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First mathematical derivation of existence of black holes

3ER 1, 1939 PHYSICAL REVIEW VOL

On Continued Gravitational Contraction

vie ‘: | J. R. OPPENHEIMER AND H. SNYDER
=\ | University of California, Berkeley, California
' (Received July 10, 1939)

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will
collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star’s mass to the order of that of the sun, this contraction will continue
indefinitely. In the present paper we study the solutions of the gravitational field equations
which describe this process. In I, general and qualitative arguments are given on the
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles. In II, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and typical stellar
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No singularity within a black hole?

Investigations in Relativistic Cosmologyt

: By E. M. Lirsarrz and . M. KHATATNIROV \
Institute for Physical Problems, Academy of Sciences, Moscow, U.S.S.R.

AnsTrRACT (by trauslator)

A detailed report is given here of the general investigations carried out by
the authors in the ficld of relativistic cosmology during the past years. The
paper consists of two paits.

The first part is devoled to a study of the singularilies of the cosmological
solutions of the gravitational equations, An attompt is made to provide an
answer to one of the principal questions of modern cosmology : ‘ does the
gencral solution of the gravitational equations have a singularity?’ The
authors give a negative answer to this question, Tho study carried oul leads,
in fact, to the gencral conclusion that the presenco ol a singularity with
respect to time i not a necessary property of cosmological models of the general
theory of relativity, and that the goneral caso of an arbitrary distribution of
matter and grav lt‘\tlonal ficld does not Iead to tht.. appearance of a singularity.
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Topology to the rescue

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES

Roger Penrose
Department of Mathematics, Birkbeck College, London, England
(Received 18 December 1964)

The discovery of the quasistellar radio sources
has stimulated renewed interest in the question
of gravitational collapse. It has been suggested
by some authors' that the enormous amounts
of energy that these objects apparently emit
may result from the collapse of a mass of the
order of (10°-10°)M, to the neighborhood of
its Schwarzschild radius, accompanied by a
violent release of energy, possibly in the form
of gravitational radiation. The detailed math-
ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications
of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation—which
requires at least a quadripole structure.

The general situation with regard to a spher-
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measured by local comoving observers, the
body passes within its Schwarzschild radius
r=2m. (The densities at which this happens
need not be enormously high if the total mass
is large enough.) To an outside observer the
contraction to » =2m appears to take an infinite
time. Nevertheless, the existence of a singu-
larity presents a serious problem for any com-
plete discussion of the physics of the interior
region.

The question has been raised as to whether
this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter
the situation drastically? The recent rotating
solution of Kerr® also possesses a physical
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General relativity in a nutshell

Present

Michael Kunzinger (University of Vienna) Singularity Theorems and D’-Geometry Ghent, Sep. 1, 2020 6/20



General relativity in a nutshell

e (M, g) a time-oriented Lorentz-manifold

O (spacetime)
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General relativity in a nutshell

e (M, g) a time-oriented Lorentz-manifold
(spacetime)

@ Particles move along timelike curves ¢
(¢ timelike), light moves on null curves

(¢ null): I*(p), J*(p).
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General relativity in a nutshell

e (M, g) a time-oriented Lorentz-manifold

m (spacetime)
@ Particles move along timelike curves ¢
‘r (¢ timelike), light moves on null curves
(¢ null): IT(p), JT(p).

Present

o Free-falling particles/photons move on
geodesics.

@ Time-separation function:
7(p,q) = sup L(c), ¢ causal p~ gq.
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General relativity in a nutshell

e (M, g) a time-oriented Lorentz-manifold

m (spacetime)
@ Particles move along timelike curves ¢
‘r (¢ timelike), light moves on null curves
prses (¢ null): IT(p), JT(p).

Free-falling particles/photons move on
geodesics.

Time-separation function:
7(p,q) = sup L(c), ¢ causal p~ gq.

Einstein-equations: G = Ric — %sg,

T...Energy-momentum tensor.
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General relativity in a

N/

Present

nutshell

(M, g) a time-oriented Lorentz-manifold
(spacetime)

Particles move along timelike curves ¢
(¢ timelike), light moves on null curves
(¢ null): IT(p), JT(p).

Free-falling particles/photons move on
geodesics.

Time-separation function:
7(p,q) = sup L(c), ¢ causal p~ gq.
Einstein-equations: G = Ric — %sg,

T...Energy-momentum tensor.

