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For a ∈ S(R2n), the Weyl quantisation of a is:

awϕ(x) =
1

(2π)n

∫
Rn

∫
Rn

ei〈x−y,ξ〉a((x + y)/2, ξ)ϕ(y)dydξ, ϕ ∈ S(Rn);

aw : S(Rn)→ S(Rn) is continuous; in fact, it extends to a continuous mapping
S′(Rn)→ S(Rn)

if a ∈ S′(R2n) then aw : S(Rn)→ S′(Rn) is continuous.
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• (the Shubin classes) a ∈ Γm
ρ (0 < ρ ≤ 1) if

|Dαξ Dβx a(x , ξ)| ≤ Cα,β〈(x , ξ)〉m−ρ(|α|+|β|), ∀(x , ξ) ∈ R2n;

• (the Hörmander Sρ,δ-calculus) a ∈ Sm
ρ,δ (0 ≤ δ ≤ ρ ≤ 1 and δ < 1) if

|Dαξ Dβx a(x , ξ)| ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|, ∀(x , ξ) ∈ R2n;

• (the Beals-Fefferman calculus) a ∈ S(M;ϕ,Φ) if

|Dαξ Dβx a(x , ξ)| ≤ Cα,βM(x , ξ)ϕ(x , ξ)−|β|Φ(x , ξ)−|α|, ∀(x , ξ) ∈ R2n.

The Shubin calculus when ϕ(x , ξ) = Φ(x , ξ) = 〈(x , ξ)〉ρ, M(x , ξ) = 〈(x , ξ)〉m.
The Hörmander Sρ,δ-calculus, when ϕ(x , ξ) = 〈ξ〉−δ and Φ(x , ξ) = 〈ξ〉ρ,
M(x , ξ) = 〈ξ〉m.
The SG-calculus (scattering calculus), when ϕ(x , ξ) = 〈x〉ρ and Φ(x , ξ) = 〈ξ〉ρ,
M(x , ξ) = 〈x〉s〈ξ〉t .
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Preliminaries
The main results

Example

Outline of the problem
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Preliminaries
The main results

Example

Outline of the problem
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The Hörmander Sρ,δ-calculus, when ϕ(x , ξ) = 〈ξ〉−δ and Φ(x , ξ) = 〈ξ〉ρ,
M(x , ξ) = 〈ξ〉m.
The SG-calculus (scattering calculus), when ϕ(x , ξ) = 〈x〉ρ and Φ(x , ξ) = 〈ξ〉ρ,
M(x , ξ) = 〈x〉s〈ξ〉t .

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus



Preliminaries
The main results

Example

Outline of the problem
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• The ΨDO aw is called elliptic if cM(x , ξ) ≤ |a(x , ξ)| ≤ CM(x , ξ) outside of a
compact neighbourhood of the origin.
• If the calculus satisfies the strong uncertainty principle, i.e.
ϕ(x , ξ)Φ(x , ξ) ≥ c〈(x , ξ)〉ε, ε > 0, (the Shubin calculus, the SG-calculus), then
elliptic operators have parametrices; i.e. there exists b such that bw aw = Id + R,
where R : S′(Rn)→ S(Rn) (regularising operator).
• The Sobolev space H(M) = {u ∈ S′(Rn)| aw u ∈ L2}, where aw is elliptic operator

of order M; furthermore H(1) = L2(Rn).
For the Shubin calculus when M = 〈(x , ξ)〉m, m ∈ Z+,

H(M) = {u ∈ S′(Rn)| xβDαu ∈ L2(Rn), for all |α|+ |β| ≤ m}.

• If a is of order M then aw : H(M1)→ H(M1/M).
• A consequence of the existence of parametrices is that every elliptic operator aw

of order M restricts to a Fredholm mapping H(M1)→ H(M1/M), for any M1 and
its index is independent of M1
(a continuous operator A : H1 → H2 is called Fredholm if ker A and
coker A = H2/A(H1) are finite dimensional; ind A = dim ker A− dim coker A).
• Is the converse true?Yes! for a number of specific instances of the

Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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(a continuous operator A : H1 → H2 is called Fredholm if ker A and
coker A = H2/A(H1) are finite dimensional; ind A = dim ker A− dim coker A).
• Is the converse true?Yes! for a number of specific instances of the

Weyl-Hörmander calculus (cf. Cordes, Beals and Fefferman, Schrohe ...)

