Global Well-posedness of a Class of Strictly Hyperbolic Cauchy Problems with Coefficients Non-Absolutely Continuous in Time

Rahul Raju Pattar Joint Work with: Dr. Uday Kiran Nori

Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning

International Conference on Generalized Functions, Ghent, 2020

Rahul Raju Pattar 1/41

Dedication

Dedicated to

My Spiritual Master Bhagavan Sri Sathya Sai Baba

Rahul Raju Pattar 2/41

Overview

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- **6** Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 3/41

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 4/41

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψ DC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Strict Hyperbolicity

Consider a Cauchy problem

$$\begin{cases} Lu(t,x) = f(t,x), & (t,x) \in [0,T] \times \mathbb{R}^n, \\ D_t^{k-1}u(0,x) = f_k(x), & k = 1,\ldots,m \end{cases}$$

where the operator $L(t, x, \partial_t, D_x)$ is given by

$$L = D_t^m - \sum_{j=0}^{m-1} \sum_{|\alpha|+j \le m} a_{j,\alpha}(t,x) D_x^{\alpha} D_t^j.$$

Here $D_x^{\alpha}=(-i)^{\alpha}\partial_x^{\alpha}$. L is hyperbolic if

$$\tau^m - \sum_{j=0}^{m-1} \sum_{|\alpha|+j=m} a_{j,\alpha}(t,x) \xi^{\alpha} \tau^j = 0$$

has real roots $\tau_k(t, x, \xi)$. In addition, if they are distinct, then we have strict hyperbolicity.

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- 4 Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Well-posedness Results

Authors	Regularity in $t \in [0, T]$	Regularity in $x \in \mathbb{R}^n$	Well-posed in	Loss of Derivatives
Colombini et al.[8]	C_{LL} C^{χ}	-	H^s $H^{s,arepsilon,\sigma}$	finite loss ∞ loss
Nishitani [13]	C^{χ}	G^{σ}	$H^{s,\varepsilon,\sigma}$	∞ loss
Cicognani & Lorenz [6]	C_L to C^{χ}	B^{∞}	$H^s_{\eta,\delta}(\mathbb{R}^n)$	arb. small ∞ loss

Well-posedness Results

Authors	Regularity	Regularity	Well-posed	Loss of
	in $t \in [0, T]$	in $x \in \mathbb{R}^n$	in	Derivatives
Calamabini at al [0]	C_{LL}	-	H ^s	finite loss
Colombini et al.[8]	C^{χ}	-	$H^{s,arepsilon,\sigma}$	∞ loss
Nishitani [13]	C^{χ}	G^{σ}	$H^{s,\varepsilon,\sigma}$	∞ loss
Cicognani &	C_L to	B^{∞}	⊔s (™n)	arb. small
Lorenz [6]	C^{χ}	D	$H^s_{\eta,\delta}(\mathbb{R}^n)$	∞ loss
	$C^1((0,T])$		H ^s	
Colombini et al.[7]	$rac{1}{t^q} rac{q=1}{q>1}$	-	$H^{s,\varepsilon,\sigma}$,	finite loss
	$\overline{t^q} \; q > 1$	-	$1 < \sigma < rac{q}{q-1}$	∞ loss
	$C^1((0,T])$		H ^s	
Cicognani[5]	$rac{1}{t^q} rac{q=1}{q>1}$	B^{∞}	$H^{s,\varepsilon,\sigma}$,	finite loss
	$ \overline{t^q} q > 1$	G^{σ}	$1 < \sigma < rac{q}{q-1}$	∞ loss

Authors	Regularity	Regularity	Well-posed	Loss of
Autilois	in $t \in [0, T]$	in $x \in \mathbb{R}^n$	in	Derivatives
Calamakini at al [0]	C_{LL}	-	H ^s	finite loss
Colombini et al.[8]	C^{χ}	-	$\mathcal{H}^{s,arepsilon,\sigma}$	∞ loss
Nishitani [13]	C^{χ}	G^{σ}	$H^{s,\varepsilon,\sigma}$	∞ loss
Cicognani &	C_L to	B^{∞}	LIS (TDn)	arb. small
Lorenz [6]	C^{χ}	D	$H^s_{\eta,\delta}(\mathbb{R}^n)$	∞ loss
	$C^1((0,T])$		H⁵	
Colombini et al.[7]	$rac{1}{t^q} rac{q=1}{q>1}$	_	$H^{s,\varepsilon,\sigma}$,	finite loss
	$ \overline{t^q} q > 1$	-	$1 < \sigma < rac{q}{q-1}$	∞ loss
	$C^1((0,T])$		H ^s	
Cicognani[5]	$_{1} q = 1$	B^{∞}	$H^{s,\varepsilon,\sigma}$,	finite loss
	$rac{1}{t^q} egin{array}{c} q=1 \ q>1 \end{array}$	G^{σ}	$1 < \sigma < rac{q}{q-1}$	∞ loss
Kubo &	Oscillating	B^{∞}	H ^s	arb. small loss
Reissig[10]	$\left(\frac{1}{t}\left(\log\frac{1}{t}\right)^{\gamma}\right)^k$	D		finite loss

