What are continuously differentiable functions on compact sets?

L. Loosveldt (Aspirant FNRS)

Joint work with
Leonhard Frerick and Jochen Wengenroth (Universität Trier)

International Conference on Generalized Functions

Ghent - August 31

- LIÈGE université Mathématique

Let K be a compact set of \mathbb{R}^{d},

Let K be a compact set of \mathbb{R}^{d},

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

Let K be a compact set of \mathbb{R}^{d},

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

!! In general, such a derivative needs not be unique !!

Let K be a compact set of \mathbb{R}^{d},

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0,
$$

!! In general, such a derivative needs not be unique !!
$\mathcal{J}^{1}(K):=\left\{(f ; d f) \in C(K)^{d+1}: d f\right.$ is a continuous derivative of f on $\left.K\right\}$ endowed with the norm

$$
\|(f ; d f)\|_{\mathcal{J}^{1}(K)}=\|f\|_{K}+\|d f\|_{K}
$$

Let K be a compact set of \mathbb{R}^{d},

A function f, continuous on K, belongs to $C^{1}(K)$ if there exits a continuous function $d f$ on K with values in the linear maps from \mathbb{R}^{d} to \mathbb{R} such that, for all $x \in K$,

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0
$$

!! In general, such a derivative needs not be unique !!

$$
C^{1}(K)=\pi_{1}\left(\mathcal{J}^{1}(K)\right),
$$

endowed with the norm
$\|f\|_{C^{1}(K)}=\|f\|_{K}+\inf \left\{\|d f\|_{K}: d f\right.$ is a continuous derivative of f on $\left.K\right\}$
$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ is the subset of $C^{1}(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^{d}.
$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ is the subset of $C^{1}(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^{d}.

$$
C^{1}\left(\mathbb{R}^{d} \mid K\right) \subsetneq C^{1}(K)
$$

$C^{1}\left(\mathbb{R}^{d} \mid K\right)$ is the subset of $C^{1}(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^{d}.

$$
C^{1}\left(\mathbb{R}^{d} \mid K\right) \subsetneq C^{1}(K)
$$

$$
K=\left\{(x, y) \in[-1,1]^{2}:|y| \geq x^{3} \text { for } x \geq 0\right\}
$$

$$
f(x, y)=x^{2} \text { on the red part } f(x, y)=0 \text { otherwise }
$$

$f \in C^{1}(K)$ but $f \notin C^{1}\left(\mathbb{R}^{2} \mid K\right)$ because f is not Lipschitz continuous near the origin.

Theorem (Whitney, 1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$ if and only if $f \in \pi_{1}\left(\mathscr{E}^{1}(K)\right)$
A jet $(f, d f) \in \mathscr{E}^{1}(K)$ if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0 .
$$

uniformly on $x \in K$.

Theorem (Whitney, 1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$ if and only if $f \in \pi_{1}\left(\mathscr{E}^{1}(K)\right)$
A jet $(f, d f) \in \mathscr{E}^{1}(K)$ if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0 .
$$

uniformly on $x \in K$.
If K is topologically regular $(\stackrel{\stackrel{\circ}{K}}{K}=K)$
$C_{\text {int }}^{1}(K)=\left\{f \in C^{1}(\stackrel{\circ}{K}): f\right.$ and $\partial_{j} f$ extend continously to $\left.K, 1 \leq j \leq d\right\}$.

Theorem (Whitney, 1934)

A function $f \in C^{1}\left(\mathbb{R}^{d} \mid K\right)$ if and only if $f \in \pi_{1}\left(\mathscr{E}^{1}(K)\right)$
A jet $(f, d f) \in \mathscr{E}^{1}(K)$ if

$$
\lim _{\substack{y \rightarrow x \\ y \in K}} \frac{f(y)-f(x)-\langle d f(x), y-x\rangle}{|y-x|}=0 .
$$

uniformly on $x \in K$.
If K is topologically regular $(\stackrel{\circ}{K}=K)$
$C_{\text {int }}^{1}(K)=\left\{f \in C^{1}(\stackrel{\circ}{K}): f\right.$ and $\partial_{j} f$ extend continously to $\left.K, 1 \leq j \leq d\right\}$.

$$
C^{1}(K) \subseteq C_{\mathrm{int}}^{1}(K)
$$

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is incomplete.

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is incomplete.
(1) $\left(K_{j}\right)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_{j} \in K_{j}$.

