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Preliminaries
Outline of the problem

The Weyl-Hormander calculus

Outline of the problem

For a € S(R?"), the Weyl quantisation of a is:

1
(2m)"

ao) = o [ [ S Da((xt ) 2. el ¢ € SR

a” : S(R") — S(R") is continuous; in fact, it extends to a continuous mapping
S'(R") — S(R™)
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Outline of the problem

For a € S(R?"), the Weyl quantisation of a is:

1
(2m)"

ao) = o [ [ S Da((xt ) 2. el ¢ € SR

a” : S(R") — S(R") is continuous; in fact, it extends to a continuous mapping
S'(R") — S(R™)

if a € S’(R2") then a” : S(R") — S’(R") is continuous.
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Outline of the problem

e (the Shubin classes) a€ ') (0 < p < 1) if

|Dg Df a(x, &)| < Ca,s((x, €)™ PUIHBD v(x,¢) € R?™;
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e (the Shubin classes) a€ ') (0 < p < 1) if

|Dg Df a(x, &)| < Ca,s((x, €)™ PUIHBD v(x,¢) € R?™;

e (the Hérmander S, s-calculus) a € S'p’jé (0<s<p<tandé<)if

IDZDE a(x, )| < Ca,p ()™ PI*Io181 y(x,¢) € R2™;

o (the Beals-Fefferman calculus) a € S(M; ¢, ®) if

|Dg D a(x,€)| < Ca,sM(x,&)p(x,€)1Plo(x,6) 7121, ¥(x,€) € R?".
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e (the Shubin classes) a€ ') (0 < p < 1) if

|Dg Df a(x, &)| < Ca,s((x, €)™ PUIHBD v(x,¢) € R?™;

e (the Hérmander S, s-calculus) a € S'p’jé (0<s<p<tandé<)if

IDZDE a(x, )| < Ca,p ()™ PI*Io181 y(x,¢) € R2™;

e (the Beals-Fefferman calculus) a € S(M; ¢, ®) if
|DgD{a(x, )| < Ca,sM(x,E)0(x,€)~1Plo(x,€) =121, v(x,£) € R?".

The Shubin calculus when p(x, &) = ®(x, &) = ((x,£))?, M(x, &) = ((x,£))™.
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The Shubin calculus when p(x, &) = ®(x, &) = ((x,£))?, M(x, &) = ((x,&))™.
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Outline of the problem

e (the Shubin classes) a€ ') (0 < p < 1) if

|Dg Df a(x, &)| < Ca,s((x, €)™ PUIHBD v(x,¢) € R?™;

e (the Hérmander S, s-calculus) a € S'p’jé (0<s<p<tandé<)if

IDZDE a(x, )| < Ca,p ()™ PI*Io181 y(x,¢) € R2™;

e (the Beals-Fefferman calculus) a € S(M; ¢, ®) if
|DgD{a(x, )| < Ca,sM(x,E)0(x,€)~1Plo(x,€) =121, v(x,£) € R?".

The Shubin calculus when ¢(x, &) = ®(x, &) = ((x,£))?, M(x,&) = ((x,&))™.
The Hérmander S, 5-calculus, when (x, &) = (£)~° and ®(x, £) = (€)?,
M(x, &) = ()™

The SG-calculus (scattering calculus), when (X, &) = (x)? and ®(x, &) = (€)?,
M(x,€) = (x)*(€)".
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.
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Outline of the problem

e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
where R : S’(R") — S(R") (regularising operator).
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
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o The Sobolev space H(M) = {u € S’(R")| a”u € L2}, where a” is elliptic operator
of order M;
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
where R : S’(R") — S(R") (regularising operator).

o The Sobolev space H(M) = {u € S’(R")| a”u € L2}, where a” is elliptic operator
of order M; furthermore H(1) = L2(R").
For the Shubin calculus when M = ((x, £))™, m € Z,

HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.
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For the Shubin calculus when M = ((x, £))™, m € Z,

HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.

e If ais of order M then a¥ : H(M;) — H(M;/M).
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HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.

e If ais of order M then a¥ : H(M;) — H(M;/M).

e A consequence of the existence of parametrices is that every elliptic operator a%
of order M restricts to a Fredholm mapping H(M;) — H(M; /M), for any M; and
its index is independent of M,
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
where R : S’(R") — S(R") (regularising operator).

o The Sobolev space H(M) = {u € S’(R")| a”u € L2}, where a” is elliptic operator
of order M; furthermore H(1) = L2(R").
For the Shubin calculus when M = ((x, &))", m € Z.,

HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.

e If ais of order M then a¥ : H(M;) — H(M;/M).

e A consequence of the existence of parametrices is that every elliptic operator a%
of order M restricts to a Fredholm mapping H(M;) — H(M; /M), for any M; and
its index is independent of M,

(a continuous operator A : H;y — H is called Fredholm if ker A and
coker A = Hp/A(Hy) are finite dimensional; ind A = dim ker A — dim coker A).
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
where R : S’(R") — S(R") (regularising operator).

o The Sobolev space H(M) = {u € S’(R")| a”u € L2}, where a” is elliptic operator
of order M; furthermore H(1) = L2(R").
For the Shubin calculus when M = ((x, £))™, m € Z,

HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.

e If ais of order M then a¥ : H(M;) — H(M;/M).

e A consequence of the existence of parametrices is that every elliptic operator a%
of order M restricts to a Fredholm mapping H(M;) — H(M; /M), for any M; and
its index is independent of M,

(a continuous operator A : H;y — H is called Fredholm if ker A and
coker A = Hp/A(Hy) are finite dimensional; ind A = dim ker A — dim coker A).

e |s the converse true?
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e The WDO a" is called elliptic if cM(x, &) < |a(x,&)| < CM(x, &) outside of a
compact neighbourhood of the origin.

o If the calculus satisfies the strong uncertainty principle, i.e.
w(x,&)P(x,&) > c((x,&))¢, e > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that b%a" = Id + R,
where R : S’(R") — S(R") (regularising operator).

o The Sobolev space H(M) = {u € S’(R")| a”u € L2}, where a” is elliptic operator
of order M; furthermore H(1) = L2(R").
For the Shubin calculus when M = ((x, &))", m € Z.,

HM) = {u e S'(R")| xPD>u e L2(R"), forall |a| + |B] < m}.

e If ais of order M then a¥ : H(M;) — H(M;/M).

e A consequence of the existence of parametrices is that every elliptic operator a%
of order M restricts to a Fredholm mapping H(M;) — H(M; /M), for any M; and
its index is independent of M,

(a continuous operator A : H;y — H is called Fredholm if ker A and
coker A = Hp/A(Hy) are finite dimensional; ind A = dim ker A — dim coker A).

o |s the converse true?Yes! for a number of specific instances of the
Weyl-Hérmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)
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o Let abe a 0-order symbol, i.e. bounded by a constant times M(x, £)° = 1. If 8% is
bijective operator on L2(R"), is the inverse again a WDO?
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o Let abe a 0-order symbol, i.e. bounded by a constant times M(x, £)° = 1. If 8% is
bijective operator on L2(R"), is the inverse again a WDO?Yes! A result of Bony
and Chemin verifies this for the Weyl-Hérmander calculus (under certain technical
assumptions).
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o Let abe a 0-order symbol, i.e. bounded by a constant times M(x, £)° = 1. If 8% is
bijective operator on L2(R"), is the inverse again a WDO?Yes! A result of Bony
and Chemin verifies this for the Weyl-Hérmander calculus (under certain technical

assumptions).
e This property of the calculus is called spectral invariance.
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The Weyl-Hormander calculus

Outline of the problem

o Let abe a 0-order symbol, i.e. bounded by a constant times M(x, £)° = 1. If 8% is
bijective operator on L2(R"), is the inverse again a WDO?Yes! A result of Bony
and Chemin verifies this for the Weyl-Hérmander calculus (under certain technical
assumptions).

