Ellipticity and the Fredholm property in the Weyl-Hörmander calculus

Bojan Prangoski University "Ss. Cyril and Methodius", Skopje, Macedonia

joined work with Stevan Pilipović

The main results Example Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

For $a \in S(\mathbb{R}^{2n})$, the Weyl quantisation of *a* is:

$$a^{w}\varphi(x)=\frac{1}{(2\pi)^{n}}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\langle x-y,\xi\rangle}a((x+y)/2,\xi)\varphi(y)dyd\xi, \ \varphi\in\mathcal{S}(\mathbb{R}^{n});$$

 $a^w: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is continuous; in fact, it extends to a continuous mapping $S'(\mathbb{R}^n) \to S(\mathbb{R}^n)$

if $a \in \mathcal{S}'(\mathbb{R}^{2n})$ then $a^w : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ is continuous.

The main results Example Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

For $a \in S(\mathbb{R}^{2n})$, the Weyl quantisation of *a* is:

$$a^{w}\varphi(x)=\frac{1}{(2\pi)^{n}}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\langle x-y,\xi\rangle}a((x+y)/2,\xi)\varphi(y)dyd\xi, \ \varphi\in\mathcal{S}(\mathbb{R}^{n});$$

 $a^w: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is continuous; in fact, it extends to a continuous mapping $S'(\mathbb{R}^n) \to S(\mathbb{R}^n)$

if $a \in \mathcal{S}'(\mathbb{R}^{2n})$ then $a^w : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ is continuous.

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

(the Shubin classes) a ∈ Γ^m_ρ (0 < ρ ≤ 1) if

$$|D^lpha_\xi D^eta_x a(x,\xi)| \leq C_{lpha,eta} \langle (x,\xi)
angle^{m-
ho(|lpha|+|eta|)}, \; orall (x,\xi) \in \mathbb{R}^{2n};$$

• (the Hörmander $S_{
ho,\delta}$ -calculus) $a \in S^m_{
ho,\delta}$ ($0 \le \delta \le
ho \le 1$ and $\delta < 1$) if

 $|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \ \forall (x,\xi) \in \mathbb{R}^{2n};$

• (the Beals-Fefferman calculus) $a \in S(M; \varphi, \Phi)$ if

 $|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi) \in \mathbb{R}^{2n}.$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$.

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

(the Shubin classes) a ∈ Γ^m_ρ (0 < ρ ≤ 1) if

$$|D_{\xi}^{lpha}D_{x}^{eta}a(x,\xi)|\leq C_{lpha,eta}\langle(x,\xi)
angle^{m-
ho(|lpha|+|eta|)},\,\,orall(x,\xi)\in\mathbb{R}^{2n}$$

• (the Hörmander $S_{\rho,\delta}$ -calculus) $a \in S^m_{\rho,\delta}$ ($0 \le \delta \le \rho \le 1$ and $\delta < 1$) if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \,\,\forall (x,\xi)\in\mathbb{R}^{2n};$$

• (the Beals-Fefferman calculus) $a \in S(M; \varphi, \Phi)$ if

 $|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi) \in \mathbb{R}^{2n}.$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$. $M(x,\xi) = \langle x \rangle^{\delta} \langle \xi \rangle^{t}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

(the Shubin classes) a ∈ Γ^m_ρ (0 < ρ ≤ 1) if

$$|D_{\xi}^{lpha}D_{x}^{eta}a(x,\xi)|\leq C_{lpha,eta}\langle(x,\xi)
angle^{m-
ho(|lpha|+|eta|)},\,\,orall(x,\xi)\in\mathbb{R}^{2n}$$

• (the Hörmander $S_{\rho,\delta}$ -calculus) $a \in S^m_{\rho,\delta}$ ($0 \le \delta \le \rho \le 1$ and $\delta < 1$) if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \,\,\forall (x,\xi)\in\mathbb{R}^{2n};$$

• (the Beals-Fefferman calculus) $a \in S(M; \varphi, \Phi)$ if

 $|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi) \in \mathbb{R}^{2n}.$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$.

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

• (the Shubin classes) $a \in \Gamma_{\rho}^{m}$ (0 < $\rho \leq$ 1) if

$$|D_{\xi}^{lpha}D_{x}^{eta}a(x,\xi)|\leq C_{lpha,eta}\langle(x,\xi)
angle^{m-
ho(|lpha|+|eta|)},\,\,orall(x,\xi)\in\mathbb{R}^{2n}$$

• (the Hörmander $S_{\rho,\delta}$ -calculus) $a \in S^m_{\rho,\delta}$ ($0 \le \delta \le \rho \le 1$ and $\delta < 1$) if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \,\,\forall (x,\xi)\in\mathbb{R}^{2n};$$

• (the Beals-Fefferman calculus) $a \in S(M; \varphi, \Phi)$ if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi)\in \mathbb{R}^{2n}.$$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle x \rangle^{\delta} \langle \xi \rangle^{\ell}$.

