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First mathematical derivation of existence of black holes

GRA VI "I ATIONAL CONTRACTION

densed neutron phase would start at the center.
By reason of the greater density of the con-
densed phase, the star will begin to collapse.
The details of this process are di6.cult to analyze
without knowing the change of density and the
heat of condensation (latent heat of evapora-
tion). If the latter one can be neglected beside
the regular energy liberation in the stellar
interior, collapsing can go on until a very thin
neutron atmosphere is left around the con-
densed neutron core. This hypothesis affords a

concrete physical basis for Zwicky's' suggestion
that the supernovae originate from the sudden
transition of an ordinary star to a centrally
condensed one. It is obvious that a detailed
analysis of this problem must await a great deal
more experimental data concerning the physical
properties of the neutron.

I should like to express my thanks to Dr.
Rupert Wildt for helpful discussions on the
subject.

6 F. Zwicky, Astrophys. J. 88, 522 (&938).
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On Continued Gravitational Contraction

J. R. OPPENHEIMER AND H. SNYDER

University of California, Berkeley, California

(Received July 10, 1939)

When all thermonuclear sources of energy are exhausted a suSciently heavy star will

collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star's mass to the order of that of the sun, this contraction will continue
indefinitely. In the present paper we study the solutions of the gravitational field equations
which describe this process. In I, general and qualitative arguments are given on the
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles. In II, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and typical stellar
masses, of the order of a day; an external observer sees the star asymptotically shrinking to
its gravitational radius.

ECENTLY it has been shown' that the
general relativistic field equations do not

possess any static solutions for a spherical
distribution of cold neutrons if the total mass of
the neutrons is greater than 0.7Q. It seems of
interest to investigate the behavior of nonstatic
solutions of the field equations.

In this work we will be concerned with stars
which have large masses, &0.7Q, and which
have used up their nuclear sources of energy. A
star under these circumstances would collapse
under the inAuence of its gravitational field and
release energy. This energy could be divided into
four parts: (1) kinetic energy of motion of the

i J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. SS,
374 (1939).

particles in the star, (2) radiation, (3) potential
and kinetic energy of the outer layers of the star
which could be blown away by the radiation,
(4) rotational energy which could divide the
star into two or more parts. If the mass of the
original star were sufficiently small, or if enough
of the star could be blown from the surface by
radiation, or lost directly in radiation, or if the
angular momentum of the star were great enough
to split it into small fragments, then the re-
maining matter could form a stable static
distribution, a white dwarf star. We consider the
case where this cannot happen.

If then, for the late stages of contraction, we
can neglect the gravitational effect of any
escaping radiation or matter, and may still
neglect the deviations from spherical symmetry
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No singularity within a black hole?
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Topology to the rescue
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A similar increase in the low-energy proton in-
tensity, in coincidence with the passage of a blast
wave, was observed on 12 November 1960 tJ. F.
Steljes, H. Carmichael, and K. G. McCracken, J.
Geophys. Res. 66, 1363 (1961}]. The increases pro-
ton intensity may have been partly or wholly of in-
terplanetary origin, but the increase was of such
a form that it is not possible to rule out a solar ori-
gin.

GRAVITATIONAL COLLAPSE AND SPACE- TIME SINGULARITIES

Roger Penrose
Department of Mathematics, Birkbeck College, London, England

{Received 18 December 1964)

The discovery of the quasistellar radio sources
has stimulated renewed interest in the question
of gravitational collapse. It has been suggested
by some authors' that the enormous amounts
of energy that these objects apparently emit
may result from the collapse of a mass of the
order of (10'-10')MC, to the neighborhood of
its Schwarzschild radius, accompanied by a
violent release of energy, possibly in the form
of gravitational radiation. The detailed math-
ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications
of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation —which
requires at least a quadripole structure.

The general situation with regard to a spher-
ically symmetrical body is well known. ' For
a sufficiently great mass, there is no final
equilibrium state. %'hen sufficient thermal
energy has been radiated away, the body con-
tracts and continues to contract until a physi-
cal singularity is encountered at r = 0. As

measured by local comoving observers, the
body passes within its Schwarzschild radius
r = 2m. (The densities at which this happens
need not be enormously high if the total mass
is large enough. ) To an outside observer the
contraction to ~ = 2m appears to take an infinite
time. Nevertheless, the existence of a singu-
larity presents a serious problem for any com-
plete discussion of the physics of the interior
region.

