Colombeau solutions to stochastic hyperbolic systems

Michael Oberguggenberger

University of Innsbruck, Unit of Engineering Mathematics Innsbruck, Austria

Dedicated to the 70th birthday of Stevan Pilipović

International Conference on Generalized Functions

August 31-September 4 2020, Ghent University

September 4, 2020

Stochastic Cauchy problem for linear hyperbolic systems:

$$egin{array}{rcl} \left(\partial_t+\lambda(x,t)\partial_x
ight)u&=&f(x,t)u+g(x,t),\quad (x,t)\in\mathbb{R}^2,\ u(x,0)&=&u_0(x),\quad x\in\mathbb{R}. \end{array}$$

Here $u = (u_1, \ldots, u_n)$, $g = (g_1, \ldots, g_n)$; λ and f are $(n \times n)$ -matrix valued functions. The matrix λ is real-valued and diagonal.

- The coefficient functions λ , f, g, u_0 will be **random fields or stochastic processes** on some probability space (Ω, Σ, P) .
- **Issue:** the involved random fields or stochastic processes often have paths that are too irregular to admit classical or weak solutions.

Setting: Colombeau stochastic processes of the type $\mathcal{G}_{L^p}(\Omega, \mathbb{R}^d)$, p = 0 or $1 \le p \le \infty$.

Plan of Talk

- Classical deterministic theory
- Random classical solutions
- Colombeau random functions
- Existence and uniqueness of Colombeau random solutions
- Applications

Joint work with Jelena Karakašević and Martin Schwarz.

Based on work with *Snežana Gordić, Stevan Pilipović, Dora Seleši.* (Monatshefte für Mathematik 186, 2018, 609 - 633.)

CLASSICAL DETERMINISTIC SOLUTIONS

Characteristic curves:

$$\begin{array}{rcl} \frac{\mathrm{d}}{\mathrm{d}t}\gamma_j(x_0,t_0,t) &=& \lambda_j\big(\gamma_j(x_0,t_0,t),t\big),\\ \gamma_j(x_0,t_0,t_0) &=& x_0. \end{array}$$

For global classical existence, we need that $\lambda_j(x, t)$ is continuous in (x,t) and either globally Lipschitz in x or locally Lipschitz and globally bounded in x, uniformly for t in compact intervals.

Integral equations for u(x, t): For i = 1, ..., n,

$$u_i(x,t) = u_{0i}(\gamma_i(x,t,0)) \\ + \int_0^t \Big(\sum_{j=1}^n f_{ij}(\gamma_i(x,t,\tau),\tau) u_j(\gamma_i(x,t,\tau),\tau) + g_i(\gamma_i(x,t,\tau),\tau))\Big) d\tau$$

Fixed point arguments: For C^k data ($k \ge 0$), there is a global unique solution in C^k .

RANDOM CLASSICAL SOLUTIONS (1)

Let (Ω, Σ, P) be a probability space and S a subset of \mathbb{R}^n . A random field A on S is a map

$$S imes \Omega o \mathbb{R}, (x, \omega) o A(x, \omega)$$

such that the map $\omega \to A(x, \omega)$ is measurable for every $x \in S$.

Assumption: The entries of λ , f, g are random fields on \mathbb{R}^2 with almost surely continuous paths. To apply the fixed point theorem in the random case, we need:

For any $K \times I \subset \mathbb{R}^2$, $L \subset \mathbb{R}^2$, there is a constant c, independent of $\omega \in \Omega$, and $\ell(\omega)$, $C(\omega)$ such that, for almost all ω ,

$$\begin{split} |\lambda_i(x,t,\omega)| &\leq c \quad \text{for all } x \in \mathbb{R}, t \in I, \\ |\lambda_i(x,t,\omega) - \lambda_i(y,t,\omega)| &\leq \ell(\omega)|x-y| \quad \text{for all } x, y \in K, t \in I, \\ |f(x,t,\omega)| &\leq C(\omega) \quad \text{for all } (x,t) \in L. \end{split}$$

RANDOM CLASSICAL SOLUTIONS (2)

Proposition. There is an almost surely unique process $u = u(x, t, \omega)$ on \mathbb{R}^2 with continuous paths which solves

$$egin{array}{rcl} (\partial_t+\lambda(x,t,\omega)\partial_x)\,u&=&f(x,t,\omega)u+g(x,t,\omega),\quad (x,t)\in\mathbb{R}^2,\ u(x,0,\omega)&=&u_0(x,\omega),\quad x\in\mathbb{R} \end{array}$$

for almost all $\omega \in \Omega$. If the paths of u_0, λ, f, g are in \mathcal{C}^k , so is u.

