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1. Formulation of the Problem

Semigroups under consideration are:

U(t)u(x) =

∫

R

u(y)P (0, x; t, dy) = 〈u(·), p(0, x; t, ·)〉.

Here P is a transition probability and p is corresponding
transition density.
Our goal is
• to consider semigroups related to basic processes: shift,
Wiener, and Poisson;
• to show that generators are ΨDOs and operators with
distribution kernels;
• to extend Gelfand–Shilov classification introduced for
differential systems to systems with ΨDOs.
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2. Shift Semigroups U1

(i). Consider the shift semigroup {U1(t), t ≥ 0} on C(R):

U1(t)u(x) = u(x, t) = 〈u(·), p1(0, x; t, ·)〉 = 〈u, δx+t〉 = u(x+ t).

Here p1(0, x; t, y) = δx+t(y) is the transition probability density.

The semigroup is strongly continuous (c0-class) on C(R), C0(R),
Cc(R) and u(x, t) is the solution to the Cauchy problem

∂u(x, t)

∂t
=
∂u(x, t)

∂x
, x ∈ R, t ≥ 0, u(x, 0) = u(x).

Hence, the generator is ∂
∂x .
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3. Heat Semigroup U2

(ii). Consider the semigroup on L2(R) and on C0(R):

U2(t)u(x) = u(x, t) =
1√
2πt

∫

R

u(y)e−
(x−y)2

2t dy.

Here p2(0, x; t, y) = 1√
2πt
e−

(y−x)2

2t is the normal density and

u(x, t) is the solution to the heat equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, x ∈ R, t ≥ 0, u(x, 0) = u(x).

The semigroup is strongly continuous on L2(R) and on C0(R).
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4. Poisson Semigroups U3

(iii). Consider the Poisson semigroup on C(R):

U3(t)u(x) = 〈u(·), p3(0, x; t, ·)〉,

Here p3 is the transition density of Poisson process with jump
value q and intensity λ:

p3(0, x; t, y) =

cq∑

k=0

(λt)k

k!
e−λtδx+kq(y),

defined by P3(0, x; t, y) =
∑cq

k=0
(λt)k

k! e
−λt, where cq depends on

y − x: cq =
[
y−x
q

]
if
[
y−x
q

]
6= y−x

q and
[
y−x
q − 1

]
if not.
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5. The Poisson Semigroup Generator

By the definition of generator:

A3u(x) = lim
t→0

1

t
[U3(t)− I]u(x)

= lim
t→0

1

t

[
〈u(y),

cq∑

k=0

(λt)k

k!
e−λtδx+kq(y)〉 − u(x)

]

= λ(u(x+ q)− u(x)) = λ〈u, δx+q − δx〉.
It follows u(x, t) = U3(t)u(x) is the solution to

∂u(x, t)

∂t
= λ(u(x+q, t)−u(x, t)), x ∈ R, t ≥ 0, u(x, 0) = u(x)

and U3 is strongly continuous on C(R), C0(R).
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6. Compound Poisson (CP) Semigroup U4

(iv). Let {zk(t), t ≥ 0} be iid random processes with general
distribution law µz, then

Z(t) = z1(t) + . . . + zN (t)

is a CP process.

For the characteristic function of Z

ΦZ(α) :=

∫

R

ei(α,y)µZ(dy) = F [µZ ](−α)

(here µZ(dy) = P (0, 0; t, dy) ) we proved the equality:

ΦZ(α) = etλ(Φz(α)−1).
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7. Compound Poisson Semigroup U4

For invariant w.r.t. shifts (spatially homogeneous) semigroups
p(0, x; t, y) = p(t, y − x).

U4 (and U1 − U3) are invariant w.r.t. shifts, hence they are
related to Levy processes ( [1]: Böttcher, Schilling, . . . ) and

U4(t)u(x) = 〈u(·), p4(t, · − x)〉.

Due to obtained equality for ΦZ , for X(t) := x+ Z(t) we have

ΦX(x, α) = F [p4](t, x,−α) = eixαΦZ(α) = eixαetλ(Φz(α)−1).
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8. Generators of U1 − U4 are ΨDOs

ΨDOs are operators K of the form

Kϕ (x) =
1

2π

∫

R

eixαs(x, α)ϕ̂(α)dα, x ∈ R, ϕ ∈ S,

with symbols s of not more then power growth in α.
Symbols are (generalized) Fourier transforms of operators K.

For a differential operator with coefficients ak(x), the symbol is∑n
k=0 ak(x)(iα)

k. Hence, generators of U1, U2, as special cases,
are ΨDOs. For A3 we have

A3ϕ(x) =
1

2π

∫

R

eixαs(x, α)ϕ̂(α)dα, s(x, α) = λeixα(eiqα − 1).

