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The very weak solution concept

o It is simplified version of the Colombeau generalized function solution

concept appropriate for the application.
@ The fundamental idea:

» model irregular objects in the (system of) equations by approximating
nets of smooth functions with moderate asymptotics

> treat regularised net of problems in a usual way and obtain net of
solutions— "sequential solution"

» if sequential solution is moderate, will be called very weak solution

» for the uniqueness of very weak solution — use negligible nets
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The very weak solution concept

o It is simplified version of the Colombeau generalized function solution

concept appropriate for the application.
@ The fundamental idea:
» model irregular objects in the (system of) equations by approximating
nets of smooth functions with moderate asymptotics
> treat regularised net of problems in a usual way and obtain net of
solutions— "sequential solution"
» if sequential solution is moderate, will be called very weak solution
» for the uniqueness of very weak solution — use negligible nets
@ Notions of moderate and negligible nets could be defined based on a
locally convex topological vector space: for a locally convex
topological vector space E with topology given by the family of
seminorms {p;};cs, E-moderate nets are

Mp = {(uc). € B :j € J, 3N €N, pj(uc) = 0(e™)}
and E-negligible
N = {(us): € B Vj € J, Vg €N, pj(uc) = O(e")}
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More recent works:

C. Garetto.

On the wave equation with multiplicities and space-dependent irregular
coefficients.
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Mathematical treatment: well- posedness in very weak sense. Singularities in
coefficients depending on space variable for wave equation.

Nets are in CA\infty classes in time and space.

Unique vws equivalent to sol.in Colombeau sense.

M.E. Sebih, ]. Wirth. On a wave equation with singular dissipation. Preprint, Arxiv:2002.00825 (2020).

A Altybay, M Ruzhansky, N Tokmagambetov. A parallel hybrid implementation of the 2D acoustic wave
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2020. to appear

Ruzhansky, Michael, Yessirkegenov, Nurgissa Very weak solutions to hypoelliptic wave equations.
J. Differential Equations 268 (2020), no. 5, 2063-2088



Definitions of moderate families, Theorems on existence and uniqueness,
consistency with the classical settings.

+ Numerical examples and analysis.

Altybay A., Ruzhansky M., Sebih M., Tokmagambetov N., Tsunami propagation for singular
topographies. Arxiv : 2005.11931 (2020).

Altybay A., Ruzhansky M., Sebih M., Tokmagambetov N., The heat equation with singular
potentials. Arxiv : 2004.11255 (2020).

Altybay A., Ruzhansky M., Sebih M., Tokmagambetov N., Fractional Schrodinger equations with
potentials of higher-order singularities. Arxiv : 2004.10182 (2020).

Altybay A., Ruzhansky M., Sebih M., Tokmagambetov N., Fractional Klein-Gordon equation with
strongly singular mass term. Arxiv : 2004.10145 (2020).




Definition (Moderate nets)

Let (X, - [[x) be a Banach space. A net of elements (K:).c0,] C X is
X —moderate if there exist N € Ny and C' > 0 such that for every
e €(0,1]

|K:||lx < Ce™™.
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Definition (Moderate nets)

Let (X, - [[x) be a Banach space. A net of elements (K:).c0,] C X is
X —moderate if there exist N € Ny and C' > 0 such that for every
e €(0,1]

|K:||lx < Ce™™.

Example (Heat equation with singular potential)

((is - A) u(t, ) + q(z)u(t, z) = f(t,z)

u(0, z) = u®(z)

0 geL® = weY :=CY[0,T],L2(R%) nC([0,T], H'(RY))

o ¢ € D'(R?): net of functions (u.). C Y is a very weak solution to
(HE) if there exist an L.°°—moderate regularisation (g.). of ¢ such
that for every ¢ € (0, 1], u. solves (HE). ( (HE) with ¢. replacing q)
and (ug)e is Y- moderate.
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The 3D fractional Zener wave equation

@ models wave propagation in viscoelastic media that occupies bounded
open Lipschitz domain 2 C R? with boundary 0. It is of the form:

To(z)L{u = Quu + G. (FZWE)

