Certain results on the existence of the convolution of Roumieu ultradistributions

Svetlana Mincheva-Kamińska

Institute of Mathematics, University of Rzeszów

Dedicated to Professor Stevan Pilipović on the occasion of his 70th birthday

International Conference on Generalized Functions 2020 Ghent, Belgium August 31, 2020

Preliminaries

- 2 Roumieu Ultradistributions
- 3 Stucture Theorems
- 4 Convolution
- **5** Compatibility conditions on supports

6 Examples

We consider complex-valued \mathcal{C}^{∞} -functions and Roumieu ultradistributions defined on an open subset Ω of \mathbb{R}^d using the standard multi-dimensional notation in \mathbb{R}^d . The spaces of test functions and Roumieu ultradistributions are defined by a given weight sequence $(M_p) = (M_p)_{p \in \mathbb{N}_0}$ of positive numbers. Usually the following conditions are imposed on the sequence (M_p) :

(M.1)
$$M_p^2 \leqslant M_{p-1}M_{p+1}, \quad p \in \mathbb{N};$$

(M.2)
$$M_p \leqslant AH^p M_q M_{p-q}, \quad p, q \in \mathbb{N}_0, q \leqslant p;$$

(M.2')
$$M_p \leqslant AH^p M_{p-1}, \quad p \in \mathbb{N}, \ q \leqslant p;$$

(M.3)
$$\sum_{p=q+1}^{\infty} M_{p-1} M_p^{-1} \leqslant Aq M_q M_p^{-1}, \quad q \in \mathbb{N};$$

(M.3')
$$\sum_{p=1}^{\infty} M_{p-1} M_p^{-1} < \infty,$$

where the inequality in (M.3) is assumed to be satisfied for a certain constant A > 0and the inequalities in (M.2) and in (M.2') for some constants A > 0 and H > 0.

In the sequel, we will assume some of the above conditions. Clearly, we can assume and we will assume that the constant H in condition (M.2') satisfies $H \ge 1$.

After P-P [4], denote by \mathfrak{R} the class of numerical sequences $(r_p) = (r_p)_{p \in \mathbb{N}_0}$ (with $r_0 = 1$) which monotonously increase to infinity. We call the sequence $(R_p) = (R_p)_{p \in \mathbb{N}_0}$, where $R_p := \prod_{i=0}^p r_i$ for $p \in \mathbb{N}_0$ (clearly $R_0 = 1$), the product sequence corresponding to $(r_p) \in \mathfrak{R}$.

Lemma 1 (H. Komatsu 1982)

Let $(a_k)_{k \in \mathbb{N}_0}$ be a sequence of nonnegative numbers. Then

$$\sup_{k \in \mathbb{N}_0} \frac{a_k}{h^k} < \infty \text{ for some } h > 0$$

if and only if

$$\sup_{k \in \mathbb{N}_0} \frac{a_k}{R_k} < \infty \text{ for all } (r_k) \in \mathfrak{R},$$

where (R_k) is the product sequence corresponding to (r_p) .

For a given complex-valued function φ on an open set $\Omega \subset \mathbb{R}^d$ and a compact set $K \subset \Omega$ denote

$$\|\varphi\|_K := \sup_{x \in K} |\varphi(x)|; \qquad \|\varphi\|_{\Omega} := \sup_{x \in \Omega} |\varphi(x)|.$$

For a given sequence (M_p) , a regular compact set K in \mathbb{R}^d and h > 0 the symbol $\mathcal{E}_{K_{h}}^{\{M_{p}\}}$ means the l.c.s. of all \mathcal{C}^{∞} -functions φ on Ω s. t.

$$\|\varphi\|_{K,h} := \sup_{k \in \mathbb{N}_0^d} \frac{\|D^k \varphi\|_K}{h^{|k|} M_k} < \infty, \tag{1}$$

with the topology defined by the semi-norm $\|\cdot\|_{K,h}$ given above. The Banach space of all \mathcal{C}^{∞} -functions φ satisfying (1) and having supports contained in K, with the topology of the norm $\|\cdot\|_{K,h}$, is denoted by $\mathcal{D}_{K,h}^{\{M_p\}}$.

