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We consider complex-valued C∞-functions and Roumieu ultradistributions defined
on an open subset Ω of Rd using the standard multi-dimensional notation in Rd.
The spaces of test functions and Roumieu ultradistributions are defined by a given
weight sequence (Mp) = (Mp)p∈N0 of positive numbers. Usually the following
conditions are imposed on the sequence (Mp):

(M.1) M2
p ¬Mp−1Mp+1, p ∈ N;

(M.2) Mp ¬ AHpMqMp−q, p, q ∈ N0, q ¬ p;
(M.2’) Mp ¬ AHpMp−1, p ∈ N, q ¬ p;
(M.3)

∑∞
p=q+1 Mp−1M

−1
p ¬ AqMqM

−1
p , q ∈ N;

(M.3’)
∑∞

p=1 Mp−1M
−1
p <∞,

where the inequality in (M.3) is assumed to be satisfied for a certain constant A > 0
and the inequalities in (M.2) and in (M.2’) for some constants A > 0 and H > 0.

In the sequel, we will assume some of the above conditions. Clearly, we can assume
and we will assume that the constant H in condition (M.2’) satisfies H ­ 1.
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After P-P [4], denote by R the class of numerical sequences (rp) = (rp)p∈N0 (with
r0 = 1) which monotonously increase to infinity. We call the sequence
(Rp) = (Rp)p∈N0 , where Rp :=

∏p

i=0 ri for p ∈ N0 (clearly R0 = 1), the product
sequence corresponding to (rp) ∈ R.

Lemma 1 (H. Komatsu 1982)

Let (ak)k∈N0 be a sequence of nonnegative numbers. Then

sup
k∈N0

ak
hk

<∞ for some h > 0

if and only if
sup
k∈N0

ak
Rk

<∞ for all (rk) ∈ R,

where (Rk) is the product sequence corresponding to (rp).
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For a given complex-valued function ϕ on an open set Ω ⊆ Rd and a compact set
K ⊂ Ω denote

‖ϕ‖K := sup
x∈K
|ϕ(x)|; ‖ϕ‖Ω := sup

x∈Ω
|ϕ(x)|.

For a given sequence (Mp), a regular compact set K in Rd and h > 0 the symbol
E{Mp}K,h means the l.c.s. of all C∞-functions ϕ on Ω s. t.

‖ϕ‖K,h := sup
k∈Nd0

‖Dkϕ‖K
h|k|Mk

<∞, (1)

with the topology defined by the semi-norm ‖ · ‖K,h given above. The Banach space
of all C∞-functions ϕ satisfying (1) and having supports contained in K, with the
topology of the norm ‖ · ‖K,h, is denoted by D{Mp}K,h .

For a fixed sequence (Mp) and an open set Ω ⊆ Rd, we consider the following locally
convex spaces of ultradifferentiable functions on Ω:

D{Mp}K := lim−→
h→∞

D{Mp}K,h ; D{Mp}(Ω) := lim−→
KbΩ

D{Mp}K ;

and
E{Mp}(Ω) := lim←−

KbΩ

lim−→
h→∞

E{Mp}K,h .
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On the other hand, for a given regular compact set K ⊂ Ω and given sequences
(Mp) and (rp) ∈ R, we denote by D{Mp}

K,(rp), the Banach space of all C∞-functions ϕ
on Ω having supports contained in K such that

‖ϕ‖K,(rp) := sup
k∈Nd0

‖Dkϕ‖K
R|k|Mk

<∞ (2)

with the norm ‖ · ‖K,(rp) defined above. Then we have

lim←−
(rp)∈R

D{Mp}K,(rp) = D{Mp}K .

For given (Mp) and (rp) ∈ R, we consider the Banach space D{Mp}L∞,(rp)(Ω) of all
C∞-functions ϕ on Ω s. t.

‖ϕ‖(rp) := sup
k∈Nd0

‖Dkϕ‖Ω
R|k|Mk

<∞, (3)

with the norm ‖ · ‖(rp) and denote

D{Mp}L∞ (Ω) := lim←−
(rp)∈R

D{Mp}
L∞,(rp)(Ω).
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The completion of D{Mp}(Ω) in D{Mp}L∞ (Ω) is denoted by Ḃ{Mp}(Ω).

Definition 1

The strong dual of D{Mp}(Ω), denoted by D′{Mp}(Ω), is called the space of
Roumieu ultradistributions.

The strong dual of Ḃ{Mp}(Ω), denoted by D′{Mp}
L1

(Ω), is called the space of
integrable Roumieu ultradistributions.

