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Let K be a compact set of RY,

A function f, continuous on K, belongs to C1(K) if there exits a
continuous function df on K with values in the linear maps from RY
to R such that, for all x € K,

i FW) = F00 = (df (Y =) _

y—X —
S ly — x|

0,

Il In general, such a derivative needs not be unique !!
CH(K) = m (T (K)),
endowed with the norm

lfllcrky = Ifllk +inf{|ldfllx : dfis a continuous derivative of f on K}
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CL(RY|K) is the subset of C1(K) of the restriction on K of
continuously differentiable function on RY.

CYRIK) ¢ CH(K)

K={(x,y) € [-1,1]% : |y| = x*forx > 0}
f(x,y) = x> on the red part f(x, y) = 0 otherwise

f e CH(K) but f ¢ C*(R? K) because f is not Lipschitz
continuous near the origin.
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Theorem (Whitney,1934)
A function f € CL(RY|K) if and only if f € 711(&1(K))

A jet (f,df) € 8L(K) if

i F0) = ) = (dF(.y =) _

y—oX —
SR ly = x|

0.

uniformly on x € K.

o

If K is topologically regular ( K = K)

Ci}]t(K) ={fe Cl(;() : f and 0;f extend continously to K, 1 <j < d}.

CH(K) € Gr(K)
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Compact set with infinitely many connected components
If K is a compact set with infinitely many connected components,
then (CY(K), || - llc1(k)) is incomplete.

Q (Kj)jen of pairwise disjoints clopen subsets of K with infinitely
many connected components. For each j € N, let x; € K.

@ Extract a convergent subsequence x,(j) — xp € K, this limit
cannot belong to one of the Kjj, as those subsets are open
and pairwise disjoint.

o

[xk(jy — X0l ifx € Kijyandj < n
fn(x) =
0 ifxe K \ U}’Zl Kk(j)-

f, is a Cauchy sequence in (C1(K),|| - lck))-
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If K has finitely many connected components

K is pointwise regular

We say that A is pointwise (Whitney) regular if for any x € A
there exists a neighbourhood V, of x in A and C, > 0 such that
any y € Vi is joined to x by a rectifiable path in A of length
bounded by Ci|x — y|.
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If K has finitely many connected components

K is pointwise regular = (JYK)]|- |l 71(k)) B.S.

Generalized F.T.C. (L. Frerick, L.L., J. Wengenroth)

For each f € C1(K) with a continuous derivative df and each
rectifiable path y : [a, b] —» K we have

/ df = F(y(b) - F(¥(a)).

Y
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If K has finitely many connected components

K is pointwise regular = (JYK),| - | 1(k)) B.S.

Q Take ((f}; dfj))jex a Cauchy sequence in (JTYHK), | - |l 710k))
from the completeness of (C(K), || - ||x) we obtain uniforms
limits f and df.

@ Given x € K and a path y,, from x to y of length
Llyy) < Gidx =yl

fly) = f(x) = (df (x),y —x) = / (df — df(x))

Yy
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(CHK) - llerqky) B-S.

By taking the quotient map
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If K has finitely many connected components
K is pointwise regular = (JYK)]|- |l 71(k)) B.S.

For all x € K, there exists = (CHK)L -k BS.
Cx > 0 such that
f(y)—f(x
supyex T < Clfll i
Y#EX
We fix x € K, for all y € K\ {x}, we define a linear and continuous
functional on C}(K) by

f(y)—f(x)
ly = x|

Conclusion by Uniform boudedness principle.

@, (f) = Vfe CHK).
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If K has finitely many connected components

K is pointwise regular = (JYUK),| - |l 71(k)) B.S.
N 7
For all x € K, there exists & (CYK),| - llc1(k)) B-S.
Cx > 0 such that

FOZIIL < Cllfller

SUPyeK — =]

Y#X

de(y) = inf{L, : yrectifiable path from x to y in Ky}.

(K2e open connected neighbourhood of K)
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If K has finitely many connected components

K is pointwise regular = (JYUK)]|- |l 71(x)) B.S.

m Y
For all x € K, there exists = (CHK) - llcrky) BS.

Cx > 0 such that
supy e LTI o Gellfllcroky

Vix ly—x|
de(y) = inf{L, : yrectifiable path from x to y in Ky}.