For a fixed sequence (M_p) and an open set $\Omega \subseteq \mathbb{R}^d$, we consider the following locally convex spaces of ultradifferentiable functions on Ω :

$$\mathcal{D}_{K}^{\{M_{p}\}} := \lim_{h \to \infty} \mathcal{D}_{K,h}^{\{M_{p}\}}; \qquad \mathcal{D}^{\{M_{p}\}}(\Omega) := \lim_{K \in \Omega} \mathcal{D}_{K}^{\{M_{p}\}};$$
$$\mathcal{E}^{\{M_{p}\}}(\Omega) := \lim_{L \to \infty} \lim_{K \to \infty} \mathcal{E}_{K,h}^{\{M_{p}\}}.$$

and

$${}^{\{M_p\}}(\Omega) := \varprojlim_{K \Subset \Omega} \lim_{h \to \infty} \mathcal{E}_{K,h}^{\{M_p\}}$$

Preliminaries Roumieu Ultradistributions Stucture Theorems Convolution Compatibility conditions on supp

On the other hand, for a given regular compact set $K \subset \Omega$ and given sequences (M_p) and $(r_p) \in \mathfrak{R}$, we denote by $\mathcal{D}_{K,(r_p)}^{\{M_p\}}$, the Banach space of all \mathcal{C}^{∞} -functions φ on Ω having supports contained in K such that

$$\|\varphi\|_{K,(r_p)} := \sup_{k \in \mathbb{N}_0^d} \frac{\|D^k \varphi\|_K}{R_{|k|} M_k} < \infty$$
⁽²⁾

with the norm $\|\cdot\|_{K,(r_p)}$ defined above. Then we have

$$\lim_{(r_p)\in\mathfrak{R}} \mathcal{D}_{K,(r_p)}^{\{M_p\}} = \mathcal{D}_K^{\{M_p\}}.$$

For given (M_p) and $(r_p) \in \mathfrak{R}$, we consider the Banach space $\mathcal{D}_{L^{\infty},(r_p)}^{\{M_p\}}(\Omega)$ of all \mathcal{C}^{∞} -functions φ on Ω s. t.

$$\|\varphi\|_{(r_p)} := \sup_{k \in \mathbb{N}_0^d} \frac{\|D^k \varphi\|_{\Omega}}{R_{|k|} M_k} < \infty,$$
(3)

with the norm $\|\cdot\|_{(r_p)}$ and denote

$$\mathcal{D}_{L^{\infty}}^{\{M_p\}}(\Omega) := \lim_{(r_p) \in \mathfrak{R}} \mathcal{D}_{L^{\infty},(r_p)}^{\{M_p\}}(\Omega).$$

The completion of $\mathcal{D}^{\{M_p\}}(\Omega)$ in $\mathcal{D}_{L^{\infty}}^{\{M_p\}}(\Omega)$ is denoted by $\dot{\mathcal{B}}^{\{M_p\}}(\Omega)$.

Definition 1

The strong dual of $\mathcal{D}^{\{M_p\}}(\Omega)$, denoted by $\mathcal{D}'^{\{M_p\}}(\Omega)$, is called the space of Roumieu ultradistributions.

The strong dual of $\dot{\mathcal{B}}^{\{M_p\}}(\Omega)$, denoted by $\mathcal{D}'_{L^1}^{\{M_p\}}(\Omega)$, is called the space of integrable Roumieu ultradistributions.

For given a weight sequence (M_p) and $(r_p) \in \mathfrak{R}$, we consider the corresponding weight sequence (N_p) , given by $N_p := M_p R_p$ for $p \in \mathbb{N}_0$ and define the respective associated functions by the formulas:

$$M(\rho) := \sup\{\log_+ \frac{\rho^p}{M_p} : p \in \mathbb{N}_0\}, \quad \rho > 0, \tag{4}$$

$$N(\rho) = N_{(r_p)}(\rho) := \sup\{\log_+ \frac{\rho^p}{N_p} : p \in \mathbb{N}_0\}, \quad \rho > 0.$$
 (5)

The completion of $\mathcal{D}^{\{M_p\}}(\Omega)$ in $\mathcal{D}_{L^{\infty}}^{\{M_p\}}(\Omega)$ is denoted by $\dot{\mathcal{B}}^{\{M_p\}}(\Omega)$.

Definition 1

The strong dual of $\mathcal{D}^{\{M_p\}}(\Omega)$, denoted by $\mathcal{D}'^{\{M_p\}}(\Omega)$, is called the space of Roumieu ultradistributions.