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is incomplete.
(1) $\left(K_{j}\right)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_{j} \in K_{j}$.
(2) Extract a convergent subsequence $x_{k(j)} \rightarrow x_{0} \in K$, this limit cannot belong to one of the $K_{k(j)}$ as those subsets are open and pairwise disjoint.

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is incomplete.
(1) $\left(K_{j}\right)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_{j} \in K_{j}$.
(2) Extract a convergent subsequence $x_{k(j)} \rightarrow x_{0} \in K$, this limit cannot belong to one of the $K_{k(j)}$ as those subsets are open and pairwise disjoint.
©

$$
f_{n}(x)=\left\{\begin{array}{cl}
\left|x_{k(j)}-x_{0}\right| & \text { if } x \in K_{k(j)} \text { and } j \leq n \\
0 & \text { if } x \in K \backslash \bigcup_{j=1}^{n} K_{k(j)} .
\end{array}\right.
$$

f_{n} is a Cauchy sequence in $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$.

If K has finitely many connected components

If K has finitely many connected components

If K has finitely many connected components

We say that a set $A \subseteq \mathbb{R}^{d}$ is (Whitney) regular if there exists $C>0$ such that any two points $x, y \in A$ can be joined by a rectifiable path in A of length bounded by $C|x-y|$.

If K has finitely many connected components

We say that A is pointwise (Whitney) regular if for any $x \in A$ there exists a neighbourhood V_{x} of x in A and $C_{x}>0$ such that any $y \in V_{x}$ is joined to x by a rectifiable path in A of length bounded by $C_{x}|x-y|$.

If K has finitely many connected components

If K has finitely many connected components

If K has finitely many connected components

Generalized F.T.C. (L. Frerick, L.L., J. Wengenroth)

For each $f \in C^{1}(K)$ with a continuous derivative $d f$ and each rectifiable path $\gamma:[a, b] \rightarrow K$ we have

$$
\int_{\gamma} d f=f(\gamma(b))-f(\gamma(a)) .
$$

If K has finitely many connected components

$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$
(1) Take $\left(\left(f_{j} ; d f_{j}\right)\right)_{j \in \mathbb{N}}$ a Cauchy sequence in $\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right)$, from the completeness of $\left(C(K),\|\cdot\|_{K}\right)$ we obtain uniforms limits f and $d f$.
(2) Given $x \in K$ and a path γ_{y} from x to y of length $L\left(\gamma_{y}\right) \leq C_{x}|x-y|$

$$
f_{j}(y)-f_{j}(x)-\langle d f(x), y-x\rangle=\int_{\gamma_{y}}\left(d f_{j}-d f(x)\right)
$$

If K has finitely many connected components

$$
\text { For all } x \in K \text {, there exists }
$$

$$
\begin{array}{cc}
\Rightarrow & \left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right) \text { B.S. } \\
\neq & \left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right) \text { B.S. }
\end{array}
$$ $C_{x}>0$ such that

$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$
(1) Take $\left(\left(f_{j} ; d f_{j}\right)\right)_{j \in \mathbb{N}}$ a Cauchy sequence in $\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right)$, from the completeness of $\left(C(K),\|\cdot\|_{K}\right)$ we obtain uniforms limits f and $d f$.
(2) Given $x \in K$ and a path γ_{y} from x to y of length $L\left(\gamma_{y}\right) \leq C_{x}|x-y|$

$$
f(y)-f(x)-\langle d f(x), y-x\rangle=\int_{\gamma_{y}}(d f-d f(x))
$$

If K has finitely many connected components

By taking the quotient map

If K has finitely many connected components
K is pointwise regular $\quad \Rightarrow \quad\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right)$ B.S.
\Downarrow
For all $x \in K$, there exists $\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.
$C_{x}>0$ such that $\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

If K has finitely many connected components
K is pointwise regular $\quad \Rightarrow \quad\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right) B . S$.
For all $x \in K$, there exists $\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.
$C_{x}>0$ such that
$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$
We fix $x \in K$, for all $y \in K \backslash\{x\}$, we define a linear and continuous functional on $C^{1}(K)$ by

$$
\Phi_{y}(f)=\frac{f(y)-f(x)}{|y-x|} \quad \forall f \in C^{1}(K) .
$$

Conclusion by Uniform boudedness principle.

