What are continuously differentiable functions on compact sets?

L. Loosveldt (Aspirant FNRS) Joint work with Leonhard Frerick and Jochen Wengenroth (Universität Trier)

International Conference on Generalized Functions

Ghent - August 31

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
●00	000	0000	

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

!! In general, such a derivative needs not be unique !!

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

!! In general, such a derivative needs not be unique !!

 $\mathcal{J}^1(\mathcal{K}) := \{ (f; df) \in C(\mathcal{K})^{d+1} : df \text{ is a continuous derivative of } f \text{ on } \mathcal{K} \}$ endowed with the norm

 $\|(f; df)\|_{\mathcal{J}^1(K)} = \|f\|_K + \|df\|_K,$

A function f, continuous on K, belongs to $C^1(K)$ if there exits a continuous function df on K with values in the linear maps from \mathbb{R}^d to \mathbb{R} such that, for all $x \in K$,

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0,$$

!! In general, such a derivative needs not be unique !!

$$C^1(K) = \pi_1(\mathcal{J}^1(K)),$$

endowed with the norm

 $\|f\|_{C^{1}(K)} = \|f\|_{K} + \inf\{\|df\|_{K} : df \text{ is a continuous derivative of } f \text{ on } K\}$

 $\begin{array}{ccc} \text{Introduction} & \text{Completeness of } C^1(K) & \text{Density of } C^1(\mathbb{R}^d | K) & \text{Some comparisons} \\ \text{ooo} & \text{ooo} & \text{oooo} & \text{ooooooo} \end{array}$

$C^1(\mathbb{R}^d|K)$ is the subset of $C^1(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^d .

Introduction

Completeness of $C^1(K)$ 000 Density of $C^1(\mathbb{R}^d|K)$ 0000

Some comparisons

 $C^1(\mathbb{R}^d|K)$ is the subset of $C^1(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^d .

 $C^1(\mathbb{R}^d|K) \subsetneq C^1(K)$

Introduction

Completeness of $C^1(K)$ 000 Density of $C^1(\mathbb{R}^d|K)$ 0000 Some comparisons

 $C^1(\mathbb{R}^d|K)$ is the subset of $C^1(K)$ of the restriction on K of continuously differentiable function on \mathbb{R}^d .

 $C^1(\mathbb{R}^d|K) \subsetneq C^1(K)$

 $K = \{(x, y) \in [-1, 1]^2 : |y| \ge x^3 \text{ for } x \ge 0\}$ $f(x, y) = x^2 \text{ on the red part } f(x, y) = 0 \text{ otherwise}$ $f \in C^1(K) \text{ but } f \notin C^1(\mathbb{R}^2|K) \text{ because } f \text{ is not Lipschitz}$ continuous near the origin.

Introduction	
000	

Completeness of $C^1(K)$

Density of $C^1(\mathbb{R}^d|K)$ 0000 Some comparisons

Theorem (Whitney, 1934)

A function $f \in C^1(\mathbb{R}^d|K)$ if and only if $f \in \pi_1(\mathscr{E}^1(K))$

A jet $(f, df) \in \mathscr{C}^1(K)$ if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0.$$

uniformly on $x \in K$.

Introd	uction
000	

Completeness of $C^1(K)$

Density of $C^1(\mathbb{R}^d|K)$ 0000 Some comparisons

Theorem (Whitney, 1934)

A function $f \in C^1(\mathbb{R}^d|K)$ if and only if $f \in \pi_1(\mathscr{E}^1(K))$

A jet $(f, df) \in \mathscr{C}^1(K)$ if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0.$$

uniformly on $x \in K$.

If K is topologically regular ($\overset{\circ}{K} = K$)

 $C^1_{\rm int}(K) = \{ f \in C^1(\overset{\circ}{K}) : f \text{ and } \partial_j f \text{ extend continously to } K, \ 1 \leq j \leq d \}.$

Completeness of $C^1(K)$

Density of $C^1(\mathbb{R}^d|K)$ 0000 Some comparisons

Theorem (Whitney, 1934)

A function $f \in C^1(\mathbb{R}^d|K)$ if and only if $f \in \pi_1(\mathscr{E}^1(K))$

A jet $(f, df) \in \mathcal{E}^1(K)$ if

$$\lim_{\substack{y \to x \\ y \in K}} \frac{f(y) - f(x) - \langle df(x), y - x \rangle}{|y - x|} = 0.$$

uniformly on $x \in K$.

