A Fourier transform for all generalized functions

Akbarali Mukhammadiev ${ }^{1}$
joint work with: P. Giordano (Wolfgang Pauli Institute, Vienna)
${ }^{1}$ Department of Mathematics, University of Vienna
GF 2020

Fourier transform in the Colombeau setting

Definition

Let $u=\left[u_{\varepsilon}\right] \in \mathcal{G}^{s}(\Omega)$ be a CGF and $K \Subset \Omega$. Then $\int_{K} u(x) \mathrm{d} x:=\left[\int_{K} u_{\varepsilon}(x) \mathrm{d} x\right] \in \widetilde{\mathbb{R}}$. Similarly, for $\int_{\Omega} u$ if u is compactly supported.

Fourier transform in the Colombeau setting

Definition

Let $u=\left[u_{\varepsilon}\right] \in \mathcal{G}^{s}(\Omega)$ be a CGF and $K \Subset \Omega$. Then $\int_{K} u(x) \mathrm{d} x:=\left[\int_{K} u_{\varepsilon}(x) \mathrm{d} x\right] \in \widetilde{\mathbb{R}}$. Similarly, for $\int_{\Omega} u$ if u is compactly supported.

On the other hand, to define the Fourier transform, we have to integrate tempered CGF on the entire \mathbb{R}^{n}. This is accomplished by multiplying the generalized function by a so-called damping measure.

Fourier transform in the Colombeau setting

Definition

Let $u=\left[u_{\varepsilon}\right] \in \mathcal{G}^{s}(\Omega)$ be a CGF and $K \Subset \Omega$. Then
$\int_{K} u(x) \mathrm{d} x:=\left[\int_{K} u_{\varepsilon}(x) \mathrm{d} x\right] \in \widetilde{\mathbb{R}}$. Similarly, for $\int_{\Omega} u$ if u is compactly supported.

On the other hand, to define the Fourier transform, we have to integrate tempered CGF on the entire \mathbb{R}^{n}. This is accomplished by multiplying the generalized function by a so-called damping measure.
(1) This notion of Fourier transform shares several properties with the classical one, but it lacks e.g. the Fourier inversion theorem, which holds only at the level of equality in the sense of generalized tempered distributions.

Fourier transform in the Colombeau setting

Definition

Let $u=\left[u_{\varepsilon}\right] \in \mathcal{G}^{s}(\Omega)$ be a CGF and $K \Subset \Omega$. Then
$\int_{K} u(x) \mathrm{d} x:=\left[\int_{K} u_{\varepsilon}(x) \mathrm{d} x\right] \in \widetilde{\mathbb{R}}$. Similarly, for $\int_{\Omega} u$ if u is compactly supported.

On the other hand, to define the Fourier transform, we have to integrate tempered CGF on the entire \mathbb{R}^{n}. This is accomplished by multiplying the generalized function by a so-called damping measure.
(1) This notion of Fourier transform shares several properties with the classical one, but it lacks e.g. the Fourier inversion theorem, which holds only at the level of equality in the sense of generalized tempered distributions.
(2) We can say, the use of the multiplicative damping measure introduces a perturbation of infinitesimal frequencies that inhibit several results.

Hyperfinite Fourier transform (HFT)

Definition

Let $k \in^{\rho} \widetilde{\mathbb{R}}$ be a positive infinite number and let $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a functionally compact set. We define the n-dimensional hyperfinite Fourier transform of the GSF $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$ as follows:

Hyperfinite Fourier transform (HFT)

Definition

Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ be a positive infinite number and let $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a functionally compact set. We define the n-dimensional hyperfinite Fourier transform of the GSF $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$ as follows:

$$
\mathcal{F}_{k}(f)(\omega):=\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\int_{-k}^{k} \mathrm{~d} x_{1} \ldots \int_{-k}^{k} f\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega} \mathrm{~d} x_{n}
$$

where the product $x \cdot \omega$ on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ denotes the usual dot product $x \cdot \omega=\sum_{j=1}^{n}\left(x_{j} \omega_{j}\right)$.

Hyperfinite Fourier transform (HFT)

Definition

Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ be a positive infinite number and let $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a functionally compact set. We define the n-dimensional hyperfinite Fourier transform of the GSF $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$ as follows:

$$
\mathcal{F}_{k}(f)(\omega):=\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\int_{-k}^{k} \mathrm{~d} x_{1} \ldots \int_{-k}^{k} f\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega} \mathrm{~d} x_{n}
$$

where the product $x \cdot \omega$ on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ denotes the usual dot product $x \cdot \omega=\sum_{j=1}^{n}\left(x_{j} \omega_{j}\right)$.
(1) For any representatives $\left(k_{\varepsilon}\right)$ of k we have $\mathcal{F}_{k}(f)(\omega):=$

$$
\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\left[\int_{-k_{\varepsilon}}^{k_{\varepsilon}} \mathrm{d} x_{1} \ldots \int_{-k_{\varepsilon}}^{k_{\varepsilon}} f_{\varepsilon}\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega_{\varepsilon}} \mathrm{d} x_{n}\right] \in{ }^{\rho} \widetilde{\mathbb{R}}
$$