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

(the Shubin classes) a ∈ Γ^m_ρ (0 < ρ ≤ 1) if

$$|D_{\xi}^{lpha}D_{x}^{eta}a(x,\xi)|\leq C_{lpha,eta}\langle(x,\xi)
angle^{m-
ho(|lpha|+|eta|)},\,\,orall(x,\xi)\in\mathbb{R}^{2n}$$

• (the Hörmander $S_{\rho,\delta}$ -calculus) $a \in S^m_{\rho,\delta}$ ($0 \le \delta \le \rho \le 1$ and $\delta < 1$) if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \,\,\forall (x,\xi)\in\mathbb{R}^{2n};$$

(the Beals-Fefferman calculus) a ∈ S(M; φ, Φ) if

$$|D^{\alpha}_{\xi}D^{\beta}_{x}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi)\in \mathbb{R}^{2n}.$$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle x \rangle^{\delta} \langle \xi \rangle^{\ell}$.

-

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

(the Shubin classes) a ∈ Γ^m_ρ (0 < ρ ≤ 1) if

$$|D_{\xi}^{lpha}D_{x}^{eta}a(x,\xi)|\leq C_{lpha,eta}\langle(x,\xi)
angle^{m-
ho(|lpha|+|eta|)},\,\,orall(x,\xi)\in\mathbb{R}^{2n}$$

• (the Hörmander $S_{\rho,\delta}$ -calculus) $a \in S^m_{\rho,\delta}$ ($0 \le \delta \le \rho \le 1$ and $\delta < 1$) if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \,\,\forall (x,\xi)\in\mathbb{R}^{2n};$$

• (the Beals-Fefferman calculus) $a \in S(M; \varphi, \Phi)$ if

$$|D_{\xi}^{\alpha}D_{x}^{\beta}a(x,\xi)| \leq C_{\alpha,\beta}M(x,\xi)\varphi(x,\xi)^{-|\beta|}\Phi(x,\xi)^{-|\alpha|}, \ \forall (x,\xi) \in \mathbb{R}^{2n}.$$

The Shubin calculus when $\varphi(x,\xi) = \Phi(x,\xi) = \langle (x,\xi) \rangle^{\rho}$, $M(x,\xi) = \langle (x,\xi) \rangle^{m}$. The Hörmander $S_{\rho,\delta}$ -calculus, when $\varphi(x,\xi) = \langle \xi \rangle^{-\delta}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle \xi \rangle^{m}$. The SG-calculus (scattering calculus), when $\varphi(x,\xi) = \langle x \rangle^{\rho}$ and $\Phi(x,\xi) = \langle \xi \rangle^{\rho}$, $M(x,\xi) = \langle x \rangle^{\delta} \langle \xi \rangle^{t}$.

-

Example

Outline of the problem The Weyl-Hörmander calculu

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ)| a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).
 For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁
 (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).
- The Sobolev space H(M) = {u ∈ S'(ℝⁿ)| a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).
 For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁ (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).
- The Sobolev space H(M) = {u ∈ S'(ℝⁿ)| a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).
 For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁
 (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).

For the Shubin calculus when $M = \langle (x, \xi) \rangle^m$, $m \in \mathbb{Z}_+$,

- If *a* is of order *M* then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁
 (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ)| a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ). For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁

 (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* − dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).
 For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping *H*(*M*₁) → *H*(*M*₁/*M*), for any *M*₁ and its index is independent of *M*₁
 (a continuous operator *A* : *H*₁ → *H*₂ is called Fredholm if ker *A* and coker *A* = *H*₂/*A*(*H*₁) are finite dimensional; ind *A* = dim ker *A* dim coker *A*).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ).
 For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order M restricts to a Fredholm mapping $H(M_1) \rightarrow H(M_1/M)$, for any M_1 and its index is independent of M_1

(a continuous operator $A : H_1 \to H_2$ is called Fredholm if ker A and coker $A = H_2/A(H_1)$ are finite dimensional; ind $A = \dim \ker A - \dim \operatorname{coker} A$).

 Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Preliminaries The main results

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ). For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping H(M₁) → H(M₁/M), for any M₁ and its index is independent of M₁
 (a continuous operator A : H₁ → H₂ is called Fredholm if ker A and coker A = H₂/A(H₁) are finite dimensional; ind A = dim ker A dim coker A).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Preliminaries The main results

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ). For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping H(M₁) → H(M₁/M), for any M₁ and its index is independent of M₁

 (a continuous operator A : H₁ → H₂ is called Fredholm if ker A and coker A = H₂/A(H₁) are finite dimensional; ind A = dim ker A dim coker A).
- Is the converse true? Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Preliminaries The main results

Example

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- The ΨDO a^w is called elliptic if cM(x, ξ) ≤ |a(x, ξ)| ≤ CM(x, ξ) outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. φ(x, ξ)Φ(x, ξ) ≥ c⟨(x, ξ)⟩^ε, ε > 0, (the Shubin calculus, the SG-calculus), then elliptic operators have parametrices; i.e. there exists b such that b^wa^w = Id + R, where R : S'(ℝⁿ) → S(ℝⁿ) (regularising operator).