Geodesic (in-)completeness of M as a
criterion for existence of singularities.
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Singularity Theorems

Michael Kunzinger (University of Vienna) Singularity Theorems and



Singularity Theorems

Blueprint of the generic singularity theorem (J. Senovilla):
Th. If g is C? then (i)—(iv) are incompatible, where (M, g) satisfies
(i) an energy (i.e., curvature) condition.

(i) a causality condition.

)
(iii) an initial or boundary condition.
)

(iv) causal completeness.
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Singularity Theorems

Blueprint of the generic singularity theorem (J. Senovilla):

Th. If g is C? then (i)—(iv) are incompatible, where (M, g) satisfies

) an energy (i.e., curvature) condition.

) a causality condition.

(i) an initial or boundary condition.

) causal completeness.

@ C? is too much to ask: Realistic models (stars, matched spacetimes)
involve jumps in matter variables ~» g € Cb1,

@ Theorem allows (i)—(iv) for C%:1.

e But C! spacetimes are not singular (curvature bounded, unique
geodesics).

@ Below CU1: unbounded curvature, non-unique geodesics: singular.

o Hence C1'! is the natural threshold for singularity theorems.
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Case in point: The Hawking Singularity Theorem
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Case in point: The Hawking Singularity Theorem
Theorem A C?-spacetime is future causal geodesically incomplete if
1. Ric(X, X) > 0 for every timelike vector X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion 6 = —n—iltrs,, = —g(H,v) of S is negative
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Case in point: The Hawking Singularity Theorem
Theorem A C''-spacetime is future causal geodesically incomplete if
1. Ric(X, X) > 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion 6 = —ﬁtrs,, = —g(H,v) of S is negative

[K, Steinbauer, Stojkovi¢, Vickers, Class. Quantum Gravity '14]
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Case in point: The Hawking Singularity Theorem
Theorem A C''-spacetime is future causal geodesically incomplete if
1. Ric(X, X) > 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
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@ Curvature tensor only L*°: may be undefined along entire geodesics.
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@ Second variation of arclength no longer permissible
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@ exp, bi-Lipschitz homeomorphism and 3 convex neighbourhoods,
Gauss Lemma holds (Minguzzi ('14, '18); K, Steinbauer, Stojkovi¢ ('14))

Michael Kunzinger (University of Vienna) Singularity Theorems and D’-Geometry Ghent, Sep. 1, 2020 8/20



Case in point: The Hawking Singularity Theorem
Theorem A C''-spacetime is future causal geodesically incomplete if
1. Ric(X, X) > 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion 6 = —ﬁtrs,, = —g(H,v) of S is negative

[K, Steinbauer, Stojkovi¢, Vickers, Class. Quantum Gravity '14]
Problems:

@ Curvature tensor only L*°: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point

@ Second variation of arclength no longer permissible

@ exp, no longer local diffeomorphism.

However:

@ exp, bi-Lipschitz homeomorphism and 3 convex neighbourhoods,
Gauss Lemma holds (Minguzzi ('14, '18); K, Steinbauer, Stojkovi¢ ('14))

@ Bulk of causality theory remains valid (Chruéciel, Grant ('12); Minguzzi
('14, '19); K, Steinbauer, Stojkovi¢, Vickers ('15), Sdmann ('16))
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Case in point: The Hawking Singularity Theorem
Theorem A C''-spacetime is future causal geodesically incomplete if
1. Ric(X, X) > 0 for every smooth local timelike vector field X
2. There exists a compact spacelike hypersurface S in M
3. The future expansion 6 = —ﬁtrs,, = —g(H,v) of S is negative

[K, Steinbauer, Stojkovi¢, Vickers, Class. Quantum Gravity '14]
Problems:

@ Curvature tensor only L*°: may be undefined along entire geodesics.
No good notion of Jacobi field, conjugate/focal point

@ Second variation of arclength no longer permissible
@ exp, no longer local diffeomorphism.
However:

@ exp, bi-Lipschitz homeomorphism and 3 convex neighbourhoods,
Gauss Lemma holds (Minguzzi ('14, '18); K, Steinbauer, Stojkovi¢ ('14))

@ Bulk of causality theory remains valid (Chruéciel, Grant ('12); Minguzzi
('14, '19); K, Steinbauer, Stojkovi¢, Vickers ('15), Sdmann ('16))

Strategy: Use approximations adapted to the causal structure.
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Regularization techniques

Th. g a ChY-metric, Ric(X, X) > 0 for every smooth
TL vector field X. Then

= VK € MVYC > 0Vé >0Vk < 0 Ve VX €
() Tl E(X.X) < 0, IXs < C ¢ Riclz](X, X) >
—9.
Proof uses:

® & — g*p. — 0in C? ~s suffices to consider

8e ‘= 8 * Pe.
° Rjk = R_;ki = axirll<j - 8x’<r:'j + r;mrz - err;Jn

@ Blue terms|. converge uniformly.

