Ellipticity and the Fredholm property in the Weyl-Hörmander calculus

Bojan Prangoski
University "Ss. Cyril and Methodius", Skopje, Macedonia
joined work with Stevan Pilipović

Outline of the problem

For $a \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$, the Weyl quantisation of a is:

$$
a^{w} \varphi(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i\langle x-y, \xi\rangle} a((x+y) / 2, \xi) \varphi(y) d y d \xi, \quad \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

$a^{w}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous; in fact, it extends to a continuous mapping $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$

Outline of the problem

For $a \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$, the Weyl quantisation of a is:

$$
a^{w} \varphi(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i\langle x-y, \xi\rangle} a((x+y) / 2, \xi) \varphi(y) d y d \xi, \quad \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

$a^{w}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous; in fact, it extends to a continuous mapping $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$
if $a \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right)$ then $a^{w}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is continuous.

Preliminaries

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \phi)$ if

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Hörmander $S_{\rho, \delta}$-calculus) $a \in S_{\rho, \delta}^{m}(0 \leq \delta \leq \rho \leq 1$ and $\delta<1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \Phi)$ if

The Shubin calculus when $\varphi(x, \xi)$

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Hörmander $S_{\rho, \delta}$-calculus) $a \in S_{\rho, \delta}^{m}(0 \leq \delta \leq \rho \leq 1$ and $\delta<1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \Phi)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta} M(x, \xi) \varphi(x, \xi)^{-|\beta|} \Phi(x, \xi)^{-|\alpha|}, \forall(x, \xi) \in \mathbb{R}^{2 n} .
$$

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Hörmander $S_{\rho, \delta}$-calculus) $a \in S_{\rho, \delta}^{m}(0 \leq \delta \leq \rho \leq 1$ and $\delta<1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \Phi)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta} M(x, \xi) \varphi(x, \xi)^{-|\beta|} \Phi(x, \xi)^{-|\alpha|}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

The Shubin calculus when $\varphi(x, \xi)=\Phi(x, \xi)=\langle(x, \xi)\rangle^{\rho}, M(x, \xi)=\langle(x, \xi)\rangle^{m}$.

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

- (the Hörmander $S_{\rho, \delta}$-calculus) $a \in S_{\rho, \delta}^{m}(0 \leq \delta \leq \rho \leq 1$ and $\delta<1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \Phi)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta} M(x, \xi) \varphi(x, \xi)^{-|\beta|} \Phi(x, \xi)^{-|\alpha|}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

The Shubin calculus when $\varphi(x, \xi)=\Phi(x, \xi)=\langle(x, \xi)\rangle^{\rho}, M(x, \xi)=\langle(x, \xi)\rangle^{m}$. The Hörmander $S_{\rho, \delta}$-calculus, when $\varphi(x, \xi)=\langle\xi\rangle^{-\delta}$ and $\Phi(x, \xi)=\langle\xi\rangle^{\rho}$, $M(x, \xi)=\langle\xi\rangle^{m}$.

Outline of the problem

- (the Shubin classes) $a \in \Gamma_{\rho}^{m}(0<\rho \leq 1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{m-\rho(|\alpha|+|\beta|)}, \forall(x, \xi) \in \mathbb{R}^{2 n} ;
$$

- (the Hörmander $S_{\rho, \delta}$-calculus) $a \in S_{\rho, \delta}^{m}(0 \leq \delta \leq \rho \leq 1$ and $\delta<1)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

- (the Beals-Fefferman calculus) $a \in S(M ; \varphi, \Phi)$ if

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta} M(x, \xi) \varphi(x, \xi)^{-|\beta|} \Phi(x, \xi)^{-|\alpha|}, \forall(x, \xi) \in \mathbb{R}^{2 n}
$$

The Shubin calculus when $\varphi(x, \xi)=\Phi(x, \xi)=\langle(x, \xi)\rangle^{\rho}, M(x, \xi)=\langle(x, \xi)\rangle^{m}$.
The Hörmander $S_{\rho, \delta}$-calculus, when $\varphi(x, \xi)=\langle\xi\rangle^{-\delta}$ and $\Phi(x, \xi)=\langle\xi\rangle^{\rho}$, $M(x, \xi)=\langle\xi\rangle^{m}$.
The SG-calculus (scattering calculus), when $\varphi(x, \xi)=\langle x\rangle^{\rho}$ and $\Phi(x, \xi)=\langle\xi\rangle^{\rho}$, $M(x, \xi)=\langle x\rangle^{s}\langle\xi\rangle^{\dagger}$.