Hyperfinite Fourier transform (HFT)

Definition

Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ be a positive infinite number and let $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a functionally compact set. We define the n-dimensional hyperfinite Fourier transform of the GSF $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$ as follows:

$$
\mathcal{F}_{k}(f)(\omega):=\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\int_{-k}^{k} \mathrm{~d} x_{1} \ldots \int_{-k}^{k} f\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega} \mathrm{~d} x_{n}
$$

where the product $x \cdot \omega$ on ${ }^{\rho} \widetilde{R}^{n}$ denotes the usual dot product $x \cdot \omega=\sum_{j=1}^{n}\left(x_{j} \omega_{j}\right)$.
(1) For any representatives $\left(k_{\varepsilon}\right)$ of k we have $\mathcal{F}_{k}(f)(\omega):=$

$$
\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\left[\int_{-k_{\varepsilon}}^{k_{\varepsilon}} \mathrm{d} x_{1} \ldots \int_{-k_{\varepsilon}}^{k_{\varepsilon}} f_{\varepsilon}\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega_{\varepsilon}} \mathrm{d} x_{n}\right] \in{ }^{\rho} \widetilde{\mathbb{R}}
$$

(2) $\mathcal{F}_{k}:{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}(K, \widetilde{\mathbb{C}}) \longrightarrow{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$.

Hyperfinite Fourier transform (HFT)

Definition

Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ be a positive infinite number and let $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a functionally compact set. We define the n-dimensional hyperfinite Fourier transform of the GSF $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$ as follows:

$$
\mathcal{F}_{k}(f)(\omega):=\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\int_{-k}^{k} \mathrm{~d} x_{1} \ldots \int_{-k}^{k} f\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega} \mathrm{~d} x_{n}
$$

where the product $x \cdot \omega$ on ${ }^{\rho} \widetilde{R}^{n}$ denotes the usual dot product $x \cdot \omega=\sum_{j=1}^{n}\left(x_{j} \omega_{j}\right)$.
(1) For any representatives $\left(k_{\varepsilon}\right)$ of k we have $\mathcal{F}_{k}(f)(\omega):=$

$$
\int_{K} f(x) e^{-i x \omega} \mathrm{~d} x=\left[\int_{-k_{\varepsilon}}^{k_{\varepsilon}} \mathrm{d} x_{1} \ldots \int_{-k_{\varepsilon}}^{k_{\varepsilon}} f_{\varepsilon}\left(x_{1} \ldots x_{n}\right) e^{-i x \cdot \omega_{\varepsilon}} \mathrm{d} x_{n}\right] \in{ }^{\rho} \widetilde{\mathbb{R}}
$$

(2) $\mathcal{F}_{k}:{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}(K, \widetilde{\mathbb{C}}) \longrightarrow{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$.

Convolution on ${ }^{\rho} \widetilde{\mathbb{R}^{n}}$

We define the k-convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ by

Convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$

We define the k-convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ by

Definition

Assume that $f, g \in{ }^{\rho} \mathcal{G C} \mathcal{C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$ with $\forall x \in[-\infty,-k]^{n} \cup[k, \infty]^{n}: \underset{\sim}{f}(x)=g(x)=0$. Then $\forall x, y \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$, $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}, \exists r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}: k \geq \mathrm{d} \rho^{-r}$,

Convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$

We define the k-convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ by

Definition

Assume that $f, g \in{ }^{\rho} \mathcal{G C} \mathcal{C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$ with $\forall x \in[-\infty,-k]^{n} \cup[k, \infty]^{n}: \underset{\sim}{f}(x)=g(x)=0$. Then $\forall x, y \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$, $K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}, \exists r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}: k \geq \mathrm{d} \rho^{-r}$,
$\left(f *_{k} g\right)(x):=\int_{\rho \widetilde{\mathbb{R}}^{n}} f(y) g(x-y) \mathrm{d} y=\int_{-k}^{k} \mathrm{~d} y_{1} \ldots \int_{-k}^{k} f(y) g(x-y) \mathrm{d} y_{n}$.

Convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$

We define the k-convolution on ${ }^{\rho} \widetilde{\mathbb{R}}^{n}$ by

Definition

Assume that $f, g \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(\widetilde{\mathbb{R}}^{n}\right)$ with
$\forall x \in[-\infty,-k]^{n} \cup[k, \infty]^{n}: \underset{\sim}{f}(x)=g(x)=0$. Then $\forall x, y \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$,
$K:=[-k, k]^{n} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}, \exists r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}: k \geq \mathrm{d} \rho^{-r}$,
$\left(f *_{k} g\right)(x):=\int_{\rho \widetilde{\mathbb{R}}^{n}} f(y) g(x-y) \mathrm{d} y=\int_{-k}^{k} \mathrm{~d} y_{1} \ldots \int_{-k}^{k} f(y) g(x-y) \mathrm{d} y_{n}$.

