The nuclearity of Gelfand-Shilov spaces and kernel theorems

Lenny Neyt

Department of Mathematics: Analysis, Logic and Discrete Mathematics Ghent University

International Conference on Generalized Functions Ghent, Belgium, September 3, 2020

joint work with Andreas Debrouwere and Jasson Vindas

- Gel'fand and Shilov characterized the nuclearity of the space S_{(W),∞}.
- For weight sequences, the nuclearity of the space S^[M]_[A] was shown under (M.1) and (M.2) by Pilipović, Prangoski, and Vindas.
- Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic Beurling-Björk spaces $S_{(\omega)}^{(\omega)}$ with respect to the weight function ω .
- Our results deal with more general spaces and provide full characterizations of their nuclearity. This talk is based on:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *The nuclearity of Gelfand–Shilov spaces and kernel theorems*, Collect. Math., in press (DOI: 10.1007/s13348-020-00286-2).

- Gel'fand and Shilov characterized the nuclearity of the space $S_{(\mathscr{W}),\infty}$.
- For weight sequences, the nuclearity of the space S^[M]_[A] was shown under (M.1) and (M.2) by Pilipović, Prangoski, and Vindas.
- Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic Beurling-Björk spaces $S_{(\omega)}^{(\omega)}$ with respect to the weight function ω .
- Our results deal with more general spaces and provide full characterizations of their nuclearity. This talk is based on:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *The nuclearity of Gelfand–Shilov spaces and kernel theorems*, Collect. Math., in press (DOI: 10.1007/s13348-020-00286-2).

- Gel'fand and Shilov characterized the nuclearity of the space $S_{(\mathscr{W}),\infty}$.
- For weight sequences, the nuclearity of the space S^[M]_[A] was shown under (M.1) and (M.2) by Pilipović, Prangoski, and Vindas.
- Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic Beurling-Björk spaces $S_{(\omega)}^{(\omega)}$ with respect to the weight function ω .
- Our results deal with more general spaces and provide full characterizations of their nuclearity. This talk is based on:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *The nuclearity of Gelfand–Shilov spaces and kernel theorems*, Collect. Math., in press (DOI: 10.1007/s13348-020-00286-2).

4 **A b b b b b b**

- Gel'fand and Shilov characterized the nuclearity of the space $S_{(\mathscr{W}),\infty}$.
- For weight sequences, the nuclearity of the space S^[M]_[A] was shown under (M.1) and (M.2) by Pilipović, Prangoski, and Vindas.
- Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic Beurling-Björk spaces $S_{(\omega)}^{(\omega)}$ with respect to the weight function ω .
- Our results deal with more general spaces and provide full characterizations of their nuclearity. This talk is based on:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *The nuclearity of Gelfand–Shilov spaces and kernel theorems*, Collect. Math., in press (DOI: 10.1007/s13348-020-00286-2).

▲ □ ▶ ▲ □ ▶ ▲ □

- Gel'fand and Shilov characterized the nuclearity of the space $S_{(\mathscr{W}),\infty}$.
- For weight sequences, the nuclearity of the space S^[M]_[A] was shown under (M.1) and (M.2) by Pilipović, Prangoski, and Vindas.
- Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic Beurling-Björk spaces $S_{(\omega)}^{(\omega)}$ with respect to the weight function ω .
- Our results deal with more general spaces and provide full characterizations of their nuclearity. This talk is based on:
 - A. DEBROUWERE, L. NEYT AND J. VINDAS, *The nuclearity of Gelfand–Shilov spaces and kernel theorems*, Collect. Math., in press (DOI: 10.1007/s13348-020-00286-2).

Let *E* and *F* be locally convex Hausdorff spaces (=lcHs). A linear map $A : E \to F$ is nuclear if there exists

- an equicontinuous sequence $(a_n)_n$ in E';
- a sequence $(b_n)_n$ contained in a bounded Banach disk of F;
- an absolutely summable complex sequence $(\lambda_n)_n$;

such that

$$A(x) = \sum_{n \in \mathbb{N}} \lambda_n \langle a_n, x \rangle b_n, \quad \forall x \in E.$$

Definition

A lcHs *E* is called nuclear if every continuous linear map from *E* into a Banach space is nuclear.

A (10) F (10)

Let *E* and *F* be locally convex Hausdorff spaces (=lcHs). A linear map $A : E \to F$ is nuclear if there exists

- an equicontinuous sequence $(a_n)_n$ in E';
- a sequence $(b_n)_n$ contained in a bounded Banach disk of F;
- an absolutely summable complex sequence $(\lambda_n)_n$;

such that

$$A(x) = \sum_{n \in \mathbb{N}} \lambda_n \langle a_n, x \rangle b_n, \quad \forall x \in E.$$

Definition

A lcHs E is called nuclear if every continuous linear map from E into a Banach space is nuclear.

Nuclear spaces enjoy several nice properties.

- Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...
 Nuclear spaces are Schwartz.
 - \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).
 - \hookrightarrow An infinite dimensional Banach space is not nuclear.
 - For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E \otimes F$ coincide. Moreover, the extension of

$$E\otimes F
ightarrow \mathcal{L}_b(E_b',F): \quad e\otimes f\mapsto (e'\mapsto \langle e',e\rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

- Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...
- Nuclear spaces are Schwartz.
 - → Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).
 - ightarrow An infinite dimensional Banach space is not nuclear.
 - For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E \otimes F$ coincide. Moreover, the extension of

$$E\otimes F
ightarrow \mathcal{L}_b(E_b',F): \quad e\otimes f\mapsto (e'\mapsto \langle e',e\rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

- Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...
- Nuclear spaces are Schwartz.
 - \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).

 \hookrightarrow An infinite dimensional Banach space is not nuclear.

For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E \otimes F$ coincide. Moreover, the extension of

$$E \otimes F o \mathcal{L}_b(E'_b, F) := e \otimes f \mapsto (e' \mapsto \langle e', e \rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...

Nuclear spaces are Schwartz.

 \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).

→ An infinite dimensional Banach space is not nuclear.
 For a nuclear complete IcHs *E* and any complete IcHs *F* the well-known topologies on *E* ⊗ *F* coincide. Moreover, the extension of

$$E\otimes F
ightarrow \mathcal{L}_b(E_b',F): \quad e\otimes f\mapsto (e'\mapsto \langle e',e\rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...

Nuclear spaces are Schwartz.

 \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).

 \hookrightarrow An infinite dimensional Banach space is not nuclear.

For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E\otimes F$ coincide. Moreover, the extension of

$$E\otimes F
ightarrow \mathcal{L}_b(E_b',F): \quad e\otimes f\mapsto (e'\mapsto \langle e',e\rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

- Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...
- Nuclear spaces are Schwartz.

 \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).

 \hookrightarrow An infinite dimensional Banach space is not nuclear.