Important estimate:

For $p \ge 1$, the *p*-th moments satisfy (if *C* is independent of ω)

$$E\left(\sup_{(x,t)\in\mathcal{K}_{T}}|u(x,t)|^{p}\right) \\ \leq 2^{p} E\left(\sup_{x\in\mathcal{K}_{0}}|u_{0}(x)|^{p}+T^{p}\sup_{(x,t)\in\mathcal{K}_{T}}|g(x,t)|^{p}\right)\exp(pTC)$$

where K_T is a trapezoidal domain of determinacy with baseline K_0 .

COLOMBEAU RANDOM FUNCTIONS (1)

Moderate/negligible families $(r_{\varepsilon})_{\varepsilon \in (0,1]}$ of real or complex numbers: \mathcal{E}_{M} : $\exists a \geq 0, |r_{\varepsilon}| = \mathcal{O}(\varepsilon^{-a}); / \mathcal{N}: \forall b \geq 0, |r_{\varepsilon}| = \mathcal{O}(\varepsilon^{b}) \quad (\varepsilon \to 0).$ Families of random fields $(u_{\varepsilon})_{\varepsilon \in (0,1]}$ on $S \times \Omega$, properties:

- For almost all $\omega \in \Omega$, all $0 < \varepsilon \leq 1$, $x \to u_{\varepsilon}(x, \omega)$ is in $\mathcal{C}^{\infty}(S)$.
- For all $x \in S$, $0 < \varepsilon \le 1$, $\omega \to u_{\varepsilon}(x, \omega)$ is measurable.

<u>L⁰-version</u>:

$$\begin{split} \mathcal{E}_{M,L^0}(\Omega,S) &: \text{ for almost all } \omega \in \Omega, \ \left(\sup_{x \in K} |\partial^{\alpha} u_{\varepsilon}(x,\omega)|\right)_{\varepsilon \in (0,1]} \in \mathcal{E}_M. \\ \mathcal{N}_{L^0}(\Omega,S) &: \text{ for almost all } \omega \in \Omega, \ \left(\sup_{x \in K} |\partial^{\alpha} u_{\varepsilon}(x,\omega)|\right)_{\varepsilon \in (0,1]} \in \mathcal{N}. \end{split}$$

$$\frac{L^{p} \text{-version}}{\mathcal{E}_{M,L^{p}}(\Omega, S)} \text{ (for all } K \Subset S, \ \alpha \in \mathbb{N}_{0}^{n}, \ \left(\sup_{x \in K} \|\partial^{\alpha} u_{\varepsilon}(x)\|_{L^{p}(\Omega)}\right)_{\varepsilon \in (0,1]} \in \mathcal{E}_{M}.$$

$$\mathcal{N}_{L^{p}}(\Omega, S) \text{: for all } K \Subset S, \ \alpha \in \mathbb{N}_{0}^{n}, \ \left(\sup_{x \in K} \|\partial^{\alpha} u_{\varepsilon}(x)\|_{L^{p}(\Omega)}\right)_{\varepsilon \in (0,1]} \in \mathcal{N}.$$

COLOMBEAU RANDOM FUNCTIONS (2)

Colombeau random functions:

$$\mathcal{G}_{L^p}(\Omega,S) = \mathcal{E}_{M,L^p}(\Omega,S)/\mathcal{N}_{L^p}(\Omega,S)$$

Decisive Lemma:

For all $K \Subset S$, $\alpha \in \mathbb{N}_0^n$, $(\sup_{x \in K} \|\partial^{\alpha} u_{\varepsilon}(x)\|_{L^p(\Omega)})_{\varepsilon \in (0,1]} \in \mathcal{E}_M$, if and only if

for all $K \subseteq S$, $\alpha \in \mathbb{N}_0^n$, $(\|\sup_{x \in K} |\partial^{\alpha} u_{\varepsilon}(x)|\|_{L^p(\Omega)})_{\varepsilon \in (0,1]} \in \mathcal{E}_M$. The same holds for \mathcal{N} in place of \mathcal{E}_M .