For this type convolution we have the usual commutative, associative and distributive properties. Moreover, for $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}},{ }^{\rho} \widetilde{\mathbb{R}}\right)$ such that $\forall x \in{ }^{\rho} \widetilde{\mathbb{R}} \exists r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0} \exists c \in{ }^{\rho} \widetilde{\mathbb{R}} \forall y \in{\overline{B^{\mathrm{E}}} r}(x) \forall j \in \mathbb{N}:\left|d^{j} f(y)\right| \leq c$ we have $f * \delta=f$, where δ is the Dirac delta distribution.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right)$, $x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.
(3) $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\widetilde{f}(x):=f(-x)$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(3) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

- $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\tilde{f}(x):=f(-x)$.

Theorem

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a GSF, then we have the following results

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

- $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\tilde{f}(x):=f(-x)$.

Theorem

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a GSF, then we have the following results
(0) $\mathcal{F}_{k}(f+g)=\mathcal{F}_{k}(f)+\mathcal{F}_{k}(g)$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

- $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\tilde{f}(x):=f(-x)$.

Theorem

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a GSF, then we have the following results
(1) $\mathcal{F}_{k}(f+g)=\mathcal{F}_{k}(f)+\mathcal{F}_{k}(g)$.
(2) Let $b \in \widetilde{\mathbb{C}}$, then $\mathcal{F}_{k}(b f)=b \mathcal{F}_{k}(f)$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

- $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\tilde{f}(x):=f(-x)$.

Theorem

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a GSF, then we have the following results
(1) $\mathcal{F}_{k}(f+g)=\mathcal{F}_{k}(f)+\mathcal{F}_{k}(g)$.
(2) Let $b \in \widetilde{\mathbb{C}}$, then $\mathcal{F}_{k}(b f)=b \mathcal{F}_{k}(f)$.

- $\mathcal{F}_{k}(\widetilde{f})=\widetilde{\mathcal{F}}_{k}(f)$.

Elementary properties of the HFT 1

Definitions

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a measurable generalized smooth function, then
(1) Translation: $(s \oplus f)(x):=f(x-s), s=\left(s_{1}, s_{2} \ldots s_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$.
(2) Dilation: $\delta^{a}(f)(x):=f(a x), a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$.

- $(r \odot f)(x):=\frac{1}{r^{n}} f\left(\frac{x}{r}\right), r \in^{\rho} \widetilde{\mathbb{R}}_{>0}$ and the reflection of f is defined by $\tilde{f}(x):=f(-x)$.

Theorem

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K, \widetilde{\mathbb{C}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ be a GSF, then we have the following results
(1) $\mathcal{F}_{k}(f+g)=\mathcal{F}_{k}(f)+\mathcal{F}_{k}(g)$.
(2) Let $b \in \widetilde{\mathbb{C}}$, then $\mathcal{F}_{k}(b f)=b \mathcal{F}_{k}(f)$.

- $\mathcal{F}_{k}(\widetilde{f})=\widetilde{\mathcal{F}}_{k}(f)$.

Elementary properties of the HFT 2

Theorem
 (1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f), \forall s$ finite.

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f)$, $\forall s$ finite.
(3) $\mathcal{F}_{k}\left(e^{i s(-)} f\right)=s \oplus \mathcal{F}_{k}(f)$.

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f)$, $\forall s$ finite.
(3) $\mathcal{F}_{k}\left(e^{i s(-)} f\right)=s \oplus \mathcal{F}_{k}(f)$.
(9) Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then if $\forall x \in K$, $f\left(x_{1}, \ldots x_{j-1}, k, x_{j+1}\right)=f\left(x_{1}, \ldots x_{j-1},-k, x_{j+1}\right)=0$, we have

$$
\mathcal{F}_{k}\left(\partial_{j} f\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(f)(\omega)
$$

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f)$, $\forall s$ finite.
(3) $\mathcal{F}_{k}\left(e^{i s(-)} f\right)=s \oplus \mathcal{F}_{k}(f)$.
(9) Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then if $\forall x \in K$, $f\left(x_{1}, \ldots x_{j-1}, k, x_{j+1}\right)=f\left(x_{1}, \ldots x_{j-1},-k, x_{j+1}\right)=0$, we have

$$
\mathcal{F}_{k}\left(\partial_{j} f\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(f)(\omega)
$$

(c) $\frac{\partial}{\partial \omega_{j}} \mathcal{F}_{k}(f(x))(\omega)=-i \mathcal{F}_{k}\left(x_{j} f(x)\right)(\omega)$.