For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E \otimes F$ coincide. Moreover, the extension of

$$E \otimes F \to \mathcal{L}_b(E'_b, F) := e \otimes f \mapsto (e' \mapsto \langle e', e \rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

Nuclear spaces enjoy several nice properties.

- Nuclear spaces are stable under taking subspaces, Hausdorff quotients, projective and inductive limits, completion, tensor products, ...
- Nuclear spaces are Schwartz.

 \hookrightarrow Every quasi-complete barrelled nuclear space is Montel (i.e. every bounded set is relatively compact).

 \hookrightarrow An infinite dimensional Banach space is not nuclear.

For a nuclear complete lcHs E and any complete lcHs F the well-known topologies on $E \otimes F$ coincide. Moreover, the extension of

$$E \otimes F \to \mathcal{L}_b(E'_b, F) : e \otimes f \mapsto (e' \mapsto \langle e', e \rangle f)$$

gives the canonical isomorphism

$$E\widehat{\otimes}F\cong \mathcal{L}_b(E'_b,F)$$

For example we have $S(\mathbb{R}^{d_1+d_2})'_b \cong \mathcal{L}_b(S(\mathbb{R}^{d_1}), S(\mathbb{R}^{d_2})'_b)$, i.e. for any continuous linear $L: S(\mathbb{R}^{d_1}) \to S(\mathbb{R}^{d_2})'_b$ there exists a kernel $f \in S(\mathbb{R}^{d_1+d_2})'$ such that

$$\langle L(\varphi_1), \varphi_2 \rangle = \int f(x, y) \varphi_1(x) \varphi_2(y) dx dy, \quad \varphi_j \in \mathcal{S}(\mathbb{R}^{d_j}), \ j = 1, 2$$

- weakly summable if $\sum_{n=0}^{\infty} |\langle x', x_n \rangle| < \infty$ for all $x' \in E'$
- absolutely summable if $\sum_{n=0}^{\infty} p(x_n) < \infty$ for every continuous seminorms p on E

Proposition (Grothendieck, 1955)

Let E be a Fréchet space or a (DF)-space. Then, E is nuclear if and only if every weakly summable sequence in E is absolutely summable.

• weakly summable if $\sum_{n=0}^{\infty} |\langle x', x_n \rangle| < \infty$ for all $x' \in E'$

• absolutely summable if $\sum_{n=0}^{\infty} p(x_n) < \infty$ for every continuous seminorms p on E

Proposition (Grothendieck, 1955)

Let *E* be a Fréchet space or a (DF)-space. Then, *E* is nuclear if and only if every weakly summable sequence in *E* is absolutely summable.

- weakly summable if $\sum_{n=0}^{\infty} |\langle x', x_n \rangle| < \infty$ for all $x' \in E'$
- absolutely summable if $\sum_{n=0}^{\infty} p(x_n) < \infty$ for every continuous seminorms p on E

Proposition (Grothendieck, 1955)

Let E be a Fréchet space or a (DF)-space. Then, E is nuclear if and only if every weakly summable sequence in E is absolutely summable.

くぼう くほう くほう

- weakly summable if $\sum_{n=0}^{\infty} |\langle x', x_n \rangle| < \infty$ for all $x' \in E'$
- absolutely summable if $\sum_{n=0}^{\infty} p(x_n) < \infty$ for every continuous seminorms p on E

Proposition (Grothendieck, 1955)

Let E be a Fréchet space or a (DF)-space. Then, E is nuclear if and only if every weakly summable sequence in E is absolutely summable.

Throughout this presentation, we will simultaneously consider the Beurling and Roumieu cases.

Notation

We use the brackets (·) to denote the Beurling case, while we use $\{\cdot\}$ for the Roumieu case. We employ [·] as a common notation.

We will encounter several conditions which use the indices λ and μ . These should always be preceded by the quantifiers:

- Beurling case: $\forall \lambda \in \mathbb{R}_+ \ \exists \mu \in \mathbb{R}_+;$
- Roumieu case: $\forall \mu \in \mathbb{R}_+ \ \exists \lambda \in \mathbb{R}_+.$

A family $A = \{(a_j^{\lambda})_{j \in \mathbb{Z}^d} : \lambda \in \mathbb{R}_+\}$ of sequences of positive numbers is called a Köthe set if $a_j^{\lambda} \leq a_j^{\mu}$ when $\mu \leq \lambda$.

For any $q \in [1,\infty]$ we consider the Köthe sequence space $\lambda^q[A]$ of all $(c_j)_{j \in \mathbb{Z}^d} \in \mathbb{C}^{\mathbb{Z}^d}$ such that

 $\|c_j a_j^{\lambda}\|_{\ell^q(\mathbb{Z}^d)} < \infty, \quad \forall \lambda \in \mathbb{R}_+ \text{ (resp. } \exists \lambda \in \mathbb{R}_+\text{)}$

A is said to satisfy [N] if $\sum_{j\in\mathbb{Z}^d}a_j^\lambda/a_j^\mu<\infty$

Proposition

The following are equivalent:

```
(i) A satisfies [N]
```

(ii) $\lambda^q[A]$ is nuclear for all (resp. for some) $q \in [1,\infty]$

(iii) $\lambda^q[A] = \lambda^r[A]$ for all $q,r \in [1,\infty]$ (resp. for some q
eq r)

A (10) × A (10) × A (10)

A family $A = \{(a_j^{\lambda})_{j \in \mathbb{Z}^d} : \lambda \in \mathbb{R}_+\}$ of sequences of positive numbers is called a Köthe set if $a_j^{\lambda} \leq a_j^{\mu}$ when $\mu \leq \lambda$.

For any $q \in [1, \infty]$ we consider the Köthe sequence space $\lambda^q[A]$ of all $(c_j)_{j \in \mathbb{Z}^d} \in \mathbb{C}^{\mathbb{Z}^d}$ such that

 $\|c_j a_j^{\lambda}\|_{\ell^q(\mathbb{Z}^d)} < \infty, \quad \forall \lambda \in \mathbb{R}_+ \text{ (resp. } \exists \lambda \in \mathbb{R}_+\text{)}$

A is said to satisfy [N] if $\sum_{j\in\mathbb{Z}^d}a_j^\lambda/a_j^\mu<\infty$

Proposition

The following are equivalent:

```
(i) A satisfies [N]
```

(ii) $\lambda^q[A]$ is nuclear for all (resp. for some) $q \in [1,\infty]$

(iii) $\lambda^q[A] = \lambda^r[A]$ for all $q,r \in [1,\infty]$ (resp. for some q
eq r)

< ロ > < 同 > < 回 > < 回 >

A family $A = \{(a_j^{\lambda})_{j \in \mathbb{Z}^d} : \lambda \in \mathbb{R}_+\}$ of sequences of positive numbers is called a Köthe set if $a_j^{\lambda} \leq a_j^{\mu}$ when $\mu \leq \lambda$.