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M;

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

- If a is of order M then $a^{w}: H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$.

Outline of the problem

- The $\Psi \mathrm{DO} a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

- If a is of order M then $a^{w}: H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$.
- A consequence of the existence of parametrices is that every elliptic operator a^{w} of order M restricts to a Fredholm mapping $H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$, for any M_{1} and its index is independent of M_{1}

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

- If a is of order M then $a^{w}: H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$.
- A consequence of the existence of parametrices is that every elliptic operator a^{w} of order M restricts to a Fredholm mapping $H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$, for any M_{1} and its index is independent of M_{1}
(a continuous operator A : $H_{1} \rightarrow H_{2}$ is called Fredholm if $\operatorname{ker} A$ and coker $A=H_{2} / A\left(H_{1}\right)$ are finite dimensional; ind $A=\operatorname{dim} \operatorname{ker} A-\operatorname{dim} \operatorname{coker} A$).

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

- If a is of order M then $a^{w}: H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$.
- A consequence of the existence of parametrices is that every elliptic operator a^{w} of order M restricts to a Fredholm mapping $H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$, for any M_{1} and its index is independent of M_{1}
(a continuous operator A : $H_{1} \rightarrow H_{2}$ is called Fredholm if $\operatorname{ker} A$ and coker $A=H_{2} / A\left(H_{1}\right)$ are finite dimensional; ind $A=\operatorname{dim} \operatorname{ker} A-\operatorname{dim} \operatorname{coker} A$).
- Is the converse true?

Outline of the problem

- The $\Psi D O a^{w}$ is called elliptic if $c M(x, \xi) \leq|a(x, \xi)| \leq C M(x, \xi)$ outside of a compact neighbourhood of the origin.
- If the calculus satisfies the strong uncertainty principle, i.e. $\varphi(x, \xi) \Phi(x, \xi) \geq c\langle(x, \xi)\rangle^{\varepsilon}, \varepsilon>0$, (the Shubin calculus, the $S G$-calculus), then elliptic operators have parametrices; i.e. there exists b such that $b^{w} a^{w}=I d+R$, where $R: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (regularising operator).
- The Sobolev space $H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid a^{w} u \in L^{2}\right\}$, where a^{w} is elliptic operator of order M; furthermore $H(1)=L^{2}\left(\mathbb{R}^{n}\right)$.
For the Shubin calculus when $M=\langle(x, \xi)\rangle^{m}, m \in \mathbb{Z}_{+}$,

$$
H(M)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for all }|\alpha|+|\beta| \leq m\right\} .
$$

- If a is of order M then $a^{w}: H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$.
- A consequence of the existence of parametrices is that every elliptic operator a^{w} of order M restricts to a Fredholm mapping $H\left(M_{1}\right) \rightarrow H\left(M_{1} / M\right)$, for any M_{1} and its index is independent of M_{1}
(a continuous operator $A: H_{1} \rightarrow H_{2}$ is called Fredholm if $\operatorname{ker} A$ and coker $A=H_{2} / A\left(H_{1}\right)$ are finite dimensional; ind $A=\operatorname{dim} \operatorname{ker} A-\operatorname{dim}$ coker A).
- Is the converse true? Yes! for a number of specific instances of the Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Outline of the problem

- Let a be a 0 -order symbol, i.e. bounded by a constant times $M(x, \xi)^{0}=1$. If a^{w} is bijective operator on $L^{2}\left(\mathbb{R}^{n}\right)$, is the inverse again a $\Psi D O$?
assumptions).
This pronertv of the calculus is called spectral invariance.

Outline of the problem

- Let a be a 0 -order symbol, i.e. bounded by a constant times $M(x, \xi)^{0}=1$. If a^{w} is bijective operator on $L^{2}\left(\mathbb{R}^{n}\right)$, is the inverse again a Ψ DO? Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).

Outline of the problem

- Let a be a 0 -order symbol, i.e. bounded by a constant times $M(x, \xi)^{0}=1$. If a^{w} is bijective operator on $L^{2}\left(\mathbb{R}^{n}\right)$, is the inverse again a Ψ DO? Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.