Global Well-posedness Results

Authors	Low-regularity	Well-posed	Loss of	Loss of
	in t	in	Derivatives	Decay
Ascanelli &	C _{LL}	H^{s_1,s_2}	t-dependent	t-dependent
Cappiello[1]			finite loss	poly. growth
Ascanelli &	C^{χ}	c c/	Infinite	exponential
Cappiello[2]	()	S_{σ}, S'_{σ}	loss	growth

Global Well-posedness Results

Authors	Low-regularity	Well-posed	Loss of	Loss of
	in t	in	Derivatives	Decay
Ascanelli &	C	H ⁵ 1,52	t-dependent	t-dependent
Cappiello[1]	C_{LL}	11 -/ -	finite loss	poly. growth
Ascanelli &	C^{χ}	S_{σ}, S'_{σ}	Infinite	exponential
Cappiello[2]	C	$\mathcal{O}_{\sigma}, \mathcal{O}_{\sigma}$	loss	growth
Cappiello,	C_L to		arb. small	arb. small
Gourdin &	C_{LL}	H^{s_1,s_2}	finite loss	finite loss
Gramchev [15]	CLL		IIIIILE 1055	IIIIILE 1055

Global Well-posedness Results

Authors	Low-regularity in <i>t</i>	Well-posed in	Loss of Derivatives	Loss of Decay
Ascanelli & Cappiello[1]	C _{LL}	H^{s_1,s_2}	t-dependent finite loss	t-dependent poly. growth
Ascanelli & Cappiello[2]	C^{χ}	S_{σ}, S'_{σ}	Infinite loss	exponential growth
Cappiello, Gourdin & Gramchev [15]	C _L to C _{LL}	\mathcal{H}^{s_1,s_2}	arb. small finite loss	arb. small finite loss
Nori, Coriasco & Battisti [15]	Oscillating $\left(\frac{1}{t}\left(\log\frac{1}{t}\right)^{\gamma}\right)^k$	H^{s_1,s_2}	finite loss	finite loss

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 10/41

Our Model of Strictly Hyperbolic Operator

We deal with the Cauchy problem

$$\begin{cases}
P(t,x,\partial_t,D_x)u(t,x) = f(t,x), & (t,x) \in [0,T] \times \mathbb{R}^n, \\
D_t^{k-1}u(0,x) = f_k(x), & k = 1,\ldots,m
\end{cases}$$
(1)

where the strictly hyperbolic operator $P(t,x,\partial_t,D_x)$ is given by

$$P=D_t^m-\sum_{j=0}^{m-1}\left(A_{m-j}(t,x,D_x)+B_{m-j}(t,x,D_x)
ight)D_t^j$$
 with $A_{m-j}(t,x,D_x)=\sum_{|lpha|+j=m}a_{j,lpha}(t,x)D_x^lpha$ and $B_{m-j}(t,x,D_x)=\sum_{|lpha|+j< m}b_{j,lpha}(t,x)D_x^lpha.$

These characteristic roots $au(t,x,\xi)$ are such that

$$au_1(t,x,\xi) < au_2(t,x,\xi) < \dots < au_m(t,x,\xi),$$
 and $C\langle x \rangle \langle \xi \rangle \leq | au_k(t,x,\xi)|.$

Rahul Raju Pattar 11/41

Regularity of Coefficients

Rahul Raju Pattar 12/41

¹Nicola, F., Rodino, L. (2011) Global Pseudo-differential Calculus on Euclidean Spaces, Birkhäuser Basel.

²Ascanelli, A., Cappiello, M. (2008) Hölder continuity in time for SG hyperbolic systems, J. Differential Equations 244 2091-2121.

Regularity of Coefficients

 $\begin{aligned} \textbf{1} \quad a_{j,\alpha} &\in C([0,T]; C^{\infty}(\mathbb{R}^n)) \cap C^1((0,T]; C^{\infty}(\mathbb{R}^n)) \text{ satisfying} \\ &|D_x^{\beta} a_{j,\alpha}(t,x)| \leq C^{|\beta|} \beta!^{\sigma} \langle x \rangle^{m-j-|\beta|}, \quad (t,x) \in [0,T] \times \mathbb{R}^n, \\ &|D_x^{\beta} \partial_t a_{j,\alpha}(t,x)| \leq C^{|\beta|} \beta!^{\sigma} \langle x \rangle^{m-j-|\beta|} \frac{1}{t^q}, \quad (t,x) \in (0,T] \times \mathbb{R}^n, \end{aligned}$

for $2 < \sigma < q/(q-1)$. Note that $2 < \sigma < q/(q-1) \implies q \in [1,2)$.