@ For red terms use variant of Friedrichs-Lemma:
(Rix X X¥) % p. — Ri[g:] X XX — 0 uniformly
pe > 0= (RuXIX¥) % p. > 0.
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Hawking's Theorem: C!!-proof
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Hawking's Theorem: C!!-proof

+ F o
e DT(S) C Dy (s:
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Hawking's Theorem: C!!-proof

+ F o
e DT(S) C Dy (s:

s

e Limiting argument = for every p € DT(S) there exists a g-geodesic
v with L(v) = 7(S, p).
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s

e Limiting argument = for every p € DT(S) there exists a g-geodesic
v with L(v) = 7(S, p).
@ S compact = negative upper bound on 6(0) = lim 6.(0).

@ Ricci-curvature bound on g. and Raychaudhury equation = D*(S)
relatively compact, otherwise 3 conjugate points for g. too close to S.
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Hawking's Theorem: C!!-proof

+ F o
e DT(S) C Dy (s:

s

e Limiting argument = for every p € DT(S) there exists a g-geodesic
v with L(y) = 7(S, p).
@ S compact = negative upper bound on 6(0) = lim 6.(0).

@ Ricci-curvature bound on g. and Raychaudhury equation = D*(S)
relatively compact, otherwise 3 conjugate points for g. too close to S.

@ Therefore, HT(S) C D*(S) compact.
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Hawking's Theorem: C!!-proof

+ F o
e DT(S) C Dy (s:

s

Limiting argument = for every p € D (S) there exists a g-geodesic
v with L(y) = 7(S, p).
S compact = negative upper bound on 6(0) = lim 6.(0).

Ricci-curvature bound on g. and Raychaudhury equation = DT (S)
relatively compact, otherwise 3 conjugate points for g. too close to S.

Therefore, H(S) C D+(S) compact.

Derive a contradiction as in the C*°-case.
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From C'! to C!: Motivation and new challenges
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From C'! to C!: Motivation and new challenges

Motivation:

@ Regularity of solutions to the Einstein equations: € Hy , s >5/2,

loc’
M € L2 _ lowest regularity where weak solutions are well defined.
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From C'! to C!: Motivation and new challenges

Motivation:

@ Regularity of solutions to the Einstein equations: € H; , s >5/2,

loc’
M € L2 _ lowest regularity where weak solutions are well defined.

@ How low can you go?
New problems:
e Uniqueness of geodesic IVP (7" = —T'(y(t))7/'(t)y/(t)) is lost.
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@ Regularity of solutions to the Einstein equations: € H; , s >5/2,

loc’
Mk € L2 _ lowest regularity where weak solutions are well defined.

@ How low can you go?
New problems:
e Uniqueness of geodesic IVP (7" = —T'(y(t))7/'(t)y/(t)) is lost.

@ Curvature no longer bounded: Ric & L.

However:

@ Geodesics still exist ~ notion of geodesic completeness (all geodesics
inextendable).
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From C'! to C!: Motivation and new challenges

Motivation:

@ Regularity of solutions to the Einstein equations: € H; , s >5/2,

loc’
i« € L2 _ lowest regularity where weak solutions are well defined.

@ How low can you go?

New problems:
e Uniqueness of geodesic IVP (7" = —T'(y(t))7/'(t)y/(t)) is lost.
@ Curvature no longer bounded: Ric & L.

However:

@ Geodesics still exist ~ notion of geodesic completeness (all geodesics
inextendable).

@ Curvature well-defined as a distribution.
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Hawking's singularity theorem for C-metrics
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Hawking's singularity theorem for Cl-metrics
Curvature bound/energy condition:
@ ue D' >0:& (u,p) >0 for each test-density > 0.
@ Strong energy condition: Ric(X, X) > 0 for each smooth timelike X.
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Hawking's singularity theorem for Cl-metrics
Curvature bound/energy condition:

@ ue D' >0:& (u,p) >0 for each test-density > 0.