Outline of the problem

- Let a be a 0 -order symbol, i.e. bounded by a constant times $M(x, \xi)^{0}=1$. If a^{w} is bijective operator on $L^{2}\left(\mathbb{R}^{n}\right)$, is the inverse again a $\Psi D O$? Yes! A result of Bony and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical assumptions).
- This property of the calculus is called spectral invariance.
- If $\lambda \mapsto a_{\lambda}$ is \mathcal{C}^{k}-mapping $(0 \leq k \leq \infty)$ of 0 -order symbols such that each a_{λ}^{w} is invertible on $L^{2}\left(\mathbb{R}^{n}\right)$, is the same true for the mapping of the inverses $\lambda \mapsto b_{\lambda}$? $\left(b_{\lambda}^{w} a_{\lambda}^{w}=\mathrm{Id}=a_{\lambda}^{w} b_{\lambda}^{w}\right)$

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).
We denote the points in W with capital letters X, Y, Z, \ldots.

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).
We denote the points in W with capital letters X, Y, Z, \ldots.
Let $X \mapsto g_{X}$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_{X}(T)=g_{X}(T, T), T \in T_{X} W$.

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).
We denote the points in W with capital letters X, Y, Z, \ldots.
Let $X \mapsto g_{X}$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_{X}(T)=g_{X}(T, T), T \in T_{X} W$. $g_{X}^{\sigma}(T)=\sup _{S \in W \backslash\{0\}}[T, S]^{2} / g_{X}(S)$ is called the symplectic dual of g.

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).
We denote the points in W with capital letters X, Y, Z, \ldots.
Let $X \mapsto g_{X}$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_{X}(T)=g_{X}(T, T), T \in T_{X} W$. $g_{X}^{\sigma}(T)=\sup _{S \in W \backslash\{0\}}[T, S]^{2} / g_{X}(S)$ is called the symplectic dual of g.
$X \mapsto g_{X}$ is a Hörmander metric if:
(i) (slow variation) there exist $C \geq 1$ and $r>0$ such that for all $X, Y, T \in W$

$$
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} g_{Y}(T) \leq g_{X}(T) \leq C g_{Y}(T)
$$

(ii) (temperance) there exist $C \geq 1, N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$
\left(g_{X}(T) / g_{Y}(T)\right)^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
$$

(iii) (the uncertainty principle) $g_{X}(T) \leq g_{X}^{\sigma}(T)$, for all $X, T \in W$.

Hörmander metric

V-an n dimensional real vector space with V^{\prime} its dual;
$W=V \times V^{\prime}$ is symplectic with the symplectic form $[(x, \xi),(y, \eta)]=\langle\xi, y\rangle-\langle\eta, x\rangle$ (the phase space).
We denote the points in W with capital letters X, Y, Z, \ldots.
Let $X \mapsto g_{X}$ be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite at every point; we employ the notation $g_{X}(T)=g_{X}(T, T), T \in T_{X} W$. $g_{X}^{\sigma}(T)=\sup _{S \in W \backslash\{0\}}[T, S]^{2} / g_{X}(S)$ is called the symplectic dual of g.
$X \mapsto g_{X}$ is a Hörmander metric if:
(i) (slow variation) there exist $C \geq 1$ and $r>0$ such that for all $X, Y, T \in W$

$$
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} g_{Y}(T) \leq g_{X}(T) \leq C g_{Y}(T)
$$

(ii) (temperance) there exist $C \geq 1, N \in \mathbb{N}$ such that for all $X, Y, T \in W$

$$
\left(g_{X}(T) / g_{Y}(T)\right)^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
$$

(iii) (the uncertainty principle) $g_{X}(T) \leq g_{X}^{\sigma}(T)$, for all $X, T \in W$.

Denote $\lambda_{g}(X)=\inf _{T \in W \backslash\{0\}}\left(g_{X}^{\sigma}(T) / g_{X}(T)\right)^{1 / 2}$; it is Borel measurable and $\lambda_{g}(X) \geq 1, \forall X \in W$.