The Sobolev space H(M) = {u ∈ S'(ℝⁿ) | a^wu ∈ L²}, where a^w is elliptic operator of order M; furthermore H(1) = L²(ℝⁿ). For the Shubin calculus when M = ⟨(x, ξ)⟩^m, m ∈ ℤ₊,

$$H(M) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | x^{\beta} D^{\alpha} u \in L^2(\mathbb{R}^n), \text{ for all } |\alpha| + |\beta| \le m \}.$$

- If a is of order M then $a^w : H(M_1) \to H(M_1/M)$.
- A consequence of the existence of parametrices is that every elliptic operator a^w of order *M* restricts to a Fredholm mapping H(M₁) → H(M₁/M), for any M₁ and its index is independent of M₁

 (a continuous operator A : H₁ → H₂ is called Fredholm if ker A and coker A = H₂/A(H₁) are finite dimensional; ind A = dim ker A dim coker A).
- Is the converse true?Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

The main results Example Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- Let *a* be a 0-order symbol, i.e. bounded by a constant times $M(x,\xi)^0 = 1$. If a^w is bijective operator on $L^2(\mathbb{R}^n)$, is the inverse again a Ψ DO? Yes! A result of Bony and Chemin verifies this for the Weyl-Hormander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.
- If λ → a_λ is C^k-mapping (0 ≤ k ≤ ∞) of 0-order symbols such that each a^w_λ is invertible on L²(ℝⁿ), is the same true for the mapping of the inverses λ → b_λ? (b^w_λ a^w_λ = Id = a^w_λ b^w_λ)

The main results Example

Outline of the problem

- Let *a* be a 0-order symbol, i.e. bounded by a constant times $M(x,\xi)^0 = 1$. If a^w is bijective operator on $L^2(\mathbb{R}^n)$, is the inverse again a Ψ DO?Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.
- If λ → a_λ is C^k-mapping (0 ≤ k ≤ ∞) of 0-order symbols such that each a^w_λ is invertible on L²(ℝⁿ), is the same true for the mapping of the inverses λ → b_λ? (b^w_λ a^w_λ = Id = a^w_λb^w_λ)

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- Let *a* be a 0-order symbol, i.e. bounded by a constant times $M(x,\xi)^0 = 1$. If a^w is bijective operator on $L^2(\mathbb{R}^n)$, is the inverse again a Ψ DO?Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.
- If λ → a_λ is C^k-mapping (0 ≤ k ≤ ∞) of 0-order symbols such that each a^w_λ is invertible on L²(ℝⁿ), is the same true for the mapping of the inverses λ → b_λ? (b^w_λa^w_λ = Id = a^w_λb^w_λ)

Outline of the problem The Weyl-Hörmander calculus

Outline of the problem

- Let *a* be a 0-order symbol, i.e. bounded by a constant times $M(x, \xi)^0 = 1$. If a^w is bijective operator on $L^2(\mathbb{R}^n)$, is the inverse again a Ψ DO?Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.
- If $\lambda \mapsto a_{\lambda}$ is C^k -mapping $(0 \le k \le \infty)$ of 0-order symbols such that each a_{λ}^w is invertible on $L^2(\mathbb{R}^n)$, is the same true for the mapping of the inverses $\lambda \mapsto b_{\lambda}$? $(b_{\lambda}^w a_{\lambda}^w = \mathrm{Id} = a_{\lambda}^w b_{\lambda}^w)$

< ロ > < 同 > < 回 > < 回 > .

Example

The main results

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with *V'* its dual; $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$. $g_X^{\sigma}(T) = \sup_{S \in W \setminus \{0\}} [T, S]^2 / g_X(S)$ is called the symplectic dual of g.

 $X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

 $g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

 $(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$

(*iii*) (the uncertainty principle) $g_X(T) \le g_X^{\sigma}(T)$, for all $X, T \in W$.

Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable and $\lambda_g(X) \ge 1, \forall X \in W$.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

-

Example

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with V' its dual;

 $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$. $g_X^{\sigma}(T) = \sup_{S \in W \setminus \{0\}} [T, S]^2 / g_X(S)$ is called the symplectic dual of g.

$X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

 $g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

 $(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$

(*iii*) (the uncertainty principle) $g_X(T) \le g_X^{\sigma}(T)$, for all $X, T \in W$.

Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable and $\lambda_g(X) \ge 1, \forall X \in W$.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

-

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with V' its dual;

 $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$.

$X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$$

(*iii*) (the uncertainty principle) $g_X(T) \le g_X^{\sigma}(T)$, for all $X, T \in W$. Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable an $\lambda_g(X) \ge 1, \forall X \in W$.

Example

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with V' its dual;

 $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$. $g_X^{\sigma}(T) = \sup_{S \in W \setminus \{0\}} [T, S]^2 / g_X(S)$ is called the symplectic dual of g.

$X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$$

(*iii*) (the uncertainty principle) $g_X(T) \le g_X^{\sigma}(T)$, for all $X, T \in W$. Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable an $\lambda_g(X) \ge 1, \forall X \in W$.