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f)$, $\forall s$ finite.
(3) $\mathcal{F}_{k}\left(e^{i s(-)} f\right)=s \oplus \mathcal{F}_{k}(f)$.
(9) Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then if $\forall x \in K$, $f\left(x_{1}, \ldots x_{j-1}, k, x_{j+1}\right)=f\left(x_{1}, \ldots x_{j-1},-k, x_{j+1}\right)=0$, we have

$$
\mathcal{F}_{k}\left(\partial_{j} f\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(f)(\omega)
$$

(5) $\frac{\partial}{\partial \omega_{j}} \mathcal{F}_{k}(f(x))(\omega)=-i \mathcal{F}_{k}\left(x_{j} f(x)\right)(\omega)$.
(6) $\mathcal{F}_{k}\left(f *_{k} g\right)=\mathcal{F}_{k}(f) \mathcal{F}_{k}(g)$.

Elementary properties of the HFT 2

Theorem

(1) $\mathcal{F}_{k}\left(\delta^{t}(f)\right)=t \odot \mathcal{F}_{t k}(f), t>0$.
(2) $\mathcal{F}_{k}(s \oplus f)=e^{-i s(-)} \mathcal{F}_{k+s}(f)$, $\forall s$ finite.
(3) $\mathcal{F}_{k}\left(e^{i s(-)} f\right)=s \oplus \mathcal{F}_{k}(f)$.
(9) Let $k \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then if $\forall x \in K$, $f\left(x_{1}, \ldots x_{j-1}, k, x_{j+1}\right)=f\left(x_{1}, \ldots x_{j-1},-k, x_{j+1}\right)=0$, we have

$$
\mathcal{F}_{k}\left(\partial_{j} f\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(f)(\omega)
$$

(5) $\frac{\partial}{\partial \omega_{j}} \mathcal{F}_{k}(f(x))(\omega)=-i \mathcal{F}_{k}\left(x_{j} f(x)\right)(\omega)$.
(6) $\mathcal{F}_{k}\left(f *_{k} g\right)=\mathcal{F}_{k}(f) \mathcal{F}_{k}(g)$.
(1) $\mathcal{F}_{k}(s \odot g(x))(\omega)=\mathcal{F}_{s k}\left(g\left(\frac{t}{s}\right)\right)(\omega)$.

The inverse HFT and the inversion theorem

Definition

Let $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$, we define $\mathcal{F}_{k}^{-1}(f)(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} f(\omega) e^{i x \cdot \omega} \mathrm{~d} \omega$ for all $\omega \in{ }^{\rho} \widetilde{\mathbb{R}}$. This operation is called inverse hyperfinite Fourier transform.

The inverse HFT and the inversion theorem

Definition

Let $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$, we define $\mathcal{F}_{k}^{-1}(f)(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} f(\omega) e^{i x \cdot \omega} \mathrm{~d} \omega$ for all $\omega \in{ }^{\rho} \widetilde{\mathbb{R}}$. This operation is called inverse hyperfinite Fourier transform.

We can in fact prove that inverse HFT shares the same properties as the HFT does. In the next theorem we prove that one is the inverse operation of the other.

The inverse HFT and the inversion theorem

Definition

Let $f \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$, we define $\mathcal{F}_{k}^{-1}(f)(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} f(\omega) e^{i x \cdot \omega} \mathrm{~d} \omega$ for all $\omega \in{ }^{\rho} \widetilde{\mathbb{R}}$. This operation is called inverse hyperfinite Fourier transform.

We can in fact prove that inverse HFT shares the same properties as the HFT does. In the next theorem we prove that one is the inverse operation of the other.

Theorem

Let $f, g, h \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$ we have that

The inverse HFT and the inversion theorem

Definition

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$, we define $\mathcal{F}_{k}^{-1}(f)(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} f(\omega) e^{i x \cdot \omega} \mathrm{~d} \omega$ for all $\omega \in{ }^{\rho} \widetilde{\mathbb{R}}$. This operation is called inverse hyperfinite Fourier transform.

We can in fact prove that inverse HFT shares the same properties as the HFT does. In the next theorem we prove that one is the inverse operation of the other.

Theorem

Let $f, g, h \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$ we have that
(1) $\int_{K} \mathcal{F}_{k}(f) g(x)=\int_{K} f(x) \mathcal{F}_{k}(g)$.

The inverse HFT and the inversion theorem

Definition

Let $f \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$, we define $\mathcal{F}_{k}^{-1}(f)(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} f(\omega) e^{i x \cdot \omega} \mathrm{~d} \omega$ for all $\omega \in{ }^{\rho} \widetilde{\mathbb{R}}$. This operation is called inverse hyperfinite Fourier transform.

We can in fact prove that inverse HFT shares the same properties as the HFT does. In the next theorem we prove that one is the inverse operation of the other.