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \geq 1, r>0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$
\begin{gathered}
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} M(Y) \leq M(X) \leq C M(Y) \\
(M(X) / M(Y))^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
\end{gathered}
$$

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \geq 1, r>0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$
\begin{gathered}
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} M(Y) \leq M(X) \leq C M(Y) \\
(M(X) / M(Y))^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
\end{gathered}
$$

$S(M, g)$ is the space of all $a \in \mathcal{C}^{\infty}(W)$ for which

$$
\|a\|_{S(M, g)}^{(k)}=\sup _{I \leq k} \sup _{\substack{X \in W \\ T_{1}, \ldots, T_{l} \in W \backslash\{0\}}} \frac{\left|a^{(I)}\left(X ; T_{1}, \ldots, T_{l}\right)\right|}{M(X) \prod_{j=1}^{l} g_{X}\left(T_{j}\right)^{1 / 2}}<\infty, \forall k \in \mathbb{N} .
$$

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \geq 1, r>0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$
\begin{gathered}
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} M(Y) \leq M(X) \leq C M(Y) \\
(M(X) / M(Y))^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
\end{gathered}
$$

$S(M, g)$ is the space of all $a \in \mathcal{C}^{\infty}(W)$ for which

$$
\|a\|_{S(M, g)}^{(k)}=\sup _{I \leq k} \sup _{\substack{X \in W \\ T_{1}, \ldots, T_{l} \in W \backslash\{0\}}} \frac{\left|a^{(I)}\left(X ; T_{1}, \ldots, T_{l}\right)\right|}{M(X) \prod_{j=1}^{l} g_{X}\left(T_{j}\right)^{1 / 2}}<\infty, \forall k \in \mathbb{N} .
$$

$S(M, g)$ is an (F)-space.

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \geq 1, r>0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$
\begin{gathered}
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} M(Y) \leq M(X) \leq C M(Y) \\
(M(X) / M(Y))^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
\end{gathered}
$$

$S(M, g)$ is the space of all $a \in \mathcal{C}^{\infty}(W)$ for which

$$
\|a\|_{S(M, g)}^{(k)}=\sup _{I \leq k} \sup _{\substack{X \in W \\ T_{1}, \ldots, T_{l} \in W \backslash\{0\}}} \frac{\left|a^{(I)}\left(X ; T_{1}, \ldots, T_{l}\right)\right|}{M(X) \prod_{j=1}^{l} g_{X}\left(T_{j}\right)^{1 / 2}}<\infty, \forall k \in \mathbb{N} .
$$

$S(M, g)$ is an (F)-space.
When $g_{x, \xi}=\varphi^{-2}|d x|^{2}+\Phi^{-2}|d \xi|^{2}, S(M, g)$ reduces to the Beals-Fefferman classes;

Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are $C \geq 1, r>0$ and $N \in \mathbb{N}$ such that for all $X, Y \in W$

$$
\begin{gathered}
g_{X}(X-Y) \leq r^{2} \Rightarrow C^{-1} M(Y) \leq M(X) \leq C M(Y) \\
(M(X) / M(Y))^{ \pm 1} \leq C\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}
\end{gathered}
$$

$S(M, g)$ is the space of all $a \in \mathcal{C}^{\infty}(W)$ for which

$$
\|a\|_{S(M, g)}^{(k)}=\sup _{I \leq k} \sup _{\substack{X \in W \\ T_{1}, \ldots, T_{l} \in W \backslash\{0\}}} \frac{\left|a^{(I)}\left(X ; T_{1}, \ldots, T_{l}\right)\right|}{M(X) \prod_{j=1}^{l} g_{X}\left(T_{j}\right)^{1 / 2}}<\infty, \forall k \in \mathbb{N} .
$$

$S(M, g)$ is an (F)-space.
When $g_{x, \xi}=\varphi^{-2}|d x|^{2}+\Phi^{-2}|d \xi|^{2}, S(M, g)$ reduces to the Beals-Fefferman classes; in this case $g_{x, \xi}^{\sigma}=\Phi^{2}|d x|^{2}+\varphi^{2}|d \xi|^{2}$ and $\lambda_{g}(X)=\varphi(X) \Phi(X)$.

Ψ DOs with symbols in $S(M, g)$

When $a \in S(M, g), a^{w}$ is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$\psi D O s$ with symbols in $S(M, g)$

When $a \in S(M, g)$, a^{W} is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$$
a \# b(X)=\frac{1}{\pi^{2 n}} \int_{W} \int_{W} e^{-2 i\left[X-Y_{1}, X-Y_{2}\right]} a\left(Y_{1}\right) b\left(Y_{2}\right) d Y_{1} d Y_{2} .
$$

The mapping \#
when E:- Hand

$\psi D O s$ with symbols in $S(M, g)$

When $a \in S(M, g)$, a^{W} is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$$
a \# b(X)=\frac{1}{\pi^{2 n}} \int_{W} \int_{W} e^{-2 i\left[X-Y_{1}, X-Y_{2}\right]} a\left(Y_{1}\right) b\left(Y_{2}\right) d Y_{1} d Y_{2} .
$$

The mapping \# : $S\left(M_{1}, g\right) \times S\left(M_{2}, g\right) \rightarrow S\left(M_{1} M_{2}, g\right)$ is continuous.

