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Fourier transform in the Colombeau setting

Definition
Let u = [uε] ∈ Gs(Ω) be a CGF and K b Ω. Then�

K u (x) dx :=
[�

K uε (x) dx
]
∈ R̃. Similarly, for

�
Ω u if u is compactly

supported.

On the other hand, to define the Fourier transform, we have to integrate
tempered CGF on the entire Rn. This is accomplished by multiplying the
generalized function by a so-called damping measure.

1 This notion of Fourier transform shares several properties with the
classical one, but it lacks e.g. the Fourier inversion theorem, which
holds only at the level of equality in the sense of generalized tempered
distributions.

2 We can say, the use of the multiplicative damping measure introduces
a perturbation of infinitesimal frequencies that inhibit several results.
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Hyperfinite Fourier transform (HFT)
Definition
Let k ∈ ρR̃ be a positive infinite number and let K := [−k, k]n ⊆ ρR̃n be a
functionally compact set. We define the n-dimensional hyperfinite Fourier
transform of the GSF f ∈ ρGC∞(K , C̃n) as follows:

Fk (f ) (ω) :=
�

K

f (x) e−ixω dx =
k�

−k

dx1 . . .

k�

−k

f (x1 . . . xn) e−ix ·ω dxn,

where the product x ·ω on ρR̃n denotes the usual dot product
x ·ω =

∑n
j=1 (xjωj).

1 For any representatives (kε) of k we have Fk (f ) (ω) :=�
K f (x) e−ixω dx =

[� kε
−kε dx1 . . .

� kε
−kε fε (x1 . . . xn) e−ix ·ωε dxn

]
∈ ρR̃.

2 Fk : ρGC∞
(
K , C̃

)
−→ ρGC∞

(
K , ρR̃n

)
.
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Convolution on ρR̃n

We define the k-convolution on ρR̃n by

Definition
Assume that f , g ∈ ρGC∞

(
ρR̃n

)
with

∀x ∈ [−∞,−k]n ∪ [k,∞]n : f (x) = g (x) = 0. Then ∀x , y ∈ ρR̃n,
K := [−k, k]n ⊆ ρR̃n, ∃r ∈ ρR̃>0 : k ≥ dρ−r ,

(f ∗k g) (x) :=
�

ρR̃n

f (y) g (x − y) dy =
k�

−k

dy1 . . .

k�

−k

f (y) g (x − y) dyn.

For this type convolution we have the usual commutative, associative and
distributive properties. Moreover, for f ∈ ρGC∞

(
ρR̃, ρR̃

)
such that

∀x ∈ ρR̃∃r ∈ ρR̃>0∃c ∈ ρR̃∀y ∈ BEr (x)∀j ∈ N :
∣∣d j f (y)

∣∣ ≤ c we have
f ∗ δ = f , where δ is the Dirac delta distribution.
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Elementary properties of the HFT 1
Definitions
Let f ∈ ρGC∞

(
K , C̃n

)
, x ∈ ρR̃n be a measurable generalized smooth

function, then

1 Translation: (s ⊕ f ) (x) := f (x − s), s = (s1, s2 . . . sn) ∈ ρR̃n.
2 Dilation: δa (f ) (x) := f (ax), a ∈ ρR̃>0.
3 (r � f ) (x) := 1

rn f
( x

r
)
, r ∈ ρR̃>0 and the reflection of f is defined by

f̃ (x) := f (−x) .

Theorem
Let f ∈ ρGC∞

(
K , C̃n

)
, x ∈ ρR̃n be a GSF, then we have the following

results
1 Fk (f + g) = Fk (f ) + Fk (g).
2 Let b ∈ C̃, then Fk (bf ) = bFk (f ).
3 Fk

(
f̃
)

= F̃k (f ).
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Elementary properties of the HFT 2

Theorem
1 Fk (δt (f )) = t �Ftk (f ), t > 0.