Example

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with V' its dual;

 $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$. $g_X^{\sigma}(T) = \sup_{S \in W \setminus \{0\}} [T, S]^2 / g_X(S)$ is called the symplectic dual of g.

 $X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$$

(*iii*) (the uncertainty principle) $g_X(T) \le g_X^{\sigma}(T)$, for all $X, T \in W$.

Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable and $\lambda_g(X) \ge 1, \forall X \in W$.

Example

Outline of the problem The Weyl-Hörmander calculus

Hörmander metric

V-an *n* dimensional real vector space with V' its dual;

 $W = V \times V'$ is symplectic with the symplectic form $[(x, \xi), (y, \eta)] = \langle \xi, y \rangle - \langle \eta, x \rangle$ (the phase space).

We denote the points in W with capital letters X, Y, Z, \ldots

Let $X \mapsto g_X$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_X(T) = g_X(T, T), T \in T_X W$. $g_X^{\sigma}(T) = \sup_{S \in W \setminus \{0\}} [T, S]^2 / g_X(S)$ is called the symplectic dual of g.

 $X \mapsto g_X$ is a Hörmander metric if:

(*i*) (slow variation) there exist $C \ge 1$ and r > 0 such that for all $X, Y, T \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}g_Y(T) \leq g_X(T) \leq Cg_Y(T);$$

(*ii*) (temperance) there exist $C \ge 1$, $N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$(g_X(T)/g_Y(T))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N;$$

(*iii*) (the uncertainty principle) $g_X(T) \leq g_X^{\sigma}(T)$, for all $X, T \in W$. Denote $\lambda_g(X) = \inf_{T \in W \setminus \{0\}} (g_X^{\sigma}(T)/g_X(T))^{1/2}$; it is Borel measurable and $\lambda_g(X) \geq 1, \forall X \in W$.

Outline of the problem The Weyl-Hörmander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \ge 1, r > 0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}M(Y) \leq M(X) \leq CM(Y);$$

 $(M(X)/M(Y))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N.$

S(M,g) is the space of all $a \in C^{\infty}(W)$ for which

$$\|a\|_{S(M,g)}^{(k)} = \sup_{l \le k} \sup_{\substack{X \in W \\ T_1, \dots, T_l \in W \setminus \{0\}}} \frac{|a^{(l)}(X; T_1, \dots, T_l)|}{M(X) \prod_{j=1}^l g_X(T_j)^{1/2}} < \infty, \ \forall k \in \mathbb{N}.$$

S(M,g) is an (F)-space.

When $g_{x,\xi} = \varphi^{-2} |dx|^2 + \Phi^{-2} |d\xi|^2$, S(M,g) reduces to the Beals-Fefferman classes; in this case $g_{x,\varepsilon}^{\sigma} = \Phi^2 |dx|^2 + \varphi^2 |d\xi|^2$ and $\lambda_g(X) = \varphi(X)\Phi(X)$.

Outline of the problem The Weyl-Hörmander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \ge 1, r > 0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}M(Y) \leq M(X) \leq CM(Y);$$

 $(M(X)/M(Y))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N.$

S(M,g) is the space of all $a \in C^{\infty}(W)$ for which

$$\|a\|_{S(M,g)}^{(k)} = \sup_{l \le k} \sup_{\substack{X \in W \\ T_1, \dots, T_l \in W \setminus \{0\}}} \frac{|a^{(l)}(X; T_1, \dots, T_l)|}{M(X) \prod_{j=1}^l g_X(T_j)^{1/2}} < \infty, \ \forall k \in \mathbb{N}.$$

S(M,g) is an (F)-space.

When $g_{x,\xi} = \varphi^{-2} |dx|^2 + \Phi^{-2} |d\xi|^2$, S(M,g) reduces to the Beals-Fefferman classes; in this case $g_{x,\varepsilon}^{\circ} = \Phi^2 |dx|^2 + \varphi^2 |d\xi|^2$ and $\lambda_g(X) = \varphi(X)\Phi(X)$.

Outline of the problem The Weyl-Hörmander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \ge 1, r > 0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}M(Y) \leq M(X) \leq CM(Y);$$

 $(M(X)/M(Y))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N.$

S(M,g) is the space of all $a \in C^{\infty}(W)$ for which

$$\|a\|_{S(M,g)}^{(k)} = \sup_{l \le k} \sup_{\substack{X \in W \\ T_1, \dots, T_l \in W \setminus \{0\}}} \frac{|a^{(l)}(X; T_1, \dots, T_l)|}{M(X) \prod_{j=1}^l g_X(T_j)^{1/2}} < \infty, \ \forall k \in \mathbb{N}.$$

S(M,g) is an (F)-space.

When $g_{x,\xi} = \varphi^{-2} |dx|^2 + \Phi^{-2} |d\xi|^2$, S(M,g) reduces to the Beals-Fefferman classes; in this case $g_{x,\varepsilon}^{\sigma} = \Phi^2 |dx|^2 + \varphi^2 |d\xi|^2$ and $\lambda_g(X) = \varphi(X)\Phi(X)$.