The U4 can be considered as a special case related to Levy
processes.
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9. Generators Related to Levy Processes are ΨDOs

Semigroups U1 − U4 are related to Levy processes: X(t) =

X(0) + at+ bW (t) +
∫
|y|≥q yN(t, dy) +

∫
|y|<q yÑ(t, dy), q > 0.

To prove the ΨDO-property we can using the Levy–Khintchine
formulae for ΦX = eixαets(α):

−s(α) = −ibα︸ ︷︷ ︸
U1

+
1

2
αQα

︸ ︷︷ ︸
U2

+

∫

Rm/{0}

(
1− eiαy + iαyχ[−1,1](y)

)
ν(dy)

︸ ︷︷ ︸
U3,U4,...

and power estimate (in α) for the integral term.
Here ν is a Levy measure:

∫
Rm/{0} max{1, y}ν(dy) <∞.

For Poisson generators the integral term is∫
Rm/{0}

(
1− eiαy

)
ν(dy).
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10. Generators are Operators with Distribution Kernels

To show this property we use ΨDO-property and the kernel
Schwartz theorem:
There exists one-to-one correspondence between operators
K : D(X) → D′(Y ) and distributions K ∈ D′(X × Y ) called
kernels of K.

In our case generator and operators of semigroups are
K : S(R) → S ′(R) and we find K writing Kϕ on test functions ψ

〈ψ(x), 2πKϕ(x)〉 =
∫

R

ψ(x)dx

∫

R

s(x, α)dα

∫

R

ei(x−y)αϕ(y)dy

=: 〈ψ(x)ϕ(y),K(y, x)〉, ϕ, ψ ∈ S.
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11. Examples of Kernels

The integral in the definition of K converges due to estimates for
s(x, α) and ψ, ϕ.

Examples of kernels for semigroups U1 − U3:

δx+t(y), e−
(x−y)2

2t ,

cq∑

k=0

(λt)k

k!
e−λtδx+kq(y).
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12. Gelfand–Shilov Systems

"Classical" Gelfand–Shilov classification is given to the Cauchy
problem for the differential system

∂

∂t
u(t, x) = A

(
i
∂

∂x

)
u(t, x), t ≥ 0, x ∈ R

m, u(0, x) = f(x),

where A
(
i ∂
∂x

)
is a matrix of linear differential operators of order

≤ l.
The classification is constructed by etA(α), the solution operator
of the Fourier transformed Cauchy problem and due to estimates

etΛ(α) ≤
∥∥∥etA(α)

∥∥∥
Rm

≤ C(1 + |α|)l(m−1) · etΛ(α), t ≥ 0,

by Λ(α) = maxReλk(α), where λk(α) are eigenvalues of A(α).
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13. ”Classical” Gelfand–Shilov Classification

The system is

• Petrovsky correct , if Λ(α) ≤ C, in particular,

parabolic, if ∃C, h,C1 > 0 : Λ(α) ≤ −C|α|h + C1,

hyperbolic, if ∃C,C1 : Λ(α) ≤ C, Λ(α) ≤ C|α|+ C1;

• conditionally correct , if
∃C,C1 > 0, 0 < h < 1 : Λ(α) ≤ C|α|h + C1,

• incorrect , if Λ(α) ≤ C|α|l0 ,
where l0 ≥ 1 is the reduced order of the system.

Depending on the type of the system, correctness spaces of test
and generalized functions are defined for Fourier transformed
and original systems ([2]-[4]): Gelfand, Melnikova, . . . )
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14. Main Result: Extended G-S classification

Using the Levy–Khintchine formulae, we include ΨDOs A in the
classification.
Let the Fourier transform of A be

A(α) = A(α)+

∫

R/{0}

(
1− eiαy + iαyχ[−1,1](y)

)
ν(dy) =: A(α)+I(α).

For I(α) is known the estimate: ‖I(α)‖ ≤ C(1 + |α|)2.
Then by estimates for etA(α) = etA(α) · etI(α) we obtain

- for all types of the classification for the system with A, except
parabolic, the system with A is incorrect;
- in the parabolic case for A:
if h > 2, the system with A is also parabolic, if 2− h < 1, it is
conditionally correct, and if 2− h ≥ 1, it is incorrect.
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15. Classification for the special case of A

If the Fourier transform of A
(
i ∂
∂x

)
is equal to the first two term in

the Levy–Khintchine formulae:

A(α) = −ibα+
1

2
αQα

and the integral term contains just the first part, corresponding
Poisson processes:

I(α) =

∫

R

(
1− eiαy

)
ν(dy),

that is
if A(α) = −ibα+ 1

2αQα+
∫
R

(
1− eiαy

)
ν(dy),

then the system with A is Petrovsky correct.
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Thank you for your attention!
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