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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• Let a be a 0-order symbol, i.e. bounded by a constant times M(x , ξ)0 = 1. If aw is
bijective operator on L2(Rn), is the inverse again a ΨDO?Yes! A result of Bony
and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical
assumptions).

• This property of the calculus is called spectral invariance.

• If λ 7→ aλ is Ck -mapping (0 ≤ k ≤ ∞) of 0-order symbols such that each aw
λ is

invertible on L2(Rn), is the same true for the mapping of the inverses λ 7→ bλ?
(bw
λaw

λ = Id = aw
λbw

λ )
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and Chemin verifies this for the Weyl-Hörmander calculus (under certain technical
assumptions).

• This property of the calculus is called spectral invariance.

• If λ 7→ aλ is Ck -mapping (0 ≤ k ≤ ∞) of 0-order symbols such that each aw
λ is

invertible on L2(Rn), is the same true for the mapping of the inverses λ 7→ bλ?
(bw
λaw

λ = Id = aw
λbw

λ )

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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Hörmander metric

V -an n dimensional real vector space with V ′ its dual;
W = V × V ′ is symplectic with the symplectic form [(x , ξ), (y , η)] = 〈ξ, y〉 − 〈η, x〉 (the
phase space).
We denote the points in W with capital letters X ,Y ,Z , . . ..
Let X 7→ gX be a Borel measurable symmetric covariant 2-tensor field on W that is
positive definite at every point; we employ the notation gX (T ) = gX (T ,T ), T ∈ TX W .
gσX (T ) = supS∈W\{0}[T ,S]2/gX (S) is called the symplectic dual of g.

X 7→ gX is a Hörmander metric if:

(i) (slow variation) there exist C ≥ 1 and r > 0 such that for all X ,Y ,T ∈ W

gX (X − Y ) ≤ r2 ⇒ C−1gY (T ) ≤ gX (T ) ≤ CgY (T );

(ii) (temperance) there exist C ≥ 1, N ∈ N such that for all X ,Y ,T ∈ W

(gX (T )/gY (T ))±1 ≤ C(1 + gσX (X − Y ))N ;

(iii) (the uncertainty principle) gX (T ) ≤ gσX (T ), for all X ,T ∈ W .

Denote λg(X) = infT∈W\{0}(gσX (T )/gX (T ))1/2; it is Borel measurable and
λg(X) ≥ 1, ∀X ∈ W .
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Admissible weights. Symbol classes

A positive Borel measurable function M on W is said to be g-admissible if there are
C ≥ 1, r > 0 and N ∈ N such that for all X ,Y ∈ W

gX (X − Y ) ≤ r2 ⇒ C−1M(Y ) ≤ M(X) ≤ CM(Y );

(M(X)/M(Y ))±1 ≤ C(1 + gσX (X − Y ))N .

S(M, g) is the space of all a ∈ C∞(W ) for which

‖a‖(k)
S(M,g)

= sup
l≤k

sup
X∈W

T1,...,Tl∈W\{0}

|a(l)(X ; T1, . . . ,Tl )|
M(X)

∏l
j=1 gX (Tj )1/2

<∞, ∀k ∈ N.

S(M, g) is an (F )-space.

When gx,ξ = ϕ−2|dx |2 + Φ−2|dξ|2, S(M, g) reduces to the Beals-Fefferman classes;
in this case gσx,ξ = Φ2|dx |2 + ϕ2|dξ|2 and λg(X) = ϕ(X)Φ(X).
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ΨDOs with symbols in S(M,g)

When a ∈ S(M, g), aw is continuous operator on S(V ) and it extends to a continuous
operator on S′(V ).

The composition aw bw is the ΨDO (a#b)w where

a#b(X) =
1
π2n

∫
W

∫
W

e−2i[X−Y1,X−Y2]a(Y1)b(Y2)dY1dY2.

The mapping # : S(M1, g)× S(M2, g)→ S(M1M2, g) is continuous.

When E is a Hausdorff locally compact topological space C(E ; S(1, g)) becomes a
unital algebra (with unity f(λ) = 1).

When E is a smooth manifold, Ck (E ; S(1, g)), 0 ≤ k ≤ ∞, becomes a unital algebra.
Furthermore, the smooth vector fields on E are derivations of the unital algebra
C∞(E ; S(1, g)), i.e.