 $b_{j,\alpha} \in C^1([0,T];C^\infty(\mathbb{R}^n))$ satisfy

$$|D_x^{\beta}b_{j,\alpha}(t,x)| \leq C^{|\beta|}\beta!^{\sigma}\langle x\rangle^{m-j-1-|\beta|}, \quad (t,x) \in [0,T] \times \mathbb{R}^n, \quad C_{\beta} > 0.$$

Rahul Raju Pattar 12/41

¹Nicola, F., Rodino, L. (2011) Global Pseudo-differential Calculus on Euclidean Spaces, Birkhäuser Basel.

²Ascanelli, A., Cappiello, M. (2008) Hölder continuity in time for SG hyperbolic systems, J. Differential Equations 244 2091-2121.

Key Steps in the Result

Key Steps

Factorization of the Operator

Rahul Raju Pattar 13/41

³Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.

Key Steps in the Result

Key Steps

- Factorization of the Operator
- First order system³

Rahul Raju Pattar 13/41

³Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.

Key Steps in the Result

Key Steps

- Factorization of the Operator
- First order system³
- 3 Conjugation by an infinite order ψDO

Rahul Raju Pattar 13/41

³Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 14/41

Governing Metrics

The SG-metric

$$g_{x,\xi} = \frac{|dx|^2}{\langle x \rangle^2} + \frac{|d\xi|^2}{\langle \xi \rangle^2}.$$

governs the growth of $A_{m-j}(t,x,\xi)$ and $B_{m-j}(t,x,\xi)$, i.e.,

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}A_{m-j}(t,x,\xi)| \leq C^{|\beta|+|\alpha|}\alpha!\beta!^{\sigma}\langle x\rangle^{m-j-|\beta|}\langle \xi\rangle^{m-j-|\alpha|}.$$

Rahul Raju Pattar 15/41

Governing Metrics

The SG-metric

$$g_{x,\xi} = \frac{|dx|^2}{\langle x \rangle^2} + \frac{|d\xi|^2}{\langle \xi \rangle^2}.$$

governs the growth of $A_{m-j}(t,x,\xi)$ and $B_{m-j}(t,x,\xi)$, i.e.,

$$|\partial_{\xi}^{\alpha} D_{x}^{\beta} A_{m-j}(t,x,\xi)| \leq C^{|\beta|+|\alpha|} \alpha! \beta!^{\sigma} \langle x \rangle^{m-j-|\beta|} \langle \xi \rangle^{m-j-|\alpha|}.$$

Conjugation

Since we are working in the Gevrey setting, to microlocally compensate the infinite loss of regularity (both derivatives and decay) we need to conjugate by an infinite order ψDO . After such a conjugation the metric governing the lower order terms is given by

$$\tilde{g}_{x,\xi} = \left(\frac{\langle \xi \rangle^{\frac{1}{\sigma}}}{\langle x \rangle^{\gamma}}\right)^{2} |dx|^{2} + \left(\frac{\langle x \rangle^{\frac{1}{\sigma}}}{\langle \xi \rangle^{\gamma}}\right)^{2} |d\xi|^{2}, \quad \gamma = 1 - \frac{1}{\sigma}.$$

Rahul Raju Pattar 15/41

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Metric on the Phase Space

Denote by $\omega(X,Y)$ the standard symplectic form on $T^*\mathbb{R}^n \cong \mathbb{R}^{2n}$: if $X=(x,\xi)$ and $Y=(y,\eta)$, then

$$\omega(X,Y) = \xi \cdot y - \eta \cdot x.$$

We can identify σ with the isomorphism of \mathbb{R}^{2n} to \mathbb{R}^{2n} such that $\omega^* = -\omega$, with the formula $\omega(X,Y) = \langle \omega X,Y \rangle$. To a Riemannian metric g_X on \mathbb{R}^{2n} (which is a measurable function of X), we associate the dual metric g_X^ω by

$$\forall T \in \mathbb{R}^{2n}, \quad g_X^{\omega}(T) = \sup_{0 \neq T' \in \mathbb{R}^{2n}} \frac{\langle \omega T, T' \rangle^2}{g_X(T')}.$$

Considering g_X as a matrix associated to positive definite quadratic form on \mathbb{R}^{2n} , $g_X^{\omega} = \omega^* g_X^{-1} \omega$.

Rahul Raju Pattar

⁰Lerner, N. 2010 Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators, Birkhäuser Basel.