Outline of the problem The Weyl-Hörmander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \ge 1, r > 0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}M(Y) \leq M(X) \leq CM(Y);$$

 $(M(X)/M(Y))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N.$

S(M,g) is the space of all $a \in C^{\infty}(W)$ for which

$$\|a\|_{S(M,g)}^{(k)} = \sup_{l \le k} \sup_{\substack{X \in W \\ T_1, \dots, T_l \in W \setminus \{0\}}} \frac{|a^{(l)}(X; T_1, \dots, T_l)|}{M(X) \prod_{j=1}^l g_X(T_j)^{1/2}} < \infty, \ \forall k \in \mathbb{N}.$$

S(M,g) is an (F)-space.

When $g_{x,\xi} = \varphi^{-2} |dx|^2 + \Phi^{-2} |d\xi|^2$, S(M,g) reduces to the Beals-Fefferman classes; in this case $g_{x,\xi}^c = \Phi^2 |dx|^2 + \varphi^2 |d\xi|^2$ and $\lambda_q(X) = \varphi(X)\Phi(X)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of the problem The Weyl-Hörmander calculus

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \ge 1, r > 0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$g_X(X-Y) \leq r^2 \Rightarrow C^{-1}M(Y) \leq M(X) \leq CM(Y);$$

 $(M(X)/M(Y))^{\pm 1} \leq C(1+g_X^{\sigma}(X-Y))^N.$

S(M,g) is the space of all $a \in \mathcal{C}^{\infty}(W)$ for which

$$\|a\|_{S(M,g)}^{(k)} = \sup_{l \le k} \sup_{\substack{X \in W \\ T_1, \dots, T_l \in W \setminus \{0\}}} \frac{|a^{(l)}(X; T_1, \dots, T_l)|}{M(X) \prod_{j=1}^l g_X(T_j)^{1/2}} < \infty, \ \forall k \in \mathbb{N}.$$

S(M,g) is an (F)-space.

When $g_{x,\xi} = \varphi^{-2} |dx|^2 + \Phi^{-2} |d\xi|^2$, S(M,g) reduces to the Beals-Fefferman classes; in this case $g_{x,\xi}^{\sigma} = \Phi^2 |dx|^2 + \varphi^2 |d\xi|^2$ and $\lambda_g(X) = \varphi(X)\Phi(X)$.

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in *S*(*M*, *g*)

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the $\Psi DO(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1,g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1,g))$, i.e.

 $X(f_1#f_2) = Xf_1#f_2 + f_1#Xf_2$

for $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{C}^{\infty}(E; S(1, g))$, X a smooth vector field on E.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

-

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in *S*(*M*, *g*)

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the Ψ DO $(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1,g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1,g))$, i.e.

 $X(f_1#f_2) = Xf_1#f_2 + f_1#Xf_2$

for $f_1, f_2 \in C^{\infty}(E; S(1, g))$, X a smooth vector field on E.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

-

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in S(M, g)

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the $\Psi DO(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1, g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1, g))$, i.e.

 $X(f_1 # f_2) = X f_1 # f_2 + f_1 # X f_2$

for $f_1, f_2 \in C^{\infty}(E; S(1, g))$, X a smooth vector field on E.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

-

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in $\overline{S(M,g)}$

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the Ψ DO $(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1, g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1, g))$, i.e.

 $X(f_1 # f_2) = X f_1 # f_2 + f_1 # X f_2$

for $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{C}^{\infty}(E; S(1, g))$, X a smooth vector field on E.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in $\overline{S(M,g)}$

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the Ψ DO $(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1, g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1, g))$, i.e.

 $X(f_1 # f_2) = X f_1 # f_2 + f_1 # X f_2$

for $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{C}^{\infty}(E; S(1, g))$, X a smooth vector field on E.

Outline of the problem The Weyl-Hörmander calculus

Ψ DOs with symbols in *S*(*M*, *g*)

When $a \in S(M, g)$, a^w is continuous operator on S(V) and it extends to a continuous operator on S'(V).

The composition $a^w b^w$ is the Ψ DO $(a \# b)^w$ where

$$a\#b(X) = \frac{1}{\pi^{2n}} \int_{W} \int_{W} e^{-2i[X-Y_1,X-Y_2]} a(Y_1)b(Y_2)dY_1dY_2.$$

The mapping $\# : S(M_1, g) \times S(M_2, g) \rightarrow S(M_1M_2, g)$ is continuous.

When *E* is a Hausdorff locally compact topological space C(E; S(1, g)) becomes a unital algebra (with unity $f(\lambda) = 1$).

When *E* is a smooth manifold, $C^k(E; S(1, g))$, $0 \le k \le \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on *E* are derivations of the unital algebra $C^{\infty}(E; S(1, g))$, i.e.

$$X(f_1 # f_2) = X f_1 # f_2 + f_1 # X f_2$$

for $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{C}^{\infty}(E; S(1, g))$, X a smooth vector field on E.

