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The very weak solution concept
It is simplified version of the Colombeau generalized function solution
concept appropriate for the application.
The fundamental idea:

I model irregular objects in the (system of) equations by approximating
nets of smooth functions with moderate asymptotics

I treat regularised net of problems in a usual way and obtain net of
solutions– "sequential solution"

I if sequential solution is moderate, will be called very weak solution
I for the uniqueness of very weak solution – use negligible nets

Notions of moderate and negligible nets could be defined based on a
locally convex topological vector space: for a locally convex
topological vector space E with topology given by the family of
seminorms {pj}j∈J , E-moderate nets are

ME := {(uε)ε ∈ E(0,1] : ∀j ∈ J, ∃N ∈ N, pj(uε) = O(ε−N )}
and E-negligible

NE := {(uε)ε ∈ E(0,1] : ∀j ∈ J, ∀q ∈ N, pj(uε) = O(εq)}
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Definition (Moderate nets)
Let (X, ‖ · ‖X) be a Banach space. A net of elements (Kε)ε∈(0,1] ⊂ X is
X−moderate if there exist N ∈ N0 and C > 0 such that for every
ε ∈ (0, 1]

‖Kε‖X ≤ Cε−N .

Example (Heat equation with singular potential)

(
∂

∂t
−4

)
u(t, x) + q(x)u(t, x) = f(t, x)

u(0, x) = u0(x)

(HE)

q ∈ L∞ =⇒ u ∈ Y := C1([0, T ], L2(Rd)) ∩ C([0, T ], H1(Rd))
q ∈ D′(Rd): net of functions (uε)ε ⊂ Y is a very weak solution to
(HE) if there exist an L∞−moderate regularisation (qε)ε of q such
that for every ε ∈ (0, 1], uε solves (HE)ε ( (HE) with qε replacing q)
and (uε)ε is Y - moderate.
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The 3D fractional Zener wave equation

models wave propagation in viscoelastic media that occupies bounded
open Lipschitz domain Ω ⊂ R3 with boundary ∂Ω. It is of the form:

τ%(x)Lαt u = Qxu + G. (FZWE)

for L∞ density % a unique weak solution is proved to exist
Lj. Oparnica and E. Süli, Well-posedness of the fractional Zener model for heterogenous viscoelastic
materials, Fractional Calculus and Applied Analysis, 23(1), 126-166, 2020.

want to consider
%(x) = %1(x) + δ(x).
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3D FZWE is derived from a system:
the equation of motion

%ü = Div σ + F,

where % = %(x) denotes density of the media under consideration,
u = u(t, x) is the displacement, σ = σ(t, x) is the stress tensor, and
F = F (t, x) is a specified load vector,x ∈ Ω, t ∈ (0, T ]

the constitutive equation, fractional Zener model

(1 + τDα
t )σ = (1 +Dα

t )[2µε(u) + λ tr(ε(u))I], τ ∈ (0, 1], α ∈ (0, 1),

giving relation between the stress tensor σ and the strain tensor

ε(u) :=
1

2
(∇u+ (∇u)T),

where µ = µ(x) and λ = λ(x) are Lamé coefficients, and Dα
t is the

fractional derivative of order α ∈ (0, 1) in the sense of Caputo.
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After Laplace transforming equations, elimination of the Laplace transform
of σ and then inverting the Laplace transform one obtains so-called
fractional Zener wave equation

τ%ü+ (1− τ)
∂

∂t
(−ėα,1 ∗t %u̇) = Div(2µε(u) + λ tr(ε(u))I) + G,

G := (τ − 1) ėα,1 %v0 + eα,1 Div(τσ0 − 2µε(u0)− λ tr(ε(u0))I) +
τF + (τ − 1)ėα,1 ∗t F
eα,1, with α ∈ (0, 1), is one parameter Mittag-Leffler function which is
a completely monotonous function that satisfies

eα,1 ≥ 0, −ėα,1 ≥ 0 and ëα,1 ≥ 0 on (0, T ], with ėα,1 ∈ L1((0, T )) and
ëα,1 ∈ L1

loc((0, T )) for all T > 0.

Setting

Lαt u := ü+ (1− τ)
∂

∂t
(−ėα,1 ∗ u̇)(t),

and
Qxu := Div(2µε(u) + λ tr(ε(u))I),

we get (FZWE).
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Theorem: weak solution to 3D FZWE

Let τ ∈ (0, 1], α ∈ (0, 1), u0 ∈ [H1
0(Ω)]3, v0 ∈ [L2(Ω)]3, σ0 ∈ [L2(Ω)]3×3,

F ∈ L2(0, T ; [L2(Ω)]3), and coefficients %, µ and λ be elements of L∞(Ω)
and %, µ being bounded below away from zero.

