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Strict Hyperbolicity

Consider a Cauchy problem
Lu(t,x) = f(t,x), (t,x) € [0, T] xR",
DE1u(0, x) = fi(x), k=1,...,m

where the operator L(t, x, 0, Dy) is given by

m—1
L=0p-3 Y aaltn)020L

j=0 |al+j<m

Here DY = (—i)*0%. L is hyperbolic if

-1
e ’"E: Z aj,a(t,x)fo‘Tj =0

J=0 |af+j=m

has real roots 7i(t, x,£). In addition, if they are distinct, then we have
strict hyperbolicity.
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Well-posedness Results

Authors Regularity Regularity | Well-posed Loss of
inte[0,T] | inx€R" | in Derivatives
.. CuL - H?® finite loss
Colombini et al.[8] cx i s o loss
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Cicognani & C. to g HE (R arb. small
Lorenz [6] C* 8 oo loss
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Our Model of Strictly Hyperbolic Operator

We deal with the Cauchy problem

P(t,x, 0¢, Dy)u(t,x) = f(t, x), (t,x) €0, T] x R,
D ) ’ (1)
¢ u(0,x) = fi(x), k=1,...,m

where the strictly hyperbolic operator P(t, x, 0¢, Dy) is given by
m—1

P=D"—-Y" (Am_j(t,x, D) 4 Bm_j(t, x, DX)>D{ with
j=0

Am-j(t,x, D) = Y aja(t,x)Dg and
la+j=m

Bm-j(t,x,Dx) = > bja(t,x)D
la|+j<m
These characteristic roots 7(t, x, &) are such that
Tl(t7X7§) < 7—2( 7X7 ) - < 7-m(t X 5)7 and

C{x)(€) < !Tk(t x, £)|-

Rahul Raju Pattar 11/41



Regularity of Coefficients

Q aj, < C([0, T]; C*(R™)N CY((0, T]; C>(R")) satisfying
ID2a; o(t,x)| < CIPIB17 ()™= =11 (¢ x) e [0, T] x R,

; 1
IDZ0raja(t, )| < CPIBI ()™ I (1,x) € (0, T] x R”,

for2 <o <q/(g—1). Notethat2 <o < q/(qg—1) = q€[1,2).

!Nicola, F., Rodino, L. (2011) Global Pseudo-differential Calculus on Euclidean
Spaces, Birkhduser Basel.
2Ascanelli, A., Cappiello, M. (2008) Hélder continuity in time for SG hyperbolic
systems, J. Differential Equations 244 2091-2121.
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Key Steps in the Result

@ Factorization of the Operator

3Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients
low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.
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Key Steps in the Result

@ Factorization of the Operator

@ First order system®
© Conjugation by an infinite order DO

3Cicognani, M., Lorenz, D. (2017) Strictly hyperbolic equations with coefficients
low-regular in time and smooth in space, J. Pseudo-Differ. Oper. Appl.
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Governing Metrics

The SG-metric
_ ldx? | |ag?

BT

governs the growth of A,_j(t,x,&) and Bp,_j(t,x,§), i.e.,

X7£

108 D2 Am-j(t,x,6)| < CIPFIelan g1 () m==1Pl gy m=i—lel,
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governs the growth of A,_j(t,x,&) and Bp,_j(t,x,§), i.e.,

X7£

108 D2 Am-j(t,x,6)| < CIPFIelan g1 () m==1Pl gy m=i—lel,

Conjugation

Since we are working in the Gevrey setting, to microlocally compensate the
infinite loss of regularity (both derivatives and decay) we need to conjugate
by an infinite order ©»DO. After such a conjugation the metric governing
the lower order terms is given by

SE= (%)2“’“2 + (%i)ﬂd&ﬁ r=1--,

Rahul Raju Pattar 15/41
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Metric on the Phase Space

Denote by w(X, Y) the standard symplectic form on T*R" = R?": if
X =(x,&) and Y = (y,n), then

w(X,Y)=§ -y —n-x

We can identify o with the isomorphism of R2" to R2" such that w* = —w,
with the formula w(X, Y) = (wX, Y). To a Riemannian metric gx on R?"
(which is a measurable function of X), we associate the dual metric g by

T,T')?
VT e R?", g¥(T)= sup 7@] ’ />
0#£T'cR2n gx(T')

Considering gx as a matrix associated to positive definite quadratic form
on R2", g = w*g)?lw.

®Lerner, N. 2010 Metrics on the Phase Space and Non-Selfadjoint
Pseudo-Differential Operators, Birkhduser Basel.
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Metric on the Phase Space

The Planck function [11] is defined to be
() 1/2
: &x
Pe08) = e, (g%(T)> '

The uncertainty principle is quantified as the upper bound hg(x,&) < 1.
We often make use of the strong uncertainty principle, that is, for some
Kk > 0, we have

he(x,€) < (L4 x| +1€)7"  (x,€) e R*".