The strong dual of $\dot{\mathcal{B}}^{\{M_p\}}(\Omega)$, denoted by $\mathcal{D}'_{L^1}^{\{M_p\}}(\Omega)$, is called the space of integrable Roumieu ultradistributions.

For given a weight sequence (M_p) and $(r_p) \in \mathfrak{R}$, we consider the corresponding weight sequence (N_p) , given by $N_p := M_p R_p$ for $p \in \mathbb{N}_0$ and define the respective associated functions by the formulas:

$$M(\rho) := \sup\{\log_+ \frac{\rho^p}{M_p} \colon p \in \mathbb{N}_0\}, \quad \rho > 0, \tag{4}$$

$$N(\rho) = N_{(r_p)}(\rho) := \sup\{\log_+ \frac{\rho^p}{N_p} : p \in \mathbb{N}_0\}, \quad \rho > 0.$$
 (5)

For given (M_p) and $(r_p), (u_p) \in \mathfrak{R}$, we consider the Banach space

$$\mathcal{S}^{M_p}_{(r_p),(u_p),d} := \{ \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d) \colon \ \|\varphi\|_{(r_p),(u_p)} < \infty \},$$

where

$$\|\varphi\|_{(r_p),(u_p)} := \sup_{k \in \mathbb{N}_0^d} \frac{\|D^k \varphi e^{N_{(u_p)}(|\cdot|)}\|_{\infty}}{R_{|k|} M_k}$$

Let (M_p) satisfy conditions (M.1), (M.2') and (M.3'). After C-K-P [1], we define the space of ultradifferentiable functions $S_d^{\{M_p\}}$ by

$$\mathcal{S}_{d}^{\{M_{p}\}} := \lim_{(r_{p}), (u_{p}) \in \mathfrak{R}} \mathcal{S}_{(r_{p}), (u_{p}), d}^{M_{p}}.$$
(6)

Definition 2

The strong dual $S'_{d}^{\{M_{p}\}}$ of the space $S_{d}^{\{M_{p}\}}$ is called the space of tempered Roumieu ultradistributions.

The space $S_d^{\{M_p\}}$ is a (DFS)-space and $S'_d^{\{M_p\}}$ is an (FS)-space. If (M_p) satisfies condition (M.2), then both spaces are nuclear.

For given (M_p) and $(r_p), (u_p) \in \mathfrak{R}$, we consider the Banach space

$$\mathcal{S}^{M_p}_{(r_p),(u_p),d} := \{ \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d) \colon \ \|\varphi\|_{(r_p),(u_p)} < \infty \},$$

where

$$\|\varphi\|_{(r_p),(u_p)} := \sup_{k \in \mathbb{N}_0^d} \frac{\|D^k \varphi e^{N_{(u_p)}(|\cdot|)}\|_{\infty}}{R_{|k|} M_k}$$

Let (M_p) satisfy conditions (M.1), (M.2') and (M.3'). After C-K-P [1], we define the space of ultradifferentiable functions $S_d^{\{M_p\}}$ by

$$\mathcal{S}_{d}^{\{M_{p}\}} := \lim_{(r_{p}), (u_{p}) \in \mathfrak{R}} \mathcal{S}_{(r_{p}), (u_{p}), d}^{M_{p}}.$$
(6)

Definition 2

The strong dual $S'_{d}^{\{M_p\}}$ of the space $S_{d}^{\{M_p\}}$ is called the space of tempered Roumieu ultradistributions.

The space $S_d^{\{M_p\}}$ is a (DFS)-space and $S'_d^{\{M_p\}}$ is an (FS)-space. If (M_p) satisfies condition (M.2), then both spaces are nuclear.

Suppose that (M_p) satisfies (M.1) and J is an arbitrary set of indices.