Then, there exists u ∈ Cw([0, T ]; [H1
0(Ω)]3) satisfying

τ

∫ T

0
(%u(s, ·), v̈(s, ·)) ds− (1− τ)

∫ T

0
((−ėα,1 ∗s %u̇)(s, ·), v̇(s, ·)) ds

+

∫ T

0

(
2µε(u(s, ·)) + λ tr(ε(u(s, ·)))I , ε(v(s, ·))

)
ds

= −τ(%u0, v̇(0, ·)) + τ(%v0, v(0, ·)) +

∫ T

0
〈G(s, ·), v(s, ·)〉 ds,

for all v ∈W2,1(0, T ; [L2(Ω)]3) ∩ L1(0, T ; [H1
0(Ω)]3) with v(T, ·) = 0 and

v̇(T, ·) = 0.
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Furthermore, u satisfies the energy inequality

τ

2
‖u̇(t′)‖2L2

%(Ω) +
1

2
‖ε(u(t′))‖2L2

µ(Ω) +
1

2
‖ tr(ε(u(t′)))‖2L2

λ(Ω)

+
1− τ

2

∫ t′

0
−ėα,1(s)‖u̇(s)‖2L2

%(Ω) ds ≤ 3A(t) exp(t+ 1− eα,1(t)),

for all t ∈ (0, T ] and a.e. t′ ∈ (0, t], where A(t) is defined for t ∈ [0, T ] by

A(t) :=
τ2 + (1− τ)2

2τ
‖v0‖2L2

%(Ω) +
3

2
‖ε(u0)‖2L2

µ(Ω) +
1

2
‖ tr(ε(u0))‖2L2

λ(Ω)

+
3

2
‖κ0‖2L2

1/µ
(Ω) +

τ2 + (1− τ)2

τ

∫ t

0
‖F (s)‖2L2

1/%
(Ω) ds,

with κ0 = τσ0 − 2µε(u0)− λ tr(ε(u0))I. This implies

‖u(t)‖2L2
%(Ω) ≤ cA

(
t, ‖u0‖2L2

%(Ω), ‖v0‖2L2
%(Ω), ‖F‖

2
L2(0,T ;L2

1/%
(Ω))

)
exp(t)
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The initial boundary-value problem (P )

τ%(x)Lαt u(t, x) = Qxu(t, x) + G(t, x), x ∈ Ω, t ∈ (0, T ], (1)

Lαt is convolution, integro-differential operator in t,
Qx is an elliptic partial differential operator in x
G is a function depending on given initial data, and density % is of the form

%(x) = %1(x) + δ(x), (RHO)

%1 being function bounded below away from zero in L∞(Ω). Equation (1)
is subject to the initial conditions

u(0, x) = u0(x), ∂tu(0, x) = v0(x), x ∈ Ω, (2)

and a boundary condition

u(t, x) = 0 for all (t, x) ∈ (0, T ]× ∂Ω. (3)

15 / 22



Definition (Moderate nets)

A net of functions (uε)ε∈(0,1] ⊂ Cw

(
[0, T ]; [H1

0(Ω)]
3
)
is moderate if

there exist N ∈ N0, and c > 0 such that for all ε ∈ (0, 1] it holds

‖uε(t, ·)‖L2(Ω) ≤ cε−N , t ∈ [0, T ].

Definition

The net (uε)ε∈(0,1] ⊂ Cw

(
[0, T ]; [H1

0(Ω)]
3
)
is a very weak solution if

there exists regularization of %: net (%ε)ε∈(0,1] which is C∞- moderate
for all ε ∈ (0, 1], uε is a weak solution to (P )ε

τ%ε(x)Lαt u(t, x) = Qxu(t, x) + G(t, x), x ∈ Ω, t ∈ (0, T ],

u(0, x) = u0(x), ∂tu(0, x) = v0(x), x ∈ Ω

u(t, x) = 0 for all (t, x) ∈ (0, T ]× ∂Ω.

(uε)ε∈(0,1] is moderate.
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Very weak solution for (P): Existence and consistence

Theorem (Existence)
Let % be given by %(x) = %1(x) + δ(x), let ρ1, µ, λ are elements of L∞(Ω)
and ρ1, µ be bounded below away from zero, and let initial data and load
vector satisfy u0 ∈ [H1

0(Ω)]
3, v0 ∈ [L2(Ω)]

3, and F ∈ L2
(
0, T ; [L2(Ω)]3

)
.

Then, initial-boundary value problem (P) has a very weak solution.

Theorem (Consistence)
Let %, µ, λ are elements of L∞(Ω) and %, µ being bounded below away
from zero, and let initial data and load vector satisfy u0 ∈ [H1

0(Ω)]
3,

v0 ∈ [L2(Ω)]
3, and F ∈ L2

(
0, T ; [L2(Ω)]3

)
.

Let (uε)ε∈(0,1] be very weak solution and let u be weak solution. Then, as

ε→ 0 net (uε)ε∈(0,1] converges to u in the space L2
(

[0, T ]; [L2(Ω)]
3
)
.
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Very weak solution for (P): Uniqueness

Let %(x) = %1(x) + δ(x). Let %ε and %̃ε are two regularisations of % such
that for all q ∈ N there exists c so that

‖%ε − %̃ε‖L∞ ≤ cεq.

Then for the two corresponding very weak solutions to problem (P)
(uε)ε∈(0,1] and (ũε)ε∈(0,1] it holds that for all N ∈ N there exists C

‖uε − ũε‖L2 ≤ CεN .

We say that (P) has a unique very weak solution.

18 / 22



19 / 22



20 / 22



Happy birthday dear professor Pilipović

Three talks on very weak solution for your birthday! I just hope you
are proud of us as we become independent researchers.
The best Belgium chocolate for (unfortunately only onsite)
participants in your name instead of beers which I am sure if you were
here you would buy for all of us!
Few photos...
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