If K has finitely many connected components K is pointwise regular $\quad \Rightarrow \quad\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right)$ B.S.
For all $x \in K$, there exists
\# $C^{1}(K), \|$
$C_{x}>0$ such that $\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

If K has finitely many connected components
K is pointwise regular \Uparrow
For all $x \in K$, there exists
$C_{x}>0$ such that $\sup _{\substack{y \in \in x \\ y \neq \neq \geq}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$
$\Rightarrow \quad\left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right)$ B.S.
\# \downarrow
$\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.

If K has finitely many connected components

$d_{\varepsilon}(y):=\inf \left\{L_{\gamma}: \gamma\right.$ rectifiable path from x to y in $\left.K_{2 \varepsilon}\right\}$.
($K_{2 \varepsilon}$ open connected neighbourhood of K)

If K has finitely many connected components
K is pointwise regular \Uparrow
For all $x \in K$, there exists $C_{x}>0$ such that
$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

$$
\begin{array}{cc}
\Rightarrow & \left(\mathcal{J}^{1}(K),\|\cdot\|_{\mathcal{J}^{1}(K)}\right) \text { B.S. } \\
\nVdash & \Downarrow
\end{array}
$$

$$
\Leftarrow\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right) \text { B.S. }
$$

$$
d_{\varepsilon}(y):=\inf \left\{L_{\gamma}: \gamma \text { rectifiable path from } x \text { to } y \text { in } K_{2 \varepsilon}\right\}
$$

$y_{0} \in K$ fixed, set $u_{\varepsilon}(y)=\min \left\{d_{\varepsilon}(y), d_{\varepsilon}\left(y_{0}\right)\right\}$. If y and y^{\prime} are closed enough in $K_{2 \varepsilon}$, we have

$$
\left|u_{\varepsilon}(y)-u_{\varepsilon}\left(y^{\prime}\right)\right| \leq\left|y-y^{\prime}\right|
$$

If K has finitely many connected components
K is pointwise regular

For all $x \in K$, there exists $C_{x}>0$ such that $\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

$\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ B.S.
$d_{\varepsilon}(y):=\inf \left\{L_{\gamma}: \gamma\right.$ rectifiable path from x to y in $\left.K_{2 \varepsilon}\right\}$.
$y_{0} \in K$ fixed, set $u_{\varepsilon}(y)=\min \left\{d_{\varepsilon}(y), d_{\varepsilon}\left(y_{0}\right)\right\}$. If ϕ is a positive smooth function with support in $B(0, \varepsilon)$ and integral 1 , the convolution $u_{\varepsilon} * \phi$, defined in K_{ε}, is a smooth function.

$$
\left|\left(u_{\varepsilon} * \phi\right)(x)-\left(u_{\varepsilon} * \phi\right)\left(y_{0}\right)\right| \leq C_{x}\left(d_{\varepsilon}\left(y_{0}\right)+d\right)\left|x-y_{0}\right|
$$

If K has finitely many connected components

For all $x \in K$, there exists $C_{x}>0$ such that
$\sup _{\substack{y \in K \\ y \neq x}} \frac{|f(y)-f(x)|}{|y-x|} \leq C_{x}\|f\|_{C^{1}(K)}$

$\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right) B . S$.

$$
d_{\varepsilon}(y):=\inf \left\{L_{\gamma}: \gamma \text { rectifiable path from } x \text { to } y \text { in } K_{2 \varepsilon}\right\} .
$$

$y_{0} \in K$ fixed
$\operatorname{supp} \phi \rightarrow\{0\}$

$$
d_{\varepsilon}\left(y_{0}\right) \leq C_{x}\left(d_{\varepsilon}\left(y_{0}\right)+d\right)\left|x-y_{0}\right| .
$$

If K has finitely many connected components

For any $y_{0} \in B\left(x, \frac{1}{2 C_{x}}\right) \cap K$, there exists a rectifiable path from x to y_{0} in $K_{2 \varepsilon}$ of length bounded by $2 C_{x} d\left|x-y_{0}\right|+\varepsilon$. Using a parametrization by arc length for these paths gives an uniformly equicontinuous and uniformly bounded family of functions.
By Arzelà-Ascoli Theorem, we find a convergent subsequence an the limit is a path of length bounded by $2 C_{x} d\left|x-y_{0}\right|$.

Characterization of the completness of $C^{1}(K)$ (L. Frerick, L.L., J. Wengenroth)

Let K be a compact set, $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$ is a Banach space if and only if K has finitely many components which are pointwise Whitney regular.