The question has been raised as to whether
this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter
the situation drastically? The recent rotating
solution of Kerr' also possesses a physical
singularity, but since a high degree of sym-
metry is still present (and the solution is al-
gebraically special), it might again be argued
that this is not representative of the general
situation. 4 Collapse without assumptions of
symmetry will be discussed here.
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General relativity in a nutshell

Present

Past

Future

(M, g) a time-oriented Lorentz-manifold
(spacetime)
Particles move along timelike curves c
(ċ timelike), light moves on null curves
(ċ null): I+(p), J+(p).
Free-falling particles/photons move on
geodesics.
Time-separation function:
τ(p, q) = sup L(c), c causal p ; q.
Einstein-equations: G = Ric− 1

2sg ,

G = 8πT

T . . . Energy-momentum tensor.
Geodesic (in-)completeness of M as a
criterion for existence of singularities.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 6 / 20



General relativity in a nutshell

Present

Past

Future

(M, g) a time-oriented Lorentz-manifold
(spacetime)

Particles move along timelike curves c
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Singularity Theorems

Blueprint of the generic singularity theorem (J. Senovilla):

Th. If g is C2 then (i)–(iv) are incompatible, where (M, g) satisfies
(i) an energy (i.e., curvature) condition.
(ii) a causality condition.
(iii) an initial or boundary condition.
(iv) causal completeness.

C2 is too much to ask: Realistic models (stars, matched spacetimes)
involve jumps in matter variables ; g ∈ C1,1.
Theorem allows (i)–(iv) for C1,1.
But C1,1 spacetimes are not singular (curvature bounded, unique
geodesics).
Below C1,1: unbounded curvature, non-unique geodesics: singular.
Hence C1,1 is the natural threshold for singularity theorems.
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Case in point: The Hawking Singularity Theorem
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Case in point: The Hawking Singularity Theorem
Theorem A C2-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every timelike vector X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
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Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point

Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible

expp no longer local diffeomorphism.
However:

expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:

expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Case in point: The Hawking Singularity Theorem
Theorem A C1,1-spacetime is future causal geodesically incomplete if
1. Ric(X ,X ) ≥ 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion θ = − 1

n−1trSν = −g(H, ν) of S is negative
[K, Steinbauer, Stojković, Vickers, Class. Quantum Gravity ’14]

Problems:
Curvature tensor only L∞: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point
Second variation of arclength no longer permissible
expp no longer local diffeomorphism.

However:
expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds (Minguzzi (’14, ’18); K, Steinbauer, Stojković (’14))

Bulk of causality theory remains valid (Chruściel, Grant (’12); Minguzzi
(’14, ’19); K, Steinbauer, Stojković, Vickers (’15), Sämann (’16))

Strategy: Use approximations adapted to the causal structure.
Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 8 / 20



Regularization techniques

ǧ g ĝ

Th. g a C1,1-metric, Ric(X ,X ) ≥ 0 for every smooth
TL vector field X . Then
∀K b M ∀C > 0 ∀δ > 0 ∀κ < 0 ∀0ε ∀X ∈
TM|K , ǧ(X ,X ) ≤ 0, ‖X‖h ≤ C : Ric[ǧε](X ,X ) >
−δ.
Proof uses:

ǧε − g ∗ ρε → 0 in C2 ; suffices to consider
gε := g ∗ ρε.
Rjk = R i

jki = ∂x i Γi
kj − ∂xk Γi

ij + Γi
imΓm

kj − Γi
kmΓm

ij
Blue terms|ε converge uniformly.
For red terms use variant of Friedrichs-Lemma:

(RjkX jX k) ∗ ρε − Rjk [gε]X jX k → 0 uniformly
ρε ≥ 0⇒ (RjkX jX k) ∗ ρε ≥ 0.

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 9 / 20



Hawking’s Theorem: C1,1-proof

D+(S) ⊆ D+
ǧε(S):

S

p

D   (S)gεˆ

D (S)

J  (p)-

+

+

Limiting argument ⇒ for every p ∈ D+(S) there exists a g-geodesic
γ with L(γ) = τ(S, p).
S compact ⇒ negative upper bound on θ(0) = lim θε(0).
Ricci-curvature bound on ǧε and Raychaudhury equation ⇒ D+(S)
relatively compact, otherwise ∃ conjugate points for ǧε too close to S.
Therefore, H+(S) ⊆ D+(S) compact.
Derive a contradiction as in the C∞-case.
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From C 1,1 to C 1: Motivation and new challenges

Motivation:
Regularity of solutions to the Einstein equations: ∈ Hs

loc , s > 5/2 ,
Γi

jk ∈ L2
loc lowest regularity where weak solutions are well defined.

How low can you go?
New problems:

Uniqueness of geodesic IVP (γ′′ = −Γ(γ(t))γ′(t)γ′(t)) is lost.
Curvature no longer bounded: Ric 6∈ L∞loc .

However:
Geodesics still exist ; notion of geodesic completeness (all geodesics
inextendable).
Curvature well-defined as a distribution.
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Hawking’s singularity theorem for C 1-metrics

Curvature bound/energy condition:
u ∈ D′ ≥ 0 :⇔ 〈u, µ〉 ≥ 0 for each test-density µ ≥ 0.
Strong energy condition: Ric(X ,X ) ≥ 0 for each smooth timelike X .