O For SG metric g, h(x, &) = hg(x,&) = ({(x){&))~L.

@ For the metric &, h(x, &) = hg(x,€) = ((x)(£ >)§_7 The metric g
satisfies the strong uncertainty principle when 1 s—7<0or2<o.

Rahul Raju Pattar 18/41
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Infinite Order ¢yDO

We use an infinite order ¥y DO of the form

—1/0
gD g 0,

where h(x, D)"Y = (x)Y/7(D,)1/7 is an DO with symbol
h(x,€)717 = (€)M,
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Infinite Order ¢yDO

We use an infinite order ¥y DO of the form

—1/0
gD g 0,

where h(x, D)"Y = (x)Y/7(D,)1/7 is an DO with symbol
h(x,€)717 = (€)M,

The Sobolev space H5°(R™) for o > 2, ¢ > 0 and s = (s1,52) € R? is
defined as

Ho (R") = {v € 2(R") : {x)* (D)™ exp{e(x) /(D) }v € 2(R™)},

equipped with the norm [|v||s .o = ||{-)®2 (D) exp (€<X>1/U<D>1/U)VHL2.
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Subdivision of the Phase Space

Define t, ¢, for a fixed (x,§), as the solution to the equation
t9 = N h(x,¢),
where N is the positive constant and q is the given order of singularity.
Since 2 < 0 < q/(q — 1), we consider § € (0,1) such that
1 _q9- 144§ 1 1-9¢
o q q

Denote v =1 — L. Using t,¢ and the notation J = [0, T] x R” x R" we
define the interior region

Zinte(N) = {(t,x,§) € J: 0 < t < tye}
={(t,x,&) e J: t! 0O < N7 h(x,&)},
and the exterior region
Zext(N) ={(t,x,§) € J 1 t, e <t < T}
={(t,x,§) € J: !0 > N7 h(x,€)7}.
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Decomposition of the Operator

Set 7j(t,x,§) = 7j(T,x,§) when t > T. We define the regularized root
Aj(t,x,§) as

Mex€) = [ hix s, x.€) (s)ds

where p is compactly supported smooth function satisfying [ p(s)ds = 1
R
and 0 < p(s) <1 with supp p(s) C Reg. Then

(A — 7))t x, &) = /(q(t — h(x,8)s, x,§) — 7(t, x,£))p(s)ds
= ; TilS, X —Ti(t,x — S)hlx. ) Nds
~ h(x, &) /(J( %, 8) = 7j(t, x,€))p((t — s)h(x,§) " )ds.
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Decomposition of the Operator

We have
08 DLV — 1) (8, %, )| < ClHPlal ()7 ()t gyt
and note that in Zg:(N) we have

laf L

0 D0 = m)(t.x. )] < CHPla(51)7 () =Py 1ol

In Zint(N), we have ((x)(£))? < tllv—j(; where v =1 — 1. So we can write

08 DI\ = )8, x, ) < CPIgIat )P T () (€))7
< C1|a\+|ﬁ|ﬂlaa!t/1\/_6< ) 2181y 3l
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Decomposition of the Operator

Similarly, in Zext(N), we have t9/7 > (N h(x,&))= and

11 1 _ 1 ((x><§>>1/0‘

@ aoe S aT\ N

/ 1 1
A )iy s e

Hence, in the whole of extended phase space we have

08 DY = )t x )] < G P al

1 1_ 1,
98 DL = 7)(t.x, 6| < NTCRIHPIBI7at s (=Pl gy 1o,
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Decomposition of the Operator

Similarly, in Zext(N), we have t9/7 > (N h(x,&))= and

11 1 _ 1 ((x><§>>1/”.

@~ d e S A\ N

/ 1 1
A )iy s e

Hence, in the whole of extended phase space we have

92 DL = )t x 9l < T goad

08 DL = 7)(t x,§)| < ch'a'“ﬂ'm"a!tf_g )7 Pligyalel,

Conjugation
We conjugate the first order system equivalent to operator P in (1) by
NGOV \here Nt) = 5(T° = %),
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Theorem

Consider the strictly hyperbolic Cauchy problem (1) f; belongs to
HsH(m=kleAo N >0 fork=1,--- ,m and f € C([0, T]; H"2),
N> > 0. Then, there exists \g > 0, such that there is a unique solution

-1
= nh Cmflf_i<[07 -,—]; Hs+je,/\*,a>
Jj=0

where N* < min{/Ag, A1, A2}
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Theorem