10/22



The 3D fractional Zener wave equation

@ models wave propagation in viscoelastic media that occupies bounded
open Lipschitz domain 2 C R? with boundary 0. It is of the form:

To(z)L{u = Quu + G. (FZWE)

o for L™ density ¢ a unique weak solution is proved to exist

@ Lj. Oparnica and E. Siili, Well-posedness of the fractional Zener model for heterogenous viscoelastic
materials, Fractional Calculus and Applied Analysis, 23(1), 126-166, 2020.
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The 3D fractional Zener wave equation

@ models wave propagation in viscoelastic media that occupies bounded
open Lipschitz domain 2 C R? with boundary 0. It is of the form:

To(z)L{u = Quu + G. (FZWE)

o for L™ density ¢ a unique weak solution is proved to exist

@ Lj. Oparnica and E. Siili, Well-posedness of the fractional Zener model for heterogenous viscoelastic
materials, Fractional Calculus and Applied Analysis, 23(1), 126-166, 2020.

@ want to consider
o(z) = o1(z) + 6(x).
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3D FZWE is derived from a system:
@ the equation of motion
oii = Divo + F,

where ¢ = p(z) denotes density of the media under consideration,
u = u(t,z) is the displacement, o = o(t, x) is the stress tensor, and
F = F(t,z) is a specified load vector,z € Q, t € (0, 7]

@ the constitutive equation, fractional Zener model
(14+7Df)o = (1 + D) [2ue(u) + Atr(e(u))I], 7€ (0,1], a € (0,1),
giving relation between the stress tensor o and the strain tensor
) = 3 (Vu+ (V)"

where © = p(x) and A = A(x) are Lamé coefficients, and Dy is the
fractional derivative of order & € (0, 1) in the sense of Caputo.
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After Laplace transforming equations, elimination of the Laplace transform
of o and then inverting the Laplace transform one obtains so-called
fractional Zener wave equation

Toii + (1—7) gt(_éa,l *¢ 011) = Div(2pe(u) + Atr(e(w)I) + G,

o G:=(1—1)éq10v0 + eq1 Div(rog — 2pe(ug) — Atr(e(ug))I) +
TF + (1 —1)éq1 % F
® e4,1, with a € (0,1), is one parameter Mittag-Leffler function which is
a completely monotonous function that satisfies
€a1 >0, €41 >0and é,,1 >0 on (0,7, with é,1 € L'((0,7)) and
€a1 € LL((0,7)) for all T > 0.
Setting

0
L?u =u+ (1 - 7') &(_éa,l * U)(t),

and
Qzu := Div(2ue(u) + Atr(e(u))I),

we get (FZWE).
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Theorem: weak solution to 3D FZWE
Let 7 € (0,1], a € (0,1), up € [H(Q)]3, vo € [LE(Q)]3, 00 € [L2(Q)]?*3,
F € L2(0,T;[L2(2)]3), and coefficients o, 1z and \ be elements of L>°(12)

and o, u being bounded below away from zero.

Then, there exists u € Cy, ([0, T); [H(Q)]3) satisfying
T T
r [ oo, 5,9 ds = (1) [ (= 50 05,0, 005, ) ds
0 0
T
+ [ @uetu(s,9) + Atrletuto, DT (o5, ) ds
0
T
= —7(oup, v(0,-)) + 7(ovo, v(0,-)) + / (G(s,-),v(s,-))ds,
0

for all v € W2L(0, T; [L2(2)]?) N LL(0, T; [H{(2)]?) with v(T,-) = 0 and
o(T,-) = 0.
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Furthermore, u satisfies the energy inequality

T . 1 1
§IIU(t’)Hig(Q) + §!|€(U(t’))llig(sz) +5l tr(E(U(b")))llig(Q)
1—71

2

t/
/ ~ean()|[i(3)][25 () ds < BA(E) exp(t + 1~ ea1 (1)),
0

for all t € (0,7] and a.e. ¢ € (0,t], where A(t) is defined for t € [0, 7] by

24 (1—171)2 3 1
LT 20 + SN2y @y + ol tx(cuo) 23y

24+ (1-7)2 [t 9
T 1P, o ds

A(t) =
3 2

with ko = 7o¢ — 2ue(up) — Atr(e(up))I. This implies

|wm%@zw(mmﬁmwmﬁmww@@mmmﬂmw>
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The initial boundary-value problem (P)

