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Stochastic problem

• We consider stochastic evolution equations with space depending
singular potential, random driving force and random initial condition
of the form

( ∂
∂t
− L

)
U(t, x , ω) + q(x) · U(t, x , ω) = F (t, x , ω)

U(0, x , ω) = U0(x , ω)

t ∈ [0,T ], x ∈ Rd , ω ∈ Ω

• −L is the second order elliptic operator

• q is a space depending singular potential

• F and U0 are Kondratiev-type generalized stochastic processes
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Semilinear parabolic equations with singular potential and singular
initial data of the form

∂

∂t
u(t, x)−4u(t, x) + q(x) · u(t, x) = f (t, u(t, x)),

u(0, x) = u0(x)

are solved in suitable generalized function algebras.

• Potential q and initial data u0 are singular distributions (e.g. the
delta distribution or its powers)

• f satisfies a Lipschitz-type condition.
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Cauchy problem for the heat equation with strongly singular potential

∂

∂t
u(t, x)−4u(t, x) + q(x) · u(t, x) = 0,

u(0, x) = u0(x),

(t, x) ∈ [0,T ]× Rd

• the potential q is singular, eather positive or negative

• The existence and the uniqueness of very weak solution are
proved and the consistency of very weak solution with the
classical solution is shown
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Cauchy problem for the heat equation with strongly singular potential

∂

∂t
u(t, x)−4u(t, x) + q(x) · u(t, x) = 0,

u(0, x) = u0(x),

(t, x) ∈ [0,T ]× Rd

• the potential q is singular, eather positive or negative

• The existence and the uniqueness of very weak solution are
proved and the consistency of very weak solution with the
classical solution is shown
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Stochastic semilinear heat equation which is driven by a space-time
Gaussian white noise

(
∂

∂t
− L)U(t, x) = λF (U(t, x)) χ(x) + Ẇ (t, x) on R+ × Rd

U(0, ·) = U0

in suitable algebras of generalized functions

• L is a uniformly elliptic symmetric PDO with C∞b -coefficients

• F is a globally Lipschitz real valued function

• U0 ∈ S′(Rd )

• χ is smooth with compact support, λ ∈ R and

• Ẇ (t, x) is Gaussian space-time white noise
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Stochastic evolution equations with multiplicative noise

∂

∂t
U(t, x , ω) = AU(t, x , ω) + B ♦U(t, x , ω) + F (t, x , ω)

U(0, x , ω) = U0(x , ω)

• t ∈ [0,T ], ω ∈ Ω, U(t, ·, ω) belongs to a Banach space X

• A is densely defined, generating a C0−semigroup

• B is a linear bounded operator which combined with the Wick
product ♦ introduces convolution-type perturbations

• F and U0 are Kondratiev-type generalized stochastic processes



Our method

( ∂
∂t
− L

)
U(t, x , ω) + q(x) · U(t, x , ω) = F (t, x , ω)

U(0, x , ω) = U0(x , ω)

• We combine the chaos expansion method from white noise analysis
with the concept of very weak solutions



White noise probability space

• (S ′(R),B, µ) Gaussian white noise probability space

• B- Borel σ algebra generated by the weak topology in S′(R)
• µ- Gaussian white noise measure given by

∫
S′ (R)

e i〈ω,f 〉dµ(ω) = e
− 1

2
‖f ‖2

L2(R) , f ∈ S(R).

• (L)2 = L2(S ′(R),B, µ) Hilbert space of random variables

• {Hα}α∈I - Fourier–Hermite polynomials defined by

Hα(ω) =
∏
α∈I

hαk
( 〈ω, ξk〉 ), α ∈ I = (NN

0 )c

form an orthogonal basis of (L)2.

• Wiener–Itô chaos expansion theorem

Each F ∈ (L)2 can be uniquely represented in the form

F (ω) =
∑
α∈I

fα Hα(ω) with fα ∈ R such that ‖F‖2
(L)2 =

∑
α∈I

f 2
α α! <∞.



Kondratiev spaces

• (S)1, (S)−1 Kondratiev spaces

Let G(ω) =
∑
α∈I

gαHα(ω). Then,

• G ∈ (S)1 ⇔
∑
α∈I

α!2 g2
α (2N)pα <∞ for all p ∈ N0

• G ∈ (S)−1 ⇔
∑
α∈I

g2
α (2N)−pα <∞ for some p ∈ N0,

where (2N)α =
∏
k∈N

(2k)αk for α = (α1, α2, ...) ∈ I

• (S)1 ⊆ (L)2 ⊆ (S)−1

• Wick product F♦G
of F (ω) =

∑
α∈I

fαHα(ω) and G(ω) =
∑
β∈I

gβHβ(ω) is defined by

F♦G(ω) =
∑
γ∈I

 ∑
α+β=γ

fαgβ

Hγ(ω), fα, gβ ∈ R, α, β ∈ I.



Stochastic processes

• Let X be an arbitrary Banach space

• Classes of stochastic processes

Let U =
∑
α∈I

uα Hα, uα ∈ X , α ∈ I.