Theorem 1 (M. Valdivia 2009)

For each j in a set J, let $\{s_{\alpha,j}: \alpha \in \mathbb{N}_0^d\}$ be a family of Radon measures on an open $\Omega \subseteq \mathbb{R}^d$. If for every compact set $K \subset \Omega$ there is an $(r_p) \in \mathfrak{R}$ s. t.

$$\sup_{\alpha \in \mathbb{N}_0^d, j \in J} R_{|\alpha|} M_{\alpha} \| s_{\alpha,j} \|_{\mathcal{C}'(K)} < \infty, \tag{7}$$

then there is a bounded subset $\{S_j: j \in J\}$ in $\mathcal{D}'^{\{M_p\}}(\Omega)$ such that

$$\langle \varphi, S_j \rangle = \sum_{|\alpha|=0}^{\infty} \langle D^{\alpha} \varphi, s_{\alpha,j} \rangle, \qquad \varphi \in \mathcal{D}^{\{M_p\}}(\Omega).$$
 (8)

Moreover the series in (8) converges absolutely and uniformly as j varies in J and φ varies in any given bounded subset of $\mathcal{D}^{\{M_p\}}(\Omega)$.

Conversely, if $\{S_j: j \in J\}$ is a bounded set in $\mathcal{D}'^{\{M_p\}}(\Omega)$, then for every $j \in J$ there is a family $(s_{\alpha,j}: \alpha \in \mathbb{N}_0^d)$ of Radon measures in Ω satisfying condition (7) for every compact $K \subset \Omega$ and some $(r_p) \in \mathfrak{R}$. Moreover the series (8) converges absolutely and uniformly as j varies in J and φ varies in any given bounded subset of $\mathcal{D}^{\{M_p\}}(\Omega)$.

Proposition 1

$$S_{|G} = \sum_{|\alpha|=0}^{\infty} D^{\alpha} s_{\alpha}, \qquad S_{n|G} = \sum_{|\alpha|=0}^{\infty} D^{\alpha} s_{n\alpha}, \tag{9}$$

and the equalities

$$||s_{\alpha}||_{\mathcal{C}'(K)} \leq B(R_{|\alpha|}M_{\alpha})^{-1}, \qquad ||s_{n\alpha}||_{\mathcal{C}'(K)} \leq B(R_{|\alpha|}M_{\alpha})^{-1}$$
 (10)

hold for every compact set $K \subset G$ and arbitrary $\alpha \in \mathbb{N}_0^d$ and $n \in \mathbb{N}$. Moreover,

$$\lim_{n \to \infty} \|s_{n\alpha} - s_{\alpha}\|_{\mathcal{C}'(K)} = 0 \quad \text{for every } \alpha \in \mathbb{N}_0^d.$$

Theorem 2 (S. Pilipović 1996)

Let (M_p) satisfy (M.1) and (M.2'). Assume $S \in \mathcal{D}'_d^{\{M_p\}}$. Then the Roumieu ultradistribution S is tempered, i.e. $S \in \mathcal{S}'_d^{\{M_p\}}$, if and only if S is of the following form

$$S = \sum_{|\alpha|, |\beta| \in \mathbb{N}_0} D^{\alpha}(\langle \cdot \rangle^{\beta} F_{\alpha, \beta})$$
(11)

with the series convergent in $S_d^{\langle M_p \rangle}$, where the symbol $\langle \cdot \rangle^{\beta}$ means the function defined by

$$\langle x \rangle^{\beta} := \prod_{j=1}^{d} \left(1 + x_j^2 \right)^{\beta_j/2}, \quad x \in \mathbb{R}^d, \ \beta \in \mathbb{N}_0^d$$

and $(F_{\alpha,\beta})_{\alpha,\beta\in\mathbb{N}_0^d}$ is a matrix of elements of L^{∞} for which there exists a sequence $(r_p)\in\mathfrak{R}$ such that

$$\sup_{\alpha,\beta\in\mathbb{N}_0^d,x\in\mathbb{R}^d} R_{|\alpha+\beta|} M_{\alpha}M_{\beta}|F_{\alpha,\beta}(x)| < \infty.$$