We want to show that

$$
{\overline{C^{1}\left(\mathbb{R}^{d} \mid K\right)}}^{C^{1}(K)}=C^{1}(K) .
$$

We want to show that

$$
\overline{\mathscr{E}}(K)^{\mathcal{J}^{1}(K)}=\mathcal{J}^{1}(K) .
$$

We want to show that

$$
{\overline{\mathscr{E}}{ }^{1}(K)}^{\mathcal{J}^{1}(K)}=\mathcal{J}^{1}(K)
$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

We want to show that

$$
\overline{\mathscr{E}^{1}(K)} \mathcal{J}^{1}(K)=\mathcal{J}^{1}(K)
$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

Consequence of Hahn-Banach theorem
It suffices to check that, if Φ is a bounded linear functional on $C(K)^{d+1}$ such that $\Phi_{\mid \mathscr{C}^{1}(K)}=0$ then $\Phi_{\mid \mathcal{J}^{1}(K)}=0$

We want to show that

$$
{\overline{\mathscr{E}}{ }^{1}(K)}^{\mathcal{J}^{1}(K)}=\mathcal{J}^{1}(K)
$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

Consequence of Hahn-Banach theorem
It suffices to check that, if Φ is a bounded linear functional on $C(K)^{d+1}$ such that $\Phi_{\mid \mathscr{C}^{1}(K)}=0$ then $\Phi_{\mid \mathcal{J}^{1}(K)}=0$

We consider such a Φ.

Thanks to Riesz representation theorem, Φ is represented by $\left(\mu ; \mu_{1}, \cdots, \mu_{d}\right)$: for all $\left(f, f_{1}, \cdots, f_{d}\right) \in C(K)^{d+1}$,

$$
\Phi\left(\left(f, f_{1}, \cdots, f_{d}\right)\right)=\int f d \mu+\int f_{1} d \mu_{1}+\ldots+\int f_{d} d \mu_{d} .
$$

Thanks to Riesz representation theorem, Φ is represented by $\left(\mu ; \mu_{1}, \cdots, \mu_{d}\right)$: for all $\left(f, f_{1}, \cdots, f_{d}\right) \in C(K)^{d+1}$,

$$
\Phi\left(\left(f, f_{1}, \cdots, f_{d}\right)\right)=\int f d \mu+\int f_{1} d \mu_{1}+\ldots+\int f_{d} d \mu_{d} .
$$

Thanks to Riesz representation theorem, Φ is represented by $\left(\mu ; \mu_{1}, \cdots, \mu_{d}\right)$: for all $\left(f, f_{1}, \cdots, f_{d}\right) \in C(K)^{d+1}$,

$$
\Phi\left(\left(f, f_{1}, \cdots, f_{d}\right)\right)=\int f d \mu+\int f_{1} d \mu_{1}+\ldots+\int f_{d} d \mu_{d}
$$

As, $\Phi_{\mid \mathscr{C}^{1}(K)}=0$, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, we have

$$
\int \varphi d \mu=-\int \partial_{1} \varphi d \mu_{1}-\cdots-\int \partial_{d} \varphi d \mu_{d}
$$

Thanks to Riesz representation theorem, Φ is represented by $\left(\mu ; \mu_{1}, \cdots, \mu_{d}\right)$: for all $\left(f, f_{1}, \cdots, f_{d}\right) \in C(K)^{d+1}$,

$$
\Phi\left(\left(f, f_{1}, \cdots, f_{d}\right)\right)=\int f d \mu+\int f_{1} d \mu_{1}+\ldots+\int f_{d} d \mu_{d}
$$

As, $\Phi_{\mid \mathscr{C}^{1}(K)}=0$, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, we have

$$
\mu[\varphi]=\left(\partial_{1} \mu_{1}\right)[\varphi]+\cdots+\left(\partial_{d} \mu_{d}\right)[\varphi]
$$

Thanks to Riesz representation theorem, Φ is represented by $\left(\mu ; \mu_{1}, \cdots, \mu_{d}\right)$: for all $\left(f, f_{1}, \cdots, f_{d}\right) \in C(K)^{d+1}$,

$$
\begin{gathered}
\Phi\left(\left(f, f_{1}, \cdots, f_{d}\right)\right)=\int f d \mu+\int f_{1} d \mu_{1}+\ldots+\int f_{d} d \mu_{d} . \\
\mu=\operatorname{div}(T)
\end{gathered}
$$

where $T=\left(\mu_{1}, \cdots, \mu_{d}\right)$ is a vector-field of measures (charge).

