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Introduction

The goal of this talk is to characterize when the Gelfand-Shilov space S [M]
[W ] is

nuclear.

• Gel’fand and Shilov characterized the nuclearity of the space S(W ),∞.

• For weight sequences, the nuclearity of the space S [M]
[A] was shown under

(M.1) and (M.2) by Pilipović, Prangoski, and Vindas.

• Boiti, Jornet, and Oliaro recently considered the nuclearity of isotropic

Beurling-Björk spaces S(ω)(ω) with respect to the weight function ω.

• Our results deal with more general spaces and provide full characterizations
of their nuclearity. This talk is based on:

A. Debrouwere, L. Neyt and J. Vindas, The nuclearity of
Gelfand–Shilov spaces and kernel theorems, Collect. Math., in press
(DOI: 10.1007/s13348-020-00286-2).
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Nuclear spaces - Definition

Let E and F be locally convex Hausdorff spaces (=lcHs).
A linear map A : E → F is nuclear if there exists

• an equicontinuous sequence (an)n in E ′;

• a sequence (bn)n contained in a bounded Banach disk of F ;

• an absolutely summable complex sequence (λn)n;

such that
A(x) =

∑
n∈N

λn 〈an, x〉 bn, ∀x ∈ E .

Definition
A lcHs E is called nuclear if every continuous linear map from E into a Banach
space is nuclear.
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Nuclear spaces - Properties

Nuclear spaces enjoy several nice properties.

� Nuclear spaces are stable under taking subspaces, Hausdorff quotients,
projective and inductive limits, completion, tensor products, . . .

� Nuclear spaces are Schwartz.
↪→ Every quasi-complete barrelled nuclear space is Montel (i.e. every
bounded set is relatively compact).
↪→ An infinite dimensional Banach space is not nuclear.

� For a nuclear complete lcHs E and any complete lcHs F the well-known
topologies on E ⊗ F coincide. Moreover, the extension of

E ⊗ F → Lb(E ′b,F ) : e ⊗ f 7→ (e′ 7→ 〈e′, e〉 f )

gives the canonical isomorphism

E ⊗̂F ∼= Lb(E ′b,F )

� For example we have S(Rd1+d2)′b
∼= Lb(S(Rd1),S(Rd2)′b), i.e. for any

continuous linear L : S(Rd1)→ S(Rd2)′b there exists a kernel f ∈ S(Rd1+d2)′

such that

〈L(ϕ1), ϕ2〉 =

∫
f (x , y)ϕ1(x)ϕ2(y)dxdy , ϕj ∈ S(Rdj ), j = 1, 2
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Nuclear spaces - Fréchet and (DF )-spaces

Let E be a lcHs and x = (xn)n∈N be some sequence in E . Then x is called

• weakly summable if
∑∞

n=0 | 〈x ′, xn〉 | <∞ for all x ′ ∈ E ′

• absolutely summable if
∑∞

n=0 p(xn) <∞ for every continuous seminorms p
on E

Proposition (Grothendieck, 1955)

Let E be a Fréchet space or a (DF)-space. Then, E is nuclear if and only if every
weakly summable sequence in E is absolutely summable.
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Let E be a Fréchet space or a (DF)-space. Then, E is nuclear if and only if every
weakly summable sequence in E is absolutely summable.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 5 / 18



The Beurling and Roumieu case

Throughout this presentation, we will simultaneously consider the Beurling and
Roumieu cases.

Notation

We use the brackets (·) to denote the Beurling case, while we use {·} for the
Roumieu case. We employ [·] as a common notation.

We will encounter several conditions which use the indices λ and µ. These should
always be preceded by the quantifiers:

• Beurling case: ∀λ ∈ R+ ∃µ ∈ R+;

• Roumieu case: ∀µ ∈ R+ ∃λ ∈ R+.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 6 / 18



Köthe sequence spaces

A family A = {(aλj )j∈Zd : λ ∈ R+} of sequences of positive numbers is called a

Köthe set if aλj ≤ aµj when µ ≤ λ.