Metric on the Phase Space

The Planck function [11] is defined to be

$$h_g(x,\xi) := \inf_{0 \neq T \in \mathbb{R}^{2n}} \left(\frac{g_X(T)}{g_X^{\omega}(T)} \right)^{1/2}.$$

The uncertainty principle is quantified as the upper bound $h_g(x,\xi) \leq 1$. We often make use of the strong uncertainty principle, that is, for some $\kappa > 0$, we have

$$h_g(x,\xi) \le (1+|x|+|\xi|)^{-\kappa}, \quad (x,\xi) \in \mathbb{R}^{2n}.$$

- ② For the metric \tilde{g} , $\tilde{h}(x,\xi) = h_{\tilde{g}}(x,\xi) = (\langle x \rangle \langle \xi \rangle)^{\frac{1}{\sigma} \gamma}$. The metric \tilde{g} satisfies the strong uncertainty principle when $\frac{1}{\sigma} \gamma < 0$ or $2 < \sigma$.

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψ DO
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Infinite Order ψ DO

We use an infinite order ψDO of the form

$$e^{\varepsilon h(x,D)^{-1/\sigma}}, \ \varepsilon > 0,$$

where $h(x, D)^{-1/\sigma} = \langle x \rangle^{1/\sigma} \langle D_x \rangle^{1/\sigma}$ is an ψ DO with symbol $h(x, \xi)^{-1/\sigma} = (\langle x \rangle \langle \xi \rangle)^{1/\sigma}$.

Infinite Order ψ DO

We use an infinite order ψDO of the form

$$e^{\varepsilon h(x,D)^{-1/\sigma}}, \ \varepsilon > 0,$$

where $h(x, D)^{-1/\sigma} = \langle x \rangle^{1/\sigma} \langle D_x \rangle^{1/\sigma}$ is an ψ DO with symbol $h(x, \xi)^{-1/\sigma} = (\langle x \rangle \langle \xi \rangle)^{1/\sigma}$.

Sobolev Spaces Associated with Infinite Order ψDO

The Sobolev space $H^{s,\varepsilon,\sigma}(\mathbb{R}^n)$ for $\sigma>2$, $\varepsilon>0$ and $s=(s_1,s_2)\in\mathbb{R}^2$ is defined as

$$H^{s,\varepsilon,\sigma}(\mathbb{R}^n) = \{v \in L^2(\mathbb{R}^n) : \langle x \rangle^{s_2} \langle D \rangle^{s_1} \exp\{\varepsilon \langle x \rangle^{1/\sigma} \langle D \rangle^{1/\sigma}\} v \in L^2(\mathbb{R}^n)\},$$

equipped with the norm $\|v\|_{s,\varepsilon,\sigma} = \|\langle\cdot\rangle^{s_2}\langle D\rangle^{s_1} \exp\left(\varepsilon\langle x\rangle^{1/\sigma}\langle D\rangle^{1/\sigma}\right)v\|_{L^2}$.

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 21/41

Subdivision of the Phase Space

Define $t_{x,\xi}$, for a fixed (x,ξ) , as the solution to the equation

$$t^q = N h(x, \xi),$$

where N is the positive constant and q is the given order of singularity. Since $2 < \sigma < q/(q-1)$, we consider $\delta \in (0,1)$ such that

$$\frac{1}{\sigma} = \frac{q-1+\delta}{a} = 1 - \frac{1-\delta}{a}.$$

Denote $\gamma=1-\frac{1}{\sigma}$. Using $t_{x,\xi}$ and the notation $J=[0,T]\times\mathbb{R}^n\times\mathbb{R}^n$ we define the interior region

$$Z_{int}(N) = \{(t, x, \xi) \in J : 0 \le t \le t_{x, \xi}\}$$

= \{(t, x, \xi) \in J : t^{1-\delta} \le N^{\gamma} \ho(x, \xi)^{\gamma}\},

and the exterior region

$$Z_{ext}(N) = \{(t, x, \xi) \in J : t_{x, \xi} \le t \le T\}$$

= \{(t, x, \xi) \in J : t^{1-\delta} \ge N^{\gamma} h(x, \xi)^{\gamma}\}.

Rahul Raju Pattar 22/41

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Set $\tau_j(t,x,\xi) = \tau_j(T,x,\xi)$ when t > T. We define the regularized root $\lambda_j(t,x,\xi)$ as

$$\lambda_j(t,x,\xi) = \int \tau_j(t-h(x,\xi)s,x,\xi) \, \rho(s) ds$$

where ho is compactly supported smooth function satisfying $\int\limits_{\mathbb{R}}
ho(s)ds=1$ and $0 \le
ho(s) \le 1$ with supp $ho(s) \subset \mathbb{R}_{<0}$. Then

$$(\lambda_j - \tau_j)(t, x, \xi) = \int (\tau_j(t - h(x, \xi)s, x, \xi) - \tau_j(t, x, \xi))\rho(s)ds$$

$$= \frac{1}{h(x, \xi)} \int (\tau_j(s, x, \xi) - \tau_j(t, x, \xi))\rho((t - s)h(x, \xi)^{-1})ds.$$