e This property of the calculus is called spectral invariance.

o If X a, is CK-mapping (0 < k < oco) of 0-order symbols such that each a¥ is

invertible on L?(R"), is the same true for the mapping of the inverses \ — by?
(byay =1d = ayby)
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Outline of the problem

The Weyl-Hormander calculus

Hoérmander metric

V-an n dimensional real vector space with V’ its dual;
W = V x V' is symplectic with the symplectic form [(x, &), (v, n)] = (&, y) — (n, x) (the
phase space).

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hérmander calculus



Preliminari
reliminaries Outline of the problem
The Weyl-Hormander calculus

Hormander metric

V-an n dimensional real vector space with V’ its dual;
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phase space).
We denote the points in W with capital letters X, Y, Z, .. ..
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The Weyl-Hormander calculus

Hormander metric

V-an n dimensional real vector space with V’ its dual;

W = V x V' is symplectic with the symplectic form [(x, &), (v, n)] = (&, y) — (n, x) (the
phase space).

We denote the points in W with capital letters X, Y, Z, .. ..

Let X — gx be a Borel measurable symmetric covariant 2-tensor field on W that is
positive definite at every point; we employ the notation gx(T) = gx(T, T), T € TxyW.
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V-an n dimensional real vector space with V’ its dual;

W = V x V' is symplectic with the symplectic form [(x, &), (v, n)] = (&, y) — (n, x) (the
phase space).

We denote the points in W with capital letters X, Y, Z, .. ..

Let X — gx be a Borel measurable symmetric covariant 2-tensor field on W that is
positive definite at every point; we employ the notation gx(T) = gx(T, T), T € TxyW.
9%(T) = supsew\ (o3[ 7, S?/gx(S) is called the symplectic dual of g.
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The Weyl-Hormander calculus

Hormander metric

V-an n dimensional real vector space with V’ its dual;
W = V x V' is symplectic with the symplectic form [(x, &), (v, n)] = (&, y) — (n, x) (the

phase space).

We denote the points in W with capital letters X, Y, Z, .. ..

Let X — gx be a Borel measurable symmetric covariant 2-tensor field on W that is
positive definite at every point; we employ the notation gx(T) = gx(T, T), T € TxyW.
9%(T) = supsew\ (o3[ 7, S?/gx(S) is called the symplectic dual of g.

X — gx is a Hérmander metric if:
(7) (slow variation) there exist C > 1 and r > 0 such thatfor all X, Y, T € W

gx(X —Y) <r? = C'gy(T) < gx(T) < Cgy(T);
(i) (temperance) there exist C > 1, N € N such thatforall X, Y, T € W
(9x(T)/gv(T)*' < (1 + g5 (X — ),

(iii) (the uncertainty principle) gx(T) < g% (T), forall X, T € W.
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The Weyl-Hormander calculus

Hormander metric

V-an n dimensional real vector space with V’ its dual;

W = V x V' is symplectic with the symplectic form [(x, &), (v, n)] = (&, y) — (n, x) (the
phase space).

We denote the points in W with capital letters X, Y, Z, .. ..

Let X — gx be a Borel measurable symmetric covariant 2-tensor field on W that is
positive definite at every point; we employ the notation gx(T) = gx(T, T), T € TxyW.
9%(T) = supsew\ (o3[ 7, S?/gx(S) is called the symplectic dual of g.

X — gx is a Hérmander metric if:
(7) (slow variation) there exist C > 1 and r > 0 such thatfor all X, Y, T € W

gx(X —Y) <r? = C'gy(T) < gx(T) < Cgy(T);
(i) (temperance) there exist C > 1, N € N such thatforall X, Y, T € W
(9x(T)/gv(T)*' < (1 + g5 (X — ),

(iii) (the uncertainty principle) gx(T) < g% (T), forall X, T € W.