Theorem

Let $f, g, h \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}^{n}\right)$ we have that
(1) $\int_{K} \mathcal{F}_{k}(f) g(x)=\int_{K} f(x) \mathcal{F}_{k}(g)$.
(2) Hyperfinite Fourier inversion:

$$
\mathcal{F}_{k}^{-1}\left[\mathcal{F}_{k}(f)\right]=f=\mathcal{F}_{k}\left[\mathcal{F}_{k}^{-1}(f)\right]=\left(\frac{1}{2 \pi}\right)^{n} \int_{K} \mathcal{F}_{k}(f)(\omega) e^{i x \omega} \mathrm{~d} \omega
$$

Examples of HFT

Examples

(1) If $\delta(x)=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \ldots \delta\left(x_{n}\right)$ is n-dimensional Dirac delta distribution with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ and $k \geq \mathrm{d} \rho^{-a}, \forall a \in{ }^{\rho} \widetilde{\mathbb{R}}$ then $\mathcal{F}_{k}(\delta)(\omega)=1$ if $\forall \omega$ finite and $\mathcal{F}_{k}(\delta)(\omega)=0$ if $|\omega| \geq k$.

Examples of HFT

Examples

(1) If $\delta(x)=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \ldots \delta\left(x_{n}\right)$ is n-dimensional Dirac delta distribution with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ and $k \geq \mathrm{d} \rho^{-a}, \forall a \in{ }^{\rho} \widetilde{\mathbb{R}}$ then $\mathcal{F}_{k}(\delta)(\omega)=1$ if $\forall \omega$ finite and $\mathcal{F}_{k}(\delta)(\omega)=0$ if $|\omega| \geq k$.
(2) Let $f(x)=e^{-\frac{|x|^{2}}{2}} \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then

$$
\mathcal{F}_{k}(f)(\omega)=(2 \pi)^{\frac{n}{2}} e^{-\frac{|\omega|^{2}}{2}}
$$

Examples of HFT

Examples

(1) If $\delta(x)=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \ldots \delta\left(x_{n}\right)$ is n-dimensional Dirac delta distribution with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ and $k \geq \mathrm{d} \rho^{-a}, \forall a \in{ }^{\rho} \widetilde{\mathbb{R}}$ then $\mathcal{F}_{k}(\delta)(\omega)=1$ if $\forall \omega$ finite and $\mathcal{F}_{k}(\delta)(\omega)=0$ if $|\omega| \geq k$.
(2) Let $f(x)=e^{-\frac{|x|^{2}}{2}} \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then

$$
\mathcal{F}_{k}(f)(\omega)=(2 \pi)^{\frac{n}{2}} e^{-\frac{|\omega|^{2}}{2}}
$$

(3) If $f(x)=e^{-a|x|}$ (with $x \in^{\rho} \widetilde{\mathbb{R}}$) then

$$
\mathcal{F}(f)(\omega)=\frac{1-e^{(a-i \omega) k}}{a-i \omega}-\frac{e^{-(a+i \omega) k}-1}{a+i \omega} .
$$

Examples of HFT

Examples

(1) If $\delta(x)=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \ldots \delta\left(x_{n}\right)$ is n-dimensional Dirac delta distribution with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$ and $k \geq \mathrm{d} \rho^{-a}, \forall a \in{ }^{\rho} \widetilde{\mathbb{R}}$ then $\mathcal{F}_{k}(\delta)(\omega)=1$ if $\forall \omega$ finite and $\mathcal{F}_{k}(\delta)(\omega)=0$ if $|\omega| \geq k$.
(2) Let $f(x)=e^{-\frac{|x|^{2}}{2}} \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n}\right), x \in{ }^{\rho} \widetilde{\mathbb{R}}^{n}$. Then

$$
\mathcal{F}_{k}(f)(\omega)=(2 \pi)^{\frac{n}{2}} e^{-\frac{|\omega|^{2}}{2}}
$$

(3) If $f(x)=e^{-a|x|}$ (with $x \in{ }^{\rho} \widetilde{\mathbb{R}}$) then

$$
\mathcal{F}(f)(\omega)=\frac{1-e^{(a-i \omega) k}}{a-i \omega}-\frac{e^{-(a+i \omega) k}-1}{a+i \omega} .
$$

(1) If $f(x)=e^{x}$ where $|x| \leq k$ and $k=-\log (\mathrm{d} \rho)$ then

$$
\mathcal{F}_{k}(f)(\omega)=\frac{e^{k(1-i \omega)}-e^{-k(1-i \omega)}}{1-i \omega}=\frac{\mathrm{d} \rho^{(i \omega-1)}-\mathrm{d} \rho^{(1-i \omega)}}{1-i \omega}
$$

Embedding of tempered distributions

Abstract

Theorem Let $T \in \mathcal{S}^{\prime}(\Omega)$ and μ be a Colombeau mollier. Then the map

Embedding of tempered distributions

Theorem

Let $T \in \mathcal{S}^{\prime}(\Omega)$ and μ be a Colombeau mollier. Then the map

$$
\iota_{\Omega}^{b}: T \in \mathcal{S}^{\prime}(\Omega) \mapsto\left[T *\left(b_{\varepsilon}^{-1} \odot \mu\right)(-)\right] \in{ }^{\rho} \mathcal{G C}^{\infty}\left(\widetilde{\Omega}_{c}, \widetilde{\mathbb{C}}\right)
$$

where $b \geq \mathrm{d} \rho^{-a}, a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$ is a linear embedding that commutes with partial derivatives and $\forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F}_{k}\left(\iota_{\Omega}^{b}(f)\right)=\iota_{\Omega}^{b}(\mathcal{F}(f))$.