To(x)Liu(t, ) = Quu(t,z) + G(t,x), ze€Q,te (0,7], (1)

L$ is convolution, integro-differential operator in ¢,
Q) is an elliptic partial differential operator in x
G is a function depending on given initial data, and density g is of the form

o(z) = er(x) 4 6(x), (RHO)

01 being function bounded below away from zero in L>°(2). Equation (1)
is subject to the initial conditions

U(O,l’) = ’UJO(ZE)v 8tu(07$) = U0($)7 x €, (2)
and a boundary condition
u(t,z) =0 for all (t,z) € (0,T] x 0. (3)
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Definition (Moderate nets)

A net of functions (uc)cc(o,1] C Cu ([O,T]; [Hé(ﬂ)]3> is moderate if
there exist N € Ny, and ¢ > 0 such that for all € € (0,1] it holds

lue(t, Yz < ==, te0,T)

Definition
The net (u2).c(0.1] C Cu ([O,T]; [H}](Q)]?)) is a very weak solution if

o there exists regularization of ¢: net (0:).¢(o,1) Which is C°°- moderate

e for all € € (0, 1], u. is a weak solution to (P).

Toe(x)Liu(t, ) = Quu(t,z) + G(t,x), x€Q,te (0,T],
u(0,x) = up(z), Ou(0,z) = vo(x), =€
u(t,z) =0  forall (¢t,z) € (0,T] x 99Q.

©® (Uc)ee(0,1] is moderate.
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Very weak solution for (P): Existence and consistence

Theorem (Existence)

Let o be given by o(x) = p1(x) + d(z), let p1, 1, A are elements of L>°(2)
and p1, . be bounded below away from zero, and let initial data and load
vector satisfy ug € [H5(Q)]°, vo € [L2(Q)]°, and F € L (0, T; [L2(Q)]3).

Then, initial-boundary value problem (P) has a very weak solution.
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Very weak solution for (P): Existence and consistence

Theorem (Existence)

Let o be given by o(x) = p1(xz) + d(x), let p1, u, A are elements of L>°(Q2)
and p1, . be bounded below away from zero, and let initial data and load
vector satisfy ug € [H5(Q)]°, vo € [L2(Q)]°, and F € L (0, T; [L2(Q)]3).

Then, initial-boundary value problem (P) has a very weak solution.

Theorem (Consistence)

Let o, i, A are elements of L>°(Q2) and o, u being bounded below away
from zero, and let initial data and load vector satisfy ug € [H(l](Q)]3

v € [L2(Q)]°, and F € L2 (0, T; [L2(Q)]3).

Let (uc)cc(0,1] be very weak solution and let u be weak solution. Then, as

e — 0 net (uc).c(0,1) converges to u in the space L ([0, T); [LQ(Q)]B’).
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Very weak solution for (P): Uniqueness

Let o(x) = o1(x) + 0(x). Let o and o are two regularisations of o such
that for all ¢ € N there exists ¢ so that

HQE - §€HL°° < el

Then for the two corresponding very weak solutions to problem (P)
(ue)ee(o,1) and (e )ee(o,1) it holds that for all N € N there exists C

lue — G2 < CeN.

We say that (P) has a unique very weak solution.
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For further work:

“The approach of very weak solutions opens up a whole new research area where one can deal with problems with singularities
in a way that is consistent with stronger notions of solutions should they exist.*

More examples.

More numerical analysis but also questions of convergence...

Do we always have consistency?

Analysis of nets: regularity theory and microlocal analysis.

Microlocal and harmonic analysis allowing different types of singularities
Pseudo-differential operators with irregular coefficients.

Spectral problems for singular operators or in singular domains

“this is a very promising far-reaching research with further mathematical developments and many expected applications in other
sciences
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participants in your name instead of beers which | am sure if you were
here you would buy for all of us!

@ Few photos...