We have

$$|\partial_{\xi}^{\alpha} D_{x}^{\beta}(\lambda_{j} - \tau_{j})(t, x, \xi)| \leq C^{|\alpha| + |\beta|} \alpha! (\beta!)^{\sigma} \langle x \rangle^{1 - |\beta|} \langle \xi \rangle^{1 - |\alpha|}$$

and note that in $Z_{e\times t}(N)$ we have

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}(\lambda_{j}-\tau_{j})(t,x,\xi)| \leq C^{|\alpha|+|\beta|}\alpha!(\beta!)^{\sigma}\langle x\rangle^{-|\beta|}\langle \xi\rangle^{-|\alpha|}\frac{1}{t^{q}}$$

In $Z_{int}(N)$, we have $(\langle x \rangle \langle \xi \rangle)^{\gamma} \leq \frac{N^{\gamma}}{t^{1-\delta}}$ where $\gamma = 1 - \frac{1}{\sigma}$. So we can write

$$\begin{aligned} |\partial_{\xi}^{\alpha} D_{x}^{\beta} (\lambda_{j} - \tau_{j})(t, x, \xi)| &\leq C^{|\alpha| + |\beta|} \beta!^{\sigma} \alpha! \langle x \rangle^{1 - |\beta|} \langle \xi \rangle^{1 - |\alpha|} (\langle x \rangle \langle \xi \rangle)^{\gamma} \\ &\leq C_{1}^{|\alpha| + |\beta|} \beta!^{\sigma} \alpha! \frac{N^{\gamma}}{t^{1 - \delta}} \langle x \rangle^{\frac{1}{\sigma} - |\beta|} \langle \xi \rangle^{\frac{1}{\sigma} - |\alpha|} \end{aligned}$$

Similarly, in $Z_{ext}(N)$, we have $t^{q/\sigma} \geq (N \ h(x,\xi))^{rac{1}{\sigma}}$ and

$$\frac{1}{t^q} = \frac{1}{t^{1-\delta}} \frac{1}{t^{q/\sigma}} \le \frac{1}{t^{1-\delta}} \left(\frac{\langle x \rangle \langle \xi \rangle}{N} \right)^{1/\sigma}.$$

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}(\lambda_{j}-\tau_{j})(t,x,\xi)|\leq C_{1}^{|\alpha|+|\beta|}\beta!^{\sigma}\alpha!\frac{\mathcal{N}^{-1/\sigma}}{t^{1-\delta}}\langle x\rangle^{\frac{1}{\sigma}-|\beta|}\langle \xi\rangle^{\frac{1}{\sigma}-|\alpha|}$$

Hence, in the whole of extended phase space we have

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}(\lambda_{j}-\tau_{j})(t,x,\xi)| \leq N^{\gamma}C^{|\alpha|+|\beta|}\beta!^{\sigma}\alpha!\frac{1}{t^{1-\delta}}\langle x\rangle^{\frac{1}{\sigma}-|\beta|}\langle \xi\rangle^{\frac{1}{\sigma}-|\alpha|}.$$

Similarly, in $Z_{\mathsf{ext}}(\mathsf{N})$, we have $t^{q/\sigma} \geq (\mathsf{N} \; h(x,\xi))^{rac{1}{\sigma}}$ and

$$\frac{1}{t^q} = \frac{1}{t^{1-\delta}} \frac{1}{t^{q/\sigma}} \le \frac{1}{t^{1-\delta}} \left(\frac{\langle x \rangle \langle \xi \rangle}{N} \right)^{1/\sigma}.$$

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}(\lambda_{j}-\tau_{j})(t,x,\xi)| \leq C_{1}^{|\alpha|+|\beta|}\beta!^{\sigma}\alpha!\frac{\mathcal{N}^{-1/\sigma}}{t^{1-\delta}}\langle x\rangle^{\frac{1}{\sigma}-|\beta|}\langle \xi\rangle^{\frac{1}{\sigma}-|\alpha|}$$

Hence, in the whole of extended phase space we have

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}(\lambda_{j}-\tau_{j})(t,x,\xi)| \leq N^{\gamma}C^{|\alpha|+|\beta|}\beta!^{\sigma}\alpha!\frac{1}{t^{1-\delta}}\langle x\rangle^{\frac{1}{\sigma}-|\beta|}\langle \xi\rangle^{\frac{1}{\sigma}-|\alpha|}.$$

Conjugation

We conjugate the first order system equivalent to operator P in (1) by $e^{\Lambda(t)\langle x\rangle^{1/\sigma}\langle D\rangle^{1/\sigma}}$, where $\Lambda(t)=\frac{\lambda}{\delta}(T^{\delta}-t^{\delta})$.