Proposition. Let $1 \le p' \le \infty$ and $u \in \mathcal{G}_{L^{p'}}(\Omega, S)$. Then $E(u^p)$ is a well-defined element of $\mathcal{G}(S)$ for every integer $p \le p'$.

Corollary. Let $u \in \mathcal{G}_{L^2}(\Omega, S)$. Then the autocovariance function

$$(x,y) \rightarrow C(x,y) = \mathrm{E}(u(x)u(y)) - \mathrm{E}(u(x))\mathrm{E}(u(y))$$

is a well-defined element of $\mathcal{G}(S \times S)$.

EXISTENCE AND UNIQUENESS RESULTS

Special types of Colombeau random functions $v \in \mathcal{G}_{L^p}(\Omega, \mathbb{R}^2)$: <u>Globally bounded on strips</u>: For all $I \Subset \mathbb{R}$ there is c > 0 such that $\sup_{x \in \mathbb{R}, t \in I} |v_{\varepsilon}(x, t, \omega)| \le c$, for almost all $\omega \in \Omega$, all $\varepsilon \in (0, 1]$. <u>Locally of logarithmic type</u>: For all $K \Subset \mathbb{R}^2$ there is c > 0 such that $\sup_{(x,t)\in K} |v_{\varepsilon}(x, t, \omega)| \le c |\log \varepsilon|$, for almost all $\omega \in \Omega$, all $\varepsilon \in (0, 1]$.

The Cauchy problem for Colombeau random functions:

$$egin{array}{rcl} (\partial_t+\lambda(x,t,\omega)\partial_x)\,u&=&f(x,t,\omega)u+g(x,t,\omega),\quad (x,t)\in\mathbb{R}^2,\ u(x,0,\omega)&=&u_0(x,\omega),\quad x\in\mathbb{R}. \end{split}$$

Theorem, $\mathbf{p} = \mathbf{0}$. Assume that λ , f and g belong to $\mathcal{G}_{L^0}(\Omega, \mathbb{R}^2)$, λ is globally bounded on strips and $\partial_x \lambda$ and f are locally of logarithmic type. Let $u_0 \in \mathcal{G}_{L^0}(\Omega, \mathbb{R})$. Then the Cauchy problem has a unique global solution $u \in \mathcal{G}_{L^0}(\Omega, \mathbb{R}^2)$.

EXISTENCE AND UNIQUENESS RESULTS

Special types of Colombeau random functions $v \in \mathcal{G}_{L^p}(\Omega, \mathbb{R}^2)$: <u>Globally bounded on strips</u>: For all $I \Subset \mathbb{R}$ there is c > 0 such that $\sup_{x \in \mathbb{R}, t \in I} |v_{\varepsilon}(x, t, \omega)| \le c$, for almost all $\omega \in \Omega$, all $\varepsilon \in (0, 1]$. <u>Locally of logarithmic type</u>: For all $K \Subset \mathbb{R}^2$ there is c > 0 such that $\sup_{(x,t)\in K} |v_{\varepsilon}(x, t, \omega)| \le c |\log \varepsilon|$, for almost all $\omega \in \Omega$, all $\varepsilon \in (0, 1]$.

The Cauchy problem for Colombeau random functions:

$$egin{array}{rcl} (\partial_t+\lambda(x,t,\omega)\partial_x)\,u&=&f(x,t,\omega)u+g(x,t,\omega),\quad (x,t)\in\mathbb{R}^2,\ u(x,0,\omega)&=&u_0(x,\omega),\quad x\in\mathbb{R}. \end{array}$$

Theorem, p \geq **1.** Let $1 \leq p \leq \infty$. Assume that λ and f belong to $\mathcal{G}_{L^{\infty}}(\Omega, \mathbb{R}^2)$, λ is globally bounded on strips, $\partial_x \lambda$ and f are locally of logarithmic type, $g \in \mathcal{G}_{L^p}(\Omega, \mathbb{R}^2)$. Let $u_0 \in \mathcal{G}_{L^p}(\Omega, \mathbb{R})$. Then the Cauchy problem has a unique global solution $u \in \mathcal{G}_{L^p}(\Omega, \mathbb{R}^2)$.