For any $q \in [1, \infty]$ we consider the Köthe sequence space $\lambda^q[A]$ of all $(c_j)_{j \in \mathbb{Z}^d} \in \mathbb{C}^{\mathbb{Z}^d}$ such that

 $\|c_j a_j^{\lambda}\|_{\ell^q(\mathbb{Z}^d)} < \infty, \quad \forall \lambda \in \mathbb{R}_+ \text{ (resp. } \exists \lambda \in \mathbb{R}_+ \text{)}$

A is said to satisfy [N] if $\sum_{j\in\mathbb{Z}^d}a_j^\lambda/a_j^\mu<\infty$

Proposition

The following are equivalent:

(i) A satisfies [N]

(*ii*) $\lambda^q[A]$ is nuclear for all (resp. for some) $q \in [1,\infty]$

(iii) $\lambda^q[A] = \lambda^r[A]$ for all $q,r \in [1,\infty]$ (resp. for some q
eq r)

< ロ > < 同 > < 回 > < 回 >

A family $A = \{(a_j^{\lambda})_{j \in \mathbb{Z}^d} : \lambda \in \mathbb{R}_+\}$ of sequences of positive numbers is called a Köthe set if $a_j^{\lambda} \leq a_j^{\mu}$ when $\mu \leq \lambda$.

For any $q \in [1, \infty]$ we consider the Köthe sequence space $\lambda^q[A]$ of all $(c_j)_{j \in \mathbb{Z}^d} \in \mathbb{C}^{\mathbb{Z}^d}$ such that

 $\|c_j a_j^{\lambda}\|_{\ell^q(\mathbb{Z}^d)} < \infty, \quad \forall \lambda \in \mathbb{R}_+ \text{ (resp. } \exists \lambda \in \mathbb{R}_+\text{)}$

A is said to satisfy [N] if $\sum_{j\in\mathbb{Z}^d}a_j^\lambda/a_j^\mu<\infty$

Proposition

The following are equivalent:

(i) A satisfies [N]

(ii) $\lambda^q[A]$ is nuclear for all (resp. for some) $q \in [1,\infty]$

(iii) $\lambda^q[A] = \lambda^r[A]$ for all $q, r \in [1, \infty]$ (resp. for some $q \neq r$)

・ロト ・ 同ト ・ ヨト ・ ヨト

Weight function systems

A family $\mathscr{W} = \{w^{\lambda} : \lambda \in \mathbb{R}_+\}$ of positive continuous functions is called a weight function system if $1 \le w^{\lambda} \le w^{\mu}$ when $\mu \le \lambda$.

We consider the conditions

 $\begin{aligned} & [\mathsf{w}\mathsf{M}] & \sup_{|y| \le 1} w^{\lambda}(x+y) \le C w^{\mu}(x) \\ & [\mathsf{M}] & w^{\lambda}(x+y) \le C w^{\mu}(x) w^{\mu}(y) \\ & [\mathsf{N}] & w^{\lambda}/w^{\mu} \in L^{1}(\mathbb{R}^{d}) \end{aligned}$

To ${\mathscr W}$ we associate the Köthe set $A_{\mathscr W}=\{(w^\lambda(j))_{j\in {\mathbb Z}^d}\}$

Proposition

Suppose \mathscr{W} satisfies [wM]. The following are equivalent: (*i*) \mathscr{W} satisfies [N] (*ii*) $A_{\mathscr{W}}$ satisfies [N]

・ 何 ト ・ ヨ ト ・ ヨ ト

Weight function systems

A family $\mathscr{W} = \{w^{\lambda} : \lambda \in \mathbb{R}_+\}$ of positive continuous functions is called a weight function system if $1 \le w^{\lambda} \le w^{\mu}$ when $\mu \le \lambda$.

We consider the conditions

$$\begin{split} & [\mathsf{w}\mathsf{M}] \qquad \sup_{|y| \leq 1} w^{\lambda}(x+y) \leq C w^{\mu}(x) \\ & [\mathsf{M}] \qquad w^{\lambda}(x+y) \leq C w^{\mu}(x) w^{\mu}(y) \\ & [\mathsf{N}] \qquad w^{\lambda}/w^{\mu} \in L^1(\mathbb{R}^d) \end{split}$$

To ${\mathscr W}$ we associate the Köthe set $A_{{\mathscr W}}=\{(w^\lambda(j))_{j\in {\mathbb Z}^d}\}$

Proposition

Suppose \mathscr{W} satisfies [wM]. The following are equivalent: (*i*) \mathscr{W} satisfies [N] (*ii*) $A_{\mathscr{W}}$ satisfies [N]

- 4 回 ト 4 三 ト 4 三 ト

Weight function systems

A family $\mathscr{W} = \{w^{\lambda} : \lambda \in \mathbb{R}_+\}$ of positive continuous functions is called a weight function system if $1 \le w^{\lambda} \le w^{\mu}$ when $\mu \le \lambda$.

We consider the conditions

$$\begin{split} & [\mathsf{w}\mathsf{M}] \qquad \sup_{|y| \leq 1} w^{\lambda}(x+y) \leq C w^{\mu}(x) \\ & [\mathsf{M}] \qquad w^{\lambda}(x+y) \leq C w^{\mu}(x) w^{\mu}(y) \\ & [\mathsf{N}] \qquad w^{\lambda}/w^{\mu} \in L^1(\mathbb{R}^d) \end{split}$$

To \mathscr{W} we associate the Köthe set $A_{\mathscr{W}} = \{(w^{\lambda}(j))_{j \in \mathbb{Z}^d}\}$

Proposition

Suppose \mathscr{W} satisfies [wM]. The following are equivalent: (*i*) \mathscr{W} satisfies [N] (*ii*) $A_{\mathscr{W}}$ satisfies [N]

A weight sequence $M = (M_{\alpha})_{\alpha}$ is a sequence of positive numbers such that $\lim_{\alpha \to \infty} M_{\alpha}^{1/|\alpha|} = \infty$ and for which $M_{\alpha+e_j}^2 \leq M_{\alpha}M_{\alpha+2e_j}$, $\forall \alpha \in \mathbb{N}^d$.

A weight sequence system $\mathfrak{M} = \{M^{\lambda} : \lambda \in \mathbb{R}_+\}$ is a family of weight sequences such that $M^{\lambda} \leq M^{\mu}$ when $\lambda \leq \mu$.