[^0]
Ψ DOs with symbols in $S(M, g)$

When $a \in S(M, g), a^{w}$ is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$$
a \# b(X)=\frac{1}{\pi^{2 n}} \int_{W} \int_{W} e^{-2 i\left[X-Y_{1}, X-Y_{2}\right]} a\left(Y_{1}\right) b\left(Y_{2}\right) d Y_{1} d Y_{2} .
$$

The mapping \# : $S\left(M_{1}, g\right) \times S\left(M_{2}, g\right) \rightarrow S\left(M_{1} M_{2}, g\right)$ is continuous.
When E is a Hausdorff locally compact topological space $\mathcal{C}(E ; S(1, g))$ becomes a unital algebra (with unity $f(\lambda)=1$).

Ψ DOs with symbols in $S(M, g)$

When $a \in S(M, g), a^{w}$ is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$$
a \# b(X)=\frac{1}{\pi^{2 n}} \int_{W} \int_{W} e^{-2 i\left[X-Y_{1}, X-Y_{2}\right]} a\left(Y_{1}\right) b\left(Y_{2}\right) d Y_{1} d Y_{2} .
$$

The mapping \# : $S\left(M_{1}, g\right) \times S\left(M_{2}, g\right) \rightarrow S\left(M_{1} M_{2}, g\right)$ is continuous.
When E is a Hausdorff locally compact topological space $\mathcal{C}(E ; S(1, g))$ becomes a unital algebra (with unity $f(\lambda)=1$).

When E is a smooth manifold, $\mathcal{C}^{k}(E ; S(1, g)), 0 \leq k \leq \infty$, becomes a unital algebra.

UDOs with symbols in $S(M, g)$

When $a \in S(M, g), a^{w}$ is continuous operator on $\mathcal{S}(V)$ and it extends to a continuous operator on $\mathcal{S}^{\prime}(V)$.

The composition $a^{w} b^{w}$ is the $\Psi D O(a \# b)^{w}$ where

$$
a \# b(X)=\frac{1}{\pi^{2 n}} \int_{W} \int_{W} e^{-2 i\left[X-Y_{1}, X-Y_{2}\right]} a\left(Y_{1}\right) b\left(Y_{2}\right) d Y_{1} d Y_{2} .
$$

The mapping \# : $S\left(M_{1}, g\right) \times S\left(M_{2}, g\right) \rightarrow S\left(M_{1} M_{2}, g\right)$ is continuous.
When E is a Hausdorff locally compact topological space $\mathcal{C}(E ; S(1, g))$ becomes a unital algebra (with unity $f(\lambda)=1$).

When E is a smooth manifold, $\mathcal{C}^{k}(E ; S(1, g)), 0 \leq k \leq \infty$, becomes a unital algebra. Furthermore, the smooth vector fields on E are derivations of the unital algebra $\mathcal{C}^{\infty}(E ; S(1, g))$, i.e.

$$
X\left(\mathbf{f}_{1} \# \mathbf{f}_{2}\right)=X \mathbf{f}_{1} \# \mathbf{f}_{2}+\mathbf{f}_{1} \# X \mathbf{f}_{2}
$$

for $\mathbf{f}_{1}, \mathbf{f}_{2} \in \mathcal{C}^{\infty}(E ; S(1, g)), X$ a smooth vector field on E.

The Sobolev space $H(M, g)$

Let M be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1 / M, g)$ such that $a \# b=1=b \# a$.

The Sobolev space $H(M, g)$ is defined as

The Sobolev space $H(M, g)$

Let M be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1 / M, g)$ such that $a \# b=1=b \# a$.

The Sobolev space $H(M, g)$ is defined as

$$
H(M, g)=\left\{u \in \mathcal{S}^{\prime}(V) \mid a^{w} u \in L^{2}(V)\right\}
$$

It is a Hilbert space with inner product $(u, v)_{H(M, g)}=\left(a^{w} u, a^{w} v\right)_{L^{2}(v)}$.