For given a weight sequence (Mp) and (rp) ∈ R, we consider the corresponding
weight sequence (Np), given by Np := MpRp for p ∈ N0 and define the respective
associated functions by the formulas:

M(ρ) := sup{log+
ρp

Mp
: p ∈ N0}, ρ > 0, (4)

N(ρ) = N(rp)(ρ) := sup{log+
ρp

Np
: p ∈ N0}, ρ > 0. (5)
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For given (Mp) and (rp), (up) ∈ R, we consider the Banach space

SMp(rp),(up),d := {ϕ ∈ C∞(Rd) : ‖ϕ‖(rp),(up) <∞},

where

‖ϕ‖(rp),(up) := sup
k∈Nd0

‖Dkϕe
N(up)(|·|)‖∞

R|k|Mk
.

Let (Mp) satisfy conditions (M.1), (M.2’) and (M.3’). After C-K-P [1], we define the
space of ultradifferentiable functions S{Mp}d by

S{Mp}d := lim←−
(rp),(up)∈R

SMp(rp),(up),d. (6)

Definition 2

The strong dual S ′{Mp}d of the space S{Mp}d is called the space of tempered Roumieu
ultradistributions.

The space S{Mp}d is a (DFS)-space and S ′{Mp}d is an (FS)-space. If (Mp) satisfies

condition (M.2), then both spaces are nuclear.
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Suppose that (Mp) satisfies (M.1) and J is an arbitrary set of indices.

Theorem 1 (M. Valdivia 2009)

For each j in a set J , let {sα,j : α ∈ Nd0} be a family of Radon measures on an open
Ω ⊆ Rd. If for every compact set K ⊂ Ω there is an (rp) ∈ R s. t.

sup
α∈Nd0 ,j∈J

R|α|Mα‖sα,j‖C′(K) <∞, (7)

then there is a bounded subset {Sj : j ∈ J} in D′{Mp}(Ω) such that

〈ϕ, Sj〉 =
∞∑
|α|=0

〈Dαϕ, sα,j〉, ϕ ∈ D{Mp}(Ω). (8)

Moreover the series in (8) converges absolutely and uniformly as j varies in J and ϕ
varies in any given bounded subset of D{Mp}(Ω).

Conversely, if {Sj : j ∈ J} is a bounded set in D′{Mp}(Ω), then for every j ∈ J there
is a family (sα,j : α ∈ Nd0) of Radon measures in Ω satisfying condition (7) for every
compact K ⊂ Ω and some (rp) ∈ R. Moreover the series (8) converges absolutely and
uniformly as j varies in J and ϕ varies in any given bounded subset of D{Mp}(Ω).
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Proposition 1

Let S ∈ D′{Mp}d and Sn ∈ D′{Mp}d for n ∈ N. Suppose that Sn → S in D′{Mp}d as
n→∞. Then for each bounded open set G ∈ Rd there are Radon measures
sα, snα ∈ C′(G) for n ∈ N and α ∈ Nd0, a sequence (rp) ∈ R and a constant B > 0
such that

S|G =
∞∑
|α|=0

Dαsα, Sn|G =
∞∑
|α|=0

Dαsnα, (9)

and the equalities

‖sα‖C′(K) ¬ B(R|α|Mα)−1, ‖snα‖C′(K) ¬ B(R|α|Mα)−1 (10)

hold for every compact set K ⊂ G and arbitrary α ∈ Nd0 and n ∈ N. Moreover,

lim
n→∞

‖snα − sα‖C′(K) = 0 for every α ∈ Nd0.
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Theorem 2 (S. Pilipović 1996)

Let (Mp) satisfy (M.1) and (M.2’). Assume S ∈ D′{Mp}d . Then the Roumieu
ultradistribution S is tempered, i.e. S ∈ S ′{Mp}d , if and only if S is of the following
form

S =
∑

|α|,|β|∈N0

Dα(〈·〉βFα,β) (11)

with the series convergent in S ′{Mp}d , where the symbol 〈·〉β means the function
defined by

〈x〉β :=
d∏
j=1

(
1 + x2

j

)βj/2
, x ∈ Rd, β ∈ Nd0

and (Fα,β)α,β∈Nd0
is a matrix of elements of L∞ for which there exists a sequence

(rp) ∈ R such that

sup
α,β∈Nd0 ,x∈R

d

R|α+β| MαMβ |Fα,β(x)| <∞.
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Proposition 2