2 Fk (s ⊕ f ) = e−is(−)Fk+s (f ), ∀s finite.
3 Fk

(
eis(−)f

)
= s ⊕Fk (f ).

4 Let k ∈ ρR̃n. Then if ∀x ∈ K,
f (x1, . . . xj−1, k, xj+1) = f (x1, . . . xj−1,−k, xj+1) = 0, we have

Fk (∂j f ) (ω) = iωjFk (f ) (ω) .

5 ∂
∂ωj
Fk (f (x)) (ω) = −iFk (xj f (x)) (ω).

6 Fk (f ∗k g) = Fk (f )Fk (g).
7 Fk (s � g (x)) (ω) = Fsk

(
g
( t

s
))

(ω).
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The inverse HFT and the inversion theorem

Definition
Let f ∈ ρGC∞

(
K , ρR̃n

)
, we define F−1

k (f ) (x) =
(

1
2π

)n �
K f (ω) eix ·ω dω

for all ω ∈ ρR̃. This operation is called inverse hyperfinite Fourier
transform.

We can in fact prove that inverse HFT shares the same properties as the
HFT does. In the next theorem we prove that one is the inverse operation
of the other.

Theorem
Let f , g, h ∈ ρGC∞

(
K , ρR̃n

)
we have that

1
�

K Fk (f ) g (x) =
�

K f (x)Fk (g).
2 Hyperfinite Fourier inversion:
F−1

k [Fk (f )] = f = Fk
[
F−1

k (f )
]

=
(

1
2π

)n �
K Fk (f ) (ω) eixω dω.
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Examples of HFT

Examples
1 If δ (x) = δ (x1) δ (x2) . . . δ (xn) is n-dimensional Dirac delta

distribution with x = (x1, x2, . . . , xn) ∈ ρR̃n and k ≥ dρ−a, ∀a ∈ ρR̃
then Fk (δ) (ω) = 1 if ∀ω finite and Fk (δ) (ω) = 0 if |ω| ≥ k.

2 Let f (x) = e−
|x|2

2 ∈ ρGC∞
(
ρR̃n

)
, x ∈ ρR̃n. Then

Fk (f ) (ω) = (2π)
n
2 e−

|ω|2
2 .

3 If f (x) = e−a|x | (with x ∈ ρR̃) then
F (f ) (ω) = 1−e(a−iω)k

a−iω − e−(a+iω)k−1
a+iω .

4 If f (x) = ex where |x | ≤ k and k = − log (dρ) then
Fk (f ) (ω) = ek(1−iω)−e−k(1−iω)

1−iω = dρ(iω−1)−dρ(1−iω)

1−iω .
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Embedding of tempered distributions

Theorem
Let T ∈ S ′ (Ω) and µ be a Colombeau mollier. Then the map

ιbΩ : T ∈ S ′ (Ω) 7→
[
T ∗

(
b−1
ε � µ

)
(−)

]
∈ ρGC∞

(
Ω̃c , C̃

)
where b ≥ dρ−a, a ∈ ρR̃>0 is a linear embedding that commutes with
partial derivatives and ∀f ∈ S (Rn), Fk

(
ιbΩ (f )

)
= ιbΩ (F (f )).

Our next problem is to associate the Fourier transform of a tempered
distribution and its HFT. Our conjecture is

Conjecture: Let Ω ⊆ Rn be an open set and T ∈ S ′ (Ω). Then if ιbΩ (T ) is
an embedding of T we have that

Fk
(
ιbΩ (T ) ·1

)
(ω) =

(
ιbΩ

(
T̂
))

(ω) ,∀ω ∈ Ω̃c , 1 := Fk (δ) .
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Examples of HFT applied in ODE

Examples
1 n-th order homogeneous generalized ODE

any (n) + . . . a1y (1) + a0y = 0, y ∈ ρGC∞(K , ρR̃), an ∈ ρR̃∗, n ∈ N≥1,
y (k) = y (−k) = 0, k ∈ ρR̃