Proposition 2

Let $S_n \in \mathcal{S}_d^{\prime\{M_p\}}$ for $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Suppose that $S_n \to S_0$ in $\mathcal{S}_d^{\prime\{M_p\}}$ as $n \to \infty$. Then for each bounded open set $G \in \mathbb{R}^d$, there exist functions $F_{\alpha,n} \in L^{\infty}(G)$ for $n \in \mathbb{N}_0$ and $\alpha \in \mathbb{N}_0^d$, constants $\lambda, B > 0$ and a sequence $(r_p) \in \mathfrak{R}$ such that

$$S_{n|G} = \sum_{|\alpha|=0}^{\infty} D^{\alpha}(e_{\lambda}^{M}F_{\alpha,n}) \qquad (n \in \mathbb{N}_{0}),$$

$$||F_{\alpha,n}||_{\infty} \leqslant B(R_{|\alpha|}M_{\alpha})^{-1}$$
 on G $(\alpha \in \mathbb{N}_0^d, n \in \mathbb{N}_0)$

and

W

$$\lim_{n \to \infty} \|F_{\alpha,n} - F_{\alpha,0}\|_{\infty} = 0 \quad \text{on } G \qquad (\alpha \in \mathbb{N}_0^d)$$

where $e_{\lambda}^M(x) := e^{M(\lambda|x|)}$ for $x \in \mathbb{R}^d$.

Definition 3

By an \mathfrak{R} -approximate unit we mean a sequence (Π_n) of ultradifferentiable functions $\Pi_n \in \mathcal{D}_d^{\{M_p\}}$ which converges to 1 in $\mathcal{E}_d^{\{M_p\}}$ such that, for every sequence $(r_p) \in \mathfrak{R}$, we have

$$\sup_{n \in \mathbb{N}} \|\Pi_n\|_{(r_p)} = \sup_{n \in \mathbb{N}} \sup_{k \in \mathbb{N}_0^d} (R_{|k|} M_k)^{-1} \|D^k \Pi_n\|_{\infty} < \infty,$$
(12)

where (R_p) is the product sequence corresponding to (r_p) .

Definition 4

By a special \Re -approximate unit we mean an \Re -approximate unit (Π_n) such that for every compact set $K \subset \mathbb{R}^d$ there exists an index $n_0 \in \mathbb{N}$ such that $\Pi_n(x) = 1$ for all $n \ge n_0$ and $x \in K$.

We denote the class of all \mathfrak{R} -approximate units on \mathbb{R}^d by $\mathbb{U}_d^{\{M_p\}}$ and the class of all special \mathfrak{R} -approximate units on \mathbb{R}^d by $\overline{\mathbb{U}}_d^{\{M_p\}}$.

Definition 5

We say that $S, T \in \mathcal{D}'_d^{\{M_p\}}$ are convolvable with respect to 1° (V) and 2° (\overline{V}), whenever

1° the sequence
$$(\langle S \otimes T, \Pi_n \varphi^{\triangle} \rangle_{2d})$$
 is Cauchy for all $(\Pi_n) \in \mathbb{U}_{2d}^{\{M_p\}}$
for every $\varphi \in \mathcal{D}_d^{\{M_p\}}$ and
2° the sequence $(\langle S \otimes T, \Pi_n \varphi^{\triangle} \rangle_{2d})$ is Cauchy for all $(\Pi_n) \in \overline{\mathbb{U}}_{2d}^{\{M_p\}}$
for every $\varphi \in \mathcal{D}_d^{\{M_p\}}$, respectively.

One can prove that both types of convolvability with respect to (V) and (\overline{V}) defined in 1° and 2° are equivalent.

Definition 6

We define the convolution in $\mathcal{D}_d^{{}^{{M_p}}}$ of two convolvable Roumieu ultradistributions $S, T \in \mathcal{D}'_d^{{M_p}}$ by

$$\langle S * T, \varphi \rangle_d = \lim_{n \to \infty} \langle S \otimes T, \Pi_n \varphi^{\triangle} \rangle_{2d}, \qquad \varphi \in \mathcal{D}_d^{\{M_p\}}, \quad (\Pi_n) \in \overline{\mathbb{U}}_{2d}^{\{M_p\}}.$$
(13)

Definition 7

We say that $S, T \in S'^{\{M_p\}}_d$ are t-convolvable with respect to $1^{\circ\circ}(\mathbf{V})$; $2^{\circ\circ}(\overline{\mathbf{V}})$, whenever

1^{°°}
$$(\langle S \otimes T, \Pi_n \varphi^{\bigtriangleup} \rangle_{2d})$$
 is a C. s. for all $(\Pi_n) \in \mathbb{U}_{2d}^{\{M_p\}}, \varphi \in \mathcal{S}_d^{\{M_p\}};$
2^{°°} $(\langle S \otimes T, \Pi_n \varphi^{\bigtriangleup} \rangle_{2d})$ is a C. s. for all $(\Pi_n) \in \overline{\mathbb{U}}_{2d}^{\{M_p\}}, \varphi \in \mathcal{S}_d^{\{M_p\}},$

respectively.