For any q ∈ [1,∞] we consider the Köthe sequence space λq[A] of all

(cj)j∈Zd ∈ CZd

such that

‖cjaλj ‖`q(Zd ) <∞, ∀λ ∈ R+ (resp. ∃λ ∈ R+)

A is said to satisfy [N] if
∑

j∈Zd aλj /a
µ
j <∞

Proposition

The following are equivalent:

(i) A satisfies [N]

(ii) λq[A] is nuclear for all (resp. for some) q ∈ [1,∞]

(iii) λq[A] = λr [A] for all q, r ∈ [1,∞] (resp. for some q 6= r)

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 7 / 18
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Weight function systems

A family W = {wλ : λ ∈ R+} of positive continuous functions is called a
weight function system if 1 ≤ wλ ≤ wµ when µ ≤ λ.

We consider the conditions

[wM] sup|y |≤1 w
λ(x + y) ≤ Cwµ(x)

[M] wλ(x + y) ≤ Cwµ(x)wµ(y)

[N] wλ/wµ ∈ L1(Rd)

To W we associate the Köthe set AW = {(wλ(j))j∈Zd}

Proposition

Suppose W satisfies [wM]. The following are equivalent:

(i) W satisfies [N]

(ii) AW satisfies [N]
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To W we associate the Köthe set AW = {(wλ(j))j∈Zd}

Proposition

Suppose W satisfies [wM]. The following are equivalent:

(i) W satisfies [N]

(ii) AW satisfies [N]

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 8 / 18



Weight sequence systems - Definition

A weight sequence M = (Mα)α is a sequence of positive numbers such that

limα→∞M
1/|α|
α =∞ and for which M2

α+ej ≤ MαMα+2ej , ∀α ∈ Nd .

A weight sequence system M = {Mλ : λ ∈ R+} is a family of weight sequences
such that Mλ ≤ Mµ when λ ≤ µ.

• We consider the following conditions on M:

[L] ∀L > 0 : L|α|Mµ
α ≤ CMλ

α ;
[M.2]′ ∃H > 0 : Mµ

α+ej
≤ CH |α|Mλ

α .

• M is called accelerating if Mλ
α+ej/M

λ
α ≤ Mµ

α+ej/M
µ
α when λ ≤ µ.

• M is called isotropically decomposable if, after some permutation of the
indices, it can be written as

M = M1 ⊗ · · · ⊗Mk

where for each Mj = {(Mλ
j,α)α∈Nd : λ ∈ R+} it holds that Mλ

j,α = Mλ
j,β

whenever |α| = |β|.
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Weight sequence systems - Properties

For any λ ∈ R+ the associated function of Mλ is defined as

ωMλ(t) = sup
α∈Nd

log
|tα|Mλ

0

Mλ
α

Then, WM = {exp ωMλ(·) : λ ∈ R+} is a weight function system.

Proposition

Let M be an isotropically decomposable weight sequence system satisfying [L].

(a) WM satisfies [M].

(b) Consider the statements:

(i) M satisfies [M.2]′

(ii) AWM
satisfies [N]

(iii) WM satisfies [N]

Then, (i)⇒ (ii)⇔ (iii). If M is accelerating, then (iii)⇒ (i).
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Weight sequence systems - Examples

Weight sequence systems allow us to simultaneously consider different definitions
of Gelfand-Shilov spaces such as:

• Via weight sequences. Here we put for a weight sequence M:

MM = {(λ|α|Mα)α∈Nd : λ ∈ R+ }, WM = {expωM(·/λ) : λ ∈ R+ }

• Via Braun-Meise-Taylor weight functions ω : Rd → R+ where we set

Mω = {(exp(
1

λ
φ∗(λ|α|)))α∈Nd : λ ∈ R+}, Wω = {exp(

1

λ
ω(·)) : λ ∈ R+}

where φ∗(y) = supx≥0(xy − ω(ex)) is the Young conjugate of ω(ex).

In this case, we characterized the nuclearity for a larger class of spaces in:

A. Debrouwere, L. Neyt and J. Vindas, Characterization of
nuclearity for Beurling-Björck spaces, Proc. Amer. Math. Soc., in press
(DOI: 10.1090/proc/15227).
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Gelfand-Shilov spaces

For a weight sequence system M, weight function system W and q ∈ [1,∞] we

define S [M]
[W ],q as the space of all ϕ ∈ C∞(Rd) s.t.