X(f1#f2) = X f1#f2 + f1#X f2

for f1, f2 ∈ C∞(E ; S(1, g)), X a smooth vector field on E .
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Preliminaries
The main results

Example

Outline of the problem
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When a ∈ S(M, g), aw is continuous operator on S(V ) and it extends to a continuous
operator on S′(V ).

The composition aw bw is the ΨDO (a#b)w where

a#b(X) =
1
π2n

∫
W

∫
W

e−2i[X−Y1,X−Y2]a(Y1)b(Y2)dY1dY2.

The mapping # : S(M1, g)× S(M2, g)→ S(M1M2, g) is continuous.

When E is a Hausdorff locally compact topological space C(E ; S(1, g)) becomes a
unital algebra (with unity f(λ) = 1).

When E is a smooth manifold, Ck (E ; S(1, g)), 0 ≤ k ≤ ∞, becomes a unital algebra.
Furthermore, the smooth vector fields on E are derivations of the unital algebra
C∞(E ; S(1, g)), i.e.

X(f1#f2) = X f1#f2 + f1#X f2

for f1, f2 ∈ C∞(E ; S(1, g)), X a smooth vector field on E .
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The Weyl-Hörmander calculus

ΨDOs with symbols in S(M,g)

When a ∈ S(M, g), aw is continuous operator on S(V ) and it extends to a continuous
operator on S′(V ).

The composition aw bw is the ΨDO (a#b)w where

a#b(X) =
1
π2n

∫
W

∫
W

e−2i[X−Y1,X−Y2]a(Y1)b(Y2)dY1dY2.

The mapping # : S(M1, g)× S(M2, g)→ S(M1M2, g) is continuous.

When E is a Hausdorff locally compact topological space C(E ; S(1, g)) becomes a
unital algebra (with unity f(λ) = 1).

When E is a smooth manifold, Ck (E ; S(1, g)), 0 ≤ k ≤ ∞, becomes a unital algebra.
Furthermore, the smooth vector fields on E are derivations of the unital algebra
C∞(E ; S(1, g)), i.e.

X(f1#f2) = X f1#f2 + f1#X f2

for f1, f2 ∈ C∞(E ; S(1, g)), X a smooth vector field on E .

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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The Sobolev space H(M,g)

Let M be an admissible weight. There exist a ∈ S(M, g) and b ∈ S(1/M, g) such that
a#b = 1 = b#a.

The Sobolev space H(M, g) is defined as

H(M, g) = {u ∈ S′(V )| aw u ∈ L2(V )}.

It is a Hilbert space with inner product (u, v)H(M,g) = (aw u, aw v)L2(V ).

H(1, g) = L2(V ).
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Additional hypothesis for spectral invariance

The Hörmander metric g is said to be geodesically temperate if there exist C ≥ 1 and
N ∈ N such that

gX (T ) ≤ CgY (T )(1 + d(X ,Y ))N , ∀X ,Y ,T ∈ W ,

where d(·, ·) stands for the geodesic distance on W induced by the symplectic
intermediate g#.

The metrics of all of the frequently used calculi are geodesically temperate.
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Inverse smoothness in S(1,g)

Theorem

Assume that g is a geodesically temperate Hörmander metric. Let E be a Hausdorff
topological space and f : E → S(1, g) a continuous mapping. If for each λ ∈ E, f(λ)w

is invertible operator on L2(V ), then there exists a unique continuous mapping
f̃ : E → S(1, g) such that

f̃(λ)#f(λ) = f(λ)#f̃(λ) = 1, ∀λ ∈ E . (1)

If E is a smooth manifold without boundary and f : E → S(1, g) is of class CN ,
0 ≤ N ≤ ∞, then f̃ : E → S(1, g) is also of class CN .
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Equivalence of ellipticity and the Fredholm property

Lemma

Let g be a Hörmander metric satisfying λg →∞ and M a g-admissible weight. If
a ∈ S(M, g) is elliptic than for any g-admissible weight M1, aw restricts to a Fredholm
operator from H(M1, g) into H(M1/M, g) and its index is independent of M1.