Denote Ag(X) = infrew (03 (9%(T)/9x(T))!/?; it is Borel measurable and
Ag(X) > 1,VX € W.
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Outline of the problem

The Weyl-Hormander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C>1,r>0and N € Nsuch thatforall X,Y € W

ax(X = ¥) < 2 = CT'M(Y) < M(X) < CM(Y);
(M(X)/M(Y))*! < C(1 +gg(X — V).
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Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C>1,r>0and N € Nsuch thatforall X,Y € W

ax(X = ¥) < 2 = CT'M(Y) < M(X) < CM(Y);
(M(X)/M(Y))*! < C(1 +gg(X — V).

S(M, g) is the space of all a € C>° (W) for which

< oo, Vk €N.

") _ 1a(X; T1,..., )l
a = su su
I ”S(M,g) I<’l:<) p

M) TT! T)1/2
= - (X) ITj=1 9x(T)
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The Weyl-Hormander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C>1,r>0and N € Nsuch thatforall X,Y € W

ax(X = ¥) < 2 = CT'M(Y) < M(X) < CM(Y);
(M(X)/M(Y))*! < C(1 +gg(X — V).

S(M, g) is the space of all a € C>° (W) for which

< oo, Vk €N.

") _ 1a(X; T1,..., )l
a = su su
I ”S(M,g) I<’l:<) p

M) TT! T)1/2
= - (X) ITj=1 9x(T)

S(M, g) is an (F)-space.
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The Weyl-Hormander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C>1,r>0and N € Nsuch thatforall X,Y € W

ax(X = ¥) < 2 = CT'M(Y) < M(X) < CM(Y);
(M(X)/M(Y))*! < C(1 +gg(X — V).

S(M, g) is the space of all a € C>° (W) for which

< oo, Vk €N.

ah(x; 1y,..., T
Ial6hg =30 s
S Tem (o) j=1 9xUj
S(M, g) is an (F)-space.

When gy.¢ = ¢~ 2|dx|2 + 2|d¢|?, S(M, g) reduces to the Beals-Fefferman classes;
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Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C>1,r>0and N € Nsuch thatforall X,Y € W

ax(X = ¥) < 2 = CT'M(Y) < M(X) < CM(Y);
(M(X)/M(Y))*! < C(1 +gg(X — V).

S(M, g) is the space of all a € C>° (W) for which

< oo, Vk €N.

ah(x; 1y,..., T
Ial6hg =30 s
S Tem (o) j=1 9xUj
S(M, g) is an (F)-space.

When gy.¢ = ¢~ 2|dx|2 + 2|d¢|?, S(M, g) reduces to the Beals-Fefferman classes;
in this case g7 . = ®2|dx|? + ¢?|d€|? and Ag(X) = o(X)(X).
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WDOs with symbols in S(M, g)

When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).
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The Weyl-Hormander calculus

WDOs with symbols in S(M, g)

When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).

The composition a¥b" is the WDO (a#b)" where

a#b(X) = # /W /W e 2IX=Y1.X=Yal (Y )b(Y,)dYidYz.
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When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).

The composition a¥b" is the WDO (a#b)" where

a#b(X) = # /W /W e 2IX=Y1.X=Yal (Y )b(Y,)dYidYz.

The mapping # : S(My, g) x S(Mz, g) — S(M; M>, g) is continuous.
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The Weyl-Hormander calculus

WDOs with symbols in S(M, g)

When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).

The composition a¥b" is the WDO (a#b)" where

a#b(X) = # /W /W e 2IX=Y1.X=Yal (Y )b(Y,)dYidYz.

The mapping # : S(My, g) x S(Mz, g) — S(M; M>, g) is continuous.

When E is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a
unital algebra (with unity f(A) = 1).
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The Weyl-Hormander calculus

WDOs with symbols in S(M, g)

When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).

The composition a¥b" is the WDO (a#b)" where

a#b(X) = # /W /W e 2IX=Y1.X=Yal (Y )b(Y,)dYidYz.