• We consider the following conditions on $\mathfrak{M}:$

 $\begin{array}{ll} [\mathsf{L}] & \forall L > 0 : L^{|\alpha|} M^{\mu}_{\alpha} \leq C M^{\lambda}_{\alpha}; \\ [\mathfrak{M}.2]' & \exists H > 0 : M^{\mu}_{\alpha+e_i} \leq C H^{|\alpha|} M^{\lambda}_{\alpha} \end{array}$

- \mathfrak{M} is called accelerating if $M_{\alpha+e_i}^{\lambda}/M_{\alpha}^{\lambda} \leq M_{\alpha+e_i}^{\mu}/M_{\alpha}^{\mu}$ when $\lambda \leq \mu$.
- \mathfrak{M} is called isotropically decomposable if, after some permutation of the indices, it can be written as

$$\mathfrak{M} = \mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_k$$

where for each $\mathfrak{M}_j = \{(M_{j,\alpha}^{\lambda})_{\alpha \in \mathbb{N}^d} : \lambda \in \mathbb{R}_+\}$ it holds that $M_{j,\alpha}^{\lambda} = M_{j,\beta}^{\lambda}$ whenever $|\alpha| = |\beta|$.

A weight sequence $M = (M_{\alpha})_{\alpha}$ is a sequence of positive numbers such that $\lim_{\alpha \to \infty} M_{\alpha}^{1/|\alpha|} = \infty$ and for which $M_{\alpha+e_i}^2 \leq M_{\alpha}M_{\alpha+2e_i}$, $\forall \alpha \in \mathbb{N}^d$.

A weight sequence system $\mathfrak{M} = \{M^{\lambda} : \lambda \in \mathbb{R}_+\}$ is a family of weight sequences such that $M^{\lambda} \leq M^{\mu}$ when $\lambda \leq \mu$.

• We consider the following conditions on \mathfrak{M} :

 $\begin{aligned} [L] \quad \forall L > 0 : L^{|\alpha|} M_{\alpha}^{\mu} &\leq C M_{\alpha}^{\lambda}; \\ [\mathfrak{M}.2]' \quad \exists H > 0 : M_{\alpha+e_i}^{\mu} &\leq C H^{|\alpha|} M_{\alpha}^{\lambda}. \end{aligned}$

- \mathfrak{M} is called accelerating if $M_{\alpha+e_i}^{\lambda}/M_{\alpha}^{\lambda} \leq M_{\alpha+e_i}^{\mu}/M_{\alpha}^{\mu}$ when $\lambda \leq \mu$.
- \mathfrak{M} is called isotropically decomposable if, after some permutation of the indices, it can be written as

$$\mathfrak{M} = \mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_k$$

where for each $\mathfrak{M}_j = \{(M_{j,\alpha}^{\lambda})_{\alpha \in \mathbb{N}^d} : \lambda \in \mathbb{R}_+\}$ it holds that $M_{j,\alpha}^{\lambda} = M_{j,\beta}^{\lambda}$ whenever $|\alpha| = |\beta|$.

A weight sequence $M = (M_{\alpha})_{\alpha}$ is a sequence of positive numbers such that $\lim_{\alpha \to \infty} M_{\alpha}^{1/|\alpha|} = \infty$ and for which $M_{\alpha+e_i}^2 \leq M_{\alpha}M_{\alpha+2e_i}$, $\forall \alpha \in \mathbb{N}^d$.

A weight sequence system $\mathfrak{M} = \{M^{\lambda} : \lambda \in \mathbb{R}_+\}$ is a family of weight sequences such that $M^{\lambda} \leq M^{\mu}$ when $\lambda \leq \mu$.

• We consider the following conditions on \mathfrak{M} :

$$\begin{array}{ll} [L] & \forall L > 0: L^{|\alpha|} M^{\mu}_{\alpha} \leq C M^{\lambda}_{\alpha}; \\ [\mathfrak{M}.2]' & \exists H > 0: M^{\mu}_{\alpha+e_j} \leq C H^{|\alpha|} M^{\lambda}_{\alpha}. \end{array}$$

- \mathfrak{M} is called accelerating if $M_{\alpha+e_i}^{\lambda}/M_{\alpha}^{\lambda} \leq M_{\alpha+e_i}^{\mu}/M_{\alpha}^{\mu}$ when $\lambda \leq \mu$.
- \mathfrak{M} is called isotropically decomposable if, after some permutation of the indices, it can be written as

$$\mathfrak{M} = \mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_k$$

where for each $\mathfrak{M}_j = \{(M_{j,\alpha}^{\lambda})_{\alpha \in \mathbb{N}^d} : \lambda \in \mathbb{R}_+\}$ it holds that $M_{j,\alpha}^{\lambda} = M_{j,\beta}^{\lambda}$ whenever $|\alpha| = |\beta|$.

A weight sequence $M = (M_{\alpha})_{\alpha}$ is a sequence of positive numbers such that $\lim_{\alpha \to \infty} M_{\alpha}^{1/|\alpha|} = \infty$ and for which $M_{\alpha+e_i}^2 \leq M_{\alpha}M_{\alpha+2e_i}$, $\forall \alpha \in \mathbb{N}^d$.

A weight sequence system $\mathfrak{M} = \{M^{\lambda} : \lambda \in \mathbb{R}_+\}$ is a family of weight sequences such that $M^{\lambda} \leq M^{\mu}$ when $\lambda \leq \mu$.

• We consider the following conditions on \mathfrak{M} :

$$\begin{array}{ll} [L] & \forall L > 0: L^{|\alpha|} M^{\mu}_{\alpha} \leq C M^{\lambda}_{\alpha}; \\ [\mathfrak{M}.2]' & \exists H > 0: M^{\mu}_{\alpha+e_j} \leq C H^{|\alpha|} M^{\lambda}_{\alpha}. \end{array}$$

• \mathfrak{M} is called accelerating if $M_{\alpha+e_j}^{\lambda}/M_{\alpha}^{\lambda} \leq M_{\alpha+e_j}^{\mu}/M_{\alpha}^{\mu}$ when $\lambda \leq \mu$.

• \mathfrak{M} is called isotropically decomposable if, after some permutation of the indices, it can be written as

$$\mathfrak{M} = \mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_k$$

where for each $\mathfrak{M}_j = \{(M_{j,\alpha}^{\lambda})_{\alpha \in \mathbb{N}^d} : \lambda \in \mathbb{R}_+\}$ it holds that $M_{j,\alpha}^{\lambda} = M_{j,\beta}^{\lambda}$ whenever $|\alpha| = |\beta|$.

- 4 回 ト 4 三 ト

A weight sequence $M = (M_{\alpha})_{\alpha}$ is a sequence of positive numbers such that $\lim_{\alpha \to \infty} M_{\alpha}^{1/|\alpha|} = \infty$ and for which $M_{\alpha+e_i}^2 \leq M_{\alpha}M_{\alpha+2e_i}$, $\forall \alpha \in \mathbb{N}^d$.

A weight sequence system $\mathfrak{M} = \{M^{\lambda} : \lambda \in \mathbb{R}_+\}$ is a family of weight sequences such that $M^{\lambda} \leq M^{\mu}$ when $\lambda \leq \mu$.

