-
Weyl-(p, φ, F )-vanishing if and only if φ(‖q(t+ ·)‖) ∈ Lp(·)[x, x+ l] for all
t, x, l > 0 and

lim
l→+∞

lim sup
t→+∞

sup
x>0

[
F (l, t)

∥∥φ(‖q(t+ v)‖)
∥∥
Lp(v)[x,x+l]

]
= 0.(77)

(ii) It is said that a function q : [0,∞)→ X is Weyl-(p, φ, F )-vanishing if and
only if φ(q(t+ ·)) ∈ Lp(·)[x, x+ l] for all t, x, l > 0 and

lim
t→+∞

lim sup
l→+∞

sup
x>0

[
F (l, t)

∥∥φ(‖q(t+ v)‖)
∥∥
Lp(v)[x,x+l]

]
= 0.(78)

Definition 2.5.36. (i) It is said that a function q : [0,∞)→ X is equi-
Weyl-(p, φ, F )1-vanishing if and only if q(t + ·) ∈ Lp(·)[x, x + l] for all
t, x, l > 0 and

lim
l→+∞

lim sup
t→+∞

sup
x>0

[
F (l, t)φ

(∥∥q(t+ v)
∥∥
Lp(v)[x,x+l]

)]
= 0.(79)

(ii) It is said that a function q : [0,∞) → X is Weyl-(p, φ, F )1-vanishing if
and only if q(t+ ·) ∈ Lp(·)[x, x+ l] for all t, x, l > 0 and

lim
t→+∞

lim sup
l→+∞

sup
x>0

[
F (l, t)φ

(∥∥q(t+ v)
∥∥
Lp(v)[x,x+l]

)]
= 0.(80)

Definition 2.5.37. (i) It is said that a function q : [0,∞)→ X is equi-
Weyl-(p, φ, F )2-vanishing if and only if q(t + ·) ∈ Lp(·)[x, x + l] for all
t, x, l > 0 and

lim
l→+∞

lim sup
t→+∞

sup
x>0

φ
[
F (l, t)

∥∥q(t+ v)
∥∥
Lp(v)[x,x+l]

]
= 0.(81)

(ii) It is said that a function q : [0,∞) → X is Weyl-(p, φ, F )2-vanishing if
and only if q(t+ ·) ∈ Lp(·)[x, x+ l] for all t, x, l > 0 and

lim
t→+∞

lim sup
l→+∞

sup
x>0

φ
[
F (l, t)

∥∥q(t+ v)
∥∥
Lp(v)[x,x+l]

]
= 0.(82)

Denote by W
p(x)
φ,F,0([0,∞) : X) and e −W p(x)

φ,F,0([0,∞) : X) [W
p(x);1
φ,F,0 ([0,∞) : X)

and e − W
p(x);1
φ,F,0 ([0,∞) : X)/W

p(x);2
φ,F,0 ([0,∞) : X) and e − W

p(x);2
φ,F,0 ([0,∞) : X)]

the sets consisting of all Weyl-(p, φ, F )-vanishing functions and equi-Weyl-(p, φ, F )-
vanishing functions [Weyl-(p, φ, F )1-vanishing functions and equi-Weyl-(p, φ, F )1-
vanishing functions/Weyl-(p, φ, F )2-vanishing functions and equi-Weyl-(p, φ, F )2-
vanishing functions], respectively. In the case that p(x) ≡ p ∈ [1,∞), F (l, t) ≡
l(−1)/p and φ(x) ≡ x, the above classes coincide and we denote them by W p

0 ([0,∞) :
X) and e−W p

0 ([0,∞) : X). These classes are very general and we want only to recall



2.5. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 112

that, for instance, an equi-Weyl-p-vanishing function q(·) need not be bounded as
t→ +∞ ([246]).

A great number of very simple examples can be constructed in order to show
that, in general case, the limit

lim
t→+∞

sup
x>0

[
F (l, t)

∥∥φ(‖q(t+ v)‖)
∥∥
Lp(v)[x,x+l]

]
in the equation (77) does not exist for any fixed number l > 0; the same holds for
the equations (78)-(82). The question when these limits exist is meaningful but it
will not be analyzed here.

Further on, we have the following observation:

Remark 2.5.38. (i) Suppose that the function φ(·) is monotonically in-
creasing and satisfies that for each scalars α, β > 0 there exists a finite
real number π(α, β) > 0 such that, for every non-negative real numbers
x, y > 0, we have

φ(αx+ βy) 6 π(α, β)[φ(x) + φ(y)].

Then (equi-)Weyl-(p, φ, F )-vanishing functions and (equi-)Weyl-(p, φ, F )i-
vanishing functions, where i = 1, 2, form a vector space.

(ii) If the function F (l, t) satisfies condition (D), resp. (D)’, then the space
of (equi-)Weyl-(p, φ, F )-vanishing functions and the space of (equi-)Weyl-
(p, φ, F )1-vanishing functions, resp. the space of (equi-)Weyl-(p, φ, F )2-
vanishing functions, are translation invariant.

In this section, we will not follow the approach obeyed in [142] and previous
section, with the principal assumption p ∈ P([0, 1]). With regards to this question,
we will present only one illustrative example:

Example 2.5.39. Suppose that p ∈ P([0, 1]). Let us recall that the space

of Stepanov p(·)-vanishing functions (see [142]), denoted by S
p(x)
0 ([0,∞) : X),

is consisting of those functions q ∈ L
p(x)
S ([0,∞) : X) such that q̂ ∈ C0([0,∞) :

Lp(x)([0, 1] : X)). The notion of space S
p(x)
0 ([0,∞) : X) can be extended in many

other ways; for example:

(i) Let φ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that

a function q(·) belongs to the space S
p(·)
φ,G,0([0,∞) : X) if and only if

φ(‖q(t+ ·)‖) ∈ Lp(·)[0, 1] for all t > 0 and

lim
t→+∞

G(t)
∥∥φ(‖q(t+ v)‖)

∥∥
Lp(v)[0,1]

= 0.

In this part, as well as in parts (ii) and (iii), we will use the 1-periodic
extension of function p(·) to the non-negative real axis, denoted henceforth

by p1(·). Then the class S
p(·)
φ,G,0([0,∞) : X) is contained in the class of equi-

Weyl-(p1, φ, F )-vanishing functions with a suitable chosen function F (l, t).
More precisely, let a number ε > 0 be fixed. Then there exists a sufficiently
large real number t0 > 0 such that ‖φ(q(t+ v))‖Lp(v)[0,1] < εG(t)−1 for all
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numbers t > t0. This implies that, for every t > t0, x > 0 and m ∈ N0,
we have∫ 1

0

ϕp(v)

(
φ(‖q(t+ v + bxc+m)‖)/

[
εG(t)−1

])
dv 6 1.

Using the inequality (x > 0, l > 0)∫ x+l

x

ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
εG(t)−1

])
dv

6
l∑

k=0

∫ bxc+k+1

bxc+k
ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
εG(t)−1

])
dv,

the above yields∫ x+l

x

ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
εG(t)−1

])
dv 6 l + 1, i.e.,∫ x+l

x

1

l + 1
ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
εG(t)−1

])
dv 6 1.

Since

ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
ε(l + 1)G(t)−1

])
6

1

l + 1
ϕp1(v)

(
φ(‖q(t+ v)‖)/

[
εG(t)−1

])
,

the above implies ‖φ(‖q(t+v)‖)‖Lp(v)[x,x+l] < εG(t)−1(1+ l) for all t > t0,
x > 0 and l > 0. Hence, the required conclusion holds provided that there
exists a finite real constant C > 0 such that∣∣∣F (l, t)G(t)−1(1 + l)

∣∣∣ 6 C, l > 0, t > 0.

(ii) Let φ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that

a function q(·) belongs to the space S
p(·)
φ,G,0;1([0,∞) : X) if and only if

q(t+ ·) ∈ Lp(·)[0, 1] for all t > 0 and

lim
t→+∞

G(t)φ
(∥∥q(t+ v)

∥∥
Lp(v)[0,1]

)
= 0.

Then the class S
p(·)
φ,G,0;1([0,∞) : X) is contained in the class of equi-Weyl-

(p1, φ, F )1-vanishing functions with a suitable chosen function F (l, t). Ar-
guing as in (i), this holds provided that, for example, supφ−1([0, G(t)−1]) <
∞ and

lim
l→+∞

lim sup
t→+∞

F (l, t)(l + 1) supφ−1
([

0, G(t)−1
])

= 0.

(iii) Let φ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that

a function q(·) belongs to the space S
p(·)
φ,G,0;2([0,∞) : X) if and only if

q(t+ ·) ∈ Lp(·)[0, 1] for all t > 0 and

lim
t→+∞

φ
(
G(t)

∥∥φ(q(t+ v))
∥∥
Lp(v)[0,1]

)
= 0.
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Then the class S
p(·)
φ,G,0;2([0,∞) : X) is contained in the class of equi-Weyl-

(p1, φ, F )2-vanishing functions with a suitable chosen function F (l, t). Ar-
guing as in (i), this holds provided that, for example, the function φ(·) is
monotonically increasing, supφ−1([0, 1]) < +∞ and

lim
l→+∞

lim sup
t→+∞

φ
(
F (l, t)G(t)−1(1 + l) supφ−1([0, 1])

)
= 0.

An analogue of Proposition 2.5.26 can be proved for (equi-)Weyl-(p, φ, F )-
vanishing functions and (equi-)Weyl-(p, φ, F )i-vanishing functions, provided that
the function φ(·) is convex and q(v) ≡ 1. Furthermore, an analogue of Remark
2.5.27(i)-(ii) can be formulated for (equi-)Weyl-(p, φ, F )-vanishing functions and
(equi-)Weyl-(p, φ, F )i-vanishing functions. Concerning Lemma 1.1.6(ii) and Re-
mark 2.5.31(v), it should be noted that the embedding type result established
in already mentioned [147, Corollary 3.3.4] for scalar-valued functions (see also
Lemma 1.1.6(ii)) enables one to see that the following expected result holds true:

Proposition 2.5.40. Suppose r, p ∈ P([0,∞)) and 1 6 r(x) 6 p(x) for a.e.

x > 0. Let F1(l, t) = 2 max(lessinf(1/r(x)−1/p(x)), lesssup(1/r(x)−1/p(x)))F (l, t) or
F1(l, t) = 2(1 + l)F (l, t) for all l > 0 and t > 0. Then we have:

(i) If the function q(·) is (equi-)Weyl-(r, φ, F )-vanishing provided that q(·) is
(equi-)Weyl-(p, φ, F1)-vanishing.

(ii) Suppose that there exists a function ϕ : [0,∞)→ [0,∞) such that φ(cx) 6
ϕ(c)φ(x) for all c > 0 and x > 0. Let F2(l, t) = ϕ(2(1 + l))F (l, t) or

F1(l, t) = ϕ(2 max(lessinf(1/r(x)−1/p(x)), lesssup(1/r(x)−1/p(x))))F (l, t) for
l > 0 and t > 0. Then the function q(·) is (equi-)Weyl-(r, φ, F )1-vanishing
provided that q(·) is (equi-)Weyl-(p, φ, F2)1-vanishing.

(iii) If φ(·) is monotonically increasing, then the function q(·) is (equi-)Weyl-
(r, φ, F )2-vanishing provided that q(·) is (equi-)Weyl-(p, φ, F1)2-vanishing.

The case of constant coefficients 1 6 r 6 p also deserves attention, when the
choices F1(l, t) = l1/r−1/pF (l, t) in (i), (iii) and F1(l, t) = ϕ(l1/r−1/p)F (l, t) in (ii)
can be made.

We continue by reexaming the conclusions established in [246, Example 4.5,
Example 4.6]:

Example 2.5.41. Define

q(t) :=

∞∑
n=0

χ[n2,n2+1](t), t > 0.

Then we know that q̂ /∈ C0([0,∞) : Lp([0, 1] : C)) and the function q(·) is equi-
Weyl-p-almost periodic for any exponent p > 1; see [246, Example 4.5]. In this
example, we have proved the estimate(∫ x+l

x

∥∥q(t+ v)
∥∥p dv)1/p

6

(
2 +

l
√
t+
√
l

)1/p

6 2 +

(
l

√
t+
√
l

)1/p

,
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for any x > 0, t > 0, l > 0, so that the function q(·) is equi-Weyl-(p, x, F )-vanishing
provided that

lim
l→+∞

lim sup
t→+∞

F (l, t)

[
2 +

(
l

√
t+
√
l

)1/p]
= 0.

In particular, this holds for function F (l, t) = lσ, where σ < 0.

Example 2.5.42. Define

q(t) :=

∞∑
n=0

√
nχ[n2,n2+1](t), t > 0.

Then we know that the function q(·) is not equi-Weyl-p-vanishing for any exponent
p > 1 as well as that the function q(·) is Weyl-p-vanishing for any exponent p > 1;
see [246, Example 4.6]. In this example, we have proved the estimate(∫ x+l

x

∥∥q(t+ v)
∥∥p dv)1/p

6
(
l + t

)1/2p
, x > 0, t > 0, l > 0,

so that the function q(·) is Weyl-(p, x, F )-vanishing provided that

lim
t→+∞

lim sup
l→+∞

F (l, t)
(
l + t

)1/2p
= 0.

In particular, this holds for function F (l, t) = lσ, where σ < (−1)/2p.

We will present one more illustrative example:

Example 2.5.43. Suppose that (an)n∈N and (bn)n∈N are two sequences of pos-
itive real numbers such that (an)n∈N is strictly monotonically increasing,
limn→+∞(an+1 − an) = +∞ and limn→+∞ φ(bn) = 0. Let q : [0,∞) → (0,∞) be
defined by q(t) := bn if and only if t ∈ [an−1, an) for some n ∈ N, where a0 := 0. If
p ∈ D+([0,∞)), l > 0 and t > 0, then we have

sup
x>0

[
F (l, t)

∥∥φ(q(t+ v))
∥∥
Lp(v)[x,x+l]

]
6 sup

x>0

[
2(1 + l)F (l, t)

∥∥φ(q(t+ ·))
∥∥
Lp+ [x,x+l]

]
= sup

x>0

[
2(1 + l)F (l, t)

∥∥φ(q(·))
∥∥
Lp+ [t+x,t+x+l]

]
.

Assume, additionally, that there exists a function G : (0,∞) → (0,∞) such that
F (l, t) 6 G(l) for all l > 0 and t > 0. Since we have assumed that limn→+∞(an+1−
an) = +∞, for each number l > 0 we have

lim sup
t→+∞

sup
x>0

[
2(1 + l)F (l, t)

∥∥φ(q(·))
∥∥
Lp+ [t+x,t+x+l]

]
= 0,

because limn→+∞ φ(bn) = 0 and∥∥φ(q(·))
∥∥
Lp+ [t+x,t+x+l]

6 lmax
(
φ(bn), φ(bn+1)

)
,
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where n ∈ N is such that x+ t 6 an and x+ t+ l 6 an+1. Therefore, the function
q(·) is equi-Weyl-(p, φ, F )-vanishing.

In [246], we have introduced a great number of various types of asymptotically
Weyl almost periodic function spaces with constant exponent p > 1. In order to
relax our exposition, we will introduce here only one general definition of an asymp-
totically Weyl almost periodic function with variable exponent, which extends the
notion introduced in Definition 2.6.1(ii):

Definition 2.5.44. Let h : I → X. Then we say that h(·) is asymptotically
Weyl almost periodic with variable exponent if and only if there exist two functions
g : R → X and q : I → X such that h(t) = g(t) + q(t) for a.e. t ∈ I, g(·)
belongs to some of function spaces introduced in Definition 2.5.22-Definition 2.5.24
or Definition 2.5.28-Definition 2.5.30 and q(·) belongs to some of function spaces
introduced in Definition 2.5.35-Definition 2.5.37 (with possibly different functions
p, p1; φ, φ1; F, F1 and the meaning clear).

Observe that we can also extend the notion of Weyl p-pseudo ergodic compo-
nent (p > 1) following the approach obeyed in the previous part of section and
provide certain extensions of [246, Proposition 4.11] in this context. Details can
be left to the interested reader.

2.5.6. Weyl almost periodicity with variable exponent and convolu-
tion products. In the analyses of (equi-)Weyl-(p, φ, F )-almost periodic functions
and (equi-)Weyl-[p, φ, F ]-almost periodic functions, we will use the following con-
ditions:

(A1): I = R or I = [0,∞), ψ : (0,∞) → (0,∞), ϕ : [0,∞) → [0,∞), φ :
[0,∞) → [0,∞) is a convex monotonically increasing function satisfying
φ(xy) 6 ϕ(x)φ(y) for all x, y > 0, p ∈ P(I).

(B1): The same as (A) with the assumption p ∈ P(I) replaced by p ∈ P([0, 1])
therein.

Theorem 2.5.45. Suppose that condition (A1) holds with I = R, ǧ : R → X
is (equi-)Weyl-(p, φ, F )-almost periodic and measurable, F1 : (0,∞) × I → (0,∞),
p, q ∈ P(R), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous
operator family and (ak) is a sequence of positive real numbers such that

∑∞
k=0 ak =

1. If for every real numbers x, τ ∈ R we have∫ ∞
−x
‖R(v + x)‖‖ǧ(v)‖ dv <∞,(83)

and if, for every t ∈ R and l > 0, we have

H(l, x) :=

∞∑
k=0

akϕ(la−1
k )
∥∥ϕ(‖R(v + x)‖

)∥∥
Lq(v)[−x+kl,−x+(k+1)l]

F (l,−x+ lk)−1 <∞,

(84)

∫ t+l

t

ϕp(x)

(
2l−1H(l, x)F1(l, t)−1

)
dx 6 1,(85)
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resp. if (84) holds and there exists l0 > 0 such that for all l > l0 and t ∈ R
we have (85), then the function G : R → Y, given by (55), is well-defined and
(equi-)Weyl-(p, φ, F1)-almost periodic.

Proof. We will prove the theorem only for the class of equi-Weyl-(p, φ, F )-
almost periodic functions. Since G(x) =

∫∞
−xR(v+x)ǧ(v) dv, x ∈ R, the estimate in

(117) shows that the function G(·) is well-defined and that the integral in definition
of G(x) converges absolutely (x ∈ R). Furthermore, the same estimate shows that
for each real number τ we have

∫∞
−x ‖R(v+x)‖‖ǧ(v+ τ)‖ dv =

∫∞
−(x−τ)

‖R(v+ (x−
τ))‖‖ǧ(v)‖ dv <∞, so that the integral in definition of G(x+ τ)−G(x) converges
absolutely (x ∈ R). Let ε > 0 be a fixed real number. Then we can find two real
numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that (74) holds for the function ǧ(·), with the number τ replaced by
the number −τ therein. Using our assumptions from condition (A1), the Jensen
integral inequality applied to the function φ(·) (see also condition (117)), the fact
that the functions φ(·) and ϕp(x)(·) are monotonically increasing, (69) and Lemma
1.1.6(i), we get that for each real number x ∈ R the following holds:

ϕp(x)

(
φ(‖G(x+ τ)−G(x)‖)/λ

)
6 ϕp(x)

(
φ
(∫ ∞
−x
‖R(v + x)‖‖ǧ(v + τ)− ǧ(v)‖ dv

)
/λ

)

= ϕp(x)

(
φ
( ∞∑
k=0

ak

∫ −x+(k+1)l

−x+kl
a−1
k ‖R(v + x)‖‖ǧ(v + τ)− ǧ(v)‖ dv

)
/λ

)

6 ϕp(x)

(
∞∑
k=0

akφ
(∫ −x+(k+1)l

−x+kl
a−1
k ‖R(v + x)‖‖ǧ(v + τ)− ǧ(v)‖ dv

)
/λ

)

6 ϕp(x)

(
∞∑
k=0

akφ
(
la−1
k · l

−1

∫ −x+(k+1)l

−x+kl
‖R(v + x)‖‖ǧ(v + τ)− ǧ(v)‖ dv

)
/λ

)

6 ϕp(x)

(
l−1

∞∑
k=0

akϕ(la−1
k )

∫ −x+(k+1)l

−x+kl
φ
(
‖R(v + x)‖‖ǧ(v + τ)− ǧ(v)‖

)
dv/λ

)

6 ϕp(x)

(
l−1

∞∑
k=0

akϕ(la−1
k )

∫ −x+(k+1)l

−x+kl
ϕ
(
‖R(v + x)‖

)
φ
(
‖ǧ(v + τ)− ǧ(v)‖

)
dv/λ

)

6 ϕp(x)

(
2l−1

∞∑
k=0

akϕ(la−1
k )
∥∥ϕ(‖R(v + x)‖

)∥∥
Lq(v)[−x+kl,−x+(k+1)l]

× φ
(∥∥ǧ(v + τ)− ǧ(v)

∥∥)
Lp(v)[−x+kl,−x+(k+1)l]

)
/λ

)

6ϕp(x)

(
2l−1

∞∑
k=0

akϕ(la−1
k )
∥∥ϕ(‖R(v + x)‖

)∥∥
Lq(v)[−x+kl,−x+(k+1)l]

εF (l,−x+ kl)−1/λ

)
.

Let K ⊆ R be an arbitrary compact set. Since the above computation holds for
every real number τ ∈ R and for every arbitrarily large real number l > 0, we
can find t ∈ R such that K ⊆ [t, t + l]. Now we get from (85) that the function
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φ(‖G(· + τ) − G(·)‖) belongs to the space Lp(x)(K) by definition. Condition (85)
and the above computation also imply that for each real number t ∈ R we have∫ t+l

t

ϕp(x)

(
φ(‖G(x+ τ)−G(x)‖)/λ

)
dx 6 1,

with λ = εF1(l, t), which simply implies the final conclusion. �

Remark 2.5.46. (i) Suppose that p(x) ≡ p ∈ [1,∞). Then condition
(85) can be weakened to∫ t+l

t

ϕp(x)

(
l−1H(l, x)F1(l, t)−1

)
dx 6 1,(86)

resp. there exists l0 > 0 such that for all l > l0 and t ∈ R we have (86).
(ii) Suppose that φ(x) = ϕ(x) = ψ(x) = x. Then condition (85), resp. (86),

holds provided that l > 1 and the term in the large brackets in this
equation does not exceed 1/l or that 0 < l < 1 and the term in the
large brackets in this equation does not exceed 1. Similar comments can
be made in the case of consideration of Theorem 2.5.48 below (see also
Corollary 2.3.3).

Corollary 2.5.47. Suppose that condition (A1) holds with I = R, p(x) ≡ p >
1, 1/p+1/q = 1, ǧ : R→ X is (equi-)Weyl-(p, φ, F )-almost periodic and measurable,
F1 : (0,∞) × I → (0,∞), (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator
family and (ak) is a sequence of positive real numbers such that

∑∞
k=0 ak = 1. If

for every real numbers x, τ ∈ R we have (117) and if, for every t ∈ R and l > 0,
we have

Hp(l, x) :=

∞∑
k=0

akϕ(la−1
k )
∥∥ϕ(‖R(·)‖

)∥∥
Lq [kl,(k+1)l]

F (l,−x+ lk)−1 <∞(87)

and ∫ t+l

t

(
l−1Hp(l, x)F1(l, t)−1

)p
dx 6 1,(88)

resp. if (87) holds and there exists l0 > 0 such that for all l > l0 and t ∈ R
we have (88), then the function G : R → Y, given by (55), is well-defined and
(equi-)Weyl-(p, φ, F1)-almost periodic.

Now we will state and prove the following result with regards to the class of
(equi-)Weyl-[p, φ, F ]-almost periodic functions:

Theorem 2.5.48. Suppose that condition (B1) holds with I = R, g : R → X
is measurable, ω : (0,∞) → (0,∞), F : (0,∞) × I → (0,∞), (ak) is a sequence of
positive real numbers such that

∑∞
k=0 ak = 1, (bk)k>0 is a sequence of positive real

numbers, S : (0,∞)×R→ (0,∞) is a given function, as well as for each ε > 0 we
can find two real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length
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L contains a point τ ∈ I ′ such that

sup
x∈[0,1]

[
φ
(∥∥g(xl + t− r − k + τ)− g(xl + t− r − k)

∥∥)
Lp(r)[0,1]

]
6 ω(ε)bkS(l, t)

(89)

for any integer k > 0 and real number t ∈ R. Suppose, further, that the second
inequality in (117) holds, p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y ) is a strongly continuous operator family. If for every real numbers t, τ ∈ R,
every positive real number l > 0 and every real number x ∈ [0, 1] we have∫ ∞

0

‖R(v)‖‖g(xl + t+ τ − v)− g(xl + t− v)‖ dv <∞,(90)

and if, for every t ∈ R, x ∈ [0, 1] and l, ε > 0, we have

W (x) :=

∞∑
k=0

akϕ
(
a−1
k

)∥∥ϕ(‖R(v + x)‖
)∥∥
Lq(v)[0,1]

bk <∞,(91)

∫ 1

0

ϕp(x)

(
2ε−1F1(l, t)−1ω(ε)S(l, t)W (x)

)
dx 6 1,(92)

resp. if (91) holds and there exists l0 > 0 such that for all l > l0, ε > 0 and
t ∈ R we have (92), then the function G : R→ Y, given by (55), is well-defined and
(equi-)Weyl-[p, φ, F1]-almost periodic.

Proof. We will prove the theorem only for the class of equi-Weyl-[p, φ, F ]-
almost periodic functions. As above, the function G(·) is well-defined. Let ε > 0 be
a fixed real number. Then we can find two real numbers l > 0 and L > 0 such that
any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that (89) holds for any
integer k > 0 and any real number t ∈ R. Using our assumptions from condition
(B1), the Jensen integral inequality applied to the function φ(·) (see also condition
(90)), the fact that the functions φ(·) and ϕp(x)(·) are monotonically increasing,
(69) and Lemma 1.1.6(i), we get that, for every real numbers x ∈ [0, 1] and t ∈ R,
the following holds:

ϕp(x)

(
φ(‖G(xl + t+ τ)−G(xl + t)‖)/λ

)
6ϕp(x)

(
φ
(∫ ∞

0

‖R(v)‖‖g(xl + t+ τ − v)− g(xl + t− v)‖ dv
)
/λ

)

=ϕp(x)

(
φ
( ∞∑
k=0

ak

∫ 1

0

a−1
k ‖R(v + k)‖‖g(xl + t+ τ − v − k)− g(xl + t− v − k)‖ dv

)
/λ

)

6ϕp(x)

(
∞∑
k=0

ak

∫ 1

0

φ
(
a−1
k ‖R(v + k)‖‖g(xl + t+ τ − v − k)− g(xl + t− v − k)‖ dv

)
/λ

)

6ϕp(x)

(
∞∑
k=0

akϕ
(
a−1
k

) ∫ 1

0

ϕ
(
‖R(v + k)‖

)
×φ
(
‖g(xl + t+ τ − v − k)− g(xl + t− v − k)‖

)
dv/λ

)



2.5. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 120

6ϕp(x)

(
2

λ

∞∑
k=0

akϕ
(
a−1
k

)
ϕ
(
‖R(v + k)‖

)
Lq(v)[0,1]

×φ
(
‖g(xl + t+ τ − v − k)− g(xl + t− v − k)‖

)
Lp(v)[0,1]

)

6ϕp(x)

(
2

λ

∞∑
k=0

akϕ
(
a−1
k

)
ϕ
(
‖R(v + k)‖

)
Lq(v)[0,1]

ω(ε)bkS(l, t)

)
.

Arguing as in the proof of Theorem 2.5.45, we get from condition (92) that the
function φ(‖G(·l+ t+ τ)−G(t+ ·l)‖) belongs to the space Lp(·)([0, 1]) for arbitrary
real numbers τ, t ∈ R and l > 0. Condition (92) implies that for each real numbers
t ∈ R and x ∈ [0, 1] we have∫ 1

0

ϕp(x)

(
φ(‖G(xl + t+ τ)−G(xl + t)‖)/λ

)
dx 6 1,

with λ = εF1(l, t)−1, which simply implies the final conclusion. �

Corollary 2.5.49. Suppose that condition (B1) holds with I = R and p(x) ≡
p ∈ [1,∞), 1/p + 1/q = 1, g : R → X is measurable, ω : (0,∞) → (0,∞),
F : (0,∞) × I → (0,∞), (ak) is a sequence of positive real numbers such that∑∞
k=0 ak = 1, (bk)k>0 is a sequence of positive real numbers, S : (0,∞)×R→ (0,∞)

is a given function, as well as for each ε > 0 we can find real numbers l > 0 and
L > 0 such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such
that (89) holds with p(r) ≡ p, for any integer k > 0 and any real number t ∈ R.
Suppose, further, that the second inequality in (117) holds, and (R(t))t>0 ⊆ L(X,Y )
is a strongly continuous operator family. If for every real numbers t, τ ∈ R, every
positive real number l > 0 and every real number x ∈ [0, 1] we have (90), and if,
for every t ∈ R, x ∈ [0, 1] and l > 0, we have

Wp(x) :=

∞∑
k=0

akϕ
(
a−1
k

)∥∥ϕ(‖R(·)‖
)∥∥
Lq [x,x+1]

bk <∞(93)

and ∫ 1

0

ϕp(x)

(
2F1(l, t)−1S(l, t)Wp(x)

)
dx 6 1,(94)

resp. if (93) holds and there exists l0 > 0 such that for all l > l0 and t ∈ R
we have (94), then the function G : R → Y, given by (55), is well-defined and
(equi-)Weyl-[p, φ, F1]-almost periodic.

Concerning Theorem 2.5.48, it should be noted that, in [142, Proposition 6.1],
we have analyzed the situation in which the function ǧ : R → X is Sp(x)-almost
periodic and

∑∞
k=0 ‖R(· + k)‖Lq(·)[0,1] < ∞. Then the resulting function G(·) is

almost periodic, which cannot be derived from the above-mentioned theorem.
For the class of (equi-)Weyl-(p, φ, F )1-almost periodic functions, we will state

the following result:
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Theorem 2.5.50. Suppose that ǧ : R → X is (equi-)Weyl-(p, φ, F )1-almost
periodic and measurable, F1 : (0,∞)×I → (0,∞), p, q ∈ P(R), 1/p(x)+1/q(x) = 1,
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family and for every real
numbers x, τ ∈ R we have (117). Suppose that, for every real number t ∈ R and
positive real numbers l, ε > 0, there exist two positive real numbers a > 0 and λ > 0
such that λ 6 a, [0, a] ⊆ φ−1([0, εF (l, t)−1]),

∞∑
k=0

∥∥R(v + x)
∥∥
Lq(v)[−x+kl,−x+(k+1)l]

supφ−1
([

0, εF (l,−x+ kl)−1
])
<∞(95)

and the term

∫ t+l

t

ϕp(x)

(
2

∑∞
k=0

∥∥R(v + x)
∥∥
Lq(v)[−x+kl,−x+(k+1)l]

supφ−1
([

0, εF (l,−x+ kl)−1
])

λ

)
dx

(96)

does not exceed 1, resp. (95) holds and there exists l0 > 0 such that for all
l > l0, ε > 0 and t ∈ R we have that the term in (96) does not exceed 1, then
the function G : R → Y, given by (55), is well-defined and (equi-)Weyl-(p, φ, F1)1-
almost periodic.

Proof. As in the proof of Theorem 2.5.45, we have that the function G(·) is
well-defined and the integrals in definitions of G(x) and G(x+ τ)−G(x) converge
absolutely (x, τ ∈ R). By Lemma 1.1.6(ii), we get that the function G(·+τ)−G(·)
belongs to the space Lp(x)(K) for each compact set K ⊆ R. The remainder follows
similarly as in the proof of Theorem 2.5.45, by using condition (95), as well as the
estimates

‖G(x+ τ)−G(x)‖ 6 2

∞∑
k=0

∥∥R(v + x)
∥∥
Lq(v)[−x+kl,−x+(k+1)l]

×
∥∥ǧ(v + τ)− ǧ(v)

∥∥
Lp(v)[−x+kl,−x+(k+1)l]

and ∥∥ǧ(v + τ)− ǧ(v)
∥∥
Lp(v)[−x+kl,−x+(k+1)l]

6 supφ−1
([

0, εF (l,−x+ kl)−1
])
,

and the equivalence relation

φ
(∥∥G(·+ τ)−G(·)

∥∥
Lp(x)[t,t+l]

)
6 εF1(l, t)−1

⇔
∥∥G(·+ τ)−G(·)

∥∥
Lp(x)[t,t+l]

6 φ−1
([

0, εF1(l, t)−1
])
,

for any x, t, τ ∈ R and l > 0. �

Concerning the class of (equi-)Weyl-[p, φ, F ]1-almost periodic functions, we can
state the following result; the proof can be deduced as above and therefore omitted
(we can similarly formulate analogues of Corollary 2.5.47 and Corollary 2.5.49, as
well as the conclusions from Remark 2.5.46):
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Theorem 2.5.51. Suppose that g : R→ X is measurable, ω : (0,∞)→ (0,∞),
F : (0,∞)×I → (0,∞), (bk)k>0 is a sequence of positive real numbers, S : (0,∞)×
R → (0,∞) is a given function, as well as for each ε > 0 we can find two real
numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L contains a point
τ ∈ I ′ such that

sup
x∈[0,1]

[∥∥g(xl + t− r − k + τ)− g(xl + t− r − k)
∥∥
Lp(r)[0,1]

]
6 ω(ε)bkS(l, t)

for any integer k > 0 and real number t ∈ R. Suppose, further, that the second
inequality in (117) holds, p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y ) is a strongly continuous operator family. If for every real numbers t, τ ∈ R,
every positive real number l > 0 and every real number x ∈ [0, 1] we have (90), if

W2(x) :=

∞∑
k=0

∥∥R(v + x)
∥∥
Lq(v)[0,1]

bk <∞, x ∈ [0, 1],(97)

and if, for every t ∈ R and l, ε > 0, we have the existence of two positive real
numbers a > 0 and λ > 0 such that λ 6 a, [0, a] ⊆ φ−1([0, εF1(l, t)−1]) and∫ 1

0

ϕp(x)

(
2
ω(ε)S(l, t)W2(x)

λ

)
dx 6 1,(98)

resp. if (97) holds and there exists l0 > 0 such that for all l > l0, ε > 0 and
t ∈ R we have (98), then the function G : R→ Y, given by (55), is well-defined and
(equi-)Weyl-[p, φ, F1]-almost periodic.

Remark 2.5.52. The assertions of Theorem 2.5.50, resp. Theorem 2.5.51, can
be much simpler formulated provided that:

(A2): The function φ : [0,∞) → [0,∞) is a monotonically increasing bijection
and p ∈ P(R), resp.

(B2): The function φ : [0,∞) → [0,∞) is a monotonically increasing bijection
and p ∈ P([0, 1]).

Any of these conditions implies that the function φ−1 : [0,∞) → [0,∞) is a
monotonically increasing bijection, as well. If condition (A2), resp. (B2), holds,
then the class of (equi-)Weyl-(p, φ, F )2-almost periodic functions, resp. (equi-
)Weyl-[p, φ, F ]2-almost periodic functions, coincides with the class of (equi-)Weyl-
(p, x, F )2-almost periodic functions, resp. (equi-)Weyl-[p, x, F ]2-almost periodic
functions.

Regarding the invariance of (equi-)Weyl-(p, φ, F )2-almost periodicity and (equi-
)Weyl-[p, φ, F ]2-almost periodicity under the actions of infinite convolution prod-
ucts, we will only state the following analogues of Theorem 2.5.50 and Theorem
2.5.51:

Theorem 2.5.53. Suppose that ǧ : R → X is (equi-)Weyl-(p, φ, F )2-almost
periodic and measurable, F1 : (0,∞)×I → (0,∞), p, q ∈ P(R), 1/p(x)+1/q(x) = 1,
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family and for every real
numbers x, τ ∈ R we have (117). Suppose that, for every real number t ∈ R and
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positive real numbers l, ε > 0, there exist two positive real numbers a > 0 and λ > 0
such that λ 6 a, [0, a] ⊆ F (l, t)−1φ−1([0, ε]),

∞∑
k=0

∥∥R(v + x)
∥∥
Lq(v)[−x+kl,−x+(k+1)l]

F (l,−x+ kl)−1 <∞(99)

and the term

∫ t+l

t

ϕp(x)

(
2

∑∞
k=0

∥∥R(v + x)
∥∥
Lq(v)[−x+kl,−x+(k+1)l]

F (l,−x+ kl)−1 supφ−1
(
[0, ε]

)
λ

)
dx

(100)

does not exceed 1, resp. (99) holds and there exists l0 > 0 such that for all l > l0,
ε > 0 and t ∈ R we have that the term in (100) does not exceed 1, then the
function G : R → Y, given by (55), is well-defined and (equi-)Weyl-(p, φ, F1)2-
almost periodic.

Theorem 2.5.54. Suppose that, with the exception of equation (98), all re-
maining assumptions from the formulation of Theorem 2.5.51 hold. If for every
t ∈ R and l, ε > 0 we have the existence of two positive real numbers a > 0 and
λ > 0 such that λ 6 a, [0, a] ⊆ F1(l, t)−1φ−1([0, ε]) and∫ 1

0

ϕp(x)

(
2
ω(ε)S(l, t)W2(x)

λ

)
dx 6 1,(101)

resp. if (97) holds and there exists l0 > 0 such that for all l > l0, ε > 0 and t ∈ R
we have (101), then the function G : R → Y, given by (55), is well-defined and
(equi-)Weyl-[p, φ, F2]-almost periodic.

The invariance of asymptotical Weyl-p-almost periodicity under the action of
finite convolution product, where the exponent p ∈ [1,∞) has a constant value, has
been examined in [56], [246, Proposition 5.3, Example 5.4-5.6] and [168, Propo-
sition 1, Remark 2-Remark 5]. Concerning the invariance of asymptotical Weyl-
p(x)-almost periodicity under the action of finite convolution product, we will state
and prove only one proposition. In order to do that, suppose that (see also Defini-
tion 2.5.44, where the domain of function g(·) is the non-negative real axis) there
exist two functions g : R → X and q : [0,∞) → X such that h(t) = g(t) + q(t)
for a.e. t > 0, g(·) belongs to some of function spaces introduced in Definition
2.5.22-Definition 2.5.24 or Definition 2.5.28-Definition 2.5.30, with I = R, and q(·)
belongs to some of function spaces introduced in Definition 2.5.35-Definition 2.5.37,
with I = [0,∞). The study of qualitative properties of the function

t 7→ H(t) ≡
∫ t

0

R(t− s)[g(s) + q(s)] ds, t > 0

is based on the decomposition

H(t) =

∫ t

0

R(t− s)q(s) ds+

[∫ t

−∞
R(t− s)g(s) ds−

∫ ∞
t

R(s)g(t− s) ds

]
, t > 0
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and the use of corresponding results for infinite convolution product. In the follow-
ing proposition, we will consider the qualitative properties of functions

t 7→ H1(t) ≡
∫ ∞
t

R(s)g(t− s) ds, t > 0(102)

and

t 7→ H2(t) ≡
∫ t

0

R(t− s)q(s) ds, t > 0

separately. In the first part of proposition, we continue our analysis from [143,
Proposition 5.2]; our previous results show that the case p(x) ≡ p > 1 is not simple
in the analysis of asymptotical Weyl-p-almost periodicity so that we will consider
the case p(x) ≡ 1 in the second part, with the notion introduced in Definition
2.5.35(i) only (cf. also [246, Proposition 5.3(i)]).

Proposition 2.5.55. (i) Suppose that p, q ∈ P([0, 1]), 1/p(x)+1/q(x) =
1 and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family. Let
the function ǧ : R → X be Stepanov p(x)-bounded and let for each t > 0
the series

∑∞
k=0 ‖R(· + t + k)‖Lq(·)[0,1] ≡ S(t) be convergent. Then the

function H1(·), given by (102), is well-defined. Furthermore, this function
is continuous provided that the Bochner transform ˆ̌g : R→ Lp(x)([0, 1]) is
uniformly continuous, while the function H1(·) satisfies limt→+∞H1(t) =
0 provided that limt→+∞ S(t) = 0.

(ii) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family
such that

∫∞
0
‖R(s)‖L(X,Y ) ds < ∞. Let the function q : [0,∞) → Y be

equi-Weyl-(1, x, F )-vanishing and let F1 : (0,∞)× [0,∞)→ (0,∞). If for
each ε > 0 there exists l0 > 0 such that for each l > l0 there exists t0,l > 0
such that for each t > t0,l we have

sup
x>0

[
F1(l, t)

∫ x+t

0

[∫ x+t+l

x+t

∥∥R(s− r)
∥∥
L(X,Y )

ds

]∥∥q(r)∥∥
Y
dr

]
< ε,

and if, additionally, there exists a finite constant M > 0 such that

F1(l, t)

F (l, t)
6M, l > 0, t > 0,(103)

then the function H2(·) is equi-Weyl-(1, x, F1)-vanishing.

Proof. (i): The first part follows from the Stepanov p(x)-boundedness of
function ǧ(·) and the following simple computation∥∥∥∥∥

∫ ∞
t

R(s)ǧ(s− t) ds

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
k=0

∫ 1

0

R(s+ t+ k)ǧ(s+ k) ds

∥∥∥∥∥
6 2

∞∑
k=0

∥∥R(·+ t+ k)
∥∥
Lq(·)[0,1]

sup
k∈N0

∥∥ǧ(·+ k)
∥∥
Lp(·)[0,1]

.

This computation also shows that limt→+∞H1(t) = 0 provided that limt→+∞ S(t) =
0. For remainder, let us suppose that the function ˆ̌g : R→ Lp(x)([0, 1]) is uniformly
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continuous. Let (tn) be a sequence of non-negative reals converging to a number
t > 0. Then we can use the Hölder inequality and the decomposition∫ ∞

t

R(s)g(t− s) ds−
∫ ∞
tn

R(s)g
(
tn − s

)
ds

=

∫ ∞
t

R(s)
[
ǧ(s− t)− ǧ

(
s− tn

)]
ds+

∫ tn

t

R(s)ǧ(s− t) ds, n ∈ N

in order to see that∥∥∥∥∥
∫ ∞
t

R(s)g(t− s) ds−
∫ ∞
tn

R(s)g
(
tn − s

)
ds

∥∥∥∥∥
6 2

∞∑
k=0

‖R(·+ t+ k)‖Lq(·)[0,1] sup
k∈N0

∥∥ǧ(·+ k)− ǧ(·+ k + (t− tn))
∥∥
Lp(·)[0,1]

+ 2
∥∥R(·)

∥∥
Lq(·)[0,|tn−t|]

∥∥ǧ(·)
∥∥
Lp(·)[0,1]

, n ∈ N.

Since
∥∥R(·)

∥∥
Lq(·)[0,|tn−t|]

→ 0 as n → +∞ (see, e.g., [147, Lemma 3.2.8(c)]) and

the function ˆ̌g : R→ Lp(x)([0, 1]) is uniformly continuous, the proof of the first part
is completed.

(ii): By the proof of [246, Proposition 5.3(i)], we have

F1(l, t)

∫ x+t+l

x+t

∥∥H2(s)
∥∥
Y
ds 6 F1(l, t)

∫ x+t

0

[∫ x+t+l

x+t

∥∥R(s− r)
∥∥
L(X,Y )

ds

]∥∥q(r)∥∥
Y
dr

+ F1(l, t)

[∫ ∞
0

∥∥R(v)
∥∥
L(X,Y )

dv

]
·
∫ x+t+l

x+t

∥∥q(r)∥∥
Y
dr,

for any x > 0 and l > 0. Our preassumption shows that the first addend is
equi-Weyl-(1, x, F1)-vanishing. The second addend is likewise equi-Weyl-(1, x, F1)-
vanishing because we have assumed that the function q(·) is equi-Weyl-(1, x, F )-
vanishing and condition (103). �

We round off this subsection by examing the convolution invariance of Weyl
almost periodic functions with variable exponent. In order to do that, we shall
basically follow the method proposed in the proof of Theorem 2.5.45.

Proposition 2.5.56. Suppose that I = R, ψ ∈ L1(R), (ak)k∈Z is a sequence
of positive real numbers satisfying

∑
k∈Z ak = 1 and condition (A1) holds true. Let

f ∈ (e−)W
(p,φ,F )
ap (R : X) ∩ L∞(R : X). Then the function

x 7→ (ψ ∗ f)(x) :=

∫ +∞

−∞
ψ(x− y)f(y) dy, x ∈ R(104)

is well-defined and belongs to the space L∞(R : X). Furthermore, if p1 ∈ P(R),
F1 : (0,∞)× R→ (0,∞) and if, for every t ∈ R and l > 0, we have

∫ t+l

t

ϕp1(x)

(
2l−1F1(l, t)ϕ(l)

∑
k∈Z

ak
∥∥ϕ(a−1

k ψ(x− z)
)∥∥
Lq(z)[x−(k+1)l,x−kl]

F (l, x− (k + 1)l)

)
dx 6 1,

(105)
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then we have ψ ∗ f ∈ (e−)W
(p1,φ,F1)
ap (R : X).

Proof. The proof can be deduced by using the arguments contained in the
proof of Theorem 2.5.45, the equalities∥∥∥φ(‖(ψ ∗ f)(·+ τ)− (ψ ∗ f)(·)‖

)∥∥∥
Lp1(·)[t,t+l]

= inf

{
λ > 0 :

∫ t+l

t

ϕp1(x)

(
φ
(
‖(ψ ∗ f)(x+ τ)− (ψ ∗ f)(x)‖

)
λ

)
dx 6 1

}

= inf

{
λ > 0 :

∫ t+l

t

ϕp1(x)

(
φ
(
‖
∫ +∞
−∞ ψ(y)[f(x+ τ − y)− f(x− y)] dy‖

)
λ

)
dx 6 1

}
and the following computation:∫ t+l

t

ϕp1(x)

(
φ
(
‖
∫ +∞
−∞ ψ(y)[f(x+ τ − y)− f(x− y)] dy‖

)
λ

)
dx

6
∫ t+l

t

ϕp1(x)

(
φ
(∑

k∈Z ak‖
∫ (k+1)l

kl
a−1
k ψ(y)[f(x+ τ − y)− f(x− y)] dy‖

)
λ

)
dx

6
∫ t+l

t

ϕp1(x)

(∑
k∈Z akφ

(
l−1l‖

∫ (k+1)l

kl
a−1
k ψ(y)[f(x+ τ − y)− f(x− y)] dy‖

)
λ

)
dx

6
∫ t+l

t

ϕp1(x)

(∑
k∈Z akϕ(l)l−1

∫ (k+1)l

kl
φ
(
a−1
k ψ(y)‖f(x+ τ − y)− f(x− y)‖

)
dy

λ

)
dx

6
∫ t+l

t

ϕp1(x)

(∑
k∈Z akϕ(l)l−1

∫ (k+1)l

kl
ϕ
(
a−1
k ψ(y)

)
φ
(
‖f(x+ τ − y)− f(x− y)‖

)
dy

λ

)
dx

=

∫ t+l

t

ϕp1(x)

(∑
k∈Z akϕ(l)l−1

∫ x−kl
x−(k+1)l

ϕ
(
a−1
k ψ(x− z)

)
φ
(
‖f(z + τ)− f(z)‖

)
dz

λ

)
dx

6
∫ t+l

t

ϕp1(x)

(
2
∑
k∈Z

akϕ(l)l−1
∥∥ϕ(a−1

k ψ(x− z)
)∥∥
Lq(z)[x−(k+1)l,x−kl]

×

∥∥φ(‖f(z + τ)− f(z)‖
)∥∥
Lp(z)[x−(k+1)l,x−kl]

λ

)
dx,

which is valid for every t, τ ∈ R and l > 0. �

We can similarly prove the following result for the class of (equi-)Weyl-[p, φ, F ]-
almost periodic functions:

Proposition 2.5.57. Suppose that I = R, ψ ∈ L1(R), (ak)k∈Z is a sequence
of positive real numbers satisfying

∑
k∈Z ak = 1 and condition (B1) holds true. Let

f ∈ (e−)W
[p,φ,F ]
ap (R : X)∩L∞(R : X). Then the function (ψ∗f)(·) defined by (104)

belongs to the space L∞(R : X). Furthermore, if p1 ∈ P([0, 1]), F1 : (0,∞) × R →
(0,∞) and if, for every t ∈ R and l > 0, we have∫ 1

0

ϕp1(x)

(
2F1(l, t)

∑
k∈Z

∥∥ϕ(la−1
k ψ(xl − (z + k)l)

)∥∥
Lq(z)[0,1]

F (l, t+ kl)

)
dx 6 1,(106)
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then we have ψ ∗ f ∈ (e−)W
[p1,φ,F1]
ap (R : X).

In the case of consideration of constant coefficients, the coefficient 2 in the
equations (105) and (106) can be neglected. The interested reader may try to
formulate the corresponding results for the classes of (equi-)Weyl-(p, φ, F )i-almost
periodic functions and (equi-)Weyl-[p, φ, F ]i-almost periodic functions, where i =
1, 2, as well as to formulate an extension of [246, Proposition 4.3] for Weyl almost
periodic functions with variable exponent.

2.5.7. Growth order of (R(t))t>0. In this subsection, we will analyze solu-
tion operator families (R(t))t>0 ⊆ L(X,Y ) which satisfies condition

‖R(t)‖L(X,Y ) 6
Mtβ−1

1 + tγ
, t > 0 for some finite constants γ > 1, β ∈ (0, 1], M > 0,

(107)

or condition

‖R(t)‖L(X,Y ) 6Mtβ−1e−ct, t > 0 for some finite constants β ∈ (0, 1] and c > 0.

(108)

For simplicity, we will analyze only the constant exponents p(x) ≡ p ∈ [1,∞)
as well the class of (equi-)Weyl-(p, φ, F )-almost periodic functions and the class of
(equi-)Weyl-(p, φ, F )i-almost periodic functions, where i = 1, 2. So, let 1/p+1/q = 1
and let (R(t))t>0 ⊆ L(X,Y ) satisfy (107) or (108). We will additionally assume
that q(β − 1) > −1 provided that p > 1, resp. β = 1, provided that p = 1.

In [234, Proposition 2.11.1, Theorem 2.11.4], the author has investigated the
estimate (107) and case p(x) ≡ p ∈ [1,∞), where the resulting function G(·) is
also bounded and continuous (see also [168] and [245]). We would like to note
that Theorem 2.5.45 provides a new way of looking at the invariance of the (equi-
)Weyl-p-almost periodicity under the action of infinite convolution product as well
as that the (equi-)Weyl-p-almost periodicity in [234, Theorem 2.11.4] can be proved
directly from Corollary 2.5.47. Let us explain this in more detail. Let a function
g : R → X be (equi-)Weyl-p-almost periodic. Then the function G : R → Y,
defined through (55), is (equi-)Weyl-p-almost periodic and we can show this in
the following way. It is clear that the function ǧ(·) is also (equi-)Weyl-p-almost
periodic. By Corollary 2.5.47, with an arbitrary sequence of positive real numbers
such that

∑∞
k=0 ak = 1 and the function ϕ(x) ≡ x, observing also that the class of

(equi-)Weyl-p-almost periodic functions is closed under pointwise multiplications
with scalars, it suffices to show, by considering the function (M−1R(t))t>0 for a
sufficiently large real number M > 0, that for every real numbers t ∈ R and l > 0
we have ∫ t+l

t

( ∞∑
k=0

(∫ (k+1)l

kl

t(β−1)q dt

(1 + tγ)q

)1/q
)p

dx 6 Const.,(109)

provided that p > 1, resp.∫ t+l

t

∞∑
k=0

∥∥∥ ·β−1

1 + ·γ
∥∥∥
L∞[kl,(k+1)l]

dx 6 Const.,(110)
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provided that p = 1. As∫ (k+1)l

kl

t(β−1)q dt

(1 + tγ)q
6

1

1 + kqγ lqγ
(k + 1)(β−1)ql(β−1)q+1, k ∈ N0,

the estimate (109) follows from the inequality (β − 1 + (1/q)− γ)p+ 1 6 0, which
is true. The estimate (110) is much simpler and follows from the inequality γ > 1.

Concerning Theorem 2.5.50 and Theorem 2.5.53, we will provide two illustrative
examples:

Example 2.5.58. Suppose that φ(x) = xα, x > 0, where α > 0. If the estimate
(107) holds, then condition (95) holds provided that, for every x ∈ R and l > 0, we
have

∞∑
k=0

kβ−1−γ[F (l,−x+ kl)
](−1)/α

<∞,

while condition (96) holds provided that, for every t ∈ R and l > 0, we have∫ t+l

t

((
1

1 + kqγ lqγ
(k + 1)(β−1)ql(β−1)q+1

)1/q(
F (l, t)

F (l,−x+ kl)

)1/α)p
dx 6 1,

if p > 1, resp. ∫ t+l

t

(kl)β−1

1 + kγ lγ

(
F (l, t)

F (l,−x+ kl)

)1/α

dx 6 1,

if p = 1. If the estimate (108) holds, then condition (95) holds provided that, for
every x ∈ R and l > 0, we have

∞∑
k=0

e−ckkβ−1
[
F (l,−x+ kl)

](−1)/α
<∞,

while condition (96) holds provided that, for every t ∈ R and l > 0, we have∫ t+l

t

(
e−ck(kl)β−1

(
F (l, t)

F (l,−x+ kl)

)1/α)p
dx 6 1.

Example 2.5.59. Suppose that condition (A2) holds. If the estimate (107)
holds, then condition (99) holds provided that

∞∑
k=0

kβ−1−γF (l,−x+ kl)−1 <∞,

while condition (100) holds provided that, for every t ∈ R and l > 0, we have∫ t+l

t

((
1

1 + kqγ lqγ
(k + 1)(β−1)ql(β−1)q+1

)1/q
F (l, t)

F (l,−x+ kl)

)p
dx 6 1,

if p > 1, resp. ∫ t+l

t

(kl)β−1

1 + kγ lγ
F (l, t)

F (l,−x+ kl)
dx 6 1,
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if p = 1. If the estimate (108) holds, then (99) holds provided that, for every x ∈ R
and l > 0, we have

∞∑
k=0

e−ckkβ−1
[
F (l,−x+ kl)

](−1)
<∞,

while condition (100) holds provided that, for every t ∈ R and l > 0, we have∫ t+l

t

(
e−ck(kl)β−1 F (l, t)

F (l,−x+ kl)

)p
dx 6 1.

At the end of this section, let us only note that we can incorporate our results in
the study of the abstract fractional Cauchy inclusions (58) and (DFP)f,ζ , provided

that the multivalued linear operator A satisfies condition (P). Then there exists a
strongly continuous operator family (Sζ(t))t>0 satisfying the estimate of type (107),
in the case ζ ∈ (0, 1), or estimate of type (108), in the case ζ = 1, such that the
unique mild solution of problem (DFP)f,ζ is given by

t 7→ u(t) ≡ Sζ(t)u0 +

∫ t

0

Sζ(t− s)f(s), t > 0,

where u0 belongs to the continuity set of (Sζ(t))t>0, i.e., limt→0+ Sζ(t)u0 = u0.
Moreover, limt→+∞ Sζ(t)u0 = 0 and Proposition 2.5.55 can be straightforwardly
applied.

2.6. Generalized almost periodicity in Lebesgue spaces with variable
exponents. Part II

In this section, we introduce and analyze Stepanov uniformly recurrent func-
tions, Doss uniformly recurrent functions and Doss almost periodic functions in
Lebesgue spaces with variable exponents. We investigate the invariance of these
types of generalized almost periodicity in Lebesgue spaces with variable exponents
under the actions of convolution products, providing also some illustrative applica-
tions to the abstract semilinear integro-differential inclusions in Banach spaces.

The organization of section can be briefly described as follows. Subsection
2.6.1 investigates the Stepanov uniformly recurrent functions in Lebesgue spaces
with variable exponents. The proofs of structural results in this section can be given
by employing the slight modifications of the corresponding results from [142] (see
also [248]) and therefore omitted. Our main contributions are given in Subsection
2.6.2 and Subsection 2.6.3, where we introduce and analyze several various classes
of Doss almost periodic (uniformly recurrent) functions in Lebesgue spaces with
variable exponents and the invariance of generalized Doss almost periodicity under
the actions of convolution products. The final subsection is reserved for applications
of our abstract theoretical results to the abstract semilinear integro-differential
inclusions in Banach spaces. In addition to the above, we provide several illustrative
examples, remarks and comments about the material presented.
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2.6.1. Stepanov uniform recurrence in Lebesgue spaces with variable
exponents. First of all, we will introduce the concept of (asymptotical) Sp(x)-
uniform recurrence:

Definition 2.6.1. Let p ∈ P([0, 1]), and let f : I → X be such that f ∈
Lp(x)(K : X) for any compact set K ⊆ I.

(i) We say that f(·) is Stepanov p(x)-uniformly recurrent if and only if the

function f̂ : I → Lp(x)([0, 1] : X) is uniformly recurrent. The collection
of such functions will be denoted by URSp(x)(I : X) (URSp(I : X), if
p(x) ≡ p ∈ [1,∞)).

(ii) We say that f(·) is asymptotically Stepanov p(x)-uniformly recurrent if
and only if there exist a Stepanov p(x)-uniformly recurrent function h :

R→ X and a function q ∈ Lp(x)
S (I : X) such that f(t) = h(t) + q(t), t ∈ I

and q̂ ∈ C0(I : Lp(x)([0, 1] : X)). The collection of such functions will be
denoted by AURSp(x)(I : X) (AURSp(I : X), if p(x) ≡ p ∈ [1,∞)).