Yo € K fixed, set us(y) = min{d:(y),d:(y0)}. If y and y’ are
closed enough in K., we have

lug(y) —us () < ly =yl
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If K has finitely many connected components

K is pointwise regular = (JYK),| - |l 71(k)) B.S.
m 7 I}
For all x € K, there exists & (CYK),| - llc1(k)) B.S.
Cx > 0 such that

[F-f9] o Gellfllcreky

SUPyeK —=x]

Y#X
de(y) =inf{L, : yrectifiable path from x to y in Ky.}.

Yo € K fixed, set us(y) = min{d:(y),d=(y0)}. If ¢ is a positive
smooth function with support in B(0, &) and integral 1, the
convolution u, * ¢, defined in K, is a smooth function.

|(us * @) (x) = (ug * ) (y0)| < Cc(de(y0) + d)|x - yol
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If K has finitely many connected components

K is pointwise regular = (JYUK)LI|- |l 71(k)) B.S.

m 7 U
For all x € K, there exists = (CHK) - llcrky) BS.

Cx > 0 such that

Fly)-f
SUPyeK% < Gllfllcrry
Y#EX

de(y) = inf{L, : yrectifiable path from x to y in Ky.}.
yo € K fixed
supp¢ — {0}

de(yo) < Ce(de(yo) + d)Ix = yol.
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If K has finitely many connected components

K is pointwise regular = (JYK)L]- |l 71(k)) B.S.
m 7 I}
For all x € K, there exists = (CYK),| - lcreky) B.S.

Cx > 0 such that

Fy)—f
SUPyeK% < GdlIfllecrek
Y#EX

For any yp € B(x, %) N K, there exists a rectifiable path from x
to yp in Ky of length bounded by 2C.d|x — yo| + £.Using a
parametrization by arc length for these paths gives an uniformly
equicontinuous and uniformly bounded family of functions.

By Arzela-Ascoli Theorem, we find a convergent subsequence an
the limit is a path of length bounded by 2C,d|x — yo|.
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Characterization of the completness of C!(K) (L. Frerick, L.L., J.

Wengenroth)

Let K be a compact set, (C1(K), || - llc1(k)) is a Banach space if
and only if K has finitely many components which are pointwise
Whitney regular.
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We want to show that

21k " = 1K),

For general K, all standard approximation procedures like
convolution with smooth bump functions or gluing of local
approximation with partition of unity do not apply easily.

Consequence of Hahn-Banach theorem

It suffices to check that, if ® is a bounded linear functional on
C(K)d+1 such that (I)|g1(K) =0 then (D|j1(K) =0

We consider such a ®.



Density of C1(RY|K)
0®00

Thanks to Riesz representation theorem, @ is represented by
(ﬂ;ﬂl’ e 9ﬂd) : for a” (f9 ﬁn ) fd) € C(K)d+11

q)((f,ﬂ,'--,fd))=/fdﬂ+/fld,u1+...+/fdd/1d.



Density of C1(RY|K)
0®00

Thanks to Riesz representation theorem, @ is represented by
(ﬂ;ﬂl’ e 9ﬂd) : for a” (f9 ﬁn ) fd) € C(K)d+11

q)((f,ﬂ,'--,fd))=/fdﬂ+/fld,u1+...+/fdd/1d.



Density of C1(RY|K)
0®00

Thanks to Riesz representation theorem, @ is represented by
(i 1, -+ o pg) = forall (F, 7, fg) € C(K)TH,

(I)((f,fl,---,fd))=/fdy+/fldp1+...+/fddud.

As, ®z1k) =0, for all p € D(RY), we have

/sodﬂ=—/61sodﬂ1—---—/6dsodud
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Thanks to Riesz representation theorem, @ is represented by
(ﬂ;/‘lla e 9ﬂd) : for a” (fy fiy ) fd) € C(K>d+11

O((f, f, - ,fd)):/fdy+/ fld,u1+...+/fddud.
As, D1k =0, for all ¢ € D(Rd), we have

ulel = (1)@l + -+ + (Baua) [¢]
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Thanks to Riesz representation theorem, @ is represented by
(1 g1, -+ ) = for all (F,fi, -+, fy) € C(K)¥H,

(I)((f,fl,---,fd))zffdp+/f1dp1+...+/fddpd.

u=div(T)

where T = (ui1,--- , uq) is a vector-field of measures (charge).
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If y : [a,b] — K is a (Lipschitz) path and
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b d p .
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where ;1;7)

[a.b]. We set Ty, = (11", ),
divT, =6, —6p

is the image under y of the measure with density ny on



Density of C1(RY|K)
coeo

If y : [a,b] — K is a (Lipschitz) path and
F=(F,--,Fq) € C(K),

b d b ;
/7F=/a <F(7(t)),7’(t)>dt=;/a Fi(y ()} (t) dt:j;/Fjdﬂjm’

()

where K is the image under y of the measure with density ny on
[a.b]. We set Ty, = (11", ),

divT, =0, 0p
If T is the set of all Lipschitz paths.