• We consider the following conditions on \mathfrak{M} :

$$\begin{array}{ll} [\mathsf{L}] & \forall L > 0: L^{|\alpha|} M^{\mu}_{\alpha} \leq C M^{\lambda}_{\alpha}; \\ [\mathfrak{M}.2]' & \exists H > 0: M^{\mu}_{\alpha+e_j} \leq C H^{|\alpha|} M^{\lambda}_{\alpha}. \end{array}$$

- \mathfrak{M} is called accelerating if $M_{\alpha+e_j}^{\lambda}/M_{\alpha}^{\lambda} \leq M_{\alpha+e_j}^{\mu}/M_{\alpha}^{\mu}$ when $\lambda \leq \mu$.
- ${\mathfrak M}$ is called isotropically decomposable if, after some permutation of the indices, it can be written as

$$\mathfrak{M} = \mathfrak{M}_1 \otimes \cdots \otimes \mathfrak{M}_k$$

where for each $\mathfrak{M}_{j} = \{(M_{j,\alpha}^{\lambda})_{\alpha \in \mathbb{N}^{d}} : \lambda \in \mathbb{R}_{+}\}$ it holds that $M_{j,\alpha}^{\lambda} = M_{j,\beta}^{\lambda}$ whenever $|\alpha| = |\beta|$.

Weight sequence systems - Properties

For any $\lambda \in \mathbb{R}_+$ the associated function of M^λ is defined as

$$\omega_{\mathcal{M}^{\lambda}}(t) = \sup_{lpha \in \mathbb{N}^{d}} \log rac{|t^{lpha}| \mathcal{M}_{0}^{\lambda}}{\mathcal{M}_{lpha}^{\lambda}}$$

Then, $\mathscr{W}_{\mathfrak{M}} = \{ \exp \ \omega_{M^{\lambda}}(\cdot) : \lambda \in \mathbb{R}_+ \}$ is a weight function system.

Proposition

Let \mathfrak{M} be an isotropically decomposable weight sequence system satisfying [L].

- (a) $\mathcal{W}_{\mathfrak{M}}$ satisfies [IVI].
 - (b) Consider the statements:
 - (i) M satisfies [M.2]
 - (ii) $A_{\mathscr{W}_{\mathfrak{M}}}$ satisfies [N]
 - (iii) [™]m satisfies [N]
 - Then, $(i) \Rightarrow (ii) \Leftrightarrow (iii)$. If $\mathfrak M$ is accelerating, then $(iii) \Rightarrow (i)$

- 4 回 ト 4 三 ト

Weight sequence systems - Properties

For any $\lambda \in \mathbb{R}_+$ the associated function of M^λ is defined as

$$\omega_{\mathcal{M}^{\lambda}}(t) = \sup_{lpha \in \mathbb{N}^{d}} \log rac{|t^{lpha}| \mathcal{M}_{0}^{\lambda}}{\mathcal{M}_{lpha}^{\lambda}}$$

Then, $\mathscr{W}_{\mathfrak{M}} = \{ \exp \ \omega_{M^{\lambda}}(\cdot) : \lambda \in \mathbb{R}_+ \}$ is a weight function system.

Proposition

Let \mathfrak{M} be an isotropically decomposable weight sequence system satisfying [L].

- (a) $\mathscr{W}_{\mathfrak{M}}$ satisfies [M].
- (b) Consider the statements:

(*i*)
$$\mathfrak{M}$$
 satisfies $[\mathfrak{M}.2]'$

(*ii*)
$$A_{\mathscr{W}_{\mathfrak{M}}}$$
 satisfies [N]
(*iii*) $\mathscr{W}_{\mathfrak{M}}$ satisfies [N]

Then, $(i) \Rightarrow (ii) \Leftrightarrow (iii)$. If \mathfrak{M} is accelerating, then $(iii) \Rightarrow (i)$.

Weight sequence systems - Examples

Weight sequence systems allow us to simultaneously consider different definitions of Gelfand-Shilov spaces such as:

• Via weight sequences. Here we put for a weight sequence *M*:

$$\mathfrak{M}_{M} = \{ (\lambda^{|\alpha|} M_{\alpha})_{\alpha \in \mathbb{N}^{d}} : \lambda \in \mathbb{R}_{+} \}, \qquad \mathscr{W}_{M} = \{ \exp \omega_{M}(\cdot/\lambda) : \lambda \in \mathbb{R}_{+} \}$$

• Via Braun-Meise-Taylor weight functions $\omega: \mathbb{R}^d \to \mathbb{R}_+$ where we set

$$\mathfrak{M}_{\omega}=\{(\exp(\frac{1}{\lambda}\phi^*(\lambda|\alpha|)))_{\alpha\in\mathbb{N}^d}:\lambda\in\mathbb{R}_+\},\quad \mathscr{W}_{\omega}=\{\exp(\frac{1}{\lambda}\omega(\cdot)):\lambda\in\mathbb{R}_+\}$$

where $\phi^*(y) = \sup_{x \ge 0} (xy - \omega(e^x))$ is the Young conjugate of $\omega(e^x)$.

In this case, we characterized the nuclearity for a larger class of spaces in:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *Characterization of nuclearity for Beurling-Björck spaces*, Proc. Amer. Math. Soc., in press (DOI: 10.1090/proc/15227).

A (B) + A (B) + A (B) +

Weight sequence systems allow us to simultaneously consider different definitions of Gelfand-Shilov spaces such as:

• Via weight sequences. Here we put for a weight sequence *M*:

$$\mathfrak{M}_{M} = \{ (\lambda^{|\alpha|} M_{\alpha})_{\alpha \in \mathbb{N}^{d}} : \lambda \in \mathbb{R}_{+} \}, \qquad \mathscr{W}_{M} = \{ \exp \omega_{M}(\cdot/\lambda) : \lambda \in \mathbb{R}_{+} \}$$

• Via Braun-Meise-Taylor weight functions $\omega : \mathbb{R}^d \to \mathbb{R}_+$ where we set

$$\mathfrak{M}_\omega = \{(\exp(rac{1}{\lambda}\phi^*(\lambda|lpha|)))_{lpha\in\mathbb{N}^d}:\lambda\in\mathbb{R}_+\},\quad \mathscr{W}_\omega = \{\exp(rac{1}{\lambda}\omega(\cdot)):\lambda\in\mathbb{R}_+\}$$

where $\phi^*(y) = \sup_{x \ge 0} (xy - \omega(e^x))$ is the Young conjugate of $\omega(e^x)$.

In this case, we characterized the nuclearity for a larger class of spaces in:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *Characterization of nuclearity for Beurling-Björck spaces*, Proc. Amer. Math. Soc., in press (DOI: 10.1090/proc/15227).