The spaces URSp(x)(I : X) and AURSp(x)(I : X) are translation invariant, as
it can be easily approved. Furthermore, we have the following proposition which
can be deduced by using the same argumentation as in the proofs of corresponding
structural results concerning Stepanov almost periodicity with variable exponent:

Proposition 2.6.2. (i) Suppose p ∈ P([0, 1]). Then URSp(x)(I : X) ⊆
URS1(I : X), AURSp(x)(I : X) ⊆ AURS1(I : X), UR(I : X) ⊆
URSp(x)(I : X) ⊆ URS1(I : X) and AUR(I : X) ⊆ AURSp(x)(I :
X) ⊆ AURS1(I : X).

(ii) Suppose p ∈ D+([0, 1]) and 1 6 p− 6 p(x) 6 p+ < ∞ for a.e. x ∈ [0, 1].

Then we have URSp
+

(I : X) ⊆ URSp(x)(I : X) ⊆ URSp
−

(I : X) and

AURSp
+

(I : X) ⊆ AURSp(x)(I : X) ⊆ AURSp−(I : X).
(iii) Assume that p, q ∈ P([0, 1]) and p 6 q a.e. on [0, 1]. Then we have:

URSq(x)(I : X) ⊆ URSp(x)(I : X) and AURSq(x)(I : X) ⊆ AURSp(x)(I :
X).

(iv) If p ∈ D+([0, 1]), then

L∞(I : X) ∩ URSp(x)(I : X) = L∞(I : X) ∩ URS1(I : X)

and

L∞(I : X) ∩AURSp(x)(I : X) = L∞(I : X) ∩AURS1(I : X).

We continue by providing two illustrative examples.

Example 2.6.3. Let us recall that H. Bohr and E. Følner have constructed,
for any given number p > 1, a Stepanov almost periodic function defined on the
whole real axis that is Stepanov p-bounded and not Stepanov p-almost automorphic
(see [77, Example, pp. 70-73]). We want to observe here that the function f(·)
cannot be Stepanov p-uniformly recurrent. Strictly speaking, let us consider case
h1 = 2 in the afore-mentioned example. If we suppose the contrary, then the

mapping f̂ : R → Lp([0, 1] : X) is uniformly recurrent, which in particular implies
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that for each number ε > 0 there exists an arbitrarily large positive real number
τ > 0 such that ∫ 3/2

−3/2

∣∣f(s+ τ)− f(s)
∣∣p ds < 2εp,

which is in contradiction with the estimate
∫ 3/2

−3/2

∣∣f(s + τ) − f(s)
∣∣p ds > 2−p (see

[77, p. 73, l.-9 - l.-4]).

Example 2.6.4. Define sign(0) := 0, f(x) := sinx+sin
√

2x, x ∈ R and p(x) :=
1 − lnx, x ∈ [0, 1]. We know that the function signf(·) is neither Stepanov p(x)-
almost periodic nor Stepanov p(x)-almost automorphic ([142]-[143]). Moreover,
we have already proved that for every real numbers λ ∈ (0, 2/e), l > 0, every
interval I ⊆ R r {0} of length l and every number τ ∈ I, there exists a number
t ∈ R such that∫ 1

0

( 1

λ

)1−ln x∣∣∣sign
[
sin(x+ t+ τ) + sin

√
2(x+ t+ τ)

]
− sign

[
sin(x+ t) + sin

√
2(x+ t)

]∣∣∣1−ln x

dx =∞.

This implies that the function signf(·) cannot be Stepanov p(x)-uniformly recur-
rent, as well.

Now we will state two results about the invariance of uniform recurrence under
the actions of infinite convolution products. The first result slightly extends [234,
Proposition 2.6.11]; the proof can be given by using the same arguments as in the
proof of above-mentioned proposition, with the appealing to the Hölder inequality
in Lemma 1.1.6(i):

Proposition 2.6.5. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that M :=∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If f̌ : R → X is Sp(x)-bounded, Sp(x)-uniformly

recurrent and the function ˆ̌f : R → Lp(x)([0, 1] : X) is uniformly continuous, then
the function F : R→ Y, given by (55), is well-defined and uniformly recurrent.

Using a similar argumentation, we can clarify the following result in which we
do not require that the function f̌ : R→ X is Sp(x)-bounded:

Proposition 2.6.6. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that M :=∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If f̌ : R → X is Sp(x)-uniformly recurrent, the

function ˆ̌f : R→ Lp(x)([0, 1] : X) is uniformly continuous,∥∥f̌(· − t)
∥∥
Lp(x)[0,1]

6 P (t), t ∈ R

and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that
for each t ∈ R we have

∞∑
k=0

‖R(·+ k)‖Lq(x)[0,1]P (t− k) <∞,
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then the function F : R→ Y, given by (55), is well-defined and uniformly recurrent.

Now we will introduce the notion of (asymptotical) Stepanov p(x)-uniform
recurrence for the functions depending on two parameters; this notion extends
the notion introduced in Definition 2.4.42 and Definition 2.4.43, where we have
considered the constant coefficient p(x) ≡ p ∈ [1,∞):

Definition 2.6.7. Let p ∈ P([0, 1]).

(i) A function f : I × Y → X is called Stepanov p(x)-uniformly recurrent if

and only if f̂ : I × Y → Lp(x)([0, 1] : X) is uniformly recurrent.
(ii) A function f : I × Y → X is said to be asymptotically Sp(x)-uniformly

recurrent if and only if there exist a Stepanov p(x)-uniformly recurrent
function g : [0,∞) × Y → X and a function q ∈ C0(I × Y → X) such

that f(t, y) = g(t, y) + q(t, y) for all t ∈ I and y ∈ Y. f̂ : [0,∞) × Y →
Lp(x)([0, 1] : X) is asymptotically uniformly recurrent.

A great number of composition principles established for Stepanov p(x)-almost
periodic functions can be straightforwardly extended for Stepanov p(x)-uniformly
recurrent functions. For example, we have:

Theorem 2.6.8. Let p ∈ P([0, 1]). Suppose that the following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, and

there exist a function r ∈ P([0, 1]) and a function Lf ∈ Lr(x)
S (I) such that

r(·) > max(p(·), p(·)/(p(·)− 1)) and (25) holds;
(ii) The function f : I → Y is Stepanov p(x)-uniformly recurrent and there

exists a set E ⊆ I with m(E) = 0 such that K := {f(t) : t ∈ I r E} is
relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that

(111) lim
n→+∞

sup
t∈I

sup
u∈K
‖F (t+ s+ αn, u)− F (t+ s, u)‖Lp(s)([0,1]:X) = 0

and (19) holds with the function f(·) and the norm ‖·‖ replaced respectively

by the function f̂(·) and the norm ‖ · ‖Lp(x)([0,1]:X) therein.

Then q(x) := p(x)r(x)/(p(x) + r(x)) ∈ [1, p(x)) and F (·, f(·)) is Stepanov q(x)-
uniformly recurrent. Furthermore, the assumption that F (·, 0) is Stepanov q(x)-
bounded implies that the function F (·, f(·)) is Stepanov q(x)-bounded, as well.

It is not so difficult to reformulate the statements of [234, Proposition 2.7.3-
Proposition 2.7.4] for the asymptotical Stepanov p(x)-uniform recurrence. Details
can be left to the interested readers.

2.6.2. Doss almost periodicity and Doss uniform recurrence in
Lebesgue spaces with variable exponents. Throughout this subsection, we
assume that condition (A) holds true. The notion of Doss-p(x)-almost periodicity
has not been introduced so far. Following the approach obeyed for the classes
of (equi-)Weyl-(p, φ, F )-almost periodic functions and (equi-)Weyl-(p, φ, F )i-almost
periodic functions (i = 1, 2), we introduce the following notion for Doss classes:
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Definition 2.6.9. Suppose that condition (A) holds, f : I → X and φ(‖f(·+
τ)− f(·)‖) ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) A function f(·) is said to be Doss-(p, φ, F )-almost periodic if and only if
for every ε > 0, the set of numbers τ ∈ I for which

(112) lim sup
t→+∞

[
F (t)

[
φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(x)[−t,t]

]]
< ε,

in the case that I = R, resp.,

lim sup
t→+∞

[
F (t)

[
φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(x)[0,t]

]]
< ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f(·) is said to be Doss-(p, φ, F )-uniformly recurrent if and only

if there exists a strictly increasing sequence (αn) of positive real numbers
such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
t→+∞

[
F (t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(x)[−t,t]

]]
= 0,

in the case that I = R, resp.,

lim
n→+∞

lim sup
t→+∞

[
F (t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(x)[0,t]

]]
= 0,

in the case that I = [0,∞), is relatively dense in I.

Definition 2.6.10. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) A function f(·) is said to be Doss-(p, φ, F )1-almost periodic if and only if
for every ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞

[
F (t)φ

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(x)[−t,t]

]]
< ε,

in the case that I = R, resp.,

lim sup
t→+∞

[
F (t)φ

[(∥∥f(·+ τ)− f(·)
∥∥)
Lp(x)[0,t]

]]
< ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f(·) is said to be Doss-(p, φ, F )1-uniformly recurrent if and only

if there exists a strictly increasing sequence (αn) of positive real numbers
such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
t→+∞

[
F (t)φ

[(∥∥f(·+ αn)− f(·)
∥∥)
Lp(x)[−t,t]

]]
= 0,
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in the case that I = R, resp.,

lim
n→+∞

lim sup
t→+∞

[
F (t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(x)[0,t]

]]
= 0,

in the case that I = [0,∞), is relatively dense in I.

Definition 2.6.11. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) A function f(·) is said to be Doss-(p, φ, F )2-almost periodic if and only if
for every ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞

[
φ
[
F (t)

(∥∥f(·+ τ)− f(·)
∥∥)
Lp(x)[−t,t]

]]
< ε,

in the case that I = R, resp.,

lim sup
t→+∞

[
φ
[
F (t)

(∥∥f(·+ τ)− f(·)
∥∥)
Lp(x)[0,t]

]]
< ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f(·) is said to be Doss-(p, φ, F )2-uniformly recurrent if and only

if there exists a strictly increasing sequence (αn) of positive real numbers
such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
t→+∞

[
φ
[
F (t)

(∥∥f(·+ αn)− f(·)
∥∥)
Lp(x)[−t,t]

]]
= 0,

in the case that I = R, resp.,

lim
n→+∞

lim sup
t→+∞

[
φ
[
F (t)

(∥∥f(·+ αn)− f(·)
∥∥)
Lp(x)[0,t]

]]
= 0,

in the case that I = [0,∞), is relatively dense in I.

Case in which φ(x) ≡ x and ψ(t) ≡ (2t)(−1)/p, t > 0 if I = R, resp. ψ(t) ≡
t(−1)/p, t > 0 if I = [0,∞), leads to the usual class of Doss p-almost periodic
functions ([234], [245]). The notion introduced in the above three definitions is
rather general; for example, in the case that p(x) ≡ p ∈ [1,∞) and σ > 0, then any
essentially bounded function f(·) is Doss-(p, x, t−(1+σ)/p)-almost periodic.

Example 2.6.12. (i) Suppose that φ(0) = 0. Then any continuous pe-
riodic function f : I → X is Doss-(p, φ, F )i-almost periodic for i = 1, 2;
furthermore, if φ(·) is locally bounded, then the function f(·) is Doss-
(p, φ, F )-almost periodic.

(ii) Suppose that f : I → X is almost periodic. Then f(·) is Doss-(p, φ, F )-
almost periodic [Doss-(p, φ, F )1-almost periodic/Doss-(p, φ, F )2-almost pe-
riodic] if φ(·) is continuous, monotonically increasing and F (·)‖1‖Lp(x)[−·,·] ∈
L∞((0,∞)) [φ(·) is monotonically increasing, there exists a continuous
function ϕ : [0,∞) → [0,∞) such that φ(xy) 6 ϕ(x)φ(y), x, y > 0 and
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F (·)‖1‖Lp(x)[−·,·] ∈ L∞((0,∞))/φ(·) is monotonically increasing, there ex-

ists a continuous function ϕ : [0,∞)→ [0,∞) such that φ(xy) 6 ϕ(x)φ(y),
x, y > 0 and φ(F (·)‖1‖Lp(x)[−·,·]) ∈ L∞((0,∞))].

Example 2.6.13. We have alrady clarified that the function f : R→ R, given
by (33), is uniformly continuous, uniformly recurrent and Besicovitch unbounded.
Furthermore, we have proved that for each number τ ∈ R we have

lim
t→+∞

1

t

∫ t

0

|f(s+ τ)− f(s)|p ds = 0, p > 1,

so that the function f(·) is Doss p(x)-almost periodic for any function p ∈ D+(R).

Example 2.6.14. Let ζ > 1 and 0ζ := 0. Define the complex-valued function

fζ(t) :=

∞∑
n=1

1

n
sinζ

( t

2n

)
, t ∈ R.(113)

Then the function fζ(·) is Lipschitz continuous and uniformly recurrent. To prove
the Lipschitz continuity of function fζ(·), it suffices to observe that the function

t 7→ sinζ(t), t ∈ R is continuous and that∣∣∣sinζ x− sinζ y
∣∣∣ 6 ζ|x− y|, x, y ∈ R.(114)

To see that the function fζ(·) is uniformly recurrent, it suffices to see that for each
integer k ∈ Nr {1} we have∣∣∣fζ(t+ 2kπ

)
− fζ(t)

∣∣∣ =

∣∣∣∣∣
∞∑
n=1

1

n

[
sinζ

( t+ 2kπ

2n

)
− sinζ

( t

2n

)]∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
n=1

1

n

[
sinζ

( t+ 2kπ

2n

)
− sinζ

( t

2n

)]∣∣∣∣∣+

∣∣∣∣∣
∞∑
n=k

1

n

[
sinζ

( t+ 2kπ

2n

)
− sinζ

( t

2n

)]∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=k

1

n

[
sinζ

( t+ 2kπ

2n

)
− sinζ

( t

2n

)]∣∣∣∣∣ 6
∞∑
n=k

1

n

∣∣∣∣∣sinζ( t+ 2kπ

2n

)
− sinζ

( t

2n

)∣∣∣∣∣
6
∞∑
n=k

ζ

n
2k−nπ =

2πζ

k
, t ∈ R,

where we have applied (114) in the last line of computation. In the case that ζ = 2l
for some integer l ∈ N, we have that the function fζ(·) is Besicovitch unbounded.
This can be inspected as in the proof of [202, Theorem 1.1], with the additional
observation that∫ 2k−nπ

0

sin2l t dt =
2

3

(2l − 1)!!

(2l)!!

∫ 2k−nπ

0

sin2 t dt (k ∈ Nr {1}, 1 6 n 6 k);

here, we have used the well known recurrent formula∫ 2k−nπ

0

sin2l t dt =
2l − 1

2l

∫ 2k−nπ

0

sin2l−2 t dt
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which can be deduced with the help of the partial integration (take u = sin2l−1 t
and dv = sin t · dt). We would like to ask whether the function fζ(·) is Besicovitch
unbounded in general case and for which functions p ∈ D+(R) we have that f(·) is
Doss p(x)-almost periodic (see also Example 2.9.24).

In order to ensure the translation invariance of generalized Weyl spaces of
almost periodic functions, we have analyzed the classes of (equi-)Weyl-[p, φ, F ]-
almost periodic functions and (equi-)Weyl-[p, φ, F ]i-almost periodic functions (i =
1, 2). In this subsection, we will follow a slightly different approach. First of all,
for any τ0 ∈ I we set pτ0(·) := p(·+ τ0). Then we have the following:

Theorem 2.6.15. Suppose that F1(·) is monotonically decreasing, there exists
a function F0 : (0,∞) → (0,∞) such that F (xy) 6 F0(x) · F (y), x, y > 0, τ0 ∈ I
and

(115) lim sup
t→+∞

F0

( t

t+ τ0

)
<∞.

Define fτ0(·) := f(·+ τ0). Then the following holds:

(i) Suppose that f(·) is Doss-(p, φ, F )-almost periodic, resp. Doss-(p, φ, F )-
uniformly recurrent. Then fτ0(·) is Doss-(pτ0 , φ, F1)-almost periodic, resp.
Doss-(pτ0 , φ, F1)-uniformly recurrent.

(ii) Suppose that f(·) is Doss-(p, φ, F )1-almost periodic, resp. Doss-(p, φ, F )1-
uniformly recurrent, and φ(·) is monotonically increasing. Then fτ0(·) is
Doss-(pτ0 , φ, F1)1-almost periodic, resp. Doss-(pτ0 , φ, F1)1-uniformly re-
current.

(iii) Suppose that f(·) is Doss-(p, φ, F )2-almost periodic, resp. Doss-(p, φ, F )2-
uniformly recurrent, φ(·) is monotonically increasing, there exists a func-
tion φ0 : [0,∞)→ [0,∞) such that φ(xy) 6 φ0(x) · φ(y), x, y > 0 and, in
place of condition (115),

(116) lim sup
t→+∞

(
φ0 ◦ F0

)( t

t+ τ0

)
<∞.

Then fτ0(·) is Doss-(pτ0 , φ1, F1)2-almost periodic, resp. Doss-(pτ0 , φ1, F1)2-
uniformly recurrent.

Proof. We will consider only Doss almost periodic functions with variable
exponent. Suppose that τ ∈ I and (112) holds. We need to prove first that
φ(‖f(·+ τ + τ0)− f(·+ τ0)‖) ∈ Lpτ0 (x)(K) for any τ ∈ I and any compact subset
K of I. But, this directly follows from the corresponding definitions of the space
Lpτ0 (x)(K), the function pτ0(·) and an elementary substitution · 7→ · + τ0. The
statement (i) then follows from the next computation:

lim sup
t→+∞

[
F1(t) inf

{
λ > 0 :

∫ t

0

ϕpτ0 (x)

(
φ
(
‖f(x+ τ + τ0)− f(x+ τ0)‖

)
λ

)
dx 6 1

}]

= lim sup
t→+∞

[
F1(t) inf

{
λ > 0 :

∫ t+τ0

τ0

ϕpτ0 (x−τ0)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
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= lim
t→+∞

sup
y>t

[
F1(y) inf

{
λ > 0 :

∫ y+τ0

τ0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]

6 lim sup
t→+∞

sup
y>t

[
F1

( t

t+ τ0
(y + τ0)

)
× inf

{
λ > 0 :

∫ y+τ0

τ0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]

6 lim sup
t→+∞

sup
y>t

[
F0

( t

t+ τ0

)
× F (y + τ0) inf

{
λ > 0 :

∫ y+τ0

τ0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
6 lim sup

t→+∞
F0

( t

t+ τ0

)
×

lim sup
t→+∞

sup
y>t

[
F (y + τ0) inf

{
λ > 0 :

∫ y+τ0

τ0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
6 lim sup

t→+∞
F0

( t

t+ τ0

)
×

lim sup
t→+∞

sup
y>t

[
F (y + τ0) inf

{
λ > 0 :

∫ y+τ0

0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
6 lim sup

t→+∞
F0

( t

t+ τ0

)
×

lim sup
t→+∞

sup
y>t+τ0

[
F (y) inf

{
λ > 0 :

∫ y

0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
= lim sup

t→+∞
F0

( t

t+ τ0

)
×

lim sup
t→+∞

sup
y>t

[
F (y) inf

{
λ > 0 :

∫ y

0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]

= lim sup
t→+∞

F0

( t

t+ τ0

)
×

lim sup
t→+∞

[
F (t) inf

{
λ > 0 :

∫ t

0

ϕp(x)

(
φ
(
‖f(x+ τ)− f(x)‖

)
λ

)
dx 6 1

}]
6 lim sup

t→+∞
F0

( t

t+ τ0

)
· ε.
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The proof of (ii) is similar because then we can start from the term

lim sup
t→+∞

[
F1(t)φ

(
inf

{
λ > 0 :

∫ t

0

ϕpτ0 (x)

(
‖f(x+ τ + τ0)− f(x+ τ0)‖

λ

)
dx 6 1

})]
,

use the same computation and the assumption that φ(·) is monotonically increasing.
The proof of (iii) is also similar bacause, with the obvious change of computation
caused by the use of different notion, we can use the same computation and the
inequality (see also (116))

φ

(
F0

( t

t+ τ0

)
· F (y + τ0)

)
6 φ0

(
F0

( t

t+ τ0

))
· φ1

(
F (y + τ0)

)
.

�

We will include the proof of the next proposition for the sake of completeness.

Proposition 2.6.16. Suppose that p(x) ≡ 1, f : I → X, ‖f(· + τ) − f(·)‖ ∈
L1(K) for any τ ∈ I and any compact subset K of I, as well as condition

(B)’: φ(·) is convex and there exists a function ϕ : [0,∞) → (0,∞) such that
φ(tx) 6 ϕ(t)φ(x) for all t > 0 and x > 0.

Set F1(t) := F (t)t[ϕ(t)]−1, t > 0, F2(t) := (2t)−1ϕ(2F (t)t), t > 0 provided that
I = R, and F2(t) := t−1ϕ(F (t)t), t > 0 provided that I = [0,∞). Then we have:

(i) If f(·) is Doss-(1, φ, F )-almost periodic, resp. Doss-(1, φ, F )-uniformly re-
current, then f(·) is Doss-(1, φ, F1)1-almost periodic, resp. Doss-(1, φ, F1)1-
uniformly recurrent.

(ii) If f(·) is Doss-(1, φ, F2)-almost periodic, resp. Doss-(1, φ, F2)-uniformly
recurrent, then f(·) is Doss-(1, φ, F )2-almost periodic, resp. Doss-(1, φ, F )2-
uniformly recurrent.

Proof. We will consider only Doss almost periodic functions with variable
exponent and case I = [0,∞). To prove (i), we can use the assumption (B)’ and
the Jensen integral inequality (τ > 0):

φ
(
‖f(·+ τ)− f(·)‖L1[0,t]

)
= φ

(
t · t−1‖f(·+ τ)− f(·)‖L1[0,t]

)
6ϕ(t)φ

(
t−1‖f(·+ τ)− f(·)‖L1[0,t]

)
6 ϕ(t)t−1

[
φ
(
‖f(·+ τ)− f(·)‖

)]
L1[0,t]

.

This simply yields that f(·) is Doss-(1, φ, F1)1-almost periodic. To prove (ii), sup-
pose that f(·) is Doss-(1, φ, F2)-almost periodic. Then the assumption (B)’ and the
Jensen integral inequality together imply (τ > 0):

φ
(
F (t)‖f(·+ τ)− f(·)‖L1[0,t]

)
= φ

(
F (t)t · t−1‖f(·+ τ)− f(·)‖L1[0,t]

)
6ϕ(F (t))t−1

[
φ
(
‖f(·+ τ)− f(·)‖

)]
L1[0,t]

.

This simply yields that f(·) is Doss-(1, φ, F )2-almost periodic. �
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Remark 2.6.17. (i) It is clear that, if f(·) is Doss-(p, φ, F )-almost peri-
odic [Doss-(p, φ, F )-uniformly recurrent], resp. Doss-(p, φ, F )1-almost pe-
riodic [Doss-(p, φ, F )1-uniformly recurrent], and F (t) > F1(t) for every t ∈
I, then f(·) is Doss-(p, φ, F1)-almost periodic [Doss-(p, φ, F1)–uniformly
recurrent], resp. Doss-(p, φ, F1)1-almost periodic [Doss-(p, φ, F1)1-uniformly
recurrent]. Furthermore, if f(·) is Doss-(p, φ, F )2-almost periodic [Doss-
(p, φ, F )2-uniformly recurrent], then f(·) is Doss-(p, φ, F1)2-almost peri-
odic [Doss-(p, φ, F1)2-uniformly recurrent] provided that F (t) > F1(t) for
every t ∈ I and φ(·) is monotonically increasing, or F (t) 6 F1(t) for every
t ∈ I and φ(·) is monotonically decreasing.

(ii) If f(·) is Doss-(p, φ, F )-almost periodic [Doss-(p, φ, F )-uniformly recur-
rent], resp. Doss-(p, φ, F )i-almost periodic [Doss-(p, φ, F )i-uniformly re-
current], φ1(·) is measurable and 0 6 φ1 6 φ, then Lemma 1.1.6(iii) yields
that f(·) is Doss-(p, φ1, F )-almost periodic [Doss-(p, φ1, F )-uniformly re-
current], resp. Doss-(p, φ1, F )i-almost periodic [Doss-(p, φ1, F )i-uniformly
recurrent], where i = 1, 2.

Example 2.6.18. (i) Let p(x) ≡ p ∈ [1,∞) and f(x) := χ[0,1/2](x), x ∈
R. Then it can be simply shown that for each real number τ such that
|τ | > 1 we have∫ t

−t
|f(x+ τ)− f(x)|p dx 6 1

2
+ 2

∫ 1/2

0

|f(x)|p dx, t ∈ R.

This implies that f(·) is Doss-(p, x, t−σ)-almost periodic for each real num-
ber σ > 0.

(ii) Let p(x) ≡ p ∈ [1,∞) and f(x) := χ[0,∞)(x), x ∈ R. Then it can be simply
shown that for each real number τ we have∫ t

−t
|f(x+ τ)− f(x)|p dx =

∫ τ

−t+τ
|f(x)|p dx+

∫ t+τ

τ

|f(x)|p dx, t ∈ R.

Hence,∫ t

−t
|f(x+ τ)− f(x)|p dx 6 2|τ |, provided τ ∈ R, t > |τ |,

and f(·) is Doss-(p, x, t−σ)-almost periodic for each real number σ > 0.

Concerning embeddings between different Doss almost periodic type spaces
with variable exponent, we would like to state the following result:

Proposition 2.6.19. Let p, q ∈ P(I) and let 1 6 q(x) 6 p(x) for a.e. x ∈ I.
(i) Suppose that a function f(·) is Doss-(p, φ, F )-almost periodic, resp. Doss-

(p, φ, F )-uniformly recurrent, and F1(t) := F (t)/t, t > 0. Then f(·) is
Doss-(q, φ, F1)-almost periodic, resp. Doss-(q, φ, F1)-uniformly recurrent.

(ii) Suppose that a function f(·) is Doss-(p, φ, F )1-almost periodic, resp. Doss-
(p, φ, F )1-uniformly recurrent, φ(·) is monotonically increasing, there ex-
ists a function ϕ : [0,∞)→ (0,∞) such that φ(xy) 6 ϕ(x)φ(y), x, y > 0
and F1(t) := F (t)/ϕ(2(1 + 2t)), t > 0 provided I = R, resp. F1(t) :=
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F (t)/ϕ(2(1 + t)), t > 0 provided I = [0,∞). Then f(·) is Doss-(q, φ, F1)1-
almost periodic, resp. Doss-(q, φ, F1)1-uniformly recurrent.

(iii) Suppose that a function f(·) is Doss-(p, φ, F )2-almost periodic, resp. Doss-
(p, φ, F )2-uniformly recurrent, there exists a function ϕ : [0,∞)→ [0,∞)
such that φ(xy) 6 ϕ(x)φ(y), x, y > 0 and

ϕ

(
2F1(·)(1 + 2·)

F (·)

)
∈ L∞((0,∞)), if I = R,

resp. ϕ

(
2F1(·)(1 + ·)

F (·)

)
∈ L∞((0,∞)), if I = [0,∞).

Then f(·) is Doss-(q, φ, F1)2-almost periodic, resp. Doss-(q, φ, F1)2-unifo-
rmly recurrent.

Proof. We will prove only (iii), for the class of Doss-(p, φ, F )2-almost periodic
functions defined on the interval I = [0,∞). Let the numbers t, τ > 0 be given.
Then the conclusion simply follows from the calculation

φ

(
F1(t)‖f(·+ τ)− f(·)‖Lq(x)[0,t]

)

6 φ

(
2F1(t)(1 + t)‖f(·+ τ)− f(·)‖Lp(x)[0,t]

)

= φ

(
2F1(t)(1 + t)

F (t)
F (t)‖f(·+ τ)− f(·)‖Lp(x)[0,t]

)

6 ϕ

(
2F1(t)(1 + t)

F (t)

)
φ

(
F (t)‖f(·+ τ)− f(·)‖Lp(x)[0,t]

)
,

where we have used Lemma 1.1.6(ii), and the corresponding definition of Doss-
(q, φ, F1)2-almost periodicity. �

2.6.3. Invariance of generalized Doss almost periodicity with variable
exponent under the actions of convolution products. In this subsection, we
will investigate the invariance of three types of generalized Doss almost periodicity
introduced above under the actions of infinite convolution products (for the sake
of simplicity, we will not consider here the finite convolution products).

In [245, Theorem 2.1], we have analyzed the invariance of Doss p-almost period-
icity under the actions of infinite convolution products, provided that the function
f(·) in (55) is Stepanov p-bounded (1 6 p < ∞). In the formulation of the sub-
sequent result, which is not satisfactory to a certain extent (let us only note that
the above mentioned theorem, which is a unique result in the existing literature
concerning this problematic, cannot be deduced from Theorem 2.6.20), we will not
use this condition:

Theorem 2.6.20. Suppose that ϕ : [0,∞) → [0,∞), φ : [0,∞) → [0,∞) is a
convex monotonically increasing function satisfying φ(xy) 6 ϕ(x)φ(y) for all x, y >



2.6. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 141

0 and p ∈ P(R). Suppose, further, f̌ : R → X is Doss-(p, φ, F )-almost periodic,
resp. Doss-(p, φ, F )-uniformly recurrent, and measurable, F1 : (0,∞) → (0,∞),
q ∈ P(R), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous
operator family and for every real number x ∈ R we have

(117)

∫ ∞
−x
‖R(v + x)‖‖f̌(v)‖ dv <∞.

Suppose that for each ε > 0 there exist an increasing sequence (am) of positive real
numbers tending to plus infinity and a number t0(ε) > 0 satisfying that, for every
t > t0(ε), we have
(118)∫ t

−t
ϕp(x)

(
2ϕ(am)a−1

m F1

(
t
)

lim sup
m→+∞

[[
ϕ(‖R(·+x)‖)

]
Lq(·)[−x,−x+am]

F
(
t+am

)−1
])

dx 6 1.

Then the function F : R → Y, given by (55), is well-defined and Doss-(p, φ, F1)-
almost periodic, resp. Doss-(p, φ, F1)-uniformly recurrent.

Proof. We will consider only the class of Doss-(p, φ, F )-almost periodic func-
tions because the proof for the class of Doss-(p, φ, F )-uniformly recurrent functions
can be deduced quite analogously. Since F (x) =

∫∞
−xR(v + x)f̌(v) dv, x ∈ R, the

validity of condition (117) yields that the function F (·) is well-defined as well as
that the integrals in definitions of F (x) and F (x + τ) − F (x) converge absolutely
(x ∈ R). Let ε > 0 be fixed, and let the sequences (tn), (t′n) and (am) satisfy the
prescribed requirements. Using the fact that the function φ(·) is continuous and
the function ϕp(x)(·) is monotonically increasing, we have (x ∈ R, λ, τ > 0):

ϕp(x)

(
φ(‖F (x+ τ)− F (x)‖)

λ

)

6 ϕp(x)

(
φ
(∫∞
−x ‖R(v + x)‖‖f̌(v + τ)− f̌(v)‖ dv

)
λ

)

6 ϕp(x)

(
lim

m→+∞

φ
(∫ −x+am
−x ‖R(v + x)‖‖f̌(v + τ)− f̌(v)‖ dv

)
λ

)

= ϕp(x)

(
lim

m→+∞

φ
(∫ −x+am
−x ama

−1
m ‖R(v + x)‖‖f̌(v + τ)− f̌(v)‖ dv

)
λ

)

6 ϕp(x)

(
lim sup
m→+∞

ϕ(am)a−1
m

∫ −x+am
−x φ(‖R(v + x)‖‖f̌(v + τ)− f̌(v)‖) dv

λ

)

6 ϕp(x)

(
lim sup
m→+∞

2ϕ(am)a−1
m

[
ϕ(‖R(v + x)‖)

]
Lq(v)[−x,−x+am]

λ

×

[
φ(‖f̌(v + τ)− f̌(v)‖)

]
Lp(v)[−x,−x+am]

λ

)
,
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where we have also used the Jensen integral inequality and the Hölder inequality.
Let ε > 0 be fixed and let τ > 0 be such that (112) holds, i.e., there exists
t1(ε, τ) > 0 such that

(119)

[
F (t)

[
φ
(∥∥f̌(·+ τ)− f̌(·)

∥∥)
Lp(x)[−t,t]

]]
< ε, t > t1(ε, τ).

Suppose that t > max(t0(ε), t1(ε, τ)). Then for each x ∈ [−t, t] and m ∈ N we have
[−x,−x+ am] ⊆ [−(t+ am), t+ am] so that the above calculation and (119) give

ϕp(x)

(
φ(‖F (x+ τ)− F (x)‖)

λ

)

6 ϕp(x)

(
lim sup
m→+∞

2ϕ(am)a−1
m

[
ϕ(‖R(v + x)‖)

]
Lq(v)[−x,−x+am]

ε/F (t+ am)

λ

)
.

Integrating this estimate over the interval [−t, t] and using (118) we get that the
inequality ∫ t

−t
ϕp(x)

(
φ(‖F (x+ τ)− F (x)‖)

λ

)
dx 6 1

holds with λ = ε/F1(t), which completes the proof in a routine manner. �

We can similarly prove the following results for Doss-(p, φ, F )1-almost periodic
functions, resp. Doss-(p, φ, F )1-uniformly recurrent functions, and Doss-(p, φ, F )2-
almost periodic functions, resp. Doss-(p, φ, F )2-uniformly recurrent functions; for
the sake of brevity, we will only provide descriptions of the proofs since they are
very similar to the proof of Theorem 2.6.20 above:

Theorem 2.6.21. Suppose that φ : [0,∞) → [0,∞) is a continuous monoton-
ically increasing bijection and p ∈ P(R). Suppose, further, f̌ : R → X is Doss-
(p, φ, F )1-almost periodic, resp. Doss-(p, φ, F )1-uniformly recurrent, and measur-
able, F1 : (0,∞)→ (0,∞), q ∈ P(R), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y ) is
a strongly continuous operator family and, for every real number x ∈ R, we have
(117). Suppose that for each ε > 0 there exist an increasing sequence (am) of pos-
itive real numbers tending to plus infinity and a number t0(ε) > 0 satisfying that,
for every t > t0(ε), we have
(120)∫ t

−t
ϕp(x)

(
lim supm→+∞

[
2
[
ϕ(‖R(·+ x)‖)

]
Lq(·)[−x,−x+am]

φ−1(ε/F (t+ am))
]

φ−1(ε/F1(t))

)
dx 6 1.

Then the function F : R → Y, given by (55), is well-defined and Doss-(p, φ, F1)1-
almost periodic, resp. Doss-(p, φ, F1)1-uniformly recurrent.

Proof. As in the proof of Theorem 2.6.20 above, we have that the function
F (·) is well-defined as well as that the integrals in definitions of F (x) and F (x +
τ)−F (x) converge absolutely (x ∈ R). Let ε > 0 be fixed. Then it suffices to show



2.6. GENERALIZED ALMOST PERIODICITY IN LEBESGUE SPACES... 143

that, for every t > t0(ε), we have (x ∈ R, λ, τ > 0)∥∥∥R(s)[F (x+ t+ τ − s)− F (x+ t− s)]
∥∥∥
Lp(x)[−t,t]

6 φ−1
(
ε/F1(t)

)
.

But, we can repeat the arguments used in the proof of the above-mentioned theo-
rem, with φ(x) ≡ x, in order to see that:

ϕp(x)

(
‖F (x+ τ)− F (x)‖

λ

)

6
2
[
ϕ(‖R(v + x)‖)

]
Lq(v)[−x,−x+am]

[
‖f̌(v + τ)− f̌(v)‖

]
Lp(v)[−x,−x+am]

λ

)

6
2
[
ϕ(‖R(v + x)‖)

]
Lq(v)[−x,−x+am]

φ−1(ε/F (t+ am))

λ

)
.

The rest of proof is clear because we can take λ = φ−1(ε/F1(t)) and use condition
(120). �

Theorem 2.6.22. Suppose that φ : [0,∞) → [0,∞) is a continuous monoton-
ically increasing bijection and p ∈ P(R). Suppose, further, f̌ : R → X is Doss-
(p, φ, F )2-almost periodic, resp. Doss-(p, φ, F )2-uniformly recurrent, and measur-
able, F1 : (0,∞)→ (0,∞), q ∈ P(R), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y ) is
a strongly continuous operator family and, for every real number x ∈ R, we have
(117). Suppose that for each ε > 0 there exist an increasing sequence (am) of pos-
itive real numbers tending to plus infinity and a number t0(ε) > 0 satisfying that,
for every t > t0(ε), we have

(121)

∫ t

−t
ϕp(x)

(
2F1

(
t
)

lim sup
m→+∞

[
ϕ(‖R(·+ x)‖)

]
Lq(·)[−x,−x+am]

F
(
t+ am

) )
dx 6 1.

Then the function F : R → Y, given by (55), is well-defined and Doss-(p, φ, F1)2-
almost periodic, resp. Doss-(p, φ, F1)2-uniformly recurrent.

Proof. We can use the same trick as above, with λ = φ−1(ε)/F1(t) and use
condition (121). �

Remark 2.6.23. (i) Suppose that p(x) ≡ p ∈ [1,∞). Then we can use
the usual Hölder inequality in order to see that the estimates (118)-(121)
can be modified by removing the multiplication with the number 2 therein.

(ii) Although we will not define the notion of Besicovitch-Doss almost period-
icity with variable exponent here, we would like to note that the statement
of [234, Theorem 2.13.7] and the corresponding part of this result which
considers the Doss almost periodicity cannot be so easily reexamined in
our framework.

Concerning the convolution invariance of generalized almost periodicity intro-
duced in this subsection, we will only state and prove the following result (see also
[234, Theorem 3.11.26]):
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Proposition 2.6.24. Suppose that ψ ∈ L1(R), −∞ < a < b < +∞, supp(ψ) ⊆
[a, b], ϕ : [0,∞)→ [0,∞), φ : [0,∞)→ [0,∞) is a convex monotonically increasing
function satisfying φ(xy) 6 ϕ(x)φ(y) for all x, y > 0, p, q ∈ P(R) and 1/p(x) +
1/q(x) = 1. Suppose, further, that the function f : R→ X is Doss-(p, φ, F )-almost
periodic, resp. Doss-(p, φ, F )-uniformly recurrent, and essentially bounded. Then
the function

(122) x 7→ (ψ ∗ f)(x) :=

∫ +∞

−∞
ψ(x− y)f(y) dy, x ∈ R

is well-defined and essentially bounded. Furthermore, if p1 ∈ P(R), F1 : (0,∞) →
(0,∞) and if, for every ε > 0 there exists a positive real number t1(ε) > 0 such that

(123)

∫ t

−t
ϕp1(x)

(
2F1(t)ϕ(b− a)

∥∥ϕ(|ψ(x− z)|
)∥∥
Lq(z)[x−b,x−a]

(b− a)F (t+ c)

)
dx 6 1,

where c = max(|a|, |b|), then the function ψ∗f(·) is Doss-(p1, φ, F1)-almost periodic,
resp. Doss-(p1, φ, F1)-uniformly recurrent.

Proof. We will give the main details of proof for the class of Doss-(p, φ, F )-
almost periodic functions, only. For every x ∈ R and τ ∈ R, we have

φ
(
‖(ψ ∗ f)(x+ τ)− (ψ ∗ f)(x)‖

)
6 φ

(
(b− a)(b− a)−1

∫ b

a

|ψ(y)| · ‖f(x+ τ − y)− f(x− y)‖ dy

)

6
ϕ(b− a)

b− a

∫ b

a

φ
(
|ψ(y)| · ‖f(x+ τ − y)− f(x− y)‖

)
dy

=
ϕ(b− a)

b− a

∫ x−a

x−b
φ
(
|ψ(x− z)| · ‖f(z + τ)− f(z)‖

)
dz

6 2
ϕ(b− a)

b− a
∥∥ϕ(|ψ(x− z)|

)∥∥
Lq(z)[x−b,x−a]

‖f(z + τ)− f(z)‖Lp(z)[x−b,x−a],

where we have used the Jensen integral inequality and the Hölder inequality. The
proof can be completed as it has been done in the final part of the proof of Theorem
2.6.20. �

Composition principles for Besicovitch almost periodic functions have been in-
vestigated by M. Ayachi and J. Blot in [36]. We will consider composition principles
for Doss almost periodic functions with variable exponents somewhere else.

Fix now a strictly increasing sequence (αn) of positive reals tending to plus
infinity, and set

BUR(αn)(R : X) :=
{
~u ∈ UR(R : X) ; ~u(·) is bounded and (19) holds with f = ~u

}
.

Equipped with the metric d(·, ·) := ‖ ·− ·‖∞, BUR(αn)(R : X) is a complete metric
space.

Now we are able to state the following result, which is very similar to Theorem
2.4.52:
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Theorem 2.6.25. Suppose that the function F : R×X → X satisfies that for
each bounded subset B of X there exists a finite real constant MB > 0 such that
supt∈R supy∈B ‖F (t, y)‖ 6MB . Suppose, further, that p, r ∈ P([0, 1]), the function
F : R×X → X is Stepanov p(x)-uniformly recurrent, r(·) > max(p(·), p(·)/(p(·)−
1)) and there exists a function LF ∈ Lr(x)

S (I) is such that q(x) := p(x)r(x)/(p(x) +
r(x)) > 1 for a.e. x ∈ R and (25) holds with I = R. If there exist a positive real
number q′ > 0 and an integer n ∈ N such that (γ−1)q′ > −1 and q(x)/(q(x)−1) 6
q′ for a.e. x ∈ R, and Mn < 1, where

Mn := sup
t>0

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞

∥∥∥Rγ(t− xn)
∥∥∥

×
n∏
i=2

∥∥∥Rγ(xi − xi−1)
∥∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn,

and for every compact set K ⊆ Y, (111) holds, then the abstract fractional Cauchy
inclusion (67) has a unique bounded uniformly recurrent solution.

Proof. We will only outline the main details of proof. Define Υ : BUR(αn)(R :
X)→ BUR(αn)(R : X) by

(Υ~u)(t) :=

∫ t

−∞
Rγ(t− s)F (s, ~u(s)) ds, t ∈ R.

Suppose that ~u ∈ BUR(αn)(R : X). Then R(~u) = B is a bounded set, so that
the mapping t 7→ F (t, ~u(t)), t ∈ R is bounded. Applying Theorem 2.6.8, we have
that the function F (·, ~u(·)) is Stepanov q(x)-uniformly recurrent. Define q′(x) :=
q(x)/(q(x)−1) for a.e. x ∈ R. Then (66) and the prescribed assumptions imply that

‖Rγ(·)‖ ∈ Lq
′(x)[0, 1] and

∑∞
k=0 ‖Rγ(·)‖Lq′(x)[k,k+1] < ∞. Applying Proposition

2.6.5, we get that the function t 7→
∫ t
−∞Rγ(t− s)F (s, ~u(s)) ds, t ∈ R is uniformly

recurrent. It can be simply verified that this function is also bounded continuous
so that Υ~u ∈ BUR(αn)(R : X) and the mapping Υ(·) is well defined. A simple
calculation shows that∥∥∥(Υn~u1

)
−
(
Υn~u2

)∥∥∥
∞
6Mn

∥∥ ~u1 − ~u2

∥∥
∞, ~u1, ~u2 ∈ BUR(αn)(R : X), n ∈ N.

Since we have assumed that Mn < 1, the Bryant fixed point theorem shows that the
mapping Υ(·) has a unique fixed point. This completes the proof of theorem. �

2.7. Generalized almost periodicity in Lebesgue spaces with variable
exponents. Part III

In this section, we consider the Stepanov and Weyl classes of generalized al-
most periodic type functions and generalized uniformly recurrent type functions.
We investigate the invariance of generalized almost periodicity and generalized uni-
form recurrence with variable exponents under the actions of convolution products,
providing also certain applications.
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2.7.1. Generalized Weyl uniform recurrence in Lebesgue spaces with
variable exponents Lp(x). Throughout this subsection, we will occasionally use
conditions (A) and (B). We will first extend the notion introduced in Definition
2.5.22-Definition 2.5.24:

Definition 2.7.1. Suppose that condition (A) holds, f : I → X, and φ(‖f(·+
τ)− f(·)‖) ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p(x), φ, F )-uniformly recur-

rent, f ∈ e −W (p(x),φ,F )
ur (I : X) for short, if and only if we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

[
F
(
ln, t

)[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+ln]

]]
= 0.

(ii) It is said that the function f(·) is Weyl-(p(x), φ, F )-uniformly recurrent,

f ∈ W
(p(x),φ,F )
ur (I : X) for short, if and only if we can find a sequence

(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+l]

]]
= 0.(124)

Definition 2.7.2. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p(x), φ, F )1-uniformly recur-

rent, f ∈ e−W (p(x),φ,F )1
ur (I : X) for short, if and only if we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

[
F
(
ln, t

)
φ
[(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+ln]

]]
= 0.

(ii) It is said that the function f(·) is Weyl-(p(x), φ, F )1-uniformly recurrent,

f ∈ W (p(x),φ,F )1
ur (I : X) for short, if and only if we can find a sequence

(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

[
F (l, t)φ

[(∥∥f(·+ αn)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
= 0.

Definition 2.7.3. Suppose that condition (A) holds, f : I → X and ‖f(· +
τ)− f(·)‖ ∈ Lp(x)(K) for any τ ∈ I and any compact subset K of I.

(i) It is said that the function f(·) is equi-Weyl-(p(x), φ, F )2-uniformly recur-

rent, f ∈ e−W (p(x),φ,F )2
ur (I : X) for short, if and only if we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

φ

[
F
(
ln, t

)[(∥∥f(·+ αn)− f(·)
∥∥)
Lp(·)[t,t+ln]

]]
= 0.
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(ii) It is said that the function f(·) is Weyl-(p(x), φ, F )2-uniformly recurrent,

f ∈ W (p(x),φ,F )2
ur (I : X) for short, if and only if we can find a sequence

(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

φ

[
F (l, t)

[(∥∥f(·+ αn)− f(·)
∥∥)
Lp(·)[t,t+l]

]]
= 0.

It is clear that the class of (equi-)Weyl-(p(x), φ, F )-uniformly recurrent func-
tions, resp. (equi-)Weyl-(p(x), φ, F )i-uniformly recurrent functions, extends the
class of (equi-)Weyl-(p(x), φ, F )-almost periodic functions, resp. (equi-)Weyl-
(p(x), φ, F )i-almost periodic functions (i = 1, 2). Case p(x) ≡ p, φ(x) ≡ x and
F (l, t) = l(−1)/p is the most indicative, when we say that the function f(·) is
(equi-)Weyl-p-uniformly recurrent. The class of (equi-)Weyl-p-uniformly recurrent
functions has not been considered elsewhere by now.

We have already shown that an equi-Weyl-(p, φ, ψ)-almost periodic function,
resp. equi-Weyl-(p, φ, ψ)i-almost periodic function, does not need to be Weyl-
(p, φ, ψ)-almost periodic, resp. Weyl-(p, φ, ψ)i-almost periodic (i = 1, 2). This
statement continues to hold for generalized uniformly recurrent functions intro-
duced above. For example, any continuous Stepanov p-almost periodic function
f(·) which is not periodic cannot be Weyl-(p, x, 1)-uniformly recurrent, while it is
always equi-Weyl-(p, x, 1)-almost periodic.

Example 2.7.4. If X does not contain an isomorphic copy of the sequence
space c0, φ(x) = x and F (l, t) ≡ F (t), where limt→+∞ F (t) = +∞, then there does
not exist a non-periodic trigonometric polynomial f(·) and function p ∈ P(R) such

that f ∈ e −W (p,x,F )
ur (R : X). This can be verified based on the argumentation

contained in Example 2.5.25(iii).

Further on, the statement of Proposition 2.5.26 and the conclusions established
in Remark 2.5.27 can be reformulated for the introduced classes of generalized Weyl
uniformly recurrent functions. In order to ensure the translation invariance of
generalized Weyl spaces of uniformly recurrent functions with variable exponents,
we will follow a slightly different approach based on the idea from [142]:

Definition 2.7.5. Suppose that condition (B) holds, f : I → X and φ(‖f(·l+
t+ τ)− f(t+ ·l)‖) ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.

(i) It is said that the function f(·) is equi-Weyl-[p(x), φ, F ]-uniformly recur-

rent, f ∈ e −W [p(x),φ,F ]
ur (I : X) for short, if and only if we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

[
F
(
ln, t

)[
φ
(∥∥f(·ln + t+ αn)− f(t+ ·ln)

∥∥)
Lp(·)[0,1]

]]
= 0.

(ii) It is said that the function f(·) is Weyl-[p(x), φ, F ]-uniformly recurrent,

f ∈W [p(x),φ,F ]
ur (I : X) for short, if and only if we can find a sequence (αn)
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of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·l + t+ αn)− f(t+ ·l)

∥∥)
Lp(·)[0,1]

]]
= 0.

Definition 2.7.6. Suppose that condition (B) holds, f : I → X and ‖f(·l +
t+ τ)− f(t+ ·l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.

(i) It is said that the function f(·) is equi-Weyl-[p(x), φ, F ]1-uniformly recur-

rent, f ∈ e −W [p(x),φ,F ]1
ur (I : X) for short, if and only if we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

[
F
(
ln, t

)
φ
[(∥∥f(·ln + t+ αn)− f(t+ ·ln)

∥∥)
Lp(·)[0,1]

]]
= 0.

(ii) It is said that the function f(·) is Weyl-[p(x), φ, F ]2-uniformly recurrent,

f ∈ W
[p(x),φ,F ]2
ur (I : X) for short, if and only if we can find a sequence

(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

[
F (l, t)φ

[(∥∥f(·l + t+ αn)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
= 0.

Definition 2.7.7. Suppose that condition (B) holds, f : I → X and ‖f(·l +
t+ τ)− f(t+ ·l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.

(i) It is said that the function f(·) is equi-Weyl-[p(x), φ, F ]2-uniformly recur-

rent, f ∈ e −W [p(x),φ,F ]2
ur (I : X) for short, if and only we can find two

sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→+∞

sup
t∈I

φ

[
F
(
ln, t

)[(∥∥f(·ln + t+ αn)− f(t+ ·ln)
∥∥)
Lp(·)[0,1]

]]
= 0.

(ii) It is said that the function f(·) is Weyl-[p(x), φ, F ]2-uniformly recurrent,

f ∈ W
[p(x),φ,F ]2
ur (I : X) for short, if and only if we can find a sequence

(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim sup
l→∞

sup
t∈I

φ

[
F (l, t)

[(∥∥f(·l + t+ αn)− f(t+ ·l)
∥∥)
Lp(·)[0,1]

]]
= 0.

The statement of Proposition 2.5.32 and the conclusions established in Remark
2.5.31 can be reformulated for generalized Weyl uniformly recurrent functions in-
troduced in the above three definitions. All statements regarding the convolution
invariance of the generalized Weyl almost periodicity with variable exponents can
be straightforwardly reformulated for generalized Weyl uniformly recurrent func-
tions introduced in this section; we leave readers to make this precise.
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2.7.2. Quasi-asymptotically uniformly recurrent type functions with
variable exponents. In the following definition, we will extend the notion of
quasi-asymptotical almost periodicity:

Definition 2.7.8. We say that a continuous function f : I → X is quasi-
asymptotically uniformly recurrent if and only if there exist a strictly increasing
sequence (αn) of positive real numbers tending to plus infinity and a sequence (Mn)
of positive real numbers such that

lim
n→+∞

sup
|t|>Mn

∥∥f(t+ αn)− f(t)
∥∥ = 0.(125)

Denote by Q−AUR(I : X) the set consisting of all quasi-asymptotically uniformly
recurrent functions from I into X.

It is expected that the class of quasi-asymptotically uniformly recurrent func-
tions extends the class of asymptotically uniformly recurrent functions. For com-
pleteness, we will include all details of the proof of the following proposition:

Proposition 2.7.9. Suppose that f : I → X is asymptotically uniformly re-
current. Then f(·) is quasi-asymptotically uniformly recurrent.

Proof. Let h ∈ UR(R : X), q ∈ C0(I : X) and f = h+ q. By our assumption,
we have the existence of a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that (19) holds with the function f(·) replaced therein
with the function h(·). Let n ∈ N be fixed. Then we can find a sufficiently large
real number M ′n > 0 and a sufficiently large integer n0 ∈ N such that ‖q(t)‖ 6 1/n
for |t| >M ′n and ‖h(t+αn)−h(t)‖ 6 1/n, n > n0. Then, for every t ∈ R such that
|t| >Mn := M ′n + αn, we have |t|, |t+ αn| >M ′n and∥∥∥[h(t+ αn)− h(t)

]
+
[
q(t+ αn)− q(t)

]∥∥∥ 6 1

n
+
∥∥q(t+ αn)− q(t)

∥∥ 6 2

n
, n > n0.

This simply implies the required assertion. �

Applying the same arguments, we can deduce the following

Proposition 2.7.10. Suppose that f : I → X is quasi-asymptotically uni-
formly recurrent and q ∈ C0(I : X). Then (f+q)(·) is likewise quasi-asymptotically
uniformly recurrent.

The proof of following proposition is simple and can be omitted, as well:

Proposition 2.7.11. Suppose that I = R and f : I → X. Then f(·) is
quasi-asymptotically uniformly recurrent (quasi-asymptotically almost periodic, S-
asymptotically ω-periodic) if and only if f̌(·) is quasi-asymptotically uniformly re-
current (quasi-asymptotically almost periodic, S-asymptotically ω-periodic).

If f ∈ Q−AUR(R : X) and ϕ ∈ L1(R) has a compact support, then it can be
easily seen that the convolution ϕ ∗ f(·) :=

∫
R ϕ(· − y)f(y) dy belongs to the class

Q−AUR(R : X). Further on, any quasi-asymptotically almost periodic function is
bounded by definition, and this is no longer true for quasi-asymptotically uniformly
recurrent functions. In connection with this, we would like to present the following
illustrative example:
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Example 2.7.12. Let the function f(·) be defined by (33). We know that for
each real number c > 0 the function h(t) := min(c, f(t)), t ∈ R is bounded uniformly
continuous, uniformly recurrent, and not (Stepanov) p-quasi-asymptotically almost
periodic (p > 1). On the other hand, Proposition 2.7.9 shows that the function h(·)
is quasi-asymptotically uniformly recurrent.

Further on, if f ∈ C1(I : X) and f ′ ∈ C0(I : X), then the Lagrange mean value
theorem implies that the function f(·) is quasi-asymptotically uniformly recurrent.
In particular, the function f(t) := ln(1+ t), t > 0 is quasi-asymptotically uniformly
recurrent; on the other hand, it can be simply verified that the function f(·) is
not asymptotically uniformly recurrent. The notion of quasi-asymptotical uniform
anti-recurrence can be also introduced and analyzed (see also [247, Example 2.3,
Remark 2.4]).

Example 2.7.13. The function f : [0,∞) → R given by f(t) := sin(ln(1 +
t)), t > 0 is quasi-asymptotically almost periodic but not asymptotically almost
periodic (see [247] and [325, Example 4.1, Theorem 4.2]). Now we will prove that
this function cannot be asymptotically uniformly recurrent. Suppose the contrary,
and fix a sufficiently small number ε > 0. Then an elementary argumentation shows
that there exist a strictly increasing sequence (αn) of positive real numbers tending
to plus infinity and a number t0(ε) > 0 such that | sin(ln(t+ αn))− sin(ln t)| 6 2ε
for all t > t0(ε) and n ∈ N. Hence,∣∣∣∣∣sin ln(1 + (αn/t))

2
cos

ln(t(t+ αn))

2

∣∣∣∣∣ 6 ε, t > t0(ε), n ∈ N.

Let n0(ε) ∈ N be such that αn > t0(ε) for n > n0(ε). Plugging t = kαn, where
1 6 k 6 5, the above estimate simply implies that there exists a finite constant
c > 0 such that ∣∣∣∣∣cos

ln(aα2
n)

2

∣∣∣∣∣ 6 cε, 2 6 a 6 30, n > n0(ε).

Then we get the existence of a real number cε > 0 such that limε→0+ cε = 0 and

dist
(
aα2

n,
{

exp((2k + 1)π) : k ∈ N0

})
6 e2cε , 2 6 a 6 30, n > n0(ε).

It can be simply verified that this estimate cannot be satisfied simultaneously for
a = 2 and a = eπ, which yields a contradiction.

In [247, Theorem 2.5], we have proved that any asymptotically almost au-
tomorphic function which is also quasi-asymptotically almost periodic is always
asymptotically almost periodic. The arguments contained in the proof of the above-
mentioned theorem also show that any asymptotically uniformly recurrent function
which is quasi-asymptotically almost periodic is always asymptotically almost pe-
riodic as well as that the following result holds true:

Theorem 2.7.14. Let F(I : X) be any space of functions h : I → X satisfying
that for each τ ∈ I the supremum formula holds for the function h(· + τ) − h(·),
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that is

sup
t∈I
‖h(·+ τ)− h(·)‖ = sup

t∈I, t>a
‖h(·+ τ)− h(·)‖, a ∈ I.

Then we have:

(i) [F(I : X) + C0(I : X)] ∩Q−AUR(I : X) ⊆ AUR(I : X).
(ii) F(I : X) ∩Q−AUR(I : X) ⊆ UR(I : X).