Let Sn ∈ S ′{Mp}d for n ∈ N0 := N ∪ {0}. Suppose that Sn → S0 in S ′{Mp}d as n→∞.
Then for each bounded open set G ∈ Rd, there exist functions Fα,n ∈ L∞(G) for
n ∈ N0 and α ∈ Nd0, constants λ,B > 0 and a sequence (rp) ∈ R such that

Sn|G =
∞∑
|α|=0

Dα(eMλ Fα,n) (n ∈ N0),

‖Fα,n‖∞ ¬ B(R|α|Mα)−1 on G (α ∈ Nd0, n ∈ N0)

and

lim
n→∞

‖Fα,n − Fα,0‖∞ = 0 on G (α ∈ Nd0),

where eMλ (x) := eM(λ|x|) for x ∈ Rd.
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Definition 3

By an R-approximate unit we mean a sequence (Πn) of ultradifferentiable functions
Πn ∈ D{Mp}d which converges to 1 in E{Mp}d such that, for every sequence (rp) ∈ R,
we have

sup
n∈N
‖Πn‖(rp) = sup

n∈N
sup
k∈Nd0

(R|k|Mk)−1‖DkΠn‖∞ <∞, (12)

where (Rp) is the product sequence corresponding to (rp).

Definition 4

By a special R-approximate unit we mean an R-approximate unit (Πn) such that for
every compact set K ⊂ Rd there exists an index n0 ∈ N such that Πn(x) = 1 for all
n ­ n0 and x ∈ K.

We denote the class of all R-approximate units on Rd by U{Mp}d and the class of all

special R-approximate units on Rd by U{Mp}d .
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Definition 5

We say that S, T ∈ D′{Mp}d are convolvable with respect to 1◦ (V) and 2◦ (V),
whenever

1◦ the sequence
(
〈S ⊗ T, Πn ϕ

4〉2d
)

is Cauchy for all (Πn) ∈ U{Mp}2d

for every ϕ ∈ D{Mp}d and

2◦ the sequence
(
〈S ⊗ T, Πn ϕ

4〉2d
)

is Cauchy for all (Πn) ∈ U{Mp}2d

for every ϕ ∈ D{Mp}d , respectively.

One can prove that both types of convolvability with respect to (V) and (V) defined
in 1◦ and 2◦ are equivalent.

Definition 6

We define the convolution in D′{Mp}d of two convolvable Roumieu ultradistributions
S, T ∈ D′{Mp}d by

〈S ∗ T, ϕ〉d = lim
n→∞

〈S ⊗ T,Πn ϕ4〉2d, ϕ ∈ D{Mp}d , (Πn) ∈ U{Mp}2d . (13)
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Definition 7

We say that S, T ∈ S ′{Mp}d are t-convolvable with respect to 1◦◦(V); 2◦◦(V),
whenever

1◦◦
(
〈S ⊗ T, Πn ϕ

4〉2d
)

is a C. s. for all (Πn) ∈ U{Mp}2d , ϕ ∈ S{Mp}d ;

2◦◦
(
〈S ⊗ T, Πn ϕ

4〉2d
)

is a C. s. for all (Πn) ∈ U{Mp}2d , ϕ ∈ S{Mp}d ,

respectively.

If S, T ∈ S ′{Mp}d are t-convolvable with respect to 1◦◦ (Vt); 2◦◦ (Vt), respectively,
then the t-convolution of S and T in S ′{Mp}d is defined by

1◦◦ 〈S ∗t T, ϕ〉d := lim
n→∞

〈S ⊗ T,Πn ϕ4〉2d, ϕ ∈ S{Mp}d , (Πn) ∈ U{Mp}2d ;

2◦◦ 〈S∗tT, ϕ〉d := lim
n→∞

〈S ⊗ T,Πn ϕ4〉2d, ϕ ∈ S{Mp}d , (Πn) ∈ U{Mp}2d

respectively.
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The following definition of the t-convolution of tempered Roumieu ultradistributions
is an analogue of one of the known Schwartz definitions of the convolution of
distributions:

Definition 8

If S, T ∈ S ′{Mp}d satisfy the condition:

(?) (S ⊗ T )ϕ4 ∈ D′{Mp}
L1,2d , ϕ ∈ S{Mp}d ,

then we say that tempered Roumieu ultradistributions S, T are convolvable in the
sense of (?) and the convolution S?tT is defined by the formula

〈S ?t T, ϕ〉d := 〈(S ⊗ T )ϕ4, 1〉2d, ϕ ∈ S{Mp}d . (14)

It can be proved that both the sequential versions of the t-convolution of two
tempered Roumieu ultradistributions S and T given in Definition 7 are equivalent to
Definition 8 and, moreover,

S ∗t T = S∗tT = S ?t T.