‖ϕ‖SMλ

wλ,q

= sup
α∈Nd

1

Mλ
|α|
‖ϕ(α)wλ‖Lq(Rd ) <∞, ∀λ ∈ R+ (resp. ∃λ ∈ R+)

Theorem 1 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′, W satisfy [wM] and suppose S [M]
[W ],q 6= {0} for some

q ∈ [1,∞]. Consider the statements

(i) W satisfies [N]

(ii) S [M]
[W ] = S [M]

[W ],q = S [M]
[W ],r as locally convex spaces for all q, r ∈ [1,∞]

(iii) S [M]
[W ],q = S [M]

[W ],r as vector spaces for some q, r ∈ [1,∞] with q 6= r

Then, (i)⇒ (ii)⇒ (iii).
If in addition W satisfies [M], then also (iii)⇒ (i).
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Sufficient conditions for nuclearity

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′ and W satisfy [wM] and [N].

Then, S [M]
[W ],q is nuclear for all q ∈ [1,∞].

Proof: By Theorem 1 it suffices to show S [M]
[W ],∞ is nuclear.

Let (ϕn)n∈N ⊂ S [M]
[W ],∞ be weakly summable, then one shows

∀µ ∈ R+ (∃µ ∈ R+) : sup
α∈Nd

sup
x∈Rd

1

Mµ
α

∞∑
n=0

|ϕ(α)
n (x)|wµ(x) <∞

Then one finds for any λ ∈ R+ a µ ∈ R+ (for any µ ∈ R+ a λ ∈ R+) s.t.

∞∑
n=0

‖ϕn‖SMλ

wλ,1

=
∞∑
n=0

sup
α∈Nd

1

2|α|Mµ
α

∫
Rd

|ϕ(α)
n (x)|wλ(x)dx = O

(∥∥wλ/wµ
∥∥
L1(Rd )

)
Then (ϕn)n∈N is absolutely summable in S [M]

[W ],1 = S [M]
[W ],∞.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 13 / 18



Sufficient conditions for nuclearity

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′ and W satisfy [wM] and [N].

Then, S [M]
[W ],q is nuclear for all q ∈ [1,∞].

Proof: By Theorem 1 it suffices to show S [M]
[W ],∞ is nuclear.

Let (ϕn)n∈N ⊂ S [M]
[W ],∞ be weakly summable, then one shows

∀µ ∈ R+ (∃µ ∈ R+) : sup
α∈Nd

sup
x∈Rd

1

Mµ
α

∞∑
n=0

|ϕ(α)
n (x)|wµ(x) <∞

Then one finds for any λ ∈ R+ a µ ∈ R+ (for any µ ∈ R+ a λ ∈ R+) s.t.

∞∑
n=0

‖ϕn‖SMλ

wλ,1

=
∞∑
n=0

sup
α∈Nd

1

2|α|Mµ
α

∫
Rd

|ϕ(α)
n (x)|wλ(x)dx = O

(∥∥wλ/wµ
∥∥
L1(Rd )

)
Then (ϕn)n∈N is absolutely summable in S [M]

[W ],1 = S [M]
[W ],∞.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 13 / 18



Sufficient conditions for nuclearity

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′ and W satisfy [wM] and [N].

Then, S [M]
[W ],q is nuclear for all q ∈ [1,∞].

Proof: By Theorem 1 it suffices to show S [M]
[W ],∞ is nuclear.

Let (ϕn)n∈N ⊂ S [M]
[W ],∞ be weakly summable, then one shows

∀µ ∈ R+ (∃µ ∈ R+) : sup
α∈Nd

sup
x∈Rd

1

Mµ
α

∞∑
n=0

|ϕ(α)
n (x)|wµ(x) <∞

Then one finds for any λ ∈ R+ a µ ∈ R+ (for any µ ∈ R+ a λ ∈ R+) s.t.

∞∑
n=0

‖ϕn‖SMλ

wλ,1

=
∞∑
n=0

sup
α∈Nd

1

2|α|Mµ
α

∫
Rd

|ϕ(α)
n (x)|wλ(x)dx = O

(∥∥wλ/wµ
∥∥
L1(Rd )

)
Then (ϕn)n∈N is absolutely summable in S [M]

[W ],1 = S [M]
[W ],∞.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 13 / 18



Sufficient conditions for nuclearity

Theorem 2 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′ and W satisfy [wM] and [N].

Then, S [M]
[W ],q is nuclear for all q ∈ [1,∞].

Proof: By Theorem 1 it suffices to show S [M]
[W ],∞ is nuclear.

Let (ϕn)n∈N ⊂ S [M]
[W ],∞ be weakly summable, then one shows

∀µ ∈ R+ (∃µ ∈ R+) : sup
α∈Nd

sup
x∈Rd

1

Mµ
α

∞∑
n=0

|ϕ(α)
n (x)|wµ(x) <∞

Then one finds for any λ ∈ R+ a µ ∈ R+ (for any µ ∈ R+ a λ ∈ R+) s.t.