Proof. We will include the main details of the proof for the sake of complete-
ness. Let h ∈ F(I : X), q ∈ C0(I : X) and f = h + q ∈ Q − AUR(I : X). By our
assumptions, there exist a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity and a sequence (Mn) of positive real numbers such that,
for every integer n ∈ N, there exists an integer n0 ∈ N with∥∥∥[h(t+ αn)− h(t)

]
+
[
q(t+ αn)− q(t)

]∥∥∥ 6 1/n, for t ∈ I, |t| >Mn, n > n0.

Let n ∈ N be fixed. Since q ∈ C0(I : X), we have that there exists a finite number
M ′n >Mn such that∥∥∥h(t+ αn)− h(t)

∥∥∥ 6 2/n, provided t ∈ I and |t| >M ′n, n > n0.

Define the function Hn : I → X by Hn(t) := h(t + αn) − h(t), t ∈ I. Since the
supremum formula holds for the function Hn(·), we get

sup
t∈I

∥∥Hn(t)
∥∥ = sup

t>M ′n

∥∥Hn(t)
∥∥ 6 2/n.

Hence, limn→+∞ supt∈I ‖h(t+αn)−h(t)‖ = 0 and h(·) is thus uniformly recurrent,
which immediately implies part (i). Part (ii) can be deduced similarly. �

In the following illustrative application of Theorem 2.7.14, we will consider case
in which I = R and F(I : X) = AA(I : X), the space of all almost automorphic
functions from I into X (see [234] for more details):

Example 2.7.15. Set an :=sign(cos(nπ
√

2)), n ∈ Z and define after that the
function f : R → R by f(t) := αan + (1 − α)an+1 if t ∈ [n, n + 1) for some
integer n ∈ Z and t = αn + (1 − α)(n + 1) for some number α ∈ (0, 1]. This
function is compactly almost automorphic but not almost periodic; furthermore,
we have proved that the function f(·) is not asymptotically uniformly recurrent.
Using this fact and Theorem 2.7.14, it readily follows that the function f(·) is not
quasi-asymptotically uniformly recurrent, as well.

2.7.3. Stepanov classes of quasi-asymptotically uniformly recurrent
type functions. Throughout this subsection, we use the following conditions:

(A)S : I = R or I = [0,∞), φ : [0,∞) → [0,∞), p ∈ P(I), F : I × (0,∞) × I →
(0,∞), F : I × N→ (0,∞), F : I → (0,∞) and ω ∈ I.

(B)S : The same as (A)S with the assumption p ∈ P(I) replaced by p ∈ P([0, 1])
therein.
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We first introduce the Stepanov-(p, φ, F )-classes of quasi-asymptotically uni-
formly recurrent functions and the Stepanov-(p, φ, F )i-classes of quasi-asymptotically
uniformly recurrent functions, where i = 1, 2 and p ∈ P(I). In this approach, we
may loose the information about the translation invariance of introduced spaces:

Definition 2.7.16. Let (A)S hold.

(i) A function f : I → X is called Stepanov-(p, φ,F)-quasi-asymptotically
almost periodic, resp. Stepanov-(p, φ, F )-quasi-asymptotically uniformly
recurrent, if and only if φ(‖f(· + τ) − f(·)‖) ∈ Lp(·)(K) for any τ ∈ I
and any compact set K ⊆ I as well as for each ε > 0 there exists a finite
number L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains
at least one number τ ∈ I ′ satisfying that there exists a finite number
M(ε, τ) > 0 such that

sup
|t|>M(ε,τ)

F(t, ε, τ)φ
(∥∥f(·+ τ)− f(·)

∥∥)
Lp(·)[t,t+1]

6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

F (t, n)φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+1]

= 0.(126)

(ii) We say that a function f : I → X is Stepanov-(p, φ, F)-asymptotically
ω-periodic if and only if φ(‖f(·+ ω)− f(·)‖) ∈ Lp(·)(K) for any compact
set K ⊆ I and

lim
|t|→∞

F(t)φ
(∥∥f(·+ ω)− f(·)

∥∥)
Lp(·)[t,t+1]

= 0.

Definition 2.7.17. Let (A)S hold.

(i) A function f : I → X is called Stepanov-(p, φ,F)1-quasi-asymptotically
almost periodic, resp. Stepanov-(p, φ, F )1-quasi-asymptotically uniformly
recurrent, if and only if ‖f(·+ τ)−f(·)‖ ∈ Lp(·)(K) for any τ ∈ I and any
compact set K ⊆ I as well as for each ε > 0 there exists a finite number
L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one
number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0
such that

sup
|t|>M(ε,τ)

F(t, ε, τ)φ
(∥∥f(·+ τ)− f(·)

∥∥
Lp(·)[t,t+1]

)
6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

F (t, n)φ
(∥∥f(·+ αn)− f(·)

∥∥
Lp(·)[t,t+1]

)
= 0.
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(ii) We say that a function f : I → X is Stepanov-(p, φ, F)1-asymptotically
ω-periodic if and only if ‖f(·+ ω)− f(·)‖ ∈ Lp(·)(K) for any compact set
K ⊆ I and

lim
|t|→∞

F(t)φ
(∥∥f(·+ ω)− f(·)

∥∥
Lp(·)[t,t+1]

)
= 0.

Definition 2.7.18. Let (A)S hold.

(i) A function f : I → X is called Stepanov-(p, φ,F)2-quasi-asymptotically
almost periodic, resp. Stepanov-(p, φ, F )2-quasi-asymptotically uniformly
recurrent, if and only if ‖f(·+ τ)−f(·)‖ ∈ Lp(·)(K) for any τ ∈ I and any
compact set K ⊆ I as well as for each ε > 0 there exists a finite number
L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one
number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0
such that

sup
|t|>M(ε,τ)

φ
(
F(t, ε, τ)

∥∥f(·+ τ)− f(·)
∥∥
Lp(·)[t,t+1]

)
6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

φ
(
F (t, n)

∥∥f(·+ αn)− f(·)
∥∥
Lp(·)[t,t+1]

)
= 0.

(ii) Then we say that a function f : I → X is Stepanov-(p, φ, F)2-asymptotically
ω-periodic if and only if ‖f(·+ ω)− f(·)‖ ∈ Lp(·)(K) for any compact set
K ⊆ I and

lim
|t|→∞

φ
(
F(t)

∥∥f(·+ ω)− f(·)
∥∥
Lp(·)[t,t+1]

)
= 0.

In the second approach, we will employ condition (B)S and assume therefore
that p ∈ P([0, 1]). Using the substitution · → · + t, the translation invariance of
considered function spaces can be achieved (see e.g., Remark 2.5.31(iii)):

Definition 2.7.19. Let (B)S hold.

(i) A function f : I → X is called Stepanov-[p, φ,F]-quasi-asymptotically
almost periodic, resp. Stepanov-[p, φ, F ]-quasi-asymptotically uniformly
recurrent, if and only if φ(‖f(· + t + τ) − f(· + t)‖) ∈ Lp(·)[0, 1] for any
τ, t ∈ I as well as for each ε > 0 there exists a finite number L(ε) > 0
such that any interval I ′ ⊆ I of length L(ε) contains at least one number
τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0 such that

sup
|t|>M(ε,τ)

F(t, ε, τ)φ
(∥∥f(·+ t+ τ)− f(·+ t)

∥∥)
Lp(·)[0,1]

6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

F (t, n)φ
(∥∥f(·+ t+ αn)− f(·+ t)

∥∥)
Lp(·)[0,1]

= 0.
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(ii) Then we say that a function f : I → X is Stepanov-[p, φ, F]-asymptotically
ω-periodic if and only if φ(‖f(· + t + ω) − f(· + t)‖) ∈ Lp(·)[0, 1] for any
t ∈ I and

lim
|t|→∞

F(t)φ
(∥∥f(·+ t+ ω)− f(·+ t)

∥∥)
Lp(·)[0,1]

= 0.

Definition 2.7.20. Let (B)S hold.

(i) A function f : I → X is called Stepanov-[p, φ,F]1-quasi-asymptotically
almost periodic, resp. Stepanov-[p, φ, F ]1-quasi-asymptotically uniformly
recurrent, if and only if ‖f(·+t+τ)−f(·+t)‖ ∈ Lp(·)[0, 1] for any τ, t ∈ I
as well as for each ε > 0 there exists a finite number L(ε) > 0 such that
any interval I ′ ⊆ I of length L(ε) contains at least one number τ ∈ I ′

satisfying that there exists a finite number M(ε, τ) > 0 such that

sup
|t|>M(ε,τ)

F(t, ε, τ)φ
(∥∥f(·+ t+ τ)− f(·+ t)

∥∥
Lp(·)[0,1]

)
6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

F (t, n)φ
(∥∥f(·+ t+ αn)− f(·+ t)

∥∥
Lp(·)[0,1]

)
= 0.

(ii) Then we say that a function f : I → X is Stepanov-[p, φ, F]1-asymptotically
ω-periodic if and only if ‖f(·+ t+ω)− f(·+ t)‖ ∈ Lp(·)[0, 1] for any t ∈ I
and

lim
|t|→∞

F(t)φ
(∥∥f(·+ t+ ω)− f(·+ t)

∥∥
Lp(·)[0,1]

)
= 0.

Definition 2.7.21. Let (B)S hold.

(i) A function f : I → X is called Stepanov-[p, φ,F]2-quasi-asymptotically
almost periodic, resp. Stepanov-[p, φ, F ]2-quasi-asymptotically uniformly
recurrent, if and only if ‖f(·+t+τ)−f(·+t)‖ ∈ Lp(·)[0, 1] for any τ, t ∈ I
as well as for each ε > 0 there exists a finite number L(ε) > 0 such that
any interval I ′ ⊆ I of length L(ε) contains at least one number τ ∈ I ′

satisfying that there exists a finite number M(ε, τ) > 0 such that

sup
|t|>M(ε,τ)

φ
(
F(t, ε, τ)

∥∥f(·+ t+ τ)− f(·+ t)
∥∥
Lp(·)[0,1]

)
6 ε,

resp. there exist a strictly increasing sequence (αn) of positive real num-
bers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞

sup
|t|>Mn

φ
(
F (t, n)

∥∥f(·+ t+ αn)− f(·+ t)
∥∥
Lp(·)[0,1]

)
= 0.
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(ii) Then we say that a function f : I → X is Stepanov-[p, φ, F]2-asymptotically
ω-periodic if and only if ‖f(·+ t+ω)− f(·+ t)‖ ∈ Lp(·)[0, 1] for any t ∈ I
and

lim
|t|→∞

φ
(
F(t)

∥∥f(·+ t+ ω)− f(·+ t)
∥∥
Lp(·)[0,1]

)
= 0.

Remark 2.7.22. The notion introduced in the above definitions is rather gen-
eral. Let us only say the following: suppose that I = R, the function φ(·) is locally
bounded, ω ∈ R and

sup
t∈R

[
‖f(·)‖Lp(·−ω)[t,t+1] + ‖f(·)‖Lp(·)[t,t+1]

]
<∞.

Then it readily follows that f(·) is Stepanov-(p, φ, F)-asymptotically ω-periodic for
any function F ∈ C0(R : X).

The notion introduced in the above definitions extends the notion of Stepanov
p-quasi-asymptotical almost periodicity and the notion of Stepanov p-asymptotical
ω-periodicity (1 6 p < ∞). In case that p(x) ≡ p ∈ [1,∞), the Stepanov-
(p, φ, F )-classes coincide with the corresponding Stepanov-[p, φ, F ]-classes of func-
tions. The most intriguing case, without any doubt, is that in which the func-
tions F, F, F are identically equal to one and φ(x) ≡ x; if this is the case and
p ∈ P([0, 1]) (see Definition 2.7.19-Definition 2.7.21), then we also say that the func-
tion f : I → X is Stepanov p(x)-quasi-asymptotically almost periodic (Stepanov
p(x)-quasi-asymptotically uniformly recurrent, Stepanov p(x)-asymptotically ω-
periodic). In what follows, by Sp(x)Q − AAP (I : X) (Sp(x)Q − AUR(I : X),
Sp(x)SAPω(I : X)) we denote the collection of all such functions. It can be easily
verified that the function f : I → X is Stepanov p(x)-quasi-asymptotically almost
periodic (Stepanov p(x)-quasi-asymptotically uniformly recurrent, Stepanov p(x)-

asymptotically ω-periodic) if and only if the function f̂ : I → Lp(x)([0, 1] : X) is
quasi-asymptotically almost periodic (quasi-asymptotically uniformly recurrent, S-
asymptotically ω-periodic). This enables one to transfer the statements of Propo-
sition 2.7.11 and Theorem 2.7.14 to the Stepanov classes (see also [247, Theo-
rem 2.10, Proposition 2.11]) as well as to conclude that Sp(x)SAPω(I : X) ⊆
Sp(x)Q−AAP (I : X) ⊆ Sp(x)Q−AUR(I : X) for any p ∈ P([0, 1]); see also [247,
Proposition 2.7].

Unfortunately, the spaces of (Stepanov p(x)-) quasi-asymptotically uniformly
recurrent type functions are not closed under the operations of pointwise addi-
tion and multiplication. For instance, the consideration from [247, Example 2.16-
Example 2.18] enables one to see that the following holds:

(i) There exist a continuous periodic function f : R→ R and a function g ∈
SAP2(R : R) such that the function (f · g)(·) is not quasi-asymptotically
uniformly recurrent.

(ii) There exist a Stepanov p-almost periodic function f : R → R, where the
exponent p > 1 can be chosen arbitrarily, and a function g ∈ SAP4(R : R)
such that (f · g)(·) does not belong to the class S1Q−AUR(R : R).
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(iii) There exist a continuous periodic function f : [0,∞)→ R and a function
g ∈ SAP4([0,∞) : R) such that the function (f + g)(·) does not belong to
the class S1Q−AUR([0,∞) : R).

We continue by stating the following:

Proposition 2.7.23. Suppose that φ(·) is continuous for t = 0, φ(0) = 0
and any of the functions F, F, F is bounded. Then any quasi-asymptotically uni-
formly recurrent function f : I → X is Stepanov-(p, φ, F )-quasi-asymptotically
uniformly recurrent, Stepanov-[p, φ, F ]-quasi-asymptotically uniformly recurrent as
well as Stepanov-(p, φ, F )i-quasi-asymptotically uniformly recurrent and Stepanov-
[p, φ, F ]i-quasi-asymptotically uniformly recurrent (i = 1, 2). The same statement
holds for the corresponding classes of quasi-asymptotically almost periodic functions
and S-asymptotically ω-periodic functions.

Proof. We will provide the main details of the proof for the class of Stepanov-
[p, φ, F ]-quasi-asymptotically uniformly recurrent functions. Let (αn) and (Mn) be
the sequences from Definition 2.7.8, and let ε > 0. Then there exists δ > 0 such
that |φ(t)| = |φ(t)− φ(0)| < ε, |t| 6 δ. Hence, supφ([0, δ]) 6 ε. By our assumption,
we have the existence of an integer n0 ∈ N such that

sup
|t|>Mn

∥∥f(t+ αn)− f(t)
∥∥ 6 δ, n > n0.

Let n ∈ N with n > n0 be fixed. Then, for every t >M ′n := Mn+1, we have |t+x| >
|t|−1 >Mn, x ∈ [0, 1]. This implies that, for every t >M ′n, x ∈ [0, 1] and λ > ε, we
have φ(‖f(t+αn+x)−f(t+x)‖)/λ 6 1, ϕp(x)(φ(‖f(t+αn+x)−f(t+x)‖)/λ) 6 1
and therefore ∫ 1

0

ϕp(x)

(
φ(‖f(t+ αn + x)− f(t+ x)‖)/λ

)
dx 6 1.

Thus,

[ε,∞) ⊆

{
λ > 0 :

∫ 1

0

ϕp(x)

(
φ(‖f(t+ αn + x)− f(t+ x)‖)/λ

)
dx 6 1

}
,

which yields that

φ
(∥∥f(·+ t+ αn)− f(·+ t)

∥∥)
Lp(·)[0,1]

6 ε, n > n0.

This completes the proof by the boundedness of function F (·, ·). �

As an immediate consequence, we have the following statement:

Corollary 2.7.24. Suppose that ω ∈ I and p ∈ P([0, 1]). Then any quasi-
asymptotically almost periodic (quasi-asymptotically uniformly recurrent,
S-asymptotically ω-periodic) function f : I → X is Stepanov
p(x)-quasi-asymptotically almost periodic (Stepanov p(x)-quasi-asymptotically uni-
formly recurrent, Stepanov p(x)-asymptotically ω-periodic).

Using the trivial inequalities and Lemma 1.1.6, we can clarify numerous inclu-
sions for the introduced classes of functions. For instance, we can simply deduce
the following:
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(i) Sp(x)SAPω(I : X) ⊆ S1SAPω(I : X), Sp(x)Q − AAP (I : X) ⊆ S1Q −
AAP (I : X) and Sp(x)Q−AUR(I : X) ⊆ S1Q−AUR(I : X).

(ii) Suppose p ∈ D+([0, 1]) and 1 6 p− 6 p(x) 6 p+ < ∞ for a.e. x ∈ [0, 1].

Then we have Sp
+

SAPω(I : X) ⊆ Sp(x)SAPω(I : X) ⊆ Sp−SAPω(I : X),

Sp
+

Q−AAP (I : X) ⊆ Sp(x)Q−AAP (I : X) ⊆ Sp−Q−AAP (I : X), and

Sp
+

Q−AUR(I : X) ⊆ Sp(x)Q−AUR(I : X) ⊆ Sp−Q−AUR(I : X).
(iii) Suppose p, q ∈ P([0, 1]) and p 6 q a.e. on [0, 1]. Then we have Sq(x)SAPω(I :

X) ⊆ Sp(x)SAPω(I : X), Sq(x)Q − AAP (I : X) ⊆ Sp(x)Q − AAP (I : X)
and Sq(x)Q−AUR(I : X) ⊆ Sp(x)Q−AUR(I : X).

These inclusions can be simply transferred and reformulated for the general
classes of functions introduced in Definition 2.7.16-Definition 2.7.18 and Definition
2.7.19-Definition 2.7.21; details can be left to the interested readers.

The first part of subsequent result is very similar to Proposition 2.5.26; the
proof is based on the use of Jensen integral inequality and therefore omitted.

Proposition 2.7.25. (i) Suppose that φ(·) is convex, p(x) ≡ 1 and f ∈
L1
loc(I : X). If f(·) is Stepanov (p, 1, F )-quasi asymptotically uniformly

recurrent, then f(·) is Stepanov (p, 1, F )1-quasi asymptotically uniformly
recurrent. If the function φ(·) is concave, then the above inclusion re-
verses.

(ii) Suppose that there exists a function ϕ : [0,∞)→ [0,∞) such that φ(xy) 6
ϕ(x)φ(y) for all x, y > 0. If f(·) is Stepanov (p, φ, F )1-quasi asymptot-
ically uniformly recurrent, resp. Stepanov [p, φ, F ]1-quasi asymptotically
uniformly recurrent, then f(·) is Stepanov (p, φ, F1)2-quasi asymptotically
uniformly recurrent, resp. Stepanov [p, φ, F1]2-quasi asymptotically uni-
formly recurrent, provided that F = ϕ ◦ F1.

Furthermore, the same statements hold for the corresponding classes of quasi-
asymptotically almost periodic functions and S-asymptotically ω-periodic functions.

The basic structural properties of quasi-asymptotically almost periodic func-
tions clarified in [247, Theorem 2.13] can be formulated in our framework, for the
general classes of functions introduced in this subsection, as well. We leave readers
to make this explicit.

If p ∈ [1,∞), then any Stepanov p-quasi-asymptotically almost periodic func-
tion is Weyl p-almost periodic (see [247, Proposition 2.12]). The argumentation
used in the proof of this result also shows that any Stepanov p-quasi-asymptotically
uniformly recurrent function is Weyl-p-uniformly recurrent. In general case, we will
state and prove only one result of this type regarding the notion introduced in Def-
inition 2.7.1 and Definition 2.7.16. Before doing that, observe that if p ∈ P(I),
a, b, c ∈ I, a < b < c and f ∈ Lp(x)[a, c], then f ∈ Lp(x)[a, b], f ∈ Lp(x)[b, c] and

(127) ‖f‖Lp(x)[a,c] 6 ‖f‖Lp(x)[a,b] + ‖f‖Lp(x)[b,c].

Proposition 2.7.26. Suppose that the function f : I → X is Stepanov-
(p, φ, F )-quasi-asymptotically uniformly recurrent. If F1 : (0,∞) × I → (0,∞)
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satisfies

(128) lim
n→+∞

lim sup
l→+∞

sup
t∈I

F1(l, t)

[
1

F (t, n)
+ · · ·+ 1

F (bt+ lc, n)

]
<∞

and

(129) lim
l→+∞

sup
t∈I

F1(l, t) = 0,

then the function f(·) is Weyl-(p(x), φ, F1)-uniformly recurrent.

Proof. By our assumption, we have φ(‖f(· + τ) − f(·)‖) ∈ Lp(·)(K) for any
τ ∈ I and any compact set K ⊆ I; furthermore, we know that there exist a strictly
increasing sequence (αn) of positive real numbers tending to plus infinity and a
sequence (Mn) of positive real numbers such that (126) holds. We will prove that
(124) holds with the function F (·, ·) replaced therein with the function F1(·, ·). Let
n ∈ N and l > 0 be fixed. If t ∈ I, then there exist four possibilities:

1. |t| >Mn and |t+ l| >Mn;
2. |t| >Mn and |t+ l| 6Mn;
3. |t| 6Mn and |t+ l| >Mn;
4. |t| 6Mn and |t+ l| 6Mn.

The consideration is similar for all these cases and we will give the proof for case
[1.], only. If t > 0, then we have t >Mn, t+ l >Mn and therefore[

F1(l, t)
[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+l]

]]

6 F1(l, t)

[
ε

F (t, n)
+ · · ·+ ε

F (bt+ lc, n)

]
;

see also (127). Employing condition (128), we immediately get (124). If t 6 0,
then we have t 6 −Mn and t + l > Mn for a sufficiently large l > 0 (it suffices to
consider only this case because, in (124), we operate with lim supl→+∞ ·). We have[
F1(l, t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,t+l]

]]

6

[
F1(l, t)

[
φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[t,−Mn]

+ φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[−Mn,Mn]

+ φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[Mn,t+l]

]]

6 F1(l, t)

[(
ε

F (t, n)
+ · · ·+ ε

F (t+ b−t−Mnc, n)

)

+

(
ε

F (Mn, n)
+ · · ·+ ε

F (Mn + bt+ l −Mnc, n)

)]
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+ F1(l, t)φ
(∥∥f(·+ αn)− f(·)

∥∥)
Lp(·)[−Mn,Mn]

6 2F1(l, t)

[
ε

F (t, n)
+ · · ·+ ε

F (bt+ lc, n)

]
+ F1(l, t)φ

(∥∥f(·+ αn)− f(·)
∥∥)
Lp(·)[−Mn,Mn]

.

Using (128)-(129), we get (124). �

2.7.4. Composition principles for the class of quasi-asymptotically
uniformly recurrent functions. In this subsection, we will briefly consider quasi-
asymptotically uniformly recurrent functions depending on two parameters and re-
lated composition theorems (for the sake of brevity, we will say only a few words
about the Stepanov classes). In order to unify several different approaches used
in the existing literature (see also Definition 2.4.42-Definition 2.4.43 and Theorem
2.4.44), in this subsection we will assume that B ⊆ P (Y ), where P (Y ) denotes the
power set of Y ; usually, B denotes the collection of all bounded subsets of Y or all
compact subsets of Y.

Definition 2.7.27. (i) By C0,B(I × Y : X) we denote the space of all
continuous functions H : I × Y → X such that lim|t|→+∞H(t, y) = 0
uniformly for y in any subset B ∈ B.

(ii) A continuous function F : I × Y → X is said to be uniformly continuous
on B, uniformly for t ∈ I if and only if for every ε > 0 and for every
B ∈ B there exists a number δε,B > 0 such that ‖F (t, x) − F (t, y)‖ 6 ε
for all t ∈ I and all x, y ∈ B satisfying that ‖x− y‖ 6 δε,B .

We continue by introducing the following definition:

Definition 2.7.28. Suppose that F : I × Y → X is a continuous function and
B ⊆ P (Y ). Then we say that F (·, ·) is quasi-asymptotically uniformly recurrent,
uniformly on B if and only if for every B ∈ B there exist a strictly increasing
sequence (αn) of positive real numbers tending to plus infinity and a sequence
(Mn) of positive real numbers such that:

lim
n→+∞

sup
|t|>Mn

∥∥F (t+ αn, x)− F (t, x)
∥∥ = 0, x ∈ B.(130)

Denote by Q − AURB(I × Y : X) the set consisting of all quasi-asymptotically
uniformly recurrent, uniformly on B functions from I × Y into X.

Using the argumentation employed in the proofs of [135, Theorem 3.30, The-
orem 3.31], we may deduce the following results:

Theorem 2.7.29. Suppose that B ⊆ P (Y ), R(f) ∈ B, F ∈ Q−AURB(I ×Y :
X) and f ∈ Q − AUR(I : Y ). If there exist a finite number L > 0 such that (60)
holds a strictly increasing sequence (αn) of positive real numbers tending to plus
infinity and a sequence (Mn) of positive real numbers such that (130) holds with
B = R(f) and (19) holds, then the function t 7→ F (t, f(t)), t ∈ I belongs to the
class Q−AUR(I : X).
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Theorem 2.7.30. Suppose that B ⊆ P (Y ), R(f) ∈ B, F ∈ Q−AURB(I ×Y :
X) and f ∈ Q − AUR(I : Y ). If F : I × Y → X is uniformly continuous on B,
uniformly for t ∈ I and there exist a strictly increasing sequence (αn) of positive real
numbers tending to plus infinity and a sequence (Mn) of positive real numbers such
that (130) holds with B = R(f) and (19) holds, then the function t 7→ F (t, f(t)),
t ∈ I belongs to the class Q−AUR(I : X).

Similarly as in Definition 2.9.92, we can introduce the notion of a quasi-
asymptotically almost periodic, uniformly on B function and the notion of a S-
asymptotically ω-periodic, uniformly on B function. It is worth noticing that The-
orem 2.7.29 and Theorem 2.7.30 continue to hold in this framework.

In [247, Definition 2.22], we have introduced the notion of a Stepanov p-quasi-
asymptotically almost periodic function depending on two parameters (1 6 p <
∞); the notion of a Stepanov p(x)-quasi-asymptotically almost periodic function
(Stepanov p(x)-quasi-asymptotically uniformly recurrent function, Stepanov p(x)-
asymptotically ω-periodic function) can be introduced in a similar fashion. The
interested reader may try to extend [247, Theorem 2.23, Theorem 2.24] in this
context.

2.7.5. Invariance of generalized quasi-asymptotical uniform recur-
rence under the actions of convolution products. This subsection investi-
gates the invariance of generalized quasi-asymptotical uniform recurrence under the
actions of finite and infinite convolution products. Using the same arguments as in
the proofs of [247, Proposition 3.1, Proposition 3.2], we can deduce the validity of
the following statement:

Proposition 2.7.31. (i) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly
continuous operator family and

∫∞
0
‖R(s)‖ ds <∞. If f ∈ Q−AUR([0,∞) :

X) ∩ L∞([0,∞) : X), then the function F (·), defined by

F(t) :=

∫ t

0

R(t− s)f(s) ds, t > 0,(131)

belongs to the class Q−AUR([0,∞) : Y ) ∩ L∞([0,∞) : Y ).
(ii) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family

and
∫∞

0
‖R(s)‖ ds < ∞. If f ∈ Q − AUR(R : X) ∩ L∞(R : X), then the

function F(t), defined by (55), with the function F (·) replaced therein with
the function F(·), belongs to the class Q−AUR(R : Y ) ∩ L∞(R : Y ).

frgim
We would like to illustrate Proposition 2.7.31 by the following example:

Example 2.7.32. Suppose that X = H is an infinite-diemnsional Hilbert space
with inner product 〈·, ·〉. In [287], R. K. Miller and R. L. Wheeler have investigated
the wellposedness of the following abstract Cauchy problem of non-scalar type

x′(t) = Au(t) +

∫ t

0

b(t− s)(A+ aI)u(s) ds+ f(t), x(0) = x0;(132)
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here, b(t) is a scalar-valued kernel, b ∈ C1([0,∞)), a ∈ C, f : [0,∞) → H is
continuous and A is a densely defined, self-adjoint closed linear operator in H. If
the assumptions [287, (A1)-(A5)] hold with the coefficients α = β0 = β1 = 0, then
[287, Theorem 7] implies that there exists a unique residual resolvent (R(t))t>0 for
(132) such that ‖R(·)‖ ∈ Lp([0,∞)) for 2 6 p <∞. Furthermore, if the assumptions
[287, (A1)-(A5)] hold with the coefficients α = β0 = β1 = 0 and the assumption
[287, (A6)] holds provided that Bσ(L) 6= ∅ (see [287, p. 273] for the notion), then
[287, Theorem 8] implies that there exists a unique residual resolvent (R(t))t>0

for (132) such that ‖R(·)‖ ∈ Lp([0,∞)) for 1 6 p < ∞; if this is the case, then
Proposition 2.7.31 is applicable since, due to [287, Theorem 2], the unique solution
of (132) for all x0 ∈ D(A) and f ∈ C1([0,∞) : X) is given by

x(t) = R(t)x0 +

∫ t

0

R(t− s)f(s) ds, t > 0.

For some other foundational papers concerning integrability of solution opera-
tor families appearing in the theory of abstract Volterra integro-differential equa-
tions, we can recommend for the reader [176], [190], [263] and [288]. Compehen-
sive survey of non-updated results can be found in [319, Section 10].

Concerning the invariance of Stepanov quasi-asymptotically almost periodic
properties analyzed in the previous subsection, it would be really difficult and
rather long to examine all introduced classes. Primarily from this reason, we will
focus our attention on the notion introduced in Definition 2.7.19, only.

The following result admits a simple reformulation for the corresponding classes
of quasi-asymptotically almost periodic functions and S-asymptotically ω-periodic
functions:

Proposition 2.7.33. Suppose that (ak) is a sequence of positive real numbers
such that

∑∞
k=0 ak = 1, ϕ : [0,∞) → [0,∞), φ : [0,∞) → [0,∞) is a convex

monotonically increasing function satisfying φ(xy) 6 ϕ(x)φ(y) for all x, y > 0,
p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y ) is a strongly contin-
uous operator family satisfying that

(133) M :=

∞∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

<∞.

Suppose, further, that for every x ∈ R we have
∫∞
−x ‖R(v + x)‖‖f̌(v)‖ dv < ∞,

as well as that f̌(·) is Stepanov-[p, φ, F ]-quasi-asymptotically uniformly recurrent,
M1 := supt∈R[φ(‖f(t− s)‖)]Lp(s)[0,1] <∞, F1 : (0,∞)×N→ (0,∞) is bounded and

satisfies that there exists a finite real constant c > 0 such that F1(t, n) 6 cF (t, n)
for all t > 0 and n ∈ N. Then the function F : R → Y, given by (55), with the
function F (·) replaced therein with the function F(·), is well-defined and Stepanov-
[∞, φ, F1]-quasi-asymptotically uniformly recurrent.

Proof. Since for every x ∈ R we have
∫∞
−x ‖R(v+x)‖‖f̌(v)‖ dv <∞, it can be

easily verified that the function F(·) is well defined as well as that the integral which
defines F(x+ τ)−F(x) is absolutely convergent for every x ∈ R and τ ∈ R. For the
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rest, let (αn) and (Mn) be the sequences from Definition 2.7.19, for the function
f(·) replaced therein with the function f̌(·). Let ε > 0 be given, and let n0 ∈ N
be such that φ(‖f(t + αn + ·) − f(t + ·)‖)Lp(·)[0,1] < ε/F (t, n), n > n0, |t| > Mn.

Clearly, there exists k0(ε) ∈ N such that

∞∑
k=k0(ε)

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

< ε.(134)

Let αn > k0(ε) for n > n1. Let n ∈ N with n > max(n0, n1) be fixed, and let
|t| > M ′n := Mn + αn + 2. Then for each x ∈ [0, 1] we have (apply the Jensen
inequality, (69) and the Hölder inequality)∥∥F(t+ x+ αn

)
− F(t+ x)

∥∥
6 φ

(∫ ∞
0

‖R(s)‖‖f(x+ t+ αn − s)− f(x+ t− s)‖ ds

)

= φ

( ∞∑
k=0

ak

∫ 1

0

a−1
k ‖R(s+ k)‖‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖ ds

)

6
∞∑
k=0

akφ

(∫ 1

0

a−1
k ‖R(s+ k)‖‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖ ds

)

6
∞∑
k=0

akϕ
(
a−1
k

) ∫ 1

0

φ
(
‖R(s+ k)‖‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖

)
ds

6 2

∞∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

×
[
φ
(
‖f(x+ t+ αn − k − ·)− f(x+ t− k − ·)‖

)]
Lp(·)[0,1]

,

which implies that for t 6 −M ′n we have

∥∥F(t+ x+ αn
)
− F(t+ x)

∥∥ 6 2

∞∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

ε

F (t, n)

6 2c

∞∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

ε

F1(t, n)
.

If t >M ′n, then we have bt−Mnc > k0(ε) and (134) implies∥∥F(t+ x+ αn
)
− F(t+ x)

∥∥
6 2

bt−Mnc∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

×
[
φ
(
‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖

)]
Lp(s)[0,1]
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+2

dt+Mne∑
k=bt−Mnc

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

×
[
φ
(
‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖

)]
Lp(s)[0,1]

+2

∞∑
k=dt+Mne

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

×
[
φ
(
‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖

)]
Lp(s)[0,1]

6 2
ε

F (t, n)

(bt−Mnc∑
k=0

+

∞∑
k=dt+Mne

)
akϕ

(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

+ ε · ϕ(2) ·M1

6 2c
ε

F1(t, n)

(bt−Mnc∑
k=0

+

∞∑
k=dt+Mne

)
akϕ

(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

+ ε · ϕ(2) ·M1,

since[
φ
(
‖f(x+ t+ αn − k − s)− f(x+ t− k − s)‖

)]
Lp(s)[0,1]

6
[
φ
(
‖f(x+ t+ αn − k − s)‖+ ‖f(x+ t− k − s)‖

)]
Lp(s)[0,1]

6 ϕ(2)

[
1

2
φ
(
‖f(x+ t+ αn − k − s)‖

)
+

1

2
φ
(
‖f(x+ t− k − s)‖

)]
Lp(s)[0,1]

6 ϕ(2) ·M1.

This simply completes the proof. �

We will also state the following special corollary, which generalizes [247, Propo-
sition 3.4]:

Proposition 2.7.34. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that M :=∑∞
k=0 ‖R(·+ k)‖Lq(x)[0,1] <∞. If f̌ : R→ X is Stepanov p(x)-quasi-asymptotically

uniformly recurrent (Stepanov p(x)-quasi-asymptotically almost periodic, Stepanov
p(x)-asymptotically ω-periodic) and Sp(x)-bounded, then the function F : R → Y,
given by (55), with the function F (·) replaced therein with the function F(·), is well
defined, bounded and quasi-asymptotically uniformly recurrent (quasi-asymptotically
almost periodic, S-asymptotically ω-periodic).

Proof. We will consider the Stepanov p(x)-quasi-asymptotically uniformly
recurrent functions, only. Since

∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞ and f̌(·) is Sp(x)-

bounded, we can apply the same arguments as in the proofs of [142, Proposition
6.1] and [143, Proposition 5.1] in order to see that the function F(·) is bounded
and continuous. The remainder of proof follows from the computations carried out
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in the proof of Proposition 2.7.35, with p(x) = ϕ(x) = φ(x) = x and F (t, n) =
F1(t, n) = 1. �

The following result regarding the finite convolution product admits a reformu-
lation for the corresponding classes of quasi-asymptotically almost periodic func-
tions and S-asymptotically ω-periodic functions, as well:

Proposition 2.7.35. Suppose that (ak) is a sequence of positive real numbers
such that

∑∞
k=0 ak = 1, ϕ : [0,∞) → [0,∞), φ : [0,∞) → [0,∞) is a convex

monotonically increasing function satisfying φ(xy) 6 ϕ(x)φ(y) for all x, y > 0,
p, q ∈ P([0, 1]), 1/p(x)+1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y ) is a strongly continu-
ous operator family satisfying that (133) holds. Suppose, further, that the mapping
F : [0,∞) → Y, given by (131), is well-defined as well as that f(·) is Stepanov-
[p, φ, F ]-quasi-asymptotically uniformly recurrent,

M1 := sup
t>0

sup
t∈[0,s]

[
φ
(
‖f(t− s)‖

)]
Lp(s)[0,1]

<∞,

F1 : (0,∞) × N → (0,∞) is bounded and satisfies that there exists a finite real
constant c > 0 such that F1(t, n) 6 cF (t, n) for all t > 0 and n ∈ N. Then the
function F(·) is Stepanov-[∞, φ, F1]-quasi-asymptotically uniformly recurrent.

Proof. The proof is very similar to the proof of Proposition 2.7.35 and we
will only outline two details. Let ε > 0 be fixed, and let the numbers Mn > 0 and
k0(ε), n0, n1 ∈ N be as above. Then for each x ∈ [0, 1], |t| > M ′n + αn + 2 and
n ∈ N with n > max(n0, n1) we have

φ
(
‖F (x+ t+ k + αn)− F (x+ t+ k)‖

)
6
dte∑
k=0

akϕ
(
a−1
k

)[
ϕ
(
‖R(·+ k)‖

)]
Lq(·)[0,1]

×
[
φ
(
‖f(x+ t+ k + αn − s)− f(x+ t+ k − s)‖

)]
Lp(s)[0,1]

.

After that, we can decompose the sum
∑dte
k=0 · into two parts:

dte∑
k=0

· =
k0(ε)∑
k=0

·+
dte∑

k=k0(ε)

·,

and apply the similar arguments. This completes the proof in a routine manner. �

Similarly we can deduce the following extension of [247, Proposition 3.3] (see
also the proof of [143, Proposition 5.1]):

Proposition 2.7.36. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that M :=∑∞
k=0 ‖R(·+k)‖Lq(x)[0,1] <∞. If f : [0,∞)→ X is Stepanov p(x)-quasi-asymptotically
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almost periodic (Stepanov p(x)-quasi-asymptotically uniformly recurrent, Stepanov
p(x)-asymptotically ω-periodic), f(t− ·) ∈ Lp(x)[0, t] for 0 < t 6 1 and

sup
k∈N0

sup
t>0

∥∥f(t+ k − ·)
∥∥
Lp(·)[0,1]

<∞,

then the function F : [0,∞) → Y, given by (131), is well-defined, bounded and
quasi-asymptotically almost periodic (quasi-asymptotically uniformly recurrent, S-
asymptotically ω-periodic).

Remark 2.7.37. We would like to note that it is very difficult to remove the
assumption on the boundedness of function f(·) in Proposition 2.7.31, resp. the
Stepanov p(x)-boundedness of functions in Proposition 2.7.34-Proposition 2.7.36,
in contrast to our recent research study [248].

2.7.6. Applications to the abstract Volterra integro-differential equa-
tions. Concerning possible applications of our theoretical results to the abstract
Volterra integro-differential equations in Banach spaces, we would like to say first
a few words about the abstract nonautonomous differential equations of first order.
In the first part of [247, Section 4], we have investigated the generalized almost
periodic properties of the mild solutions to the abstract Cauchy problems

u′(t) = A(t)u(t) + f(t), t ∈ R,(135)

u′(t) = A(t)u(t) + f(t), t > 0; u(0) = x,(136)

where the operator family A(·) satisfies certain conditions. In [247, Subsection 4.1],
we have investigated the generalized almost periodic properties of the semilinear
analogues to the abstract Cauchy problems (135)-(136).

The statement of [247, Theorem 4.1] can be straightforwardly extended for
the inhomogeneities f ∈ Sp(x)Q − AAP ([0,∞) : X) by replacing the number q
in the equation [247, (4.1)] with the function q(x) and using the translation · 7→
· + k (1/p(x) + 1/q(x) = 1) therein; we can also consider the inhomogeneities f ∈
Sp(x)Q−AUR([0,∞) : X) which are Stepanov p(x)-bounded, by slightly modifying
the equation [247, (4.1)] in the formulation of this result. Similar comments can
be made for [247, Theorem 4.3]. Concerning semilinear problems, the statements
of [247, Theorem 4.6, Theorem 4.7] can be reformulated by replacing the space
Q − AAP (I : X) with the space BQ − AUR(αn)(I : X) consisting of all bounded
functions f : I → X which are quasi-asymptotically uniformly recurrent and for
which there exists a fixed sequence (αn) of positive real numbers such that (125)
holds; equipped with the metric d(·, ·) := ‖ · − · ‖∞, this space becomes a complete
metric space. The conclusions established in [247, Example 2.8] can be reexamined
in this context, as well.

By a mild solution of the abstract semilinear Cauchy inclusion

(DFP )F,γ,s :

{
Dγ
t u(t) ∈ Au(t) + F (t, u(t)), t > 0,
u(0) = x0,
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we mean any function u ∈ C([0,∞) : X) satisfying that

u(t) = Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t > 0.

Now we are in a position to state the following result:

Theorem 2.7.38. Suppose that the function F : R × X → X is continuous
and satisfies that for each bounded subset B of X there exist a finite real constant
MB > 0 and a sequence (Mn) of positive real numbers such that (130) holds and
supt∈R supx∈B ‖F (t, x)‖ 6 MB . Let there exist a finite number L > 0 such that
(60) holds, and let there exist an integer n ∈ N such that An < 1, where

An := sup
t>0

∫ t

0

∫ xn

0

· · ·
∫ x2

0

Ln
∥∥Rγ(t− xn)

∥∥
×

n∏
i=2

∥∥Rγ(xi − xi−1)
∥∥ dx1 dx2 · · · dxn.

Then the abstract fractional Cauchy inclusion (DFP)F,γ,s has a unique solution
which belongs to the space BQ−AUR(αn)([0,∞) : X).

Proof. Set, for every u ∈ Cb([0,∞) : X),

(Υu)(t) := Sγ(t)x0 +

∫ t

0

Rγ(t− s)F (s, u(s)) ds, t > 0.

Suppose that u ∈ BQ−AUR(αn)([0,∞) : X). Then R(u) = B is a bounded set and
our assumption implies that the mapping t 7→ F (t, u(t)), t ∈ R is bounded. Ap-
plying Theorem 2.7.29, we have that the function F (·, u(·)) is quasi-asymptotically
uniformly recurrent. After that, we can employ Proposition 2.7.31(i) and Proposi-
tion 2.7.10 (there is no need to say that we can retain the same sequence (αn) after
applying the above-mentioned statements, with the meaning clear) in order to see
that Υu ∈ BQ − AUR(αn)([0,∞) : X). Hence, the mapping Υ(·) is well defined.
Since ∥∥∥(Υnu

)
−
(
Υnv

)∥∥∥
∞
6 An

∥∥u− v∥∥∞, u, v ∈ Cb([0,∞) : X), n ∈ N,

the well known extension of the Banach contraction principle yields that the map-
ping Υ(·) has a unique fixed point. This completes the proof. �

Let Ω be a bounded domain in Rn, b > 0, m(x) > 0 a.e. x ∈ Ω, m ∈ L∞(Ω),
1 < p <∞ and X := Lp(Ω). Suppose that the operator A := ∆− b acts on X with
the Dirichlet boundary conditions, and that B is the multiplication operator by the
function m(x). Then we can apply Theorem 2.7.38 with A = AB−1 in the study
of existence and uniqueness of bounded quasi-asymptotically uniformly recurrent
solutions of the semilinear fractional Poisson heat equation

Dγ
t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t > 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,

m(x)v(0, x) = u0(x), x ∈ Ω.
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It is also worth noting that we can apply Theorem 2.7.38 in the analysis of
existence and uniqueness of bounded quasi-asymptotically uniformly recurrent so-
lutions of the following fractional semilinear equation with higher order differential
operators in the Hölder space X = Cα(Ω) :{

Dγ
t u(t, x) = −

∑
|β|62m

aβ(t, x)Dβu(t, x)− σu(t, x) + f(t, u(t, x)), t > 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω,

where α ∈ (0, 1), m ∈ N, Ω is a bounded domain in Rn with boundary of class
C4m, Dβ =

∏n
i=1( 1

i
∂
∂xi

)βi , the functions aβ : Ω→ C satisfy certain conditions and

σ > 0 is sufficiently large. For more details, see [234].
Basically, our results on the invariance of generalized quasi-asymptotical al-

most periodicity and uniform recurrence, established in Subsection 2.7.5, can be
applied at any place where the variation of parameters formula takes effect. For
our purposes, it will be very important to reexamine [359, Example 5]. It is well
known that the unique regular solution of the wave equation uxx(x, t) = utt(x, t),
x ∈ R, t > 0, accompanied with the initial conditions u(x, 0) = f(x), x ∈ R,
ut(x, 0) = g(x), x ∈ R, is given by the famous d’Alembert formula

u(x, t) :=
1

2

[
f(x+ t) + f(x− t)

]
+

1

2

∫ x+t

x−t
g(s) ds, x ∈ R, t > 0.

Let t0 > 0 be a fixed real number. If the function f(·) is quasi-asymptotically
uniformly recurrent, resp. g(·) is quasi-asymptotically uniformly recurrent, then
the function x 7→ 1/2[f(x+ t0) + f(x− t0)], x ∈ R, resp.

Ht0(x) :=
1

2

∫ x+t0

x−t0
g(s) ds, x ∈ R,

is likewise quasi-asymptotically uniformly recurrent; this can be shown as in [359].
Their sum will be quasi-asymptotically uniformly recurrent provided that these
functions share the same sequence (αn) in Definition 2.7.8.

2.8. (ω, c)-Almost periodic type functions and applications

The following notion has recently been introduced and analyzed in the case that
I = R; see [17]-[16]. Let c ∈ C\{0} and ω > 0. A continuous function f : I → X is
said to be (ω, c)-periodic if and only if f(t+ω) = cf(t) for all t ∈ I. The number ω
is called c-period of f . The space of all (ω, c)-periodic functions f : I → X will be
denoted with Pω,c(I : X). Let we note that, by putting c = 1, we obtain the space
of all ω-periodic functions f : I → X; by putting c = −1, we obtain the space of
all ω-antiperiodic functions f : I → X; by putting c = eikω we obtain the space of
all Bloch (ω, k)-periodic functions.

The following facts about the (ω, c)-periodic functions should be stated at the
very beginning (see also [17]-[16]):

(i) If f ∈ Pω,c([0,∞) : X), f(·) is not identically equal to zero and |c| >
1, then lim supt→+∞ ‖f(t)‖ = +∞; if f ∈ Pω,c(R : X) and |c| > 1,
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then limt→−∞ f(t) = 0 and, if f(·) is not identically equal to zero, then
lim supt→+∞ ‖f(t)‖ = +∞.

(ii) If f ∈ Pω,c(I : X) and f(x) 6= 0 for all x ∈ I, then the function (1/f)(·)
belongs to the class Pω,1/c(I : X).

(iii) If f ∈ Pω,c(I : X) and |c| = 1, then the function is almost periodic. To
see this, observe that there exists a real number k ∈ R such that f(x +
ω) = eikωf(x), x ∈ I, so that the function f(·) is Bloch (ω, k)-periodic.
After that, the conclusion simply follows because the function e−ik·f(·)
is periodic. In this case, we can simply compute the Bohr spectrum by
using the computation:

Pr(f) = lim
t→∞

1

t

∫ t

0

e−irsf(s) ds = lim
n→+∞

1

nω

∫ nω

0

e−irsf(s) ds

= lim
n→+∞

1

nω

n−1∑
j=0

∫ (j+1)ω

jω

e−irsf(s) ds

= lim
n→+∞

1

nω

n−1∑
j=0

∫ ω

0

e−ir(s+jω)cjf(s) ds

=
1

ω

∫ ω

0

e−irsf(s) ds× lim
n→+∞

∑n−1
j=0

(
ce−irω

)j
n

.

Therefore, if c = eirω, then Pr = 1; otherwise, we have Pr = 0 because:∣∣∣∣∣
n−1∑
j=0

(
ce−irω

)j∣∣∣∣∣ =

∣∣∣∣∣cne−irnω − 1

ce−irω − 1

∣∣∣∣∣ 6 2

ce−irω − 1
, n ∈ N.

Furthermore, arguing as in the above-mentioned remark, we may deduce that for
each k ∈ R the existence of a strictly increasing sequence (αn) of positive reals
tending to plus infinity such that

lim
n→+∞

∥∥f(·+ αn)− eikαnf(·)
∥∥
∞ = 0

is equivalent to saying that the function F (·) := e−ik·f(·) is uniformly recurrent.
Due to the argumentation given in the proof of [17, Proposition 2.2], with

I = R, we have that the function f(·) is (ω, c)-periodic if and only if the function
c−
·
ω f(·) belongs to the space Pω(I : X). This statement will play an important

role in our further work.
In this section, we will consider three different approaches for introducing the

spaces of (ω, c)-almost periodic type functions and their Stepanov generalizations.
The first approach is the simplest one and (in the case of consideration of (ω, c)-
almost automorphic functions and their Stepanov generalizations, we will always
tactily assume that I = R):



2.8. (ω, c)-ALMOST PERIODIC TYPE FUNCTIONS... 169

Definition 2.8.1. Let c ∈ C\{0} and ω > 0. Then it is said that a continuous
function f : I → X is (ω, c)-uniformly recurrent ((ω, c)-almost periodic/(ω, c)-
almost automorphic/compactly (ω, c)-almost automorphic) if and only if the func-
tion fω,c(·), defined by

fω,c(t) := c−(t/ω)f(t), t ∈ I,(137)

is uniformly recurrent (almost periodic/almost automorphic/compactly almost au-
tomorphic). By URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) we
denote the space of all (ω, c)-uniformly recurrent functions, the space of all (ω, c)-
almost periodic functions, the space of all (ω, c)-almost automorphic functions and
the space of all compactly (ω, c)-almost automorphic, respectively.

It is clear that the space Pω,c(I : X) is contained in any of the above introduced
spaces. The class of (ω, c,�g)-almost periodic functions can be also introduced and
analyzed but we will skip all related details concerning this class of functions for
simplicity.

Remark 2.8.2. If the function fω,c(·) is bounded and |c| < 1, then we have
limt→+∞ f(t) = 0; moreover, if I = R, the function fω,c(·) is bounded and |c| > 1,
then we have limt→−∞ f(t) = 0.

Remark 2.8.3. In (137), one can consider an arbitrary function c(·) in place of
function c−(·/ω) but then the things become much more complicated. For example,
following the examination from the previous remark, it seems reasonable to use the
function c−(|·|/ω) in place of function c−(·/ω). We will not follow this approach for
simplicity and we will consider here only the asymptotically (ω, c)-almost periodic
type functions defined on the non-negative real axis.

It is clear that any (ω, c)-almost periodic function is (ω, c)-uniformly recurrent
and compactly (ω, c)-almost automorphic, as well as that any compactly (ω, c)-
almost automorphic function is (ω, c)-almost automorphic. Even in the case that
c = 1 and ω > 0 is arbitrary, there exists a compactly almost automorphic function
which is not uniformly recurrent and therefore not almost periodic.

Definition 2.8.4. Let c ∈ C, |c| > 1 and ω > 0. Then it is said that a contin-
uous function f : [0,∞)→ X is asymptotically (ω, c)-uniformly recurrent (asymp-
totically (ω, c)-almost periodic, asymptotically (compactly) (ω, c)-almost automor-
phic) if and only if there exist an (ω, c)-uniformly recurrent ((ω, c)-almost peri-
odic, (compactly) (ω, c)-almost automorphic) function h : R → X and a function
q ∈ C0([0,∞) : X) such that f(t) = h(t) + q(t) for all t > 0.

The following facts concerning the introduced classes of functions should be
stated:

1. Suppose that |c| = 1 and ω > 0. Then we can use Theorem 2.1.1(ii) and
Proposition 2.3.1 in order to see that the function f : I → X is (ω, c)-
almost periodic ((compactly) (ω, c)-almost automorphic) if and only if f(·)
is almost periodic ((compactly) almost automorphic). In the case that
I = [0,∞), the same assertion holds for the asymptotically (ω, c)-almost
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periodic functions and the asymptotically (compactly) (ω, c)-almost au-
tomorphic functions.

2. Suppose that |c| > 1, ω > 0 and f : I → X is (ω, c)-uniformly recurrent
or (ω, c)-almost automorphic. If f(·) is not identically equal to zero, then
the supremum formula yields that f(·) is unbounded; moreover, in the
case of consideration of (ω, c)-almost automorphicity, the function f(·) is
unbounded as t→ +∞ due to Remark 2.8.2. In the case that I = [0,∞),
the same assertion holds for the asymptotically (ω, c)-uniformly recurrent
functions and the asymptotically (compactly) (ω, c)-almost automorphic
functions. In particular, a constant non-zero function cannot be asymp-
totically (ω, c)-uniformly recurrent or asymptotically (ω, c)-almost auto-
morphic.

3. Suppose c ∈ C\{0}, ω > 0 and f : [0,∞) → X is (ω, c)-almost pe-
riodic. Then it is well known that there exists a unique almost peri-
odic function Fω,c : R → X such that Fω,c(t) = fω,c(t), t > 0. Define

F (t) := ct/ωFω,c(t), t ∈ R. Then it simply follows that the function F (·)
is a unique (ω, c)-almost periodic function which extends the function f(·)
to the whole real line.

4. Let c ∈ R and ω > 0. Then, for every (ω, c)-uniformly recurrent ((com-
pactly) (ω, c)-almost automorphic) function f(·), we have that the func-
tion ‖f(·)‖ is (ω, c)-uniformly recurrent ((compactly) (ω, c)-almost auto-
morphic). In the case that I = [0,∞), then the same assertion holds for
the asymptotically (ω, c)-uniformly recurrent functions and the asymptot-
ically (compactly) (ω, c)-almost automorphic functions.

5. The spaces URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X)
are invariant under pointwise multiplications with scalars. In the case that
I = [0,∞), the same holds for the corresponding spaces of asymptotically
(ω, c)-almost periodic type functions.

6. The spaces URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X)
are translation invariant. In the case that I = [0,∞), the same holds
for the corresponding spaces of asymptotically (ω, c)-almost periodic type
functions.

7. If I = [0,∞), |c| > 1, ω > 0 and the sequence (fn(·)) in URω,c(I :
X) (APω,c(I : X)/AAω,c(I : X)/AAω,c;c(I : X)) converges uniformly
to a function f : I → X, then the function f(·) belongs to the space
URω,c(I : X) (APω,c(I : X)/AAω,c(I : X)/AAω,c;c(I : X)). In the case
that I = [0,∞), then the same assertion holds for the asymptotically
(ω, c)-almost periodic type function spaces.

For completeness, we will include the most relevant details of the proofs of the
following two propositions:

Proposition 2.8.5. Suppose X = C, c ∈ C r {0}, ω > 0, f : I → C and
infx∈I |f(x)| > m > 0. Then the following holds:
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(i) If |c| = 1 and the function f(·) is (ω, c)-uniformly recurrent ((ω, c)-
almost periodic/(ω, c)-almost automorphic/compactly (ω, c)-almost auto-
morphic), then the function (1/f)(·) is (ω, 1/c)-uniformly recurrent
((ω, 1/c)-almost periodic/(ω, 1/c)-almost automorphic/compactly (ω, 1/c)-
almost automorphic).

(ii) If |c| 6 1, I = [0,∞) and f(·) is (ω, c)-uniformly recurrent ((ω, c)-
almost periodic), then the function (1/f)(·) is (ω, 1/c)-uniformly recurrent
((ω, 1/c)-almost periodic).

Proof. The proof of (i) essentially follows from the simple argumentation and
the conclusions obtained in the point [1.], while the proof of (ii) can be deduced as
follows. Suppose that the function f(·) is (ω, c)-almost periodic, i.e., the function
fω,c(·) is almost periodic. This implies that for each number ε > 0 there exists a
finite number l > 0 such that any subinterval I ′ of I contains at least one point τ
such that ∣∣∣c− t+τω f(t+ τ)− c− t

ω f(t)
∣∣∣ 6 ε, t > 0.

This implies ∣∣∣f(t+ τ)− c− τω f(t)
∣∣∣ 6 ε∣∣∣c t+τω ∣∣∣, t > 0.

Then the final conclusion is a consequence of the following simple calculation:∣∣∣∣∣ c
t+τ
ω

f(t+ τ)
− c

t
ω

f(t)

∣∣∣∣∣ =
∣∣∣c tω ∣∣∣ · ∣∣∣∣∣f(t+ τ)− c− τω f(t)

f(t+ τ) · f(t)

∣∣∣∣∣
6

ε

m2

∣∣∣c 2t+τ
ω

∣∣∣ 6 ε

m2
, t > 0.

The proof for (ω, c)-uniform recurrence is similar and therefore omitted. �

Proposition 2.8.6. Suppose that I = R, f : R → X satisfies that the func-
tion fω,c(·) is a bounded uniformly recurrent (almost periodic, (compactly) almost

automorphic) and c−
·
ωψ(·) ∈ L1(R). Then the function c−

·
ω (ψ ∗ f)(·) is bounded

uniformly continuous and the function (ψ∗f)(·) is (ω, c)-uniformly recurrent ((ω, c)-
almost periodic/(compactly) (ω, c)-almost automorphic).