If $S, T \in \mathcal{S}_d^{\prime\{M_p\}}$ are t-convolvable with respect to $1^{\circ\circ}(V_t)$; $2^{\circ\circ}(\overline{V}_t)$, respectively, then the t-convolution of S and T in $\mathcal{S}_d^{\prime\{M_p\}}$ is defined by

$$1^{\circ\circ} \langle S *_{t} T, \varphi \rangle_{d} := \lim_{n \to \infty} \langle S \otimes T, \Pi_{n} \varphi^{\bigtriangleup} \rangle_{2d}, \quad \varphi \in \mathcal{S}_{d}^{\{M_{p}\}}, \ (\Pi_{n}) \in \mathbb{U}_{2d}^{\{M_{p}\}};$$

$$2^{\circ\circ} \langle S\overline{*}_{t}T, \varphi \rangle_{d} := \lim_{n \to \infty} \langle S \otimes T, \Pi_{n} \varphi^{\bigtriangleup} \rangle_{2d}, \quad \varphi \in \mathcal{S}_{d}^{\{M_{p}\}}, \ (\Pi_{n}) \in \overline{\mathbb{U}}_{2d}^{\{M_{p}\}}$$

respectively.

The following definition of the t-convolution of tempered Roumieu ultradistributions is an analogue of one of the known Schwartz definitions of the convolution of distributions:

Definition 8

If $S, T \in \mathcal{S}_d^{\prime \{M_p\}}$ satisfy the condition:

$$(\star) \qquad (S \otimes T) \, \varphi^{\triangle} \in \mathcal{D}_{L^1, 2d}^{\prime \{M_p\}}, \qquad \qquad \varphi \in \mathcal{S}_d^{\{M_p\}}$$

then we say that tempered Roumieu ultradistributions S, T are convolvable in the sense of (\star) and the convolution $S \star_t T$ is defined by the formula

$$\langle S \star_t T, \varphi \rangle_d := \langle (S \otimes T) \varphi^{\triangle}, 1 \rangle_{2d}, \qquad \varphi \in \mathcal{S}_d^{\{M_p\}}.$$
(14)

It can be proved that both the sequential versions of the t-convolution of two tempered Roumieu ultradistributions S and T given in Definition 7 are equivalent to Definition 8 and, moreover,

$$S *_t T = S \overline{*}_t T = S \star_t T.$$

According to this, we will use the common notation $S *_t T$ for the t-convolution of tempered Roumieu ultradistributions S and T.

The following definition of the t-convolution of tempered Roumieu ultradistributions is an analogue of one of the known Schwartz definitions of the convolution of distributions:

Definition 8

If $S, T \in \mathcal{S}_d^{\prime \{M_p\}}$ satisfy the condition:

$$(\star) \qquad (S \otimes T) \, \varphi^{\triangle} \in \mathcal{D}_{L^1, 2d}^{\prime \{M_p\}}, \qquad \qquad \varphi \in \mathcal{S}_d^{\{M_p\}}$$

then we say that tempered Roumieu ultradistributions S, T are convolvable in the sense of (\star) and the convolution $S \star_t T$ is defined by the formula

$$\langle S \star_t T, \varphi \rangle_d := \langle (S \otimes T) \varphi^{\triangle}, 1 \rangle_{2d}, \qquad \varphi \in \mathcal{S}_d^{\{M_p\}}.$$
(14)

It can be proved that both the sequential versions of the t-convolution of two tempered Roumieu ultradistributions S and T given in Definition 7 are equivalent to Definition 8 and, moreover,

$$S *_t T = S \overline{*}_t T = S \star_t T.$$

According to this, we will use the common notation $S*_tT$ for the t-convolution of tempered Roumieu ultradistributions S and T.