The Sobolev space $H(M, g)$

Let M be an admissible weight. There exist $a \in S(M, g)$ and $b \in S(1 / M, g)$ such that $a \# b=1=b \# a$.

The Sobolev space $H(M, g)$ is defined as

$$
H(M, g)=\left\{u \in \mathcal{S}^{\prime}(V) \mid a^{w} u \in L^{2}(V)\right\}
$$

It is a Hilbert space with inner product $(u, v)_{H(M, g)}=\left(a^{w} u, a^{w} v\right)_{L^{2}(v)}$. $H(1, g)=L^{2}(V)$.

Additional hypothesis for spectral invariance

The Hörmander metric g is said to be geodesically temperate if there exist $C \geq 1$ and $N \in \mathbb{N}$ such that

$$
g_{X}(T) \leq C g_{Y}(T)(1+d(X, Y))^{N}, \quad \forall X, Y, T \in W
$$

where $d(\cdot, \cdot)$ stands for the geodesic distance on W induced by the symplectic intermediate $g^{\#}$.

The metrics of all of the frequently used calculi are geodesically temperate.

Additional hypothesis for spectral invariance

The Hörmander metric g is said to be geodesically temperate if there exist $C \geq 1$ and $N \in \mathbb{N}$ such that

$$
g_{X}(T) \leq C g_{Y}(T)(1+d(X, Y))^{N}, \forall X, Y, T \in W,
$$

where $d(\cdot, \cdot)$ stands for the geodesic distance on W induced by the symplectic intermediate $g^{\#}$.

The metrics of all of the frequently used calculi are geodesically temperate.

Inverse smoothness in $S(1, g)$

Theorem

Assume that g is a geodesically temperate Hörmander metric. Let E be a Hausdorff topological space and $\mathbf{f}: E \rightarrow S(1, g)$ a continuous mapping. If for each $\lambda \in E, \mathbf{f}(\lambda)^{w}$ is invertible operator on $L^{2}(V)$, then there exists a unique continuous mapping $\tilde{\mathbf{f}}: E \rightarrow S(1, g)$ such that

$$
\begin{equation*}
\tilde{\mathbf{f}}(\lambda) \# \mathbf{f}(\lambda)=\mathbf{f}(\lambda) \# \tilde{\mathbf{f}}(\lambda)=1, \quad \forall \lambda \in E . \tag{1}
\end{equation*}
$$

If E is a smooth manifold without boundary and $\mathbf{f}: E \rightarrow S(1, g)$ is of class \mathcal{C}^{N}, $0 \leq N \leq \infty$, then $\tilde{\mathbf{f}}: E \rightarrow S(1, g)$ is also of class \mathcal{C}^{N}.

Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic than for any g-admissible weight M_{1}, a^{w} restricts to a Fredholm operator from $H\left(M_{1}, g\right)$ into $H\left(M_{1} / M, g\right)$ and its index is independent of M_{1}.

Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic than for any g-admissible weight M_{1}, a^{w} restricts to a Fredholm operator from $H\left(M_{1}, g\right)$ into $H\left(M_{1} / M, g\right)$ and its index is independent of M_{1}.

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M and M_{1} two g-admissible weights. If $a \in S(M, g)$ is such that a^{w} restricts to a Fredholm operator from $H\left(M_{1}, g\right)$ into $H\left(M_{1} / M, g\right)$ then a is elliptic.

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic then there are $r_{1}, r_{2} \in \mathcal{S}(W)$ and elliptic $\tilde{a}_{1}, \tilde{a}_{2} \in S(1 / M, g)$ such that

$$
\begin{array}{rll}
\tilde{a}_{1} \# a=1+r_{1} & \text { and } & a \# \tilde{a}_{2}=1+r_{2} \\
(i . e . & \tilde{a}_{1}^{w} a^{w}=1 d+r_{1}^{w} & \text { and } \\
\left.a^{w} \tilde{a}_{2}^{w}=1 d+r_{2}^{w}\right)
\end{array}
$$

and consequently a^{w} is globally regular. Furthermore, $r_{1}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ and $r_{2}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ are finite dimensional subspaces of $\mathcal{S}(V)$.
In particular, ker a^{w} is a finite dimensional subspace of $\mathcal{S}(V)$ and for any g-admissible weight $\left.M_{1}, \operatorname{ker}\left(a^{w}{ }_{\mid H\left(M_{1}, g ;\right.} \tilde{V}\right)\right)=\operatorname{ker} a^{w}$.