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and $F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t$

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and $F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t=\sum_{j=1}^{d} \int_{a}^{b} F_{j}(\gamma(t)) \gamma_{j}^{\prime}(t) d t$

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and
$F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t=\sum_{j=1}^{d} \int_{a}^{b} F_{j}(\gamma(t)) \gamma_{j}^{\prime}(t) d t=\sum_{j=1}^{d} \int F_{j} d \mu_{j}^{(\gamma)}$,
where $\mu_{j}^{(\gamma)}$ is the image under γ of the measure with density γ_{j}^{\prime} on
[a, b].

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and
$F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t=\sum_{j=1}^{d} \int_{a}^{b} F_{j}(\gamma(t)) \gamma_{j}^{\prime}(t) d t=\sum_{j=1}^{d} \int F_{j} d \mu_{j}^{(\gamma)}$,
where $\mu_{j}^{(\gamma)}$ is the image under γ of the measure with density γ_{j}^{\prime} on
$[a, b]$. We set $T_{\gamma}=\left(\mu_{1}^{(\gamma)}, \cdots, \mu_{d}^{(\gamma)}\right)$

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and
$F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t=\sum_{j=1}^{d} \int_{a}^{b} F_{j}(\gamma(t)) \gamma_{j}^{\prime}(t) d t=\sum_{j=1}^{d} \int F_{j} d \mu_{j}^{(\gamma)}$,
where $\mu_{j}^{(\gamma)}$ is the image under γ of the measure with density γ_{j}^{\prime} on
$[a, b]$. We set $T_{\gamma}=\left(\mu_{1}^{(\gamma)}, \cdots, \mu_{d}^{(\gamma)}\right)$,

$$
\operatorname{div} T_{\gamma}=\delta_{a}-\delta_{b}
$$

If $\gamma:[a, b] \rightarrow K$ is a (Lipschitz) path and
$F=\left(F_{1}, \cdots, F_{d}\right) \in C(K)^{d}$,
$\int_{\gamma} F=\int_{a}^{b}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t=\sum_{j=1}^{d} \int_{a}^{b} F_{j}(\gamma(t)) \gamma_{j}^{\prime}(t) d t=\sum_{j=1}^{d} \int F_{j} d \mu_{j}^{(\gamma)}$,
where $\mu_{j}^{(\gamma)}$ is the image under γ of the measure with density γ_{j}^{\prime} on $[a, b]$. We set $T_{\gamma}=\left(\mu_{1}^{(\gamma)}, \cdots, \mu_{d}^{(\gamma)}\right)$,

$$
\operatorname{div} T_{\gamma}=\delta_{a}-\delta_{b}
$$

If Γ is the set of all Lipschitz paths.

Smirnov (1993)

Every charge T with compact support such that $\operatorname{div}(T)$ is a signed measure can be decomposed into elements of Γ, i.e., there is a positive finite measure v on Γ such that

$$
T=\int_{\Gamma} T_{\gamma} d v(\gamma) \text { and }\|T\|=\int_{\Gamma}\left\|T_{\gamma}\right\| d v(\gamma)
$$

Theorem (L. Frerick, L.L., J. Wengenroth)

For any compact set K, the space of restrictions to K of continuously differentiable function on \mathbb{R}^{d} is dense in $\left(C^{1}(K),\|\cdot\|_{C^{1}(K)}\right)$.

Criterium for the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)($ L. Frerick, L.L., J. Wengenroth)

$C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

> Criterium for the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)($ L. Frerick, L.L., J. Wengenroth)
> $C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

> This is a satisfying answer in the context of Banach spaces, not in general.

Criterium for the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)($ L. Frerick, L.L., J. Wengenroth)

$C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.
Remark : the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)$ has very poor stability properties.

Criterium for the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)($ L. Frerick, L.L., J. Wengenroth)

$C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.
Remark : the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)$ has very poor stability properties.

- Two half of a broken heart behave better than the intact heart...

Criterium for the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)($ L. Frerick, L.L., J. Wengenroth)

$C^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.
Remark : the equality $C^{1}\left(\mathbb{R}^{d} \mid K\right)=C^{1}(K)$ has very poor stability properties.