Embedding of tempered distributions

Theorem

Let $T \in \mathcal{S}^{\prime}(\Omega)$ and μ be a Colombeau mollier. Then the map

$$
\iota_{\Omega}^{b}: T \in \mathcal{S}^{\prime}(\Omega) \mapsto\left[T *\left(b_{\varepsilon}^{-1} \odot \mu\right)(-)\right] \in{ }^{\rho} \mathcal{G C}^{\infty}\left(\widetilde{\Omega}_{c}, \widetilde{\mathbb{C}}\right)
$$

where $b \geq \mathrm{d} \rho^{-a}, a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$ is a linear embedding that commutes with partial derivatives and $\forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F}_{k}\left(\iota_{\Omega}^{b}(f)\right)=\iota_{\Omega}^{b}(\mathcal{F}(f))$.

Our next problem is to associate the Fourier transform of a tempered distribution and its HFT. Our conjecture is

Embedding of tempered distributions

Theorem

Let $T \in \mathcal{S}^{\prime}(\Omega)$ and μ be a Colombeau mollier. Then the map

$$
\iota_{\Omega}^{b}: T \in \mathcal{S}^{\prime}(\Omega) \mapsto\left[T *\left(b_{\varepsilon}^{-1} \odot \mu\right)(-)\right] \in{ }^{\rho} \mathcal{G C}^{\infty}\left(\widetilde{\Omega}_{c}, \widetilde{\mathbb{C}}\right)
$$

where $b \geq \mathrm{d} \rho^{-a}, a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$ is a linear embedding that commutes with partial derivatives and $\forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F}_{k}\left(\iota_{\Omega}^{b}(f)\right)=\iota_{\Omega}^{b}(\mathcal{F}(f))$.

Our next problem is to associate the Fourier transform of a tempered distribution and its HFT. Our conjecture is

Conjecture: Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set and $T \in \mathcal{S}^{\prime}(\Omega)$. Then if $\iota_{\Omega}^{b}(T)$ is an embedding of T we have that

Embedding of tempered distributions

Theorem

Let $T \in \mathcal{S}^{\prime}(\Omega)$ and μ be a Colombeau mollier. Then the map

$$
\iota_{\Omega}^{b}: T \in \mathcal{S}^{\prime}(\Omega) \mapsto\left[T *\left(b_{\varepsilon}^{-1} \odot \mu\right)(-)\right] \in{ }^{\rho} \mathcal{G C}^{\infty}\left(\widetilde{\Omega}_{c}, \widetilde{\mathbb{C}}\right)
$$

where $b \geq \mathrm{d} \rho^{-a}, a \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}$ is a linear embedding that commutes with partial derivatives and $\forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F}_{k}\left(\iota_{\Omega}^{b}(f)\right)=\iota_{\Omega}^{b}(\mathcal{F}(f))$.

Our next problem is to associate the Fourier transform of a tempered distribution and its HFT. Our conjecture is

Conjecture: Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set and $T \in \mathcal{S}^{\prime}(\Omega)$. Then if $\iota_{\Omega}^{b}(T)$ is an embedding of T we have that

$$
\mathcal{F}_{k}\left(\iota_{\Omega}^{b}(T) \cdot \mathbf{1}\right)(\omega)=\left(\iota_{\Omega}^{b}(\widehat{T})\right)(\omega), \forall \omega \in \widetilde{\Omega}_{c}, \mathbf{1}:=\mathcal{F}_{k}(\delta)
$$

Examples of HFT applied in ODE

Examples

(1) n-th order homogeneous generalized ODE

$$
\begin{aligned}
& a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y=0, y \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in \mathbb{N} \geq 1, \\
& y(k)=y(-k)=0, k \in{ }^{\rho} \mathbb{R}
\end{aligned}
$$

Examples of HFT applied in ODE

Examples

(1) n-th order homogeneous generalized ODE

$$
\begin{aligned}
& a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y \underset{ }{=} 0, y \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in \mathbb{N} \geq 1, \\
& y(k)=y(-k)=0, k \in{ }^{\rho} \mathbb{R}
\end{aligned}
$$

(2) n-th order non-homogeneous generalized ODE
$a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y=h(t), y, h \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in$ $\mathbb{N}_{\geq 1}, y(k)=y(-k)=0, k \in{ }^{\rho} \mathbb{R}$

Examples of HFT applied in ODE

Examples

(1) n-th order homogeneous generalized ODE
$a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y \underset{\sim}{=} 0, y \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in \mathbb{N}_{\geq 1}$, $y(k)=y(-k)=0, k \in{ }^{\rho} \widetilde{\mathbb{R}}$
(2) n-th order non-homogeneous generalized ODE $a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y=h(t), y, h \in{ }^{\rho} \mathcal{G C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in$ $\mathbb{N}_{\geq 1}, y(k)=y(-k)=0, k \in{ }^{\rho} \mathbb{R}$
(3) Generalized ODE $-u^{\prime \prime}+u=f(x), u, f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k],{ }^{\rho} \widetilde{\mathbb{R}}\right), u(k)=$ $u(-k)=0, k \in{ }^{\rho} \widetilde{\mathbb{R}}$.