Proposition 3

Let $X, Y \subseteq \mathbb{R}^d$ be arbitrary sets. The following conditions are equivalent:

(C1.) the set $(X \times Y) \cap K^{\Delta}$ is bounded in \mathbb{R}^{2d} for every K bounded in \mathbb{R}^d , where $K^{\Delta} := \{(x, y) \in \mathbb{R}^{2d} : x + y \in K\};$

(C2.) for every R > 0 the set

$$W_R := \{(x, y) : x \in X, y \in Y, |x + y| \leq R\}$$

is bounded in \mathbb{R}^{2d} ;

(C3.) the following implication holds:

$$\lim_{n \to \infty} |x_n| + |y_n| = \infty \quad \Rightarrow \quad \lim_{n \to \infty} |x_n + y_n| = \infty,$$

whenever $x_n \in X$ and $y_n \in Y$ for $n \in \mathbb{N}$.

Definition 9

The sets $X, Y \subseteq \mathbb{R}^d$ are called compatible if any of the three equivalent conditions (C1), (C2), (C3) is satisfied.

Analogously to the case of Beurling tempered ultradistributions, we define the notion of M-compatibility of subsets of \mathbb{R}^d , applying the the associated function M defined in (4).

Definition 10		
The sets $X, Y \subseteq \mathbb{R}^d$ are called <i>M</i> -compatible if		
$M(x) + M(y) \leqslant M(b x+y) + b,$	$x\in X,\;y\in Y$	(15)
for some $b \ge 1$.		

Theorem 3

Suppose that (M_p) satisfies conditions (M.1), (M.2) and (M.3').

If $S, T \in \mathcal{D}_d^{\prime\{M_p\}}(\mathcal{S}_d^{\prime\{M_p\}})$ are (tempered) ultradistributions whose supports $\Sigma = \text{supp } S$ and $\Theta = \text{supp } T$ are compatible (*M*-compatible), then the convolution $S * T \ (S *_t T)$ exists in $\mathcal{D}_d^{\prime\{M_p\}} \ (\mathcal{S}_d^{\prime\{M_p\}})$.

Analogously to the case of Beurling tempered ultradistributions, we define the notion of M-compatibility of subsets of \mathbb{R}^d , applying the the associated function M defined in (4).

Definition 10		
The sets $X, Y \subseteq \mathbb{R}^d$ are called <i>M</i> -compatible if		
$M(x) + M(y) \leqslant M(b x+y) + b,$	$x\in X,\;y\in Y$	(15)
for some $b \ge 1$.		

Theorem 3

Suppose that (M_p) satisfies conditions (M.1), (M.2) and (M.3').

If $S, T \in \mathcal{D}'_d^{\{M_p\}}(\mathcal{S}'_d^{\{M_p\}})$ are (tempered) ultradistributions whose supports $\Sigma = \text{supp } S$ and $\Theta = \text{supp } T$ are compatible (*M*-compatible), then the convolution $S * T \ (S *_t T)$ exists in $\mathcal{D}'_d^{\{M_p\}} \ (\mathcal{S}'_d^{\{M_p\}})$.

Inverse results

That the conditions of compatibility and M-compatibility cannot be weakened in the above existence theorem the following inverse results show:

Theorem 4

Let $\Sigma, \Theta \subseteq \mathbb{R}^d$. Assume that the convolution S * T exists in $\mathcal{D}_d^{{}^{\{M_p\}}}$ for each pair $S, T \in \mathcal{D}_d^{{}^{\{M_p\}}}$ of Roumieu ultradistributions with supports contained in Σ and Θ , respectively. Then sets Σ and Θ are compatible.

Theorem 4'

Let $\Sigma, \Theta \subseteq \mathbb{R}^d$. Assume that the convolution $S *_t T$ exists in $\mathcal{S}'^{\{M_p\}}_d$ for each pair $S, T \in \mathcal{S}'^{\{M_p\}}_d$ of Roumieu tempered ultradistributions with supports contained in Σ and Θ , respectively. Then sets Σ and Θ are *M*-compatible.

Sequential continuity of convolution

Assume that (M_p) satisfies conditions (M.1), (M.2) and (M.3').

Theorem 5

If for ultradistributions $S_n, T_n \in \mathcal{D}_d^{\prime\{M_p\}}$ with supp $S_n \subset \Sigma$, supp $T_n \subset \Theta$ where Σ and Θ are compatible sets in \mathbb{R}^d , the convergence $S_n \to S$, $T_n \to T$ holds in $\mathcal{D}_d^{\prime\{M_p\}}$, then $S_n * T_n \to S * T$ in $\mathcal{D}_d^{\prime\{M_p\}}$ as $n \to \infty$.