∞∑
n=0

‖ϕn‖SMλ

wλ,1

=
∞∑
n=0

sup
α∈Nd

1

2|α|Mµ
α

∫
Rd

|ϕ(α)
n (x)|wλ(x)dx = O

(∥∥wλ/wµ
∥∥
L1(Rd )

)
Then (ϕn)n∈N is absolutely summable in S [M]

[W ],1 = S [M]
[W ],∞.

Lenny Neyt The nuclearity of Gelfand-Shilov spaces and kernel theorems 13 / 18



Necessary conditions for nuclearity

Lemma (Petzsche, 1978)

Let A be a Köthe set. Let E be a lcHs s.t. E is nuclear (E ′b is nuclear). Suppose
the following diagram of continuous functions

λ1[A] E

λ∞[A]

T

S
ι

commutes, then λ1[A] is nuclear.

To get necessary conditions for nuclearity: find continuous embeddings such that
the diagram commutes in the case of A = AW and A = AWM

.
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Characterization of nuclearity - General

The nuclearity of the Gelfand-Shilov spaces S [M]
[W ],q may now be characterized as

follows :

Theorem 3 (Debrouwere, N. and Vindas, 2020)

Let M be an isotropically decomposable accelerating weight sequence system
satisfying [L].
Let W be a weight function system satisfying [M].

Suppose that S [M]
[W ],q 6= {0} for some q ∈ [1,∞].

The following are equivalent:

(i) M satisfies [M.2]′ and W satisfies [N]

(ii) S [M]
[W ],q is nuclear for some q ∈ [1,∞]

(iii) S [M]
[W ],q is nuclear for all q ∈ [1,∞]
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Characterization of nuclearity - Fixed M

If we fix a weight sequence M, our result becomes:

Theorem 4 (Debrouwere, N. and Vindas, 2020)

Let M be a weight sequence system satisfying [L] and [M.2]′.
Let W be a weight function system satisfying [M].

Suppose that S [M]
[W ],q 6= {0} for some q ∈ [1,∞].

The following are equivalent:

(i) W satisfies [N]

(ii) S [M]
[W ],q is nuclear for some q ∈ [1,∞]

(iii) S [M]
[W ],q is nuclear for all q ∈ [1,∞]

(iii) S [M]
[W ],q = S [M]

[W ],r as locally convex spaces for all q, r ∈ [1,∞]

(iv) S [M]
[W ],q = S [M]

[W ],r as vector spaces for some q, r ∈ [1,∞] with q 6= r
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Application - Projective description

Let

V (W ) = {w : Rd → R≥0 is upper semicontinuous such that

sup
x∈Rd

w(x)/wλ(x) <∞,∀λ ∈ R+}

V (M) = {M = (Mα)α∈Nd ∈ RNd

+ such that sup
α∈Nd

Mλ
α/Mα <∞,∀λ ∈ R+}

Theorem 5 (Debrouwere, N. and Vindas, 2020)

Let M satisfy [L] and [M.2]′ and W satisfy [wM] and [N].
Then,

ϕ ∈ S{M}{W } ⇐⇒ sup
(α,x)∈Nd×Rd

|ϕ(α)(x)|w(x)

Mα
<∞, ∀w ∈ V (W ),M ∈ V (M)

Moreover, the topology of S{M}{W } is generated by the latter seminorms.
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Application - Kernel theorems

Theorem 6 (Debrouwere, N. and Vindas, 2020)

Let Mj be a weight sequence system on Ndj satisfying [L] and [M.2]′. (j=1,2)
Let Wj be a weight function systems on Rdj satisfying [wM] and [N]. (j=1,2)

Then,

S [M1⊗M2]
[W1⊗W2]

(Rd1+d2) ∼= S [M1]
[W1]

(Rd1)⊗̂S [M2]
[W2]

(Rd2) ∼= Lb(S [M1]
[W1]

(Rd1)′b,S
[M2]
[W2]

(Rd2))

and

S [M1⊗M2]
[W1⊗W2]

(Rd1+d2)′b
∼= S [M1]

[W1]
(Rd1)′b⊗̂S

[M2]
[W2]

(Rd2)′b
∼= Lb(S [M1]

[W1]
(Rd1),S [M2]

[W2]
(Rd2)′b)
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