Consider the strictly hyperbolic Cauchy problem (1) f; belongs to
Hs+(mfk)e,/\1,cr7/\1 >0 fork=1,---,mandf € C([0, T]; HS’AZ’”),
N> > 0. Then, there exists \g > 0, such that there is a unique solution

m—1
ye ﬂ Cm—l—j<[07 T]; Hs+je7/\*7a>
j=0

where N* < min{/Ag, A1, A\2}. More specifically, for a sufficiently large \
and § € (0,1), we have the a-priori estimate

m—1

185u(t, Mot (m-1-jer)e < C<Z|W|s+(m1)e,/\(0),a

t
4 /0 V(7 Ms ey df)

for 0 <t < T < (SA*/NY9, C=C;>0and A(t) = 3(T° - t9).
28/41
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A Generalization

In our work [14], we have assumed
108 DS Am—j(t, x,€)| < CIPIFIal a1 1o (x)m=i=I8l(gym=i=lel
where 1 < ®(x) < (x) and used the metric

_loxP | |ogP
TN

Example: ®(x) = (x)" for some x € [0, 1].
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Gelfand-Shilov Spaces and Infinite Order 1)DO

In the literature # 5, the infinite order ¥’ DO that is used is of the form

1/o0 1/o
eEl(X> “+e2(Dx) , o> 1, g = (51752) € Rz'

Spe(RM) = {u € [2(RM) : €27 +e2(DY7 ) [2(RM)}.

*Cappiello, M. (2003) Pseudodifferential parametrices of infinite order for
SG-hyperbolic problems, Rend. Sem. Mat. Univ. Politec. Torino 61 (4) 411-441.
®Ascanelli, A., Cappiello, M. (2008) Hélder continuity in time for SG hyperbolic
systems, J. Differential Equations 244 2091-2121
S



Gelfand-Shilov Spaces and Infinite Order 1/

In the literature # 5, the infinite order ¥’ DO that is used is of the form
1/o0 1/0
=10 T4 DOYT 5 S 1 e = (eq,65) € R2

Sra(RT) = {u € [2(R") : 100742207y & 2R},

Denoting SZ(R") = S,(R") and its dual by S”(R"), we have that

So(R") = lim S,c(R") and SL(R") = lim S, (R").

<_
e—(0,0) e—(0,0)

*Cappiello, M. (2003) Pseudodifferential parametrices of infinite order for
SG-hyperbolic problems, Rend. Sem. Mat. Univ. Politec. Torino 61 (4) 411-441.

®Ascanelli, A., Cappiello, M. (2008) Hélder continuity in time for SG hyperbolic
systems, J. Differential Equations 244 2091-2121
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My (R")

In our analysis [14], we have used infinite order 1)DO

eE<X>1/0<D>1/G og>2and e > 0.

)

Let
Mo e(R") = {u € 2(R") : X7 OV e 2R,

where M, _(R"), the dual of M, (R") is M, _-(R"). We define
M,(R") = li

—
e—>

Mo (R") and Mg (R") = lim M _(R").

e—0

[=

Rahul Raju Pattar 32/41



Note that §((x)"/7 + (£)"/7) < e((x)(E)V7 < 5(()*7 +(€)¥7). Thus,

N[

we have Sg < (R") = My o(R") = S, < (R").

2 X
-({ap /ark Lo 3)
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S,(R") and M, (R")

Taking inductive limit as € — 0, we have
S%(R”) — Ms(R") — S;(R").

As for the duals, taking projective limit as —e — 0, we have

S,(R") = ML(R") — S’% (R™).

Rahul Raju Pattar 34/41
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Characterization by Perturbed Laplacian Operator

Sy(R™) for 0 > 1 can be characterized® by Harmonic oscillator,
H = |x|> — A (additive pertubration of A) as

IHY ull = S (N1,

for some C > 0.

5Toft, J. (2017) Images of function and distribution spaces under the Bargmann
transform. J. Pseudo Differ. Oper. Appl. 8, 83-139
"Cappiello, M., Rodino, L. (2006) SG-Pseudodifferential Operators and
Gelfand-Shilov Spaces, Rocky Mountain J. Math. 36(4) 1117-1148.
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Characterization by Perturbed Laplacian Operator

Sy(R™) for 0 > 1 can be characterized® by Harmonic oscillator,
H = |x|> — A (additive pertubration of A) as

IHY ull = S (N1,

for some C > 0.

We are looking at characterizing the space M, (R") using the operator
L = (x)*(1 — A) (multiplicative perturbation of A)7.

5Toft, J. (2017) Images of function and distribution spaces under the Bargmann
transform. J. Pseudo Differ. Oper. Appl. 8, 83-139
"Cappiello, M., Rodino, L. (2006) SG-Pseudodifferential Operators and
Gelfand-Shilov Spaces, Rocky Mountain J. Math. 36(4) 1117-1148.
—_—
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