Main steps of the proof:
Regularize g using Oberguggenberger’s method: atlas (Uα, ψα),
ξα ∈ D(Uα) partition of 1,χα ∈ D(Uα), |χα| ≤ 1, χα ≡ 1 near
suppξα. ρ ≥ 0 mollifier. Then

g ∗M ρε :=
∑
α

χα · (ψα)∗
(
((ψα)∗)(ξα · g)) ∗ ρε

)
.

Ric ∗M ρε ≥ 0 and Ric[g ∗M ρε]− Ric[ǧε]→ 0
Refined Friedrichs-Lemma: Ric ∗M ρε − Ric[g ∗M ρε]→ 0 locally
uniformly.
Estimates on existence time for ǧε-geodesics: arbitrarily long if g is
complete.
Causality arguments remain unchanged.

[M. Graf, Comm. Math. Phys., 2020]
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From C 1 to C 0? Breakdown of Causality Theory

C1,1: bulk of causality incl. singularity theorems works
C0,1 = Lip: Results not involving geodesics/exponential map work
below Lipschitz: some fundamentals break down [Chruściel/Grant ’12]

(1) push up principle fails

(J+ ◦ I+) 6⊆ I+

(2) light cones bubble up

Failure of convexity in C1,α, both IVP and BVP for geodesics
problematic
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problematic
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The future is not always open (below C 0,1)

ds2 = 2
[
− sin 2θ(x) dt2 − 2 cos 2θ(x) dx dt + sin 2θ(x) dx2

]
θ(x) turns light cones in a Hölder but not Lipschitz way

c is a Lip. timelike curve reaching ∂J+(p) (C1 & null at single pt.)
⇒ I+(p) contains segment of t-axis ⇒ I+(p) not open

[Grant, K, Sämann, Steinbauer, Lett. Math. Phys. ’19]
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Metric curvature bounds via triangles
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Lorentzian pre-length spaces
(X ,�,≤) causal space, d metric on X , τ : X × X → [0,∞] lower
semicontinuous (with respect to d)

Definition
(X , d ,�,≤, τ) is a Lorentzian pre-length space if

τ(x , z) ≥ τ(x , y) + τ(y , z) (x ≤ y ≤ z) ,

and τ(x , y) = 0 if x � y and τ(x , y) > 0⇔ x � y ;
τ is called time separation function

Examples
Lipschitz spacetimes with complete Riemannian background metric h
and induced metric dh

Finite directed graphs

[K., Sämann, Ann. Glob. Anal. Geom., 2018]
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Timelike curvature bounds in Lorentzian Length Spaces
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Curvature singularities
Synthetic singularity Theorems in Lorentzian Length Spaces

Hawking’s Theorem in warped products I ×f X with TL lower
curvature bound ([Alexander, Graf, K, Sämann, ’19]).
Hawking’s Theorem for LLSs using optimal transport methods and
synthetic Ricci bounds ([Cavalletti, Mondino, ’20])
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Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 18 / 20



Curvature singularities
Synthetic singularity Theorems in Lorentzian Length Spaces

Hawking’s Theorem in warped products I ×f X with TL lower
curvature bound ([Alexander, Graf, K, Sämann, ’19]).
Hawking’s Theorem for LLSs using optimal transport methods and
synthetic Ricci bounds ([Cavalletti, Mondino, ’20])

- 3 - 2 - 1 1 2

0.5

1.0

1.5

2.0 r

g- g+
(10) g+

(2)

t

x

z10

y2

z2
y10

g
0

Schwarzschild has timelike curvature unbounded below

Michael Kunzinger (University of Vienna) Singularity Theorems and D′-Geometry Ghent, Sep. 1, 2020 18 / 20



Analytic versus synthetic approach

Geodesics

Solution of geodesic equation (classical, distributional, Caratheodory,
Filipov, . . . ) vs longest (shortest) curves. Notions coincide for g ∈ C1

(Lytchak/Yaman ’06, Schinnerl ’20), open questions in C0,α.
Uniqueness for IVP vs non-branching (lower curvature bound).
Uniqueness for BVP vs upper curvature bounds.

Curvature bounds

Sectional curvature bounds vs Triangle comparison (equivalent in C2:
Toponogov-Theorem [Alexander/Bishop ’08]).
Ricci curvature bounds vs Timelike Measure Contraction Property
(equivalent in C2: Cavalletti/Mondino ’20)
Relation to distributional curvature bounds is an open question.

No “vs” yet: Impulsive gravitational waves (g ∈ D′ ; G (Colombeau)):
Podolsky, Steinbauer, Sämann. Wave equations in C1,1, Green operators,
QFT (Hörmann, Sanchez, Spreitzer, Vickers) – G as a tool
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