- Two half of a broken heart behave better than the intact heart...
- For $M=\{0\} \cup\left\{2^{-n}: n \in \mathbb{N}\right\}$ and $K=M \times[0,1]$ we have $C^{1}(K) \neq C^{1}\left(\mathbb{R}^{2} \mid K\right)$.

$$
C^{1}(K) \subsetneq C_{\mathrm{int}}^{1}(K)
$$

$$
C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.

$$
C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.
$K=\bar{\Omega}$ is topologically regular.

$$
C^{1}(K) \subsetneq C_{\mathrm{int}}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.
$K=\bar{\Omega}$ is topologically regular.
If f is the Cantor function on $[0,1]$, we consider the function F defined on K by $F(x, y)=f(x)$.

$$
C^{1}(K) \subsetneq C_{i n t}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.
$K=\bar{\Omega}$ is topologically regular.
If f is the Cantor function on $[0,1]$, we consider the function F defined on K by $F(x, y)=f(x)$. We have $F \in C_{\text {int }}^{1}(K)$ because it is continuous and $\partial_{1} F=\partial_{2} F=0$ on $\Omega=\stackrel{\circ}{K}$.

$$
C^{1}(K) \subsetneq C_{\mathrm{int}}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.
$K=\bar{\Omega}$ is topologically regular.
If f is the Cantor function on $[0,1]$, we consider the function F defined on K by $F(x, y)=f(x)$. We have $F \in C_{\text {int }}^{1}(K)$ because it is continuous and $\partial_{1} F=\partial_{2} F=0$ on $\Omega=\stackrel{\circ}{K}$.

If $F \in C^{1}(K), d F=(0,0)$ and if we consider the path γ consisting of one horizontal lines crossing K

$$
C^{1}(K) \subsetneq C_{\text {int }}^{1}(K)
$$

Let us denote by C the ternary Cantor set and U its complement in $(0,1)$. The open set Ω is build from $U \times(0,1)$ by removing from it disjoints balls $\left(B_{j}\right)_{j \in \mathbb{N}}$ that accumulate at $C \times[0,1]$.
$K=\bar{\Omega}$ is topologically regular.
If f is the Cantor function on $[0,1]$, we consider the function F defined on K by $F(x, y)=f(x)$. We have $F \in C_{\text {int }}^{1}(K)$ because it is continuous and $\partial_{1} F=\partial_{2} F=0$ on $\Omega=\stackrel{\circ}{K}$.

If $F \in C^{1}(K), d F=(0,0)$ and if we consider the path γ consisting of one horizontal lines crossing K, we have

$$
\int_{\gamma} d F=0 \quad \text { while } \quad F(\gamma(1))-F(\gamma(0))=f(1)-f(0)=1
$$

Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.

Whitney (1934)

Let K be a topologically regular compact set. If $\stackrel{\circ}{K}$ is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.

Whitney conjecture: what about the reverse?

Whitney (1934)

Let K be a topologically regular compact set. If $\stackrel{\circ}{K}$ is Whitney regular, then $C_{\text {int }}^{1}(K)=C^{1}\left(\mathbb{R}^{d} \mid K\right)$.

Whitney conjecture : what about the reverse?

Criterium for the equality $C^{1}(K)=C_{\text {int }}^{1}(K)($ L. Frerick, L.L., J. Wengenroth)

Let K be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_{x}>0$ and a neighbourhood V_{x} of x such that each $y \in V_{x}$ can be joined from x by a rectifiable path in $\check{K} \cup\{x, y\}$ of length bounded by $C_{x}|x-y|$. Then $C_{\text {int }}^{1}(K)=C^{1}(K)$.

Let Ω be the open unit disk in \mathbb{R}^{2} from which we remove tiny disjoints balls which accumulate at $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$.

Let Ω be the open unit disk in \mathbb{R}^{2} from which we remove tiny disjoints balls which accumulate at $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $K=\bar{\Omega}$ is connected, topologically regular and Whitney regular.