Proof. For every x ∈ R, the convolution (ψ ∗ f)(x) is well defined and we
have

c−
x
ω (ψ ∗ f)(x) =

∫ ∞
−∞

[
c−

x−y
ω ψ(x− y)

]
·
[
c−

y
ω f(y)

]
dy, x ∈ R.

Then the corresponding statement follows from the fact that the space of all almost
periodic ((compactly) almost automorphic) functions and the space of all bounded
uniformly recurrent functions are convolution invariant. �

The following definitons are logical analogues of Definition 2.8.1-Definition 2.8.4
for Stepanov classes:

Definition 2.8.7. Let p ∈ P([0, 1]), c ∈ C\{0} and ω > 0. Then it is

said that a function f ∈ Lp(x)
loc (I : X) is Stepanov (p(x), ω, c)-uniformly recurrent

(Stepanov (p(x), ω, c)-almost periodic/Stepanov (p(x), ω, c)-almost automorphic) if
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and only if the function fω,c(·), defined by (137), is Stepanov p(x)-uniformly recur-
rent (Stepanov p(x)-almost periodic/Stepanov p(x)-almost automorphic).

By Sp(x)URω,c(I : X), Sp(x)APω,c(I : X) and Sp(x)AAω,c(I : X) we denote
the space of all Stepanov (p(x), ω, c)-uniformly recurrent functions, the space of
all Stepanov (p(x), ω, c)-almost periodic functions and the space of all Stepanov
(p(x), ω, c)-almost automorphic functions, respectively. If p(x) ≡ p ∈ [1,∞), then
by SpURω,c(I : X), SpAPω,c(I : X) and SpAAω,c(I : X) we denote the space of all
Stepanov (p, ω, c)-uniformly recurrent functions, the space of all Stepanov (p, ω, c)-
almost periodic functions and the space of all Stepanov (p, ω, c)-almost automorphic
functions, respectively.

Definition 2.8.8. Let p ∈ P([0, 1]), c ∈ C, |c| > 1 and ω > 0. Then it is

said that a function f ∈ Lp(x)
loc ([0,∞) : X) is asymptotically Stepanov (p(x), ω, c)-

uniformly recurrent (asymptotically Stepanov (p(x), ω, c)-almost periodic, asymp-
totically Stepanov (p(x), ω, c)-almost automorphic) if and only if the function fω,c(·),
defined by (137), is asymptotically Stepanov p(x)-uniformly recurrent (asymptot-
ically Stepanov p(x)-almost periodic, asymptotically Stepanov p(x)-almost auto-
morphic).

By ASp(x)URω,c(I : X), ASp(x)APω,c(I : X) and ASp(x)AAω,c(I : X) we de-
note the space of all asymptotically Stepanov (p(x), ω, c)-uniformly recurrent func-
tions, the space of all asymptotically Stepanov (p(x), ω, c)-almost periodic func-
tions and the space of all asymptotically Stepanov (p(x), ω, c)-almost automor-
phic functions, respectively. If p(x) ≡ p ∈ [1,∞), then by ASpURω,c(I : X),
ASpAPω,c(I : X) and ASpAAω,c(I : X) we denote the space of all asymptotically
Stepanov (p, ω, c)-uniformly recurrent functions, the space of all asymptotically
Stepanov (p, ω, c)-almost periodic functions and the space of all asymptotically
Stepanov (p, ω, c)-almost automorphic functions, respectively.

The conclusions established in the points [1.-2., 4.-7.] can be simply reformu-
lated for the Stepanov classes. For example, if we consider the point [2.], then we
may conclude the following: Suppose that |c| > 1, ω > 0 and f : I → X is Stepanov
(p(x), ω, c)-uniformly recurrent or Stepanov (p(x), ω, c)-almost automorphic. If f(·)
is not almost everywhere equal to zero, then the function f(·) is not Stepanov p(x)-
bounded; moreover, in the case of consideration of Stepanov (p(x), ω, c)-almost

automorphicity, the function f̂(·) is unbounded as t → +∞ so that a constant
non-zero function cannot be Stepanov (p(x), ω, c)-uniformly recurrent or Stepanov
(p(x), ω, c)-almost automorphic.

Essentially, any established result for almost periodic type functions and their
Stepanov generalizations can be straightforwardly reformulated for (ω, c)-almost
periodic type functions and their Stepanov generalizations (in the sequel, we will try
not to consider such statements). For example, using the corresponding statement
for the uniformly recurrent functions we can immediately deduce the following:

Proposition 2.8.9. p ∈ P([0, 1]), If f : [0,∞) → X satisfies that the func-
tion fω,c(·) is uniformly continuous and asymptotically Stepanov p(x)-uniformly
recurrent, then the function f(·) is asymptotically (ω, c)-uniformly recurrent.



2.8. (ω, c)-ALMOST PERIODIC TYPE FUNCTIONS... 173

Let us only note that the uniform continuity of function fω,c(·) is ensured
provided that |c| > 1 and f(·) is a bounded uniformly continuous function. This
follows from the fact that, for every two non-negative real numbers t1, t2 > 0 such
that t1 < t2, the Darboux inequality yields∥∥∥c− t1ω f(t1)− c− t2ω f(t2)∥∥∥ 6 ∥∥∥c− t1ω [f(t1)− f(t2)]∥∥∥+

∥∥∥[c− t1ω − c− t2ω ]f(t2)∥∥∥
6
∥∥f(t1)− f(t2)∥∥+

1

ω
(ln |c|+ π) ·

∣∣t1 − t2∣∣ · ‖f‖∞.
Now we would like to endow the introduced spaces of (asymptotically) (ω, c)-

almost periodic type functions with certain norms. We start with the notion intro-
duced in Definition 2.8.1 and Definition 2.8.4. Define

‖f‖ω,c := sup
t∈I

∥∥∥c− t
ω f(t)

∥∥∥.
Proposition 2.8.10. The spaces APω,c(I : X), AAω,c(I : X), AAω,c;c(I : X),

AAPω,c([0,∞) : X), AAAω,c([0,∞) : X) and AAAω,c;c([0,∞) : X), equipped with
the norm ‖ · ‖ω,c, are Banach spaces.

Proof. Denote by X any of the above spaces. Suppose that (fn)n is a Cauchy
sequence in X . Hence, for every ε > 0, there exists N ∈ N such that for all
m, n > N , we have ‖fn − fm‖ω,c < ε. So, there exist um, un ∈ c−

·
ωX (with the

meaning clear) such that fm(t) = c
t
ω um(t) and fn(t) = c

t
ω un(t) for all t ∈ I. For

m, n > N, we have∥∥um − un∥∥∞ = sup
t∈I

∥∥um(t)− un(t)
∥∥

= sup
t∈I

∥∥∥c− t
ω fm(t)− c− t

ω fn(t)
∥∥∥

= sup
t∈I

∥∥∥|c|− t
ω

[
fm(t)− fn(t)

]∥∥∥
=
∥∥fn − fm∥∥ω,c < ε.

Hence, (un)n is a Cauchy sequence in c−
·
ωX , which is a complete space. Then,

there exists u ∈ c− ·ωX such that limn→+∞ un = u. Define f(t) := c
t
ω u(t), t ∈ I.

Thus, ∥∥fn − f∥∥ω,c = sup
t∈I

∥∥∥|c|− t
ω

[
fn(t)− f(t)

]∥∥∥
= sup

t∈I

∥∥∥|c|− t
ω c

t
ω un(t)− |c|− t

ω c
t
ω u(t)

∥∥∥
= sup

t∈I

∥∥un(t)− u(t)
∥∥→ 0,

when n→∞. Hence, X is a Banach space. �
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For any c ∈ C r {0} and p ∈ [1,∞), we denote by LpS,c(I : X) the space of all

functions f ∈ Lploc(I : X) such that

‖f‖p,ω,c := sup
t∈I

(∫ t+1

t

|c|− s
ω f(s) ds

)1/p

.

Then (LpS,c(I : X), ‖ ·‖p,ω,c) is a Banach space. Arguing as above, we may conclude

that SpAPω,c(I : X) (SpAAω,c(I : X)/ASpAPω,c(I : X), ASpAAω,c(I : X)) is a
closed subspace of LpS,c(I : X) and therefore a Banach space itself.

2.8.1. (ω, c)-Uniform recurrence of type i and (ω, c)-almost periodicity
of type i (i = 1, 2). Suppose temporarily that f ∈ Pω,c(I : X) and n ∈ N. Then
we have f(t+nω) = cnf(t), t ∈ I. Setting αn = nω, we get that for each ε > 0 and
t ∈ I we have∥∥∥f(t+ αn

)
− c

αn
ω f(t)

∥∥∥ 6 ε and
∥∥∥c−αnω f(t+ αn

)
− f(t)

∥∥∥ 6 ε.(138)

The equation (138) motivates us to introduce the following concepts of (ω, c)-
uniform recurrence and (ω, c)-almost periodicity [it is not clear how we can do
that for (compact) (ω, c)-almost automorphicity in a satisfactory way].

Definition 2.8.11. Suppose that f : I → X is continuous, c ∈ C r {0} and
ω > 0.

(i) We say that f(·) is (ω, c)-uniformly recurrent of type 1 (type 2) if and only
if there exists a strictly increasing sequence (αn) of positive reals tending
to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥∥f(t+ αn)− c
αn
ω f(t)

∥∥∥ = 0

(
lim

n→+∞
sup
t∈I

∥∥∥c−αnω f(t+ αn)− f(t)
∥∥∥ = 0

)
.

(ii) We say that f(·) is (ω, c)-almost periodic of type 1 (type 2) if and only if
for each ε > 0 the set{

τ > 0 : sup
t∈I

∥∥∥f(t+ τ)− c τω f(t)
∥∥∥ < ε

} ({
τ > 0 : sup

t∈I

∥∥∥c−τω f(t+ τ)− f(t)
∥∥∥ < ε

})
is relatively dense in [0,∞).

By URω,c,i(I : X) and APω,c,i(I : X), we denote the space of all
(ω, c)-uniformly recurrent functions of type i and the space of all (ω, c)-
almost periodic functions of type i, respectively (i = 1, 2).

It is clear that the set {nω : n ∈ N} is relatively dense in [0,∞). Taking into
account this observation, it follows that the space Pω,c(I : X) is contained in the
spaces URω,c,i(I : X) and APω,c,i(I : X), for i = 1, 2; moreover, URω,c,i(I : X) ⊇
APω,c,i(I : X) for i = 1, 2 and it is clear that for any t ∈ I and τ > 0 we have∥∥∥c−τω f(t+ τ)− f(t)

∥∥∥ =
∥∥∥c−τω [f(t+ τ)− c τω f(t)

]∥∥∥
= |c|

−τ
ω

∥∥∥f(t+ τ)− c τω f(t)
∥∥∥.
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Therefore, in the case that |c| = 1, it simply follows that the (ω, c)-almost period-
icity of type 1 (type 2) is equivalent with the usual almost periodicity as well as
that the notion of (ω, c)-uniform recurrence of type 1 is equivalent with the notion
of (ω, c)-uniform recurrence of type 2.

But, in the case that |c| 6= 1, the concepts introduced in Definition 2.8.11 are
not satisfactory to a great extent. Before stating the corresponding result which
justifies this fact, let us denote by Mω,c(I : X) the space consisting of all functions

f : I → X such that c−·/ωf(·) ∈ P (I : X). It is clear that Mω,c(I : X) is not a
vector space together with the usual operations.

Theorem 2.8.12. Let c ∈ Cr {0} and ω > 0.

(i) Suppose that |c| > 1. Then URω,c,i(I : X) = APω,c,i(I : X) = Mω,c(I : X)
for i = 1, 2.

(ii) Suppose that |c| < 1 and I = R. Then URω,c,i(I : X) = APω,c,i(I : X) =
Mω,c(I : X) for i = 1, 2.

Before giving the proof of Theorem 2.8.12, we will state two lemmas. The first
one is simple and follows almost immediately from Definition 2.8.11:

Lemma 2.8.13. Suppose that f : I → X is continuous, c ∈ Cr {0} and ω > 0.

(i) If |c| > 1, then URω,c,1(I : X) ⊆ URω,c,2(I : X) and APω,c,1(I : X) ⊆
APω,c,2(I : X).

(ii) If |c| 6 1, then URω,c,1(I : X) ⊇ URω,c,2(I : X) and APω,c,1(I : X) ⊇
APω,c,2(I : X).

(iii) In the case that I = [0,∞) and |c| > 1, then URω,c,2(I : X) ⊆ URω,c(I :
X) and APω,c,2(I : X) ⊆ APω,c(I : X).

Lemma 2.8.14. Suppose that I = R and f : R → X. Then f(·) is (ω, c)-
uniformly recurrent of type 1 (type 2) [(ω, c)-almost periodic of type 1 (type 2)]
if and only if the function f̌(·) is (ω, 1/c)-uniformly recurrent of type 2 (type 1)
[(ω, c)-almost periodic of type 2 (type 1)].

Proof. The proof simply follows by observing that, for every τ > 0 and ε > 0,
we have:

sup
t∈I

∥∥∥f(t+ τ)− c τω f(t)
∥∥∥ < ε⇔ sup

t∈I

∥∥∥f(−t+ τ)− c τω f(−t)
∥∥∥ < ε

m

sup
t∈I

∥∥∥f̌(t− τ)− c τω f̌(t)
∥∥∥ < ε⇔ sup

t∈I

∥∥∥f̌(t)− c τω f̌(t+ τ)
∥∥∥ < ε

m

sup
t∈I

∥∥∥(1/c)−
τ
ω f̌(t+ τ)− f̌(t)

∥∥∥ < ε.

�

Proof of Theorem 2.8.12. Keeping in mind Lemma 2.8.14, it suffices to prove
(i). Towards this end, we recognize two cases: I = [0,∞) and I = R. In the
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first case, it suffices to show that URω,c,2([0,∞) : X) ⊆ Mω,c([0,∞) : X) and
Mω,c([0,∞) : X) ⊆ APω,c,1([0,∞) : X). So, let f ∈ URω,c,2([0,∞) : X). This
implies that there exist a finite constant M > 0 and a strictly increasing sequence
(αn) of positive reals tending to plus infinity such that

sup
t∈I,n∈N

∥∥∥c−αnω f(t+ αn)− f(t)
∥∥∥ 6M.

Since f(t) = ct/ωfω,c(t), t > 0, the above implies∥∥∥fω,c(t+ αn)− fω,c(t)
∥∥∥ 6 |c|−(t/ω)M, t > 0, n ∈ N.

Hence, for every n ∈ N, we have limt→+∞[fω,c(t+αn)− fω,c(t)] = 0. On the other
hand, Lemma 2.8.13(iii) yields that, for every n ∈ N, we have that the function
fω,c(· + αn) − fω,c(·) is uniformly recurrent; hence, for every n ∈ N, we have
fω,c(· + αn) ≡ fω,c(·) and therefore fω,c(·) belongs to the space P ([0,∞) : X),
as claimed. To see that Mω,c([0,∞) : X) ⊆ APω,c,1([0,∞) : X), suppose that
fω,c(t + T ) = fω,c(t) for all t > 0 and some T > 0. This simply implies that

f(t + nT ) = cnT/ωf(t) for all n ∈ N so that f ∈ APω,c,1([0,∞) : X) because the
set {nT : n ∈ N} is relatively dense in [0,∞). Suppose now that I = R. Similarly
as above, it follows that URω,c,i(R : X) ⊇ APω,c,i(R : X) ⊇ Mω,c(R : X) for
i = 1, 2. Therefore, it suffices to show that URω,c,2(R : X) ⊆ Mω,c(R : X). Let
f ∈ URω,c,2(R : X). Since the restriction of f(·) on [0,∞) belongs to the space
URω,c,2([0,∞) : X), it readily follows that there exists a number T > 0 such that
fω,c(t + T ) = fω,c(t) for all t > 0. To complete the proof, it suffices to prove that
this equality holds for all real numbers t < 0. Let ε > 0 be fixed. Due to our
assumption, we have the existence of an integer n0 ∈ N such that t + αn > 0 as
well as that∥∥∥ct/ωfω,c(t+ αn)− ct/ωfω,c(t)

∥∥∥ 6 ε
and

∥∥∥c(t+T )/ωfω,c(t+ T + αn)− c(t+T )/ωfω,c(t+ T )
∥∥∥ 6 ε,

i.e., ∥∥∥ct/ωfω,c(t+ αn)− ct/ωfω,c(t)
∥∥∥ 6 ε

and
∥∥∥ct/ωfω,c(t+ αn)− ct/ωfω,c(t+ T )

∥∥∥ 6 ε|c|−T/ω.
This implies ∥∥∥ct/ω[fω,c(t+ T )− fω,c(t)

]∥∥∥ 6 ε(1 + |c|−T/ω
)
.

Letting ε→ 0+, we get fω,c(t+ T ) = fω,c(t), as claimed. �

Corollary 2.8.15. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i([0,∞) :
X). Then there exists a function F ∈ APω,c,i(R : X) such that F (t) = f(t) for all
t > 0 if and only if f ∈Mω,c([0,∞) : X).

Further on, the points [4., 5., 6., 7.] from the beginning of this section can be
restated as follows:
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4’. Let c ∈ R and ω > 0. Then, for every (ω, c)-uniformly recurrent func-
tion f(·) of type 1 (type 2), we have that the function ‖f(·)‖ is (ω, |c|)-
uniformly recurrent of type 1 (type 2).

5’. The spaces URω,c,i(I : X) and APω,c,i(I : X) are invariant under point-
wise multiplications with scalars (i = 1, 2).

6’. The spaces URω,c,i(I : X) and APω,c,i(I : X) are translation invariant
(i = 1, 2).

7’. If I = [0,∞), |c| > 1, ω > 0 and the sequence (fn(·)) in URω,c,2(I : X)
converges uniformly to a function f : I → X, then the function f(·)
belongs to the space URω,c,2(I : X). Furthermore, if I = [0,∞), |c| 6
1, ω > 0 and the sequence (fn(·)) in URω,c,1(I : X) (APω,c,1(I : X))
converges uniformly to a function f : I → X, then the function f(·)
belongs to the space URω,c,1(I : X) (APω,c,1(I : X)).

Now we will prove the following

Proposition 2.8.16. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i(I :
X). Then the function fω,c(·) is bounded and limt→+∞ f(t) = 0.

Proof. By Theorem 2.8.12(ii) and Lemma 2.8.13(iv) it suffices to consider the
case I = [0,∞) and the class APω,c,1([0,∞) : X). Let ε = 1. Then there exists a
finite number l > 0 such that any subinterval I ′ of [0,∞) contains a point τ such

that ‖c−τω f(t+ τ)− f(t)‖ < 1 for all t > 0. Suppose that t ∈ [nl, (n+ 1)l] for some

n ∈ N. Then there exists τn ∈ [(n− 1)l, nl] such that ‖c
−τn
ω f(t′ + τn)− f(t′)‖ < 1

for all t′ > 0. In particular, t − τn = t′ ∈ [0, 2l] and the above implies ‖f(t)‖ 6
(1+M)|c|τn/ω 6 (1+M)[maxt′′∈[0,2l] |c|−t

′′/ω]|c|t/ω, where M := supx∈[0,2l] ‖f(x)‖.
This yields the required limit equality. �

Example 2.8.17. Denote the restriction of the function f(·) given by (33) to
the non-negative real axis by the same symbol. Then Proposition 2.8.16 implies that
the function c−·/ωf(·) cannot belong to the space APω,c,i([0,∞) : C) for i = 1, 2. On

the other hand, it is clear that c−·/ωf(·) ∈ URω,c([0,∞) : C) ⊆ URω,c,i([0,∞) : C)
for i = 1, 2.

Corollary 2.8.18. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,1([0,∞) :
X) if and only if the function fω,c(·) is bounded and continuous.

Proof. Due to Proposition 2.8.16, it suffices to show that the boundedness of
function fω,c(·) implies f ∈ APω,c,1([0,∞) : X). If so, then we need to prove that
for each ε > 0 the set consisting of all positive reals t > 0 such that∥∥∥c(t+τ)/ωfω,c(t+ τ)− c(t+τ)/ωfω,c(t)

∥∥∥ 6 ε, t > 0

is relatively dense in [0,∞). But, this simply follows from the fact that this set
contains a ray [a(ε),∞) for a sufficiently large real number a(ε) > 0, which can be
proved by using the boundedness of fω,c(·) and the simple inequality |c|t/ω 6 1,
t > 0. �
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Remark 2.8.19. Suppose that |c| < 1 and ω > 0. Using Corollary 2.8.18, we
can simply prove that f ∈ APω,c,1([0,∞) : X) if and only if for every (there exists)
strictly increasing sequence (αn) of positive reals tending to plus infinity such that

limn→+∞ supt>0 ‖f(t+ αn)− c
αn
ω f(t)‖ = 0.

Example 2.8.20. Suppose that f(t) := 2−t[1 + (1/ ln(2 + t))], t > 0. Due
to Corollary 2.8.18, this function belongs to the space AP1,1/2,1([0,∞) : C) ⊆
UR1,1/2,1([0,∞) : C). On the other hand, f(·) does not belong to the space
UR1,1/2,2([0,∞) : C). Otherwise, we would have the existence of an arbitrarily
large positive real number α > 0 such that

sup
t>0

∣∣∣∣∣2−t ln(1 + (α/(1 + t)))

ln(2 + t) · ln(2 + t+ α)

∣∣∣∣∣ 6 ε.
Taking t = 0, this simply leads us to a contradiction.

The class URω,c,1([0,∞) : X) is also extremely non-interesting due to the
following characterization:

Proposition 2.8.21. Suppose c ∈ Cr {0}, |c| < 1 and ω > 0. Then
URω,c,1([0,∞) : X) = C0([0,∞) : X).

Proof. If f ∈ C0([0,∞) : X), then for each strictly increasing sequence (αn)
tending to plus infinity and for each real number ε > 0 we can always find an
integer n0 ∈ N such that ‖f(t+αn)− cαn/ωf(t)‖ 6 (ε/2) + |c|αn/ω‖f(t)‖ 6 (ε/2) +
|c|αn/ω‖f‖∞ 6 ε, t > 0, n > n0, which implies f ∈ URω,c,1([0,∞) : X). To
prove the converse, let us first show that the assumption f ∈ URω,c,1([0,∞) : X)
implies the boundedness of f(·). If (αn) satisfies the requirements of definition of
space URω,c,1([0,∞) : X), then we may assume without loss of generality that
αn+1 − αn > 3 for all n ∈ N and∥∥f(t+ αn)

∥∥ 6 1 + |c|αn/ω‖f(t)‖, t > 0, n ∈ N.(139)

Let n ∈ N be fixed and let M0 := maxt∈[0,αn] ‖f(t)‖. Then (139) inductively implies
that for arbitrary T ∈ (0, αn] and for arbitrary k ∈ N we have

∥∥f(T + kαn)
∥∥ 6 k−1∑

j=0

|c|αnj/ω + |c|kαn/ωM0 6
∞∑
j=0

|c|j/ω +M0.

Therefore, ‖f(t)‖ 6
∑∞
j=0 |c|j/ω +M0, t > 0, as claimed. The remainder of proof is

simple; since the function f(·) is bounded, then we have the existence of an integer
n1 ∈ N such that∥∥f(t+ αn)

∥∥ 6 |c|αn/ω‖f‖∞ + (ε/2) < ε, t > 0, n > n1,

and therefore f ∈ C0([0,∞) : X). �

Now we will prove the following result:
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Proposition 2.8.22. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,2([0,∞) :
X) if and only if the function fω,c(·) is bounded continuous and for each ε > 0 and
N > 0 the set of all positive real numbers τ > 0 such that

‖fω,c(t+ τ)− fω,c(t)‖ 6 ε, t ∈ [0, N ](140)

is relatively dense in [0,∞).

Proof. Suppose first that f ∈ APω,c,2([0,∞) : X). Due to Proposition 2.8.16,
the function fω,c(·) is bounded. Let ε > 0 and N > 0 be fixed, and let ε0 > 0 be

such that ε0|c|−N/ω 6 ε. By our assumption, the set of all positive reals τ > 0
such that ‖fω,c(t+ τ)− fω,c(t)‖ 6 ε0|c|−t/ω, t > 0 is relatively dense in [0,∞). If τ

belongs to this set, then we have ‖fω,c(t+ τ)− fω,c(t)‖ 6 ε0|c|−t/ω 6 ε, t ∈ [0, N ].
For the converse, it suffices to assume fω,c 6= 0. Fix a number ε > 0. In this case, we

can find a number N > 0 such that |c|t/ω 6 ε/(2(1 + ‖fω,c‖∞)) for all t > N. For
this ε > 0 and N > 0 we can find a relatively dense set of positive reals τ satisfying
(140). If τ belongs to this set, then there exist two possibilities: t > N or t ∈ [0, N).
In the first case, we have ‖ct/ω[fω,c(t + τ) − fω,c(t)]‖ 6 ε|c|t/ω 6 ε; in the second

case, we have ‖ct/ω[fω,c(t + τ) − fω,c(t)]‖ 6 (2ε‖fω,c‖∞)/(2(1 + ‖fω,c‖∞)) < ε.

Hence, we have ‖fω,c(t + τ) − fω,c(t)‖ 6 ε0|c|−t/ω, t > 0 and the proof of the
proposition is thereby complete. �

Remark 2.8.23. (i) Let us recall that any Levitan N -almost periodic
function fω,c : [0,∞) → X satisfies that for each ε > 0 and N > 0 the
set of all positive reals τ > 0 such that (140) holds is relatively dense in
[0,∞) (cf. [265, Definition 2, p. 53]). In particular, the restriction of
any almost automorphic function fω,c : R → X satisfies this condition.
Denote by AA[0,∞)(X) the vector space consisting of such functions; thus,

c·/ωAA[0,∞)(X) ⊆ APω,c,2([0,∞) : X). Recall also that the function

t 7→ 1/(2 + cos t + cos(
√

2t)), t > 0 is Levitan N -almost periodic and
unbounded.

(ii) According to [265, Definition 2, p. 80], a continuous function f : I →
X is called recurrent if and only if for each ε > 0 and N > 0 the set
of all positive reals τ > 0 such that (140) holds is relatively dense in
[0,∞) (the case I = R has been considered in [265], only). The Stepanov
generalizations of recurrent functions can be also introduced but then it
is not clear how one can consider the invariance of recurrence under the
action of infinite convolution product given by (55) since the methods
proposed in the proof of [234, Proposition 2.6.11] and related results do
not work in this framework. Note also that we can extend the notion
of (ω, c)-almost automorphicity by requiring that the function fω,c(·) is
recurrent.

(iii) Due to Corollary 2.8.18, APω,c,1([0,∞) : X) is the vector space together
with the usual operations. This is not longer true for the space
APω,c,2([0,∞) : X), which can be deduced from Proposition 2.8.22 and
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a counterexample constructed by W. A. Veech (see e.g., [48, Exam-
ple 2.8], and the corresponding example given in the pioneering paper
[262] by B. Ya. Levin, as well as the articles [?] by J. Egawa, [285] by
A. Michalowicz, S. Stóınski and [97] by D. N. Cheban). In particular,
the space APω,c,2([0,∞) : X) ⊆ URω,c,2([0,∞) : X) strictly contains

c·/ωAA[0,∞)(X). On the other hand, the compactly almost automorphic
function constructed by A. M. Fink in [171] is not asymptotically uni-
formly recurrent, as shown earlier. This implies that there exists a func-
tion f ∈ c·/ωAA[0,∞)(X) such that fω,c(·) is not uniformly recurrent; in
particular, URω,c,2([0,∞) : X) strictly contains URω,c([0,∞) : X).

(iv) As already seen, there exist two bounded, even, uniformly continuous,
uniformly recurrent functions f : R → R and g : R → R such that its
sum is not uniformly recurrent. Furthermore, we can choose f(·) and g(·)
such that f(0) = g(0) = 1 and |f(t) + g(t)| 6 1 for |t| > 1. Denote the
restrictions of such functions to the non-negative real axis by the same
symbols, and define after that F (t) := 2−tf(t), t > 0 and G(t) := 2−tg(t),
t > 0. Then F, G ∈ UR1,1/2([0,∞) : C) ⊆ UR1,1/2,2([0,∞) : C) but
F +G /∈ UR1,1/2,2([0,∞) : C). If we suppose the contrary, then we would
have the existence of a strictly increasing sequence (αn) of positive reals
tending to plus infinity such that

lim
n→+∞

sup
t>0

∣∣∣2−t[f(t+ αn) + g(t+ αn)
]
− 2−t[f(t) + g(t)]

∣∣∣ = 0,

which is impossible because for each n ∈ N such that αn > 1 we have

sup
t>0

∣∣∣2−t[f(t+ αn) + g(t+ αn)
]
− 2−t[f(t) + g(t)]

∣∣∣
>
∣∣∣f(0) + g(0)−

[
f(αn) + g(αn)

]∣∣∣ =
∣∣∣2− [f(αn) + g(αn)]

∣∣∣ > 1.

In particular, this example can be used to show that the set URω,c,2([0,∞) :
C) does not form a vector space together with the usual operations.

(v) Using Proposition 2.8.22, as well as the arguments contained in the proofs
of Proposition 2.8.10 and [62, Theorem 8◦, pp. 3-4], it follows that
APω,c,2([0,∞) : X) is a complete metric space equipped with the dis-
tance d(·, ·) := ‖ · − · ‖ω,c.

Keeping in mind the proved results, we will consider the following notion for
Stepanov classes, only:

Definition 2.8.24. Let p ∈ P([0, 1]), c ∈ C\{0}, |c| 6 1 and ω > 0. Then

it is said that a function f ∈ Lp(x)
loc ([0,∞) : X) is Stepanov (p(x), ω, c)-uniformly

recurrent of type 2, resp. Stepanov (p(x), ω, c)-almost periodic of type 2 if and only
if

lim
n→+∞

sup
t>0

∥∥∥c−αnω f(s+ t+ αn)− f(s+ t)
∥∥∥
Lp(s)[0,1]

= 0,



2.8. (ω, c)-ALMOST PERIODIC TYPE FUNCTIONS... 181

resp. for each ε > 0 the set{
τ > 0 : sup

t>0

∥∥∥c−αnω f(s+ t+ αn)− f(s+ t)
∥∥∥
Lp(s)[0,1]

< ε

}
is relatively dense in [0,∞).

By Sp(x)URω,c,2([0,∞) : X) and Sp(x)APω,c,2([0,∞) : X) we denote the space
of all Stepanov (p(x), ω, c)-uniformly recurrent functions of type 2 and the space
of all Stepanov (p(x), ω, c)-almost periodic functions of type 2, respectively. If
p(x) ≡ p ∈ [1,∞), then the above classes are also denoted by SpURω,c,2([0,∞) : X)
and SpAPω,c,2([0,∞) : X), respectively.

If 1 6 p(x) 6 q(x) < ∞ and f ∈ Sq(x)URω,c,2([0,∞) : X), resp. f ∈
Sq(x)APω,c,2([0,∞) : X), then f ∈ Sp(x)URω,c,2([0,∞) : X), resp.

f ∈ Sp(x)APω,c,2([0,∞) : X); furthermore, the space Sp(x)URω,c,2([0,∞) : X),

resp. Sp(x)APω,c,2([0,∞) : X), contains the space URω,c,2([0,∞) : X), resp.

APω,c,2([0,∞) : X). It is simply verified that the space Sp(x)URω,c,2([0,∞) : X),

resp. Sp(x)APω,c,2([0,∞) : X), consists of those locally p(x)-integrable functions

f : I → X for which f̂(·) belongs to the space URω,c,2([0,∞) : Lp(x)([0, 1] : X)),

resp. APω,c,2([0,∞) : Lp(x)([0, 1] : X)). Keeping in mind this observation, it is
straightforward to transfer the previously proved results and the points [4’.-7’.]
for the introduced Stepanov classes; details can be omitted. Note, finally, that
Sp(x)APω,c,2([0,∞) : X) is a complete metric spaces equipped with the distance
d(·, ·) := ‖ · − · ‖p,ω,c.

2.8.2. Composition principles for (ω, c)-almost periodic type func-
tions. The methods established in [250] enable one to formulate a great number
of composition principles for (ω, c)-almost periodic type functions. We will explain
this fact only in the case of consideration of [250, Theorem 2.9] for Stepanov uni-
formly recurrent functions. So, let us assume that the function F : I × Y → X
is continuous and the function fω,c(·) is Stepanov p-uniformly recurrent, i.e., the
function f(·) is Stepanov (p, ω, c)-almost periodic (p > 1, ω > 0, c ∈ C r {0}).
Define the function G : I × Y → X by

G(t, y) := c
− t
ω1

1 F
(
t, ct/ωy

)
, t ∈ I, y ∈ Y,

where c1 ∈ Cr{0} and ω1 > 0. If the requirements of the above-mentioned theorem
hold with the functions f(·) and F (·, ·) replaced respectively with the functions
fω,c(·) and G(·, ·), then the resulting function

t 7→ G
(
t, fω,c(t)

)
= c
−t1/ω1

1 F (t, f(t)), t ∈ I

is Stepanov q-uniformly recurrent so that the function t 7→ F (t, f(t)), t ∈ I is
Stepanov (q, ω1, c1)-uniformly recurrent. More precisely, we have:

Theorem 2.8.25. Let I = R or I = [0,∞), and let p ∈ P([0, 1]). Suppose that
the following conditions hold:
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(i) The function G : I × Y → X is Stepanov p(x)-uniformly recurrent and
there exist a function r(x) > max(p(x), p(x)/(p(x) − 1)) and a function

LG ∈ Lr(x)
S (I) such that (25) holds with the functions F (·, ·) and LF (·)

replaced therein with the functions G(·, ·) and LG(·), respectively.
(ii) The function fω,c : I → Y is Stepanov p(x)-uniformly recurrent and there

exists a set E ⊆ I with m(E) = 0 such that K := {fω,c(t) : t ∈ I r E} is
relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that (61) holds
with the function F (·, ·) replaced therein with the function G(·, ·), and (19)
holds with the function fω,c(·) and the norm ‖ · ‖ replaced respectively by

the function ˆfω,c(·) and the norm ‖ · ‖Lp(x)([0,1]:Y ) therein.

Set q(x) := p(x)r(x)/(p(x) + r(x)) ∈ [1, p(x)) provided x ∈ [0, 1] and r(x) < +∞
and q(x) := p(x) for x ∈ [0, 1] and r(x) = +∞. Then F (·, f(·)) is Stepanov
(q(x), ω1, c1)-uniformly recurrent.

In the remainder of this subsection, we will state and prove some composition
principles for (ω, c)-uniformly recurrent functions of type 2; see also Corollary 2.8.18
and Proposition 2.8.21 (we can simply reformulate these results for (ω, c)-almost
periodic functions of type 2). Hence, in the continuation of this subsection, we will
assume that |c| 6 1, I = [0,∞) and i = 2.

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (60) holds. Define F(t) := F (t, f(t)), t ∈ I. We will use
the following estimate (τ > 0, ω > 0, c ∈ Cr {0}, t ∈ I):∥∥∥c(−τ)/ωF (t+ τ, f(t+ τ))− F (t, f(t))

∥∥∥
6
∥∥∥c(−τ)/ωF (t+ τ, f(t+ τ))− F

(
t, c(−τ)/ωf(t+ τ)

)∥∥∥
+
∥∥∥F(t, c(−τ)/ωf(t+ τ)

)
− F (t, f(t))

∥∥∥
6
∥∥∥c(−τ)/ωF (t+ τ, f(t+ τ))− F

(
t, c(−τ)/ωf(t+ τ)

)∥∥∥+L
∥∥∥c(−τ)/ωf(t+ τ)− f(t)

∥∥∥.(141)

Remark 2.8.26. Albeit we will not employ this estimate henceforth, it should
be noticed that we also have∥∥∥F (t+ τ, f(t+ τ))− cτ/ωF (t, f(t))

∥∥∥
6
∥∥∥F (t+ τ, f(t+ τ))− F

(
t+ τ, cτ/ωf(t)

)∥∥∥+
∥∥∥F(t+ τ, cτ/ωf(t)

)
− cτ/ωF (t, f(t))

∥∥∥
6 L

∥∥∥f(t+ τ)− cτ/ωf(t)
∥∥∥+

∥∥∥F(t+ τ, cτ/ωf(t)
)
− cτ/ωF (t, f(t))

∥∥∥.
Using the proof of [234, Theorem 3.29] and (141), we can simply deduce the

following result:

Theorem 2.8.27. Suppose that F : I × Y → X is a continuous function and
there exists a finite constant L > 0 such that (60) holds.
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(i) Suppose that f : I → Y is (ω, c)-uniformly recurrent of type 2. If there
exists a strictly increasing sequence (αn) of positive reals tending to plus
infinity such that

lim
n→+∞

sup
t∈I

∥∥∥c−αnω f(t+ αn)− f(t)
∥∥∥ = 0

and

lim
n→+∞

sup
t∈I

∥∥∥c(−αn)/ωF
(
t+ αn, f(t+ αn)

)
− F

(
t, c(−αn)/ωf(t+ αn)

)∥∥∥= 0,

then the mapping F(t) := F (t, f(t)), t ∈ I is (ω, c)-uniformly recurrent of
type 2.

(ii) Suppose that f : I → Y is (ω, c)-almost periodic of type 2. If for each
ε > 0 the set of all positive real numbers τ > 0 such that

sup
t∈I

∥∥∥c−τω f(t+ τ)− f(t)
∥∥∥ < ε,

and

sup
t∈I

∥∥∥c(−τ)/ωF (t+ τ, f(t+ τ))− F
(
t, c(−τ)/ωf(t+ τ)

)∥∥∥< ε

is relatively dense in [0,∞), then the mapping F(t) := F (t, f(t)), t ∈ I is
(ω, c)-almost periodic of type 2.

We can similarly reformulate the statements of [234, Theorem 3.30, Theorem
3.31] in our context (cf. also [17, Theorem 2.11] and [170, Theorem 2.11]).

Now we will provide two results for Stepanov classes of (ω, c)-uniformly recur-
rent functions of type 2. We will first state the following:

Theorem 2.8.28. Let I = [0,∞), |c| 6 1, ω > 0, p(x), q(x) ∈ [1,∞), r(x) ∈
[1,∞], 1/p(x) = 1/q(x) + 1/r(x) and the following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent and

there exists a function LF ∈ Lr(x)
S (I) such that (25) holds.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that

lim
n→+∞

sup
t>0

∥∥∥∥∥ sup
u∈R(f)

∥∥∥c−αn/ωF (s+ t+ αn, u
)
− F

(
s+ t, cαn/ωu

)∥∥∥∥∥∥∥∥
Lp(s)[0,1]

= 0

(142)

and

lim
n→+∞

sup
t>0

∥∥∥c−αnω f(s+ t+ αn)− f(s+ t)
∥∥∥
Lp(s)[0,1]

= 0.

Then the function F (·, f(·)) is Stepanov (p(x), ω, c)-uniformly recurrent of type 2.
Furthermore, the assumption that F (·, 0) is Stepanov p(x)-bounded implies that the
function F (·, f(·)) is Stepanov p(x)-bounded, as well.
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Proof. We will only provide the main details of proof since it is very similar
to the proof of [276, Theorem 2.2]. Using the arguments contained for proving the
estimate (141), we get that (t > 0, n ∈ N):∥∥∥c−αn/ωF (t+ αn, f(t+ αn)

)
− F (t, f(t))

∥∥∥
6
∥∥∥c(−αn)/ωF (t+ αn, f(t+ αn))− F

(
t, c(−αn)/ωf(t+ αn)

)∥∥∥
+ LF (t)

∥∥∥c(−αn)/ωf(t+ αn)− f(t)
∥∥∥.(143)

Keeping in mind (143), we can repeat almost verbatim the arguments given in the
proof of [276, Theorem 2.2] so as to conclude that there exists a finite constant
cp > 0 such that (n ∈ N):

sup
t>0

∥∥∥c−αn/ωF (s+ t+ αn, f(s+ t+ αn)
)
− F (s, f(s))

∥∥∥
Lp(s)[0,1]

6 cp
∥∥∥LF (·)

∥∥∥p
Sr(x)

· sup
t>0

∥∥∥∥∥ ∥∥∥c−αn/ωf(s+ t+ αn
)
− f(s+ t)

∥∥∥q ds∥∥∥∥∥
p/q

Lp(s)[0,1]

+ cp sup
t>0

∥∥∥∥∥ sup
u∈R(f)

∥∥∥c−αn/ωF (s+ t+ αn, u
)
− F (s+ t, u)

∥∥∥∥∥∥∥∥
Lp(s)[0,1]

.

By (179), this yields that the function F (·, f(·)) is Stepanov (p(x), ω, c)-uniformly
recurrent of type 2. If the function F (·, 0) is Stepanov p(x)-bounded, then the
arguments given on [276, p. 6, l. -1-l. -5] enable one to see that the function
F (·, f(·)) is Stepanov p(x)-bounded, as claimed. �

We can simply formulate a consequence of this result with the usual Lipshitzian
condition used. Similarly, we can prove the following result:

Theorem 2.8.29. Let I = [0,∞), |c| 6 1, ω > 0, p ∈ P([0, 1]), and the
following conditions hold:

(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent and
there exist a function r(x) > max(p(x), p(x)/(p(x) − 1)) and a function

LF ∈ Lr(x)
S (I) such that (25) holds.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that

lim
n→+∞

sup
t>0

∥∥∥∥∥ sup
u∈R(f)

∥∥∥c−αn/ωF (s+ t+ αn, u
)
− F (s+ t, cαn/ωu)

∥∥∥∥∥∥∥∥
Lp(s)[0,1]

= 0

and

lim
n→+∞

sup
t>0

∥∥∥c−αnω f(s+ t+ αn)− f(s+ t)
∥∥∥
Lp(s)[0,1]

= 0.
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Then q(x) := p(x)r(x)/(p(x)+r(x)) for x ∈ [0, 1] and r(x) < +∞ and q(x) := p(x)
for x ∈ [0, 1] and r(x) = +∞. Then the function F (·, f(·)) is Stepanov (q(x), ω, c)-
uniformly recurrent of type 2. Furthermore, the assumption that F (·, 0) is Stepanov
q(x)-bounded implies that the function F (·, f(·)) is Stepanov q(x)-bounded, as well.

Remark 2.8.30. Concerning Theorem 2.8.28 and Theorem 2.8.29, it should
be noticed that we do not require that there exists a set E ⊆ I with m(E) = 0
such that the set K := {f(t) : t ∈ I r E} is relatively compact. For Stepanov
(p, ω, c)-uniformly recurrent functions of type 2, we cannot assume, in (179), a
slightly weaker condition (see [276, Lemma 2.1]):

lim
n→+∞

sup
t>0

sup
u∈R(f)

∥∥∥c−αn/ωF (s+ t+ αn, u
)
− F (s+ t, cαn/ωu)

∥∥∥
Lp(s)[0,1]

= 0.

2.8.3. (ω, c)-Almost periodic properties of convolution products and
applications to integro-differential equations. In the first part of this subsec-
tion, we will examine the invariance of (ω, c)-almost periodic properties of the
infinite convolution product (55), where a strongly continuous operator family
(R(t))t>0 ⊆ L(X,Y ) satisfies certain assumptions. As already mentioned, the
consideration is simple for the (ω, c)-uniformly recurrent functions, (ω, c)-almost
periodic functions and (compactly) (ω, c)-almost automorphic functions because
we then need to examine when the function t 7→ c−(t/ω)F (t), t ∈ R is uniformly
recurrent, almost periodic or (compactly) almost automorphic, respectively. But,
we have

c−
t
ωF (t) =

∫ t

−∞

[
c−

t−s
ω R(t− s)

][
c−

s
ω f(s)

]
ds, t ∈ R,

so that the statements of [248, Proposition 3.1, 3.2] (uniform recurrence), [234,
Proposition 2.6.11] (almost periodicity) and [234, Proposition 3.5.3] (almost auto-
morphicity), for instance, can be simply reformulated in our context by replacing
respectively the operator family (R(t))t>0 and the function f(·) by the operator

family (c−
t
ωR(t))t>0 and the function c−

·
ω f(·). We will do this only in the case of

the last mentioned result (see [143] for the notion):

Proposition 2.8.31. Suppose that p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that

M :=

∞∑
k=0

∥∥∥c− ·+kω R(·+ k)
∥∥∥
Lq(x)[0,1]

<∞.

If ˇc−
·
ω f : R→ X is Sp(x)-almost automorphic, then the function F : R→ Y, given

by (55), is well defined and (ω, c)-almost automorphic.

It is worth noting that this result can be applied in both cases |c| > 1 and |c| <
1, under suitable conditions. It is straightforward to incorporate the above results in
the study of the existence and uniqueness of (ω, c)-almost periodic type solutions
for the various classes of abstract inhomogeneous integro-differential equations.
Keeping in mind Theorem 2.8.12, we will skip all related details concerning the
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invariance of (ω, c)-uniform recurrence of type 1 (type 2) (ω, c)-almost periodicity
of type 1 (type 2) under the actions of infinite convolution products.

Due to the fact that

c−
t
ω

∫ t

0

R(t− s)f(s) ds =

∫ t

0

[
c−

t−s
ω R(t− s)

][
c−

s
ω f(s)

]
ds, t > 0,(144)

we can similarly analyze the invariance of asymptotical (ω, c)-uniform recurrence,
asymptotical (ω, c)-almost periodicity and asymptotical (compact) (ω, c)-almost
automorphicity under the actions of finite convolution products; the interested
reader may try to reformulate the statements of [234, Proposition 2.6.13, Theorem
2.9.5, Theorem 2.9.7, Theorem 2.9.15] in our new context.

If |c| < 1 and ω > 0, then it is worth noting that the (ω, c)-uniform recurrence
of type 2 and the (ω, c)-almost periodicity of type 2 cannot be so simply retained
after the actions of finite convolution products. The situation is much simpler for
the classes APω,c,1([0,∞) : X) and URω,c,1([0,∞) : X) (Sp(x)APω,c,1([0,∞) : X)

and Sp(x)URω,c,1([0,∞) : X)) because in this case we can apply Corollary 2.8.18,
Proposition 2.8.21 and (144).

In the remainder of this subsection, we will provide a few applications to the
abstract integro-differential equations and inclusions in Banach spaces.

1. In the concrete situation of [359, Example 4], we know that the unique
solution of the heat equation ut(x, t) = uxx(x, t), x ∈ R, t > 0, accompanied with
the initial condition u(x, 0) = f(x), is given by

u(x, t) :=
1

2
√
πt

∫ +∞

−∞
e−

(x−s)2
4t f(s) ds, x ∈ R, t > 0.(145)

Let the number t0 > 0 be fixed, let c ∈ C r {0}, ω > 0 and let the function
c−·/ωf(·) be bounded uniformly recurrent (almost periodic, (compactly) almost

automorphic). Since c−
·
ω e−·

2/4t0 ∈ L1(R), we can apply Proposition 2.8.6 in order
to see that the solution x 7→ u(x, t0), x ∈ R is (ω, c)-uniformly recurrent ((ω, c)-
almost periodic/(compactly) (ω, c)-almost automorphic). See also [17, Example
2.9].

2. It is worth noting that the notion from Definition 2.8.11 and Definition 2.8.24
can be introduced with the intervals I = [−a,∞), where a > 0 is an arbitrary
real number. To explain the importance of this observation, we will reexamine
[359, Example 5]. It is well known that the unique regular solution of the wave
equation uxx(x, t) = utt(x, t), x ∈ R, t > 0, accompanied with the initial conditions
u(x, 0) = f(x), x ∈ R, ut(x, 0) = g(x), x ∈ R, is given by the d’Alembert formula

u(x, t) :=
1

2

[
f(x+ t) + f(x− t)

]
+

1

2

∫ x+t

x−t
g(s) ds, x ∈ R, t > 0.

Here we would like to note the following fact about the term

Ht0(x) :=
1

2

∫ x+t0

x−t0
g(s) ds, x ∈ R,
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where t0 > 0 is a fixed real number. Suppose that the function g : [−t0,∞) → C
is (ω, c)-uniformly recurrent of type 2, for example (the same comment applies to
all other classes of functions introduced in Definition 2.8.11). Then there exists a
strictly increasing sequence (αn) of positive real numbers such that

lim
n→+∞

sup
t>−t0

∣∣c−αn/ωg(t+ αn)− g(t)
∣∣ = 0.

If ε > 0 is given, this implies the existence of an integer n0 ∈ N such that, for every
n > n0,∣∣∣c−αn/ωHt0(x+αn)−Ht0(x)

∣∣∣ 6 ∫ t0

−t0

∣∣∣c−αn/ωg(x+s+αn)−g(x+s)
∣∣∣ ds 6 2t0ε, x > 0.

Hence, the function Ht0 : [0,∞)→ C is (ω, c)-uniformly recurrent of type 2.

It would be very enticing to provide certain applications of composition prin-
ciples established in Subsection 2.8.2 in the qualitative analysis of solutions to the
abstract semilinear Cauchy inclusions which belongs to the classes APω,c,2([0,∞))
and URω,c,2([0,∞)).

The case |c| 6= 1 is still unexplored in the theory of almost periodic functions
and we feel it is our duty to say that the classes of (ω, c)-almost periodic type
functions with |c| 6= 1 have some very unusual and unpleasant features.

2.8.4. (ω, c)-Pseudo almost periodic functions, (ω, c)-pseudo almost
automorphic functions and applications. In this subsection, we deal with the
interval I = R, only. Let us recall the (ω, c)-mean of a function h : R → X is
introduced in [16] by

Mω,c(h) := lim
T→∞

1

2T

∫ T

−T
c−σ/ωh(σ) dσ,

whenever the limit exists. For example, for h1(t) = ct/ω and h2(t) = ct/ωeit, we
have that Mω,c (h1) = 1 and Mω,c (h2) = 0. Furthermore, Mω,c is a linear and

continuous operator. Indeed, if c−t/ωhn(t)→ c−t/ωh(t) uniformly as n→∞, then
Mω,c (hn)→Mω,c(h) as n→∞.

Remark 2.8.32. If h(·) is (ω, c)-almost periodic, then the meanMω,c(h) always

exists, because the function c−(·/ω)f(·) is almost periodic and the usual mean value
of any almost periodic function exists.

We will use the space

PAP0;ω,c(R : X) :=
{
h ∈ C(R : X) ; c−·/ωh(·) ∈ PAP0(R : X)

}
.

A function h(·) is said to be c-ergodic if and only if belongs to this space.
Furthermore, we will use the following two types of (ω, c)-pseudo ergodic com-

ponents:

Definition 2.8.33. Let c ∈ C\{0} and ω > 0.
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(i) A function f ∈ C(R×Y : X) is said to be (ω, c, 1)-pseudo ergodic vanish-
ing if and only if c−t/ωf(t, ·) ∈ PAP0(R × Y : X). The space of all such
functions will be denoted by PAP0;ω,c,1(R× Y : X).

(ii) A function f ∈ C(R × Y : X) is said to be (ω, c, 2)-pseudo ergodic van-
ishing if and only if c−t/ωf(t, ct/ω·) ∈ PAP0(R× Y : X). The space of all
such functions will be denoted by PAP0;ω,c,2(R× Y : X).

Similarly, we will use two different types of (ω, c)-almost periodic functions,
resp. (ω, c)-almost automorphic functions, depending on two variables. Now we
would like to introduce the following definitions:

Definition 2.8.34. Let c ∈ C\{0}, ω > 0 and i = 1, 2.

(i) A function f ∈ C(R× Y : X) is said to be (ω, c, 1)-almost periodic, resp.
(ω, c, 1)-almost automorphic, if and only if c−t/ωf(t, ·) ∈ AP (R× Y : X),
resp. c−t/ωf(t, ·) ∈ AA(R × Y : X). The space of all such functions will
be denoted by APω,c,1(R× Y : X), resp. AAω,c,1(R× Y : X).

(ii) A function f ∈ C(R× Y : X) is said to be (ω, c, 2)-almost periodic, resp.
(ω, c, 2)-almost automorphic, if and only if c−t/ωf(t, ct/ω·) ∈ AP (R× Y :
X), resp. c−t/ωf(t, ct/ω·) ∈ AA(R×Y : X). The space of all such functions
will be denoted by APω,c,2(R× Y : X), resp. AAω,c,2(R× Y : X).

Definition 2.8.35. Let c ∈ C\{0}, ω > 0 and i = 1, 2.

(i) A function f ∈ C(R : X) is said to be (ω, c)-pseudo almost periodic, resp.
(ω, c)-pseudo almost automorphic, if and only if it admits a decomposition
f(t) = g(t) + h(t), t ∈ R, where g(·) is (ω, c)-almost periodic, resp. (ω, c)-
almost automorphic, and h ∈ PAP0;ω,c(R : X). The space of all such
functions will be denoted by PAPω,c(R : X), resp. PAAω,c(R : X).

(ii) A function f(·, ·) ∈ C(R × Y : X) is said to be (ω, c, i)-pseudo almost
periodic, resp. (ω, c, i)-pseudo almost automorphic, if and only if it admits
a decomposition f(t, x) = g(t, x) + h(t, x), t ∈ R, x ∈ X, where g(·, ·) is
(ω, c, i)-almost periodic, resp. (ω, c, i)-almost automorphic, and h(·, ·) ∈
PAP0;ω,i(R× Y : X). The space of all such functions will be denoted by
PAPω,c,i(R× Y : X), resp. PAAω,c,i(R× Y : X).

Theorem 2.8.36. Let f ∈ C(R : X). Then f(·) is (ω, c)-pseudo almost periodic,
resp. (ω, c)-pseudo almost automorphic, if and only if:

(146) f(t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAP (R : X),

resp.
f(t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAA(R : X).

Proof. We will consider only (ω, c)-pseudo almost periodic functions for sim-
plicity. It is clear that if f(·) satisfies (146), then f(·) is an (ω, c)-pseudo almost
periodic function. In order to show the converse statement, let f ∈ PAPω,c(R : X).
Then there exist g ∈ APω,c(R : X) and PAP0;ω,c(R : X) such that f = g + h.
Therefore,

u(t) = c−t/ωg(t) + c−t/ωh(t) = F1(t) + F2(t), t ∈ R.
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So, u(t) is written as a sum of F1(·) which is almost periodic and F2(·) which
belongs to PAP0;ω,c(R : X). �

Remark 2.8.37. Let us note that the decompositions given in Definition 2.4
are unique; see also [16, Remark 2.9]. The proof of this fact can be left to the
interested readers.

It can be simply shown that:

(i) We have f + g ∈ PAPω,c(R : X), resp. f + g ∈ PAAω,c(R : X), and
αh ∈ PAPω,c(R : X), resp. αh ∈ PAAω,c(R : X), provided f, g, h ∈
PAPω,c(R : X), resp. f, g, h ∈ PAAω,c(R : X), and α ∈ C.

(ii) If τ ∈ R and f ∈ PAPω,c(R : X), resp. f ∈ PAAω,c(R : X), then
fτ (·) ≡ f(·+ τ) ∈ PAPω,c(R : X), resp. fτ (·) ∈ PAAω,c(R : X).

Now we would like to endow the introduced space of (ω, c)-pseudo almost pe-
riodic functions, resp. (ω, c)-pseudo almost automorphic functions, with a certain
norm.

Proposition 2.8.38. The space PAPω,c(R : X), resp. PAAω,c(R : X), equipped
with the norm ‖ · ‖ω,c is a Banach space.

Proof. We will consider the space PAPω,c(R : X), only. Let (fn) be a Cauchy
sequence in PAPω,c(R : X). Then, given ε > 0, there exists N ∈ N such that, for
all m, n > N , we have

‖fn − fm‖ω,c < ε.

Since fm, fn ∈ PAPω,c(R : X), there exist um, un ∈ PAP (R : X) such that
fm(t) ≡ c∧(t)um(t) and fn(t) ≡ c∧(t)un(t) for all t ∈ R. Now, for m, n > N we
have ‖um−un‖∞ 6 ‖fn− fm‖ω,c < ε. It follows that (un) is a Cauchy sequence in
PAP (R : X). Since PAP (R : X) is complete, there exists u ∈ PAP (R : X) such
that ‖un − u‖∞ → 0 as n → ∞. Let us define f(t) := c∧(t)u(t), t ∈ R. We claim
that ‖un − u‖∞ → 0 as n → ∞. Indeed, ‖fn − f‖ω,c = supt∈R ‖un(t) − u(t)‖ →
0 (n→∞). Hence, PAPω,c(R : X) is a Banach space with the norm ‖ · ‖ω,c. �

Lemma 2.8.39. ([16]) Assume that k∼(·) := c∧(−·)k(·) ∈ L1(R). Then h ∈
PAP0;ω,c(R : X) implies that k ∗ h ∈ PAP0;ω,c(R : X).

Theorem 2.8.40. Let f ∈ PAPω,c(R : X), resp. f ∈ PAAω,c(R : X), with
f(·) = c∧(·)p(·), p ∈ PAP (R : X), resp. p ∈ PAA(R : X). If for some k(·) we have
that k∼(·) := c∧(−·)k(·) ∈ L1(R), then

(k ∗ f)(t) =

∫ ∞
−∞

k(t− s)f(s) ds = c∧(t) (k∼ ∗ p) (t), t ∈ R.

In particular, k ∗ f ∈ PAPω,c(R : X), resp. k ∗ f ∈ PAAω,c(R : X).