< □ > < 同 > < 三 > < 三 >

Weight sequence systems allow us to simultaneously consider different definitions of Gelfand-Shilov spaces such as:

• Via weight sequences. Here we put for a weight sequence *M*:

$$\mathfrak{M}_{\mathcal{M}} = \{ (\lambda^{|\alpha|} \mathcal{M}_{\alpha})_{\alpha \in \mathbb{N}^{d}} : \lambda \in \mathbb{R}_{+} \}, \qquad \mathscr{W}_{\mathcal{M}} = \{ \exp \omega_{\mathcal{M}}(\cdot/\lambda) : \lambda \in \mathbb{R}_{+} \}$$

• Via Braun-Meise-Taylor weight functions $\omega: \mathbb{R}^d \to \mathbb{R}_+$ where we set

$$\mathfrak{M}_{\omega}=\{(\exp(\frac{1}{\lambda}\phi^*(\lambda|\alpha|)))_{\alpha\in\mathbb{N}^d}:\lambda\in\mathbb{R}_+\},\quad \mathscr{W}_{\omega}=\{\exp(\frac{1}{\lambda}\omega(\cdot)):\lambda\in\mathbb{R}_+\}$$

where $\phi^*(y) = \sup_{x \ge 0} (xy - \omega(e^x))$ is the Young conjugate of $\omega(e^x)$.

In this case, we characterized the nuclearity for a larger class of spaces in:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *Characterization of nuclearity for Beurling-Björck spaces*, Proc. Amer. Math. Soc., in press (DOI: 10.1090/proc/15227).

イロト 不得 トイヨト イヨト

Weight sequence systems allow us to simultaneously consider different definitions of Gelfand-Shilov spaces such as:

• Via weight sequences. Here we put for a weight sequence *M*:

$$\mathfrak{M}_{\mathcal{M}} = \{ (\lambda^{|\alpha|} \mathcal{M}_{\alpha})_{\alpha \in \mathbb{N}^{d}} : \lambda \in \mathbb{R}_{+} \}, \qquad \mathscr{W}_{\mathcal{M}} = \{ \exp \omega_{\mathcal{M}}(\cdot/\lambda) : \lambda \in \mathbb{R}_{+} \}$$

• Via Braun-Meise-Taylor weight functions $\omega: \mathbb{R}^d \to \mathbb{R}_+$ where we set

$$\mathfrak{M}_{\omega}=\{(\exp(\frac{1}{\lambda}\phi^*(\lambda|\alpha|)))_{\alpha\in\mathbb{N}^d}:\lambda\in\mathbb{R}_+\},\quad \mathscr{W}_{\omega}=\{\exp(\frac{1}{\lambda}\omega(\cdot)):\lambda\in\mathbb{R}_+\}$$

where $\phi^*(y) = \sup_{x \ge 0} (xy - \omega(e^x))$ is the Young conjugate of $\omega(e^x)$.

In this case, we characterized the nuclearity for a larger class of spaces in:

A. DEBROUWERE, L. NEYT AND J. VINDAS, *Characterization of nuclearity for Beurling-Björck spaces*, Proc. Amer. Math. Soc., in press (DOI: 10.1090/proc/15227).

Gelfand-Shilov spaces

For a weight sequence system \mathfrak{M} , weight function system \mathscr{W} and $q \in [1, \infty]$ we define $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ as the space of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ s.t.

$$\|\varphi\|_{\mathcal{S}^{M^{\lambda}}_{w^{\lambda},q}} = \sup_{\alpha \in \mathbb{N}^{d}} \frac{1}{M^{\lambda}_{|\alpha|}} \|\varphi^{(\alpha)}w^{\lambda}\|_{L^{q}(\mathbb{R}^{d})} < \infty, \quad \forall \lambda \in \mathbb{R}_{+} \text{ (resp. } \exists \lambda \in \mathbb{R}_{+})$$

Theorem 1 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$, \mathscr{W} satisfy [wM] and suppose $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} \neq \{0\}$ for some $q \in [1, \infty]$. Consider the statements (i) \mathscr{W} satisfies [N] (ii) $\mathcal{S}_{[\mathscr{W}]}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as locally convex spaces for all $q, r \in [1, \infty]$ (iii) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as vector spaces for some $q, r \in [1, \infty]$ with $q \neq r$ Then, (i) \Rightarrow (ii) \Rightarrow (iii). If in addition \mathscr{W} satisfies [M], then also (iii) \Rightarrow (i).

Gelfand-Shilov spaces

For a weight sequence system \mathfrak{M} , weight function system \mathscr{W} and $q \in [1, \infty]$ we define $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ as the space of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ s.t.

$$\|\varphi\|_{\mathcal{S}^{M^{\lambda}}_{w^{\lambda},q}} = \sup_{\alpha \in \mathbb{N}^{d}} \frac{1}{M^{\lambda}_{|\alpha|}} \|\varphi^{(\alpha)}w^{\lambda}\|_{L^{q}(\mathbb{R}^{d})} < \infty, \quad \forall \lambda \in \mathbb{R}_{+} \text{ (resp. } \exists \lambda \in \mathbb{R}_{+})$$

Theorem 1 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$, \mathscr{W} satisfy [wM] and suppose $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} \neq \{0\}$ for some $q \in [1, \infty]$. Consider the statements (i) \mathscr{W} satisfies [N] (ii) $\mathcal{S}_{[\mathscr{W}]}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as locally convex spaces for all $q, r \in [1, \infty]$ (iii) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as vector spaces for some $q, r \in [1, \infty]$ with $q \neq r$ Then, (i) \Rightarrow (ii) \Rightarrow (iii). If in addition \mathscr{W} satisfies [M], then also (iii) \Rightarrow (i).

A (1) > A (1) > A (1)

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$ and \mathscr{W} satisfy [wM] and [N]. Then, $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for all $q \in [1,\infty]$.

Proof: By Theorem 1 it suffices to show $S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ is nuclear. Let $(\varphi_n)_{n\in\mathbb{N}} \subset S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ be weakly summable, then one shows

$$\forall \mu \in \mathbb{R}_+ \ (\exists \mu \in \mathbb{R}_+): \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{1}{M^{\mu}_{\alpha}} \sum_{n=0}^{\infty} |\varphi_n^{(\alpha)}(x)| w^{\mu}(x) < \infty$$

Then one finds for any $\lambda \in \mathbb{R}_+$ a $\mu \in \mathbb{R}_+$ (for any $\mu \in \mathbb{R}_+$ a $\lambda \in \mathbb{R}_+$) s.t.

 $\sum_{n=0}^{\infty} \|\varphi_n\|_{\mathcal{S}^{M^{\lambda}}_{w^{\lambda},1}} = \sum_{n=0}^{\infty} \sup_{\alpha \in \mathbb{N}^d} \frac{1}{2^{|\alpha|} M^{\mu}_{\alpha}} \int_{\mathbb{R}^d} |\varphi_n^{(\alpha)}(x)| w^{\lambda}(x) dx = O\left(\left\|w^{\lambda}/w^{\mu}\right\|_{L^1(\mathbb{R}^d)}\right)$

Then $(arphi_n)_{n\in\mathbb{N}}$ is absolutely summable in $\mathcal{S}^{[\mathcal{M}]}_{[\mathcal{M}],1}$

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$ and \mathscr{W} satisfy [wM] and [N]. Then, $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for all $q \in [1,\infty]$.