The main results Example Outline of the problem The Weyl-Hörmander calculus

The Sobolev space H(M,g)

Let *M* be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1/M, g)$ such that a#b = 1 = b#a.

The Sobolev space H(M, g) is defined as

 $H(M,g) = \{ u \in \mathcal{S}'(V) | a^w u \in L^2(V) \}.$

It is a Hilbert space with inner product $(u, v)_{H(M,g)} = (a^w u, a^w v)_{L^2(V)}$.

 $H(1,g)=L^2(V).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The main results Example Outline of the problem The Weyl-Hörmander calculus

The Sobolev space H(M, g)

Let *M* be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1/M, g)$ such that a#b = 1 = b#a.

The Sobolev space H(M, g) is defined as

$$H(M,g) = \{ u \in \mathcal{S}'(V) | a^w u \in L^2(V) \}.$$

It is a Hilbert space with inner product $(u, v)_{H(M,g)} = (a^w u, a^w v)_{L^2(V)}$.

 $H(1,g)=L^2(V).$

イロト イポト イヨト イヨト 二日

The main results Example Outline of the problem The Weyl-Hörmander calculus

The Sobolev space H(M, g)

Let *M* be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1/M, g)$ such that a#b = 1 = b#a.

The Sobolev space H(M, g) is defined as

$$H(M,g) = \{ u \in \mathcal{S}'(V) | a^w u \in L^2(V) \}.$$

It is a Hilbert space with inner product $(u, v)_{H(M,g)} = (a^w u, a^w v)_{L^2(V)}$.

 $H(1,g)=L^2(V).$

イロト イポト イヨト イヨト 二日

Outline of the problem The Weyl-Hörmander calculus

Additional hypothesis for spectral invariance

The Hörmander metric g is said to be geodesically temperate if there exist $C \ge 1$ and $N \in \mathbb{N}$ such that

$$g_X(T) \leq Cg_Y(T)(1+d(X,Y))^N, \ \forall X,Y,T \in W,$$

where $d(\cdot, \cdot)$ stands for the geodesic distance on W induced by the symplectic intermediate $g^{\#}$.

The metrics of all of the frequently used calculi are geodesically temperate.

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline of the problem The Weyl-Hörmander calculus

Additional hypothesis for spectral invariance

The Hörmander metric g is said to be geodesically temperate if there exist $C \ge 1$ and $N \in \mathbb{N}$ such that

$$g_X(T) \leq Cg_Y(T)(1+d(X,Y))^N, \ \forall X,Y,T \in W,$$

where $d(\cdot, \cdot)$ stands for the geodesic distance on W induced by the symplectic intermediate $g^{\#}$.

The metrics of all of the frequently used calculi are geodesically temperate.

< ロ > < 同 > < 回 > < 回 > .

Inverse smoothness in S(1,g)

Theorem

Assume that g is a geodesically temperate Hörmander metric. Let E be a Hausdorff topological space and $f : E \to S(1,g)$ a continuous mapping. If for each $\lambda \in E$, $f(\lambda)^w$ is invertible operator on $L^2(V)$, then there exists a unique continuous mapping $\tilde{f} : E \to S(1,g)$ such that

$$\tilde{\mathbf{f}}(\lambda) \# \mathbf{f}(\lambda) = \mathbf{f}(\lambda) \# \tilde{\mathbf{f}}(\lambda) = 1, \ \forall \lambda \in E.$$
 (1)

If E is a smooth manifold without boundary and $\mathbf{f} : E \to S(1,g)$ is of class \mathcal{C}^N , $0 \le N \le \infty$, then $\tilde{\mathbf{f}} : E \to S(1,g)$ is also of class \mathcal{C}^N .

The main results

Example

Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hörmander metric satisfying $\lambda_g \to \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic than for any g-admissible weight M_1 , a^w restricts to a Fredholm operator from $H(M_1, g)$ into $H(M_1/M, g)$ and its index is independent of M_1 .

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_g \to \infty$ and M and M_1 two g-admissible weights. If $a \in S(M, g)$ is such that a^w restricts to a Fredholm operator from $H(M_1, g)$ into $H(M_1/M, g)$ then a is elliptic.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

The main results

Example

Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hörmander metric satisfying $\lambda_g \to \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic than for any g-admissible weight M_1 , a^w restricts to a Fredholm operator from $H(M_1, g)$ into $H(M_1/M, g)$ and its index is independent of M_1 .

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_g \to \infty$ and M and M_1 two g-admissible weights. If $a \in S(M, g)$ is such that a^w restricts to a Fredholm operator from $H(M_1, g)$ into $H(M_1/M, g)$ then a is elliptic.