• U ∈ X ⊗ (L)2 ⇔
∑
α∈I

α! ‖uα‖2
X < ∞

• U ∈ X ⊗ (S)1 ⇔
∑
α∈I

α!2 ‖uα‖2
X (2N)pα < ∞ for all p ∈ N0

• U ∈ X ⊗ (S)−1 ⇔
∑
α∈I

‖uα‖2
X (2N)−pα < ∞ for some p ∈ N0

• Example

Singular white noise

Wt(ω) =
∑
k∈N

ξk (t) H
ε(k) (ω)

is an element of C∞(R)⊗ (S)−1.



Assumptions

( ∂
∂t
− L

)
U(t, x , ω) + q(x) · U(t, x , ω) = F (t, x , ω)

U(0, x , ω) = U0(x , ω)

Assume:

(a1) −L be a second order elliptic operator whose action on a process
U(t, x , ω) =

∑
α∈I

uα(t, x)Hα(ω) is given by

LU(t, x , ω) =
∑
γ∈I

Luγ(t, x)Hγ(ω),

(a2) q is a singular space potential

(a3) U0 ∈ Dom(L) having the form U0(x , ω) =
∑
γ∈I

u0
α(x)Hγ(ω) such

that
∑
γ∈I
‖u0
γ‖2 (2N)−p1γ <∞ for some p1 > 0

(a4) F (t, x , ω) =
∑
γ∈I

fγ(t, x)Hγ(ω) such that
∑
γ∈I
‖fγ‖2 (2N)−p1γ <∞ for

some p2 > 0



Moderate nets

• Let (X , ‖ · ‖X ) be a Banach space. A net of elements (kε)ε∈(0,1] in
X is X−moderate if there exist N ∈ N0 and C > 0 such that

‖kε‖X ≤ Cε−N .

• Nets of generalized stochastic processes in X ⊗ (S)−1 whose
coefficients are X -moderate nets are also called moderate.



Solution concept

• A net of moderate stochastic processes (Uε)ε in X ⊗ (S)−1 of the form

Uε =
∑
γ∈I

(uγ)ε Hγ

is a very weak solution to the stochastic problem( ∂
∂t
− L

)
U(t, x , ω) + q(x) · U(t, x , ω) = F (t, x , ω)

U(0, x , ω) = U0(x , ω)

if there exist an L∞−moderate log-type regularisation (qε)ε of the singular
potential q, such that [(uγ)ε]ε, for γ ∈ I solves the regularized equations

∂

∂t
uγ(t, x)− Luγ(t, x) + qε(x) · uγ(t, x) = fγ(x , t)

u(0, x) = u0(x)

for every ε ∈ (0, 1].



Existence Theorem

Theorem

Let the assumptions (a1)-(a4) hold. Then, the stochastic evolution problem

∂

∂t
U(t, x , ω)− Lu(t, x , ω) + q(x) · U(t, x , ω) = F (x , t, ω)

U(0, x , ω) = U0(x , ω).

has a very weak solution (Uε)ε.



Steps of the proof

(1) Let the unknown process be of the form U(t, x , ω) =
∑
γ∈I

uγ(t, x)Hα(ω).

(2) By applying the method of chaos expansions, the initial problem reduces
to a family of deterministic problems with singular potential

∂

∂t
uγ(t, x)− Luγ(t, x) + q(x) · uγ(t, x) = fγ(x , t)

u(0, x) = u0(x)

for all γ ∈ I.



Steps of the proof

(3) We regularise the potential q with a Friedrichs-mollifier and obtain net of
smooth functions

qε(x) = q ∗ ψε(x), ε ∈ (0, 1],

where ψε(x) = 1
εd
ψ
(
x
ε

)
∈ C∞0 (Rd), for ψ ∈ C∞0 (Rd), ψ ≥ 0,

∫
ψ = 1.

Additionally, we assume that the regularization is such that qε is of
log-type, i.e.

‖qε‖L∞ ≤ Nq log
1

ε
.

Then, we obtain the system of equations with regularized potential( ∂
∂t
− L

)
uγ(t, x) + qε(x) · uγ(t, x) = fγ(t, x)

uγ(0, x) = u0
γ(x),

which for each γ ∈ I has a very weak solution [(uγ)ε]ε, i.e.

‖(uγ)ε(t, ·)‖L2 ≤
(
Mewt‖u0

γ(·)‖L2 + M
2 · D2w (T ) + M

2

∫ t
0
‖fγ(s, ·)‖2

L2 ds
)
· ε−N

holds for some N > 0.



Steps of the proof

(4) For every ε ∈ (0, 1] a process defined by

Uε(t, x , ω) =
∑
γ∈I

(uγ(t, x))ε Hγ(ω),

where [(uγ)ε]ε, is a net of moderate functions which solves the regularized

equations, i.e. (Uε)ε is a stochastic very weak solution to the initial

stochastic problem.

Namely, we need to prove that for some p > 0 it holds∑
γ∈I

‖(uγ)ε‖2 (2N)−pγ <∞.



Work in progress: General problem

• We consider stochastic evolution equations with space depending
singular random potential, random driving force and random initial
condition of the form

( ∂
∂t
− L

)
U(t, x , ω) + Q(t, x , ω)♦U(t, x , ω) = F (t, x , ω)

U(0, x , ω) = U0(x , ω)

t ∈ [0,T ], x ∈ Rd , ω ∈ Ω

• −L is the second order elliptic operator

• Q is a singular random potential

• F and U0 Kondratiev-type generalized stochastic processes

• ♦ denotes the Wick product
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