Presentation Outline

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψDC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 27/41

Theorem

Consider the strictly hyperbolic Cauchy problem (1) f_k belongs to $H^{s+(m-k)e,\Lambda_1,\sigma}$, $\Lambda_1>0$ for $k=1,\cdots,m$ and $f\in C([0,T];H^{s,\Lambda_2,\sigma})$, $\Lambda_2>0$. Then, there exists $\Lambda_0>0$, such that there is a unique solution

$$u \in \bigcap_{j=0}^{m-1} C^{m-1-j} \Big([0, T]; H^{s+je, \Lambda^*, \sigma} \Big)$$

where $\Lambda^* < \min\{\Lambda_0, \Lambda_1, \Lambda_2\}$.

Rahul Raju Pattar 28/41

Theorem

Consider the strictly hyperbolic Cauchy problem (1) f_k belongs to $H^{s+(m-k)e,\Lambda_1,\sigma}$, $\Lambda_1>0$ for $k=1,\cdots,m$ and $f\in C([0,T];H^{s,\Lambda_2,\sigma})$, $\Lambda_2>0$. Then, there exists $\Lambda_0>0$, such that there is a unique solution

$$u \in \bigcap_{j=0}^{m-1} C^{m-1-j} \Big([0, T]; H^{s+je, \Lambda^*, \sigma} \Big)$$

where $\Lambda^* < \min\{\Lambda_0, \Lambda_1, \Lambda_2\}$. More specifically, for a sufficiently large λ and $\delta \in (0, 1)$, we have the a-priori estimate

$$\begin{split} \sum_{j=0}^{m-1} \|\partial_t^j u(t,\cdot)\|_{s+(m-1-j)e,\Lambda(t),\sigma} &\leq C \Bigg(\sum_{j=1}^m \|f_j\|_{s+(m-j)e,\Lambda(0),\sigma} \\ &+ \int_0^t \|f(\tau,\cdot)\|_{s,\Lambda(\tau),\sigma} \ d\tau \Bigg) \end{split}$$

for $0 \le t \le T \le (\delta \Lambda^*/\lambda)^{1/\delta}, \ C = C_s > 0$ and $\Lambda(t) = \frac{\lambda}{\delta} (T^\delta - t^\delta).$

Rahul Raju Pattar 28/41

A Generalization

In our work [14], we have assumed

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}A_{m-j}(t,x,\xi)| \leq C^{|\beta|+|\alpha|}\alpha!\beta!^{\sigma}\Phi(x)^{m-j-|\beta|}\langle\xi\rangle^{m-j-|\alpha|},$$

where $1 \leq \Phi(x) \lesssim \langle x \rangle$ and used the metric

$$g_{x,\xi} = \frac{|dx|^2}{\Phi(x)^2} + \frac{|d\xi|^2}{\langle \xi \rangle^2}.$$

Example: $\Phi(x) = \langle x \rangle^{\kappa}$ for some $\kappa \in [0, 1]$.

Rahul Raju Pattar 29/41

Presentation Outline

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- 3 Conjugation by Infinite Order ψ DC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$

References

Rahul Raju Pattar 30/41

Gelfand-Shilov Spaces and Infinite Order ψ DO

In the literature 4 ⁵, the infinite order ψDO that is used is of the form

$$e^{\varepsilon_1\langle x\rangle^{1/\sigma}+\varepsilon_2\langle D_x\rangle^{1/\sigma}},\quad \sigma>1,\; \varepsilon=\left(\varepsilon_1,\varepsilon_2\right)\in\mathbb{R}^2.$$

$$\mathcal{S}_{\sigma,\varepsilon}(\mathbb{R}^n) = \{ u \in L^2(\mathbb{R}^n) : e^{\varepsilon_1 \langle x \rangle^{1/\sigma} + \varepsilon_2 \langle D_x \rangle^{1/\sigma}} u \in L^2(\mathbb{R}^n) \}.$$

Rahul Raju Pattar 31/41

⁴Cappiello, M. (2003) Pseudodifferential parametrices of infinite order for SG-hyperbolic problems, Rend. Sem. Mat. Univ. Politec. Torino 61 (4) 411–441.

⁵Ascanelli, A., Cappiello, M. (2008) Hölder continuity in time for SG hyperbolic systems, J. Differential Equations 244 2091-2121

Gelfand-Shilov Spaces and Infinite Order ψ DO

In the literature 4 ⁵, the infinite order ψDO that is used is of the form

$$e^{\varepsilon_1\langle x\rangle^{1/\sigma}+\varepsilon_2\langle D_x\rangle^{1/\sigma}}, \quad \sigma>1, \ \varepsilon=(\varepsilon_1,\varepsilon_2)\in\mathbb{R}^2.$$

$$\mathcal{S}_{\sigma,\varepsilon}(\mathbb{R}^n) = \{u \in L^2(\mathbb{R}^n) : e^{\varepsilon_1 \langle x \rangle^{1/\sigma} + \varepsilon_2 \langle D_x \rangle^{1/\sigma}} u \in L^2(\mathbb{R}^n)\}.$$