@ Strong energy condition: Ric(X, X) > 0 for each smooth timelike X.
Main steps of the proof:

@ Regularize g using Oberguggenberger's method: atlas (U, 14),
&a € D(U,) partition of 1,x4 € D(Uy), |Xal <1, Xa =1 near
suppéy. p > 0 mollifier. Then

g*MPe =) X (Ya) (¥a)e)(&a - 8)) * pe).-
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Hawking's singularity theorem for Cl-metrics
Curvature bound/energy condition:

@ ue D' >0:& (u,p) >0 for each test-density > 0.

@ Strong energy condition: Ric(X, X) > 0 for each smooth timelike X.
Main steps of the proof:

@ Regularize g using Oberguggenberger's method: atlas (U, 14),
&a € D(U,) partition of 1,x4 € D(Uy), |Xal <1, Xa =1 near
suppéy. p > 0 mollifier. Then

g*MPe =) X (Ya) (¥a)e)(&a - 8)) * pe).-
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e C%! = Lip: Results not involving geodesics/exponential map work

@ below Lipschitz: some fundamentals break down [Chrusciel/Grant '12]
(1) push up principle fails (2) light cones bubble up

1

(JFolt)y g1t

05-

e Failure of convexity in C%%, both IVP and BVP for geodesics
problematic
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The future is not always open (below C%1)

ds? =2 [— sin 260(x) dt? — 2 cos 26(x) dx dt + sin 26(x) dxz}

6(x) turns light cones in a Holder but not Lipschitz way
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The future is not always open (below C%?1)

ds? =2 [— sin 260(x) dt? — 2 cos 26(x) dx dt + sin 26(x) dxﬂ

6(x) turns light cones in a Holder but not Lipschitz way
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@ cis a Lip. timelike curve reaching dJ*(p)  (C! & null at single pt.)
= IT(p) contains segment of t-axis = /" (p) not open

[Grant, K, Sdmann, Steinbauer, Lett. Math. Phys. "19]
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Metric curvature bounds via triangles
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Lorentzian pre-length spaces

(X, <, <) causal space, d metric on X, 7: X x X — [0, 00| lower
semicontinuous (with respect to d)
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(X,d,<,<,7) is a Lorentzian pre-length space if
7(x,2) > 7(x,y) + 7(y,2) (x<y<z),

and 7(x,y) =0if x £ y and 7(x,y) > 0 & x < y;
7 is called time separation function

Examples

o Lipschitz spacetimes with complete Riemannian background metric h
and induced metric d"

o Finite directed graphs

[K., Sémann, Ann. Glob. Anal. Geom., 2018]
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Timelike curvature bounds in Lorentzian Length Spaces
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Curvature singularities

Synthetic singularity Theorems in Lorentzian Length Spaces
@ Hawking's Theorem in warped products / x¢ X with TL lower
curvature bound ([Alexander, Graf, K, Samann, '19]).
@ Hawking's Theorem for LLSs using optimal transport methods and
synthetic Ricci bounds ([Cavalletti, Mondino, '20])
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Curvature singularities

Synthetic singularity Theorems in Lorentzian Length Spaces
@ Hawking's Theorem in warped products / x¢ X with TL lower
curvature bound ([Alexander, Graf, K, Samann, '19]).
@ Hawking's Theorem for LLSs using optimal transport methods and
synthetic Ricci bounds ([Cavalletti, Mondino, '20])

Schwarzschild has timelike curvature unbounded below
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@ Solution of geodesic equation (classical, distributional, Caratheodory,
Filipov, ...) vs longest (shortest) curves. Notions coincide for g € C?
(Lytchak/Yaman '06, Schinnerl '20), open questions in C%.

@ Uniqueness for IVP vs non-branching (lower curvature bound).

@ Uniqueness for BVP vs upper curvature bounds.

Curvature bounds

@ Sectional curvature bounds vs Triangle comparison (equivalent in C2:
Toponogov-Theorem [Alexander/Bishop '08]).

@ Ricci curvature bounds vs Timelike Measure Contraction Property
(equivalent in C2: Cavalletti/Mondino '20)

@ Relation to distributional curvature bounds is an open question.

A

No “vs” yet: Impulsive gravitational waves (g € D' ~ G (Colombeau)):
Podolsky, Steinbauer, Samann. Wave equations in CL1, Green operators,
QFT (Hoérmann, Sanchez, Spreitzer, Vickers) — G as a tool
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