Proof. As before, we will consider the space PAPω,c(R : X) only, because
the proof is quite analogous for the space PAAω,c(R : X). Since p ∈ PAP (R : X),
we have that there exist p1 ∈ AP (R : X) and p2 ∈ PAP0(R : X) such that
p = p1 + p2. Then f = f1 + f2, where f1(·) = c∧(·)p1(·) ∈ APω,c(R : X) and
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f2(·) = c∧(·)p1(·) ∈ PAP0;ω,c(R : X). For every t ∈ R, we have

(k ∗ f)(t) =

∫ ∞
−∞

k(t− s)f(s) ds

=

∫ ∞
−∞

k(t− s)f1(s) ds+

∫ ∞
−∞

k(t− s)f2(s) ds

= (k ∗ f1) (t) + (k ∗ f2) (t) =: I1(t) + I2(t).

We have that I1 ∈ APω,c(R : X). We have that I2 ∈ PAP0;ω,c(R : X). Moreover,
by definition of f(·), we have (k∗f)(·) = c∧(·) (k∼ ∗ p) (·) so that k∗f ∈ PAPω,c(R :
X). �

Example 2.8.41. Let us consider the heat equation ut(x, t) = uxx(x, t), t > 0,
x ∈ R, with the initial value condition u(x, 0) = f(x). Let u(x, t) be a regular
solution of this equation; see (145). Fix t0 > 0 and assume that f(·) is an (ω, c)-
pseudo almost periodic function. Then, by Theorem 2.2, the solution u(x, t0) is
(ω, c)-pseudo almost periodic with respect to x.

To formulate related composition principles, we will use two lemmae:

Lemma 2.8.42. (see [234, Lemma 2.12.2]) Let f ∈ PAP (R × Y : X) and
u ∈ PAP (R : Y ). Then the mapping t 7→ f(t, u(t)), t ∈ R belongs to the space
PAP (R : X) provided that the following conditions hold:

(i) The set {f(t, y) : t ∈ R, y ∈ B} is bounded for every bounded subset
B ⊆ Y.

(ii) f(t, y) is uniformly continuous in each bounded subset of Y uniformly in
t ∈ R. That is, for any ε > 0 and B ⊆ X bounded, there exists δ > 0 such
that x, y ∈ B and ‖x− y‖ 6 δ imply ‖f(t, x)− f(t, y)‖ 6 ε for all t ∈ R.

Lemma 2.8.43. (see [234, Theorem 3.2.4]) Suppose that f = g+φ ∈ PAA(R×
Y : X) with g ∈ AA(R× Y : X), φ ∈ PAP0(R× Y : X) and the following holds:

(i) the mapping (t, y) 7→ g(t, y) is uniformly continuous in any bounded subset
B ⊆ Y uniformly for t ∈ R;

(ii) the mapping (t, y) 7→ φ(t, y) is uniformly continuous in any bounded subset
B ⊆ Y uniformly for t ∈ R.

Then for each u ∈ PAA(R : Y ) one has f(·, u(·)) ∈ PAA(R : X).

For simplicity, we will not consider Stepanov p-almost periodic functions and
Stepanov p-almost automorphic functions depending on two variables here.

Suppose now that a continuous function g : R× Y → X satisfies g(t+ ω, y) =
cg(t, y) for all t ∈ R and y ∈ Y , resp. g(t+ω, cy) = cg(t, y) for all t ∈ R and y ∈ Y.
Define the functions

(147) G1(t, y) := c−
t
ω g(t, y), t ∈ R, y ∈ Y

and

(148) G2(t, y) := c−
t
ω g
(
t, ct/ωy

)
, t ∈ R, y ∈ Y.
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Then, for every t ∈ R and y ∈ Y, we have

G1(t+ ω, y) = c−
t+ω
ω g(t+ ω, y) = c−

t+ω
ω cg(t+ ω, y) = c−

t
ω g(t, y) = G1(t, y)

and

G2(t+ ω, y) = c−
t+ω
ω g
(
t+ ω, c

t+ω
ω y
)

= c−
t+ω
ω cg

(
t, ct/ωy

)
= c−t/ωg

(
t, ct/ωy

)
= G2(t, y).

In both cases, the function Gi(·, ·) is ω-periodic in time variable (i = 1, 2). Further-
more, if the requirements of [16, Theorem 2.24] hold (case i = 2), then condition
(i) of Lemma 2.8.43 holds with the function g(·, ·) replaced therein with the func-
tion G2(·, ·), and condition (ii) of Lemma 2.8.43 holds with the function φ(·, ·)
replaced therein with the function h2(t, ·) ≡ c−t/ωh(t, ct/ω·), t ∈ R. Furthermore,
G2 ∈ AA(R × Y : X) and h2 ∈ PAP0(R × Y : X) so that repeating verbatim the
arguments used in the proof of [270, Theorem 2.4] with appealing to [17, Theorem
2.11] in place of [270, Lemma 2.2] immediately yields a much simpler proof of [16,
Theorem 2.24]. Furthermore, the statement of [17, Theorem 2.11] can be formu-
lated for continuous functions which maps the space R×Y into X; in other words,
we can use two different pivot spaces X and Y. Keeping in mind this observation,
we can immediately clarify an extension of [16, Theorem 2.24] in this context (the
interested reader may try to reexamine [16, Theorem 2.25] for (ω, c)-pseudo almost
periodic functions and (ω, c)-pseudo almost automorphic functions). Furthermore,
using Lemma 3.2 we can immediately clarify the following result:

Proposition 2.8.44. (i) Suppose that f = g+φ with g ∈ AAω,c,1(R×Y :
X), φ ∈ PAP0;ω,c,1(R× Y : X) and the following holds:
(a) the mapping (t, y) 7→ G1(t, y) given by (147) is uniformly continuous

in any bounded subset B ⊆ Y uniformly for t ∈ R;
(b) the mapping (t, y) 7→ φ1(t, y) given by (147) with the function g(·, ·)

replaced therein with the function φ(·, ·), is uniformly continuous in
any bounded subset B ⊆ Y uniformly for t ∈ R.

Then for each u ∈ PAA(R : Y ) one has f(·, u(·)) ∈ PAAω,c(R : X).
(ii) Suppose that f = g+φ with g ∈ AAω,c,2(R×Y : X), φ ∈ PAP0;ω,c,2(R×Y :

X) and the following holds:
(c) the mapping (t, y) 7→ G2(t, y) given by (147) is uniformly continuous

in any bounded subset B ⊆ Y uniformly for t ∈ R;
(d) the mapping (t, y) 7→ φ2(t, y) given by (147), with the function g(·, ·)

replaced therein with the function φ(·, ·), is uniformly continuous in
any bounded subset B ⊆ Y uniformly for t ∈ R.

Then for each u ∈ PAAω,c(R : Y ) one has f(·, u(·)) ∈ PAAω,c(R : X).

We can also clarify the following result:

Proposition 2.8.45. (i) Let f ∈ PAPω,c,1(R×Y : X) and u ∈ PAP (R :
Y ). Then the mapping t 7→ f(t, u(t)), t ∈ R belongs to the space PAPω,c(R :
X) provided that the following conditions hold:
(a) The set {c−t/ωf(t, y) : t ∈ R, y ∈ B} is bounded for every bounded

subset B ⊆ Y.
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(b) c−t/ωf(t, y) is uniformly continuous in each bounded subset of Y uni-
formly in t ∈ R.

(ii) Let f ∈ PAPω,c,2(R× Y : X) and u ∈ PAPω,c(R : Y ). Then the mapping
t 7→ f(t, u(t)), t ∈ R belongs to the space PAPω,c(R : X) provided that the
following conditions hold:
(a) The set {c−t/ωf(t, ct/ωy) : t ∈ R, y ∈ B} is bounded for every

bounded subset B ⊆ Y.
(b) c−t/ωf(t, ct/ωy) is uniformly continuous in each bounded subset of Y

uniformly in t ∈ R.

Consider the semilinear fractional Cauchy inclusion

(149) Dγ
t,+u(t) ∈ Au(t) + f(t, u(t)), t ∈ R,

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1],

f : R→ X satisfies certain properties, and A is a closed multivalued linear operator
in X satisfying condition (P). Then there exists a finite constant M0 > 0 such that
the degenerate strongly continuous semigroup (T (t))t>0 ⊆ L(X) generated by A
satisfies the estimate ‖T (t)‖ 6 M0e

−attβ−1, t > 0. By a mild solution of problem
(149), we mean any continuous function t 7→ u(t), t ∈ R satisfying

u(t) =

∫ t

−∞
T (t− s)f(s, u(s)) ds, t ∈ R.

We will use the following auxiliary result:

Lemma 2.8.46. (see the proof of [234, Lemma 2.12.3]) Suppose that f : R→ X
is pseudo-almost periodic (pseudo-almost automorphic) and (R(t))t>0 ⊆ L(X,Y )
is a strongly continuous operator family satisfying that ‖R(t)‖ 6Me−bttβ−1, t > 0
for some finite numbers M > 1, b > 0 and β ∈ (0, 1]. Then the function F (t) :=∫ t
−∞R(t − s)f(s) ds, t ∈ R is well-defined and pseudo-almost periodic (pseudo-

almost automorphic).

Suppose now that

(150) 0 < M0/(a+ (ln |c|/ω)) < 1

and define the mapping

Pu : PAPω,c(R : X)→ PAPω,c(R : X), resp. Pu : PAAω,c(R : X)→ PAAω,c(R : X),

by

(Pu)(t) :=

∫ t

−∞
T (t− s)f(s, u(s)) ds, t ∈ R.

Under certain assumptions, the mapping f(·, u(·)) belongs to the class PAPω,c(R :
X), resp. PAAω,c(R : X). Using the decomposition∫ t

−∞
T (t− s)f(s, u(s)) ds =

∫ t

−∞

[
c−

t−s
ω T (t− s)

][
c−

s
ω f(s, u(s))

]
ds, t ∈ R,
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the estimate (150) yields that the mapping t 7→
∫ t
−∞ T (t − s)f(s, u(s)) ds, t ∈ R

belongs to the class PAPω,c(R : X), resp. PAAω,c(R : X). Hence, the mapping
P (·) is well defined. Using a simple calculation, we get that:

‖Pu‖ω,c 6
M0

a+ (ln |c|/ω)
‖Pu‖ω,c, u ∈ PAPω,c(R : X)

[
u ∈ PAAω,c(R : X)

]
.

Applying the Banach contraction principle, we get that the mapping P (·) has a
unique fixed point, so that there exists a unique solution of the abstract semilinear
Cauchy inclusion (149) which belongs to the class PAPω,c(R : X), resp. PAAω,c(R :
X).

2.8.5. (ω, c)-Almost periodic distributions. Almost periodic distributions
extending the classical Bohr and Stepanov almost periodic functions are introduced
by L. Schwartz, see [329]. Asymptotical almost periodicity of Schwartz distribu-
tions was introduced by I. Cioransescu [111] (see also [79]-[82]).

This subsection introduces and investigates (ω, c)−almost periodicity (resp.
asymptotic (w, c)−almost periodicity) in the setting of Schwartz-Sobolev distribu-
tions. For simplicity, we will consider only scalar-valued distributions because the
extensions to the vector-valued case are straightforward. For more details about
(asymptotically) almost periodic distributions and ultradistributions, see [234], the
papers by B. Stanković [335]-[336] and the list of references therein.

By D = C∞0 (R), E = C∞(R) and S = S(R) we denote the Schwartz spaces
of test functions, endowed with the usual topologies. If ∅ 6= Ω ⊆ R, then by
DΩ we denote the subspace of D consisting of those functions ϕ ∈ D for which
supp(ϕ) ⊆ Ω; D0 ≡ D[0,∞) and D′ := L(D,C) stands for the space consisting of all
scalar-valued distributions.

We will first introduce the space of smooth (w, c)−almost periodic functions
and investigate some of their basic properties. We will use the following notations:
(151)

ϕw,c (·) = c−
(·)
w ϕ (·) , ϕ ∈ C∞ or Lp, 1 6 p 6 +∞ and Tw,c = c−

(·)
w T, T ∈ D′,

where the equality is taken in the usual (resp. Lebesgue, distributional) sense.
To construct the (w, c)−smooth almost periodic functions, we need to intro-

duce some new functional spaces. Let p ∈ [1,+∞] and f(·) a complex valued
measurable function on R.

We say that f(·) is a (w, c)−Lebesgue function with exponent p, if∫
R

|fw,c (t)|p dt

 1
p

<∞, for 1 6 p < +∞,

and

sup
t∈R
|fw,c (t)| <∞, for p = +∞.

We denote by Lpw,c the set of (w, c)−Lebesgue functions with exponent p, i.e.,

Lpw,c := {f : R −→ C measurable ; fw,c ∈ Lp} .
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When c = 1, Lpw,c := Lp is the classical Lebesgue space over R.

Proposition 2.8.47. The space Lpw,c endowed with the (w, c)−norm

‖f‖
L
p
w,c

:= ‖fw,c‖Lp , for 1 6 p < +∞,

and
‖f‖

L∞w,c
:= ‖f‖w,c , for p = +∞,

is a Banach space.

Proposition 2.8.48. D is dense in Lpw,c; 1 6 p <∞.
Proof. Since D is dense in the space Cc of continuous functions with compact

support, it suffices to show that Cc is dense in Lpw,c for 1 6 p <∞.
Let S be the set of all simple measurable functions s, with complex values,

defined on R and such that

m
(
{t : s (t) 6= 0}

)
<∞.

First, it is clear that S is dense in Lpw,c for 1 6 p <∞. Indeed, as c−
t
w s ∈ Lp, then

S ⊆ Lpw,c. Suppose f ∈ Lpw,c is positive and define the sequence (sn)n such that

0 6 s1 6 s2 6 ... 6 f, and for each t ∈ R, sn (t) −→ f (t) when n −→ +∞.

Then (f − sn)w,c = c−
t
w (f − sn) ∈ Lp, hence sn ∈ S. Furthermore, since∣∣∣c− t

w (f − sn)
∣∣∣p 6 fp,

Lebesgue’s dominated convergence theorem shows that∥∥∥(f − sn)w,c

∥∥∥
Lp

=
∥∥∥c− t

w (f − sn)
∥∥∥
Lp

−→ 0

when n −→ +∞. Hence, ‖f − sn‖Lpw,c −→ 0 when n −→ +∞. On the other hand,

by Lusin’s theorem, for s ∈ S and ε > 0, there exists g ∈ Cc such that g (t) = s (t) ,
except on a set of measure less than ε, and |g| 6 ‖s‖∞ , and since s takes only a
finite number of values, there exists a constant C > 0 which depends on c and w
such that∥∥∥(g − s)w,c

∥∥∥
Lp

=

∫
R

∣∣∣c− t
w (g (t)− s (t))

∣∣∣p dt
 1

p

6 2Cε
1
p ‖s‖∞ .

The density of S in Lpw,c completes the proof. �

We define

DLpw,c :=
{
ϕ ∈ C∞ : ϕ(j)

w,c ∈ DLp , j ∈ N
}
.

When c = 1, we get DLpw,c := DLp . Moreover, it is easy to show that the space
DLpw,c , 1 6 p 6 ∞, endowed with the topology defined by the following countable
family of norms

|ϕ|k,p;w,c :=
∑
j6k

∥∥∥(ϕw,c)
(j)
∥∥∥
Lp
, k ∈ N,

is a Fréchet subspace of C∞.
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Proposition 2.8.49. Let 1 6 p 6∞. If ϕ, ψ ∈ DLp2w,c , then ϕψ ∈ DLpw,c .

Proof. Let ϕ, ψ ∈ DLp2w,c , then ϕ2w,c ∈ DLp and ψ2w,c ∈ DLp , j ∈ N. So

ϕ
(j)
2w,c ∈ Lp and ψ

(j)
2w,c ∈ Lp. By Leibniz’s rule, we obtain

(152)(
(ϕψ)w,c

)(j)

=
(
c−

t
2wϕc−

t
2wψ

)(j)

= (ϕ2w,cψ2w,c)
(j)

=

j∑
i=1

(
i
j

)
ϕ

(i)
2w,cψ

(j−i)
2w,c ∈ Lp.

This shows that

(ϕψ)w,c ∈ DLp .
Hence, ϕψ ∈ DLpw,c . �

The following result shows that the family of norms |·|k,p;w,c is submultiplica-
tive.

Proposition 2.8.50. Let 1 6 p 6 ∞, if ϕ, ψ ∈ DLp2w,c , then for all k ∈ N,
there exists Ck > 0 such that

|ϕψ|k,p;w,c 6 Ck |ϕ|k,p;2w,c . |ψ|k,p;2w,c .

Proof. Let ϕ, ψ ∈ DLp2w,c . We have

∑
j6k

∥∥∥∥((ϕψ)w,c

)(j)∥∥∥∥
Lp

=
∑
j6k

∥∥∥∥∥
j∑
i=1

(
i
j

)
(ϕ2w,c)

(i) (ψ2w,c)
(j−i)

∥∥∥∥∥
Lp

6
∑
j6k

j∑
i=1

(
i
j

)∥∥∥(ϕ2w,c)
(i) (ψ2w,c)

(j−i)
∥∥∥
Lp

6
∑
j6k

j∑
i=1

(
i
j

)∥∥∥(ϕ2w,c)
(i)
∥∥∥
Lp

∑
j6k

j∑
i=1

(
i
j

)∥∥∥(ψ2w,c)
(j−i)

∥∥∥
Lp
.

So, there exists

Ck =

∑
j6k

j∑
i=1

(
i
j

)2

> 0

such that

|ϕψ|k,p;w,c 6 Ck |ϕ|k,p;2w,c . |ψ|k,p;2w,c .
�

For 1 6 p <∞, we have D ⊆ DLpw,c ⊆ DL∞w,c . Moreover, we have the following
result.

Proposition 2.8.51. For 1 6 p <∞, the space D is dense in DLpw,c .

Proof. It follows from the fact that DLpw,c ⊆ Lpw,c and the density of D in
Lpw,c, see Proposition 2.8.48. �
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The space D is not dense in DL∞w,c . We then define
.

DL∞w,c as the subspace of
all functions in DL∞w,c which vanish at infinity with all their derivatives. This space

is the closure of the space DL∞w,c in D. It is clear that
.

DL∞w,c is a closed subspace
of DL∞w,c , hence it is a Fréchet space. Moreover, it is easy to check the following
properties on the structure of DLpw,c .

Proposition 2.8.52. For 1 6 p <∞, we have

DLpw,c ↪→
.

DL∞w,c ↪→ DL∞w,c ,

with continuous embedding.

Recall also the following space of smooth almost periodic functions introduced
by L. Schwartz

Bap :=
{
ϕ ∈ DL∞ : ϕ(j) ∈ AP, j ∈ N

}
.

We have the following properties of Bap.

Proposition 2.8.53. (i) Bap = AP ∩ DL∞ .
(ii) Bap is a closed differential subalgebra of DL∞ .
(iii) If f ∈ L1 and ϕ ∈ Bap, then f ∗ ϕ ∈ Bap.

Proof. See [329]. �

Now, we can introduce the space of smooth (w, c)−almost periodic functions.

Definition 2.8.54. The space of smooth (w, c)−almost periodic functions on
R, is defined by

BAPw,c :=
{
ϕ ∈ DL∞w,c : ϕ(j)

w,c ∈ Bap, j ∈ N
}
.

We endow BAPw,c with the topology induced by DL∞w,c . Some properties of
BAPw,c are given in the following

Proposition 2.8.55. (i) BAPw,c = APw,c ∩ DL∞w,c .
(ii) BAPw,c is a closed subspace of DL∞w,c .
(iii) If f ∈ L1

w,c and ϕ ∈ BAPw,c , then c
t
w (fw,c ∗ ϕw,c) ∈ BAPw,c .

Proof. (i): Obvious.
(ii): It follows from (i) and the completeness of (AP, ‖·‖∞) .
(iii): If f ∈ L1

w,c and ϕ ∈ BAPw,c , then fw,c ∈ L1 and ϕw,c ∈ Bap. From
Proposition 2.8.53, we have fw,c ∗ ϕw,c ∈ Bap; hence

c−
t
w

(
c
t
w (fw,c ∗ ϕw,c)

)
∈ Bap,

which shows that c
t
w (fw,c ∗ ϕw,c) ∈ BAPw,c . �

Corollary 2.8.56. If f ∈ DL∞w,c and c
t
w (fw,c ∗ ϕw,c) ∈ APw,c, ∀ϕ ∈ D, then

f ∈ BAPw,c .
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Remark 2.8.57. It is clear that BAPw,c ⊆ APw,c ∩ C∞, whereas the converse
inclusion is not true. Indeed, the function

f (t) = 2−t
√

2 + cos t+ cos
√

2t, t ∈ R

is an element of APw,c ∩ C∞ with c = 2 and w = 1. However

f ′ (t) = 2−t

(
− sin t−

√
2 sin

√
2t

2
√

2 + cos t+ cos
√

2t
− ln 2

√
2 + cos t+ cos

√
2t

)
, t ∈ R

is not bounded, because inf
t∈R

(
2 + cos t+ cos

√
2t
)

= 0 and therefore

− sin t−
√

2 sin
√

2t

2
√

2 + cos t+ cos
√

2t
/∈ AP.

Hence, f /∈ BAPw,c .

Now we would like to introduce the concept of (w, c)−almost periodicity in
the setting of Sobolev-Schwartz distributions. For this we need to introduce the
so-called space of Lpw,c−distributions, 1 6 p 6 ∞. We first recall the space of
Lp−distributions, 1 6 p 6 ∞, which has been introduced for the first time by L.
Schwartz in [329]. L. Schwartz has introduced the space D′Lp as topological dual
of DLq , 1

p + 1
q = 1. These spaces is related to Sobolev spaces; for more details, see

[42] and [329].

Definition 2.8.58. Let 1 < p 6 ∞, the space D′Lp is the topological dual of
DLq , where 1

p + 1
q = 1. An element of D′L∞ is called a bounded distribution.

Theorem 2.8.59. Let T ∈ D′. Then the following statements are equivalent:

(i) T ∈ D′Lp .
(ii) T ∗ ϕ ∈ Lp, ϕ ∈ D.

(iii) ∃k ∈ N,∃ (fj)06j6k ⊆ L
p : T =

k∑
j=0

f
(j)
j .

Proof. See [42] or [329]. �

Thanks to the density of the space D in DLpw,c , 1 6 p < ∞, (resp.
.

DL∞w,c),
we have that the space DLpw,c (resp.

.

DL∞w,c) is a normal space of distributions,

i.e., the elements of topological dual of DLpw,c (resp.
.

DL∞w,c) can be identified with
continuous linear forms on D.

Definition 2.8.60. For 1 < p 6 ∞, we denote by D′
Lpw,c

the topological dual

of DLqw,c , where 1
p + 1

q = 1.

The following spaces of Lpw,c−distributions are needed to define and study the
(w, c)−almost periodicity of distributions.
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Definition 2.8.61. (i) The topological dual of DL1
w,c
, denoted by B′w,c, is called

the space of (w, c)−bounded distributions.

(ii) The topological dual of
.

DL∞w,c , denoted by D′L1
w,c
, is called the space of

(w, c)−integrable distributions.

By applying Theorem 2.8.59, we can easily show the following characterizations
of Lpw,c−distributions:

Theorem 2.8.62. Let T ∈ D′. Then the following statements are equivalent:

(i) T ∈ D′
Lpw,c

.

(ii) c
t
w (Tw,c ∗ ϕ) ∈ Lpw,c, ϕ ∈ D.

(iii) ∃k ∈ N,∃ (fj)06j6k ⊆ L
p
w,c : T = c

t
w

k∑
j=0

(fw,c)
(j)
j , where

(
(fw,c)j

)
06j6k

=
(
c−

t
w fj

)
06j6k

.

Remark 2.8.63. As a consequence of Theorem 2.8.62, we have that T ∈ D′
Lpw,c

if and only if Tw,c ∈ D′Lp .

Returning to the notation (151) , we recall that a distribution T ∈ D′ is zero
on an open subset V of R if

〈T, ϕ〉 = 0, ∀ϕ ∈ D (V ) ,

and that two distributions T, S ∈ D′ coincide on V if T − S = 0 on V.

Lemma 2.8.64. Let f ∈ C∞ and T ∈ D′. If fT = 0, then T = 0 on the set
G = {x ∈ R : f (x) 6= 0} .

Proof. Let ϕ ∈ D with supp(ϕ) ⊆ G. Then we have

〈T, ϕ〉 =

〈
T, f

ϕ

f

〉
=

〈
fT,

ϕ

f

〉
= 0,

because ϕ
f ∈ D and by hypothesis fT = 0. �

Proposition 2.8.65. Let T ∈ D′. Then T ∈ D′
Lpw,c

, 1 6 p 6∞, if and only if,

there exists S ∈ D′Lp , 1 6 p 6∞, such that T = c
t
wS in D′.

Proof. (→) : If T ∈ D′
Lpw,c

, then we have (see Remark 2.8.63) Tw,c = c−
t
w T ∈

D′Lp , so there exists S ∈ D′Lp such that c−
t
w T−S = 0 inD′Lp , i.e., c−

t
w

(
T − c twS

)
=

0 in D′Lp . By applying Lemma 2.8.64, it follows that

T = c
t
wS in D′.

(←) : Suppose that T ∈ D′ and there exists S ∈ D′Lp , 1 6 p 6 ∞, such that

T = c
t
wS in D′ > Then c−

t
w T = S ∈ D′Lp and hence T ∈ D′

Lpw,c
. �
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Recall that the space B′ap of almost periodic distributions which was introduced
and studied by L. Schwartz is based on the topological definition of Bochner’s almost
periodic functions. Let h ∈ R and T ∈ D′, the translated of T by h, denoted by
τhT, is defined by

〈τhT, ϕ〉 := 〈T, τ−hϕ〉 , ϕ ∈ D,
where τ−hϕ (x) := ϕ (x+ h) .

The following result gives the basic characterizations of Schwartz almost peri-
odic distributions.

Theorem 2.8.66. For any bounded distribution T ∈ D′L∞ , the following state-
ments are equivalent:

(i) The set {τhT : h ∈ R} is relatively compact in D′L∞ .
(ii) T ∗ ϕ ∈ AP, ϕ ∈ D.

(iii) ∃k ∈ N, ∃ (fj)06j6k ⊆ AP : T =
k∑
j=0

f
(j)
j .

Proof. See [329]. �

The following proposition summarizes the main properties of B′ap.

Proposition 2.8.67. (i) If T ∈ B′ap, then T (j) ∈ B′ap, j ∈ N.
(ii) Bap × B

′

ap ⊆ B
′

ap.
(iii) B′ap ∗ D′L1 ⊆ B′ap.

Proof. See [329]. �

Now we will introduce the following concept:

Definition 2.8.68. A distribution T ∈ B′w,c is said to be (w, c)−almost peri-

odic, if and only if, Tw,c ∈ B
′

ap, i.e., the set {τhTw,c : h ∈ R} is relatively compact

in D′L∞ . The set of (w, c)−almost periodic distributions is denoted by B′APw,c .

Example 2.8.69. (i) The associated distribution of a (w, c)−almost periodic
function (resp. Stepanov (p, w, c)−almost periodic function) is an (w, c)−almost
periodic distribution, i.e.

APw,c ↪→ B′APw,c (resp. SpAPw,c ↪→ B′APw,c).

(ii) When c = 1 it follows that B′APw,c := B′ap.

The main characterizations of (w, c)−almost periodic distributions are given
in the following

Theorem 2.8.70. Let T ∈ B′w,c. Then the following statements are equivalent:

(i) T ∈ B′APw,c .
(ii) c

t
w (Tw,c ∗ ϕ) ∈ APw,c, ϕ ∈ D.
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(iii) ∃k ∈ N, ∃ (fj)06j6k ⊆ APw,c : T = c
t
w

k∑
j=0

(fw,c)
(j)
j , where(

(fw,c)j

)
06j6k

=
(
c−

t
w fj

)
06j6k

.

Proof. Since for every T ∈ B′APw,c , we have Tw,c ∈ B
′

ap; hence, the result

follows immediately from Theorem 2.8.66. �

The main propreties of B′APw,c are given in the following proposition.

Proposition 2.8.71. (i) If T ∈ B′APw,c , then c
t
w (Tw,c)

(j) ∈ B′APw,c , j ∈
N.

(ii) If ϕ ∈ BAPw,c and T ∈ B′APw,c , then ϕw,cT ∈ B′APw,c .
(iii) If T ∈ B′APw,c and S ∈ D′L1

w,c
, then c

t
w (Tw,c ∗ Sw,c) ∈ B′APw,c .

Proof. (i) Obvious.
(ii) If ϕ ∈ BAPw,c and T ∈ B′APw,c , then ϕw,c ∈ Bap and Tw,c ∈ B′ap. From

Proposition 2.8.67(ii), we get ϕw,cTw,c ∈ B′ap and therefore

c−
t
w

(
c
t
w (ϕw,cTw,c)

)
∈ B′ap,

which gives

c
t
w (ϕw,cTw,c) ∈ B′APw,c .

Hence, ϕw,cT ∈ B′APw,c .
(iii) Let T ∈ B′APw,c and S ∈ D′L1

w,c
. Then Tw,c ∈ B′ap and Sw,c ∈ D′L1 . Accord-

ing to Proposition 2.8.67(iii), we have Tw,c ∗ Sw,c ∈ B′ap, and

c−
t
w

(
c
t
w (Tw,c ∗ Sw,c)

)
∈ B′ap.

Hence, c
t
w (Tw,c ∗ Sw,c) ∈ B′APw,c . �

The following result shows that BAPw,c is dense in B′APw,c .

Proposition 2.8.72. Let T ∈ B′w,c. Then T ∈ B′APw,c , if and only if, there

exists (ϕn)n∈N ⊆ BAPw,c such that lim
n→+∞

ϕn = T in B′w,c.

Proof. If T ∈ B′APw,c , then Tw,c ∈ B′ap and from the density of Bap in B′ap
there exists (ψn)n∈Z+

⊆ Bap such that

lim
n→+∞

ψn = Tw,c in D
′

L∞ ;

this is equivalent to

c
t
w lim
n→+∞

ψn = lim
n→+∞

(
c
t
wψn

)
= c

t
w Tw,c = T in B

′

w,c.

Hence, there exists (ϕn)n∈Z+
=
(
c
t
wψn

)
n∈N
⊆ BAPw,c such that

lim
n→+∞

ϕn = T in B
′

w,c.
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�

Now we will introduce the concept of asymptotic (w, c)−almost periodicity
of distributions. Asymptotically almost periodic Schwartz distributions have been
introduced and studied by I. Cioranescu in [111]. We recall the definition and some
properties of asymptotically almost periodic Schwartz distributions (R+ ≡ [0,∞)).

Definition 2.8.73. A distribution T ∈ D′L∞ is called vanishing at infinity if

∀ϕ ∈ D, lim
h→+∞

〈τ−hT, ϕ〉 = 0 in C.

Denote by B′0+ the space of bounded distributions vanishing at infinity.

Definition 2.8.74. A distribution T ∈ D′L∞ is called asymptotically almost
periodic if there exist R ∈ B′ap and S ∈ B′0+ such that T = R+S on R+. The space
of asymptotically almost periodic Schwartz distributions is denoted by B′aap (R+).

Proposition 2.8.75. If T ∈ B′aap (R+), the decomposition T = R + S on R+,
is unique in D′L∞ .

Proof. See [111]. �

Set D+ := {ϕ ∈ D : supp(ϕ) ⊆ R+} . Then we have the following characteriza-
tion of space B′aap (R+) .

Theorem 2.8.76. Let T ∈ D′L∞ . Then the following assertions are equivalent:

(i) T ∈ B′aap (R+) .

(ii) T ∗ g
ϕ ∈ AAP (R+) , ϕ ∈ D+, where

g
ϕ (x) := ϕ (−x) .

(iii) ∃k ∈ N,∃ (fj)06j6k ⊆ AAP (R+) : T =
k∑
j=0

f
(j)
j on R+.

Proof. See [111]. �

Asymptotic (w, c)−almost periodicity of distributions is introduced in the fol-
lowing definition:

Definition 2.8.77. Let c ∈ C, |c| > 1 and w > 0. Then a distribution T ∈ B′w,c
is said to be asymptotically (w, c)−almost periodic, if and only if, Tw,c ∈ B′aap (R+) .
The space of asymptotically (w, c)−almost periodic distributions is denoted by
B′AAPw,c (R+) .

Remark 2.8.78. (i) When c = 1 it follows that B′AAPw,c (R+) := B′aap (R+).

(ii) The associated distribution of an asymptotically (w, c)−almost periodic
function (resp. asymptotically Stepanov (p, w, c)−almost periodic function) is
asymptotically (w, c)−almost periodic distribution.

Let us define now the space
(
B′w,c

)
0+

of (w, c)−bounded distributions vanishing

at infinity as follows:

Definition 2.8.79. Let c ∈ C, |c| > 1 and w > 0. A distribution T ∈ B′w,c is
said to be (w, c)−bounded distribution vanishing at infinity, if and only if, Tw,c ∈
B′0+.
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We have the following result.

Theorem 2.8.80. Let c ∈ C, |c| > 1, w > 0 and T ∈ B′w,c. Then T ∈
B′AAPw,c (R+) , if and only if, there exist R ∈ B′APw,c and S ∈

(
B′w,c

)
0+

such that

(153) T = R+ S on R+.

Proof. (=⇒) : Let T ∈ B′AAPw,c (R+) . Then Tw,c ∈ B′aap (R+) and by defini-

tion 2.8.74, there exist P ∈ B′ap and Q ∈ B′0+ such that Tw,c = P + Q on R+. On
the other hand, we have

Tw,c = c−
t
w T = P +Q =⇒

〈
c−

t
w T, ϕ

〉
= 〈P,ϕ〉+ 〈Q,ϕ〉 , ∀ϕ ∈ D

=⇒ 〈T, ψ〉 =
〈
c
t
wP,ψ

〉
+
〈
c
t
wQ,ψ

〉
, ∀ψ = c−

t
wϕ ∈ D.

Thus there exist R = c
t
wP ∈ B′APw,c and S = c

t
wQ ∈

(
B′w,c

)
0+

such that T = R+S

on R+.
(⇐=) : If there exist R ∈ B′APw,c and S ∈

(
B′w,c

)
0+

such that T = R + S

on R+, then c−
t
w T = c−

t
wR + c−

t
wS on R+, i.e. Tw,c = Rw,c + Sw,c on R+,

where Rw,c ∈ B′ap and Sw,c ∈ B′0+; hence Tw,c ∈ B′aap (R+) , which shows that
T ∈ B′AAPw,c (R+) . �

Proposition 2.8.81. The decomposition (153) is unique in B′w,c.

Proof. Suppose that T ∈ B′AAPw,c (R+) is such that T = R+S on R+, where

R ∈ B′APw,c and S ∈
(
B′w,c

)
0+
. Then the result follows from the proof of the

implication (⇐=) of Theorem 2.8.80 and the uniqueness of the decomposition of
asymptotically almost periodic distributions. �

Some characterizations of asymptotically (w, c)−almost periodic distributions
are given in the following result:

Theorem 2.8.82. Let c ∈ C, |c| > 1, w > 0 and T ∈ B′w,c. The following
assertions are equivalent:

(i) T ∈ B′AAPw,c (R+) .

(i) c
t
w

(
Tw,c ∗

g
ϕ
)
∈ AAPw,c (R+) , ϕ ∈ D+, where

g
ϕ (x) := ϕ (−x) .

(iii) ∃k ∈ N, ∃ (fj)06j6k ⊆ AAPw,c (R+) : T = c
t
w

k∑
j=0

(fw,c)
(j)
j on R+, where(

(fw,c)j

)
06j6k

=
(
c−

t
w fj

)
06j6k

.

Proof. It is clear that if T ∈ B′AAPw,c (R+) then Tw,c ∈ B′aap (R+) . Applying

Theorem 2.8.76, we obtain the result. �

2.8.6. Linear differential equations in B′APw,c . In this subsection, we will

study the existence of distributional (w, c)−almost periodic solutions of the follow-
ing system of linear ordinary differential equations

(154) T ′ = AT + S,
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where A = (aij)16i,j6k , k ∈ N, is a given square matrix of complex numbers,

S = (Si)16i6k ∈ (D′)k is a vector distribution and T = (Ti)16i6k is the unknown
vector distribution.

First, consider the system (154) with S ∈ (AP )
k

and let us recall the following
result.

Theorem 2.8.83. If the matrix A has no eigenvalues with real part zero, then

for any S ∈ (AP )
k
, there exists a unique solution T ∈ (AP )

k
of the system (154) .

Proof. See [111]. �

Let Ik be the unit matrix of order k. The following result gives the (w, c)−almost
periodicity of the solution (if it exists) of the system (154).

Theorem 2.8.84. Let S ∈
(
B′APw,c

)k
. If the matrix A− log c

w Ik has no eigen-

values with real part zero, then the system (154) admits a unique solution T ∈(
D′L∞w,c

)k
which is an (w, c)−almost periodic vector distribution.

Proof. Let ϕ ∈ D. We have

(155) c−
t
w T ′ ∗ ϕ =

(
c−

t
w T ∗ ϕ

)′
+

log c

w
c−

t
w T ∗ ϕ.

On the other hand, if T ∈
(
D′L∞w,c

)k
satisfies system (154) , then

c−
t
w T ′ ∗ ϕ = Ac−

t
w T ∗ ϕ+ c−

t
wS ∗ ϕ.

So from (155), we have(
c−

t
w T ∗ ϕ

)′
=

(
A− log c

w
Ik

)
c−

t
w T ∗ ϕ+ c−

t
wS ∗ ϕ,

i.e.

(156) (Tw,c ∗ ϕ)
′

=

(
A− log c

w
Ik

)
(Tw,c ∗ ϕ) + Sw,c ∗ ϕ,

where

Tw,c ∗ ϕ =
(
(Tw,c)i ∗ ϕ

)
16i6k

=
((
c−

t
w Ti

)
∗ ϕ
)

16i6k
,

and

Sw,c ∗ ϕ =
(
(Sw,c)i ∗ ϕ

)
16i6k

=
((
c−

t
wSi

)
∗ ϕ
)

16i6k
.

Then the system (156) is equivalent in (C∞)
k

to the following system of differential
equations

P ′ = BP +Q,

with B = A − log c
w Ik, P = Tw,c ∗ ϕ ∈ (C∞)

k
and Q = Sw,c ∗ ϕ ∈ (AP )

k
. Ac-

cording to Theorem 2.8.83, it follows that there exists a unique bounded solution
P which is almost periodic; therefore (Tw,c)i ∗ ϕ ∈ AP, 1 6 i 6 k, ϕ ∈ D; hence
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c
t
w

(
(Tw,c)i ∗ ϕ

)
∈ APw,c, 1 6 i 6 k, ϕ ∈ D. Thus, according to Theorem 2.8.70,

we get (Ti)16i6k ∈
(
B′APw,c

)k
. �

2.8.7. Asymptotically (ω, c)-almost periodic type solutions of abstract
degenerate non-scalar Volterra equations. There are by now only a few rele-
vant references concerning abstract non-scalar Volterra equations, degenerate or
non-degenerate in time variable. Concerning non-degenerate abstract Volterra
equations of non-scalar type, mention should be made of the research monograph
[319] by J. Prüss, the article [220] by M. Jung and the article [237] by M. Kostić.
In [238], we have explained how the methods proposed in [319] and [237] can
be helpful in the analysis of abstract degenerate Volterra equations of non-scalar
type. In this subsection, we initate the study of the existence and uniqueness of
asymptotically almost periodic type solutions of the abstract degenerate non-scalar
Volterra equations. In actual fact, we investigate asymptotically (ω, c)-almost pe-
riodic type solutions of the abstract degenerate non-scalar Volterra equations in
Banach spaces (we can similarly analyze (ω, c)-asymptotically periodic solutions;
the Stepanov, Weyl and Besicovitch generalizations of asymptotically (ω, c)-almost
periodic functions will not be considered, as well).

We will first recall the various notions of (A, k,B)-regularized C-pseudoresolvent
families introduced in [238]; after that, we will analyze the existence and uniqueness
of asymptotically (ω, c)-almost periodic type solutions of the abstract degenerate
Cauchy problem

(157) Bu(t) = f(t) +

t∫
0

A(t− s)u(s) ds, t ∈ [0, τ).

Let (X, ‖·‖) and (Y, ‖·‖)Y be two non-trivial complex Banach spaces such that
Y is continuously embedded in X. Let the operator C ∈ L(X) be injective, and let
τ ∈ (0,∞]. The norm in X, resp. Y, will be denoted by || · ||X , resp. || · ||Y . We use
the symbol B to denote a closed linear operator with domain and range contained
in X; by ‖ · ‖[D(B)] := ‖ · ‖ + ‖B · ‖ we denote the corresponding graph norm and
by [D(B)] = (D(B), ‖ · ‖[D(B)]) we denote the corresponding Banach space. If Z

is a general topological space and Z0 ⊆ Z, then by Z0
Z

we denote the adherence
of Z0 in Z. We will basically follow the notation employed in the monograph of J.
Prüss [319] and our paper [238].

We start by recalling the following notion introduced in [238] (see also [236,
Section 2.9]):

Definition 2.8.85. Let k ∈ C([0, τ)) and k 6= 0, let τ ∈ (0,∞], f ∈ C([0, τ) :
X), and let A ∈ L1

loc([0, τ) : L(Y,X)). Then we say that a function u ∈ C([0, τ) :
[D(B)]) is:

(i) a strong solution of (157) if and only if u ∈ L∞loc([0, τ) : Y ) and (157) holds
on [0, τ),
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(ii) a mild solution of (157) if and only if there exist a sequence (fn) in
C([0, τ) : X) and a sequence (un) in C([0, τ) : [D(B)]) such that un(t) is a
strong solution of (157) with f(t) replaced by fn(t) and that limn→∞ fn(t) =
f(t) as well as limn→∞ un(t) = u(t), uniformly on compact subsets of
[0, τ).

The following definition will be invaluably important in our further work ([238]):

Definition 2.8.86. Let τ ∈ (0,∞], k ∈ C([0, τ)), k 6= 0 and A ∈ L1
loc([0, τ) :

L(Y,X)). A family (S(t))t∈[0,τ) in L(X, [D(B)]) is called an (A, k,B)-regularized
C-pseudoresolvent family if and only if the following holds:

(S1) The mappings t 7→ S(t)x, t ∈ [0, τ) and t 7→ BS(t)x, t ∈ [0, τ) are
continuous in X for every fixed x ∈ X, BS(0) = k(0)C and S(t)C =
CS(t), t ∈ [0, τ).

(S2) Put U(t)x :=
∫ t

0
S(s)x ds, x ∈ X, t ∈ [0, τ). Then (S2) means U(t)Y ⊆ Y,

U(t)|Y ∈ L(Y ), t ∈ [0, τ) and (U(t)|Y )t∈[0,τ) is locally Lipschitz continuous
in L(Y ).

(S3) The resolvent equations

(158) BS(t)y = k(t)Cy +

∫ t

0

A(t− s) dU(s)y, t ∈ [0, τ), y ∈ Y,

(159) BS(t)y = k(t)Cy +

∫ t

0

S(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y,

hold; (158), resp. (159), is called the first resolvent equation, resp. the
second resolvent equation.

An (A, k,B)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be an
(A, k,B)-regularized C-resolvent family if additionally:

(S4) For every y ∈ Y, we have S(·)y ∈ L∞loc([0, τ) : Y ).

An operator family (S(t))t∈[0,τ) in L(X, [D(B)]) is called a weak (A, k,B)-regularized
C-pseudoresolvent family if and only if (S1) and (159) hold. Finally, a weak
(A, k,B)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be a-regular

(a ∈ L1
loc([0, τ))) if and only if a ∗ S(·)x ∈ C([0, τ) : Y ), x ∈ Y X .

As is well known, condition (S3) can be rewritten in the following equivalent
form:

(S3)’

BU(t)y = Θ(t)Cy +

∫ t

0

A(t− s)U(s)y ds, t ∈ [0, τ), y ∈ Y,

BU(t)y = Θ(t)Cy +

∫ t

0

U(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y.

We also need the following definition from [238]:
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Definition 2.8.87. Let k ∈ C([0,∞)), k 6= 0, A ∈ L1
loc([0,∞) : L(Y,X)),

α ∈ (0, π], and let (S(t))t>0 ⊆ L(X, [D(B)]) be a (weak) (A, k,B)-regularized
C-(pseudo)resolvent family. Then it is said that (S(t))t>0 is an analytic (weak)
(A, k,B)-regularized C-(pseudo)resolvent family of angle α, if there exists an ana-
lytic function S : Σα → L(X, [D(B)]) satisfying S(t) = S(t), t > 0,
limz→0,z∈Σγ S(z)x = S(0)x and limz→0,z∈Σγ BS(z)x = BS(0)x for all γ ∈ (0, α)
and x ∈ X. We say that (S(t))t>0 is an exponentially bounded, analytic (weak)
(A, k,B)-regularized C-(pseudo)resolvent family, resp. bounded analytic (weak)
(A, k,B)-regularized C-(pseudo)resolvent family, of angle α, if (S(t))t>0 is an ana-
lytic (weak) (A, k,B)-regularized C-(pseudo)resolvent family of angle α and for
each γ ∈ (0, α) there exist Mγ > 0 and ωγ > 0, resp. ωγ = 0, such that

||S(z)||L(X) + ||BS(z)||L(X) 6 Mγe
ωγ |z|, z ∈ Σγ . Since no confusion seems likely,

we shall identify S(·) and S(·) in the sequel.

In [238], we have also introduced the notion of an (A, k,B)-regularized C-
uniqueness family with a view to analyze the uniqueness of solutions of the abstract
Cauchy problem (157):

Definition 2.8.88. Let τ ∈ (0,∞], k ∈ C([0, τ)), k 6= 0 and A ∈ L1
loc([0, τ) :

L(Y,X)). A strongly continuous operator family (V (t))t∈[0,τ) ⊆ L(X) is said to be
an (A, k,B)-regularized C-uniqueness family if and only if

V (t)By = k(t)Cy +

∫ t

0

V (t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y ∩D(B).

We will use the following statements proved in [238, Proposition 2]:

[P]: Assume that (V (t))t∈[0,τ) is an (A, k,B)-regularized C-uniqueness family,
f ∈ C([0, τ) : X) and u(t) is a mild solution of (157). Then we have (kC ∗ u)(t) =
(V ∗ f)(t), t ∈ [0, τ).

[Q]: Assume that (S(t))t∈[0,τ) is an (A, 1, B)-regularized C-pseudoresolvent

family, C−1f ∈ C([0, τ) : X) and f(0) = 0. Then we know that the following
statements hold:

(a) Let C−1f ∈ ACloc([0, τ) : Y ) and (C−1f)′ ∈ L1
loc([0, τ) : Y ). Then the

function t 7→ u(t), t ∈ [0, τ) given by

u(t) =

t∫
0

S(t− s)(C−1f)′(s) ds =

t∫
0

dU(s)(C−1f)′(t− s)

is a strong solution of (157). Moreover, u ∈ C([0, τ) : Y ).

(b) Let (C−1f)′ ∈ L1
loc([0, τ) : X) and Y

X
= X. Then the function u(t) =∫ t

0
S(t− s)(C−1f)′(s) ds, t ∈ [0, τ) is a mild solution of (157).

(c) Let C−1g ∈W 1,1
loc ([0, τ) : Y

X
), a ∈ L1

loc([0, τ)), f(t) = (a ∗ g)(t), t ∈ [0, τ)

and let (S(t))t∈[0,τ) be a-regular. Then the function u(t) =
∫ t

0
S(t−s)(a∗

(C−1g)′)(s) ds, t ∈ [0, τ) is a strong solution of (157).

The uniqueness of solutions in (a), (b) or (c) holds provided that for each y ∈
Y ∩D(B) we have S(t)By = BS(t)y, t ∈ [0, τ).
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Even in case that B = C = I and k(t) ≡ 1, there exist examples of global not
exponentially bounded (A, k,B)-regularized C-pseudoresolvent families (see e.g.,
[319, Example 6.2, pp. 165-166]). For our purposes, it will be crucial to examine
whether the operator family (S(t))t>0 is exponentially decaying as the time variable
goes to plus infinity. The existence of a number ε0 > 0 such that

(160)

∞∫
0

e−εt
∥∥A(t)

∥∥
L(Y,X)

dt <∞, ε > ε0,

which has been used in [319] and [237]-[238], is not sufficient to ensure the expo-
nential decaying of (S(t))t>0 as t → +∞. Therefore, we must impose some extra
conditions ensuring this property of (S(t))t>0, which will be extremely important
for us.

Now we will state two simple results concerning this problematic. The both of
them are basically deduced in [238]:

Theorem 2.8.89. Assume ε0 > 0, k(t) satisfies (P1), ω > max(abs(k), ε0),
(160) holds, α ∈ (0, π/2], there exists an analytic mapping H : ω + Σπ

2 +α →
L(X, [D(B)]) such that

(i) BH(λ)y − H(λ)Ã(λ)y = k̃(λ)Cy, y ∈ Y, Reλ > ω, k̃(λ) 6= 0; H(λ)C =
CH(λ), Reλ > ω,

(ii) supλ∈ω+Σπ
2

+γ

[∥∥(λ − ω)H(λ)
∥∥
L(X)

+
∥∥(λ − ω)BH(λ)

∥∥
L(X)

]
< ∞ for all

γ ∈ (0, α),
(iii) there exists an operator F ∈ L(X, [D(B)]) such that BFx = k(0)Cx,

x ∈ X and limλ→+∞,k̃(λ) 6=0 λH(λ)x = Fx, x ∈ X, and

(iv) limλ→+∞,k̃(λ)6=0 λBH(λ)x = k(0)Cx, x ∈ X, provided that Y
X 6= X.

If there exists a real number ω0 < 0 such that the mapping H : ω + Σπ
2 +α →

L(X, [D(B)]) can be analytically extended to the sector ω0 + Σπ
2 +α and condition

(ii) holds with the number ω replaced by the number ω0 therein, then there exists
a weak analytic (A, k,B)-regularized C-pseudoresolvent family (S(t))t>0 of angle α
such that

(161) sup
z∈Σγ

[∥∥e−ω0zS(z)
∥∥
L(X)

+
∥∥e−ω0zBS(z)

∥∥
L(X)

]
<∞ for all γ ∈ (0, α).

Proof. By [238, Theorem 3], we know that there exists a weak analytic
(A, k,B)-regularized C-pseudoresolvent family (S(t))t>0 of angle α, satisfying that
the estimate (161) holds with the number ω0 replaced by the number ω. The final
statement follows easily from this fact, [30, Theorem 2.6.1], the uniqueness theorem
for the Laplace transform and the assumption we have made after the formulation
of conditions (i)-(iv). �

We can similarly deduce the validity of the following result which corresponds
to [238, Theorem 4]:
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Theorem 2.8.90. Assume α ∈ (0, π/2], ε0 > 0, k(t) satisfies (P1) and (160)
holds. Let ω > max(abs(k), ε0), and let there exist an analytic mapping H : ω +
Σπ

2 +α → L(X, [D(B)]) such that H|Y : ω + Σπ
2 +α → L(Y ) is an analytic mapping,

as well as that:

(i) One has

sup
λ∈ω+Σπ

2
+γ

[∥∥(λ−ω)H(λ)
∥∥
L(X)

+
∥∥(λ−ω)BH(λ)

∥∥
L(X)

+
∥∥(λ−ω)H(λ)

∥∥
L(Y )

]
<∞

for all γ ∈ (0, α),

(ii) BH(λ)y −H(λ)Ã(λ)y = k̃(λ)Cy, y ∈ Y, Reλ > ω, k̃(λ) 6= 0; BH(λ)y −
Ã(λ)H(λ)y = k̃(λ)Cy, y ∈ Y, Reλ > ω, k̃(λ) 6= 0; H(λ)C = CH(λ),
Reλ > ω0,

(iii) there exists an operator F ∈ L(X, [D(B)]) such that BFx = k(0)Cx,
x ∈ X, limλ→+∞,k̃(λ)6=0 λH(λ)x = Fx, x ∈ X, and

(iv) limλ→+∞,k̃(λ)6=0 λBH(λ)x = k(0)Cx, x ∈ X, provided that Y
X 6= X.

If there exists a real number ω0 < 0 such that the mapping H : ω + Σπ
2 +α →

L(X, [D(B)]) can be analytically extended to the sector ω0 + Σπ
2 +α, the mapping

H|Y : ω + Σπ
2 +α → L(Y ) can be analytically extended to the sector ω0 + Σπ

2 +α,
and condition (i) holds with the number ω replaced by the number ω0 therein, then
there exists an analytic (A, k,B)-regularized C-resolvent family (S(t))t>0 of angle
α such that

sup
z∈Σγ

[∥∥e−ω0zS(z)
∥∥
L(X)

+
∥∥e−ω0zBS(z)

∥∥
L(X)

+ sup
z∈Σγ

∥∥e−ω0zS(z)
∥∥
L(Y )

]
<∞

and the mapping t 7→ U(t) ∈ L(Y ), t > 0 can be analytically extended to the sector
Σα.

Remark 2.8.91. Concerning Theorem 2.8.89, it should be noted that we can
also impose condition that there exist a negative real number ω < 0, a real number
β ∈ (0, 1] and a number α0 ∈ (0, π/2) such that H(·) is analytic on the region
Ω ≡ ω0 + Σ(π/2)+α, continuous on Ω and satisfies the estimate

sup
λ∈Ω

[∥∥(1 + |λ|)−βH(λ)
∥∥
L(X)

+
∥∥(1 + |λ|)−βBH(λ)

∥∥
L(X)

]
<∞.

Then the integral computation carried out in the proof of [30, Theorem 2.6.1]
shows that there exists a weak analytic (A, k,B)-regularized C-pseudoresolvent
family (S(t))t>0 of angle α such that

sup
z∈Σγ

[∥∥e−ω0z|z|β−1S(z)
∥∥
L(X)

+
∥∥e−ω0z|z|β−1BS(z)

∥∥
L(X)

]
<∞ for all γ ∈ (0, α).

A similar comment can be given in the case of consideration of Theorem 2.8.90.

Clearly, it is not trivial to practically verify the requirements of Theorem 2.8.89-
Theorem 2.8.90 as well as that these theorems are not suitable for applications to
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the abstract fractional differential equations of non-scalar type. But, in many
concrete situations, the requirements of these theorems can be very simply verified:

Example 2.8.92. Suppose that X = Y, B = C = I, k(t) ≡ 1, ω0 < 0,
0 < α 6 π/2 and D is a closed linear operator in X such that for each number
γ ∈ (0, α) there exists a finite real number Mγ > 0 such that

sup
λ∈ω0+Σ(π/2)+γ

∥∥∥λ(λ−D)−1
∥∥∥× ∥∥∥(λ− ω0

)
(λ−D)−1

∥∥∥ <∞.
Define A(·) through Ã(λ) := (2D)/(λ) − (D2)/(λ2), λ 6= 0. Then the assumptions
of Theorem 2.8.90 hold true because for each γ ∈ (0, π/2) we have

sup
λ∈ω0+Σ(π/2)+γ

∣∣∣∣∣λ− ω0

λ

∣∣∣∣∣×
∥∥∥∥∥(I − Ã(λ)

)−1
∥∥∥∥∥

= sup
λ∈ω0+Σ(π/2)+γ

∣∣∣∣∣λ− ω0

λ

∣∣∣∣∣×
∥∥∥∥∥
(
I − 2D

λ
+
D2

λ2

)−1∥∥∥∥∥
= sup
λ∈ω0+Σ(π/2)+γ

∥∥∥λ(λ−D)−1
∥∥∥× ∥∥∥(λ− ω0

)
(λ−D)−1

∥∥∥ <∞.
Further possibilities to apply Theorem 2.8.89-Theorem 2.8.90 will be considered

somewhere else. In [237, Theorem 3] and [238, Theorem 2], we have considered
the hyperbolic perturbation results for the abstract non-scalar Volterra equations.
Before proceeding further, we want also to observe that it is very difficult to say
whether the perturbed resolvent solution family will be exponentially decaying if
the initial resolvent solution family is exponentially decaying as time marches to
plus infinity.

Concerning the exponential decaying rate at infinity of an (A, k,B)-regularized
C-pseudoresolvent family (S(t))t>0, we would like to stress that, in [234, Remark
2.6.15], we have presented a simple idea which can be also applied in the qualitative
analysis of asymptotically almost periodic type solutions of the abstract degener-
ate non-scalar Volterra integral equations. This will be the starting point for our
investigations carried out in the remainder of paper. First of all, we will clarify
the following result which can be also formulated for analytic (A, k,B)-regularized
C-pseudoresolvent families:

Proposition 2.8.93. Suppose that z ∈ C, a ∈ L1
loc([0, τ)), k 6= 0, A ∈

L1
loc([0, τ) : L(Y,X)) and (S(t))t∈[0,τ) is an (A, k,B)-regularized C-pseudoresolvent

family (weak (A, k,B)-regularized C-pseudoresolvent family). Define

kz(t) := e−ztk(t), Az(t) := e−ztA(t), and Sz(t) := e−ztS(t), t ∈ [0, τ).