The main results

Example

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_g \to \infty$ and M a g-admissible weight. If $a \in S(M,g)$ is elliptic then there are $r_1, r_2 \in S(W)$ and elliptic $\tilde{a}_1, \tilde{a}_2 \in S(1/M,g)$ such that

 $\tilde{a}_1 \# a = 1 + r_1$ and $a \# \tilde{a}_2 = 1 + r_2$ (*i.e.* $\tilde{a}_1^w a^w = Id + r_1^w$ and $a^w \tilde{a}_2^w = Id + r_2^w$)

and consequently a^w is globally regular. Furthermore, $r_1^w(\mathcal{S}'(V))$ and $r_2^w(\mathcal{S}'(V))$ are finite dimensional subspaces of $\mathcal{S}(V)$. In particular, ker a^w is a finite dimensional subspace of $\mathcal{S}(V)$ and for any g-admissible weight M_1 , ker $(a^w|_{H(M_1,q;\tilde{V})}) = \ker a^w$.

- Consequently, the dimensions of the cokernels of the Fredholm operators $a^w|_{H(M_1,g)}: H(M_1,g) \to H(M_1/M,g)$ are also the same for any *g*-admissible weight M_1 .
- All of the above results hold equally well for matrix valued symbols, i.e. for symbols in S(M, g; L(ℂ^ν)), ν ∈ ℤ₊.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The main results

Example

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_g \to \infty$ and M a g-admissible weight. If $a \in S(M,g)$ is elliptic then there are $r_1, r_2 \in S(W)$ and elliptic $\tilde{a}_1, \tilde{a}_2 \in S(1/M,g)$ such that

 $\tilde{a}_1 \# a = 1 + r_1$ and $a \# \tilde{a}_2 = 1 + r_2$ (*i.e.* $\tilde{a}_1^w a^w = \operatorname{Id} + r_1^w$ and $a^w \tilde{a}_2^w = \operatorname{Id} + r_2^w$)

and consequently a^w is globally regular. Furthermore, $r_1^w(\mathcal{S}'(V))$ and $r_2^w(\mathcal{S}'(V))$ are finite dimensional subspaces of $\mathcal{S}(V)$. In particular, ker a^w is a finite dimensional subspace of $\mathcal{S}(V)$ and for any g-admissible weight M_1 , ker $(a^w|_{H(M_1, q; \tilde{V})}) = \ker a^w$.

- Consequently, the dimensions of the cokernels of the Fredholm operators $a^w|_{H(M_1,g)}: H(M_1,g) \to H(M_1/M,g)$ are also the same for any *g*-admissible weight M_1 .
- All of the above results hold equally well for matrix valued symbols, i.e. for symbols in S(M, g; L(ℂ^ν)), ν ∈ ℤ₊.

The main results

Example

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_g \to \infty$ and M a g-admissible weight. If $a \in S(M,g)$ is elliptic then there are $r_1, r_2 \in S(W)$ and elliptic $\tilde{a}_1, \tilde{a}_2 \in S(1/M,g)$ such that

 $\tilde{a}_1 \# a = 1 + r_1$ and $a \# \tilde{a}_2 = 1 + r_2$ (*i.e.* $\tilde{a}_1^w a^w = \operatorname{Id} + r_1^w$ and $a^w \tilde{a}_2^w = \operatorname{Id} + r_2^w$)

and consequently a^w is globally regular. Furthermore, $r_1^w(S'(V))$ and $r_2^w(S'(V))$ are finite dimensional subspaces of S(V). In particular, ker a^w is a finite dimensional subspace of S(V) and for any g-admissible weight M_1 , ker $(a^w|_{H(M_1, q; \tilde{V})}) = \ker a^w$.

- Consequently, the dimensions of the cokernels of the Fredholm operators $a^w|_{H(M_1,g)}: H(M_1,g) \to H(M_1/M,g)$ are also the same for any *g*-admissible weight M_1 .
- All of the above results hold equally well for matrix valued symbols, i.e. for symbols in S(M, g; L(ℂ^ν)), ν ∈ ℤ₊.

The main results

Example

Fedosov-Hörmander integral formula for the index

If g satisfies the strong uncertainty principle:

there are $C, \delta > 0$ such that $\lambda_g(X) \ge C(1 + g_0(X))^{\delta}, \forall X \in W$,

and $a \in S(1, g; \mathcal{L}(\mathbb{C}^{\nu}))$ is elliptic, then ind a^{w} can be given by the Fedosov-Hörmander integral formula.

Proposition

Assume that the Hörmander metric g satisfies the strong uncertainty principle and let a be an elliptic symbol in $S(M, g; \mathcal{L}(\mathbb{C}^{\nu}))$ for some g-admissible weight M. Let D be any compact properly embedded codimension-0 submanifold with boundary in W which contains in its interior the set where a is not invertible. Then

ind
$$a^w = -\frac{(n-1)!}{(2n-1)!(2\pi i)^n} \int_{\partial D} \operatorname{tr}(a^{-1}da)^{2n-1}.$$

The orientation of D is the one induced by W, where the latter has the orientation induced by the symplectic form.

Remark

If we fix a basis for V and take the dual basis for V', the orientation on W is given by the nonvanishing 2n-form $d\xi_1 \wedge dx^1 \wedge \ldots \wedge d\xi_n \wedge dx^n$.