Consequently, the dimensions of the cokernels of the Fredholm operators

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic then there are $r_{1}, r_{2} \in \mathcal{S}(W)$ and elliptic $\tilde{a}_{1}, \tilde{a}_{2} \in S(1 / M, g)$ such that

$$
\begin{array}{rll}
\tilde{a}_{1} \# a=1+r_{1} & \text { and } & a \# \tilde{a}_{2}=1+r_{2} \\
(i . e . & \tilde{a}_{1}^{w} a^{w}=1 d+r_{1}^{w} & \text { and } \\
\left.a^{w} \tilde{a}_{2}^{w}=1 d+r_{2}^{w}\right)
\end{array}
$$

and consequently a^{w} is globally regular. Furthermore, $r_{1}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ and $r_{2}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ are finite dimensional subspaces of $\mathcal{S}(V)$.
In particular, ker a^{w} is a finite dimensional subspace of $\mathcal{S}(V)$ and for any g-admissible weight $\left.M_{1}, \operatorname{ker}\left(a^{w}{ }_{\mid H\left(M_{1}, g ;\right.}, \tilde{V}\right)\right)=\operatorname{ker} a^{w}$.

- Consequently, the dimensions of the cokernels of the Fredholm operators $a^{w}{ }_{\mid H\left(M_{1}, g\right)}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ are also the same for any g-admissible weight M_{1}.

Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying $\lambda_{g} \rightarrow \infty$ and M a g-admissible weight. If $a \in S(M, g)$ is elliptic then there are $r_{1}, r_{2} \in \mathcal{S}(W)$ and elliptic $\tilde{a}_{1}, \tilde{a}_{2} \in S(1 / M, g)$ such that

$$
\begin{array}{rll}
\tilde{a}_{1} \# a=1+r_{1} & \text { and } & a \# \tilde{a}_{2}=1+r_{2} \\
\left(\text { i.e. } \tilde{a}_{1}^{w} a^{w}=\mathrm{Id}+r_{1}^{w}\right. & \text { and } & \left.a^{w} \tilde{a}_{2}^{w}=1 d+r_{2}^{w}\right)
\end{array}
$$

and consequently a^{w} is globally regular. Furthermore, $r_{1}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ and $r_{2}^{w}\left(\mathcal{S}^{\prime}(V)\right)$ are finite dimensional subspaces of $\mathcal{S}(V)$.
In particular, ker a^{w} is a finite dimensional subspace of $\mathcal{S}(V)$ and for any g-admissible weight $\left.M_{1}, \operatorname{ker}\left(a^{w}{ }_{\mid H\left(M_{1}, g ;\right.}, \tilde{V}\right)\right)=\operatorname{ker} a^{w}$.

- Consequently, the dimensions of the cokernels of the Fredholm operators $a^{w}{ }_{\mid H\left(M_{1}, g\right)}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ are also the same for any g-admissible weight M_{1}.
- All of the above results hold equally well for matrix valued symbols, i.e. for symbols in $S\left(M, g ; \mathcal{L}\left(\mathbb{C}^{\nu}\right)\right), \nu \in \mathbb{Z}_{+}$.

Fedosov-Hörmander integral formula for the index

If g satisfies the strong uncertainty principle:
there are $C, \delta>0$ such that $\lambda_{g}(X) \geq C\left(1+g_{0}(X)\right)^{\delta}, \forall X \in W$, and $a \in S\left(1, g ; \mathcal{L}\left(\mathbb{C}^{\nu}\right)\right)$ is elliptic, then ind a^{w} can be given by the Fedosov-Hörmander integral formula.

Fedosov-Hörmander integral formula for the index

If g satisfies the strong uncertainty principle:
there are $C, \delta>0$ such that $\lambda_{g}(X) \geq C\left(1+g_{0}(X)\right)^{\delta}, \forall X \in W$,
and $a \in S\left(1, g ; \mathcal{L}\left(\mathbb{C}^{\nu}\right)\right)$ is elliptic, then ind a^{w} can be given by the Fedosov-Hörmander integral formula.