Then (Sz(t))t∈[0,τ) is an (Az, kz, B)-regularized C-pseudoresolvent family (weak
(Az, kz, B)-regularized C-pseudoresolvent family). Furthermore, (S(t))t∈[0,τ) is a-

regular if and only if (Sz(t))t∈[0,τ) is az-regular, where az(t) := e−zta(t), t ∈ [0, τ),
and (Sz(t))t∈[0,τ) is an (Az, kz, B)-regularized C-resolvent family if (S(t))t∈[0,τ) is
an (A, k,B)-regularized C-resolvent family and Re z 6 0.
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Proof. We will provide the main details of proof for (A, k,B)-regularized
C-pseudoresolvent families, only. It is clear that condition (S1) holds true. In order

to show (S2), define Uz(t) :=
∫ t

0
Sz(s)x ds, x ∈ X, t ∈ [0, τ) and observe that the

partial integration implies

Uz(t)x = e−ztU(t)x+ z

∫ t

0

e−zsU(s)x ds, x ∈ X, t ∈ [0, τ).(162)

This simply yields that Uz(t)Y ⊆ Y, Uz(t)|Y ∈ L(Y ), t ∈ [0, τ) and (Uz(t)|Y )t∈[0,τ)

is locally Lipschitz continuous in L(Y ). We will prove only the first resolvent equa-
tion in (S3)’ because the second resolvent equation in (S3)’ [or (S3)] can be deduced
almost trivially. So, let y ∈ Y and t ∈ [0, τ) be fixed. Applying (162) twice and
using the first resolvent equation in (S3)’ for (S(t))t∈[0,τ), we get

BUz(t)y = e−zt

[∫ t

0

e−zsk(s)Cy ds+

∫ t

0

A(t− s)U(s)y ds

]

+ z

∫ t

0

e−zs

[∫ s

0

e−zrk(r)Cy dr +

∫ s

0

A(s− r)U(r)y dr

]
ds

= e−zt

[∫ t

0

e−zsk(s)Cy ds+ zezt
∫ t

0

e−zs
∫ s

0

e−zrk(r)Cy dr ds

]

+

∫ t

0

A(t− s)e−ztU(s)y ds+ z

[
e−z·A(·) ∗ 1 ∗ e−z·U(·)y

]
(t).

The use of partial integration yields that

e−zt

[∫ t

0

e−zsk(s)Cy ds+ zezt
∫ t

0

e−zs
∫ s

0

e−zrk(r)Cy dr ds

]
=

∫ t

0

e−zsk(s)Cy ds

and the required statement simply follows because the above equality yields

BUz(t)y =

∫ t

0

e−zsk(s)Cy ds

+

∫ t

0

e−z(t−s)A(t− s)

[
e−zsU(s)y + z

∫ s

0

e−zrU(r)y dr

]
ds.

In order to see that (S(t))t∈[0,τ) is a-regular if and only if (Sz(t))t∈[0,τ) is az-regular,
it suffices to observe that(

az ∗ Sz(·)x
)
(t) = e−zt(a ∗ S(·)x)(t), t ∈ [0, τ), x ∈ Y X .

The remainder of proof for (A, k,B)-regularized C-resolvent families is trivial. �

Now we will analyze the existence and uniqueness of asymptotically (ω, c)-
almost periodic type solutions of the abstract Cauchy problem (157). First of all,
we will state the following lemma whose proof is very simple and therefore omitted:
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Lemma 2.8.94. Let k ∈ C([0, τ)) and k 6= 0, let τ ∈ (0,∞], z ∈ C, f ∈
C([0, τ) : X), and let A ∈ L1

loc([0, τ) : L(Y,X)). Suppose that (V (t))t∈[0,τ) ⊆ L(X)

is an (A, k,B)-regularized C-uniqueness family. Define fz(t) := e−ztf(t), Vz(t) :=
e−ztV (t) and Az(t) := e−ztA(t) for all t ∈ [0, τ). Then we have:

(i) If u(·) is a strong (mild) solution of problem (157), then uz(·) ≡ e−z·u(·)
is a strong (mild) solution of problem obtained by replacing respectively
f(·) and A(·) in (157) by fz(·) and Az(·).

(ii) (Vz(t))t>0 ⊆ L(X) is an (Az, kz, B)-regularized C-uniqueness family.

Now we will prove the following proposition:

Proposition 2.8.95. Let k ∈ C([0,∞)), k 6= 0, ω0 > 0, ω > 0, 1 > ωω0,
A ∈ L1

loc([0,∞) : L(Y,X)) and (V (t))t>0 ⊆ L(X) is an (A, k,B)-regularized C-
uniqueness family such that ‖V (t)‖ 6 Meω0t, t > 0. If u(·) is a mild solution
of (157) and f(·) is asymptotically (ω, e)-almost periodic (asymptotically (ω, e)-
almost automorphic, asymptotically compactly (ω, e)-almost automorphic), then the
function (kC ∗u)(·) is likewise asymptotically (ω, e)-almost periodic (asymptotically
(ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automorphic).

Proof. Let z = 1/ω.Due to our assumptions, we have that the operator family
(Vz(t) ≡ e−ztV (t))t>0 is exponentially decaying. By Lemma 2.8.94(i), uz(·) is a
strong (mild) solution of problem obtained by replacing respectively f(·) and A(·) in
(157) by fz(·) and Az(·). Due to Lemma 2.8.94(ii), we have that (Vz(t))t>0 ⊆ L(X)
is an (Az, kz, B)-regularized C-uniqueness family. Applying now [P], we get that(

kzC ∗ uz
)
(t) =

(
Vz ∗ fz

)
(t), t > 0,

i.e.,

e−z·
(
kC ∗ u

)
(t) =

(
Vz ∗ fz

)
(t), t > 0.

We have that fz(·) is asymptotically almost periodic (asymptotically almost au-
tomorphic, asymptotically compactly almost automorphic), so that the function
t 7→ (Vz ∗ fz)(t), t > 0 has the same property ([234]). This implies the required
statement. �

It is clear that, if (S(t))t∈[0,τ) ⊆ L(X, [D(B)]) is a weak (A, k,B)-regularized
C-pseudoresolvent family and BS(t)y = S(t)By, t ∈ [0, τ), y ∈ Y ∩ D(B), then
(S(t))t∈[0,τ) ⊆ L(X) is an (A, k,B)-regularized C-uniqueness family. Using this
observation, [P]-[Q] and Proposition 2.8.95, we may deduce the following:

Proposition 2.8.96. Suppose that (S(t))t>0 ⊆ L(X, [D(B)]) is an (A, 1, B)-
regularized C-pseudoresolvent family, BS(t)y = S(t)By, t ∈ [0, τ), y ∈ Y ∩
D(B), ω0 > 0, ω > 0, 1 > ωω0, ‖S(t)‖ 6 Meω0t, t > 0 and f(·) is asymptoti-
cally (ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymptoti-
cally compactly (ω, e)-almost automorphic). Then we have the following:

(i) Let C−1f ∈ ACloc([0,∞) : Y ), (C−1f)′ ∈ L1
loc([0,∞) : Y ) and f(0) = 0.

Then there exists a unique strong solution u(·) of (157); moreover, u ∈
C([0, τ) : Y ) and the mapping t 7→ C

∫ t
0
u(s) ds, t > 0 is asymptotically
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(ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymp-
totically compactly (ω, e)-almost automorphic).

(ii) Let (C−1f)′ ∈ L1
loc([0,∞) : X) and Y

X
= X. Then there exists a unique

mild solution u(·) of (157); moreover, the mapping t 7→ C
∫ t

0
u(s) ds,

t > 0 is asymptotically (ω, e)-almost periodic (asymptotically (ω, e)-almost
automorphic, asymptotically compactly (ω, e)-almost automorphic).

(iii) Let C−1g ∈ W 1,1
loc ([0,∞) : Y

X
), a ∈ L1

loc([0,∞)), f(t) = (a ∗ g)(t), t > 0
and let (S(t))t>0 be a-regular. Then there exists a unique strong solution

u(·) of (157); moreover, the mapping t 7→ C
∫ t

0
u(s) ds, t > 0 is asymp-

totically (ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic,
asymptotically compactly (ω, e)-almost automorphic).

It is worth noting that Proposition 2.8.96 can be deduced directly, as well as
that some sufficient conditions ensuring the above features of mapping t 7→ u(t),
t > 0 can be also achieved. We will explain this only in the case of consideration of
part (i). So, let us assume that (S(t))t>0 ⊆ L(X, [D(B)]) is an (A, 1, B)-regularized
C-pseudoresolvent family as well as that C−1f ∈ ACloc([0,∞) : Y ), (C−1f)′ ∈
L1
loc([0,∞) : Y ) and f(0) = 0. Then the function t 7→ u(t), t > 0 given by u(t) =∫ t
0
S(t− s)(C−1f)′(s) ds is a strong solution of (157). Let ω0 > 0, ω > 0, 1 > ωω0,

let ‖S(t)‖ 6 Meω0t, t > 0, and let the mapping (C−1f)′(·) be asymptotically
(ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymptotically
compactly (ω, e)-almost automorphic). Then we have

e−t/ωu(t) = e−t/ω
∫ t

0

S(t− s)(C−1f)′(s) ds

=

∫ t

0

[
e−(t−s)/ωS(t− s)

][
e−s/ω(C−1f)′(s)

]
ds, t > 0.

Since the operator family (e−t/ωS(t))t>0 is exponentially decaying, it follows that

the function t 7→ e−t/ωu(t), t > 0 is asymptotically almost periodic (asymptotically
almost automorphic, asymptotically compactly almost automorphic). Hence, the
mapping t 7→ u(t), t > 0 is asymptotically (ω, e)-almost periodic (asymptotically
(ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automorphic).

Concerning the abstract non-degenerate Volterra equations of non-scalar type,
it is clear that the above results can be applied to numerous problems in linear
(thermo-)viscoelasticity and electrodynamics with memory (cf. [319, Chapter 9,
Chapter 13] for more details); for example, in the analysis of viscoelastic Timo-
shenko beam in case of non-synchronous materials. In both cases, degenerate and
non-degenerate, we can make many applications of our results with the regulariz-
ing operator C 6= I; see e.g., [237, Corollary 1, Example 1, Example 2] and the
paragraph following [238, Theorem 2].

Finally, we would like to say a few words about the following special class of
the abstract non-degenerate Volterra equations of non-scalar type:

x′(t) = Ax(t) +

∫ t

0

B(t− s)x(s) + f(t), t > 0; x(0) = x0,(163)
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where A generates a strongly continuous semigroup on X and (B(t))t>0 is a family
of linear operators on X such that, for almost every t > 0, the operator B(t) maps
continuously the space Y = [D(A)] into X and there exists a locally integrable
function b : [0,∞)→ [0,∞) such that ‖B(t)y‖L(Y,X) 6 b(t)‖y‖Y for all y ∈ Y and
t > 0; see e.g., [98]-[99], [188]-[189] and [286] for more details about the subject.
By a solution of (163), we mean any function x ∈ C([0,∞) : Y ) ∩ C1([0,∞) : X)
satisfying the initial condition x(0) = x0 and the first equality in (163) identically
for t > 0. In the analysis of (163), the following notion of resolvent family (which is
a very special case of the notion introduced in Definition 2.8.86) plays an important
role:

Definition 2.8.97. (W. Desch, R. Grimmer, W. Schappacher [131, Definition,
pp. 220-221]) A strongly continuous operator family (R(t))t>0 ⊆ L(X) is said to
be a resolvent family for (163) if and only if R(0) = I, the mapping y 7→ R(t)y ∈ Y,
t > 0 belongs to the class C([0,∞) : Y )∩C1([0,∞) : X) and the following resolvent
equations hold:

R′(t)y = AR(t)y +

∫ t

0

B(t− s)R(s)y ds, t > 0

and

R′(t)y = R(t)Ay +

∫ t

0

R(t− s)B(s)y ds, t > 0.

In [131, Proposition 2(c)], it has been proved that any solution of (163) has
the form

x(t) = R(t)x0 +

∫ t

0

R(t− s)f(s) ds, t > 0.

The notion of a resolvent family for (163) has been extended by R. Grimmer
in [187], where the author has analyzed the wellposedness of the following abstract
differential first-oder equation of non-convolution type:

x′(t) = A(t)x(t) +

∫ t

0

B(t, s)x(s) + f(t), x(0) = x0;

here, A(t) and B(t, s) are closed linear operators with fixed domain and the function
f : [0,∞) → X is continuous. In this paper, some particular results are given for
the convolution case B(t, s) ≡ B(t−s) and the usually considered autonomous case
A(t) ≡ A, which turns the above equation in (163). We would like to especially
emphasize that the author has shown, in [187, Theorem 4.1], that there exists an
exponentially decaying resolvent family (R(t))t>0 ⊆ L(X) for (163) which decays
exponentially in time. Hence, we can simply apply many structural results obtained
so far in the analysis of the existence and uniqueness of asymptotically almost
periodic type solutions of (163). As an application, we can consider the existence
and uniqueness of asymptotically almost periodic type solutions of the following
equation

c∆tθ(x, t) + β(0)
∂

∂t
θ(x, t)
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= α0∆xθ(x, t)−
∫ t

−∞
β′(t− s) ∂

∂s
θ(x, s) ds+

∫ t

−∞
α′(t− s)∆xθ(x, s) ds+

∂

∂t
r(x, t),

which arises in the study of heat conduction in materials with memory; see [187]
for further information.

We close this section by recalling that the following special class of second-order
abstract Volterra equations of non-scalar type

(164) u′′(t) = Au(t) +

t∫
0

B(t− s)u(s) ds+ f(t), t > 0, u(0) = x, u′(0) = y,

where A generates a strongly continuous cosine function and B ∈ BVloc([0,∞) :
L([D(A)], X)), has been systematically investigated starting from the 1970s; see
e.g., [85]-[86], [122]-[123], [130], and references cited therein for more details on
the subject. Almost periodic solutions of the abstract second order differential
equations of (164) and their generalizations with the added delay or nonlinear
dissipative terms have been investigated by [15], [35], [207], [173], [300], [312],
[347]; see also the reference list of [234]. We want also to mention an interesting
article [33] by M. Arienmughare and T. Diagana, where the authors have employed
the Drazin inverses to investigate the existence of almost periodic solutions to
some singular systems of first-and second-order differential equations with complex
coefficients (see also [34] and [169]).

2.9. c-Uniformly recurrent functions, c-almost periodic functions and
semi-c-periodic functions

Besides the notion depending on two parameters ω and c, it is meaningful to
consider the following notion depending only on the parameter c. The main aim of
this section is to introduce and analyze the classes of c-almost periodic functions,
c-uniformly recurrent functions, semi-c-periodic functions and their Stepanov gen-
eralizations, where c ∈ Cr {0}. We also introduce and investigate the correspond-
ing classes of c-almost periodic type functions depending on two variables; several
composition principles for c-almost periodic type functions are established in this
direction. We provide some illustrative examples and applications to the abstract
fractional semilinear integro-differential inclusions [before proceeding further, we
would like to note that it is not clear how we can introduce and analyze the notion
of (compact) c-almost automorphicity in a satisfactory way].

We will use the following auxiliary result, whose proof follows from the argu-
mentation used in the proof that every orbit under an irrational rotation is dense
in S1 ≡ {z ∈ C : |z| = 1}; see e.g. the solution given by C. Blatter in [67]:

Lemma 2.9.1. Suppose that c = eiπϕ, where ϕ ∈ (−π, π] r {0} is not rational.
Then for each c′ ∈ S1 there exists a strictly increasing sequence (lk) of positive
integers such that supk∈N(lk+1 − lk) <∞ and |clk − c′| < ε.

Unless stated otherwise, we will always assume here that c ∈ C and |c| = 1.
Let f : I → X be a continuous function and let a number ε > 0 be given. We call
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a number τ > 0 an (ε, c)-period for f(·) if ‖f(t+ τ)− cf(t)‖ 6 ε for all t ∈ I. By
ϑc(f, ε) we denote the set consisting of all (ε, c)-periods for f(·).

We are concerned with the following notion:

Definition 2.9.2. It is said that f(·) is c-almost periodic if and only if for each
ε > 0 the set ϑc(f, ε) is relatively dense in [0,∞). The space consisting of all c-
almost periodic functions from the interval I into X will be denoted by APc(I : X).

If c = −1, then we recover the notion of almost anti-periodicity ([254]).
In general case, it is very simple to prove that the following holds (see e.g., the

proof of [62, Theorem 4◦, p. 2]):

Proposition 2.9.3. Suppose that f : I → X is c-almost periodic. Then f(·)
is bounded.

The following generalization of c-almost periodicity is meaningful, as well:

Definition 2.9.4. Let c ∈ C r {0}. Then a continuous function f : I → X
is said to be c-uniformly recurrent if and only if there exists a strictly increasing
sequence (αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

∥∥f(·+ αn)− cf(·)
∥∥
∞ = 0.(165)

If c = −1, then we also say that the function f(·) is uniformly anti-recurrent. The
space consisting of all c-uniformly recurrent functions from the interval I into X
will be denoted by URc(I : X).

Define now S := N if I = [0,∞), and S := Z if I = R. We will also consider the
following notion:

Definition 2.9.5. Let f ∈ C(I : X). It is said that f(·) is semi-c-periodic if
and only if

∀ε > 0 ∃p > 0 ∀m ∈ S ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
The space of all semi-c-periodic functions will be denoted by SPc(I : X).

Suppose that I = R, f ∈ C(R : X), p > 0 and m ∈ N. Then we have

sup
x∈R

∥∥f(x+mp)− cmf(x)
∥∥ = sup

x∈R

∥∥f(x)− cmf(x−mp)
∥∥

= sup
x∈R

∥∥cm[c−mf(x)− f(x−mp)
]∥∥ = |c|m sup

x∈R

∥∥f(x−mp)− c−mf(x)
∥∥

= sup
x∈R

∥∥f(x−mp)− c−mf(x)
∥∥ ∈ [0,∞].

Therefore, we have the following:

Proposition 2.9.6. Suppose that f ∈ C(I : X). Then f(·) is semi-c-periodic
if and only if

∀ε > 0 ∃p > 0 ∀m ∈ N ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
Furthermore, if I = R, then the above is also equivalent with

∀ε > 0 ∃p > 0 ∀m ∈ −N ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
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It can be very simply shown that any semi-c-periodic function is bounded.
Keeping in mind Proposition 2.9.6 and this observation, we may conclude that the
notion introduced in Definition 2.9.5 is equivalent and extends the notion of semi-
periodicity for case c = 1, introduced by J. Andres and D. Pennequin in [25], and
the notion of semi-anti-periodicity for case c = −1, introduced by B. Chaouchi et
al in [94].

We continue by providing several illustrative examples:

Example 2.9.7. Let f ≡ c 6= 0. Due to (18), f /∈ ANP (R : X) and clearly
f(·) is not semi-anti-periodic. On the other hand, f(·) is periodic and therefore
semi-periodic.

Example 2.9.8. It can be simply verified that the function f(x) := sinx +

sinπx
√

2, x ∈ R is almost anti-periodic but not semi-periodic (see, e.g., [25, Remark
3] and [254, Example 2.1]).

Example 2.9.9. (a slight modification of [25, Example 1]) The function

f(x) :=

∞∑
n=1

eix/(2n+1)

n2
, x ∈ R

is semi-anti-periodic because it is a uniform limit of [π · (2n + 1)!!]-anti-periodic
functions

fN (x) :=

∞∑
n=1

eix/(2n+1)

n2
, x ∈ R (N ∈ N).

On the other hand, the function f(·) cannot be periodic.

Example 2.9.10. Set Qn := {(2n + 1)/(2m + 1) : m, n ∈ Z}. If θ > 0 and∑
λ∈θ·Qn ‖aλ(f)‖ <∞, then the function

f(t) :=
∑

λ∈θ·Qn

aλ(f)eiλt, t ∈ R

is semi-anti-periodic. This can be inspected as in the proof of [25, Proposition 2]
since the function fN (·) used therein is anti-periodic with the anti-period πq1 · · ·
qN/θ.

The following important result holds true:

Proposition 2.9.11. Suppose that f ∈ URc(I : X) and c ∈ C r {0} satisfies
|c| 6= 1. Then f ≡ 0.

Proof. Without loss of generality, we may assume that I = [0,∞). Suppose
to the contrary that there exists t0 > 0 such that f(t0) 6= 0. Inductively, (165)
implies

|c|km− |c|k − 1

n(|c| − 1)
6 ‖f(t)‖ 6 |c|kM − |c|k − 1

n(|c| − 1)
, k ∈ N, t ∈

[
kαn, (k + 1)αn

]
.

(166)
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Consider now case |c| < 1. Let 0 < ε < c‖f(t0)‖. Then (166) yields that there
exist integers k0 ∈ N and n ∈ N such that for each k ∈ N with k > k0 we have
‖f(t)‖ 6 ε/2, t ∈ [kαn, (k + 1)αn]. Then the contradiction is obvious because for
each m ∈ N with m > n there exists k ∈ N such that t0 + αm ∈ [kαn, (k + 1)αn]
and therefore ‖f(t0 + αm)‖ > c‖f(t0)‖ − (1/m) → c‖f(t0)‖ > ε, m → +∞.
Consider now case |c| > 1; let n ∈ N be such that ‖f(t0)‖ > 1/(n(|c| − 1)) and
M := maxt∈[0,2αn] ‖f(t)‖ > 0. Then for each m ∈ N with m > n there exists k ∈ N
such that αm ∈ [(k− 1)αn, kαn] and therefore ‖f(t+αm)‖ 6 1 + |c|M, t ∈ [0, 2αn].
On the other hand, we obtain inductively from (165) that∥∥f(t0 + kαn)

∥∥ > |c|k[∥∥f(t0)
∥∥− 1

n(|c| − 1)

]
+

1

n(|c| − 1)
→ +∞ as k ∈ N,

which immediately yields a contradiction. �

In accordance with the established result, it is reasonable to assume |c| = 1.
This will be our standing assumption till the end of Subsection 2.9.2.

Proposition 2.9.12. Suppose that I = R and f : R → X. Then the function
f(·) is c-almost periodic (c-uniformly recurrent, semi-c-periodic) if and only if the
function f̌(·) is 1/c-almost periodic (1/c-uniformly recurrent, semi-1/c-periodic).

Since for each numbers t, τ ∈ I and m ∈ N we have∣∣∣∥∥f(t+ τ)
∥∥− ‖f(t)‖

∣∣∣ =
∣∣∣∥∥f(t+ τ)

∥∥− ‖cmf(t)‖
∣∣∣ 6 ∥∥f(t+ τ)− cmf(t)

∥∥,
the following result simply follows:

Proposition 2.9.13. Suppose that f : I → X is c-almost periodic (c-uniformly
recurrent, semi-c-periodic). Then ‖f‖ : I → [0,∞) is almost periodic (uniformly
recurrent, semi-periodic).

Further on, we have (x ∈ I, τ > 0, l ∈ N):

f
(
x+ lτ

)
− clf(x) =

l−1∑
j=0

cj
[
f
(
x+ (l − j)τ

)
− cf

(
x+ (l − j − 1)τ

)]
.(167)

Hence, ∥∥∥f(·+ lτ
)
− clf(·)

∥∥∥
∞
6 l
∥∥∥f(·+ τ

)
− cf(·)

∥∥∥
∞
.

The above estimate can be used to prove the following:

Proposition 2.9.14. Let f : I → X be a c-almost periodic function (c-
uniformly recurrent function, semi-c-periodic), and let l ∈ N. Then f(·) is cl-almost
periodic (cl-uniformly recurrent, semi-cl-periodic).

Consider now the following condition:

p ∈ Z r {0}, q ∈ N, (p, q) = 1 and arg(c) = πp/q.(168)

The next corollary of Proposition 2.9.14 follows immediately by plugging l = q :
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Corollary 2.9.15. Let f : I → X be a continuous function, and let (195)
hold.

(i) If p is even and f(·) is c-almost periodic (c-uniformly recurrent, semi-c-
periodic), then f(·) is almost periodic (uniformly recurrent, semi-periodic).

(ii) If p is odd and f(·) is c-almost periodic (c-uniformly recurrent, semi-
c-periodic), then f(·) is almost anti-periodic (uniformly anti-recurrent,
semi-anti-periodic).

Therefore, if arg(c)/π ∈ Q, then the class of c-almost periodic functions (c-
uniformly recurrent functions, semi-c-periodic functions) is always contained in
the class of almost periodic functions (uniformly recurrent functions, semi-periodic
functions); in particular, we have that any almost anti-periodic function (uniformly
anti-recurrent function, semi-anti-periodic function) is almost periodic (uniformly
recurrent, semi-periodic).

Now we will prove the following:

Proposition 2.9.16. Let f : I → X be a continuous function, and let
arg(c)/π /∈ Q.

(i) If f(·) is c-almost periodic, then f(·) is c′-almost periodic for all c′ ∈ S1.
(ii) If f(·) is bounded and c-uniformly recurrent, then f(·) is c′-uniformly

recurrent for all c′ ∈ S1.

Proof. We will prove only (i). Clearly, it suffices to consider the case in
which the function f(·) is not identical to zero. Let c′ ∈ S1 and ε > 0 be fixed;
then the prescribed assumption implies that the set {cl : l ∈ N} is dense in S1

and therefore there exists an increasing sequence (lk) of positive integers such that
limk→+∞ clk = c′. By Proposition 2.9.3, the function f(·) is bounded; let k ∈ N be
such that |clk − c′| < ε/(2‖f‖∞), and let τ > 0 be any (ε/2, clk)-period for f(·).
Then we have∥∥f(x+ τ)− c′f(x)

∥∥ 6 ∥∥f(x+ τ)− clkf(x)
∥∥+

∣∣clk − c′∣∣ · ‖f‖∞ < ε/2 + ε/2 = ε,

for any x ∈ I. This simply completes the proof. �

Proposition 2.9.17. Let f : I → X be a continuous function. Then we have
the following:

(i) If f(·) is semi-c-periodic and arg(c)/π ∈ Q, then f(·) is c′-almost periodic
for all c′ ∈ {cl : l ∈ N}.

(ii) If f(·) semi-c-periodic and arg(c)/π /∈ Q, then f(·) is c′-almost periodic
for all c′ ∈ S1.

Proof. Let ε > 0 be fixed. To prove (i), it suffices to show that f(·) is c-
almost periodic (see Proposition 2.9.14). Since arg(c)/π ∈ Q and (195) holds, then
we have c1+2lq = c for all l ∈ N. Then there exists p > 0 such that, for every
m ∈ N and x ∈ I, we have ‖f(x+mp)− cmf(x)‖ 6 ε. With m = 1 + 2lq, we have
‖f(x + (1 + 2lq)p) − c1+2lqf(x)‖ = ‖f(x + (1 + 2lq)p) − cf(x)‖ 6 ε so that the
conclusion follows from the fact that the set {(1 + 2lq)p : l ∈ N} is relatively dense
in [0,∞). Assume now that arg(c)/π /∈ Q. To prove (ii), it suffices to consider
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case f 6= 0. Observe first that Lemma 2.9.1 yields that there exists a strictly
increasing sequence (lk) of positive integers such that supk∈N(lk+1 − lk) < ∞ and
|clk − c′| < ε/‖f‖∞ for all k ∈ N. With this sequence and the number p > 0 chosen
as above, we have:∥∥f(x+ plk)− c′f(x)

∥∥ 6 ∥∥f(x+ plk)− clkf(x)
∥∥+

∣∣clk − c′∣∣‖f‖∞
6 ε+ ε‖f‖∞/‖f‖∞ = 2ε, x ∈ I, k ∈ N.

Since the set {plk : k ∈ N} is relatively dense in [0,∞), the proof is completed. �

In connection with Proposition 2.9.17(ii), it is natural to ask whether the as-
sumptions that the function f(·) is semi-c-periodic and arg(c)/π /∈ Q imply that
f(·) is semi-c′-almost periodic for all c′ ∈ S1?

We continue by providing the following extension of [254, Theorem 2.2] (see
also [62, pp. 3-4]):

Theorem 2.9.18. Let f : I → X be c-almost periodic (c-uniformly recurrent,
semi-c-periodic), and let α ∈ C. Then we have:

(i) αf(·) is c-almost periodic (c-uniformly recurrent, semi-c-periodic).
(ii) If X = C and infx∈R |f(x)| = m > 0, then 1/f(·) is 1/c-almost periodic

(1/c-uniformly recurrent, semi-1/c-periodic).
(iii) If (gn : I → X)n∈N is a sequence of c-almost periodic functions (c-

uniformly recurrent functions, semi-c-periodic functions) and (gn)n∈N con-
verges uniformly to a function g : I → X, then g(·) is c-almost periodic
(c-uniformly recurrent, semi-c-periodic).

(iv) If a ∈ I and b ∈ Ir{0}, then the functions f(·+a) and f(b ·) are likewise
c-almost periodic (c-uniformly recurrent, semi-c-periodic).

Let us recall that a continuous function f : I → X is called (p, c)-periodic if
and only if f(x+ p) = cf(x), x ∈ I. We say that a function f : I → X is c-periodic
if and only if there exists p > 0 such that the function f(·) is (p, c)-periodic.

Keeping in mind Theorem 2.9.75(iii) and the proofs of [25, Lemma 1, Theorem
1], we can clarify the following extension of [94, Proposition 3]:

Theorem 2.9.19. Let f ∈ Cb(I : X). Then f(·) is semi-c-periodic if and
only if there exists a sequence (fn) of c-periodic functions in Cb(I : X) such that
limn→∞ fn(x) = f(x) uniformly in I.

We continue by providing two illustrative examples:

Example 2.9.20. (see also [254, Example 2.2]) The function f : R→ R given
by f(t) := cos t, t ∈ R is c-almost periodic (c-uniformly recurrent) if and only if
c = ±1, while f(·) is semi-c-periodic if and only if c = 1; the function fϕ : R → R
given by fϕ(t) := eitϕ, t ∈ R (ϕ ∈ (−π, π] r {0}) is c-almost periodic (semi-c-
periodic) for any c ∈ S1, while the function f0(·) is c-almost periodic (c-uniformly
recurrent, semi-c-periodic) if and only if c = 1. Consider now the function g : R→ R
given by g(t) := 2−1 cos 4t + 2 cos 2t, t ∈ R. Then we know that the function g(·)
is (almost) periodic and not almost anti-periodic. Now we will prove that g(·)
is c-almost periodic (c-uniformly recurrent, semi-c-periodic) if and only if c = 1.
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Suppose that (αn) is a strictly increasing sequence tending to plus infinity such
that (c = eiα, α ∈ (−π, π]):

lim
n→+∞

sup
t∈R

∣∣∣2−1 cos
(
4t+ αn

)
2 cos

(
2t+ αn

)
− eiα

[
2−1 cos 4t+ 2 cos 2t

]∣∣∣ = 0.

With t = π, the above implies

lim
n→+∞

[cos 4αn + 4 cos 2αn − 5 cosα] = 0 and lim
n→+∞

5 sinα = 0,(169)

which immediately yields α = 0 or α = π. In the second case, the contradiction
is obvious since the first limit equation in (169) cannot be fulfilled, while the case
α = 0 is possible and equivalent with the usual almost periodicity of g(·).

Example 2.9.21. (see also [25, Example 1] and [94, Example 4, Example 5])
Let p and q be odd natural numbers such that p−1 ≡ 0 (mod q), and let c = eiπp/q.
The function

f(x) :=

∞∑
n=1

eix/(2nq+1)

n2
, x ∈ R

is semi-c-periodic because it is a uniform limit of [π · (1 + 2q) · · · (1 + 2Nq)]-periodic
functions

fN (x) :=

N∑
n=1

eix/(2nq+1)

n2
, x ∈ R (N ∈ N).

Now we will state and prove the following

Proposition 2.9.22. Suppose that f : I → R is c-uniformly recurrent (semi-
c-periodic) and f 6= 0. Then c = ±1 and moreover, if f(t) > 0 for all t ∈ I, then
c = 1.

Proof. We will consider the class of c-uniformly recurrent functions, only,
when we may assume without loss of generality that I = [0,∞). Then f /∈ C0([0,∞) :
R); namely, if we suppose the contrary, then there exists a strictly increasing se-
quence (αn) of positive real numbers such that limn→+∞ αn = +∞ and (165) holds.
In particular, for every fixed number t0 > 0 we have limn→+∞ |f(t0+αn)−cf(t0)| =
0. This automatically yields f(t0) = 0 and, since t0 > 0 was arbitrary, we get f = 0
identically, which is a contradiction. Therefore, there exist a strictly increasing
sequence (tl)l∈N of positive real numbers tending to plus infinity and a positive
real number a > lim supt→+∞ |f(t)| > 0 such that |f(tl)| > a/2 for all l ∈ N. Let
ε > 0 be fixed. Then there exist two real numbers t0 > 0 and n0 ∈ N such that
|f(t + αn) − f(t)| 6 ε for all t > t0 and n > n0. If arg(c) = ϕ ∈ (−π, π], then we
particularly get that for each t > t0 and n > n0 we have:∣∣f(t+ αn)− cosϕ · f(t)

∣∣ 6 ε and
∣∣sinϕ · f(t)

∣∣ 6 ε.
Plugging in the second estimate t = tl for a sufficiently large l ∈ N we get that
| sinϕ| 6 2ε/a. Since ε > 0 was arbitrary, we get sinϕ = 0 and c = ±1. Suppose,
finally, that f(t) > 0 for all t > 0 and c = −1. Then we have f(t+ αn) + f(t) 6 2ε
for all t > t0 and n > n0. Plugging again t = tl for a sufficiently large l ∈ N we get
that a 6 ε for all ε > 0 and therefore a = 0, which is a contradiction. �
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By the proof of Proposition 2.9.22, we have:

Proposition 2.9.23. Suppose that f : I → X is c-uniformly recurrent (semi-
c-periodic) and f 6= 0. Then f /∈ C0(I : X).

We continue by providing some illustrative applications of Proposition 2.9.22:

Example 2.9.24. (i) The function f : R → R, given by (33), is un-
bounded, uniformly continuous and uniformly recurrent. By the forego-
ing, f(·) is c-uniformly recurrent if and only if c = 1.

(ii) The function g : R→ R, given by

g(t) :=

∞∑
n=1

1

n
sin2

( t

3n

)
dt, t ∈ R,

is unbounded, Lipschitz continuous and uniformly recurrent; furthermore,
we have the existence of a positive integer k0 ∈ N such that

1

3kπ

∫ 3kπ

0

g(s) ds >
1

2

(
ln k − 1), k > k0(170)

and

sup
t∈R

∣∣g(t+ 3nπ)− g(t)
∣∣ 6 π

n+ 1

∞∑
j=1

3−j , n ∈ N.(171)

This can be proved in exactly the same way as in the proof of [202,
Theorem 1.1]. Define now f(t) := sin t · g(t), t ∈ R. Then (171) easily
implies

sup
t∈R

∣∣f(t+ 3nπ) + f(t)
∣∣ 6 π

n+ 1

∞∑
j=1

3−j , n ∈ N.

Therefore, f(·) is uniformly anti-recurrent and Proposition 2.9.22 yields
that the function f(·) is c-uniformly recurrent if and only if c = ±1. To
prove that f(·) is Stepanov unbounded, observe that (170) implies the
existence of a sequence (tk)k∈N of positive real numbers such that g(tk) >
(1/2)(ln k − 1) for all k > k0. If we denote by L > 1 the Lipschitzian
constant of mapping g(·), then the above implies

g(x) > (1/2)(ln k − 1)− 8Lπ, x ∈
[
tk, tk + 8π

]
, k > k0.(172)

The existence of a constant M > 0 such that
∫ t+1

t
| sin s| · g(s) ds < M for

all t ∈ R would imply by (172) the existence of a sequence (ak) of positive
integers such that [2akπ + (π/2), 2akπ + (π/2) + 1] ⊆ [tk, tk + 8π

]
and

therefore (take t = 2akπ + (π/2))

sin((π/2) + 1) ·
[
(1/2)(ln k − 1)− 8Lπ

]
6M, k > k0,

which is a contradiction.

In connection with Proposition 2.9.22 and Proposition 2.9.23, we would like to
present an illustrative example with the complex-valued functions:
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Example 2.9.25. Let h : I → R, q : I → R and f(t) := h(t) + iq(t), t ∈ I.
Suppose that f : I → C is c-uniformly recurrent, where c = eiϕ and sinϕ 6= 0.
Then h ∈ C0(I : R) or q ∈ C0(I : R) implies f ≡ 0. To show this, observe that the
c-uniform recurrence of f(·) implies the existence of a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t∈I

∣∣h(t+ αn)− cosϕ · h(t) + sinϕ · q(t)
∣∣ = 0, and

lim
n→+∞

sup
t∈I

∣∣q(t+ αn)− cosϕ · q(t)− sinϕ · h(t)
∣∣ = 0.

Since we have assumed that sinϕ 6= 0, the assumption h ∈ C0(I : R) (q ∈ C0(I : R))
implies by the first (second) of the above equalities that q ∈ C0(I : R) (h ∈ C0(I :
R)). Hence, f ∈ C0(I : C) and the claimed statement follows by Proposition 2.9.23.

The space consisting of all almost periodic functions (c = 1) is the only function
space from those introduced in Definition 2.9.2, Definition 2.9.4 and Definition 2.9.5
which has a linear vector structure:

Example 2.9.26. (i) Suppose that c = 1. Then the set of all c-almost pe-
riodic functions is a vector space together with the usual operations, while
the set of c-uniformly recurrent functions and the set of semi-c-periodic
functions are not vector spaces together with the usual operations.

(ii) Suppose that c = −1. Then the set of all c-almost periodic functions (c-
uniformly recurrent functions, semi-c-periodic functions) is not a vector
space together with the usual operations ([254]).

(iii) Suppose that c 6= ±1. Then the set of all c-almost periodic functions (c-
uniformly recurrent functions, semi-c-periodic functions) is not a vector
space together with the usual operations. Speaking-matter-of-factly, the
functions fϕ,± : R → R given by fϕ,±(t) := e±itϕ, t ∈ R (ϕ ∈ (−π, π] r
{0}) are c-almost periodic (semi-c-periodic); see Example 2.9.20. Its sum
fϕ,+(·)+fϕ,−(·) = 2 cosϕ· is not c-uniformly recurrent due to Proposition
2.9.22.

Similarly, we have:

Example 2.9.27. Let f : I → C and g : I → X.

(i) Suppose that c = 1. If f ∈ AP (I : C) and g ∈ AP (I : X), then f · g ∈
AP (I : X); furthermore, there exist f ∈ UR(I : C) and g ∈ UR(I : X)
such that f · g /∈ UR(I : X) ([248]). It can be simply proved that
the pointwise product of anti-periodic functions f(t) := cos t, t ∈ R and

g(t) := cos
√

2t, t ∈ R is not a semi-periodic function (see e.g., [25, Lemma
2]).

(ii) Suppose that c = −1. Then there exist an anti-periodic function f(·)
and an anti-periodic function g(·) such that f · g(·) is not anti-uniformly
recurrent. We can simply take X = C and f(t) := g(t) := cos t, t ∈ I.

(iii) Suppose that c 6= ±1. Then there exist a semi-c-periodic function f(·)
and a semi-c-periodic function g(·) such that f · g(·) is not c-uniformly
recurrent. Consider again the functions fϕ,± : R→ R given by fϕ,±(t) :=
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e±itϕ, t ∈ R (ϕ ∈ (−π, π] r {0}). They are semi-c-periodic but their
pointwise product fϕ,+(·) · fϕ,−(·) = 1 is not c-uniformly recurrent due to
Proposition 2.9.22.

Let us recall that ANP0(I : X) and ANP (I : X) stand for the linear span of
almost anti-periodic functions I 7→ E and its closure in AP (I : X), respectively;
by (18), we have ANP (I : X) = APRr{0}(I : X). Now we will prove the following
extension of this equality:

Theorem 2.9.28. Denote by APc,0(I : X) and APc,0(I : X) the linear span of
c-almost periodic functions f : I → X and its closure in AP (I : X), respectively.
Then the following holds:

(i) Let arg(c) ∈ π ·Q. Then we have APc,0(I : X) = APRr{0}(I : X).
(ii) Let arg(c) /∈ π ·Q. Then we have APc,0(I : X) ⊇ APRr{0}(I : X).

Proof. Assume first that f ∈ APRr{0}(I : X). By spectral synthesis, we have

f ∈ span{eiµ·x : µ ∈ σ(f), x ∈ R(f)},

where the closure is taken in the space Cb(I : X). Since σ(f) ⊆ R r {0} and the
function t 7→ eiµt, t ∈ I (µ ∈ R r {0}) is c-almost periodic for all c ∈ S1, we have
that span{eiµ·x : µ ∈ σ(f), x ∈ R(f)} ⊆ APc,0(I : X). Hence, f ∈ APc,0(I : X).
To complete the proof, it remains to consider case arg(c) ∈ π · Q and show that
any function f ∈ APc,0(I : X) belongs to the space APRr{0}(I : X). Furthermore,
it suffices to consider case in which (195) holds with the number p even because
otherwise we can apply Corollary 2.9.73(ii) and Proposition 2.9.74(i) to see that
APc,0(I : X) ⊆ ANP0(I : X) and therefore APc,0(I : X) ⊆ ANP (I : X), so that
the statement directly follows from [254, Theorem 2.3]. We will prove that

lim
t→∞

1

t

∫ t

0

f(s) ds = 0;(173)

clearly, by almost periodicity of f(·), the limit in (173) exists. Let ε > 0 be fixed,
and let l > 0 satisfy that every interval of [0,∞) of length l contains a point τ such
that ‖f(t+τ)−cf(t)‖ 6 ε, t > 0. We have cq = 1 and therefore 1+c+···+cq−1 = 0;
using this equality and decomposition (s > 0, n ∈ N)∥∥f(s+ (n− 1)τ) + f(s+ (n− 2)τ) + · · ·+ f(s)

∥∥
6 ε+

∥∥(1 + c)f(s+ (n− 2)τ) + f(s+ (n− 3)τ) + · · ·+ f(s)
∥∥

6 ε+
∥∥(1 + c)f(s+ (n− 2)τ)− (1 + c)cf(s+ (n− 3)τ)

∥∥
+
∥∥[1 + (1 + c)c]f(s+ (n− 3)τ) + f(s+ (n− 4)τ) · · ·+f(s)

∥∥
6 ε+ |1 + c|ε+

∥∥∥[1 + c+ c2]f(s+ (n− 3)τ) + f(s+ (n− 4)τ) + · · ·+ f(s)
∥∥∥

6 ε+ |1 + c|ε+
∣∣1 + c+ c2

∣∣ε+ ...

6 ε+ |1 + c|ε+
∣∣1 + c+ c2

∣∣ε+ ...+
∣∣1 + c+ c2 + · · ·+ cq−2

∣∣ε
+
∥∥f(s) + f(s+ τ) + · · ·+ f(s+ (n− 1− q)τ)

∥∥,
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we immediately get that there exists a finite constant A > 1 such that, for every
s > 0 and n ∈ N,∥∥f(s+ (n− 1)τ) + f(s+ (n− 2)τ) + · · ·+ f(s)

∥∥ 6 Aεdn/qe+A‖f‖∞.

Integrating this estimate over the segment [0, nτ ], we get that, for every s > 0 and
n ∈ N,∥∥∥∥∥

∫ nτ

0

f(s) ds

∥∥∥∥∥ =

∥∥∥∥∥
∫ τ

0

[
f(s+ (n− 1)τ) + f(s+ (n− 2)τ) + · · ·+ f(s)

]
ds

∥∥∥∥∥
6 Aτεdn/qe+Aτ‖f‖∞.

Dividing the both sides of the above inequality with nτ , we get that

lim
n→+∞

∥∥∥∥∥ 1

nτ

∫ nτ

0

f(s) ds

∥∥∥∥∥ 6 Aε/q.
Since ε > 0 was arbitrary, this immediately yields (173). �

Now we will state and prove the following result:

Proposition 2.9.29. Suppose that f : [0,∞)→ X is c-almost periodic (semi-
c-periodic). Then Ef : R → X is a unique c-almost periodic extension (semi-c-
periodic extension) of f(·) to the whole real axis.

Proof. The proof for the class of c-almost periodic functions is very similar
to the proof of [254, Proposition 2.2] and therefore omitted. For the class of
semi-c-periodic functions, the proof can be deduced as follows. Due to Proposition
2.9.17, we have that the function f : [0,∞) → X is almost periodic, so that the
function Ef : R → X is a unique almost periodic extension of f(·) to the whole
real axis. Therefore, it remains to be proved that Ef(·) is semi-c-periodic. Let
ε > 0 be fixed. Then there exists p > 0 such that for all m ∈ N and x > 0 we
have ‖f(x + mp) − cmf(x)‖ 6 ε. For every fixed number m ∈ N, the function
Ef(·+mp)− cmEf(·) is almost periodic so that the supremum formula implies

sup
x∈R

∥∥Ef(x+mp)− cmEf(x)
∥∥ = sup

x>0

∥∥Ef(x+mp)− cmEf(x)
∥∥

= sup
x>0

∥∥f(x+mp)− cmf(x)
∥∥ 6 ε.

This completes the proof. �

We continue by introducing the following notion:

Definition 2.9.30. A continuous function f : I → X is called asymptoti-
cally c-uniformly recurrent (asymptotically c-almost periodic, asymptotically semi-
c-periodic) if and only if there are a c-uniformly recurrent (c-almost periodic,
semi-c-periodic) function g : R → X and a function h ∈ C0(I : X) such that
f(x) = g(x) + h(x), x ∈ I.

Definition 2.9.31. Let p ∈ P([0, 1]), and let f ∈ Lp(x)
loc (I : X).
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(i) It is said that f(·) is Stepanov (p(x), c)-uniformly recurrent (Stepanov
(p(x), c)-almost periodic, Stepanov semi-(p(x), c)-periodic) if and only if

the function f̂ : I → Lp(x)([0, 1] : X), defined by (21), is c-uniformly
recurrent (c-almost periodic, semi-c-periodic).

(ii) It is said that f(·) is asymptotically Stepanov (p(x), c)-uniformly recur-
rent (asymptotically Stepanov (p(x), c)-almost periodic, asymptotically
Stepanov semi-(p(x), c)-periodic) if and only if there are a Stepanov (p(x), c)-
uniformly recurrent (Stepanov (p(x), c)-almost periodic, Stepanov semi-
(p(x), c)-periodic) function h(·) and q ∈ C0(I : Lp(x)([0, 1] : X)) such that
f(t) = h(t) + q(t) for a.e. t ∈ I.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f(·) is Stepanov (p, c)-
uniformly recurrent (Stepanov (p, c)-almost periodic, Stepanov semi-(p, c)-periodic)
and so on.

In case c = 1, resp. c = −1, we also say that an (asymptotically) Stepanov
(p(x), c)-uniformly recurrent ((asymptotically) Stepanov (p(x), c)-almost periodic/
(asymptotically) Stepanov semi-(p(x), c)-periodic) function is (asymptotically)
Stepanov p(x)-uniformly recurrent, resp. (asymptotically) Stepanov p(x)-uniformly
anti-recurrent ((asymptotically) Stepanov p(x)-almost periodic, resp. (asymptot-
ically) Stepanov p(x)-almost anti-periodic/(asymptotically) Stepanov semi-p(x)-
periodic, resp. (asymptotically) Stepanov semi-p(x)-anti-periodic).

Question 2.9.32. Assume that α, β ∈ R and αβ−1 is a well-defined irrational
number. We would like to raise the question whether the functions f(·) and g(·),
given by (22) and (23) respectively, are Stepanov q-semi-periodic for any 1 6 q <
∞?

Example 2.9.33. Let us consider the function f(x) := sinx+sinπx
√

2, x ∈ R.
Then a simple analysis involving the identity f(x) = 2 sinx 1+π

√
2

2 cosxπ
√

2−1
2 , x ∈

R shows that the function sign(f(·)) is identically equal to a function F (·) of the
following, much more general form: Let (an)n∈Z be a strictly increasing sequence
of real numbers satisfying limn→+∞(an+1 − an) = +∞, limn→+∞ an = +∞ and
limn→−∞ an = −∞. Suppose that (bn)n∈Z is a sequence of non-zero real numbers
satisfying that the sets {n ∈ Z : bn < 0} and {n ∈ Z : bn > 0} are infinite, as
well as that there exists a finite positive constant c > 0 such that c 6 |bn − bl| for
any n, l ∈ Z such that bnbl < 0. Define the function F : R → R by F (x) := bn if
x ∈ [an, an+1), for any n ∈ Z. Then F (·) cannot be Stepanov q-semi-periodic for
any finite real number q > 1. Otherwise, for ε ∈ (0, cq) we would be able to find a
number p > 0 such that for each m ∈ Z and x ∈ R one has:∫ 1

0

∣∣∣F (x+mp+ s)− F (x+ s)
∣∣∣q ds < (1/2)q.

Let n ∈ Z be such that [x, x + 1] ⊆ [an, an+1) and bn < 0, say. Without loss of
generality, we may assume that the set {n ∈ N : bn > 0} is infinite. Then the
contradiction is obvious because, for every sufficiently large numbers l ∈ N with
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bl > 0, we can find m ∈ N such that [x+mp, x+mp+ 1] ⊆ [al, al+1) so that∫ 1

0

∣∣∣F (x+mp+ s)− F (x+ s)
∣∣∣q ds > ∣∣bn − bl∣∣q > cq.

In the remainder of this subsection, we will present two statements concerning
the invariance of c-almost periodicity, c-uniform recurrence and semi-c-periodicity
under the actions of infinite convolution products. We first state the following slight
generalization of [254, Proposition 3.1], which can be deduced by using almost the
same arguments as in the proof of Proposition 2.4.39 (similarly we can generalize
[254, Proposition 3.2] for asymptotical c-almost type periodicity):

Proposition 2.9.34. Suppose that p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1
and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that
M :=

∑∞
k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If f̌ : R → X is is Stepanov (p(x), c)-

almost periodic (Stepanov p(x)-bounded and Stepanov (p(x), c)-uniformly recur-
rent/Stepanov p(x)-bounded and Stepanov semi-(p(x), c)-periodic), then the func-
tion F (·), given by (55), is well-defined and c-almost periodic (bounded c-uniformly
recurrent/bounded and semi-c-periodic).

We can also consider the situation in which the forcing term f(·) is not Stepanov
p(x)-bounded (see Propostion 2.4.41):

Proposition 2.9.35. Suppose that p, q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1,
f̌ : R → X is Stepanov (p(x), c)-almost periodic (Stepanov (p(x), c)-uniformly re-
current/Stepanov semi-(p(x), c)-periodic), (R(t))t>0 ⊆ L(X,Y ) is a strongly con-
tinuous operator family and there exists a continuous function P : R→ [1,∞) such

that (56)-(57) hold. If the function f̂ : R → Lp(x)([0, 1] : X) is uniformly con-
tinuous, then the function F : R → Y, given by (55), is well-defined and c-almost
periodic (c-uniformly recurrent/semi-c-periodic).

2.9.1. Composition principles for c-almost periodic type functions.
In this subsection, we will clarify and prove several composition principles for c-
almost periodic functions and c-uniformly recurrent functions.

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (60) holds. Define F(t) := F (t, f(t)), t ∈ I. We need the
following estimates (τ > 0, c ∈ Cr {0}, t ∈ I):∥∥∥F (t+ τ, f(t+ τ))− cF (t, f(t))

∥∥∥
6
∥∥∥F (t+ τ, f(t+ τ))− F

(
t+ τ, cf(t)

)∥∥∥+
∥∥∥F(t+ τ, cf(t)

)
− cF (t, f(t))

∥∥∥
6 L

∥∥∥f(t+ τ)− cf(t)
∥∥∥+

∥∥∥F(t+ τ, cf(t)
)
− cF (t, f(t))

∥∥∥.(174)

Using (174), we can simply deduce the following result:

Theorem 2.9.36. Suppose that F : I × Y → X is a continuous function and
there exists a finite constant L > 0 such that (60) holds.
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(i) Suppose that f : I → Y is c-uniformly recurrent. If there exists a strictly
increasing sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥f(t+ αn)− cf(t)
∥∥ = 0(175)

and

lim
n→+∞

sup
t∈I

∥∥∥F(t+ αn, cf(t)
)
− cF (t, f(t))

∥∥∥= 0,(176)

then the mapping F(t) := F (t, f(t)), t ∈ I is c-uniformly recurrent.
(ii) Suppose that f : I → Y is c-almost periodic. If for each ε > 0 the set of

all positive real numbers τ > 0 such that

sup
t∈I

∥∥f(t+ τ)− cf(t)
∥∥ < ε(177)

and

sup
t∈I

∥∥∥F(t+ τ, cf(t)
)
− cF (t, f(t))

∥∥∥< ε,(178)

is relatively dense in [0,∞), then the mapping F(t) := F (t, f(t)), t ∈ I is
c-almost periodic.

For the class of asymptotically c-almost periodic functions, the following result
simply follows from the previous theorem and the argumentation used in the proof
of [135, Theorem 3.49]:

Theorem 2.9.37. Suppose that F : I × Y → X and Q : I × Y → X are
continuous functions and there exists a finite constant L > 0 such that (60) holds
as well as that (60) holds with the function F (·, ·) replaced therein with the function
Q(·, ·).

(i) Suppose that g : I → E is a c-uniformly recurrent function, h ∈ C0(I :
Y ) and f(x) = g(x) + h(x), x ∈ I. If there exists a strictly increasing
sequence (αn) of positive reals tending to plus infinity such that (175)
and (176) hold with the function f(·) replaced therein with the function
g(·), lim|t|→+∞Q(t, y) = 0 uniformly for y ∈ R(f), then the mapping
H(t) := (F +Q)(t, f(t)), t ∈ I is asymptotically c-uniformly recurrent.

(ii) Suppose that g : I → Y is a c-almost periodic function, h ∈ C0(I : Y )
and f(x) = g(x) + h(x), x ∈ I. If for each ε > 0 the set of all positive
real numbers τ > 0 such that (177) and (178) hold with the function f(·)
replaced therein with the function g(·), lim|t|→+∞Q(t, y) = 0 uniformly
for y ∈ R(f), then the mapping H(t) := (F +Q)(t, f(t)), t ∈ I is asymp-
totically c-almost periodic.

For the Stepanov classes, we can also clarify certain results:

Theorem 2.9.38. Let p(x), q(x) ∈ [1,∞), r(x) ∈ [1,∞], 1/p(x) = 1/q(x) +
1/r(x) and the following conditions hold:

(i) Let F : I × Y → X and let there exist a function LF ∈ Lr(x)
S (I) such that

(25) holds.
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(ii) There exists a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈R(f)

∥∥∥F (s+ t+ αn, cu
)
− cF (s+ t, u)

∥∥∥
Lp(s)[0,1]

= 0(179)

and

lim
n→+∞

sup
t∈I

∥∥∥f(s+ t+ αn)− cf(s+ t)
∥∥∥
Lq(s)[0,1]

= 0.(180)

Then the function F (·, f(·)) is Stepanov (p(x), c)-uniformly recurrent. Further-
more, the assumption that F (·, 0) is Stepanov p(x)-bounded implies that the function
F (·, f(·)) is Stepanov p(x)-bounded, as well.

Similarly, we can prove the following

Theorem 2.9.39. Suppose that p ∈ P([0, 1]) and the following conditions hold:

(i) Let F : I×Y → X and there exist a function r(x) > max(p(x), p(x)/(p(x)−
1)) and a function LF ∈ Lr(x)

S (I) such that (25) holds.
(ii) There exists a strictly increasing sequence (αn) of positive real numbers

tending to plus infinity such that (179) holds and (180) holds with the
function q(·) replaced by the function p(·) therein.

Then q(x) := p(x)r(x)/(p(x)+r(x)) for x ∈ [0, 1] and r(x) < +∞ and q(x) := p(x)
for x ∈ [0, 1] and r(x) = +∞. Then the function F (·, f(·)) is Stepanov (q(x), c)-
uniformly recurrent. Furthermore, the assumption that F (·, 0) is Stepanov q(x)-
bounded implies that the function F (·, f(·)) is Stepanov q(x)-bounded, as well.

The above results can be simply reformulated for the class of Stepanov (p(x), c)-
almost periodic functions. For the classes of asymptotically Stepanov (p(x), c)-
uniformly recurrent (asymptotically Stepanov (p(x), c)-almost periodic) functions,
we can simply extend the assertions of [234, Proposition 2.7.3, Proposition 2.7.4].
Details can be left to the interested readers.

2.9.2. Applications to the abstract Volterra integro-differential in-
clusions. In this subsection, we will present some illustrative applications of our
abstract results in the analysis of the existence and uniqueness of c-almost periodic
type solutions to the abstract (semilinear) Volterra integro-differential inclusions.

Concerning semilinear problems, we can apply our results in the study of the
existence and uniqueness of c-almost periodic solutions and c-uniformly recurrent
solutions of the fractional semilinear Cauchy inclusion (149), where Dγ

t,+ denotes
the Riemann-Liouville fractional derivative of order γ ∈ (0, 1), F : R × Y → X
satisfies certain properties, and A is a closed multivalued linear operator satisfying
condition [234, (P)]. To explain this in more detail, fix a strictly increasing sequence
(αn) of positive reals tending to plus infinity and define

BUR(αn);c(R : X) :=
{
f ∈ URc(R : X) ; f(·) is bounded and

lim
n→+∞

sup
t∈R

∥∥f(t+ αn)− cf(t)
∥∥
∞ = 0

}
.
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Equipped with the metric d(·, ·) := ‖·−·‖∞, BUR(αn);c(R : X) becomes a complete
metric space. Let (Rγ(t))t>0 be the operator family considered in [234]. It is said
that a continuous function u : R→ X is a mild solution of (149) if and only if

u(t) =

∫ t

−∞
Rγ(t− s)F

(
s, u(s)

)
ds, t ∈ R.