Theorem 5'

Suppose that supports of tempered ultradistributions $S_n, T_n \in \mathcal{S}_d^{{}^{\{M_p\}}}$ satisfy the inclusions supp $S_n \subset \Sigma$ and supp $T_n \subset \Theta$, where the sets Σ and Θ are M-compatible.

If the convergence $S_n \to S$, $T_n \to T$ holds in $\mathcal{S}_d^{\prime\{M_p\}}$, then $S_n *_t T_n \to S *_t T$ in $\mathcal{S}_d^{\prime\{M_p\}}$ as $n \to \infty$.

Examples

Using the parametric equations of the logarithmic spiral:

$$x(\theta) = ae^{b\theta}\cos\theta \quad y(\theta) = ae^{b\theta}\sin\theta$$

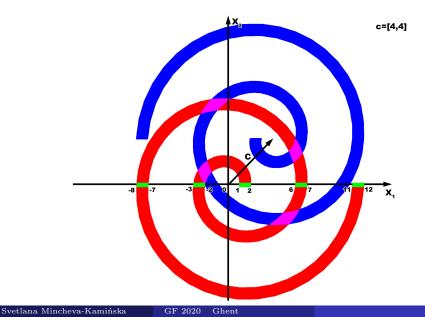
for $a \in \mathbb{R}$ and $b, \theta > 0$, we construct suitable sets $\Sigma, \Theta \subset \mathbb{R}^2$.

One may verify that the sequences $(P_n)_{n\in\mathbb{N}}$ and $(Q_n)_{n\in\mathbb{N}}$ of points $P_n := (x'_n, y'_n) \in \Sigma$ and $Q_n := (x''_n, y''_n) \in \Theta$ satisfy condition (C3.), i.e.

$$\lim_{n \to \infty} \|P_n\|_2 + \|Q_n\|_2 = \infty \implies \lim_{n \to \infty} \|P_n + Q_n\|_2 = \infty.$$

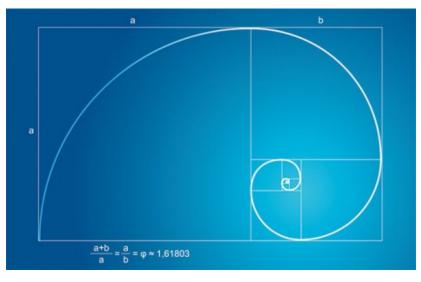
Then every two Roumieu ultradistributions $S, T \in \mathcal{D}_2^{\prime\{M_p\}}$ with supports supp S and supp T contained in Σ and Θ , respectively, are convolvable.

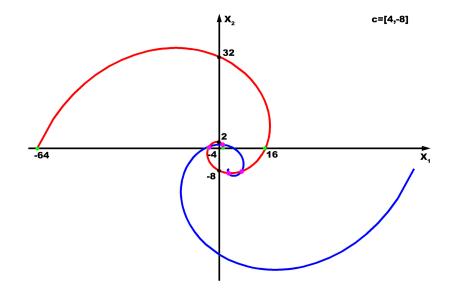
Logarithmic spiral



Fibonacci spiral

Parametric equation $r(\theta) = ae^{b\theta}$ with a, b > 0.





References

- **R**. D. Carmichael, A. Kamiński, S. Pilipović, Boundary Values and Convolution in Ultradistribution Spaces, World Scientific, (2007).
- Komatsu H., Ultradistributions, III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. I A Math., 29, 653-717, (1982).
- Mincheva-Kaminska, S. A sequential approach to the convolution of Roumieu ultradistributions, Adv. Oper. Theory, accepted.
- Pilipović, S., Prangoski, B., On the convolution of Roumieu ultradistributions through the ε tensor product, Monatsh. Math., 173, 83-105 (2014).
- Pilipović, S., Prangoski, B., Vindas, J., On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution, J. Math.PuresAppl., 116, 174-210 (2018).
- Valdivia M., On the structure of ceratain ultradistributions, Rev. R. Acad. Cien. Serie A Mat., 103(1), 17-48 (2009).

Preliminaries Roumieu Ultradistributions Stucture Theorems Convolution Compatibility conditions on supp

Thanks

THANK YOU FOR YOUR ATTENTION!