Proposition

Assume that the Hörmander metric g satisfies the strong uncertainty principle and let a be an elliptic symbol in $S\left(M, g ; \mathcal{L}\left(\mathbb{C}^{\nu}\right)\right)$ for some g-admissible weight M. Let D be any compact properly embedded codimension-0 submanifold with boundary in W which contains in its interior the set where a is not invertible. Then

$$
\text { ind } a^{w}=-\frac{(n-1)!}{(2 n-1)!(2 \pi i)^{n}} \int_{\partial D} \operatorname{tr}\left(a^{-1} d a\right)^{2 n-1}
$$

The orientation of D is the one induced by W, where the latter has the orientation induced by the symplectic form.

Remark

If we fix a basis for V and take the dual basis for V^{\prime}, the orientation on W is given by the nonvanishing $2 n$-form $d \xi_{1} \wedge d x^{1} \wedge \ldots \wedge d \xi_{n} \wedge d x^{n}$.

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^{w} is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric,

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^{w} is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely a is elliptic in $S(M, g)$ with $g_{x, \xi}=\langle x\rangle^{-2}|d x|^{2}+\langle x\rangle^{2 s}\langle\xi\rangle^{-2}|d \xi|^{2}$ and $M=a$ (one can prove that g is a Hörmander metric and M is g-admissible);

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^{w} is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely a is elliptic in $S(M, g)$ with $g_{x, \xi}=\langle x\rangle^{-2}|d x|^{2}+\langle x\rangle^{2 s}\langle\xi\rangle^{-2}|d \xi|^{2}$ and $M=a$ (one can prove that g is a Hörmander metric and M is g-admissible);
- the above results imply $a^{w}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ is Fredholm, for every g-admissible weight M_{1} and its index is independent of M_{1}. In fact, the Fedosov-Hörmander formula gives ind $a^{w}=0$;

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^{w} is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely a is elliptic in $S(M, g)$ with $g_{x, \xi}=\langle x\rangle^{-2}|d x|^{2}+\langle x\rangle^{2 s}\langle\xi\rangle^{-2}|d \xi|^{2}$ and $M=a$ (one can prove that g is a Hörmander metric and M is g-admissible);
- the above results imply $a^{w}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ is Fredholm, for every g-admissible weight M_{1} and its index is independent of M_{1}. In fact, the Fedosov-Hörmander formula gives ind $a^{w}=0$;
- one easily verifies that ker $a^{w} \subseteq \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\left(a^{w} \varphi, \varphi\right)_{L^{2}}>0, \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \backslash\{0\}$; consequently (as ind $a^{w}=0$) $a^{w}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ is an isomorphism, for any g-admissible weight M_{1};

An illustrative example

Consider the operator

$$
a^{w}=-\Delta+\langle x\rangle^{-2 s}, \quad 0<s<1
$$

with Weyl symbol $a(x, \xi)=|\xi|^{2}+\langle x\rangle^{-2 s}$.

- a^{w} is not elliptic in any of the "classical" symbolic calculi, but ... ;
- a^{w} is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the metric, namely a is elliptic in $S(M, g)$ with $g_{x, \xi}=\langle x\rangle^{-2}|d x|^{2}+\langle x\rangle^{2 s}\langle\xi\rangle^{-2}|d \xi|^{2}$ and $M=a$ (one can prove that g is a Hörmander metric and M is g-admissible);
- the above results imply $a^{w}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ is Fredholm, for every g-admissible weight M_{1} and its index is independent of M_{1}. In fact, the Fedosov-Hörmander formula gives ind $a^{w}=0$;
- one easily verifies that ker $a^{w} \subseteq \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\left(a^{w} \varphi, \varphi\right)_{L^{2}}>0, \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \backslash\{0\}$; consequently (as ind $a^{w}=0$) $a^{w}: H\left(M_{1}, g\right) \rightarrow H\left(M_{1} / M, g\right)$ is an isomorphism, for any g-admissible weight M_{1};
- one can easily prove that the latter implies that a^{w} also restricts to a topological isomorphism on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as well.

THANK YOU FOR YOUR ATTENTION

[^0]: When E is a Hausdorff locally compact topological space $\mathcal{C}(E ; S(1, g))$ becomes a
 unital algebra (with unity $f(\lambda)$
 When E'is a smoothmaniold, ck(E:S(1.q)),0<k<o, becomes a unital algebra.