The mapping # : S(My, g) x S(Mz, g) — S(M; M>, g) is continuous.

When E is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a
unital algebra (with unity f(A) = 1).

When E is a smooth manifold, CX(E; S(1, g)), 0 < k < oo, becomes a unital algebra.
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The Weyl-Hormander calculus

WDOs with symbols in S(M, g)

When a € S(M, g), a” is continuous operator on S(V) and it extends to a continuous
operator on S’(V).

The composition a¥b" is the WDO (a#b)" where

a#b(X) = # /W /W e 2IX=Y1.X=Yal (Y )b(Y,)dYidYz.

The mapping # : S(My, g) x S(Mz, g) — S(M; M>, g) is continuous.

When E is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a
unital algebra (with unity f(A) = 1).

When E is a smooth manifold, CX(E; S(1, g)), 0 < k < oo, becomes a unital algebra.
Furthermore, the smooth vector fields on E are derivations of the unital algebra
C>(E;S(1,9)), i.e.

X(f1#12) = Xtz + f1# X1,
for f1,fo € C>°(E; S(1, 9)), X a smooth vector field on E.
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The Weyl-Hormander calculus

The Sobolev space H(M, g)

Let M be an admissible weight. There exist a € S(M, g) and b € S(1/M, g) such that
a#b=1= b#a.
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Preliminaries
Outline of the problem

The Weyl-Hormander calculus

The Sobolev space H(M, g)

Let M be an admissible weight. There exist a € S(M, g) and b € S(1/M, g) such that
a#b=1= b#a.

The Sobolev space H(M, g) is defined as
H(M,g) = {ue S'(V)|a"u e L3(V)}.

It is a Hilbert space with inner product (u, v)Hu,g) = (8", an)Lz(V).
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Preliminaries
Outline of the problem

The Weyl-Hormander calculus

The Sobolev space H(M, g)

Let M be an admissible weight. There exist a € S(M, g) and b € S(1/M, g) such that
a#b=1= b#a.

The Sobolev space H(M, g) is defined as
H(M,g) = {ue S'(V)|a"u e L3(V)}.
Itis a Hilbert space with inner product (u, V)xm,g) = (8%, 8" V) 2(y)-

H(1,g) = L2(V).
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Preliminaries
reliminarte: Outline of the problem

The Weyl-Hormander calculus

Additional hypothesis for spectral invariance

The Hérmander metric g is said to be geodesically temperate if there exist C > 1 and
N € N such that

ax(T) < Cgy(T)(1 +d(X, V)N, VX, Y, Te W,

where d(-, -) stands for the geodesic distance on W induced by the symplectic
intermediate g7.
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Preliminaries
reliminarte: Outline of the problem

The Weyl-Hormander calculus

Additional hypothesis for spectral invariance

The Hérmander metric g is said to be geodesically temperate if there exist C > 1 and
N € N such that

ax(T) < Cgy(T)(1 +d(X, V)N, VX, Y, Te W,

where d(-, -) stands for the geodesic distance on W induced by the symplectic
intermediate g7.

The metrics of all of the frequently used calculi are geodesically temperate.
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The main results

Inverse smoothness in S(1, g)

Theorem

Assume that g is a geodesically temperate Hérmander metric. Let E be a Hausdorff
topological space andf : E — S(1, g) a continuous mapping. If for each \ € E, f(\)¥
is invertible operator on L2( V), then there exists a unique continuous mapping

f: E— S(1,9) such that

fOO#E(N) = ) #F(A) =1, VA€ E. (1)

If E is a smooth manifold without boundary and f : E — S(1, g) is of class CV,
0 < N < oo, thenf: E — S(1,9) is also of class CN.
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The main results

Equivalence of ellipticity and the Fredholm property

Let g be a Hérmander metric satisfying A\g — oo and M a g-admissible weight. If
a e S(M, g) is elliptic than for any g-admissible weight My, a" restricts to a Fredholm
operator from H(My, g) into H(M; /M, g) and its index is independent of M.
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The main results

Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hérmander metric satisfying A\g — oo and M a g-admissible weight. If
a e S(M, g) is elliptic than for any g-admissible weight My, a" restricts to a Fredholm
operator from H(My, g) into H(M; /M, g) and its index is independent of M.