$\mathcal{S}_{\sigma}(\mathbb{R}^n)$

Denoting $\mathcal{S}^\sigma_\sigma(\mathbb{R}^n)=\mathcal{S}_\sigma(\mathbb{R}^n)$ and its dual by $\mathcal{S}'_\sigma(\mathbb{R}^n)$, we have that

$$\mathcal{S}_{\sigma}(\mathbb{R}^n) = \varinjlim_{\varepsilon \to (0,0)} \mathcal{S}_{\sigma,\varepsilon}(\mathbb{R}^n) \text{ and } \mathcal{S}'_{\sigma}(\mathbb{R}^n) = \varprojlim_{\varepsilon \to (0,0)} \mathcal{S}'_{\sigma,\varepsilon}(\mathbb{R}^n).$$

Rahul Raju Pattar 31/41

⁴Cappiello, M. (2003) Pseudodifferential parametrices of infinite order for SG-hyperbolic problems, Rend. Sem. Mat. Univ. Politec. Torino 61 (4) 411–441.

⁵Ascanelli, A., Cappiello, M. (2008) Hölder continuity in time for SG hyperbolic systems, J. Differential Equations 244 2091-2121

$\mathcal{M}_{\sigma}(\mathbb{R}^n)$

In our analysis [14], we have used infinite order ψDO

$$e^{arepsilon\langle x
angle^{1/\sigma}\langle D
angle^{1/\sigma}},\quad \sigma>2 \ ext{and} \ arepsilon>0.$$

Let

$$\mathcal{M}_{\sigma,\varepsilon}(\mathbb{R}^n) = \{ u \in L^2(\mathbb{R}^n) : e^{\varepsilon \langle x \rangle^{1/\sigma} \langle D \rangle^{1/\sigma}} u \in L^2(\mathbb{R}^n) \},$$

where $\mathcal{M}'_{\sigma,\varepsilon}(\mathbb{R}^n)$, the dual of $\mathcal{M}_{\sigma,\varepsilon}(\mathbb{R}^n)$ is $\mathcal{M}_{\sigma,-\varepsilon}(\mathbb{R}^n)$. We define

$$\mathcal{M}_{\sigma}(\mathbb{R}^n) = \varinjlim_{\varepsilon \to 0} \mathcal{M}_{\sigma,\varepsilon}(\mathbb{R}^n) \text{ and } \mathcal{M}'_{\sigma}(\mathbb{R}^n) = \varprojlim_{\varepsilon \to 0} \mathcal{M}'_{\sigma,\varepsilon}(\mathbb{R}^n).$$

Rahul Raju Pattar 32/41

Note that $\frac{\varepsilon}{2}(\langle x \rangle^{1/\sigma} + \langle \xi \rangle^{1/\sigma}) \leq \varepsilon(\langle x \rangle \langle \xi \rangle)^{1/\sigma} \leq \frac{\varepsilon}{2}(\langle x \rangle^{2/\sigma} + \langle \xi \rangle^{2/\sigma})$. Thus,

we have $\mathcal{S}_{\frac{\sigma}{2},\frac{\varepsilon}{2}}(\mathbb{R}^n) \hookrightarrow \mathcal{M}_{\sigma,\varepsilon}(\mathbb{R}^n) \hookrightarrow \mathcal{S}_{\sigma,\frac{\varepsilon}{2}}(\mathbb{R}^n)$.

Rahul Raju Pattar 33/41

$\mathcal{S}_{\sigma}(\mathbb{R}^n)$ and $\mathcal{M}_{\sigma}(\mathbb{R}^n)$

Relation between $\mathcal{S}_{\sigma}(\mathbb{R}^n)$ and $\mathcal{M}_{\sigma}(\mathbb{R}^n)$

Taking inductive limit as $\varepsilon \to 0$, we have

$$\mathcal{S}_{\frac{\sigma}{2}}(\mathbb{R}^n)\hookrightarrow\mathcal{M}_{\sigma}(\mathbb{R}^n)\hookrightarrow\mathcal{S}_{\sigma}(\mathbb{R}^n).$$

As for the duals, taking projective limit as $-\varepsilon \to 0$, we have

$$\mathcal{S}'_{\sigma}(\mathbb{R}^n) \hookrightarrow \mathcal{M}'_{\sigma}(\mathbb{R}^n) \hookrightarrow \mathcal{S}'_{\frac{\sigma}{2}}(\mathbb{R}^n).$$

Rahul Raju Pattar 34/41

$\mathcal{S}_{\sigma}(\mathbb{R}^n)$ and $\mathcal{M}_{\sigma}(\mathbb{R}^n)$

Rahul Raju Pattar 35/41

Characterization by Perturbed Laplacian Operator

$\overline{\mathcal{S}_{\sigma}(\mathbb{R}^n)}$

 $S_{\sigma}(\mathbb{R}^n)$ for $\sigma \geq \frac{1}{2}$ can be characterized⁶ by Harmonic oscillator, $H = |x|^2 - \Delta$ (additive pertubration of Δ) as

$$\|H^N u\|_{L^\infty} \lesssim C^N (N!)^{2\sigma},$$

for some C > 0.