Proof: By Theorem 1 it suffices to show $S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ is nuclear. Let $(\varphi_n)_{n\in\mathbb{N}} \subset S_{[\mathscr{M}],\infty}^{[\mathfrak{M}]}$ be weakly summable, then one shows

$$\forall \mu \in \mathbb{R}_+ \ (\exists \mu \in \mathbb{R}_+) : \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{1}{M_{\alpha}^{\mu}} \sum_{n=0}^{\infty} |\varphi_n^{(\alpha)}(x)| w^{\mu}(x) < \infty$$

Then one finds for any $\lambda \in \mathbb{R}_+$ a $\mu \in \mathbb{R}_+$ (for any $\mu \in \mathbb{R}_+$ a $\lambda \in \mathbb{R}_+$) s.t.

$$\sum_{n=0}^{\infty} \left\|\varphi_n\right\|_{\mathcal{S}^{M\lambda}_{w^{\lambda},1}} = \sum_{n=0}^{\infty} \sup_{\alpha \in \mathbb{N}^d} \frac{1}{2^{|\alpha|} M^{\mu}_{\alpha}} \int_{\mathbb{R}^d} \left|\varphi_n^{(\alpha)}(x)\right| w^{\lambda}(x) dx = O\left(\left\|w^{\lambda}/w^{\mu}\right\|_{L^1(\mathbb{R}^d)}\right)$$

Then $(arphi_n)_{n\in\mathbb{N}}$ is absolutely summable in $\mathcal{S}_{[\mathscr{W}],1}^{[\mathfrak{M}]}=\mathcal{S}_{[\mathscr{W}]}^{[\mathfrak{M}]}$

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$ and \mathscr{W} satisfy [wM] and [N]. Then, $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for all $q \in [1,\infty]$.

Proof: By Theorem 1 it suffices to show $S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ is nuclear. Let $(\varphi_n)_{n\in\mathbb{N}}\subset S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ be weakly summable, then one shows

$$\forall \mu \in \mathbb{R}_+ \ (\exists \mu \in \mathbb{R}_+) : \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{1}{M^{\mu}_{\alpha}} \sum_{n=0}^{\infty} |\varphi_n^{(\alpha)}(x)| w^{\mu}(x) < \infty$$

Then one finds for any $\lambda \in \mathbb{R}_+$ a $\mu \in \mathbb{R}_+$ (for any $\mu \in \mathbb{R}_+$ a $\lambda \in \mathbb{R}_+$) s.t.

$$\sum_{n=0}^{\infty} \left\|\varphi_n\right\|_{\mathcal{S}^{M^{\lambda}}_{w^{\lambda},1}} = \sum_{n=0}^{\infty} \sup_{\alpha \in \mathbb{N}^d} \frac{1}{2^{|\alpha|} M^{\mu}_{\alpha}} \int_{\mathbb{R}^d} \left|\varphi_n^{(\alpha)}(x)\right| w^{\lambda}(x) dx = O\left(\left\|w^{\lambda}/w^{\mu}\right\|_{L^1(\mathbb{R}^d)}\right)$$

Then $(\varphi_n)_{n \in \mathbb{N}}$ is absolutely summable in $\mathcal{S}_{[\mathcal{W}]}^{[\mathcal{W}]} = \mathcal{S}_{[\mathcal{W}]}^{[\mathcal{W}]}$

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} satisfy [L] and $[\mathfrak{M}.2]'$ and \mathscr{W} satisfy [wM] and [N]. Then, $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for all $q \in [1,\infty]$.

Proof: By Theorem 1 it suffices to show $S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ is nuclear. Let $(\varphi_n)_{n\in\mathbb{N}} \subset S_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$ be weakly summable, then one shows

$$\forall \mu \in \mathbb{R}_+ \ (\exists \mu \in \mathbb{R}_+) : \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{1}{M^{\mu}_{\alpha}} \sum_{n=0}^{\infty} |\varphi_n^{(\alpha)}(x)| w^{\mu}(x) < \infty$$

Then one finds for any $\lambda \in \mathbb{R}_+$ a $\mu \in \mathbb{R}_+$ (for any $\mu \in \mathbb{R}_+$ a $\lambda \in \mathbb{R}_+$) s.t.

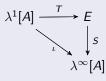
$$\sum_{n=0}^{\infty} \left\|\varphi_n\right\|_{\mathcal{S}^{M^{\lambda}}_{w^{\lambda},1}} = \sum_{n=0}^{\infty} \sup_{\alpha \in \mathbb{N}^d} \frac{1}{2^{|\alpha|} M^{\mu}_{\alpha}} \int_{\mathbb{R}^d} \left|\varphi_n^{(\alpha)}(x)\right| w^{\lambda}(x) dx = O\left(\left\|w^{\lambda}/w^{\mu}\right\|_{L^1(\mathbb{R}^d)}\right)$$

Then $(\varphi_n)_{n \in \mathbb{N}}$ is absolutely summable in $\mathcal{S}_{[\mathscr{W}],1}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],\infty}^{[\mathfrak{M}]}$.

Lenny Neyt

Lemma (Petzsche, 1978)

Let A be a Köthe set. Let E be a lcHs s.t. E is nuclear (E'_b is nuclear). Suppose the following diagram of continuous functions

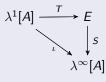


commutes, then $\lambda^1[A]$ is nuclear.

To get necessary conditions for nuclearity: find continuous embeddings such that the diagram commutes in the case of $A = A_{\mathscr{W}}$ and $A = A_{\mathscr{W}_{\mathfrak{M}}}$.

Lemma (Petzsche, 1978)

Let A be a Köthe set. Let E be a lcHs s.t. E is nuclear (E'_b is nuclear). Suppose the following diagram of continuous functions



commutes, then $\lambda^1[A]$ is nuclear.

To get necessary conditions for nuclearity: find continuous embeddings such that the diagram commutes in the case of $A = A_{\mathscr{W}}$ and $A = A_{\mathscr{W}_{\mathfrak{M}}}$.

Characterization of nuclearity - General

The nuclearity of the Gelfand-Shilov spaces $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ may now be characterized as follows :

Theorem 3 (Debrouwere, N. and Vindas, 2020)

Let ${\mathfrak M}$ be an isotropically decomposable accelerating weight sequence system satisfying [L]. Let ${\mathscr W}$ be a weight function system satisfying [M].