If K is topologically regular ($\overset{\circ}{K} = K$)

 $C^1_{\rm int}(K) = \{ f \in C^1(\overset{\circ}{K}) : f \text{ and } \partial_j f \text{ extend continously to } K, \ 1 \le j \le d \}.$

 $C^1(K) \subseteq C^1_{\rm int}(K)$

Some comparisons

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $(C^1(K), \|\cdot\|_{C^1(K)})$ is incomplete.

Some comparisons

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $(C^1(K), \|\cdot\|_{C^1(K)})$ is incomplete.

• $(K_j)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_j \in K_j$.

Compact set with infinitely many connected components

If *K* is a compact set with infinitely many connected components, then $(C^1(K), \|\cdot\|_{C^1(K)})$ is incomplete.

- $(K_j)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_j \in K_j$.
- ② Extract a convergent subsequence $x_{k(j)} \rightarrow x_0 \in K$, this limit cannot belong to one of the $K_{k(j)}$ as those subsets are open and pairwise disjoint.

3

Some comparisons

Compact set with infinitely many connected components

If K is a compact set with infinitely many connected components, then $(C^1(K), \|\cdot\|_{C^1(K)})$ is incomplete.

- $(K_j)_{j \in \mathbb{N}}$ of pairwise disjoints clopen subsets of K with infinitely many connected components. For each $j \in \mathbb{N}$, let $x_j \in K_j$.
- ② Extract a convergent subsequence $x_{k(j)} \rightarrow x_0 \in K$, this limit cannot belong to one of the $K_{k(j)}$ as those subsets are open and pairwise disjoint.

$f_n(x) = \begin{cases} |x_{k(j)} - x_0| & \text{if } x \in K_{k(j)} \text{ and } j \le n \\ 0 & \text{if } x \in K \setminus \bigcup_{j=1}^n K_{k(j)}. \end{cases}$

 f_n is a Cauchy sequence in $(C^1(K), \|\cdot\|_{C^1(K)})$.

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $C_{x} > 0$ such that $\sup_{\substack{y \in K \\ y \neq x}} \frac{|f(y) - f(x)|}{|y - x|} \le C_x ||f||_{C^1(K)}$

 $K \text{ is pointwise regular} \qquad \Rightarrow \quad (\mathcal{J}^1(K), \|\cdot\|_{\mathcal{J}^1(K)}) \text{ B.S.}$ For all $x \in K$, there exists $\leftarrow (C^1(K), \|\cdot\|_{C^1(K)})$ B.S.

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $\begin{array}{cccc} & \textit{\textit{K}} \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(\mathcal{K}), \| \cdot \|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$

We say that a set $A \subseteq \mathbb{R}^d$ is *(Whitney) regular* if there exists C > 0 such that any two points $x, y \in A$ can be joined by a rectifiable path in A of length bounded by C|x - y|.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	$0 \bullet 0$	0000	

 $\begin{array}{ccc} \textbf{\textit{K} is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$

We say that A is *pointwise (Whitney) regular* if for any $x \in A$ there exists a neighbourhood V_x of x in A and $C_x > 0$ such that any $y \in V_x$ is joined to x by a rectifiable path in A of length bounded by $C_x|x-y|$.

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

$$\Rightarrow (\mathcal{J}^{1}(K), \|\cdot\|_{\mathcal{J}^{1}(K)}) \text{ B.S.}$$
$$\not \downarrow$$
$$\Leftrightarrow (\mathcal{C}^{1}(K), \|\cdot\|_{\mathcal{C}^{1}(K)}) \text{ B.S.}$$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $C_{\rm x} > 0$ such that $\sup_{\substack{y \in K \\ y \neq x}} \frac{|f(y) - f(x)|}{|y - x|} \le C_x ||f||_{C^1(K)}$

 $\begin{array}{ccc} \mathcal{K} \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & & & \\ & & & & \downarrow \\ \text{For all } x \in \mathcal{K}, \text{ there exists} & \leftarrow & (C^{1}(\mathcal{K}), \|\cdot\|_{C^{1}(\mathcal{K})}) \text{ B.S.} \end{array}$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $C_{\rm x} > 0$ such that $\sup_{y \in K} \frac{|f(y) - f(x)|}{|y - x|} \le C_x ||f||_{C^1(K)}$