Rahul Raju Pattar 36/41

⁶Toft, J. (2017) Images of function and distribution spaces under the Bargmann transform. J. Pseudo Differ. Oper. Appl. 8, 83–139

⁷Cappiello, M., Rodino, L. (2006) SG-Pseudodifferential Operators and Gelfand-Shilov Spaces, Rocky Mountain J. Math. 36(4) 1117-1148.

Characterization by Perturbed Laplacian Operator

$\mathcal{S}_{\sigma}(\mathbb{R}^n)$

 $S_{\sigma}(\mathbb{R}^n)$ for $\sigma \geq \frac{1}{2}$ can be characterized⁶ by Harmonic oscillator, $H = |x|^2 - \Delta$ (additive pertubration of Δ) as

$$\|H^N u\|_{L^\infty} \lesssim C^N (N!)^{2\sigma},$$

for some C > 0.

We are looking at characterizing the space $\mathcal{M}_{\sigma}(\mathbb{R}^n)$ using the operator $\mathcal{L}=\langle x \rangle^2(1-\Delta)$ (multiplicative perturbation of $\Delta)^7$.

Rahul Raju Pattar 36/41

⁶Toft, J. (2017) Images of function and distribution spaces under the Bargmann transform. J. Pseudo Differ. Oper. Appl. 8, 83–139

⁷Cappiello, M., Rodino, L. (2006) SG-Pseudodifferential Operators and Gelfand-Shilov Spaces, Rocky Mountain J. Math. 36(4) 1117-1148.

Thank You

Rahul Raju Pattar 37/41

Presentation Outline

- Introduction and Motivation
 - Strict Hyperbolicity
 - Known Results
- Our Model of Strictly Hyperbolic Operator
- lacksquare Conjugation by Infinite Order ψDC
 - Metric on the Phase Space
 - Infinite Order ψ DO
- Subdivision of the Phase Space
 - Decomposition of the Operator
- Result
- 6 Generalized Function Space: $\mathcal{M}_{\sigma}(\mathbb{R}^n)$
- References

Rahul Raju Pattar 38/41

References 1

- [1] Ascanelli, A., Cappiello, M. (2006) Log-Lipschitz regularity for SG hyperbolic systems, J. Differential Equations 230 556–578.
- [2] Ascanelli, A., Cappiello, M. (2008) Hölder continuity in time for SG hyperbolic systems, J. Differential Equations 244 2091-2121.
- [3] Cappiello, M., Gourdin, D., Gramchev, T. (2011) Cauchy Problems for Hyperbolic Systems in \mathbb{R}^n with irregular principal symbol in time and for $|x| \to \infty$, J. Differential Equations 250 2624-2642.
- [4] Cappiello, M., Rodino, L. (2006) SG-Pseudodifferential Operators and Gelfand-Shilov Spaces, Rocky Mountain J. Math. 36(4) 1117-1148.
- [5] Cicognani, M., (2003) The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients, Tsukuba J. Mathematics 27 1-12.
- [6] Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.
- [7] Colombini, F., Del Santo, D., Kinoshita, T. (2002) Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 327–358.

Rahul Raju Pattar 39/41

References II

- [8] Colombini, F., De Giorgi, E., Spagnolo, S. (1979) Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (6) 511–559.
- [9] Kajitani, K. (1983) Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ. 23 (3) 599–616.
- [10] Kubo, A., Reissig, M. (2003) Construction of Parametrix to Strictly Hyperbolic Cauchy Problems with Fast Oscillations in NonLipschitz Coefficients, 28:7-8, 1471-1502
- [11] Lerner, N. 2010 Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators, Birkhäuser Basel.
- [12] Nicola, F., Rodino, L. (2011) Global Pseudo-differential Calculus on Euclidean Spaces, Birkhäuser Basel.
- [13] Nishitani, T. (1983) Sur les équations hyperboliques à coefficients qui sont höldériens en t et de la classe de Gevrey en x, Bull. Sci. Math. 107 113–138

Rahul Raju Pattar 40/41

References III

- [14] Rahul R. P., Uday Kiran N., (2020) Global Well-Posedness of a Class of Strictly Hyperbolic Cauchy Problems with Coefficients Non-Absolutely Continuous in Time (Preprint) arXiv:2007.07153.
- [15] Uday Kiran, N., Coriasco, S., Battisti, U.. (2016) Hyperbolic operators with non-Lipschitz coefficients. In: Recent Advances in Theoretical and Computational Partial Differential Equations with Applications. Panjab University, Chandigarh.

Rahul Raju Pattar 41/41