Suppose that
$${\mathcal S}^{[{\mathfrak M}]}_{[{\mathscr W}],q}
eq \{0\}$$
 for some $q\in [1,\infty].$

The following are equivalent:

(i)
$$\mathfrak{M}$$
 satisfies $[\mathfrak{M}.2]'$ and \mathscr{W} satisfies $[\mathsf{N}]$

(*ii*)
$$\mathcal{S}^{[\mathfrak{M}]}_{[\mathscr{W}],q}$$
 is nuclear for some $q \in [1,\infty]$

(iii)
$$\mathcal{S}^{[\mathfrak{M}]}_{[\mathscr{W}],q}$$
 is nuclear for all $q\in [1,\infty]$

Characterization of nuclearity - Fixed ${\mathfrak M}$

If we fix a weight sequence $\mathfrak{M},$ our result becomes:

Theorem 4 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M} be a weight sequence system satisfying [L] and $[\mathfrak{M}.2]'$. Let \mathscr{W} be a weight function system satisfying [M]. Suppose that $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} \neq \{0\}$ for some $q \in [1, \infty]$.

The following are equivalent:

(i)
$$\mathscr{W}$$
 satisfies [N]
(ii) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for some $q \in [1,\infty]$
(iii) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]}$ is nuclear for all $q \in [1,\infty]$
(iii) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as locally convex spaces for all $q, r \in [1,\infty]$
(iv) $\mathcal{S}_{[\mathscr{W}],q}^{[\mathfrak{M}]} = \mathcal{S}_{[\mathscr{W}],r}^{[\mathfrak{M}]}$ as vector spaces for some $q, r \in [1,\infty]$ with $q \neq r$

Let

$$\overline{V}(\mathscr{W}) = \{w : \mathbb{R}^d \to \mathbb{R}_{\geq 0} \text{ is upper semicontinuous such that} \\ \sup_{x \in \mathbb{R}^d} w(x)/w^{\lambda}(x) < \infty, \forall \lambda \in \mathbb{R}_+ \} \\ \overline{V}(\mathfrak{M}) = \{M = (M_{\alpha})_{\alpha \in \mathbb{N}^d} \in \mathbb{R}_+^{\mathbb{N}^d} \text{ such that } \sup_{\alpha \in \mathbb{N}^d} M_{\alpha}^{\lambda}/M_{\alpha} < \infty, \forall \lambda \in \mathbb{R}_+ \}$$

Theorem 5 (Debrouwere, N. and Vindas, 2020)

Let ${\mathfrak M}$ satisfy [L] and $[{\mathfrak M}.2]'$ and ${\mathscr W}$ satisfy [wM] and [N]. Then,

$$\varphi \in \mathcal{S}_{\{\mathscr{W}\}}^{\{\mathfrak{M}\}} \Longleftrightarrow \sup_{(\alpha, x) \in \mathbb{N}^d \times \mathbb{R}^d} \frac{|\varphi^{(\alpha)}(x)|w(x)}{M_{\alpha}} < \infty, \quad \forall w \in \overline{V}(\mathscr{W}), M \in \overline{V}(\mathfrak{M})$$

Moreover, the topology of $\mathcal{S}_{\{\mathscr{W}\}}^{\{\mathfrak{M}\}}$ is generated by the latter seminorms

• • • • • • • • • • • • • •

Let

$$\overline{V}(\mathscr{W}) = \{ w : \mathbb{R}^d \to \mathbb{R}_{\geq 0} \text{ is upper semicontinuous such that} \\ \sup_{x \in \mathbb{R}^d} w(x)/w^{\lambda}(x) < \infty, \forall \lambda \in \mathbb{R}_+ \} \\ \overline{V}(\mathfrak{M}) = \{ M = (M_{\alpha})_{\alpha \in \mathbb{N}^d} \in \mathbb{R}_+^{\mathbb{N}^d} \text{ such that } \sup_{\alpha \in \mathbb{N}^d} M_{\alpha}^{\lambda}/M_{\alpha} < \infty, \forall \lambda \in \mathbb{R}_+ \} \end{cases}$$

Theorem 5 (Debrouwere, N. and Vindas, 2020)

Let ${\mathfrak M}$ satisfy [L] and $[{\mathfrak M}.2]'$ and ${\mathscr W}$ satisfy [wM] and [N]. Then,

$$\varphi \in \mathcal{S}^{\{\mathfrak{M}\}}_{\{\mathscr{W}\}} \Longleftrightarrow \sup_{(\alpha,x) \in \mathbb{N}^d \times \mathbb{R}^d} \frac{|\varphi^{(\alpha)}(x)|w(x)}{M_{\alpha}} < \infty, \quad \forall w \in \overline{V}(\mathscr{W}), M \in \overline{V}(\mathfrak{M})$$

Moreover, the topology of $\mathcal{S}^{\{\mathfrak{M}\}}_{\{\mathscr{W}\}}$ is generated by the latter seminorms.

< ロ > < 同 > < 回 > < 回 >

Theorem 6 (Debrouwere, N. and Vindas, 2020)

Let \mathfrak{M}_j be a weight sequence system on \mathbb{N}^{d_j} satisfying [L] and $[\mathfrak{M}.2]'$. (j=1,2) Let \mathscr{W}_j be a weight function systems on \mathbb{R}^{d_j} satisfying [wM] and [N]. (j=1,2)

Then,

$$\mathcal{S}^{[\mathfrak{M}_1\otimes\mathfrak{M}_2]}_{[\mathscr{W}_1\otimes\mathscr{W}_2]}(\mathbb{R}^{d_1+d_2})\cong\mathcal{S}^{[\mathfrak{M}_1]}_{[\mathscr{W}_1]}(\mathbb{R}^{d_1})\widehat{\otimes}\mathcal{S}^{[\mathfrak{M}_2]}_{[\mathscr{W}_2]}(\mathbb{R}^{d_2})\cong\mathcal{L}_b(\mathcal{S}^{[\mathfrak{M}_1]}_{[\mathscr{W}_1]}(\mathbb{R}^{d_1})'_b,\mathcal{S}^{[\mathfrak{M}_2]}_{[\mathscr{W}_2]}(\mathbb{R}^{d_2}))$$

and

$$\mathcal{S}_{[\mathscr{W}_1\otimes\mathscr{W}_2]}^{[\mathfrak{M}_1\otimes\mathfrak{M}_2]}(\mathbb{R}^{d_1+d_2})_b'\cong\mathcal{S}_{[\mathscr{W}_1]}^{[\mathfrak{M}_1]}(\mathbb{R}^{d_1})_b'\widehat{\otimes}\mathcal{S}_{[\mathscr{W}_2]}^{[\mathfrak{M}_2]}(\mathbb{R}^{d_2})_b'\cong\mathcal{L}_b(\mathcal{S}_{[\mathscr{W}_1]}^{[\mathfrak{M}_1]}(\mathbb{R}^{d_1}),\mathcal{S}_{[\mathscr{W}_2]}^{[\mathfrak{M}_2]}(\mathbb{R}^{d_2})_b')$$

A (1) < A (1)</p>