2 n-th order non-homogeneous generalized ODE
any (n) + . . . a1y (1) + a0y = h (t) , y , h ∈ ρGC∞(K , ρR̃), an ∈ ρR̃∗, n ∈
N≥1, y (k) = y (−k) = 0, k ∈ ρR̃

3 Generalized ODE −u′′ + u = f (x) , u, f ∈ ρGC∞([−k, k] , ρR̃), u (k) =
u (−k) = 0, k ∈ ρR̃.

4 Generalized Airy equation
u′′ − xu = 0, f ∈ ρGC∞([−k, k] , ρR̃), u (k) = u (−k) = 0, k ∈ ρR̃.
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General procedure to apply the HFT in the study of DE

1 We can start from a linear differential problem and assume that it has
a solution u ∈ ρGC∞(Ω̃c ,

ρR̃).

2 We can hence take any infinite number k ∈ ρR̃ and consider
K := {x ∈ Ω | |x | ≤ k}, K/2 := {x ∈ Ω | |x | ≤ k/2} ⊆ ρR̃n, and
ū ∈ ρGC∞(ρR̃n, ρR̃) compactly supported in K/2 and such that
ū|Ω̃c

= u. Since ū(x) = 0 for all
x ∈ {x ∈ R̃n | ∀k ∈ K : |x − k| > 0}, we have
Fk(∂j ū)(ω) = iωjFk(ū)(ω). As usual, this allows to transform the
differential problem into a simpler problem.

3 We finally apply the inversion theorem, at ω ∈ Ω̃c , so that we can
recover the initial CGF u.
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Examples of HFT applied in PDE

Examples
1 Generalized wave equation

∂2u(x,t)
∂t2 = c2 ∂2u(x,t)

∂x2 , c, x ∈ ρR̃, t ∈ ρR̃≥0, u ∈ ρGC∞([−k, k]× ρR̃) with the
assumptions u (k, t) = u (−k, t) = 0 and ux (k, t) = ux (−k, t) = 0 and initial
conditions u (x , 0) = f (x) , ut (x , 0) = g (x) , x ∈ ρR̃, f , g ∈ ρGC∞([−k, k]× ρR̃).
u (x , t) = 1

2 [f (x + ct) + f (x − ct)] + 1
2c

� x+ct
x−ct g (ξ) dξ.

2 Generalized heat equation
a−2 ∂u(x,t)

∂t = ∂2u(x,t)
∂x2 , a, x ∈ ρR̃, t ∈ ρR̃≥0, u ∈ ρGC∞([−k, k]× ρR̃) with the

analogous assumptions u (k, t) = u (−k, t) = 0 and ux (k, t) = ux (−k, t) = 0 and
initial condition u (x , 0) = f (x) , x ∈ ρR̃, f ∈ ρGC∞([−k, k]× ρR̃).
u (x , t) = 1

2π
� k
−k F (ω) e−a2ω2te iωx dω, F := Fk (u) (ω, 0).

3 Generalized Laplace’s equation
∂2u(x,y)
∂x2 = ∂2u(x,y)

∂y2 , x ∈ ρR̃, y ∈ ρR̃≥0, u ∈ ρGC∞([−k, k]× ρR̃) with the assumptions
u (x , k) = 0,∀r ∈ ρR̃>0 : k ≥ dρ−r and the initial condition
u (x , 0) = f (x) , x ∈ ρR̃, f ∈ ρGC∞([−k, k]× ρR̃).
u (x , y) = 1

2π
� k
−k F (ω) e−|ω|y e iωx dω, F := Fk (u) (ω, 0).
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Work in progress

In the future we would also like to consider proving the following results:

1 Parseval’s relation using hyperfinite series.

2 Plancherel’s identity.
3 Determine the space of n dimensional rapidly decreasing GSFs and

define a Fourier transform in it using
�∞
−∞ and without dependence

on k ∈ ρR̃.
4 Paley-Wiener theorem using hyperfinite series.
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akbarali.mukhammadiev@univie.ac.at

Thank you for your attention!
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