 $\begin{array}{ccc} K \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(K), \|\cdot\|_{\mathcal{J}^{1}(K)}) \text{ B.S.} \\ & & & & \downarrow \\ \text{For all } x \in K, \text{ there exists} & \leftarrow & (C^{1}(K), \|\cdot\|_{C^{1}(K)}) \text{ B.S.} \end{array}$

Generalized F.T.C. (L. Frerick, L.L., J. Wengenroth)

For each $f \in C^1(K)$ with a continuous derivative df and each rectifiable path γ : $[a, b] \rightarrow K$ we have

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a)).$$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

- Take ((f_j; df_j))_{j∈ℕ} a Cauchy sequence in (J¹(K), || · ||_{J¹(K)}), from the completeness of (C(K), || · ||_K) we obtain uniforms limits f and df.
- ② Given *x* ∈ *K* and a path γ_y from *x* to *y* of length $L(\gamma_y) \leq C_x |x y|$

$$f_j(y) - f_j(x) - \langle df(x), y - x \rangle = \int_{\gamma_y} (df_j - df(x))$$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

- Take ((f_j; df_j))_{j∈ℕ} a Cauchy sequence in (J¹(K), || · ||_{J¹(K)}), from the completeness of (C(K), || · ||_K) we obtain uniforms limits f and df.
- ② Given *x* ∈ *K* and a path γ_y from *x* to *y* of length $L(\gamma_y) \le C_x |x y|$

$$f(y) - f(x) - \langle df(x), y - x \rangle = \int_{\gamma_y} (df - df(x))$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	$0 \bullet 0$	0000	

By taking the quotient map

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $\begin{array}{c} & & \\ & &$

$$\Rightarrow (\mathcal{J}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \downarrow \leftarrow (\mathcal{C}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{C}^{1}(\mathcal{K})}) \text{ B.S.}$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	$\circ \bullet \circ$	0000	

We fix $x \in K$, for all $y \in K \setminus \{x\}$, we define a linear and continuous functional on $C^{1}(K)$ by

$$\Phi_{y}(f) = \frac{f(y) - f(x)}{|y - x|} \quad \forall f \in C^{1}(K).$$

Conclusion by Uniform boudedness principle.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

$$\Rightarrow (\mathcal{J}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \not \downarrow \in (\mathcal{C}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{C}^{1}(\mathcal{K})}) \text{ B.S.}$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

$$\begin{split} & \mathcal{K} \text{ is pointwise regular} \\ & & & \\ &$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	$\circ \bullet \circ$	0000	

$$\begin{array}{cccc} & \mathcal{K} \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(\mathcal{K}), \| \cdot \|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & & & & \\ & & & & \downarrow \\ & \text{For all } x \in \mathcal{K}, \text{ there exists} & \leftarrow & (\mathcal{C}^{1}(\mathcal{K}), \| \cdot \|_{\mathcal{C}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & \mathcal{C}_{x} > 0 \text{ such that} \\ & \sup_{\substack{y \in \mathcal{K} \\ y \neq x}} \frac{|f(y) - f(x)|}{|y - x|} \leq C_{x} \| f \|_{\mathcal{C}^{1}(\mathcal{K})} \end{array}$$

 $d_{\varepsilon}(y) := \inf\{L_{\gamma} : \gamma \text{ rectifiable path from } x \text{ to } y \text{ in } K_{2\varepsilon}\}.$

 $(K_{2\varepsilon} \text{ open connected neighbourhood of } K)$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

 $d_{\varepsilon}(y) := \inf\{L_{\gamma} : \gamma \text{ rectifiable path from } x \text{ to } y \text{ in } K_{2\varepsilon}\}.$