Theorem

| A

Let g be a geodesically temperate Hérmander metric satisfying A\g — oo and M and
My two g-admissible weights. If a € S(M, g) is such that a¥ restricts to a Fredholm
operator from H(My, g) into H(M; /M, g) then a is elliptic.
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The main results

Existence of parametrices

Theorem

Let g be a geodesically temperate Hérmander metric satisfying A\g — co and M a
g-admissible weight. If a € S(M, g) is elliptic then there are ry, r, € S(W) and elliptic
a1,a € S(1/M, g) such that

a#a=1-+n and a#ta=1+n
(ie. afa” =1d+r¥ and  a¥ay =Id+r))
and consequently a” is globally regular. Furthermore, r'(S’(V)) and ry'(S'(V)) are
finite dimensional subspaces of S(V).

In particular, ker &% is a finite dimensional subspace of S(V) and for any g-admissible
weight My, ker(ale( )) = kera".

My,g:V
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The main results

Existence of parametrices

Theorem

Let g be a geodesically temperate Hérmander metric satisfying A\g — co and M a
g-admissible weight. If a € S(M, g) is elliptic then there are ry, r, € S(W) and elliptic
a1,a € S(1/M, g) such that

a#a=1-+n and a#ta=1+n
(ie. afa” =1d+r¥ and  a¥ay =Id+r))
and consequently a” is globally regular. Furthermore, r'(S’(V)) and ry'(S'(V)) are
finite dimensional subspaces of S(V).

In particular, ker &% is a finite dimensional subspace of S(V) and for any g-admissible
weight My, ker(ale( )) = kera".

My,g:V

e Consequently, the dimensions of the cokernels of the Fredholm operators
a1y ,g) + H(My, 9) — H(M; /M, g) are also the same for any g-admissible
weight M;.

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hérmander calculus



The main results

Existence of parametrices

Theorem

Let g be a geodesically temperate Hérmander metric satisfying A\g — co and M a
g-admissible weight. If a € S(M, g) is elliptic then there are ry, r, € S(W) and elliptic
a1,a € S(1/M, g) such that

a#a=1-+n and a#ta=1+n
(ie. afa” =1d+r¥ and  a¥ay =Id+r))
and consequently a” is globally regular. Furthermore, r'(S’(V)) and ry'(S'(V)) are
finite dimensional subspaces of S(V).

In particular, ker &% is a finite dimensional subspace of S(V) and for any g-admissible
weight My, ker(a”"“_,(,w1 g;\7)) = kera".

e Consequently, the dimensions of the cokernels of the Fredholm operators
a1y ,g) + H(My, 9) — H(M; /M, g) are also the same for any g-admissible
weight M;.

o All of the above results hold equally well for matrix valued symbols, i.e. for
symbols in S(M, g; L(C")), v € Z.

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hérmander calculus



The main results

Fedosov-Hérmander integral formula for the index

If g satisfies the strong uncertainty principle:
there are C, 8 > 0 such that Ag(X) > C(1 + go(X))?, VX € W,

and a € S(1, g; £L(C")) is elliptic, then ind @ can be given by the Fedosov-Hérmander
integral formula.
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The main results

Fedosov-Hérmander integral formula for the index
If g satisfies the strong uncertainty principle:
there are C, 8 > 0 such that Ag(X) > C(1 + go(X))?, VX € W,

and a € S(1, g; £L(C")) is elliptic, then ind @ can be given by the Fedosov-Hérmander
integral formula.