Now we are able to state the following result, which is very similar to [234,
Theorem 3.1] (for simplicity, we will consider the constant coefficient p(x) ≡ p > 1
here):

Theorem 2.9.40. Suppose that the function F : R×X → X satisfies that for
each bounded subset B of X there exists a finite real constant MB > 0 such that
supt∈R supy∈B ‖F (t, y)‖ 6MB . Suppose, further, that the function F : R×X → X
is Stepanov (p, c)-uniformly recurrent with p > 1, and there exist a number r >
max(p, p/(p − 1)) and a function LF ∈ LrS(I) such that q := pr/(p + r) > 1 and
(25) holds with I = R. If (68) holds and there exists an integer n ∈ N such that
Mn < 1, where

Mn := sup
t>0

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞

∥∥∥Rγ(t− xn)
∥∥∥

×
n∏
i=2

∥∥∥Rγ(xi − xi−1)
∥∥∥ n∏
i=1

LF (xi) dx1 dx2 · · · dxn,

and (179) holds with the set R(f) replaced therein with an arbitrary bounded set
B ⊆ X, then the abstract semilinear fractional Cauchy inclusion (149) has a unique
bounded uniformly recurrent solution which belongs to the space BUR(αn);c(R : X).

Proof. Define Υ : BUR(αn);c(R : X)→ BUR(αn);c(R : X) by

(Υu)(t) :=

∫ t

−∞
Rγ(t− s)F (s, u(s)) ds, t ∈ R.

Suppose that u ∈ BUR(αn);c(R : X). Then R(u) = B is a bounded set and the map-
ping t 7→ F (t, u(t)), t ∈ R is bounded due to the prescribed assumption. Applying
Theorem 2.9.39, we have that the function F (·, u(·)) is Stepanov (q, c)-uniformly

recurrent. Define q′ := q/(q−1). By (66) and (68), we have ‖Rγ(·)‖ ∈ Lq′ [0, 1] and∑∞
k=0 ‖Rγ(·)‖Lq′ [k,k+1] <∞. Applying Proposition 2.9.34, we get that the function

t 7→
∫ t
−∞Rγ(t − s)F (s, u(s)) ds, t ∈ R is bounded and c-uniformly recurrent, im-

plying that Υu ∈ BUR(αn);c(R : X), as claimed. Furthermore, a simple calculation
shows that∥∥∥(Υnu1

)
−
(
Υnu2

)∥∥∥
∞
6Mn

∥∥u1 − u2

∥∥
∞, u1, u2 ∈ BUR(αn);c(R : X), n ∈ N.

Since there exists an integer n ∈ N such that Mn < 1, the well known extension of
the Banach contraction principle shows that the mapping Υ(·) has a unique fixed
point, finishing the proof of the theorem. �
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Similarly we can analyze the existence and uniqueness of asymptotically Stepanov
(p, c)-almost periodic solutions and Stepanov (p, c)-uniformly recurrent solutions of
the fractional semilinear Cauchy inclusion (DFP )f,γ,s.

As mentioned earlier, the unique regular solution of the heat equation ut(x, t) =
uxx(x, t), x ∈ R, t > 0, accompanied with the initial condition u(x, 0) = f(x), is
given by (145). Let the number t0 > 0 be fixed, and let the function f(·) be bounded

c-uniformly recurrent (c-almost periodic, semi-c-periodic). Since e−·
2/4t0 ∈ L1(R),

we can use the fact that the space of bounded c-uniformly recurrent functions
(c-almost periodic functions, semi-c-periodic functions) is convolution invariant in
order to see that the solution x 7→ u(x, t0), x ∈ R is bounded and c-uniformly
recurrent (c-almost periodic, semi-c-periodic).

2.9.3. Semi-c-periodic functions. Let us recall that S := N if I = [0,∞),
and S := Z if I = R. In this subsection, we will first extend the notion introduced
in Definition 2.9.5 with general parameter c ∈ Cr {0}:

Definition 2.9.41. Let f ∈ C(I : X).

(i) It is said that f(·) is semi-c-periodic of type 1 if and only if

(181) ∀ε > 0 ∃p > 0 ∀m ∈ S ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
(ii) It is said that f(·) is semi-c-periodic of type 2 if and only if

(182) ∀ε > 0 ∃p > 0 ∀m ∈ S ∀x ∈ I
∥∥c−mf(x+mp)− f(x)

∥∥ 6 ε.
The space of all semi-c-periodic functions of type i will be denoted by SPc,i(I : X),
i = 1, 2.

Definition 2.9.42. Let f ∈ C(I : X).

(i) It is said that f(·) is semi-c-periodic of type 1+ if and only if

(183) ∀ε > 0 ∃p > 0 ∀m ∈ N ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
(ii) It is said that f(·) is semi-c-periodic of type 2+ if and only if

(184) ∀ε > 0 ∃p > 0 ∀m ∈ N ∀x ∈ I
∥∥c−mf(x+mp)− f(x)

∥∥ 6 ε.
The space of all semi-c-periodic functions of type i+ will be denoted by SPc,i,+(I :
X), i = 1, 2.

We have already seen that the notion of a semi-c-periodicity of type i (i+),
where i = 1, 2, is equivalent with the notion of semi-c-periodicity introduced in
Definition 2.9.5, provided that |c| = 1.

Now we will focus our attention to the general case c ∈ C r {0}. We will first
state the following:

Lemma 2.9.43. (i) If |c| > 1 and f : I → X is semi-c-periodic of type
1+, then f(·) is semi-c-periodic of type 2+.

(ii) If |c| 6 1 and f : I → X is semi-c-periodic of type 2+, then f(·) is
semi-c-periodic of type 1+.
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Proof. If x ∈ I, p > 0, m ∈ N and |c| > 1, then we have∥∥f(x+mp)− cmf(x)
∥∥ 6 ε⇒ ∥∥c−mf(x+mp)− f(x)

∥∥ 6 ε,
which implies (i); the proof of (ii) is similar. �

Using the proofs of [25, Lemma 1, Theorem 1], we can clarify the following
important lemma:

Lemma 2.9.44. Suppose that |c| 6 1, resp. |c| > 1, and f : [0,∞)→ X is semi-
c-periodic of type 1+, resp. 2+. Then there exists a sequence (fn : [0,∞)→ X)n∈N
of c-periodic functions which converges uniformly to f(·).

Now we are able to prove the following result:

Theorem 2.9.45. Let |c| 6= 1, i = 1, 2 and f : I → X. Then f(·) is c-periodic
if and only if f(·) is semi-c-periodic of type i (i+).

Proof. Suppose that the function f(·) is (p, c)-periodic. Then we have f(x+
mp) = cmf(x), x ∈ I, m ∈ S, so that f(·) is automatically semi-c-periodic of type
i (i+). To prove the converse statement, let us observe that any semi-c-periodic
function of type i is clearly semi-c-periodic of type i+. Suppose first that |c| > 1.
Due to Lemma 2.9.43(i), it suffices to show that, if f(·) is semi-c-periodic of type
2+, then f(·) is c-periodic. Assume first I = [0,∞). Using Lemma 2.9.44, we get
the existence of a sequence (fn : [0,∞) → X)n∈N of c-periodic functions which
converges uniformly to f(·). Let fn(t+ pn) = cfn(t), t > 0 for some sequence (pn)
of positive real numbers. Consider first case that (pn) is bounded. Then there exist
a strictly increasing sequence (nk) of positive integers and a number p > 0 such
that limk→+∞ pnk = p. Let ε > 0 be given. Then there exists an integer k0 ∈ N
such that ‖f(t)−fnk(t)‖ 6 ε/(2+2|c|−1) for all real numbers t > 0 and all integers
k > k0. Furthermore, we have∥∥c−1f(t+ pnk)− f(t)

∥∥
6
∥∥c−1f(t+ pnk)− c−1fnk(t+ pnk)

∥∥
+
∥∥c−1fnk(t+ pnk)− fnk(t)

∥∥+
∥∥fnk(t)− f(t)

∥∥
=
∥∥c−1f(t+ pnk)− c−1fnk(t+ pnk)

∥∥+
∥∥fnk(t)− f(t)

∥∥
6 2(1 + |c|−1)ε/(2 + 2|c|−1) = ε,

for all real numbers t > 0 and all integers k > k0. Letting k → +∞ we get
f(t + p) = cf(t) for all t > 0. If p > 0 the above yields that f(·) is (p, c)-periodic,
while the assumption p = 0 yields f ≡ 0 or c = 1, i.e., f(·) ≡ 0; in any case, f(·) is
(p, c)-periodic. Suppose now that (pn) is unbounded. Then, with the same notation
as above, we may assume that limk→+∞ pnk = +∞. Using the same computation,
it follows that limk→+∞

∥∥c−1f(·+ pnk)− f(·)
∥∥
∞ = 0, so that f ∈ URc([0,∞) : X).

Due to Proposition 2.9.11, we get f(·) ≡ 0. Assume now I = R. By the foregoing
arguments, we know that there exists p > 0 such that f(x+p) = cf(x) for all x > 0.
Let x < 0 and ε > 0 be fixed. Since f(·) is semi-c-periodic, there exists pε > 0
such that ‖c−mf(x+ p+mpε)− f(x+ p)‖ 6 ε and ‖c1−mf(x+mpε)− cf(x)‖ 6 ε



2.9. c-UNIFORMLY RECURRENT FUNCTIONS AND c-ALMOST PERIODIC... 232

for all m ∈ N. For all sufficiently large integers m ∈ N we have x + mpε > 0 so
that c−mf(x+ p+mpε) = c1−mf(x+mpε) and therefore ‖f(x+ p)− cf(x)‖ 6 2ε.
Since ε > 0 was arbitrary, we get f(x + p) = cf(x), which completes the proof
in case |c| > 1. Suppose now that |c| < 1. Due to Lemma 2.9.43(ii), it suffices to
show that, if f(·) is semi-c-periodic of type 1+, then f(·) is c-periodic. But, then
we can apply Lemma 2.9.44 again and the similar arguments as above to complete
the whole proof. �

Corollary 2.9.46. Let c ∈ Cr{0}, let i = 1, 2, and let f(·) be semi-c-periodic
of type i (i+). Then there exist two finite real constants M > 0 and p > 0 such
that ‖f(t)‖ 6M |c|t/p, t ∈ I.

Using Theorem 2.9.19 and the proof of Theorem 2.9.45, we may deduce the
following corollaries:

Corollary 2.9.47. Let f ∈ C(I : X) and c ∈ C r {0}. Then f(·) is semi-c-
periodic if and only if there exists a sequence (fn) of c-periodic functions in C(I : X)
such that limn→∞ fn(x) = f(x) uniformly in I.

Corollary 2.9.48. Let f ∈ C(I : X) and |c| 6= 1. If (fn) is a sequence of c-
periodic functions and limn→∞ fn(x) = f(x) uniformly in I, then f(·) is c-periodic.

For the Stepanov classes, we will use the following notion:

Definition 2.9.49. Let p ∈ P([0, 1]), and let f ∈ Lp(x)
loc (I : X).

(i) It is said that f(·) is Stepanov semi-(p(x), c)-periodic of type i (i+) if

and only if the function f̂ : I → Lp(x)([0, 1] : X), defined by (21), is
semi-c-periodic of type i (i+).

(ii) It is said that f(·) is asymptotically Stepanov semi-(p(x), c)-periodic of
type i (i+) if and only if there are a Stepanov semi-(p(x), c)-periodic
function of type i (i+) h(·) and q ∈ C0(I : Lp(x)([0, 1] : X)) such that
f(t) = h(t) + q(t) for a.e. t ∈ I.

If p(x) ≡ [1,∞), then we also say that the function f(·) is Stepanov semi-(p, c)-
periodic of type i (i+) and so on.

Remark 2.9.50. Let us observe that we can also analyze the following notion
in case that the parameter c is not given in advance (compare with (181)):

(185) ∀ε > 0 ∃c > 0 ∃p > 0 ∀m ∈ S ∀x ∈ I
∥∥f(x+mp)− cmf(x)

∥∥ 6 ε.
Fairly complete analysis of class consisting of all continuous functions f : I → X
satisfying (185) and corresponding Stepanov class is without scope of this paper.

Semi-periodic functions depending on parameter have been introduced in [25,
Definition 4], where the authors have considered case in which I = R, E = Rk
and c = 1. We will not introduce the related notion in case |c| = 1, which will be
standing till the end of subsection.

The composition theorems for semi-c-periodic functions have not been consid-
ered elsewhere even in case c = 1. In order to formulate the first result in this
direction, suppose that t ∈ I, p > 0, m ∈ S and c ∈ Cr {0}. Let F : I ×Y → X be
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a continuous function. If there exists a finite constant L > 1 such that (60) holds,
then we have∥∥F (t+mp, f(t+mp))− cmF (t, f(t))

∥∥
6
∥∥F (t+mp, f(t+mp))− F

(
t+mp, cmf(t)

)∥∥
+
∥∥F (t+mp, cmf(t)

)
− cmF (t, f(t))

∥∥(186)

6 L
∥∥f(t+mp)− cmf(t)

∥∥+
∥∥F (t+mp, cmf(t)

)
− cmF (t, f(t))

∥∥.
Therefore, it is natural to consider the following condition:

(187) ∀ε > 0 ∃p > 0 ∀m ∈ S ∀t ∈ I
∥∥F (t+mp, cmf(t))−cmF (t, f(t))

∥∥ 6 ε.
Using these estimates, we can immediately clarify the following result which

can be simply formulated for semi-c-periodic functions:

Theorem 2.9.51. Suppose that F : I × Y → X is a continuous function
satisfying that there exists a finite real constant L > 0 such that (60) holds, f : I →
Y is a continuous function and for each ε > 0 there exists p > 0 such that (181)
and (187) hold. Then the function t 7→ F (t, f(t)), t ∈ I is semi-c-periodic.

In the following result, we reconsider [135, Theorem 3.31] for semi-c-periodic
functions:

Theorem 2.9.52. Suppose that F : I × Y → X is a continuous function,
f : I → Y is a continuous function and F (·, ·) is uniformly continuous on set
{ηf(t) : η ∈ C, t ∈ I}, uniformly in t ∈ I (that is, for every ε > 0 there exists δ > 0
such that ‖f(t, x) − f(t, y)‖ 6 ε for all t ∈ I and x, y ∈ {ηf(t) : η ∈ C, t ∈ I}).
Suppose that for each ε > 0 there exists p > 0 such that (181) and (187) hold.
Then the function t 7→ F (t, f(t)), t ∈ I is semi-c-periodic.

Proof. Since (187) holds, the statement easily follows from the estimate (186)
and the prescribed assumptions. �

For the Stepanov classes, we will first clarify the following result:

Theorem 2.9.53. Suppose that p1 ∈ P([0, 1]), r(x) > max(p1(x)/(p1(x)− 1)),

and there exists a function LF ∈ Lr(x)
S (I) such that (25) holds. Suppose, further,

that for each ε > 0 there exists p > 0 such that

∀m ∈ S ∀t ∈ I
∥∥F (s+ t+mp, cmf(s+ t))− cmF (s+ t, f(s+ t))

∥∥
Lp1(s)[0,1]

6 ε
(188)

holds, as well as (181) holds, with the function f(·) and the space Y replaced therein

with the function f̂(·) and the space Lp1(x)([0, 1] : Y ). Then the function F (·, f(·))
is Stepanov semi-(q(x), c)-periodic with q(x) := p(x)r(x)/(p(x)+r(x)) for x ∈ [0, 1]
and r(x) <∞ and q(x) := p(x) for x ∈ [0, 1] and r(x) = +∞.

Proof. We will prove the thorem with the constant coefficient p1(x) ≡ p1 ∈
[1,∞). Let ε > 0 be given and let the number p > 0 satisfy the above requirements.
Fix numbers t ∈ I and m ∈ Z. Arguing as in the proof of estimate (186), we get:∥∥F (t+mp, f(t+mp))− cmF (t, f(t))

∥∥
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6 LF (t)
∥∥f(t+mp)− cmf(t)

∥∥+
∥∥F (t+mp, cmf(t)

)
− cmF (t, f(t))

∥∥.
Using the Hölder inequality and the inequality q < p1, we get:(∫ t+1

t

∥∥F (s+mp, f(s+mp))− cmF (s, f(s))
∥∥q ds)1/q

6 2(q−1)/q
[∥∥LF (·)

∥∥
Lr[t,t+1]

∥∥f(·+mp)− cmf(·)
∥∥
Lp1 [t,t+1]

+
∥∥F (·+mp, cmf(·)

)
− cmF (·, f(·))

∥∥
Lp1 [t,t+1]

]
.

This completes the proof of the theorem in a routine manner. �

Remark 2.9.54. We will not reconsider the statement of [276, Lemma 2.1]
here.

We can similarly prove the result which naturally corresponds to [242, Theorem
2.1] and the consequence for the usual Lipschitz condition used. Finally, we will
clarify an interesting result concerning the existence and uniqueness of semi-c-
periodic solutions of the following abstract semilinear fractional Cauchy problem

Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ F (t, u(t)), t ∈ R,(189)

where Dαu(t) denotes the Weyl-Liouville fractional derivative of order α > 0,
a ∈ L1

loc([0,∞)) is a scalar-valued kernel, the function F (·, ·) enjoys some properties
and A generates a non-degenerate α-resolvent operator family (Sα(t))t>0 on X
satisfying that

∫∞
0
‖Sα(t)‖ dt <∞ (see R. Ponce [318] for more details; equations

of this kind arise in the study of heat flow in materials with memory as well as in
certain equations of population dynamics). By a mild solution of (189), we mean
any continuous function u : R→ X such that

u(t) =

∫ t

−∞
Sα(t− s)F (s, u(s)) ds, t ∈ R.

Now we are able to formulate the following theorem:

Theorem 2.9.55. Suppose that F : R × X → X is a continuous function
satisfying that there exists a finite real constant L > 0 such that (60) holds. If
L
∫∞

0
‖Sα(t)‖ dt < 1, then the abstract fractional semilinear Cauchy inclusion (189)

has a unique semi-c-periodic solution.

Proof. It can be easily shown that the set SPc,1(R : X), equipped with the
distance d(u, v) := supt∈R ‖u(t)− v(t)‖, u, v ∈ SPc,1(R : X), is a complete metric
space. Define the mapping

(Λu)(t) :=

∫ t

−∞
Sα(t− s)F (s, u(s)) ds, t ∈ R

(
u ∈ SPc,1(R : X)

)
.

Applying Theorem 2.9.51 and the foregoing arguments, we get that the mapping
Λ(·) is well defined. Moreover, our assumption L

∫∞
0
‖Sα(t)‖ dt < 1 easily implies
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that Λ(·) is a contraction. The proof completes an application of the Banach
contraction principle. �

2.9.4. Semi-Bloch k-periodicity. In this subsection, we will always assume
that I = [0,∞) or I = R; as before, we set S := N if I = [0,∞), and S := Z
if I = R. For the convenience of the reader, we recall that a bounded continuous
function f : I → X is said to be Bloch (p, k)-periodic, or Bloch periodic with period
p and Bloch wave vector or Floquet exponent k if and only if f(x+ p) = eikpf(x),
x ∈ I, with p > 0 and k ∈ R. The space of all functions f : I → X that are Bloch
(p, k)-periodic will be denoted by Bp,k(I : X). If f ∈ Bp,k(I : X), then we have

f(x+mp) = eikmpf(x), x ∈ I, m ∈ S.

Given k ∈ R, we set Bk(I : X) :=
⋃
p>0 Bp,k(I : X). Observing that f ∈ Pc(I : X)

satisfies f(x + p) = f(x) for all x ∈ I and some p > 0 if and only if the function
F (x) := eikxf(x), x ∈ I satisfies F (x+p) = eikpF (x), x ∈ I, we may conclude that

Bk(I : X) :=
{
eik·f(·) : f ∈ Pc(I : X)

}
.(190)

For more details on the Bloch (p, k)-periodic functions, see [204] and references
cited therein.

Let us define the notion of a semi-Bloch k-periodic function as follows:

Definition 2.9.56. Let k ∈ R. A function f ∈ Cb(I : X) is said to be semi-
Bloch k-periodic if and only if

(191) ∀ε > 0 ∃p > 0 ∀m ∈ S ∀x ∈ I ‖f(x+mp)− eikmpf(x)‖ 6 ε.
The space of all semi-Bloch k-periodic functions will be denoted by SBk(I : X).

It is clear that Definition 2.9.56 provides a generalization of [25, Definition 2
and Definition 3], given only in the case that I = R. Speaking-matter-of-factly, a
function f : R → X is semi-periodic in the sense of above-mentioned (equivalent)
definitions if and only if f : R→ X is semi-Bloch 0-periodic. Further on, it can be
easily seen that for each k ∈ R any constant function f ≡ c belongs to the space
SBk(I : X); for this, it is only worth noticing that for each ε > 0 and k 6= 0 we can
take p = 2π/k and (191) will be satisfied.

Remark 2.9.57. It is not so easy to introdude the concept of almost Bloch
k-periodicity, where k ∈ R. In order to explain this in more detail, assume that
a function f ∈ Cb(I : X) and a number ε > 0 are given. Let us say that a real
number p > 0 is an (ε, k)-Bloch period for f(·) if and only if∥∥∥f(x+ p)− eikpf(x)

∥∥∥ 6 ε, x ∈ I,(192)

and f(·) is almost Bloch k-periodic if and only if for each ε > 0 the set constituted
of all (ε, k)-Bloch periods for f(·) is relatively dense in [0,∞). But, then we have
that f(·) is almost Bloch k-periodic if and only if f(·) is almost periodic. To see
this, it suffices to observe that (192) is equivalent with∥∥∥e−ik(x+p)f(x+ p)− e−ikxf(x)

∥∥∥ 6 ε, x ∈ I,



2.9. c-UNIFORMLY RECURRENT FUNCTIONS AND c-ALMOST PERIODIC... 236

so that, actually, the function f(·) is almost Bloch k-periodic if and only if the
function e−ik·f(·) is almost periodic, which is equivalent to say that the function
f(·) is almost periodic. Further on, let f(·) ∈ SBk(I : X). Then for each number
ε > 0 we have that the set constituted of all (ε, k)-Bloch periods for f(·) is relatively
dense in [0,∞) since it contains the set {mp : m ∈ N}, where p > 0 is determined
by (191). In view of our previous conclusions, we get that f(·) is almost periodic.
In particular, any Bloch (p, k)-periodic function needs to be almost periodic, which
has not been observed in the researches of Bloch periodic functions carried out so
far (see e.g., [150] and [204]).

Now we will prove the following result:

Proposition 2.9.58. Let k ∈ R and f ∈ Cb(I : X). Then the following holds:

(i) f(·) is semi-Bloch k-periodic if and only if e−ik·f(·) is semi-periodic.
(ii) f(·) is semi-Bloch k-periodic if and only if there exists a sequence (fn) in

Pc(I : X) such that limn→∞ eikxfn(x) = f(x) uniformly in I.
(iii) f(·) is semi-Bloch k-periodic if and only if there exists a sequence (fn) in

Bk(I : X) such that limn→∞ fn(x) = f(x) uniformly in I.

Proof. The proof of (i) follows similarly as above. Since [25, Lemma 1 and
Theorem 1] hold for the functions defined on the interval I = [0,∞), we have that
(i) implies that f(·) is semi-Bloch k-periodic if and only if there exists a sequence
(fn) in Pc(I : X) such that limn→∞ eikxfn(x) = f(x) uniformly in I. This proves
(ii). For the proof of (iii), it suffices to apply (ii), (190) and the conclusion preceding
it. �

Let k ∈ R. Using Proposition 2.9.58 and [25, Proposition 2], we may construct
a substantially large class of semi-Bloch k-periodic functions, which do not form
a vector space due to a simple example in the second part of [25, Remark 3];
[25, Lemma 2] can be straightforwardly reformulated for semi-Bloch k-periodic
functions, while the function given in [25, Example 1] can be simply used to provide
an example of a scalar-valued semi-Bloch k-periodic function which is not contained
in the space Bk(I : C). If we define Bloch k-quasi periodic function

Bk;q(I : X) :=
{
eik·f(·) : f ∈ QP 0(I : X)

}
,

where QP 0(I : X) denotes the space of all quasi-periodic functions from I into X
(see [25], [71] and references cited therein for the notion), then [25, Theorem 2] can
be also reformulated in our context; this also holds for [25, Example 2, Example
3].

By the foregoing, we have:

Bk(I : X) ⊆ SBk(I : X) ⊆ AP (I : X) ⊆ BUC(I : X), k ∈ R.

Example 2.9.59. The function f(x) := cosx, x ∈ R is anti-periodic. Now we
will prove that f ∈ SBk(I : X) if and only if k ∈ Q. For k ∈ Q, this is clear because
we can take p in (191) as a certain multiple of 2π. Let us assume now that k /∈ Q.
Then it suffices to show that the function e−ik·f(·) is not semi-periodic. Towards
see this, let us observe that σ(e−ik·f(·)) = {1 − k,−1 − k} so that there does not
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exist a positive real number θ > 0 such that σ(e−ik·f(·)) ⊆ θ · Q, which can be
simply approved and which contradicts [25, Lemma 2].

Remark 2.9.60. Let a ∈ AP (I : C). Then we can introduce and analyze the
following notion: A function f ∈ Cb(I : X) is said to be semi a-periodic if and only
if there exists a sequence (fn) in Pc(I : X) such that limn→∞ a(x)fn(x) = f(x)
uniformly in I. Any such function needs to be almost periodic. We will analyze
this notion somewhere else.

Example 2.9.61. Roughly speaking, it is well known that the unique solution
of the heat equation ut(x, t) = uxx(x, t), x ∈ R, t > 0, accompanied with the
initial condition u(x, 0) = f(x), is given by (145). By the conclusion from [204,
Example 2.1], we know that, if the function f(·) is Bloch (p, k)-periodic, then the
solution u(x, ·) is likewise Bloch (p, k)-periodic (p > 0, k ∈ R). Using this fact, the
dominated convergence theorem and Proposition 2.9.58, we get that, if f(·) is semi-
Bloch k-periodic, then the solution u(x, ·) will be likewise semi-Bloch k-periodic.

Proposition 2.9.62. Let k ∈ R, let p > 0, and let a function f ∈ Cb([0,∞) :
X) be given. If f(·) is Bloch (p, k)-periodic (semi-Bloch k-periodic), then the func-
tion Ef(·) is likewise Bloch (p, k)-periodic (semi-Bloch k-periodic).

Proof. Suppose first that f(·) is Bloch (p, k)-periodic. Then f(x + p) =
eikpf(x), x > 0; we need to show that (Ef)(x+p) = eikp(Ef)(x), x ∈ R, i.e., [W (x+
p)f ](0) = eikp[W (x)f ](0), x ∈ R. Since W (x + p) = W (x)W (p), x ∈ R, it suffices
to show that [W (x)f(· + p)](0) = eikp[W (x)f ](0), x ∈ R, i.e., [W (x)eikpf(·)](0) =
eikp[W (x)f ](0), x ∈ R, which is true. If f(·) is semi-Bloch k-periodic, then Propo-
sition 2.9.58(iii) yields that there exists a sequence (fn) in Bk([0,∞) : X) such
that limn→∞ fn(x) = f(x) uniformly in [0,∞). Due to the supremum formula, we
have that limn→∞(Efn)(x) = (Ef)(x) uniformly in R. By the first part of proof,
we know that for each n ∈ N the function (Efn)(·) belongs to the space Bk(R : X).
Applying again Proposition 2.9.58(iii), we get that Ef(·) is likewise semi-Bloch
k-periodic. �

The proof of following simple proposition is left to the interested reader:

Proposition 2.9.63. Let k ∈ R, let p > 0, and let f : I → X. Then we have:

(i) If f(·) is Bloch (p, k)-periodic (semi-Bloch k-periodic), then cf(·) is Bloch
(p, k)-periodic (semi-Bloch k-periodic) for any c ∈ C.

(ii) If X = C, infx∈R |f(x)| = m > 0 and f(·) is Bloch (p, k)-periodic (semi-
Bloch k-periodic), then 1/f(·) is Bloch (p,−k)-periodic (semi-Bloch (−k)-
periodic).

Now we will introduce the following definition.

Definition 2.9.64. Let f ∈ Cb(I : X) and k ∈ R. Then we say that f(·) is
asymptotically semi Bloch k-periodic if and only if there exist a function φ ∈ C0(I :
X) and a semi Bloch k-periodic function g : R → X such that f(t) = g(t) + φ(t)
for all t > 0.
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As already mentioned, the notion of Stepanov semi-periodicity has not been
analyzed in [25]. We will use the following definitions:

Definition 2.9.65. Let k ∈ R and p ∈ P([0, 1]). Then we say that a function

f ∈ Lp(x)
S (I : X) is Stepanov p(x)-semi-Bloch k-periodic if and only if the function

f̂ : I → Lp(x)([0, 1] : X), defined by (21), is semi-Bloch k-periodic.
If p(x) ≡ p ∈ [1,∞), then we also say that the function f(·) is Stepanov p-

semi-Bloch k-periodic.

Definition 2.9.66. Let k ∈ R and p ∈ P([0, 1]). Then we say that a function

f ∈ L
p(x)
S (I : X) is asymptotically Stepanov p(x)-semi-Bloch k-periodic if and

only if the function f̂ : I → Lp(x)([0, 1] : X), defined by (21), is asymptotically
semi-Bloch k-periodic.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f(·) is asymptotically
Stepanov p-semi-Bloch k-periodic.

Let p > 0 and k ∈ R. It should be noted that, if f : I → X is Bloch (p, k)-

periodic, then f̂ : I → Lq([0, 1] : X) is likewise Bloch (p, k)-periodic. Further
on, it immediately follows from the corresponding definitions that, if f : I → X
is semi-Bloch k-periodic, then f(·) is Stepanov q-semi-Bloch k-periodic for every
number q ∈ [1,∞); a large class of non-continuous periodic or Bloch (p, k)-periodic
functions can be used to provide that the converse statement does not hold in
general. If 1 6 q < q′ < ∞ and f : I → X is (asymptotically) Stepanov q′-semi-
Bloch k-periodic, then f(·) is (asymptotically) Stepanov q-semi-Bloch k-periodic.
To see that the converse statement does not hold in general, we will provide only
one illustrative example:

Example 2.9.67. Suppose that 1 < q < ∞. Let us revisit the example of H.
Bohr and E. Følner once more; they have constructed an example of a Stepanov
1-almost periodic function F : R → R that is not Stepanov q-almost periodic (see
[77, p. 70]). Moreover, for each n ∈ N there exists a bounded periodic function
Fn : R→ R with at most countable points of discontinuity such that

lim
n→∞

sup
t∈R

∫ t+1

t

∣∣Fn(s)− F (s)
∣∣ ds = 0.(193)

Therefore, F̂n : R → L1([0, 1] : R) is a bounded periodic function and, in ad-

dition to the above, F̂n(·) is continuous (n ∈ N). Due to (193), we have that

limn→∞ F̂n(t) = F̂ (t) uniformly in t ∈ R. This implies that the function F (·)
is Stepanov 1-semi-periodic but not Stepanov q-semi-periodic because it is not
Stepanov q-almost periodic.

The above conclusions can be clarifed for Stepanov p(x)-semi-Bloch k-periodic
functions, as well. Concerning the invariance of semi-Bloch k-periodicity under the
actions of infinite convolution products, we have the following result:

Proposition 2.9.68. Suppose that k ∈ R, p, q ∈ P([0, 1]), 1/p(x)+1/q(x) = 1
and (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying that
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M :=
∑∞
k=0 ‖R(· + k)‖Lq(·)[0,1] < ∞. If f̌ : R → X is Stepanov p(x)-semi-Bloch

(−k)-periodic, then the function F (·), given by (55), is well-defined and semi-Bloch
k-periodic.

Proof. Using the same arguments as in the proof of Propostion 2.5.17, we
have that F (·) is well defined and continuous. It remains to be proved that F (·) is
semi-Bloch k-periodic. Let a number ε > 0 be given in advance. Then we can find
a finite number p > 0 such that, for every m ∈ Z and t ∈ R, we have∥∥f̌(t+mp)− e−ikmpf̌(t)

∥∥
Lp(x)[0,1]

6 ε, t ∈ R.

Applying Hölder inequality and this estimate, we get that∥∥F (t+mp)− eikmpF (t)
∥∥

6
∫ ∞

0

‖R(r)‖ ·
∥∥f(t+mp− r)− eikmpf(t− r)

∥∥ dr
=

∞∑
k=0

∫ 1

0

‖R(r + k)‖ ·
∥∥f(t+ k +mp− r)− eikmpf(t+ k − r)

∥∥ dr
6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1]

∥∥e−ikmpf̌(r − t−mp− k)− f̌(r − t− k)
∥∥
Lp(r)[0,1]

6 2

∞∑
k=0

‖R(·+ k)‖Lq(·)[0,1]ε = 2Mε, t ∈ R,

which clearly implies the required. �

The above result can be simply applied in the study of existence and unique-
ness of semi-Bloch k-periodic solutions of the fractional Cauchy inclusion (58). We
can also analyze the invariance of asymptotical semi-Bloch k-periodicity under the
actions of finite convolution products, applying the obtained results in the quali-
tative analysis of asymptotically (Stepanov) semi-Bloch k-periodic solutions of the
abstract fractional Cauchy inclusion (DFP)f,γ .

Let p > 0 and k ∈ R. If f : R→ X is Bloch (p, k)-periodic and a ∈ L1(R), then
the function a ∗ f(·) is likewise Bloch (p, k)-periodic. Using the Young inequality
and our previous results, it can be simply shown that the space of semi-Bloch
k-periodic functions is convolution invariant.

Finally, let B be a subset of Rs and f : R × B → Rs. Then we say that
the function f(·) is uniformly semi-Bloch k-periodic function if and only if for any
compact subset K of B, we have

∀ε > 0 ∃p > 0 ∀m ∈ Z ∀x ∈ R ∀α ∈ K ‖f(x+mp,α)− eikmpf(x, α)‖Rs 6 ε.

We close the subsection with the observation that we can simply reformulate [25,
Proposition 3] for uniformly semi-Bloch k-periodic functions and provide certain
applications to the matrix differential equations, as it has been done in [25, Theo-
rem 4] for semi-periodic functions.
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2.9.5. Weyl-(p, c)-almost periodic type functions. The material of the
next three subsections is taken from [225], outr joint paper with Prof. M. T.
Khalladi, A. Rahmani, M. Pinto and D.Velinov.

In this subsection, we first introduce the notion of an (equi-)Weyl-(p, c)-almost
periodic function as follows:

Definition 2.9.69. Let 1 6 p <∞ and f ∈ Lploc(I : X).

(i) We say that the function f(·) is equi-Weyl-(p, c)-almost periodic, f ∈
e −W p

ap;c(I : X) for short, if and only if for each ε > 0 we can find two
real numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L
contains a point τ ∈ I ′ such that

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− cf(t)
∥∥p dt]1/p

6 ε.(194)

(ii) We say that the function f(·) is Weyl-(p, c)-almost periodic, f ∈W p
ap;c(I :

X) for short, if and only if for each ε > 0 we can find a real number L > 0
such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

lim
l→+∞

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− cf(t)
∥∥p dt]1/p

6 ε.

If c = 1, resp. c = −1, then we also say that f(·) is (equi-)Weyl-p-almost
periodic, resp. (equi-)Weyl-p-almost anti-periodic.

It is clear that any equi-Weyl-(p, c)-almost periodic function is Weyl-(p, c)-
almost periodic. The proofs of following results are trivial and therefore omitted:

Proposition 2.9.70. Suppose that f : I → X is (equi-)Weyl-(p, c)-almost
periodic. Then ‖f‖ : I → [0,∞) is (equi-)Weyl-p-almost periodic.

Proposition 2.9.71. Let 1 6 p <∞ and f ∈ Lploc(I : X). If the function f(·)
is (equi-)Weyl-(p, c)-almost periodic and I = R, then the function f̌ : R → X is
(equi-)Weyl-(p, 1/c)-almost periodic.

We will include the proof of following proposition for the sake of completeness:

Proposition 2.9.72. Let 1 6 p <∞ and f ∈ Lploc(I : X). If the function f(·)
is (equi-)Weyl-(p, c)-almost periodic and m ∈ N, then the function f(·) is (equi-
)Weyl-(p, cm)-almost periodic.

Proof. We will give the proof for the class of equi-Weyl-(p, c)-almost periodic
functions. Let ε > 0 be fixed; then we can find two real numbers l > 0 and L > 0
such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that (194)
holds true. Clearly, integrating the estimate (167) (with the number l replaced by
the number m therein) over the segment [x, x + l], where x ∈ I, we obtain the
existence of a finite constant cp > 0 such that[

1

l

∫ x+l

x

∥∥f(t+mτ)− cmf(t)
∥∥p dt]1/p
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6 cp

[
m−1∑
j=0

|c|jp

l

∫ x+l

x

∥∥∥f(t+ (m− j)τ
)
− cf

(
t+ (m− j − 1)τ

)∥∥∥p dt]1/p

6 cp

[
m−1∑
j=0

|c|jp

l

∫ x+l+(m−j−1)τ

x+(m−j−1)τ

∥∥∥f(t+ τ)− cf(t)
∥∥∥p dt]1/p

6 cpε

[
m−1∑
j=0

|c|jp
]1/p

.

Therefore, for this number ε > 0, we can take the numbers l > 0 and mL > 0 in
definition of equi-Weyl-(p, c)-almost periodicity. This completes the proof. �

Consider now the following condition:

m ∈ Z r {0}, n ∈ N, (m,n) = 1, |c| = 1 and arg(c) = πm/n.(195)

The next corollary of Proposition 2.9.72 follows immediately:

Corollary 2.9.73. Let 1 6 p <∞, f ∈ Lploc(I : X), and let (195) hold.

(i) If m is even and f(·) is an (equi-)Weyl-(p, c)-almost periodic function,
then f(·) is (equi-)Weyl-p-almost periodic.

(ii) If m is odd and f(·) is an (equi-)Weyl-(p, c)-almost periodic function, then
f(·) is (equi-)Weyl-p-almost anti-periodic.

Proposition 2.9.74. Let 1 6 p < ∞, f ∈ Lploc(I : X), and let |c| = 1,
arg(c)/π /∈ Q. If f(·) is (equi-)Weyl-(p, c)-almost periodic and Stepanov p-bounded,
then f(·) is (equi-)Weyl-(p, c′)-almost periodic for all c′ ∈ S1.

Proof. It suffices to consider case in which the function f(·) is not almost
everywhere equal to zero. Let the numbers c′ ∈ S1 and ε > 0 be fixed; then the
set {cl : l ∈ N} is dense in S1 and therefore there exists an increasing sequence
(lk) of positive integers such that limk→+∞ clk = c′. Let k ∈ N be such that
|clk − c′| < ε/(2‖f‖Sp), and let ε > 0 be given. Then we can find two real numbers
l > 0 and L > 0 such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′
such that (194) holds. Then we have∥∥f(x+ τ)− c′f(x)

∥∥ 6 ∥∥f(x+ τ)− clkf(x)
∥∥+

∣∣clk − c′∣∣ · ‖f(x)‖,
for any x ∈ I. Then the conclusion follows from Proposition 2.9.72, after integrating
the above estimate over the segment [x, x+ l] and using the estimate

1

l

∫ x+l

x

‖f(t)‖p dt 6 1

l
(1 + blc)‖f‖pSp .

�

The main structural properties of (equi-)Weyl-(p, c)-almost periodic functions
are collected in the following theorem (see also [234, Proposition 2.3.5]):

Theorem 2.9.75. Let f : I → X be (equi-)Weyl-(p, c)-almost periodic, and let
α ∈ C. Then we have:
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(i) αf(·) is (equi-)Weyl-(p, c)-almost periodic.
(ii) If X = C and ess infx∈R |f(x)| = m > 0, then 1/f(·) is (equi-)Weyl-

(p, 1/c)-almost periodic).
(iii) If (gn : I → X)n∈N is a sequence of bounded, continuous, (equi-)Weyl-

(p, c)-almost periodic functions and (gn)n∈N converges uniformly to a func-
tion g : I → X, then g(·) is (equi-)Weyl-(p, c)-almost periodic.

(iv) If a ∈ I and b ∈ Ir{0}, then the functions f(·+a) and f(b ·) are likewise
(equi-)Weyl-(p, c)-almost periodic.

Now we will provide two illustrative examples:

Example 2.9.76. Set f(t) := χ[0,1/2](t), t ∈ R. Then for each number l > 0 we
have

1

l

∫ x+l

x

|f(t+ τ)− cf(t)|p dt 6 1

2l
(1 + |c|)p, x ∈ R.

This implies that f(·) is equi-Weyl-(p, c)-almost periodic for each complex number
c ∈ Cr {0} and for each finite exponent p > 1.

Example 2.9.77. Set f(t) := χ[0,∞)(t), t ∈ R. Then for each number l > 0 we
have

sup
x∈R

1

l

∫ x+l

x

|f(t+ τ)− cf(t)|p dt > |1− c|p,

so that f(·) cannot be Weyl-(p, c)-almost periodic for c 6= 1. On the other hand, it
is well known that f(·) is Weyl-(p, 1)-almost periodic for any finite exponent p > 1.

Concerning the invariance of (equi-)Weyl-(p, c)-almost periodicity under the
actions of convolution products, we will only note that the statements of [234,
Proposition 2.11.1, Theorem 2.11.4, Proposition 2.11.6] can be simply reformulated
in our framework. The interested reader can try to slightly generalize the notions
and results of this subsection for variable exponents p(x).

2.9.6. S-asymptotically (ω, c)-periodic functions. We start this subsec-
tion by introducing the following notion:

Definition 2.9.78. Let ω ∈ I. Then we say that a continuous function f : I →
X is S-asymptotically (ω, c)-periodic if and only if lim|t|→∞ ‖f(t + ω) − cf(t)‖ =
0; a continuous function f : I → X is said to be Sc-asymptotically periodic if
and only if there exists ω > 0 such that f(·) is S-asymptotically (ω, c)-periodic.
By SAPω;c(I : X) and SAPc(I : X) we denote the spaces consisting of all such
functions; if c = −1, then we also say that the function f(·) is S-asymptotically
ω-anti-periodic, resp. S-asymptotically anti-periodic.

This definition extends the well known definition of an S-asymptotically ω-
periodic function, introduced by H. Henŕıquez et al. [209] for case I = R and M.
Kostić [247] for case I = [0,∞).

Definition 2.9.79. Let p ∈ P([0, 1]). A p(x)-locally integrable function f(·) is
said to be Stepanov p(x)-asymptotically (ω, c)-periodic if and only if

lim
|t|→∞

∥∥f(s+ t+ ω)− cf(s+ t)
∥∥
Lp(s)[0,1]

= 0;
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a p(x)-locally integrable function f : I → X is said to be Stepanov pc(x)-asymptotically
periodic if and only if there exists ω > 0 such that f(·) is Stepanov p(x)-asymptotically
(ω, c)-periodic.

By Sp(x)SAPω;c(I : X) and Sp(x)SAPc(I : X) we denote the spaces consist-
ing of all such functions; if c = −1, then we also say that the function f(·) is
Stepanov p(x)-asymptotically ω-anti-periodic, resp. Stepanov p(x)-asymptotically
anti-periodic.

If p(x) ≡ p ∈ [1,∞), then by SpSAPω;c(I : X) and SpSAPc(I : X) we de-
note the spaces consisting of all such functions; if c = −1, then we also say that
the function f(·) is Stepanov p-asymptotically ω-anti-periodic, resp. Stepanov p-
asymptotically anti-periodic.

Now we will introduce the class of quasi-asymptotically c-almost periodic func-
tions:

Definition 2.9.80. It is said that a continuous function f : I → X is quasi-
asymptotically c-almost periodic if and only if for each ε > 0 there exists a finite
number L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one
number τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0 such that

‖f(t+ τ)− cf(t)‖ 6 ε, provided t ∈ I and |t| >M(ε, τ).

Denote by Q−AAPc(I : X) the set consisting of all quasi-asymptotically c-almost
periodic functions from I into X; if c = −1, then we also say that the function f(·)
is quasi-asymptotically almost anti-periodic.

Now we will introduce the following notion of Stepanov (p, c)-quasi-asymptotical
almost periodicity:

Definition 2.9.81. Let p ∈ P([0, 1]). A p(x)-locally integrable function f(·) is
said to be Stepanov (p(x), c)-quasi-asymptotically almost periodic if and only if for
each ε > 0 there exists a finite number L(ε) > 0 such that any interval I ′ ⊆ I of
length L(ε) contains at least one number τ ∈ I ′ satisfying that there exists a finite
number M(ε, τ) > 0 such that

‖f(s+ t+ τ)− cf(s+ t)‖Lp(s)[0,1] 6 ε
p, provided t ∈ I and |t| >M(ε, τ).

By Sp(x)Q−AAPc(I : X) we denote the set consisting of all Stepanov p(x)-quasi-
asymptotically c-almost periodic functions from I intoX; if c = −1, then we also say
that the function f(·) is Stepanov p(x)-quasi-asymptotically almost anti-periodic.

If p(x) ≡ p ∈ [1,∞), then we accept the usual terminology and then we denote
the above space by SpQ−AAPc(I : X).

Remark 2.9.82. A px)-locally integrable function f(·) is Stepanov (p(x0, c)-
quasi-asymptotically almost periodic if and only if the function f : I → Lp(x)([0, 1] :
X) is quasi-asymptotically c-almost periodic. Similar statements hold for the class
of Stepanov p(x)-asymptotically (ω, c)-periodic functions. This observation enables
one to see that many results clarified below, like Proposition 2.9.83, Corollary 2.9.84
and Theorem 2.9.86, continue to hold for the corresponding Stepanov classes of
functions under our consideration.
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It is very simple to prove that any asymptotically c-almost periodic function is
quasi-asymptotically c-almost periodic. Furthermore, (167) easily implies:

Proposition 2.9.83. Let ω > 0, f : I → X be an S-asymptotically (ω, c)-
periodic (Sc-asymptotically periodic, quasi-asymptotically c-almost periodic), and
let m ∈ N. Then f(·) is S-asymptotically (mω, cm)-periodic (Scm-asymptotically
periodic, quasi-asymptotically cm-almost periodic).

The next corollary of Proposition 2.9.83 follows immediately:

Corollary 2.9.84. Let f : I → X be a continuous function, and let (195)
hold.

(i) If m is even and f(·) is S-asymptotically (ω, c)-periodic (Sc-asymptotically
periodic, quasi-asymptotically c-almost periodic), then f(·) is
S-asymptotically ω-anti-periodic (S-asymptotically anti-periodic, quasi-
asymptotically almost anti-periodic).

(ii) If m is odd and f(·) is S-asymptotically (ω, c)-periodic (Sc-asymptotically
periodic, quasi-asymptotically c-almost periodic), then f(·) is
S-asymptotically ω-periodic (S-asymptotically periodic,
quasi-asymptotically almost periodic).

Therefore, if arg(c)/π ∈ Q, then the class of S-asymptotically (ω, c)-periodic
functions (Sc-asymptotically periodic functions, quasi-asymptotically c-almost pe-
riodic functions) is always contained in the class of S-asymptotically ω-periodic
functions (S-asymptotically periodic functions, quasi-asymptotically almost peri-
odic functions).

The following result holds true:

Corollary 2.9.85. Let |c| = 1 and arg(c)/π /∈ Q. If f(·) is bounded
S-asymptotically (ω, c)-periodic (bounded Sc-asymptotically periodic, bounded quasi-
asymptotically c-almost periodic), then f(·) is S-asymptotically ω-periodic
(S-asymptotically periodic, quasi-asymptotically almost periodic).

Further on, a slight modification of the proof of [247, Theorem 2.5] shows that
the following statement holds:

Theorem 2.9.86. Let F (I : X) be any space consisting of continuous functions
h : I → X such that supt∈I ‖h(t + τ) − ch(t)‖ = supt>a ‖h(t + τ) − ch(t)‖, a ∈ I.
Then the following holds:

(i) AAAc(I : X) ∩Q−AAPc(I : X) = AAPc(I : X).
(ii) AAc(R : X) ∩Q−AAPc(R : X) = APc(R : X).

We will include the proof of the following proposition for the sake of complete-
ness (see also the proof of [247, Proposition 2.7]):

Proposition 2.9.87. Let |c| 6 1. Then SAPω;c(I : X) ⊆ Q−AAPc(I : X).

Proof. Let ε > 0 be given. Then we can take L(ε) = 2ω in definition of
space Q−AAPc(I : X). Then any interval I ′ ⊆ I of length L(ε) contains a number
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τ = nω for some n ∈ N. For this n and ε, there exists a finite number M(ε, n) > 0
such that ‖f(t+ ω)− cf(t)‖ 6 ε/nω for |t| >M(ε, n). Then we have

‖f(t+ nω)− cf(t)‖ 6
n−1∑
k=0

|c|n−k−1‖f(t+ (k + 1)ω)− cf(t+ kω)‖

6
n−1∑
k=0

‖f(t+ (k + 1)ω)− cf(t+ kω)‖ 6
n−1∑
k=0

ε

nω
= ε/ω,

provided |t| >M(ε, n) + nω. This completes the proof. �

The following proposition can be deduced from the argumentation contained
in the proof of [247, Proposition 2.12]:

Proposition 2.9.88. We have SpQ−AAPc(I : X) ⊆W p
ap;c(I : X).

The structural properties of quasi-asymptotically almost periodic functions
clarified in [247, Theorem 2.13] can be slightly generalized in the following manner:

Theorem 2.9.89. Let f : I → X be a quasi-asymptotically c-almost periodic
function (Stepanov (p, c)-quasi-asymptotically almost periodic function). Then we
have:

(i) αf(·) is quasi-asymptotically c-almost periodic (Stepanov (p, c)-quasi-asy-
mptotically almost periodic) for any α ∈ C.

(ii) If X = C and infx∈I |f(x)| = m > 0 (essinfx∈I |f(x)| = m > 0),
then 1/f(·) is quasi-asymptotically 1/c-almost periodic (Stepanov (p, 1/c)-
quasi-asymptotically almost periodic).

(iii) If (gn : I → X)n∈N is a sequence of quasi-asymptotically c-almost periodic
functions and (gn)n∈N converges uniformly to a function g : I → X, then
g(·) is quasi-asymptotically c-almost periodic.

(iv) If (gn : I → X)n∈N is a sequence of Stepanov (p, c)-quasi-asymptotically
almost periodic functions and (gn)n∈N converges to a function g : I → X
in the space LpS(I : X), then g(·) is Stepanov (p, c)-quasi-asymptotically
almost periodic.

(v) The functions f(·+a) and f(b ·) are likewise quasi-asymptotically c-almost
periodic (Stepanov (p, c)-quasi-asymptotically almost periodic), where a ∈
I and b ∈ I r {0}.

The space of quasi-asymptotically c-almost periodic functions is not closed un-
der pointwise addition and multiplication (see also [247, Proposition 2.15, Example
2.16-Example 2.18]).

Concerning the invariance of quasi-asymptotical c-almost periodicity under the
actions of convolution products, the structural results clarified in [247, Section 3]
continue to hold for (Stepanov p-) bounded forcing terms f(·) :

Proposition 2.9.90. (i) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly
continuous operator family and

∫∞
0
‖R(s)‖ ds < ∞. If the function f ∈

Q−AAPc([0,∞) : X) is bounded, then the function F (·), defined through



2.9. c-UNIFORMLY RECURRENT FUNCTIONS AND c-ALMOST PERIODIC... 246

(131), with the function F(·) replaced therein with the function f(·), be-
longs to the class Q−AAPc([0,∞) : Y ).

(ii) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family
and

∫∞
0
‖R(s)‖ ds < ∞. If f ∈ Q − AAPc(R : X) is bounded, then the

function F(t), defined through (55), belongs to the class Q−AAPc(R : Y ).

Proposition 2.9.91. (i) Suppose that 1/p+1/q = 1, (R(t))t>0 ⊆ L(X,Y )
is a strongly continuous operator family and

∑∞
k=0 ‖R(·)‖Lq [k,k+1] < ∞.

If f ∈ SpQ− AAPc([0,∞) : X) is Stepanov p-bounded, then the function
F (·), defined by (131), belongs to the class Q−AAPc([0,∞) : Y ).

(ii) Suppose that 1/p+ 1/q = 1, (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous
operator family and

∑∞
k=0 ‖R(·)‖Lq [k,k+1] <∞. If f ∈ SpQ−AAPc(R : X)

is Stepanov p-bounded, then the function F(·), defined by (55), belongs to
the class Q−AAPc(R : Y ).

Before switch to the next subsection, let us note the obvious fact that the vari-
ous notions of Stepanov quasi-asymptotically almost periodic functions in Lebesgue
spaces with variable exponent, among many other classes of generalized almost pe-
riodic functions, can be slightly generalized by the use of difference f(·+ τ)− cf(·).
Fairly complete analysis of corresponding classes is without scope of this book.

2.9.7. Composition principles for quasi-asymptotically c-almost pe-
riodic functions. The main aim of this subsection is to introduce the class of
quasi-asymptotically c-almost periodic functions depending on two parameters, its
Stepanov generalization and to formulate several composition principles for quasi-
asymptotically c-almost periodic functions. First of all, we will introduce the folow-
ing definition:

Definition 2.9.92. Suppose that F : I × Y → X is a continuous function
and F is a non-empty collection of subsets of Y . Then we say that F (·, ·) is quasi-
asymptotically c-almost periodic, uniformly on F if and only if for each ε > 0 there
exists a finite number L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains
at least one number τ ∈ I ′ satisfying that there exists a finite number holds with a
number M(ε, τ) > 0 such that for each subset B ∈ F we have:∥∥F (t+ τ, x)− cF (t, x)

∥∥
Y
6 ε, provided t ∈ I, x ∈ B and |t| >M(ε, τ).

Denote by Q − AAPc;F (I × Y : X) the set consisting of all quasi-asymptotically
c-almost periodic functions F : I × Y → X on F .

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (60) holds. Define F(t) := F (t, f(t)), t ∈ I. Using (174)
and the proofs of [135, Theorem 3.30, Theorem 3.31], we may deduce the following
composition principles:

Theorem 2.9.93. Suppose that F ∈ Q−AAPc(I×Y : X) and f ∈ Q−AAPc(I :
Y ). If there exists a finite number L > 0 such that (60) holds and for each ε > 0
there exists a finite number L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε)
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contains at least one number τ ∈ I ′ satisfying that∥∥∥F (t+ τ, cf(t)
)
− cF (t, f(t))

∥∥∥6 ε, t ∈ I,(196)

then the function t 7→ F (t, f(t)), t ∈ I belongs to the class Q−AAPc(I : X).

Theorem 2.9.94. Suppose that F ∈ Q−AAPc(I×Y : X) and f ∈ Q−AAPc(I :
Y ). If the function x 7→ F (t, x), t ∈ I is uniformly continuous on R(f) uniformly for
t ∈ I and for each ε > 0 there exists a finite number L(ε) > 0 such that any interval
I ′ ⊆ I of length L(ε) contains at least one number τ ∈ I ′ satisfying that (196) holds,
then the function t 7→ F (t, f(t)), t ∈ I belongs to the class Q−AAPc(I : X).

The notion of a Stepanov (p, c)-quasi-asymptotically almost periodic function
depending on two parameters can be also introduced, and [247, Theorem 2.23,
Theorem 2.24] can be slightly generalized in this framework.

In [247, Section 4], we have analyzed the qualitative solutions of the abstract
nonautonomous differential equations (135)-(136) and their semilinear analogues.
We close the section with the observation that the structural results established in
[247, Theorem 4.1, Theorem 4.3] can be simply reformulated in our context; for
example, in the formulation of [247, Theorem 4.1], we can assume that

∞∑
k=0

∥∥Γ(t+ τ, t+ τ − ·)− cΓ(t, t− ·)
∥∥
Lq [k,k+1]

6 ε, provided t >M(ε, τ),

in place of condition [247, (4.1)]. Then the unique mild solution u(·) of the abstract
Cauchy problem (136) will belong to the class Q−AAPc([0,∞) : X) +F ; see [247]
for the notation. The structural results established for the abstract nonautonomous
semilinear differential equations [247, Theorem 4.6, Theorem 4.7] can be slightly
generalized in our framework, as well.

2.10. Notes and appendicies

In this section, we will briefly consider several important topics which have not
been discussed in the previous part of this monograph.

Recurrent strongly continuous semigroups. The notion of a uniformly re-
current operator is closely connected with the notion of a recurrent operator in a
complex Banach space X. Let us recall that a linear operator T : X → X is called
recurrent if and only if for every non-empty open subset U of X there exists some
k ∈ N such that U ∩ T−k(U) 6= ∅. A vector x ∈ X is said to be recurrent for T if
and only if there exists a strictly increasing sequence of positive integers (kn)n∈N
such that T knx→ x as n→ +∞; the set consisting of all reccurent vectors of T will
be denoted by Rec(T ). A much stronger notion than the recurrence is the measure
theoretic rigidity, introduced in the ergodic theoretic setting by H. Furstenberg and
B. Weiss ([178]; see also [177]). This concept, in the context of topological dynam-
ical systems, is known as the (uniform) rigidity, which was introduced by S. Glasner
and D. Maon ([182]). We say that a bounded linear operator T : X → X is rigid
if and only if there exists a strictly increasing sequence of positive integers (kn)n∈N
such that T knx → x as n → +∞, for every x ∈ X. A bounded linear operator
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T : X → X is called uniformly rigid if and only if there exists an increasing sequence
of positive integers (kn)n∈N such that ‖T kn − I‖ = sup‖x‖61 ‖T knx − x‖ → 0 as
n→ +∞. For more details about recurrent and rigid operators on Banach spaces,
see the research articles [119] by G. Costakis, I. Parissis and [118] by G. Costakis,
A. Manoussos, I. Parissis.