 $y_0 \in K$ fixed, set $u_{\varepsilon}(y) = \min\{d_{\varepsilon}(y), d_{\varepsilon}(y_0)\}$. If y and y' are closed enough in $K_{2\varepsilon}$, we have

$$|u_{\varepsilon}(y) - u_{\varepsilon}(y')| \le |y - y'|,$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000			00000000

$$\begin{array}{cccc} & \mathcal{K} \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{J}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & & & \downarrow \\ & & & \downarrow \\ & \text{For all } x \in \mathcal{K}, \text{ there exists} & \leftarrow & (\mathcal{C}^{1}(\mathcal{K}), \|\cdot\|_{\mathcal{C}^{1}(\mathcal{K})}) \text{ B.S.} \\ & & \mathcal{C}_{x} > 0 \text{ such that} \\ & sup_{y \in \mathcal{K}} \frac{|f(y) - f(x)|}{|y - x|} \leq C_{x} \|f\|_{\mathcal{C}^{1}(\mathcal{K})} \end{array}$$

 $d_{\varepsilon}(y) := \inf\{L_{\gamma} : \gamma \text{ rectifiable path from } x \text{ to } y \text{ in } K_{2\varepsilon}\}.$

 $y_0 \in K$ fixed, set $u_{\varepsilon}(y) = \min\{d_{\varepsilon}(y), d_{\varepsilon}(y_0)\}$. If ϕ is a positive smooth function with support in $B(0, \varepsilon)$ and integral 1, the convolution $u_{\varepsilon} * \phi$, defined in K_{ε} , is a smooth function.

$$|(u_{\varepsilon} * \phi)(x) - (u_{\varepsilon} * \phi)(y_0)| \le C_x (d_{\varepsilon}(y_0) + d)|x - y_0|$$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
	000		

$$\begin{array}{cccc} & \mathcal{K} \text{ is pointwise regular} & \Rightarrow & (\mathcal{J}^{\frac{1}{2}}) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

 $d_{\varepsilon}(y) := \inf\{L_{\gamma} : \gamma \text{ rectifiable path from } x \text{ to } y \text{ in } K_{2\varepsilon}\}.$ $y_0 \in K \text{ fixed}$

 $supp \phi \rightarrow \{0\}$

$$d_{\varepsilon}(y_0) \leq C_x(d_{\varepsilon}(y_0) + d)|x - y_0|.$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	$0 \bullet 0$	0000	

For any $y_0 \in B(x, \frac{1}{2C_x}) \cap K$, there exists a rectifiable path from x to y_0 in $K_{2\varepsilon}$ of length bounded by $2C_x d|x - y_0| + \varepsilon$. Using a parametrization by arc length for these paths gives an uniformly equicontinuous and uniformly bounded family of functions. By Arzelà-Ascoli Theorem, we find a convergent subsequence an the limit is a path of length bounded by $2C_x d|x - y_0|$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Som
	000		

Characterization of the completness of $C^{1}(K)$ (L. Frerick, L.L., J. Wengenroth)

Let K be a compact set, $(C^1(K), \|\cdot\|_{C^1(K)})$ is a Banach space if and only if K has finitely many components which are pointwise Whitney regular.
Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	•••••	

$$\overline{C^1(\mathbb{R}^d|K)}^{C^1(K)} = C^1(K).$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	•••••	

$$\overline{\mathcal{E}^1(K)}^{\mathcal{J}^1(K)} = \mathcal{J}^1(K).$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	•000	

$$\overline{\mathscr{E}^1(K)}^{\mathcal{J}^1(K)} = \mathcal{J}^1(K).$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	•000	

$$\overline{\mathscr{E}^1(K)}^{\mathcal{J}^1(K)} = \mathcal{J}^1(K).$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

Consequence of Hahn-Banach theorem

It suffices to check that, if Φ is a bounded linear functional on $C(K)^{d+1}$ such that $\Phi_{|\mathscr{C}^1(K)} = 0$ then $\Phi_{|\mathcal{J}^1(K)} = 0$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	•000	

$$\overline{\mathscr{E}^1(K)}^{\mathcal{J}^1(K)} = \mathcal{J}^1(K).$$

For general K, all standard approximation procedures like convolution with smooth bump functions or gluing of local approximation with partition of unity do not apply easily.

Consequence of Hahn-Banach theorem

It suffices to check that, if Φ is a bounded linear functional on $C(K)^{d+1}$ such that $\Phi_{|\mathscr{C}^1(K)} = 0$ then $\Phi_{|\mathcal{J}^1(K)} = 0$

We consider such a Φ .