Smirnov (1993)

Every charge T with compact support such that div(T) is a signed
measure can be decomposed into elements of T, i.e., there is a
positive finite measure v on I' such that

T:‘/FTydv(y) and ||T||='/F||Ty||dV(7)-
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Theorem (L. Frerick, L.L., J. Wengenroth)

For any compact set K, the space of restrictions to K of
continuously differentiable function on RY is dense in

(CHK) I llerky)-
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Criterium for the equality C1(RY|K) = C1(K) (L. Frerick, L.L., J.

Wengenroth)

Cl(K) = C1(RY|K) with equivalent norms if and only if K has
only finitely many components which are all Whitney regular.

This is a satisfying answer in the context of Banach spaces, not in
general.
Remark : the equality C1(RY|K) = C1(K) has very poor stability
properties.
@ Two half of a broken heart behave better than the intact
heart...
@ For M={0}U{2™": ne N} and K =M x [0, 1] we have
CH(K) # CH(R?|K).
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CL(K) € CL(K)

Let us denote by C the ternary Cantor set and U its complement
in (0,1). The open set Q is build from U x (0, 1) by removing from
it disjoints balls (B));ecn that accumulate at C x [0, 1].

K = Q is topologically regular.

If f is the Cantor function on [0, 1], we consider the function F
defined on K by F(x,y) = f(x). We have F € Ci}]t(K) because it

is continuous and 91F =d,F =0 on Q = K.

If F e CY(K), dF = (0,0) and if we consider the path y consisting
of one horizontal lines crossing K, we have

/dF =0 while F(y(1)) = F(y(0)) = f(1) - £(0) = 1.
Y
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Whitney (1934)

Let K be a topologically regular compact set. If K is Whitney
regular, then Ci}“(K) = C1(RY|K).

Whitney conjecture : what about the reverse?

Criterium for the equality C1(K) = C!

(K) (L. Frerick, L.L., J.

int

Wengenroth)

Let K be a topologically regular compact set and assume that, for
all x € 9K, there exist C, > 0 and a neighbourhood V4 of x such
that each y € Vi can be joined from x by a rectifiable path in

Ku {x, y} of length bounded by Ci|x—y|. Then Ci}]t(K) = CL(K).
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Let Q be the open unit disk in R? from which we remove tiny
disjoints balls which accumulate at {0} x (—%, %). Then K =Qis
connected, topologically regular and Whitney regular. In particular
we know that C1(R?|K) = C1(K).
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disjoints balls which accumulate at {0} x (—%, %). Then K=Q is
connected, topologically regular and Whitney regular. In particular
we know that C1(R?|K) = C1(K).

K is not Whitney regular, because {0} x (—%, %) is not contained
in K, but the assumptions of the previous criterium are satisfied

and C1(K) = CL (K).
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Equality between C1(K) and C1(R|K)

K compact set of R with infinitely many connected components,
forall £ e K

o) = i sup [P ZEIEE L G 6o v

Theorem (L. Frerick, L.L., J. Wengenroth)

Let K C R be a compact set with infinitely many connected
components. We have C1(K) = C1(R|K) if and only if o (¢) < oo
for all £ € K.
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e 0(xp)=0forallneN
e 0 (0) =limsup an;m
= Finite for fast sequences like x, = a=" with a > 1 but infinite
for slower sequences like x, = n™? for p > 0

Q@ K ={0} UUpenlXn Xn + ]
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o(§) = JerS+sup{suP{|y _fi;; y €6} . Ggap C (f—s,§+s)}

@ The Cantor set K satisfies o(£) = oo for all £ € K so that
CL(K) # CL(R|K).
@ K ={0} U {x,: ne N} for decreasing sequences x, — 0.
e 0(xp)=0forallneN
e 0 (0) =limsup an;m
= Finite for fast sequences like x, = a=" with a > 1 but infinite
for slower sequences like x, = n™? for p > 0

© K = {0} UU,enl[Xns Xn + rn] For r, = e72" we get 0(0) < oo,
e.g., for x,=e " and 0(0) = oo for x, =1/n
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Continously differentiable functions on compact sets, Submitted for
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