Proposition

Assume that the Hérmander metric g satisfies the strong uncertainty principle and let a
be an elliptic symbol in S(M, g; L(C")) for some g-admissible weight M. Let D be any
compact properly embedded codimension-0 submanifold with boundary in W which
contains in its interior the set where a is not invertible. Then

ow (=) - -
inda" = 7(2n—1)!(27ri)"/30t(a 1da)2n—1.

The orientation of D is the one induced by W, where the latter has the orientation
induced by the symplectic form.

Remark

If we fix a basis for V and take the dual basis for V', the orientation on W is given by
the nonvanishing 2n-form d&; A dx' A ... A dép A dx".

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hérmander calculus



Example

An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.
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Example

An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.
e a% is not elliptic in any of the “classical” symbolic calculi, but ... ;
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An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.
e a% is not elliptic in any of the “classical” symbolic calculi, but ... ;

e a% is elliptic in the Weyl-Hérmander calculus for an appropriate choice of the
metric,
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An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.
e a% is not elliptic in any of the “classical” symbolic calculi, but ... ;

e a% is elliptic in the Weyl-Hérmander calculus for an appropriate choice of the
metric, namely a s elliptic in S(M, g) with gy ¢ = (x) ~2|dx|2 + (x)25(¢) ~2|d¢|?
and M = a (one can prove that g is a Hérmander metric and M is g-admissible);
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Example

An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.

e a% is not elliptic in any of the “classical” symbolic calculi, but ... ;

e a% is elliptic in the Weyl-Hérmander calculus for an appropriate choice of the
metric, namely a s elliptic in S(M, g) with gy ¢ = (x) ~2|dx|2 + (x)25(¢) ~2|d¢|?
and M = a (one can prove that g is a Hérmander metric and M is g-admissible);

e the above results imply a* : H(M;, g) — H(M;/M, g) is Fredholm, for every
g-admissible weight M; and its index is independent of M;. In fact, the
Fedosov-Hérmander formula gives ind @8% = 0;
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Example

An illustrative example

Consider the operator
a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.
e a% is not elliptic in any of the “classical” symbolic calculi, but ... ;

e a% is elliptic in the Weyl-Hérmander calculus for an appropriate choice of the
metric, namely a s elliptic in S(M, g) with gy ¢ = (x) ~2|dx|2 + (x)25(¢) ~2|d¢|?
and M = a (one can prove that g is a Hérmander metric and M is g-admissible);
the above results imply @ : H(My, g) — H(M; /M, g) is Fredholm, for every
g-admissible weight M; and its index is independent of M;. In fact, the
Fedosov-Hérmander formula gives ind @8% = 0;

e one easily verifies that ker 8% C S(R") and (&%, ¢),;2 > 0, Vo € S(R")\{0};
consequently (as inda” = 0) a* : H(My, g) — H(My /M, g) is an isomorphism,
for any g-admissible weight My;
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Example

An illustrative example

Consider the operator

a"=—-A+(x)"% 0<s<1.

with Weyl symbol a(x, ¢) = |€]2 + (x) 2.

a” is not elliptic in any of the “classical” symbolic calculi, but ... ;

a” is elliptic in the Weyl-Hérmander calculus for an appropriate choice of the
metric, namely a s elliptic in S(M, g) with gy ¢ = (x) ~2|dx|2 + (x)25(¢) ~2|d¢|?
and M = a (one can prove that g is a Hérmander metric and M is g-admissible);
the above results imply @ : H(My, g) — H(M; /M, g) is Fredholm, for every
g-admissible weight M; and its index is independent of M;. In fact, the
Fedosov-Hérmander formula gives ind @8% = 0;

one easily verifies that ker 8% C S(R”) and (&%, ¢),;2 > 0, Vo € S(R")\{0};
consequently (as inda” = 0) a* : H(My, g) — H(My /M, g) is an isomorphism,
for any g-admissible weight My;

one can easily prove that the latter implies that a also restricts to a topological
isomorphism on S(R") and S’(RR") as well.
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