Examples of HFT applied in ODE

Examples

(1) n-th order homogeneous generalized ODE
$a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y \underset{\sim}{=} 0, y \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in \mathbb{N}_{\geq 1}$, $y(k)=y(-k)=0, k \in{ }^{\rho} \widetilde{\mathbb{R}}$
(2) n-th order non-homogeneous generalized ODE $a_{n} y^{(n)}+\ldots a_{1} y^{(1)}+a_{0} y=h(t), y, h \in{ }^{\rho} \mathcal{G} C^{\infty}\left(K,{ }^{\rho} \widetilde{\mathbb{R}}\right), a_{n} \in{ }^{\rho} \widetilde{\mathbb{R}}^{*}, n \in$ $\mathbb{N}_{\geq 1}, y(k)=y(-k)=0, k \in{ }^{\rho} \mathbb{R}$
(3) Generalized ODE $-u^{\prime \prime}+u=f(x), u, f \in{ }^{\rho} \mathcal{G} C^{\infty}\left([-k, k],{ }^{\rho} \widetilde{\mathbb{R}}\right), u(k)=$ $u(-k)=0, k \in{ }^{\rho} \widetilde{\mathbb{R}}$.
(9) Generalized Airy equation

$$
u^{\prime \prime}-x u=0, f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k],{ }^{\rho} \widetilde{\mathbb{R}}\right), u(k)=u(-k)=0, k \in{ }^{\rho} \widetilde{\mathbb{R}}
$$

General procedure to apply the HFT in the study of DE

(1) We can start from a linear differential problem and assume that it has a solution $u \in{ }^{\rho} \mathcal{G C}^{\infty}\left(\widetilde{\Omega}_{c},{ }^{\rho} \widetilde{\mathbb{R}}\right)$.

General procedure to apply the HFT in the study of DE

(1) We can start from a linear differential problem and assume that it has a solution $u \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(\widetilde{\Omega}_{c},{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
(2) We can hence take any infinite number $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ and consider $K:=\{x \in \Omega| | x \mid \leq k\}, K / 2:=\{x \in \Omega| | x \mid \leq k / 2\} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$, and $\bar{u} \in{ }^{\rho} \mathcal{G C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n},{ }^{\rho} \widetilde{\mathbb{R}}\right)$ compactly supported in $K / 2$ and such that $\left.\bar{u}\right|_{\widetilde{\Omega}_{c}}=u$. Since $\bar{u}(x)=0$ for all $x \in\left\{x \in \widetilde{\mathbb{R}}^{n}|\forall k \in K:|x-k|>0\}\right.$, we have $\mathcal{F}_{k}\left(\partial_{j} \bar{u}\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(\bar{u})(\omega)$. As usual, this allows to transform the differential problem into a simpler problem.

General procedure to apply the HFT in the study of DE

(1) We can start from a linear differential problem and assume that it has a solution $u \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left(\widetilde{\Omega}_{c},{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
(2) We can hence take any infinite number $k \in{ }^{\rho} \widetilde{\mathbb{R}}$ and consider $K:=\{x \in \Omega| | x \mid \leq k\}, K / 2:=\{x \in \Omega| | x \mid \leq k / 2\} \subseteq{ }^{\rho} \widetilde{\mathbb{R}}^{n}$, and $\bar{u} \in{ }^{\rho} \mathcal{G C}^{\infty}\left({ }^{\rho} \widetilde{\mathbb{R}}^{n},{ }^{\rho} \widetilde{\mathbb{R}}\right)$ compactly supported in $K / 2$ and such that $\left.\bar{u}\right|_{\widetilde{\Omega}_{c}}=u$. Since $\bar{u}(x)=0$ for all $x \in\left\{x \in \widetilde{\mathbb{R}}^{n}|\forall k \in K:|x-k|>0\}\right.$, we have $\mathcal{F}_{k}\left(\partial_{j} \bar{u}\right)(\omega)=i \omega_{j} \mathcal{F}_{k}(\bar{u})(\omega)$. As usual, this allows to transform the differential problem into a simpler problem.
(3) We finally apply the inversion theorem, at $\omega \in \widetilde{\Omega}_{c}$, so that we can recover the initial CGF u.

Examples of HFT applied in PDE

Examples

(1) Generalized wave equation
$\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}, c, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f, g \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$. $u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) \mathrm{d} \xi$.