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	$0 \bullet 00$	

$$\Phi((f, f_1, \cdots, f_d)) = \int f d\mu + \int f_1 d\mu_1 + \ldots + \int f_d d\mu_d.$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	$0 \bullet 00$	

$$\Phi((f, f_1, \cdots, f_d)) = \int f d\mu + \int f_1 d\mu_1 + \ldots + \int f_d d\mu_d.$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	$0 \bullet 00$	

$$\Phi((f, f_1, \cdots, f_d)) = \int f d\mu + \int f_1 d\mu_1 + \ldots + \int f_d d\mu_d.$$

As, $\Phi_{|\mathscr{C}^1(K)}=\mathbf{0},$ for all $\varphi\in\mathcal{D}(\mathbb{R}^d),$ we have

$$\int \varphi \, d\mu = -\int \, \partial_1 \varphi \, d\mu_1 - \cdots - \int \, \partial_d \varphi \, d\mu_d$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\Phi((f, f_1, \cdots, f_d)) = \int f d\mu + \int f_1 d\mu_1 + \ldots + \int f_d d\mu_d.$$

As, $\Phi_{|\mathscr{E}^1(K)} = 0$, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, we have

 $\mu[\varphi] = (\partial_1 \mu_1)[\varphi] + \dots + (\partial_d \mu_d)[\varphi]$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\Phi((f, f_1, \cdots, f_d)) = \int f d\mu + \int f_1 d\mu_1 + \ldots + \int f_d d\mu_d.$$

 $\mu = \operatorname{div}(T)$

where $T = (\mu_1, \dots, \mu_d)$ is a vector-field of measures (charge).

Introduction 000	Completeness of $C^1(K)$ 000	Density of $C^1(\mathbb{R}^d K)$ 0000	Some comparisons
If γ : $[a, b]$ $F = (F_1, \cdots$	$\rightarrow K$ is a (Lipschitz) part, F_d) $\in C(K)^d$,	th and	
$\int_{\gamma} F = \int_{a}^{b} \langle F$	$F(\gamma(t)), \gamma'(t)\rangle dt$		

Introduction 000	Completeness of $C^{\perp}(K)$ 000	Density of $C^{1}(\mathbb{R}^{d} K)$ 0000	Some comparisons
If γ : $[a, b]$ $F = (F_1, \cdots$	$\rightarrow K$ is a (Lipschitz) part, F_d) $\in C(K)^d$,	th and	
$\int_{\gamma} F = \int_{a}^{b} \langle F$	$F(\gamma(t)), \gamma'(t)\rangle dt = \sum_{j=1}^{d} \int_{a}^{b} dt$	$F_j(\gamma(t))\gamma'_j(t)dt$	

If
$$\gamma : [a, b] \to K$$
 is a (Lipschitz) path and
 $F = (F_1, \dots, F_d) \in C(K)^d$,
 $\int_{\gamma} F = \int_a^b \langle F(\gamma(t)), \gamma'(t) \rangle dt = \sum_{j=1}^d \int_a^b F_j(\gamma(t))\gamma'_j(t) dt = \sum_{j=1}^d \int F_j d\mu_j^{(\gamma)}$,
where $\mu_j^{(\gamma)}$ is the image under γ of the measure with density γ'_j on

[*a*, *b*].

If
$$\gamma : [a, b] \to K$$
 is a (Lipschitz) path and
 $F = (F_1, \dots, F_d) \in C(K)^d$,
 $\int_{\gamma} F = \int_a^b \langle F(\gamma(t)), \gamma'(t) \rangle dt = \sum_{j=1}^d \int_a^b F_j(\gamma(t))\gamma'_j(t) dt = \sum_{j=1}^d \int F_j d\mu_j^{(\gamma)}$,

where $\mu_j^{(\gamma)}$ is the image under γ of the measure with density γ'_j on [a, b]. We set $T_{\gamma} = (\mu_1^{(\gamma)}, \dots, \mu_d^{(\gamma)})$