For families of bounded linear operators, we will use the following notion:

Definition 2.10.1. Let I = [0,∞) or I = R. We say that a family (W (t))t∈I of
bounded linear operators on X is recurrent if and only if for every open non-empty
set U ⊆ X there exists some t ∈ I such that U ∩ (W (t))−1(U) 6= ∅. A vector x ∈ X
is called a recurrent vector for (W (t))t∈I if and only if there exists an unbounded
sequence of numbers (tk) in I such that W (tk)x → x as k → +∞. By Rec(W (t))
we denote the set consisting of all recurrent vectors for (W (t))t∈I .

Definition 2.10.2. We say that a family (W (t))t∈I of bounded linear operators
on X is rigid if and only if there exists an unbounded sequence of numbers (tk) in
I such that W (tk)x→ x as k → +∞, for every x ∈ X, i.e. W (tk)→ I as k → +∞
in the strong operator topology, while (W (t))t∈I is called uniformly rigid if and
only if there exists an unbounded sequence (tk) in I such that ‖W (tk)− I‖ → 0 as
k →∞.

The following result is fundamental:

Theorem 2.10.3. Let (T (t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-
group if I = R, of bounded linear operators on X. The following statements are
equivalent:

(i) (T (t))t∈I is recurrent.

(ii) Rec(T (t)) = X.

If this is the case, the set of recurrent vectors for (T (t))t∈I is a Gδ-subset of X.

Proof. First we will show that (ii) ⇒ (i). Let Rec(T (t)) = X and U be an
arbitrary open non-empty subset in X. Let x be a recurrent vector and ε > 0 such
that B(x, ε) ⊆ U , where B(x, ε) = {y ∈ X : ‖x − y‖ < ε}. Then there exists
t ∈ I such that ‖T (t)x − x‖ < ε. Thus x ∈ U ∩ T (t)(U) 6= ∅, so (T (t))t∈I is
recurrent. Now, we will show that (i) ⇒ (ii). Let (T (t))t∈I be recurrent and let
B = B(x, ε) be an open ball in X, for fixed x ∈ X and ε < 1. The proof will end if
we show that there exists a recurrent vector in B. We use the recurrence property
of (T (t))t∈I . So, there exists t1 ∈ I such that x1 ∈ B ∩ T (t1)−1(B), for some
x1 ∈ E. Since (T (t))t∈I is strongly continuous, we have that there exists ε1 <

1
2

such that B2 = B(x1, ε1) ⊆ B ∩ T (t1)−1(B). Since (T (t))t∈I is recurrent, there
exists t2 ∈ I with |t2| > |t1| and some x2 ∈ E such that x2 ∈ B2 ∩ T (t2)−1(B2).
Using the same argument with strong continuity and recurrence of (T (t))t∈I , we
can inductively construct a sequence (xn) in X, an unbounded sequence (tn) in I
and a decreasing sequence of positive real numbers (εn), such that for every integer
n ∈ N one has εn < 2−n,

B(xn, εn) ⊆ B(xn−1, εn−1) and T (tn)
(
B(xn, εn)

)
⊆ B(xn−1, εn−1).
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By Cantor’s theorem we have that

∞⋂
n=1

B(xn, εn) = {y},

for some y ∈ X. It is clear that T (tn)y → y as n → +∞. Hence y ∈ B is a
recurrent vector in the open ball B, so the proof of (ii) ⇒ (i) is finished. Let us
prove that

Rec(T (t)) =

∞⋂
k=1

∞⋃
n=1

{
x ∈ X :

∥∥T (qn)x− x
∥∥ < 1

k

}
=: R(T (t)),(197)

where (qn) denotes the sequence consisting of all rational numbers which do have
the modulus strictly greater than 1. It simply follows that Rec(T (t)) is contained
in the set R(T (t)). For the opposite inclusion, for each element x ∈ R(T (t)) and for
each integer k ∈ N we can pick up a rational number qk which do have the module
strictly greater than 1 and for which ‖T (qk)x − x‖ < 1/k. If the sequence (qk) is
unbounded, we have done. If not, then there exists a convergent subsequence (qnk)
of (qn) such that limk→∞ qnk = q for some real number q ∈ I such that |q| > 1. In
this case, the strong continuity of (T (t))t∈I shows that x = T (q)x so that clearly
x ∈ Rec(T (t)) because, in this case, we have T (nq)x = x for all n ∈ N. Hence,
(197) holds and (T (t))t∈I is a Gδ subset of X. �

Using the representation formula (197) and the proof of [118, Proposition 2.6],
it can be easily seen that the following result holds good:

Theorem 2.10.4. Let (T (t))t∈R be a C0-group on X. Then (T (t))t>0 is recur-
rent if and only if (T (−t))t>0 is recurrent.

We continue by stating the following continuous analogue of [118, Proposition
2.3(i)]:

Theorem 2.10.5. Let (T (t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-
group if I = R, of bounded linear operators on X. Then, for every λ ∈ C with
|λ| = 1, we have Rec(T (t)) = Rec(λT (t)).

Proof. It is enough to show that Rec(T (t)) ⊆ Rec(λT (t)). For x ∈ Rec(T (t)),
we define the set L =

{
|µ| = 1 : λnT (tn)x→ µx, for some unbounded sequence (tn)

in I
}
. To finish the proof, we have to prove that 1 ∈ L. First of all, let us note that

L 6= ∅. Since x ∈ Rec(T (t)), there exists an unbounded sequence (tn) in I such
that T (tn)x → x. There exists a subsequence of (tn), denoted by (tnk), such that
λtkn → ρ as k →∞, for some |ρ| = 1. Hence, we have λtknT (tnk)x→ ρx as k →∞,
which means that ρ ∈ L. Let µ1, µ2 ∈ L and ε > 0 be fixed. Since µ1 ∈ L, there
exist a positive integer n1 ∈ N and a real number t1 ∈ I, with modulus sufficiently
large, such that ∥∥λn1T (t1)x− µ1x

∥∥ < ε

2
.
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Since µ2 ∈ L, there is a positive integer n2 ∈ N and a real number t2 ∈ I, with
module sufficiently large, such that∥∥λn2T (t2)x− µ2x

∥∥ < ε

2‖T (t1)‖
.

Hence,∥∥λn1+n2T (t1+t2)x−µ1µ2x
∥∥ 6 ∥∥λn1T (t1)(λn2T (t2)x−µ2x)

∥∥+
∥∥µ2(λn1T (t1)x−µ1x)

∥∥
6
∥∥T (t1)‖‖(λn2T (t2))x− µ2x

∥∥+
ε

2
< ε,

so that µ1µ2 ∈ L. Hence, µn ∈ L for µ ∈ L. If µ is a rational rotation, this
means that 1 ∈ L and we are done. If µ is an irrational rotation, there is a strictly
increasing sequence of positive integers (sk) such that µsk → 1. Since L is closed,
it follows that 1 ∈ L. �

Theorem 2.10.6. Let (T (t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-
group if I = R, of bounded linear operators on X. If (T (t)⊕ T (t))t∈I is recurrent,
then (T (t))t∈I is likewise recurrent.

Proof. Let x1⊕x2 be a recurrent vector for (T (t)⊕T (t))t∈I . Then it is clear
that x1 and x2 are recurrent vectors for (T (t))t∈I ; hence, (T (t))t∈I is recurrent. �

The question whether the direct sum (T (t) ⊕ T (t))t∈I of recurrent strongly
continuous operator families (T (t))t∈I is recurrent is not simple. The answer is
affirmative if (T (t))t∈I possesses some extra properties (see [118] for more details
about single-valued case).

The following continuous analogue of [118, Proposition 2.3(ii)] appears in this
monograph for the first time:

Theorem 2.10.7. Let (T (t))t∈R be a C0-group. Then the following assertions
are equivalent:

(i) (T (t))t>0 is recurrent.
(ii) For every t0 > 0, the operator T (t0) is recurrent.

(iii) There exists t0 > 0 such that the operator T (t0) is recurrent.

If this is the case, then for every t0 ∈ I r {0}, we have Rec(T (t)) = Rec(T (t0)).

Proof. The only non-trivial part is that (i) implies (ii), with the equality
Rec(T (t)) = Rec(T (t0)) for any fixed number t0 > 0. To see this, assume that
(T (t))t>0 is a recurrent C0-semigroup. Then it is clear that Rec(T (t)) ⊇ Rec(T (t0))
and, owing to Theorem 2.10.3, all that we need to prove is that the preassumption
x ∈ Rec(T (t)) implies x ∈ Rec(T (t0)). Without loss of generality, we can assume

that t0 = 1. Indeed, we can consider the semigroup (T̃ (t))t>0, with T̃ (t) := T (tt0),

for every t > 0. It is clear that x is a recurrent vector for (T̃ (t))t>0 and T̃ (1) = T (t0).
Denote by T the unit sphere in C and define the mapping φ : [0,∞) → T by
φ(t) := e2πit, t > 0. For every u ∈ X, we define the set

Fu :=
{
λ ∈ T : ∃(tn)n ∈ (0,∞) s.t. lim

n→∞
tn =∞, lim

n→∞
T (tn)u = u and lim

n→∞
φ(tn) = λ

}
.

Note that the set Fu is not empty by its definition and the recurrence property
of the semigroup (T (t))t>0. The set Fu is closed for u ∈ X, as it can be easily
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checked. Next, we will prove that if u ∈ X and λ, µ ∈ Fu, then λµ ∈ Fu. Let U
be an open balanced neighborhood of zero in X and ε > 0 arbitrary. Then we can
find t1 > 0 such that ‖T (t1)u− λu‖ 6 ε/2 and |φ(t1)− µ| < ε/2. Choose an open
balanced neighborhood of zero V in X and number t2 > 0 such that T (t1)(V ) ⊆ U,
T (t2)u− µu ∈ V and |φ(t2)− λ| < ε/2. Hence,

T (t1 + t2)u− λµu = T (t1)
(
T (t2)u− µu

)
+ µ

(
T (t1)u− λu

)
∈ T (t1)(V ) +B(0, ε/2) ⊆ U +B(0, ε/2),

so that∣∣φ(t1 + t2)− λµ
∣∣ =

∣∣φ(t1)φ(t2)− λµ
∣∣ 6 ∣∣φ(t1)− µ| · |φ(t2)

∣∣+ |µ| ·
∣∣φ(t2)− λ

∣∣ < ε.

This simply implies that λµ ∈ Fu as claimed. Further on, it is clear that there exists
x ∈ (−π, π] such that eix = λ ∈ Fu. If x is rational, then using the fact that Fu is
closed under multiplication immediately gives 1 ∈ Fu. If x is not rational, then Fu
is dense in T since it contains the set {einx : n ∈ N} so that 1 ∈ Fu again. Hence,
1 ∈ Fu. Suppose now u ∈ Rec(T (t)). Then we have the existence of a sequence
(tn)n∈N of positive real numbers tending to infinity such that limn→∞ T (tn)u = u
and lim→∞ φ(tn) = 1. Let (kn) be a sequence of positive integers and εn ∈ [−1, 1]
such that tn = kn+εn for all n ∈ N. Obviously, limn→∞ εn = 0. Hence, ‖T (kn)u−
u‖ 6 ‖T (−εn)[T (tn)u− u] + [T (−εn)u− u]‖ 6 supξ∈[−1,1] ‖T (ξ)‖ · ‖T (tn)u− u‖+

‖T (−εn)u− u‖ → 0 as n→ +∞. As a consequence, we have u ∈ Rec(T (1)). �

Remark 2.10.8. Condition that (T (t))t>0 can be extended to a C0-group seems
to be slightly redundant. Due to [306, Theorem 6.5, p. 24], this is the case provided
that there exists a finite number t0 > 0 such that [T (t0)]−1 ∈ L(X).

Suppose that ∆ = [0,∞) or ∆ = R. A measurable function ρ : ∆ → (0,∞) is
said to be an admissible weight function if and only if there exist constants M > 1
and ω ∈ R such that ρ(t) 6 Meω|t

′|ρ(t + t′) for all t, t′ ∈ ∆. Let us introduce the
Banach spaces

Lpρ(∆,C) :=
{
u : ∆→ C ;u(·) is measurable and ||u||p <∞

}
,

where p ∈ [1,∞) and ||u||p := (
∫

∆
|u(t)|pρ(t) dt)1/p, and

C0,ρ(∆,C) :=
{
u : ∆→ K ;u(·) is continuous and lim

t→∞
u(t)ρ(t) = 0

}
,

with ||u|| := supt∈∆ |u(t)ρ(t)|. For any function f : ∆ → C, we define T (t)f :=
f(· + t), t ∈ ∆. If ρ(·) is an admissible weight function and ∆ = [0,∞), resp.
∆ = R, then the translation semigroup, resp. group, (T (t))t∈∆ is strongly con-
tinuous on Lpρ(∆,C) and C0,ρ(∆,C). Recently, Z. Yin and Y. Wei have considered
weak recurrence of translation operators on weighted Lebesgue spaces and weighted
continuous function spaces ([355]). They have shown that the existence of a func-
tion f ∈ X, where X = Lpρ([0,∞),C) or X = C0,ρ([0,∞),C), satisfying that there
exists a strictly increasing sequence (αn) of positive reals tending to plus infinity
such that (compare with (19))

lim
n→+∞

∥∥f(·+ αn)− f(·)
∥∥
X

= 0
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is equivalent to saying that lim inft→+∞ ρ(t) = 0 (the hypercyclicity of (T (t))t>0);
see also the preprint [83] by W. Brian and J. P. Kelly.

For more details about recurrent sets of operators, we refer the reader to the
recent paper [22] by M. Amouch and O. Benchiheb.

Lower and upper densities. In Subsection 2.4.1, we have used various notions
of lower and upper densities for a subset A ⊆ [0,∞) which can take, generally
speaking, any value in the range [0,∞]. Without any doubt, the most important
densities are those ones with values in the range [0, 1]. As in the discrete case, the
minimal conditions which should satisfy any lower or upper density d : P ([0,∞))→
[0, 1] are: d(∅) = 0, d([0,∞)) = 1 and d(A) 6 d(B), whenever A, B ⊆ [0,∞) and
A ⊆ B. But, some other axioms are needed for obtaining a good definition of
density. For example, following A. R. Freedman and J. J. Sember [175] we can
consider the upper density δ?(·) : P ([0,∞))→ [0, 1] with the following properties:

(l1) δ?(A ∪B) 6 δ?(A) + δ?(B);
(l2) δ?(A) = δ?(B), provided that A∆B is bounded;
(l3) δ?(A) 6 δ?(A).

It is also worth noting that we can consider the upper density ν? : P ([0,∞))→ [0, 1]
with the following properties introduced recently by P. Leonetti and S. Tringali in
the discrete case ([261]):

(f1) ν?(A ∪B) 6 ν?(A) + ν?(B);
(f2) ν?(αA) = α−1ν?(A), provided that α > 0;
(f3) ν?(A+ α) = ν?(A), provided that α > 0.

Besides that, it could be of some importance to analyze many other notions of lower
and upper densities in the continuous setting, like the notions of upper logarithmic,
upper Buck, upper Pólya or upper analytic densities (see also the classical studies
by A. S. Besicovitch [63, 64, 65], the monograph [128] by C. De Lellis and the
doctoral dissertation of N. F. G. Martin [283]). For further information, see also
[185], [235] and references cited therein.

Almost periodic functions of complex variables. The theory of almost pe-
riodic functions of one complex variable, initiated already by H. Bohr in the third
part of [75], is still very popular and attracts the attention of numerous mathe-
maticians (see e.g., [165], [217], [330]). Suppose that −∞ 6 α < β 6 +∞ and
the function f : Ω ≡ {z ∈ C : α < Re z < β} → X is analytic. Then we say
that f(·) is almost periodic if and only if for any ε > 0 and every reduced strip
{z ∈ C : α′ < Re z < β′}, where α < α′ < β′ < β, there exists a number l > 0 such
that each subinterval of length l of R contains a number τ satisfying the inequality

‖f(z + iτ)− f(z)‖ 6 ε for α′ < Re z < β′.

In particular, this definition implies that, for any fixed σ ∈ (α, β), the function
fσ(t) := f(σ + it), t ∈ R is almost periodic. Moreover, the definition implies that
the almost periodicity should be uniform on the various straight lines, with the
meaning clear. The Fourier series of these functions can be obtained from a cer-
tain exponential series with complex coefficients; the associated series is called the
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Dirichlet series of f(·). As for the functions of one real variable, Bohr’s notion of
almost periodicity of f(·) in a vertical strip Ω is equivalent to the relative compact-
ness of the set of its vertical translates, {f(· + ih) : h ∈ R}, with the topology of
the uniform convergence on reduced strips. Mean motions and zeros of generalized
almost periodic analytic functions have been analyzed by V. Borchsenius and B.
Jessen in [78], where the reader can find several important applications to the Rie-
mann zeta function (see also [292] and the references there for further information
about applications of results from the theory of almost periodic analytic functions
to the Riemann zeta function).

We would like to accent that the notions of uniform recurrence and �g-almost
periodicity for the functions of one real variable can be simply modified and in-
troduced for the functions of one complex variable. For more details about almost
periodic analytic functions of several complex variables, we refer the reader to
[166, 322] and references quoted therein.

C(n)-almost periodic functions. The notion of C(n)-almost periodicity was
introduced by M. Adamczak [6] in 1997 and later received a grat attention of many
other authors. In this monograph, we will not consider C(n)-almost periodic type
functions and solutions of integro-differential equations; we shall only say a few
words about generalized C(n)-almost periodic functions and possibilites for further
expansions.

Several different classes of Stepanov-like C(n)-pseudo almost automorphic func-
tions have been analyzed by T. Diagana, V. Nelson and G. M. N’Guérékata in [144].
For example, let 1 6 p <∞, let n ∈ N, and let f ∈ Lploc(I : X).

(i) We say that the function f(·) is Stepanov-p-C(n)-almost periodic, f ∈
C(n) − APSp(I : X) for short, if and only if for each k = 0, 1, · · ·, n, we
have that f (k) ∈ APSp(I : X).

(ii) We say that the function f ∈ Lploc([0,∞) : X) is asymptotically Stepanov-

p-C(n)-almost periodic, f ∈ C(n) − AAPSp([0,∞) : X) for short, if and
only if for each k = 0, 1, · · ·, n, we have that f (k) ∈ AAPSp([0,∞) : X).
The following definitions have been analyzed in [234]:

(iii) We say that the function f(·) is equi-Weyl-p-C(n)-almost periodic, f ∈
e−C(n) −W p

ap(I : X) for short, if and only if for each k = 0, 1, · · ·, n, we

have that f (k) ∈ e−W p
ap(I : X).

(iv) We say that the function f(·) is Weyl-p-C(n)-almost periodic, f ∈ C(n) −
W p
ap(I : X) for short, if and only if for each k = 0, 1, · · ·, n, we have that

f (k) ∈W p
ap(I : X).

(v) We say that he function f(·) is Besicovitch-Doss-p-C(n)-almost periodic,
f ∈ C(n) − Bp(I : X) for short, if and only if for each k = 0, 1, · · ·, n, we
have that f (k) ∈ Bp(I : X).
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Using the same idea, we can introduce and analyze a great number of C(n)-almost
automorphic function spaces ([234]). For example, the function

f(t) =

∞∑
n=1

sinnt

n4
, t ∈ R

is C(2)-almost periodic but not C(3)-almost automorphic. Furthermore, for any
real-valued function g ∈ C(3)−AA(R : C) satisfying inft∈R g

′′′(t) > 0, we have that
the function

f(t) =

∞∑
n=1

g(nt)

n4
, t ∈ R,

belongs to the space C(2)-AAS1(R : C)rC(3)-AAS1(R : C); see e.g. [144, Example
2.23]. It is clear that we can slightly generalize the notion of all above-mentioned
function spaces by using the definitions and results from the theory of Lp(x)-spaces.

Riemann-Stepanov almost periodicity, Riemann-Weyl almost periodicity
and Riemann-Besicovitch almost periodicity. In [157], R. Doss has analyzed
the classes of Riemann-Stepanov almost periodic functions, Riemann-Weyl almost
periodic functions and Riemann-Besicovitch almost periodic functions. All consid-
erations in this paper are carried out for the scalar-valued functions.

Following [157, Definition 1], we say that an essentially bounded function f :
I → X is Riemann-Stepanov almost periodic if and only if for every ε > 0 there
exist δ > 0 and numbers π1 ∈ I, · · ·, πm ∈ I such that

sup
x∈I

∫ x+1

x

∥∥f(t+ τt)− f(t)‖ dt < ε(198)

provided that |τt| < δ (mod πk), k ∈ Nm; here,
∫

denotes the upper Lebesgue
integral. If we replace the quantity in (198) with

lim sup
l→+∞

sup
x∈I

1

l

∫ x+l

x

∥∥f(t+ τt)− f(t)‖ dt < ε

resp.,

lim sup
l→+∞

1

2l

∫ l

−l

∥∥f(t+ τt)− f(t)‖ dt, if I = R, resp.

lim sup
l→+∞

1

l

∫ l

0

∥∥f(t+ τt)− f(t)‖ dt, if I = [0,∞),

then we say that f(·) is Riemann-Weyl almost periodic, resp. Riemann-Besicovitch
almost periodic.

Following A. S. Kovanko [259], R. Doss has also introduced the classes of
Kovanko-Stepanov almost periodic functions, Kovanko-Weyl almost periodic func-
tions and Kovanko-Besicovitch almost periodic functions (see [157, Definition 2]).
This definition can be simply introduced in the vector-valued case.
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For any measurable set E ⊆ I, we introduce the quantities

S(E) := sup
x∈I

∫ x+1

x

χE(t) dt

W (E) := lim
l→+∞

sup
x∈I

1

l

∫ x+l

x

χE(t) dt

and

B(E) := lim sup
l→+∞

1

2l

∫ l

−l
χE(t) dt, if I = R, resp.

B(E) := lim sup
l→+∞

1

l

∫ l

0

χE(t) dt, if I = [0,∞).

In [157, Theorem 1], it has been proved that an essentially bounded function
f : I → X is Riemann-Stepanov almost periodic if and only if for every ε > 0 there
exist a measurable set E ⊆ I and numbers δ > 0, π1 ∈ I, · · ·, πm ∈ I such that
S(I r E) < ε and |f(x) − f(x′)| < ε provided x ∈ E and |x − x′| < δ (mod πk),
k ∈ Nm. For the Riemann-Weyl almost periodicity and the Riemann-Besicovitch
almost periodicity, we have the same statement with the quantity S(IrE) replaced
respectively by W (I r E) and B(I r E). We would like to note that the proof of
necessity in this theorem works for the vector-valued functions, as it can be simply
inspected. But, the proof of sufficiency in this theorem and the statement of [157,
Theorem 2] are intended solely for the scalar-valued functions. Furthermore, in
the scalar-valued case, we have that the concepts Riemann-Weyl almost periodicity
and the Riemann-Besicovitch almost periodicity coincide.

Due to [157, Theorem 3], we have that an essentially bounded function f : I →
X is Riemann-Stepanov almost periodic if and only if for every ε > 0 there exist a
measurable set E ⊆ I and a trigonometric polynomial q(·) such that S(I rE) < ε
and |f(x) − q(x)| < ε provided x ∈ E. For the Riemann-Weyl almost periodicity
and the Riemann-Besicovitch almost periodicity, we have the same statement with
the quantity S(I rE) replaced respectively by W (I rE) and B(I rE). We would
like to note that the proof of sufficiency in this theorem works for the vector-valued
functions.

Nemytskii operators between Stepanov almost periodic function spaces.
Let p and q be two real numbers belonging to the interval [1,∞), and let T > 0.
It is said that f : (0, T ) × X → Y is a Carathéodory function if and only if the
following holds:

(i) the mapping t 7→ f(t, x), t ∈ (0, T ) is measurable for any fixed element
x ∈ X;

(ii) for a.e. t ∈ (0, T ) the function f(t, ·) is continuous from X and Y.

Consider now the Nemytskii operator Nf : Lp((0, T ) : X)→ Lq((0, T ) : Y ) by[
Nf (ω)

]
(t) := f(t, ω(t)), t ∈ (0, T ), ω ∈ Lp((0, T ) : X).

The well known result of R. Lucchetti and F. Patrone [278, Theorem 3.1] states
that the Nemytskii operator is a well defined between these spaces if and only if
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there exist a > 0 and b ∈ Lp((0, T )) such that for all x ∈ X and a.e. t ∈ (0, T ) we
have

‖f(t, x)‖ 6 a‖x‖p/q + b(t).

In this case, the Nemytskii operator is continuous.
Concerning the Nemytskii operator between the spaces of almost periodic func-

tions AP (R : X) and AP (R : Y ), it should be noted that we have the equivalence
of the following statements (see e.g. J. Blot, P. Cieutat, G. M. NGuérékata and D.
Pennequin [69]) :

(i) The Nemytskii operator Nf : AP (R : X)→ AP (R : Y ) is continuous.
(ii) For each compact set K ⊆ X and for each ε > 0 the set{

τ ∈ R : sup
t∈R

sup
x∈K
‖f(t+ τ)− f(t, x)‖ 6 ε

}
is relatively dense in R.

(iii) For all x ∈ X, f(·, x) ∈ AP (R : Y ) and for each compact set K ⊆ X and
for each ε > 0 there exists δ > 0 such that for each x1, x2 ∈ K and for each
t ∈ R we have the implication: ‖x1 − x2‖ 6 δ ⇒ ‖f(t, x1)− f(t, x2)‖ 6 ε.

A similar statement holds for the continuity of Nemytskii operator between
the spaces of almost automorphic functions AA(R : X) and AA(R : Y ); see e.g.,
the recent paper [107, Theorem 2.3] by P. Cieutat. Several necessary and sufficient
conditions clarifying the continuity of Nemytskii operators between almost periodic
and almost automorphic spaces in the sense of Stepanov can be found in [107,
Section 4].

Geometric properties of generalized almost periodic function spaces of
Orlicz type. In his fundamental paper [211], T. R. Hillmann has investigated
the Besicovitch-Orlicz spaces of almost periodic functions. After that, numerous
mathematicians working in the field of almost periodic functions have investigated
the geometric properties of generalized almost periodic function spaces of Orlicz
type.

We will insribe here the results of M. Morsli, M. Smaali established in [296] and
the results of F. Bedouhene, Y. Djabri, F. Boulahia established in [55], only; for
more details on the subject, we refer the reader to [57], [100], [293]-[295] and the
list of references quoted in these papers. Assume that the function ϕ : R× [0,∞)→
[0,∞) satisfies the following conditions:

(i) For every t ∈ R, we have ϕ(t, 0) = 0.
(ii) For every t ∈ R, the mapping u 7→ ϕ(t, u), u > 0 is convex.
(iii) ϕ(t+ 1, u) = ϕ(t, u) for all t ∈ R and u > 0.
(iv) For every u > 0, we have inft∈R ϕ(t, u) = φ(u) > 0.

If f : R→ [0,+∞] is a measurable function, then it is well known that the functional

f 7→ ρϕ(f) := lim sup
t→+∞

1

2t

∫ t

−t
ϕ
(
t, |f(t)|

)
dt, f ∈M(R),

is convex and pseudomodular.
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In [296], the authors have defined the Besicovitch-Musielak-Orlicz space asso-
ciated to ϕ(·, ·) by

Bϕ(R) :=
{
f ∈M(R) : lim

α→0+
ρϕ(αf) = 0

}
.

We have

Bϕ(R) =
{
f ∈M(R) : (∃α > 0) ρϕ(αf) <∞

}
.

The space Bϕ(R) is eqipped with the pseudonorm

‖f‖ϕ :=
{
k > 0 : ρϕ(f/k) 6 1

}
.

The authors have introduced two different types of Besicovitch-Musielak-Orlicz
spaces of almost periodic functions, B̃ϕa.p.(R) and Bϕa.p.(R), as follows: A function

f : R→ C is said to belong the space Bϕa.p.(R), resp. B̃ϕa.p.(R), if and only if there
exists a sequence (fn) of trigonometric polynomials such that for every k > 0, resp.
there exists k > 0, such that limn→+∞ ρϕ(k(fn − f)) = 0. Then we clearly have

Bϕa.p.(R) ⊆ B̃ϕa.p.(R) ⊆ Bϕ(R).

If ϕ(t, |x|) = |x|, then by B1
a.p.(R), B̃1

a.p.(R) and B1(R) we denote the respective
spaces.

Let us recall that a function ϕ : R × [0,∞) → [0,∞) is strictly convex if and
only if ϕ(t, λu + (1 − λ)v) < λϕ(t, u) + (1 − λ)ϕ(t, v) for a.e. t ∈ R and for all
λ ∈ (0, 1), 0 6 u < v < ∞. On the other hand, a normed linear space (E, ‖ · ‖) is
said to be strictly convex if and only if∥∥∥x+ y

2

∥∥∥ < 1, provided that ‖x‖ = ‖y‖ = 1 and x 6= y.

It is said that the function ϕ(·, ·) satisfies the ∆2-condition if and only if there
exist a number k > 1 and a measurable nonnegative function h(·) such that ρϕ(h) <
∞ and ϕ(t, 2u) 6 kϕ(t, u) for almost all t ∈ R and all u > h(t).

Let f ∈ Bϕa.p.(R). Then, due to [296, Proposition 1], we have ϕ(·, |f(·)|) ∈
B1
a.p.(R) so that the limit

lim
T→+∞

1

2T

∫ T

−T
ϕ(t, |f(t)|) dt

always exists and is finite. The main result of paper is [296, Theorem 1], which

states that the space B̃ϕa.p.(R) is strictly convex if and only if ϕ(·, ·) is strictly convex
and satisfies the ∆2-condition.

Ergodicity in Stepanov-Orlicz spaces has been investigated in [55]. Let us recall
that a convex function φ : R → [0,∞) is said to be an Orlicz function if and only
if it is non-decreasing, even and continuous on R and satisfies φ(0) = 0, φ(u) > 0
for u > 0 and limu→+∞ φ(u) = +∞. In the newly arisen situation, we say that
the function φ(·) satisfies the ∆2-condition if and only if there exist real numbers
k > 1 and u0 > 0 such that φ(2u) 6 kϕ(u) for |u| > u0. For any Orlicz function
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φ : R → [0,∞), it can be simply proved that f ∈ PAP0(R : X) if and only if
φ(‖f‖) ∈ PAP0(R : X).

For any vector-valued measurable function f : R → X, we define the positive
functional

ρSφ(f) := sup
x∈R

∫ x+1

x

φ(‖f(s)‖) ds.

The Stepanov-Orlicz function space generated by φ is defined by

BSφ(R, X) :=
{
f ∈M(R : X) ; (∃α > 0) ρSφ(αf) <∞

}
We know that the vector space BSφ(R, X) equipped with the Luxemburg norm

‖f‖Sφ := inf

{
k > 0 : sup

x∈R

∫ x+1

x

φ(‖f(s)‖/k) ds 6 1

}
.

is a Banach space. It is also worth noting that the Morse-Transue space type

B̃S
φ
(R, X) :=

{
f ∈M(R : X) ; (∃α > 0) ρSφ(αf) <∞

}
equipped with the Luxemburg norm is a closed subspace of BSφ(R, X), which
is commonly called the Besicovitch-Orlicz class. We know that BSφ(R, X) =

B̃S
φ
(R, X) if and only if φ(·) satisfies the ∆2-condition.
Further on, for any p ∈ C+(R) we define the Musielak-Orlicz modular type

space

BSp(·)(R, X) :=

{
f ∈M(R : X) ; (∃α > 0) sup

x∈R

∫ x+1

x

(
‖f(s)‖/k

)p(s)
ds 6 1

}
.

For any function f ∈ BSp(·)(R, X), the notion of BSp(·)(R, X)-ergodicity in norm
sense and the notion of BSp(·)(R, X)-ergodicity in modular sense are introduced in
[55, Definition 3.1] and [55, Definition 3.2], respectively. Due to [55, Proposition
3.4], these concepts are equivalent.

Let φ : R → [0,∞) be an Orlicz function. In [55, Definition 3.6], the authors
introduce the notions of norm ergodicity in Stepanov Orlicz sense, modular ergod-
icity in Stepanov Orlicz sense and strongly modular ergodicity in Stepanov Orlicz
sense for a given function f ∈ BSφ(R, X). After that, the authors further explore
this notion in [55, Theorem 3.8, Theorem 3.10, Theorem 3.11] and provide several
illustrative examples in [55, Section 4].

Density theorems for almost periodic functions in Hilbert spaces. In
this part, we will inscribe a few relevant results obtained by A. Haraux and V.
Komornik in [201]; these results have been obtained in their investigation of the
oscillatory properties of the wave equation. Denote by XT the vector space of all
square-integrable functions with zero mean

XT :=

{
f ∈ L2

loc(R : C) ; f(t+ T ) ≡ f(t),

∫ T

0

f(t) dt = 0

}
,
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where T > 0. If the set A = {T1, · · ·, TN} is a given set of positive real numbers,
we define

X := XT1
+ · · ·+XTN .

If V is a certain collection of complex-valued functions and I is an interval in R,
then we set VI := {fI : f ∈ V }. In [201, Theorem 1], the authors have proved that
there exists a positive real number T (A) such that for any interval I ⊆ R we have

XI is dense in L2(I) if and only if |I| < T (A),

where |I| denotes the length of interval I; furthermore, the orthogonal complement
of XI in L2(I) is finite dimensional if |I| = T (A) and infinite dimensional if |I| >
T (A). Suppose that |I| = T (A) and the orthogonal complement of XI in L2(I) is
p-dimensional for some integer p ∈ N. If Pp−1 denotes the vector space consisting
of all complex polynomials of degree 6 p− 1 (including also the zero polynomial),
then [201, Theorem 3(a)] states that YI is dense in L2(I), where Y := Pp−1 + X;
furthermore, YI = L2(I) if and only if p = 1, which is equivalent to saying that
Pi/Pj ∈ Q for 1 6 i 6 j 6 N. Due to [201, Theorem 3(b)], there exists a real-valued
function h ∈ L2(I) such that the functions h, h′, · · ·, hp−1 span XI ; furthermore, if
we extend the function h(·) by zero to the whole real line and denote the obtained
function by H(·), then we know that the function H(·) is a nonzero finite linear
combinations of Dirac measures.

Almost periodicity in chaos. In this part, we will only draw the attention of
the readers to the results presented in the tenth chapter of the recent research
monograph [18] by M. Akhmet. In [18, Section 10], the author has investigated
the dynamical properties of the following system

y′ = Ay +G(t, y) +H(x(t)), t ∈ R,(199)

where G : R×Rn → Rn is continuous in both variables, almost periodic in variable t
uniformly for y ∈ Rn, the function H : Rm → Rn is continuous, and all eigenvalues
of the constant n× n real matrix A have negative real parts. Roughly speaking, if
the perturbation part H(x(t)) is chaotic in a certain sense, then the system (199)
has the interesting feature of chaos with infinitely many almost periodic motions.
The obtained results are well illustrated with several numerical tests involving the
coupled Duffing oscillators, for which it is well known that play an important role
in modeling of the enhanced signal propagation (see also [20] and [19]). The most
important notion used in [18, Section 10] is the notion of Li-Yorke chaotic set with
infinitely many almost periodic motions, which is introduced in [18, Definition 10.1]
for the equicontinuous families of uniformly bounded functions x : R→ Λ, where Λ
is a non-empty compact subset of Rm. We would like to note here that this notion
can be introduced in the infinite-dimensional setting, even for other types of chaos
like distributional chaos or mean Li-Yorke chaos ([235]).

New classes of weighted pseudo-ergodic components. As is well known, the
notion of a weighted pseudo almost-periodic function was introduced by T. Diagana
in [137] (2006); cf. also [139]-[140]. This notion was extended by J. Blot, G. M.
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Mophou, G. M. N’Guérékata and D. Pennequin in [70] (2009) by introducing the
notion of a weighted pseudo-almost automorphic function.

Let us recall the following fundamental notion:

a. U := {ρ ∈ L1
loc(R) : ρ(t) > 0 a.e. t ∈ R},

b. U∞ := {ρ ∈ U : infx∈R ρ(x) < ∞ and ν(T, ρ) := limT→+∞
∫ T
−T ρ(t) dt =

∞},
c. Ub := L∞(R) ∩ U∞.

Then Ub ⊆ U∞ ⊆ U. It is said that the weights ρ1(·) and ρ2(·) are equivalent,
ρ1 ∼ ρ2 for short, if and only if ρ1/ρ2 ∈ Ub. By UT we denote the space consisting
of all weights ρ ∈ U∞ satisfying that ρ is equivalent with all its translations.

The following spaces of double weighted ergodic components have been ana-
lyzed by many authors, even their generalizations in the light of measure theory:

Suppose that ρ1, ρ2 ∈ U∞. Set

PAP0

(
R, X, ρ1, ρ2

)
:=

{
f ∈ Cb(R : X) : lim

T→+∞

1

2
∫ T
−T ρ1(t) dt

∫ T

−T
‖f(t)‖ρ2(t) dt = 0

}
.

The main aim of this part, which closes the whole monograph, is to simply
explain how one can introduce and analyze several new classes of weighted pseudo-
ergodic components which generalize the space PAP0(R, X, ρ1, ρ2). In order to do
that, we modify our approach from Subsection 2.5.5.

Suppose that φ : [0,∞) → [0,∞), ψ : [0,∞) → [0,∞) and F : (0,∞) →
(0,∞) are given functions and p ∈ P(R). Then we can consider the following
generalizations of the space PAP0(R, X, ρ1, ρ2) :

PAP0,p(R, X, F, φ) :=

{
f ∈M(R : X) ; lim

T→+∞
F (T )

[
φ(‖f(x)‖)

]
Lp(x)[−T,T ]

= 0

}
,

PAP 1
0,p(R, X, F, φ, ψ) :=

{
f ∈M(R : X) ; lim

T→+∞
F (T )φ

([
ψ(‖f(x)‖)

]
Lp(x)[−T,T ]

)
= 0

}
and

PAP 2
0,p(R, X, F, φ, ψ) :=

{
f ∈M(R : X) ; lim

T→+∞
φ
(
F (T )

[
ψ(‖f(x)‖)

]
Lp(x)[−T,T ]

)
= 0

}
.

Concerning two-parameter double weighted ergodic components, the following
space is of crucial importance:

PAP0

(
R× Y,X, ρ1, ρ2

)
:=

{
f ∈ Cb(R× Y : X) ;

lim
T→+∞

1

2
∫ T
−T ρ1(t) dt

∫ T

−T
‖f(t, y)‖ρ2(t) dt = 0, uniformly on bounded subsets of Y

}
.

Following the above ideas, we can similarly introduce and analyze the correspond-
ing spaces of two-parameter double weighted ergodic components which generalize
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the space PAP0(R × Y,X, ρ1, ρ2). The analysis can be also carried out for the
functions defined on the non-negative real axis (the set [0,∞)× Y ).
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fractional semilinear in Hölder spaces,
167

Poisson heat, 12

second-order abstract Volterra, 214

semilinear fractional Poisson heat, 166

semilinear Poisson heat, 90

evolution system, 14

Fekete’s lemma, 59

fractional calculus, 30

fractional derivatives

Caputo, 30, 101

Riemann-Liouville, 31

Weyl-Liouville, 31

fractional differential equations, 30

function, 224

(ω, c)-almost periodic, 168

(ω, c)-almost periodic of type 1, 174

(ω, c)-almost periodic of type 2, 174

(ω, c)-uniformly recurrent, 168

(ω, c)-uniformly recurrent of type 1, 174

(ω, c)-uniformly recurrent of type 2, 174

(ω, c)-pseudo almost automorphic, 188

(ω, c)-pseudo almost periodic, 188

S-asymptotically (ω, c)-periodic, 242

Sp(x)-bounded, 91

�g-almost periodic, 64

c-almost periodic, 215

(asymptotical) Stepanov p(x)-almost

periodic, 91

(compactly) (ω, c)-almost automorphic,

168

(compactly) Stepanov (p(x), ω, c)-almost
automorphic, 171

(compactly) Stepanov (p, ω, c)-almost

automorphic, 171

Stepanov p-quasi-asymptotically almost
periodic, 43

absolutely continuous, 25

almost anti-periodic, 39

almost automorphic, 50

almost periodic, 36

anti-periodic, 39

asymptotically (ω, c)-almost periodic,

169

asymptotically (ω, c)-uniformly
recurrent, 169

asymptotically �g-almost periodic, 67

asymptotically c-almost periodic, 224

asymptotically c-periodic, 38

asymptotically c-uniformly recurrent, 224

asymptotically T -periodic, 78

asymptotically (compactly) (ω, c)-almost
automorphic, 169

asymptotically (compactly) Stepanov

(p(x), ω, c)-almost automorphic, 172

asymptotically (compactly) Stepanov

(p, ω, c)-almost automorphic, 172

asymptotically periodic, 38

asymptotically semi-c-periodic, 224

asymptotically semi-periodic, 237

asymptotically Stepanov
(p(x),�g)-almost periodic, 68

asymptotically Stepanov (p,�g)-almost

periodic, 68

asymptotically Stepanov

(p(x), ω, c)-almost periodic, 172

asymptotically Stepanov
(p(x), ω, c)-uniformly recurrent, 172

asymptotically Stepanov (p(x), c)-almost

periodic, 224

asymptotically Stepanov

(p(x), c)-uniformly recurrent, 224

asymptotically Stepanov (p, ω, c)-almost
periodic, 172

asymptotically Stepanov

(p, ω, c)-uniformly recurrent, 172

asymptotically Stepanov (p, c)-almost

periodic, 224

asymptotically Stepanov (p, c)-uniformly
recurrent, 224

asymptotically Stepanov C(n)-almost

periodic, 253

asymptotically Stepanov p-semi-Bloch

k-periodic, 238

asymptotically Stepanov p-uniformly
recurrent, 68
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asymptotically Stepanov p(x)-semi-Bloch

k-periodic, 238

asymptotically Stepanov p(x)-uniformly
recurrent, 68, 130

asymptotically Stepanov almost periodic,

42

asymptotically uniformly recurrent, 67

asymptotically Weyl almost periodic
with variable exponent, 116

Besicovitch-Doss almost periodic, 45

Besicovitch-Doss-p-C(n)-almost periodic,

253

Bloch (p, k)-periodic, 235

Carathéodory, 255

compactly almost automorphic, 51

Doss-(p, φ, F )-almost periodic, 133

Doss-(p, φ, F )-uniformly recurrent, 133

Doss-(p, φ, F )1-almost periodic, 133

Doss-(p, φ, F )1-uniformly recurrent, 133

Doss-(p, φ, F )2-almost periodic, 134

Doss-(p, φ, F )2-uniformly recurrent, 134

equi-Weyl-(p(x), φ, F )-uniformly
recurrent, 146

equi-Weyl-(p(x), φ, F )1-uniformly

recurrent, 146

equi-Weyl-(p(x), φ, F )2-uniformly
recurrent, 146

equi-Weyl-(p, φ, F )-almost periodic, 102

equi-Weyl-(p, φ, F )-vanishing, 111

equi-Weyl-(p, φ, F )1-almost periodic, 103

equi-Weyl-(p, φ, F )1-vanishing, 111

equi-Weyl-(p, φ, F )2-almost periodic, 103

equi-Weyl-(p, φ, F )2-vanishing, 111

equi-Weyl-(p, c)-almost periodic, 240

equi-Weyl-[p(x), φ, F ]-uniformly

recurrent, 147

equi-Weyl-[p(x), φ, F ]1-uniformly

recurrent, 148

equi-Weyl-[p(x), φ, F ]2-uniformly

recurrent, 148

equi-Weyl-[p, φ, F ]-almost periodic, 107

equi-Weyl-[p, φ, F ]1-almost periodic, 107

equi-Weyl-[p, φ, F ]2-almost periodic, 108

equi-Weyl-p-almost periodic, 45

Gamma, 22

Laplace transformable, 33

Levitan N -almost periodic, 179

Lipschitz continuous, 205

Mittag-Leffler, 31

Orlicz, 257

quasi-asymptotically c-almost periodic,
243

quasi-asymptotically almost periodic, 43

quasi-asymptotically uniformly recurrent,

149

recurrent, 179

Riemann-Besicovitch, 254

Riemann-Stepanov, 254

Riemann-Weyl almost periodic, 254

S-asymptotically ω-periodic, 43

semi Bloch k-periodic, 237

semi-c-periodic, 215

semi-c-periodic of type 1, 230

semi-c-periodic of type 1+, 230

semi-c-periodic of type 2, 230

semi-c-periodic of type 2+, 230

semi-Bloch k-periodic, 235

smooth (w, c)−almost periodic, 196

Stepanov (p(x),�g)-almost periodic, 68

Stepanov (p(x), ω, c)-almost periodic, 171

Stepanov (p(x), ω, c)-almost periodic of

type 2, 180

Stepanov (p(x), ω, c)-uniformly recurrent,

171

Stepanov (p(x), ω, c)-uniformly recurrent
of type 2, 180

Stepanov (p(x), c)-almost periodic, 224

Stepanov (p(x), c)-quasi-asymptotically

almost periodic, 243

Stepanov (p(x), c)-uniformly recurrent,

224

Stepanov (p,�g)-almost periodic, 68

Stepanov (p, ω, c)-almost periodic, 171

Stepanov (p, ω, c)-almost periodic of type

2, 180

Stepanov (p, ω, c)-uniformly recurrent,
171

Stepanov (p, ω, c)-uniformly recurrent of

type 2, 180

Stepanov (p, c)-almost periodic, 224

Stepanov (p, c)-quasi-asymptotically

almost periodic, 243

Stepanov (p, c)-uniformly recurrent, 224

Stepanov C(n)-almost periodic, 253

Stepanov p-asymptotically

(ω, c)-periodic, 242

Stepanov p-asymptotically ω-periodic, 43

Stepanov p-semi-Bloch k-periodic, 238

Stepanov p-uniformly recurrent, 68

Stepanov p(x)-asymptotically
(ω, c)-periodic, 242

Stepanov p(x)-semi-Bloch k-periodic, 238

Stepanov p(x)-uniformly recurrent, 68,

130

Stepanov bounded, 41
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232

Stepanov semi-(p(x), c)-periodic of type

1+, 232

Stepanov semi-(p(x), c)-periodic of type

2, 232

Stepanov semi-(p(x), c)-periodic of type

2+, 232

Stepanov semi-(p, c)-periodic of type 1,

232

Stepanov semi-(p, c)-periodic of type 1+,

232

Stepanov semi-(p, c)-periodic of type 2,

232

Stepanov semi-(p, c)-periodic of type 2+,

232

Stepanov-(p, φ,F)-quasi-asymptotically

almost periodic, 152

Stepanov-(p, φ,F)-quasi-asymptotically

uniformly recurrent, 152

Stepanov-(p, φ,F)1-quasi-asymptotically
almost periodic, 152

Stepanov-(p, φ,F)1-quasi-asymptotically
uniformly recurrent, 152

Stepanov-(p, φ,F)2-quasi-asymptotically
almost periodic, 153

Stepanov-(p, φ,F)2-quasi-asymptotically
uniformly recurrent, 153

Stepanov-(p, φ, F)-asymptotically
ω-periodic, 152

Stepanov-(p, φ, F)1-asymptotically
ω-periodic, 152

Stepanov-(p, φ, F)2-asymptotically

ω-periodic, 153

Stepanov-[p, φ,F]-quasi-asymptotically

almost periodic, 153

Stepanov-[p, φ,F]-quasi-asymptotically

uniformly recurrent, 153

Stepanov-[p, φ,F]1-quasi-asymptotically

almost periodic, 154

Stepanov-[p, φ,F]1-quasi-asymptotically

uniformly recurrent, 154

Stepanov-[p, φ,F]2-quasi-asymptotically

almost periodic, 154

Stepanov-[p, φ,F]2-quasi-asymptotically

uniformly recurrent, 154

Stepanov-[p, φ, F]-asymptotically

ω-periodic, 154

Stepanov-[p, φ, F]1-asymptotically

ω-periodic, 154

Stepanov-[p, φ, F]2-asymptotically

ω-periodic, 154

two-parameter

(ω, c, 1)-almost automorphic, 188

(ω, c, 1)-almost periodic, 188

(ω, c, 1)-pseudo ergodic vanishing, 187

(ω, c, 2)-almost automorphic, 188

(ω, c, 2)-almost periodic, 188

(ω, c, 2)-pseudo ergodic vanishing, 187

(ω, c, i)-pseudo almost automorphic,

188

(ω, c, i)-pseudo almost periodic, 188

�g-almost periodic, 82

�g-almost periodic on bounded sets,
82

almost periodic, 39

asymptotically �g-almost periodic, 82,

83

asymptotically �g-almost periodic on
bounded sets, 83

asymptotically almost periodic, 39

asymptotically Stepanov

(p(x),�g)-almost periodic, 83

asymptotically Stepanov

(p(x),�g)-almost periodic on
bounded sets , 83

asymptotically Stepanov

(p,�g)-almost periodic, 83

asymptotically Stepanov
(p,�g)-almost periodic on bounded

sets , 83

asymptotically Stepanov p-uniformly

recurrent, 83

asymptotically Stepanov p-uniformly
recurrent on bounded sets, 83

asymptotically Stepanov p(x)-almost

periodic, 96

asymptotically Stepanov
p(x)-uniformly recurrent, 83, 132

asymptotically Stepanov

p(x)-uniformly recurrent on

bounded sets, 83

asymptotically Stepanov almost
periodic, 42

asymptotically uniformly recurrent,

82, 83

asymptotically uniformly recurrent on

bounded sets, 83

equi-Weyl p-almost periodic, 46

equi-Weyl p-vanishing, 47

quasi-asymptotically c-almost periodic,

uniformly on F , 246

quasi-asymptotically uniformly

recurrent, uniformly on B, 159

Stepanov (p(x),�g)-almost periodic,
83
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Stepanov (p(x),�g)-almost periodic on

bounded sets , 83

Stepanov (p,�g)-almost periodic, 83

Stepanov (p,�g)-almost periodic on
bounded sets , 83

Stepanov p-uniformly recurrent, 83

Stepanov p-uniformly recurrent on

bounded sets, 83

Stepanov p(x)-almost periodic, 96

Stepanov p(x)-uniformly recurrent, 83,
132

Stepanov p(x)-uniformly recurrent on
bounded sets, 83

Stepanov almost periodic, 42

strictly convex, 257

uniformly continuous on B, 159

uniformly recurrent, 82

uniformly recurrent on bounded sets,

82

Weyl p-almost periodic, 46

Weyl p-vanishing, 47

uniformly recurrent, 39

Weyl-(p(x), φ, F )-uniformly recurrent,

146

Weyl-(p(x), φ, F )1-uniformly recurrent,

146

Weyl-(p(x), φ, F )2-uniformly recurrent,

146

Weyl-(p, φ, F )-almost periodic, 102

Weyl-(p, φ, F )-vanishing, 111

Weyl-(p, φ, F )1-almost periodic, 103

Weyl-(p, φ, F )1-vanishing, 111

Weyl-(p, φ, F )2-almost periodic, 103

Weyl-(p, φ, F )2-vanishing, 111

Weyl-(p, c)-almost periodic, 240

Weyl-[p(x), φ, F ]-uniformly recurrent, 147

Weyl-[p(x), φ, F ]1-uniformly recurrent,

148

Weyl-[p(x), φ, F ]2-uniformly recurrent,

148

Weyl-[p, φ, F ]-almost periodic, 107

Weyl-p-almost periodic, 45

Wright, 31

Green’s function, 14

Hölder inequality, 28, 80, 98

Hölder space, 11

heat conduction in materials with memory,

214

hyperbolic evolution system, 14

inverse Laplace transform, 33

Jensen integral inequality, 91

Lebesgue spaces with variable exponent, 27

Li-Yorke chaos, 259

Luxemburg norm, 27

mean Li-Yorke chaos, 259

modular ergodicity in Stepanov Orlicz
sense, 258

multivalued linear operator

closed, 29

integer powers, 28

inverse, 28

kernel, 28

MLO, 28

product, 28

sum, 28

Nemytskii operator, 255

norm ergodicity in Stepanov Orlicz sense,

258

normal space of distributions, 197

normed space

strictly convex, 257

operator

(uniformly) rigid, 248

adjoint, 22

closed, 22

linear, 22

recurrent, 248

orthogonal complement, 259

part of operator, 22

principal term, 38

quasi-periodic properties of fractional

integrals, 78

range, 22

removable singularity at zero, 30

resolvent family for (163), 213

resolvent set, 22

Riemann-Liouville fractional integral, 30,

78

satisfactorily uniform set, 44

semilinear fractional Cauchy inclusion, 192

solution

classical solution of (DFP)f,γ , 101

mild, 205

strong, 204

space

AA[0,∞)(X), 179

BQ−AUR(αn)([0,∞) : X), 166

BSp(x)(I : X), 92

BUR(αn);c(R : X), 228
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BUR(αn)(R : X), 88

Lpw,c, 193

Bap, 196

D′Lp , 197

DLpw,c , 194

D′
L
p
w,c

, 197
.
DL∞w,c , 196

Musielak-Orlicz modular, 258

Besicovitch-Musielak-Orlicz, 256

Morse-Transue, 258

Schwartz, 4, 193

Stepanov-Orlicz, 258

spectral synthesis, 37

spectrum, 22

Stepanov almost automorphy, 52

Stepanov distance, 41

Stepanov metric, 41

Stepanov norm, 41

strongly continuous semigroup, 25

(uniformly) rigid, 248

recurrent, 248

recurrent vector, 248

strongly modular ergodicity in Stepanov
Orlicz sense, 258

subgenerator, 32, 33

supremum formula, 37, 65

theorem

dominated convergence, 24

Fubini, 24

Kadet, 38

Liouville, 42

Loomis, 56

Lusin, 194

upper density

α-, 252

δ?, 252

ν?, 252

analytic, 252

asymptotic, 252

Banach, 252

logarithmic, 252

Pólya, 252

vector-valued

Laplace transform, 34

Sobolev space, 25

weighted

ergodic components, 260

spaces

U, 260

U∞, 260

Ub, 260

weighted continuous function spaces, 251

weighted Lebesgue spaces, 251
Weyl

almost automorphy, 52

distance, 41
norm, 41
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Applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
73. S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A. 48 (1962),

2039–2043.

74. S. Bochner, J. von Neumann, Almost-periodic functions in a group. II∗, Trans. Amer.
Math. Soc. 37 (1935), 21–50.

75. H. Bohr, Zur theorie der fastperiodischen Funktionen I; II; III, Acta Math. 45 (1924),

29–127; H6 (1925), 101–214; HT (1926), 237–281.
76. H. Bohr, Almost Periodic Functions, Dover Publ., New York, 2018.

77. H. Bohr, E. Følner, On some types of functional spaces: A contribution to the theory of

almost periodic functions, Acta Math. 76 (1944), 31–155.
78. V. Borchsenius, B. Jessen, Mean motions and the values of the Riemann zeta function,

Acta Math. 80 (1948), 97–166.
79. C. Bouzar, M. T. Khalladi, On asymptotically almost periodic generalized solutions of

differential equations, Pseudo-Differential Operators and Generalized Functions, in Operator

Theory: Advances and Applications vol. 245, ed. S. Pilipović and J. Toft, Birkhäuser-Verlag,
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255. M. Kostić, D. Velinov, Vector-valued almost automorphic distributions and vector-valued

almost ultradistributions, Novi Sad J. Math. 48 (2018), 111–121.
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354. P. Yang, Y.-R. Wang, M. Fečkan, Boundedness, periodicity, and conditional stability

of noninstantaneous impulsive evolution equations, Math. Methods Appl. Sci. 43 (2020),

5905–5926.
355. Z. Yin, Y. Wei, Recurrence and topological entropy of translation operators, J. Math. Anal.

Appl. 460 (2018), 203–215.

356. R. Yuan, On the existence of almost periodic solutions of second order neutral delay differ-
ential equations with piecewise constant argument, Sci. China Math. 41 (1998), 232–241.

357. R. Yuan, The existence of almost periodic solutions of retarded differential equations with

piecewise constant argument, Nonlinear Anal. 48 (2002), 1013–1032.
358. R. Yuan, J. Hong, The existence of almost periodic solutions for a class of differential

equations with piecewise constant argument, Nonlinear Anal. 28 (1997), 1439–1450.
359. S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Pitman Research Notes in

Math., Vol. 126, Pitman, Boston, 1985.



BIBLIOGRAPHY 283

360. M. Zaki, Almost automorphic solutions of certain abstract differential equations, Ann. Mat.

Pura Appl. 101 (1974).

361. D. A. Zakora, Abstract linear Volterra second-order integro-differential equations, Eurasian
Math. J. 7 (2016), 75–91.

362. C. Zhang, Pseudo almost periodic functions and their applications, PhD. Thesis, The Uni-

versity of Western Ontario, 1992.
363. C. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal.

Appl. 181 (1994), 62–76.
364. C. Zhang, Pseudo almost periodic solutions of some differential equations, II, J. Math.

Anal. Appl. 192 (1995), 543–561.

365. C. Zhang, Vector-valued pseudo almost periodic functions, Czech. Math. J. 47 (1997), 385–
394.

366. C. Zhang, Ergodicity and asymptotically almost periodic solutions of some differential equa-

tions, Int. J. Math. Math. Sci. (Internet) 25 (2001), 787–800.
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