Imbedding of generalized stochastic processes on $S \subset \mathbb{R}^n$:

A generalized stochastic process is a weakly measurable map $H: \Omega \to \mathcal{D}'(S)$. These processes are <u>imbedded</u> in $\mathcal{G}_{L^0}(\Omega, S)$ through the representatives $((H * \varphi_{\varepsilon})|_S)_{\varepsilon \in (0,1]}$, where $(\varphi_{\varepsilon})_{\varepsilon \in (0,1]}$ is a family of mollifiers.

If in addition the map $\psi \to \langle H, \psi \rangle$ is linear and continuous from $\mathcal{D}(S)$ to $L^p(\Omega)$, then the imbedding defines an element of $\mathcal{G}_{L^p}(\Omega, S)$. Possibly, logarithmic scales or additional cut-offs are needed to obtain processes as required in the existence results.

Examples: $H = \dot{W}(x)$, $H = \dot{W}(t)$... spatial or temporal white Gaussian white noise or Poisson noise, $H = \dot{\Pi}(x)$ or $H = \dot{\Pi}(t)$,

$$H = \dot{W}(x, t) \dots \text{Gaussian space-time white noise,}$$

$$H = L(x) \dots \text{ a Lévy process, e.g., Wiener or Poisson process } W(x), \Pi(x),$$

$$H(x) = \int_0^x \sigma e^{-\alpha(x-y)} dW(y) \dots \text{ an Ornstein-Uhlenbeck process.}$$

11 / 14

The 1D-wave equation with random field coefficient:

$$\partial_t^2 u - \lambda^2(x) \partial_x^2 u = 0.$$

Taking $\lambda(x)$ as a (cut-off) Ornstein-Uhlenbeck process is already beyond classical theory.

Note that $v = (\partial_t - \lambda \partial_x)u$, $w = (\partial_t + \lambda \partial_x)u$ produces the equivalent first order hyperbolic system

$$\begin{array}{rcl} (\partial_t + \lambda \partial_x) v &=& \frac{1}{2} (\partial_x \lambda) (v - w), \\ (\partial_t - \lambda \partial_x) w &=& \frac{1}{2} (\partial_x \lambda) (v - w), \\ \partial_t u &=& \frac{1}{2} (v + w). \end{array}$$

The 1D-wave equation with stochastic potential:

$$\partial_t^2 u - \partial_x^2 u = H(x,t)u.$$

Associated classical stochastic processes exist when $H(x, t) = \delta(x)\dot{W}(t)$ or $H(x, t) = \dot{\Pi}(x)$ (truncated).

Random transport equations:

$$\partial_t u + \lambda(x,t)\partial_x u = 0, \quad u(x,0) = u_0(x).$$

Interesting cases: $\lambda = \lambda(x)$ a Lévy process;

 $\lambda = \lambda(x)$ limiting propagation speed of a randomly layered medium, such as the Goupillaud medium;

 $\lambda = \lambda(x) = 1 + \dot{\Pi}(x)$ (truncated). In this case, the Colombeau random solution u(x, t) has the deterministic solution $u_0(x - t)$ as associated distribution.

 $\lambda = \dot{W}(t)$, temporal white noise. With $W_{\varepsilon}(t) = W * \varphi_{\varepsilon}(t)$, a representative is explicitly given by $u_{\varepsilon}(x, t) = u_0(x - W_{\varepsilon}(t))$. Here the Colombeau random solution u(x, t) has the classical random field $u_0(x - W(t))$ as associated distribution.

Systems of linear stochastic differential equations:

$$X'(t) = a(t)X(t) + (b(t) + c(t)X(t))H(t), \quad X(0) = X_0$$

with a, b, c smooth.

Case from the literature:

$$X'(t) = a(t)X(t) + b(t)W^+(t),$$

where $W^+(t)$ is positive noise, $W^+_{\varepsilon}(t) = \exp\left(\dot{W}_{\varepsilon}(t) - \frac{1}{2} \|\varphi_{\varepsilon}\|_{L^2(\mathbb{R})}\right)$. <u>The classical case</u> $H(t) = \dot{W}(t)$:

The Colombeau random solution X(t) has the classical process Y(t) as associated distribution, the Stratonovich solution to the system of stochastic differential equations

$$\mathrm{d} Y(t) = a(t)Y(t)\,\mathrm{d} t + \big(b(t) + c(t)Y(t)\big)\,\mathrm{d} W(t).$$