If
$$\gamma : [a, b] \to K$$
 is a (Lipschitz) path and
 $F = (F_1, \dots, F_d) \in C(K)^d$,
 $\int_{\gamma} F = \int_a^b \langle F(\gamma(t)), \gamma'(t) \rangle dt = \sum_{j=1}^d \int_a^b F_j(\gamma(t))\gamma'_j(t) dt = \sum_{j=1}^d \int F_j d\mu_j^{(\gamma)}$,
where $\mu_j^{(\gamma)}$ is the image under γ of the measure with density γ'_j on
 $[a, b]$. We set $T_{\gamma} = (\mu_1^{(\gamma)}, \dots, \mu_d^{(\gamma)})$,

$$\operatorname{div} T_{\gamma} = \delta_a - \delta_b$$

$$\begin{aligned} & \text{for our completeness of } C^1(K) & \text{Density of } C^1(\mathbb{R}^d|K) & \text{Some comparisons} \\ & \text{source} \\ & \text{source} \end{aligned}$$

$$& \text{If } \gamma : [a, b] \to K \text{ is a (Lipschitz) path and} \\ & F = (F_1, \cdots, F_d) \in C(K)^d, \\ & \int_{\gamma} F = \int_a^b \langle F(\gamma(t)), \gamma'(t) \rangle \, dt = \sum_{j=1}^d \int_a^b F_j(\gamma(t)) \gamma'_j(t) \, dt = \sum_{j=1}^d \int F_j \, d\mu_j^{(\gamma)}, \\ & \text{where } \mu_j^{(\gamma)} \text{ is the image under } \gamma \text{ of the measure with density } \gamma'_j \text{ on} \\ & [a, b]. \text{ We set } T_{\gamma} = (\mu_1^{(\gamma)}, \cdots, \mu_d^{(\gamma)}), \end{aligned}$$

$$\operatorname{div} T_{\gamma} = \delta_a - \delta_b$$

If Γ is the set of all Lipschitz paths.

Smirnov (1993)

Every charge T with compact support such that div(T) is a signed measure can be decomposed into elements of Γ , i.e., there is a positive finite measure ν on Γ such that

$$T = \int_{\Gamma} T_{\gamma} d\nu(\gamma) \text{ and } ||T|| = \int_{\Gamma} ||T_{\gamma}|| d\nu(\gamma).$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparis
		0000	

Theorem (L. Frerick, L.L., J. Wengenroth)

For any compact set K, the space of restrictions to K of continuously differentiable function on \mathbb{R}^d is dense in $(C^1(K), \|\cdot\|_{C^1(K)}).$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Criterium for the equality
$$C^{1}(\mathbb{R}^{d}|K) = C^{1}(K)$$
 (L. Frerick, L.L., J. Wengenroth)

 $C^1(K) = C^1(\mathbb{R}^d|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Criterium for the equality
$$C^{1}(\mathbb{R}^{d}|K) = C^{1}(K)$$
 (L. Frerick, L.L., J. Wengenroth)

 $C^{1}(K) = C^{1}(\mathbb{R}^{d}|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Criterium for the equality
$$C^{1}(\mathbb{R}^{d}|K) = C^{1}(K)$$
 (L. Frerick, L.L., J. Wengenroth)

 $C^{1}(K) = C^{1}(\mathbb{R}^{d}|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.

Remark : the equality $C^1(\mathbb{R}^d|\mathcal{K}) = C^1(\mathcal{K})$ has very poor stability properties.

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Criterium for the equality $C^1(\mathbb{R}^d|K) = C^1(K)$ (L. Frerick, L.L., J. Wengenroth)

 $C^{1}(K) = C^{1}(\mathbb{R}^{d}|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.

Remark : the equality $C^1(\mathbb{R}^d|\mathcal{K}) = C^1(\mathcal{K})$ has very poor stability properties.

• Two half of a broken heart behave better than the intact heart...

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Criterium for the equality $C^1(\mathbb{R}^d|K) = C^1(K)$ (L. Frerick, L.L., J. Wengenroth)

 $C^{1}(K) = C^{1}(\mathbb{R}^{d}|K)$ with equivalent norms if and only if K has only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in general.

Remark : the equality $C^1(\mathbb{R}^d|\mathcal{K}) = C^1(\mathcal{K})$ has very poor stability properties.

- Two half of a broken heart behave better than the intact heart...
- For $M = \{0\} \cup \{2^{-n} : n \in \mathbb{N}\}$ and $K = M \times [0, 1]$ we have $C^1(K) \neq C^1(\mathbb{R}^2|K)$.

Introduction	

Completeness of $C^1(K)$

Density of $C^1(\mathbb{R}^d|K)$ 0000 Some comparisons

 $C^1(K) \subsetneq C^1_{\mathsf{int}}(K)$

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

 $K = \overline{\Omega}$ is topologically regular.