Let Ω be the open unit disk in \mathbb{R}^{2} from which we remove tiny disjoints balls which accumulate at $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $K=\bar{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^{1}\left(\mathbb{R}^{2} \mid K\right)=C^{1}(K)$.
K is not Whitney regular, because $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$ is not contained in $\stackrel{\circ}{K}$

Let Ω be the open unit disk in \mathbb{R}^{2} from which we remove tiny disjoints balls which accumulate at $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $K=\bar{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^{1}\left(\mathbb{R}^{2} \mid K\right)=C^{1}(K)$.
\mathcal{K} is not Whitney regular, because $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$ is not contained in K, but the assumptions of the previous criterium are satisfied

Let Ω be the open unit disk in \mathbb{R}^{2} from which we remove tiny disjoints balls which accumulate at $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $K=\bar{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^{1}\left(\mathbb{R}^{2} \mid K\right)=C^{1}(K)$.
$\stackrel{\circ}{K}$ is not Whitney regular, because $\{0\} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$ is not contained in K, but the assumptions of the previous criterium are satisfied and $C^{1}(K)=C_{\text {int }}^{1}(K)$.

Equality between $C^{1}(K)$ and $C^{1}(\mathbb{R} \mid K)$

Equality between $C^{1}(K)$ and $C^{1}(\mathbb{R} \mid K)$
K compact set of \mathbb{R} with infinitely many connected components, for all $\xi \in K$

$$
\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}
$$

Equality between $C^{1}(K)$ and $C^{1}(\mathbb{R} \mid K)$
K compact set of \mathbb{R} with infinitely many connected components, for all $\xi \in K$

$$
\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \text { gap } \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}
$$

Theorem (L. Frerick, L.L., J. Wengenroth)

Let $K \subset \mathbb{R}$ be a compact set with infinitely many connected components. We have $C^{1}(K)=C^{1}(\mathbb{R} \mid K)$ if and only if $\sigma(\xi)<\infty$ for all $\xi \in K$.

$$
\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \text { gap } \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}
$$

$$
\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}
$$

(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G\right.$ gap $\left.\subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G\right.$ gap $\left.\subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.

- $\sigma\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G\right.$ gap $\left.\subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.
- $\sigma\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$
- $\sigma(0)=\lim \sup \frac{x_{n}}{x_{n}-x_{n+1}}$
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.
- $\sigma\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$
- $\sigma(0)=\lim \sup \frac{x_{n}}{x_{n}-x_{n+1}}$
\Rightarrow Finite for fast sequences like $x_{n}=a^{-n}$ with $a>1$ but infinite for slower sequences like $x_{n}=n^{-p}$ for $p>0$
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.
- $\sigma\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$
- $\sigma(0)=\lim \sup \frac{x_{n}}{x_{n}-x_{n+1}}$
\Rightarrow Finite for fast sequences like $x_{n}=a^{-n}$ with $a>1$ but infinite for slower sequences like $x_{n}=n^{-p}$ for $p>0$
(3) $K=\{0\} \cup \bigcup_{n \in \mathbb{N}}\left[x_{n}, x_{n}+r_{n}\right]$
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$
(1) The Cantor set K satisfies $\sigma(\xi)=\infty$ for all $\xi \in K$ so that $C^{1}(K) \neq C^{1}(\mathbb{R} \mid K)$.
(2) $K=\{0\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ for decreasing sequences $x_{n} \rightarrow 0$.
- $\sigma\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$
- $\sigma(0)=\lim \sup \frac{x_{n}}{x_{n}-x_{n+1}}$
\Rightarrow Finite for fast sequences like $x_{n}=a^{-n}$ with $a>1$ but infinite for slower sequences like $x_{n}=n^{-p}$ for $p>0$
(3) $K=\{0\} \cup \bigcup_{n \in \mathbb{N}}\left[x_{n}, x_{n}+r_{n}\right]$ For $r_{n}=e^{-2 n}$ we get $\sigma(0)<\infty$, e.g., for $x_{n}=e^{-n}$ and $\sigma(0)=\infty$ for $x_{n}=1 / n$
$\sigma(\xi):=\lim _{\varepsilon \rightarrow 0^{+}} \sup \left\{\frac{\sup \{|y-\xi|: y \in G\}}{\ell(G)}: \quad G \operatorname{gap} \subseteq(\xi-\varepsilon, \xi+\varepsilon)\right\}$

To go further :

Leonhard Frerick, Laurent Loosveldt and Jochen Wengenroth, Continously differentiable functions on compact sets, Submitted for publication.

To go further :

Leonhard Frerick, Laurent Loosveldt and Jochen Wengenroth, Continously differentiable functions on compact sets, Submitted for publication.

Available on arXiv.