The main results

Example

Fedosov-Hörmander integral formula for the index

If g satisfies the strong uncertainty principle:

there are $C, \delta > 0$ such that $\lambda_g(X) \ge C(1 + g_0(X))^{\delta}, \forall X \in W$,

and $a \in S(1, g; \mathcal{L}(\mathbb{C}^{\nu}))$ is elliptic, then ind a^{w} can be given by the Fedosov-Hörmander integral formula.

Proposition

Assume that the Hörmander metric g satisfies the strong uncertainty principle and let a be an elliptic symbol in $S(M, g; \mathcal{L}(\mathbb{C}^{\nu}))$ for some g-admissible weight M. Let D be any compact properly embedded codimension-0 submanifold with boundary in W which contains in its interior the set where a is not invertible. Then

ind
$$a^w = -\frac{(n-1)!}{(2n-1)!(2\pi i)^n} \int_{\partial D} \operatorname{tr}(a^{-1}da)^{2n-1}.$$

The orientation of D is the one induced by W, where the latter has the orientation induced by the symplectic form.

Remark

If we fix a basis for V and take the dual basis for V', the orientation on W is given by the nonvanishing 2n-form $d\xi_1 \wedge dx^1 \wedge \ldots \wedge d\xi_n \wedge dx^n$.

The main results

Example

An illustrative example

Consider the operator

 $a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- *a^w* is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^w is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in S(M, g) with $g_{x,\xi} = \langle x \rangle^{-2} |dx|^2 + \langle x \rangle^{2s} \langle \xi \rangle^{-2} |d\xi|^2$ and M = a (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every g-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

イロト イヨト イヨト

-

Example

An illustrative example

Consider the operator

 $a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- *a^w* is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^w is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in S(M, g) with $g_{x,\xi} = \langle x \rangle^{-2} |dx|^2 + \langle x \rangle^{2s} \langle \xi \rangle^{-2} |d\xi|^2$ and M = a (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every g-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

・ロト ・ 同ト ・ ヨト・

Example

An illustrative example

Consider the operator

$$a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- a^w is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^w is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely a is elliptic in S(M, g) with g_{x,ξ} = (x)⁻²|dx|² + (x)²⁵(ξ)⁻²|dξ|² and M = a (one can prove that g is a Hörmander metric and M is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every *g*-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Example

An illustrative example

Consider the operator

$$a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- a^w is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^w is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in S(M, g) with $g_{x,\xi} = \langle x \rangle^{-2} |dx|^2 + \langle x \rangle^{2s} \langle \xi \rangle^{-2} |d\xi|^2$ and M = a (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every g-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

・ロト ・ 同ト ・ ヨト・

Example

An illustrative example

Consider the operator

$$a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- a^w is not elliptic in any of the "classical" symbolic calculi, but ... ;
- *a^w* is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in *S*(*M*, *g*) with *g_{x,ξ}* = ⟨*x*⟩⁻²|*dx*|² + ⟨*x*⟩^{2s}⟨ξ⟩⁻²|*d*ξ|² and *M* = *a* (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every *g*-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{L²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any *g*-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Example

An illustrative example

Consider the operator

$$a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- a^w is not elliptic in any of the "classical" symbolic calculi, but ... ;
- *a^w* is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in *S*(*M*, *g*) with *g_{x,ξ}* = ⟨*x*⟩⁻²|*dx*|² + ⟨*x*⟩^{2s}⟨ξ⟩⁻²|*d*ξ|² and *M* = *a* (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every *g*-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(Rⁿ) and S'(Rⁿ) as well.

Example

An illustrative example

Consider the operator

$$a^w = -\Delta + \langle x \rangle^{-2s}, \ 0 < s < 1.$$

with Weyl symbol $a(x,\xi) = |\xi|^2 + \langle x \rangle^{-2s}$.

- a^w is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^w is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely *a* is elliptic in S(M, g) with $g_{x,\xi} = \langle x \rangle^{-2} |dx|^2 + \langle x \rangle^{2s} \langle \xi \rangle^{-2} |d\xi|^2$ and M = a (one can prove that *g* is a Hörmander metric and *M* is g-admissible);
- the above results imply $a^w : H(M_1, g) \to H(M_1/M, g)$ is Fredholm, for every *g*-admissible weight M_1 and its index is independent of M_1 . In fact, the Fedosov-Hörmander formula gives ind $a^w = 0$;
- one easily verifies that ker a^w ⊆ S(ℝⁿ) and (a^wφ, φ)_{l²} > 0, ∀φ ∈ S(ℝⁿ) \{0}; consequently (as ind a^w = 0) a^w : H(M₁, g) → H(M₁/M, g) is an isomorphism, for any g-admissible weight M₁;
- one can easily prove that the latter implies that a^w also restricts to a topological isomorphism on S(ℝⁿ) and S'(ℝⁿ) as well.

THANK YOU FOR YOUR ATTENTION

★ロト★御と★注と★注と…注