Theorem

Let g be a geodesically temperate Hörmander metric satisfying λg →∞ and M and
M1 two g-admissible weights. If a ∈ S(M, g) is such that aw restricts to a Fredholm
operator from H(M1, g) into H(M1/M, g) then a is elliptic.
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Existence of parametrices

Theorem

Let g be a geodesically temperate Hörmander metric satisfying λg →∞ and M a
g-admissible weight. If a ∈ S(M, g) is elliptic then there are r1, r2 ∈ S(W ) and elliptic
ã1, ã2 ∈ S(1/M, g) such that

ã1#a = 1 + r1 and a#ã2 = 1 + r2(
i.e. ãw

1 aw = Id +rw
1 and aw ãw

2 = Id +rw
2
)

and consequently aw is globally regular. Furthermore, rw
1 (S′(V )) and rw

2 (S′(V )) are
finite dimensional subspaces of S(V ).
In particular, ker aw is a finite dimensional subspace of S(V ) and for any g-admissible
weight M1, ker(aw

|H(M1,g;Ṽ )) = ker aw .

• Consequently, the dimensions of the cokernels of the Fredholm operators
aw
|H(M1,g) : H(M1, g)→ H(M1/M, g) are also the same for any g-admissible

weight M1.

• All of the above results hold equally well for matrix valued symbols, i.e. for
symbols in S(M, g;L(Cν)), ν ∈ Z+.
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|H(M1,g;Ṽ )) = ker aw .

• Consequently, the dimensions of the cokernels of the Fredholm operators
aw
|H(M1,g) : H(M1, g)→ H(M1/M, g) are also the same for any g-admissible

weight M1.

• All of the above results hold equally well for matrix valued symbols, i.e. for
symbols in S(M, g;L(Cν)), ν ∈ Z+.

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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Fedosov-Hörmander integral formula for the index
If g satisfies the strong uncertainty principle:

there are C, δ > 0 such that λg(X) ≥ C(1 + g0(X))δ, ∀X ∈ W ,

and a ∈ S(1, g;L(Cν)) is elliptic, then ind aw can be given by the Fedosov-Hörmander
integral formula.

Proposition

Assume that the Hörmander metric g satisfies the strong uncertainty principle and let a
be an elliptic symbol in S(M, g;L(Cν)) for some g-admissible weight M. Let D be any
compact properly embedded codimension-0 submanifold with boundary in W which
contains in its interior the set where a is not invertible. Then

ind aw = −
(n − 1)!

(2n − 1)!(2πi)n

∫
∂D

tr(a−1da)2n−1.

The orientation of D is the one induced by W, where the latter has the orientation
induced by the symplectic form.

Remark

If we fix a basis for V and take the dual basis for V ′, the orientation on W is given by
the nonvanishing 2n-form dξ1 ∧ dx1 ∧ . . . ∧ dξn ∧ dxn.
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Preliminaries
The main results

Example

An illustrative example

Consider the operator

aw = −∆ + 〈x〉−2s, 0 < s < 1.

with Weyl symbol a(x , ξ) = |ξ|2 + 〈x〉−2s .

• aw is not elliptic in any of the “classical” symbolic calculi, but ... ;

• aw is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the
metric, namely a is elliptic in S(M, g) with gx,ξ = 〈x〉−2|dx |2 + 〈x〉2s〈ξ〉−2|dξ|2
and M = a (one can prove that g is a Hörmander metric and M is g-admissible);

• the above results imply aw : H(M1, g)→ H(M1/M, g) is Fredholm, for every
g-admissible weight M1 and its index is independent of M1. In fact, the
Fedosov-Hörmander formula gives ind aw = 0;

• one easily verifies that ker aw ⊆ S(Rn) and (awϕ,ϕ)L2 > 0, ∀ϕ ∈ S(Rn)\{0};
consequently (as ind aw = 0) aw : H(M1, g)→ H(M1/M, g) is an isomorphism,
for any g-admissible weight M1;

• one can easily prove that the latter implies that aw also restricts to a topological
isomorphism on S(Rn) and S′(Rn) as well.
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Fedosov-Hörmander formula gives ind aw = 0;

• one easily verifies that ker aw ⊆ S(Rn) and (awϕ,ϕ)L2 > 0, ∀ϕ ∈ S(Rn)\{0};
consequently (as ind aw = 0) aw : H(M1, g)→ H(M1/M, g) is an isomorphism,
for any g-admissible weight M1;

• one can easily prove that the latter implies that aw also restricts to a topological
isomorphism on S(Rn) and S′(Rn) as well.

Bojan Prangoski Ellipticity and Fredholmness in the Weyl-Hörmander calculus
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• aw is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the
metric, namely a is elliptic in S(M, g) with gx,ξ = 〈x〉−2|dx |2 + 〈x〉2s〈ξ〉−2|dξ|2
and M = a (one can prove that g is a Hörmander metric and M is g-admissible);
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