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

 $K = \overline{\Omega}$ is topologically regular.

If f is the Cantor function on [0,1], we consider the function F defined on K by F(x, y) = f(x).

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

 $K = \overline{\Omega}$ is topologically regular.

If f is the Cantor function on [0, 1], we consider the function F defined on K by F(x, y) = f(x). We have $F \in C^1_{int}(K)$ because it is continuous and $\partial_1 F = \partial_2 F = 0$ on $\Omega = \overset{\circ}{K}$.

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

 $K = \overline{\Omega}$ is topologically regular.

If f is the Cantor function on [0, 1], we consider the function F defined on K by F(x, y) = f(x). We have $F \in C^1_{int}(K)$ because it is continuous and $\partial_1 F = \partial_2 F = 0$ on $\Omega = \overset{\circ}{K}$.

If $F \in C^1(K)$, dF = (0,0) and if we consider the path γ consisting of one horizontal lines crossing K

$$C^1(K) \subsetneq C^1_{\rm int}(K)$$

 $K = \overline{\Omega}$ is topologically regular.

If f is the Cantor function on [0, 1], we consider the function F defined on K by F(x, y) = f(x). We have $F \in C^1_{int}(K)$ because it is continuous and $\partial_1 F = \partial_2 F = 0$ on $\Omega = \overset{\circ}{K}$.

If $F \in C^1(K)$, dF = (0,0) and if we consider the path γ consisting of one horizontal lines crossing K, we have

$$\int_{\gamma} dF = 0 \quad \text{while} \quad F(\gamma(1)) - F(\gamma(0)) = f(1) - f(0) = 1.$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Whitney (1934)

Let K be a topologically regular compact set. If $\overset{\circ}{K}$ is Whitney regular, then $C^1_{int}(K) = C^1(\mathbb{R}^d|K)$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Whitney (1934)

Let K be a topologically regular compact set. If $\overset{\circ}{K}$ is Whitney regular, then $C^1_{int}(K) = C^1(\mathbb{R}^d|K)$.

Whitney conjecture : what about the reverse?

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Whitney (1934)

Let K be a topologically regular compact set. If \check{K} is Whitney regular, then $C^1_{int}(K) = C^1(\mathbb{R}^d|K)$.

Whitney conjecture : what about the reverse?

Criterium for the equality $C^{1}(K) = C^{1}_{int}(K)$ (L. Frerick, L.L., J. Wengenroth)

Let *K* be a topologically regular compact set and assume that, for all $x \in \partial K$, there exist $C_x > 0$ and a neighbourhood V_x of *x* such that each $y \in V_x$ can be joined from *x* by a rectifiable path in $\mathring{K} \cup \{x, y\}$ of length bounded by $C_x |x - y|$. Then $C_{int}^1(K) = C^1(K)$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Let Ω be the open unit disk in \mathbb{R}^2 from which we remove tiny disjoints balls which accumulate at $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Let Ω be the open unit disk in \mathbb{R}^2 from which we remove tiny disjoints balls which accumulate at $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$. Then $K = \overline{\Omega}$ is connected, topologically regular and Whitney regular.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Let Ω be the open unit disk in \mathbb{R}^2 from which we remove tiny disjoints balls which accumulate at $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$. Then $K = \overline{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^1(\mathbb{R}^2|K) = C^1(K)$. \mathring{K} is not Whitney regular, because $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$ is not contained in \mathring{K}

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Let Ω be the open unit disk in \mathbb{R}^2 from which we remove tiny disjoints balls which accumulate at $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$. Then $K = \overline{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^1(\mathbb{R}^2|K) = C^1(K)$.