Examples of HFT applied in PDE

Examples

（1）Generalized wave equation
$\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}, c, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f, g \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ ． $u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) \mathrm{d} \xi$ ．
（2）Generalized heat equation
$a^{-2} \frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}, a, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the analogous assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial condition $u(x, 0)=f(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ ． $u(x, t)=\frac{1}{2 \pi} \int_{-k}^{k} F(\omega) e^{-a^{2} \omega^{2} t} e^{i \omega x} \mathrm{~d} \omega, F:=\mathcal{F}_{k}(u)(\omega, 0)$ ．

Examples of HFT applied in PDE

Examples

(1) Generalized wave equation
$\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}, c, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f, g \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$. $u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) \mathrm{d} \xi$.
(2) Generalized heat equation
$a^{-2} \frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}, a, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the analogous assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial condition $u(x, 0)=f(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
$u(x, t)=\frac{1}{2 \pi} \int_{-k}^{k} F(\omega) e^{-a^{2} \omega^{2} t} e^{i \omega x} \mathrm{~d} \omega, F:=\mathcal{F}_{k}(u)(\omega, 0)$.
(3) Generalized Laplace's equation
$\frac{\partial^{2} u(x, y)}{\partial x^{2}}=\frac{\partial^{2} u(x, y)}{\partial y^{2}}, x \in{ }^{\rho} \widetilde{\mathbb{R}}, y \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions
$u(x, k)=0, \forall r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}: k \geq \mathrm{d} \rho^{-r}$ and the initial condition
$u(x, 0)=f(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f \in{ }^{\rho} \mathcal{G} C^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
$u(x, y)=\frac{1}{2 \pi} \int_{-k}^{k} F(\omega) e^{-|\omega| y} e^{i \omega x} \mathrm{~d} \omega, F:=\mathcal{F}_{k}(u)(\omega, 0)$.

Examples of HFT applied in PDE

Examples

(1) Generalized wave equation
$\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}, c, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f, g \in{ }^{\rho} \mathcal{G C}{ }^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$. $u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) \mathrm{d} \xi$.
(2) Generalized heat equation
$a^{-2} \frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}, a, x \in{ }^{\rho} \widetilde{\mathbb{R}}, t \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the analogous assumptions $u(k, t)=u(-k, t)=0$ and $u_{x}(k, t)=u_{x}(-k, t)=0$ and initial condition $u(x, 0)=f(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
$u(x, t)=\frac{1}{2 \pi} \int_{-k}^{k} F(\omega) e^{-a^{2} \omega^{2} t} e^{i \omega x} \mathrm{~d} \omega, F:=\mathcal{F}_{k}(u)(\omega, 0)$.
(3) Generalized Laplace's equation
$\frac{\partial^{2} u(x, y)}{\partial x^{2}}=\frac{\partial^{2} u(x, y)}{\partial y^{2}}, x \in{ }^{\rho} \widetilde{\mathbb{R}}, y \in{ }^{\rho} \widetilde{\mathbb{R}}_{\geq 0}, u \in{ }^{\rho} \mathcal{G} \mathcal{C}^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$ with the assumptions
$u(x, k)=0, \forall r \in{ }^{\rho} \widetilde{\mathbb{R}}_{>0}: k \geq \mathrm{d} \rho^{-r}$ and the initial condition
$u(x, 0)=f(x), x \in{ }^{\rho} \widetilde{\mathbb{R}}, f \in{ }^{\rho} \mathcal{G} C^{\infty}\left([-k, k] \times{ }^{\rho} \widetilde{\mathbb{R}}\right)$.
$u(x, y)=\frac{1}{2 \pi} \int_{-k}^{k} F(\omega) e^{-|\omega| y} e^{i \omega x} \mathrm{~d} \omega, F:=\mathcal{F}_{k}(u)(\omega, 0)$.

Work in progress

In the future we would also like to consider proving the following results:
(1) Parseval's relation using hyperfinite series.

Work in progress

In the future we would also like to consider proving the following results:
(1) Parseval's relation using hyperfinite series.
(2) Plancherel's identity.

Work in progress

In the future we would also like to consider proving the following results:
(1) Parseval's relation using hyperfinite series.
(2) Plancherel's identity.
(3) Determine the space of n dimensional rapidly decreasing GSFs and define a Fourier transform in it using $\int_{-\infty}^{\infty}$ and without dependence on $k \in{ }^{\rho} \widetilde{\mathbb{R}}$.

Work in progress

In the future we would also like to consider proving the following results:
(1) Parseval's relation using hyperfinite series.
(2) Plancherel's identity.
(3) Determine the space of n dimensional rapidly decreasing GSFs and define a Fourier transform in it using $\int_{-\infty}^{\infty}$ and without dependence on $k \in{ }^{\rho} \widetilde{\mathbb{R}}$.
(9) Paley-Wiener theorem using hyperfinite series.

Contact

Contact:

akbarali.mukhammadiev@univie.ac.at

Thank you for your attention!