According to this, we will use the common notation S∗tT for the t-convolution of
tempered Roumieu ultradistributions S and T .
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Proposition 3

Let X,Y ⊆ Rd be arbitrary sets. The following conditions are equivalent:

(C1.) the set (X × Y )∩K∆ is bounded in R2d for every K bounded in Rd, where

K∆ := {(x, y) ∈ R2d : x+ y ∈ K};

(C2.) for every R > 0 the set

WR := {(x, y) : x ∈ X, y ∈ Y, |x+ y| ¬ R}

is bounded in R2d;
(C3.) the following implication holds:

lim
n→∞

|xn|+ |yn| =∞ ⇒ lim
n→∞

|xn + yn| =∞,

whenever xn ∈ X and yn ∈ Y for n ∈ N.

Definition 9

The sets X,Y ⊆ Rd are called compatible if any of the three equivalent conditions
(C1), (C2), (C3) is satisfied.
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Analogously to the case of Beurling tempered ultradistributions, we define the
notion of M -compatibility of subsets of Rd, applying the the associated function M
defined in (4).

Definition 10

The sets X,Y ⊆ Rd are called M -compatible if

M(|x|) +M(|y|) ¬M(b|x+ y|) + b, x ∈ X, y ∈ Y (15)

for some b ­ 1.

Theorem 3

Suppose that (Mp) satisfies conditions (M.1), (M.2) and (M.3’).

If S, T ∈ D′{Mp}d (S ′{Mp}d ) are (tempered) ultradistributions whose supports
Σ = supp S and Θ = supp T are compatible (M -compatible), then the convolution
S∗T (S∗tT ) exists in D′{Mp}d (S ′{Mp}d ).
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Inverse results

That the conditions of compatibility and M -compatibility cannot be weakened in
the above existence theorem the following inverse results show:

Theorem 4

Let Σ,Θ ⊆ Rd. Assume that the convolution S∗T exists in D′{Mp}d for each pair
S, T ∈ D′{Mp}d of Roumieu ultradistributions with supports contained in Σ and Θ,
respectively. Then sets Σ and Θ are compatible.

Theorem 4’

Let Σ,Θ ⊆ Rd. Assume that the convolution S∗tT exists in S ′{Mp}d for each pair
S, T ∈ S ′{Mp}d of Roumieu tempered ultradistributions with supports contained in Σ
and Θ, respectively. Then sets Σ and Θ are M -compatible.
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Sequential continuity of convolution

Assume that (Mp) satisfies conditions (M.1), (M.2) and (M.3’).

Theorem 5

If for ultradistributions Sn, Tn ∈ D′{Mp}d with supp Sn ⊂ Σ, supp Tn ⊂ Θ where Σ
and Θ are compatible sets in Rd, the convergence Sn → S, Tn → T holds in D′{Mp}d ,
then Sn∗Tn → S∗T in D′{Mp}d as n→∞.

Theorem 5’

Suppose that supports of tempered ultradistributions Sn, Tn ∈ S ′{Mp}d satisfy the
inclusions supp Sn ⊂ Σ and supp Tn ⊂ Θ, where the sets Σ and Θ are
M -compatible.

If the convergence Sn → S, Tn → T holds in S ′{Mp}d , then Sn∗tTn → S∗tT in
S ′{Mp}d as n→∞.
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Examples

Using the parametric equations of the logarithmic spiral:

x(θ) = aebθ cos θ y(θ) = aebθ sin θ

for a ∈ R and b, θ > 0, we construct suitable sets Σ,Θ ⊂ R2.

One may verify that the sequences (Pn)n∈N and (Qn)n∈N of points
Pn := (x′n, y

′
n) ∈ Σ and Qn := (x′′n, y

′′
n) ∈ Θ satisfy condition (C3.), i.e.

lim
n→∞

‖Pn‖2 + ‖Qn‖2 =∞ ⇒ lim
n→∞

‖Pn +Qn‖2 =∞.

Then every two Roumieu ultradistributions S, T ∈ D′{Mp}2 with supports supp S

and supp T contained in Σ and Θ, respectively, are convolvable.
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Logarithmic spiral
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Fibonacci spiral

Parametric equation r(θ) = aebθ with a, b > 0.
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