 \ddot{K} is not Whitney regular, because $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$ is not contained in $\overset{\circ}{K}$, but the assumptions of the previous criterium are satisfied
Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Let Ω be the open unit disk in \mathbb{R}^2 from which we remove tiny disjoints balls which accumulate at $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$. Then $K = \overline{\Omega}$ is connected, topologically regular and Whitney regular. In particular we know that $C^1(\mathbb{R}^2|K) = C^1(K)$. $\overset{\circ}{K}$ is not Whitney regular, because $\{0\} \times (-\frac{1}{2}, \frac{1}{2})$ is not contained in $\overset{\circ}{K}$, but the assumptions of the previous criterium are satisfied and $C^1(K) = C^1_{int}(K)$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Equality between $C^1(K)$ and $C^1(\mathbb{R}|K)$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Equality between $C^1(K)$ and $C^1(\mathbb{R}|K)$

K compact set of $\mathbb R$ with infinitely many connected components, for all $\xi \in K$

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

Introduction	Completeness of $C^{1}(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

Equality between $C^1(K)$ and $C^1(\mathbb{R}|K)$

K compact set of $\mathbb R$ with infinitely many connected components, for all $\xi \in K$

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \ : \ G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

Theorem (L. Frerick, L.L., J. Wengenroth)

Let $K \subset \mathbb{R}$ be a compact set with infinitely many connected components. We have $C^1(K) = C^1(\mathbb{R}|K)$ if and only if $\sigma(\xi) < \infty$ for all $\xi \in K$.

Introduction	Completeness of <i>C</i> ¹ (<i>K</i>)	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

 The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- **2** $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ for decreasing sequences $x_n \to 0$.

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- *K* = {0} ∪ {x_n : n ∈ ℕ} for decreasing sequences x_n → 0.
 σ(x_n) = 0 for all n ∈ ℕ

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- **2** $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ for decreasing sequences $x_n \to 0$.

•
$$\sigma(x_n) = 0$$
 for all $n \in \mathbb{N}$

•
$$\sigma(0) = \limsup \frac{x_n}{x_n - x_{n+1}}$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \, : \, G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- **2** $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ for decreasing sequences $x_n \to 0$.
 - $\sigma(x_n) = 0$ for all $n \in \mathbb{N}$

•
$$\sigma(0) = \limsup \frac{x_n}{x_n - x_{n+1}}$$

⇒ Finite for fast sequences like $x_n = a^{-n}$ with a > 1 but infinite for slower sequences like $x_n = n^{-p}$ for p > 0

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| \, : \, y \in G\}}{\ell(G)} \ : \ G \operatorname{gap} \, \subseteq \, (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- **2** $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ for decreasing sequences $x_n \to 0$.
 - $\sigma(x_n) = 0$ for all $n \in \mathbb{N}$

•
$$\sigma(0) = \limsup \frac{x_n}{x_n - x_{n+1}}$$

⇒ Finite for fast sequences like $x_n = a^{-n}$ with a > 1 but infinite for slower sequences like $x_n = n^{-p}$ for p > 0

$$K = \{0\} \cup \bigcup_{n \in \mathbb{N}} [x_n, x_n + r_n]$$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
000	000	0000	

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| : y \in G\}}{\ell(G)} : G \operatorname{gap} \subseteq (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

- The Cantor set K satisfies σ(ξ) = ∞ for all ξ ∈ K so that C¹(K) ≠ C¹(ℝ|K).
- **2** $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ for decreasing sequences $x_n \to 0$.
 - $\sigma(x_n) = 0$ for all $n \in \mathbb{N}$

•
$$\sigma(0) = \limsup \frac{x_n}{x_n - x_{n+1}}$$

⇒ Finite for fast sequences like $x_n = a^{-n}$ with a > 1 but infinite for slower sequences like $x_n = n^{-p}$ for p > 0

◎
$$K = \{0\} \cup \bigcup_{n \in \mathbb{N}} [x_n, x_n + r_n]$$
 For $r_n = e^{-2n}$ we get $\sigma(0) < \infty$,
e.g., for $x_n = e^{-n}$ and $\sigma(0) = \infty$ for $x_n = 1/n$

Introduction	Completeness of $C^1(K)$	Density of $C^1(\mathbb{R}^d K)$	Some comparisons
			00000000

$$\sigma(\xi) := \lim_{\varepsilon \to 0^+} \sup \left\{ \frac{\sup\{|y - \xi| : y \in G\}}{\ell(G)} : G \operatorname{gap} \subseteq (\xi - \varepsilon, \xi + \varepsilon) \right\}$$

To go further :

Leonhard Frerick, Laurent Loosveldt and Jochen Wengenroth, *Continously differentiable functions on compact sets*, Submitted for publication. To go further :

Leonhard Frerick, Laurent Loosveldt and Jochen Wengenroth, *Continously differentiable functions on compact sets*, Submitted for publication.

Available on arXiv.